WorldWideScience

Sample records for energy center unit

  1. United States Data Center Energy Usage Report

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Herrlin, Magnus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koomey, Jonathan [Stanford Univ., CA (United States); Masanet, Eric [Northwestern Univ., Evanston, IL (United States); Horner, Nathaniel [Carnegie Mellon Univ., Pittsburgh, PA (United States); Azevedo, Inês [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lintner, William [Dept. of Energy (DOE), Washington DC (United States)

    2016-06-01

    This report estimates historical data center electricity consumption back to 2000, relying on previous studies and historical shipment data, and forecasts consumption out to 2020 based on new trends and the most recent data available. Figure ES-1 provides an estimate of total U.S. data center electricity use (servers, storage, network equipment, and infrastructure) from 2000-2020. In 2014, data centers in the U.S. consumed an estimated 70 billion kWh, representing about 1.8% of total U.S. electricity consumption. Current study results show data center electricity consumption increased by about 4% from 2010-2014, a large shift from the 24% percent increase estimated from 2005-2010 and the nearly 90% increase estimated from 2000-2005. Energy use is expected to continue slightly increasing in the near future, increasing 4% from 2014-2020, the same rate as the past five years. Based on current trend estimates, U.S. data centers are projected to consume approximately 73 billion kWh in 2020.

  2. Nuclear Energy Center Site Survey, 1975. Executive summary

    International Nuclear Information System (INIS)

    1976-01-01

    The Nuclear Energy Center Site Survey is a study of a potential alternative siting approach for nuclear power and fuel-cycle facilities, an approach that would cluster sizable groups of such facilities on a relatively small number of sites. The largest aggregation of reactors on a single site being planned today is four, and this quad is assumed (for comparative study purposes) to be the typical dispersed site by the year 2000. Three basic types of nuclear energy centers are considered: power-plant centers, consisting of 10 to 40 nuclear electric generating units of 1200-megawatt electric capacity each; fuel-cycle centers, consisting of fuel reprocessing plants, mixed-oxide fuel fabrication facilities, and radioactive waste management facilities; and combined centers, containing both power plants and fuel-cycle facilities. The results of the general site-location screening efforts are shown on a United States map that shows the locations of large areas identified as likely to contain suitable candidate sites for power NECs, on the basis of four coarse screening criteria: water resources, seismic activity, population density, and statutory excluded lands

  3. Midwest Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  4. Effect of CRAC units layout on thermal management of data center

    International Nuclear Information System (INIS)

    Nada, S.A.; Said, M.A.

    2017-01-01

    Highlights: • CFD study of thermal management in data centers. • Effects of layout arrangements of the CRACs units relative to the racks array on data center performance. • Design guide liens for data centers energy efficiency improvements. - Abstract: Comprehensive numerical studies of thermal management of data centers were presented by several investigators for different geometric and operating conditions of data centers. In the present work, a technical note regarding the effect of the computer room air conditioning (CRAC) units layout arrangements is presented. Two arrangements of CRAC units layouts are investigated; namely locating CRACs units in line with the racks row and locating the CRACs units perpendicular to the rack row. Temperature distributions, air flow characteristics particularly air recirculation and bypass and thermal management in data centers are evaluated in terms of the measureable overall performance parameters: supply/return heat indices (SHI/RHI) and return temperature indices (RTI). The results showed that locating CRAC units perpendicular to the racks row has the following effects: (i) enhances the uniformity of the air flow from the perforated tiles along the rack row, (ii) reduces the hot air recirculation at the ends racks of the row and the cold air bypass at the middle rack of the row and (iii) enhances the data center performance parameters RTI, SHI and RHI.

  5. Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices

    Energy Technology Data Exchange (ETDEWEB)

    Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim; Singh, Tanvin; Jayaram, Nisha; Ghatikar, Girish; Greenberg, Steve; Kumar, Satish; Sartor, Dale

    2015-06-01

    Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identified an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.

  6. ENERGY RESOURCES CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Virginia

    1979-11-01

    First I will give a short history of this Center which has had three names and three moves (and one more in the offing) in three years. Then I will tell you about the accomplishments made in the past year. And last, I will discuss what has been learned and what is planned for the future. The Energy and Environment Information Center (EEIC), as it was first known, was organized in August 1975 in San Francisco as a cooperative venture by the Federal Energy Administration (FEA), Energy Research and Development Administration (ERDA) and the Environmental Protection Agency (EPA). These three agencies planned this effort to assist the public in obtaining information about energy and the environmental aspects of energy. The Public Affairs Offices of FEA, ERDA and EPA initiated the idea of the Center. One member from each agency worked at the Center, with assistance from the Lawrence Berkeley Laboratory Information Research Group (LBL IRG) and with on-site help from the EPA Library. The Center was set up in a corner of the EPA Library. FEA and ERDA each contributed one staff member on a rotating basis to cover the daily operation of the Center and money for books and periodicals. EPA contributed space, staff time for ordering, processing and indexing publications, and additional money for acquisitions. The LBL Information Research Group received funds from ERDA on a 189 FY 1976 research project to assist in the development of the Center as a model for future energy centers.

  7. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  8. Utility survey on nuclear power plant siting and nuclear energy centers

    International Nuclear Information System (INIS)

    Cope, D.F.; Bauman, H.F.

    1977-01-01

    Most of the large U.S. utilities were surveyed by telephone and mail on questions concerning nuclear power plant siting and nuclear energy centers (NECs). The main purpose of the survey was for guidance of ERDA's NEC program. The questions covered the following topics: availability of sites; impact of environmental and other restraints; plans for development of multi-unit sites; interest in NEC development; interest in including fuel-cycle facilities in NECs; and opinions on the roles desired for the state and Federal governments in power plant siting. The main conclusion of the survey was that, while many utilities were considering multiple-unit sites of 2 to 5 units, none were planning larger energy centers at the present time. However, several expressed interest in NECs as a long-range future development

  9. Carolinas Energy Career Center

    Energy Technology Data Exchange (ETDEWEB)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: • Development and Pilot of a New Advanced Welding Curriculum, • Program Enhancement of Non-Destructive Examination (NDE) Technology, • Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, • Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: • Increased capacity to serve and train students in emerging energy industry careers; • Developed new courses and curricula to support emerging energy industry careers; • Established new training/laboratory resources; • Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  10. Applied wind energy research at the National Wind Technology Center

    International Nuclear Information System (INIS)

    Robinson, M.C.; Tu, P.

    1997-01-01

    Applied research activities currently being undertaken at the National Wind Technology Center, part of the National Renewable Energy Laboratory, in the United States, are divided into several technical disciplines. An integrated multi-disciplinary approach is urged for the future in order to evaluate advanced turbine designs. The risk associated with any new turbine development program can thus be mitigated through the provision of the advanced technology, analysis tools and innovative designs available at the Center, and wind power can be promoted as a viable renewable energy alternative. (UK)

  11. Nuclear Energy Center Site Survey, 1975. Part I. Summary and conclusions

    International Nuclear Information System (INIS)

    1976-01-01

    The Nuclear Energy Center Site Survey is a study of a potential siting approach for projected power and fuel-cycle facilities that would cluster sizable groups of such facilities on a relatively small number of sites, as contrasted with current dispersed siting practices. Three basic types of nuclear energy centers (NECs) are considered: power-plant centers, involving ten to forty units of 1200-megawatt electric capacity each; fuel-cycle centers, involving fuel reprocessing plants, mixed-oxide fuel fabrication facilities, and high-level and transuranic radioactive waste management facilities, with a capacity corresponding to the fuel throughput of power plants with a total capacity of approximately 50,000 to 300,000 MWe; and combined centers, containing both power plants and fuel cycle facilities in representative possible combinations. Included among the principal issues considered in evaluation of feasibility of nuclear energy centers are dissipation of the waste heat from the power-generating facilities; transmission system design, reliability, and economics; radiological impact; and environmental impact

  12. Center for Advanced Energy Studies Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  13. Preliminary assessment of nuclear energy centers and energy systems complexes in the western United States. Final report

    International Nuclear Information System (INIS)

    Gottlieb, P.; Robinson, J.H.; Smith, D.R.

    1978-02-01

    The Nuclear Energy Center siting opportunities in the eleven western states have been systematically examined. The study area has been divided into 10-mile by 10-mile grid cells, and each cell has been evaluated in terms of overall suitability and site-related costs. Composite suitability consists of a weighted sum of ten important nuclear power plant siting issues; the particular weights used for this study were decided by a Delphi session of twenty individuals with energy facility siting expertise, with at least one representative from each of the eleven western states. Site-related costs consist of the additional expenditures required for seismic hardening (in seismically active areas), electric power transmission lines (for sites significantly far from load centers), and wet/dry cooling system costs

  14. Energy Frontier Research Centers: Impact Report, January 2017

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-31

    Since its inception in 2009, the U. S. Department of Energy’s Energy Frontier Research Center (EFRC) program has become an important research modality in the Department’s portfolio, enabling high impact research that addresses key scientific challenges for energy technologies. Funded by the Office of Science’s Basic Energy Sciences program, the EFRCs are located across the United States and are led by universities, national laboratories, and private research institutions. These multi-investigator, multidisciplinary centers bring together world-class teams of researchers, often from multiple institutions, to tackle the toughest scientific challenges preventing advances in energy technologies. The EFRCs’ fundamental scientific advances are having a significant impact that is being translated to industry. In 2009 five-year awards were made to 46 EFRCs, including 16 that were fully funded by the American Recovery and Reinvestment Act (ARRA). An open recompetition of the program in 2014 resulted in fouryear awards to 32 centers, 22 of which are renewals of existing EFRCs and 10 of which are new EFRCs. In 2016, DOE added four new centers to accelerate the scientific breakthroughs needed to support the Department’s environmental management and nuclear cleanup mission, bringing the total number of active EFRCs to 36. The impact reports in this document describe some of the many scientific accomplishments and greater impacts of the class of 2009 – 2018 EFRCs and early outcomes from a few of the class of 2014 – 2018 EFRCs.

  15. Energy Demands and Efficiency Strategies in Data Center Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature

  16. Preliminary assessment of nuclear energy centers and energy systems complexes in the western United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, P.; Robinson, J.H.; Smith, D.R.

    1978-02-01

    The Nuclear Energy Center siting opportunities in the eleven western states have been systematically examined. The study area has been divided into 10-mile by 10-mile grid cells, and each cell has been evaluated in terms of overall suitability and site-related costs. Composite suitability consists of a weighted sum of ten important nuclear power plant siting issues; the particular weights used for this study were decided by a Delphi session of twenty individuals with energy facility siting expertise, with at least one representative from each of the eleven western states. Site-related costs consist of the additional expenditures required for seismic hardening (in seismically active areas), electric power transmission lines (for sites significantly far from load centers), and wet/dry cooling system costs (limited water availability and/or high summer temperatures).

  17. Study of a conceptual nuclear energy center at Green River, Utah: regional considerations

    International Nuclear Information System (INIS)

    1982-01-01

    This document constitutes one segment of a feasibility study investigating the ramifications of constructing a nuclear energy center in an arid and remote Western region. This phase of the study discusses regional considerations involved in nuclear energy center development at Green River, Utah. Regional support for NEC development is assessed. In addition, possible regulatory constraints to NEC development are identified and analyzed. Possible resource allocation shortages resulting from NEC development are also considered. A comparison with a similar study on NEC development in the Southeastern United States is also included

  18. Clean Energy Solutions Center Services (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  19. 75 FR 47301 - Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC...

    Science.gov (United States)

    2010-08-05

    ...- 000; EG10-34-000; EG10-34-000; EG10-35-000; EG10-36-000; EG10-37-000; EG10-38-000] Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC; Wessington Wind Energy Center, LLC; Juniper Canyon Wind Power LLC; Loraine Windpark Project, LLC; White Oak Energy LLC; Meadow...

  20. Parametric design studies of toroidal magnetic energy storage units

    International Nuclear Information System (INIS)

    Herring, J.S.

    1990-01-01

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round-trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code has been written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have 'D' shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. This paper presents designs for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 t to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils have been divided into modules suitable for normal truck or rail transport. 8 refs., 5 tabs

  1. Parametric design studies of toroidal magnetic energy storage units

    Science.gov (United States)

    Herring, J. Stephen

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code was written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have D shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. Designs are presented for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 T to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils were divided into modules suitable for normal truck or rail transport.

  2. Potential energy center site investigations

    International Nuclear Information System (INIS)

    Savage, W.F.

    1977-01-01

    Past studies by the AEC, NRC, NSF and others have indicated that energy centers have certain advantages over dispersed siting. There is the need, however, to investigate such areas as possible weather modifications due to major heat releases, possible changes in Federal/state/local laws and institutional arrangements to facilitate implementation of energy centers, and to assess methods of easing social and economic pressures on a surrounding community due to center construction. All of these areas are under study by ERDA, but there remains the major requirement for the study of a potential site to yield a true assessment of the energy center concept. In this regard the Division of Nuclear Research and Applications of ERDA is supporting studies by the Southern and Western Interstate Nuclear Boards to establish state and utility interest in the concept and to carry out screening studies of possible sites. After selection of a final site for center study , an analysis will be made of the center including technical areas such as heat dissipation methods, water resource management, transmission methods, construction methods and schedules, co-located fuel cycle facilities, possible mix of reactor types, etc. Additionally, studies of safeguards, the interaction of all effected entities in the siting, construction, licensing and regulation of a center, labor force considerations in terms of local impact, social and economic changes, and financing of a center will be conducted. It is estimated that the potential site study will require approximately two years

  3. Energy Center Structure Optimization by using Smart Technologies in Process Control System

    Science.gov (United States)

    Shilkina, Svetlana V.

    2018-03-01

    The article deals with practical application of fuzzy logic methods in process control systems. A control object - agroindustrial greenhouse complex, which includes its own energy center - is considered. The paper analyzes object power supply options taking into account connection to external power grids and/or installation of own power generating equipment with various layouts. The main problem of a greenhouse facility basic process is extremely uneven power consumption, which forces to purchase redundant generating equipment idling most of the time, which quite negatively affects project profitability. Energy center structure optimization is largely based on solving the object process control system construction issue. To cut investor’s costs it was proposed to optimize power consumption by building an energy-saving production control system based on a fuzzy logic controller. The developed algorithm of automated process control system functioning ensured more even electric and thermal energy consumption, allowed to propose construction of the object energy center with a smaller number of units due to their more even utilization. As a result, it is shown how practical use of microclimate parameters fuzzy control system during object functioning leads to optimization of agroindustrial complex energy facility structure, which contributes to a significant reduction in object construction and operation costs.

  4. United States Department of Energy radiological emergency response programme - a national capability

    International Nuclear Information System (INIS)

    Gordon-Hagerty, L.E.

    1993-01-01

    In order to respond to a radiological emergency, the United States Department of Energy (USDOE) maintains seven emergency response assets and capabilities in support of a radiological emergency of any proportion within the continental United States and abroad. The seven emergency response assets and capabilities include: Accident Response Group; Aerial Measuring Systems; Atmospheric Release Advisory Capability; Federal Radiological Monitoring and Assessment Center; Nuclear Emergency Search Team; Radiation Emergency Assistance Center/Training Site; and Radiological Assistance Program. Presently, USDOE maintains the most comprehensive national radiological emergency response assets in the United States, capable of dealing with any type of emergency involving nuclear materials. In all, the Department's assets are available to support any type of accident/incident involving radioactive materials in coordination with other United States Federal agencies, as well as state and local governments, as required. (author)

  5. Distribution of specialized care centers in the United States.

    Science.gov (United States)

    Wang, Henry E; Yealy, Donald M

    2012-11-01

    As a recommended strategy for optimally managing critical illness, regionalization of care involves matching the needs of the target population with available hospital resources. The national supply and characteristics of hospitals providing specialized critical care services is currently unknown. We seek to characterize the current distribution of specialized care centers in the United States. Using public data linked with the American Hospital Association directory and US Census, we identified US general acute hospitals providing specialized care for ST-segment elevation myocardial infarction (STEMI) (≥40 annual primary percutaneous coronary interventions reported in Medicare Hospital Compare), stroke (The Joint Commission certified stroke centers), trauma (American College of Surgeons or state-designated, adult or pediatric, level I or II), and pediatric critical care (presence of a pediatric ICU) services. We determined the characteristics and state-level distribution and density of specialized care centers (centers per state and centers per state population). Among 4,931 acute care hospitals in the United States, 1,325 (26.9%) provided one of the 4 defined specialized care services, including 574 STEMI, 763 stroke, 508 trauma, and 457 pediatric critical care centers. Approximately half of the 1,325 hospitals provided 2 or more specialized services, and one fifth provided 3 or 4 specialized services. There was variation in the number of each type of specialized care center in each state: STEMI median 7 interquartile range (IQR 2 to 14), stroke 8 (IQR 3 to 17), trauma 6 (IQR 3 to 11), pediatric specialized care 6 (IQR 3 to 11). Similarly, there was variation in the number of each type of specialized care center per population: STEMI median 1 center per 585,135 persons (IQR 418,729 to 696,143), stroke 1 center per 412,188 persons (IQR 321,604 to 572,387), trauma 1 center per 610,589 persons (IQR 406,192 to 917,588), and pediatric critical care 1 center per 665

  6. Nuclear energy center site survey reactor plant considerations

    International Nuclear Information System (INIS)

    1976-05-01

    The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers

  7. Nuclear Energy Center Site Survey, 1975. Part II. The U.S. electric power system and the potential role of nuclear energy centers

    International Nuclear Information System (INIS)

    1976-01-01

    Information related to Nuclear Energy Centers (NEC) in the U.S. is presented concerning the U.S. electric power system today; electricity demand history and forecasts; history and forecasts of the electric utility industry; regional notes; the status, history, and forecasts of the nuclear role; power plant siting problems and practices; nuclear facilities siting problems and practices; origin and evolution of the nuclear energy center concept; conceptualized description of nuclear energy centers; potential role of nuclear energy centers; assumptions, criteria, and bases; typical evolution of a nuclear energy center; and the nuclear fuel cycle

  8. ENERGY STAR Certified Data Center Storage

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Data Center Storage that are effective as of December 2, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/certified-products/detail/data_center_storage

  9. Institutional aspects of the energy centers concept

    Energy Technology Data Exchange (ETDEWEB)

    Esser, George H.

    1977-03-01

    Information is presented concerning the socio-economic impacts of nuclear energy centers; equity considerations relating to taxation and revenue distribution; report on jurisdictional authorities of state and local government related to centralized and decentralized alternative energy systems; federal-state conflicts and cooperation in the siting of nuclear energy facilities; the energy park experience in Pennsylvania; and a socio-economic institution summary of energy centers in Washington State.

  10. Institutional aspects of the energy centers concept

    International Nuclear Information System (INIS)

    1977-03-01

    Information is presented concerning the socio-economic impacts of nuclear energy centers; equity considerations relating to taxation and revenue distribution; report on jurisdictional authorities of state and local government related to centralized and decentralized alternative energy systems; federal-state conflicts and cooperation in the siting of nuclear energy facilities; the energy park experience in Pennsylvania; and a socio-economic institution summary of energy centers in Washington State

  11. Optimal Power Cost Management Using Stored Energy in Data Centers

    OpenAIRE

    Urgaonkar, Rahul; Urgaonkar, Bhuvan; Neely, Michael J.; Sivasubramaniam, Anand

    2011-01-01

    Since the electricity bill of a data center constitutes a significant portion of its overall operational costs, reducing this has become important. We investigate cost reduction opportunities that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This represents a deviation from the usual use of these devices as mere transitional fail-over mechanisms between utility and captive sources such as diesel generators. We consider the problem of opportunistically ...

  12. Resolution 26/97 Creating of the Protection and Hygiene Radiation Center Presupuested Unit

    International Nuclear Information System (INIS)

    1997-01-01

    The Center of Protection and Hygiene of the Radiations (CPHR) had been created in 1995 (Resolution 128) as Unit of Investigation Development (UID), belonging to the Nuclear Executive Secretary of Matters (SEAN). The objective of the present resolution is to create it now as Unit Bud gotten Center, science unit and integral technique of the Agency of Nuclear Energy (AEN), belonging to the Ministry of Science Technology and environment (CITMA) that has as generic objective to develop in the country the scientific-technical base of to the protection and the radiological security, guaranteeing with it that the applications pacify of the nuclear techniques is developed in harmony with the politics of protection of the health of the workers, the population in general and the environment, in agreement with the technical scientific advances and the international recommendations of this sphere. It also includes the specific objectives of the CPHR, their functions, the services scientific-technicians that it can toast, the entrance date into effect of the law (1 January 1997) and the final dispositions

  13. Clean Energy Solutions Center Services (Vietnamese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  14. Clean Energy Solutions Center Services (Arabic Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  15. Clean Energy Solutions Center Services (French Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a French translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  16. Clean Energy Solutions Center Services (Portuguese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  17. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  18. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  19. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431

    Energy Technology Data Exchange (ETDEWEB)

    Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency; Brown, Richard E; Brown, Richard; Masanet, Eric; Nordman, Bruce; Tschudi, Bill; Shehabi, Arman; Stanley, John; Koomey, Jonathan; Sartor, Dale; Chan, Peter; Loper, Joe; Capana, Steve; Hedman, Bruce; Duff, Rebecca; Haines, Evan; Sass, Danielle; Fanara, Andrew

    2007-08-02

    This report was prepared in response to the request from Congress stated in Public Law 109-431 (H.R. 5646),"An Act to Study and Promote the Use of Energy Efficient Computer Servers in the United States." This report assesses current trends in energy use and energy costs of data centers and servers in the U.S. (especially Federal government facilities) and outlines existing and emerging opportunities for improved energy efficiency. It also makes recommendations for pursuing these energy-efficiency opportunities broadly across the country through the use of information and incentive-based programs.

  20. Clean Energy Solutions Center Services (Arabic Translation) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-06-01

    This is the Arabic translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  1. Clean Energy Solutions Center Services

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  2. Holistic Approach to Data Center Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Steven W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-18

    This presentation discusses NREL's Energy System Integrations Facility and NREL's holistic design approach to sustainable data centers that led to the world's most energy-efficient data center. It describes Peregrine, a warm water liquid cooled supercomputer, waste heat reuse in the data center, demonstrated PUE and ERE, and lessons learned during four years of operation.

  3. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David [Washington State Univ., Pullman, WA (United States)

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  4. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  5. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    Science.gov (United States)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  6. Clean Energy Solutions Center Services (Vietnamese Translation) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    This is the Vietnamese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  7. Energy benchmarking for shopping centers in Gulf Coast region

    International Nuclear Information System (INIS)

    Juaidi, Adel; AlFaris, Fadi; Montoya, Francisco G.; Manzano-Agugliaro, Francisco

    2016-01-01

    Building sector consumes a significant amount of energy worldwide (up to 40% of the total global energy); moreover, by the year 2030 the consumption is expected to increase by 50%. One of the reasons is that the performance of buildings and its components degrade over the years. In recent years, energy benchmarking for government office buildings, large scale public buildings and large commercial buildings is one of the key energy saving projects for promoting the development of building energy efficiency and sustainable energy savings in Gulf Cooperation Council (GCC) countries. Benchmarking would increase the purchase of energy efficient equipment, reducing energy bills, CO_2 emissions and conventional air pollution. This paper focuses on energy benchmarking for shopping centers in Gulf Coast Region. In addition, this paper will analyze a sample of shopping centers data in Gulf Coast Region (Dubai, Ajman, Sharjah, Oman and Bahrain). It aims to develop a benchmark for these shopping centers by highlighting the status of energy consumption performance. This research will support the sustainability movement in Gulf area through classifying the shopping centers into: Poor, Usual and Best Practices in terms of energy efficiency. According to the benchmarking analysis in this paper, the shopping centers best energy management practices in the Gulf Coast Region are the buildings that consume less than 810 kW h/m"2/yr, whereas the poor building practices are the centers that consume greater than 1439 kW h/m"2/yr. The conclusions of this work can be used as a reference for shopping centres benchmarking with similar climate. - Highlights: •The energy consumption data of shopping centers in Gulf Coast Region were gathered. •A benchmarking of energy consumption for the public areas for the shopping centers in the Gulf Coast Region was developed. •The shopping centers have the usual practice in the region between 810 kW h/m"2/yr and 1439 kW h/m"2/yr.

  8. U.S.– India Joint Center for Building Energy Research and Development (CBERD) Caring for the Energy Health of Healthcare Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Srivastava, Rohini [Carnegie Mellon Univ., Pittsburgh, PA (United States); Shukla, Rash [Center for Environmental Planning and Technology (India)

    2016-03-01

    The U.S.-India Joint Center for Building Energy Research & Development (CBERD), created through the Partnership to Accelerate Clean Energy (PACE) agreement between the United States and India, is a research and development (R&D) center with over 30 institutional and industry partners from both nations. This five-year presidential initiative is jointly funded by the U.S. Department of Energy and the Government of India. CBERD aims to build upon a foundation of collaborative knowledge, tools, and technologies, and human capabilities that will increase development of high-performance buildings. To reach this goal, the R&D focuses on energy use reduction throughout the entire life cycle of buildings—i.e., design, construction, and operations. During the operations phase of buildings, even with best-practice energy-efficient design, actual energy use can be much higher than the design intent. Every day, much of the energy consumed by buildings serves no purpose (Roth et al. 2005). Building energy information systems (EIS) are commercially available systems that building owners and facility managers use to assess their building operations, measure, visualize, analyze, and report energy cost and consumption. Energy information systems can enable significant energy savings by tracking energy use, identifying consumption patterns, and benchmarking performance against similar buildings, thereby identifying improvement opportunities. The CBERD team has identified potential energy savings of approximately 2 quads of primary energy in the United States, while industry building energy audits in India have indicated potential energy savings of up to 30 percent in commercial buildings such as offices. Additionally, the CBERD team has identified healthcare facilities (e.g., hospitals, clinics), hotels, and offices as the three of the highest-growth sectors in India that have significant energy consumption, and that would benefit the most from implementation of EIS.

  9. Northwest National Marine Renewable Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States); Polagye, Brian [Univ. of Washington, Seattle, WA (United States); LiVecchi, Al [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-30

    In 2008, the US Department of Energy’s (DOE) Wind and Water Power Program issued a funding opportunity announcement to establish university-led National Marine Renewable Energy Centers. Oregon State University and the University of Washington combined their capabilities in wave and tidal energy to establish the Northwest National Marine Renewable Energy Center, or NNMREC. NNMREC’s scope included research and testing in the following topic areas: • Advanced Wave Forecasting Technologies; • Device and Array Optimization; • Integrated and Standardized Test Facility Development; • Investigate the Compatibility of Marine Energy Technologies with Environment, Fisheries and other Marine Resources; • Increased Reliability and Survivability of Marine Energy Systems; • Collaboration/Optimization with Marine Renewable and Other Renewable Energy Resources. To support the last topic, the National Renewable Energy Laboratory (NREL) was brought onto the team, particularly to assist with testing protocols, grid integration, and testing instrumentation. NNMREC’s mission is to facilitate the development of marine energy technology, to inform regulatory and policy decisions, and to close key gaps in scientific understanding with a focus on workforce development. In this, NNMREC achieves DOE’s goals and objectives and remains aligned with the research and educational mission of universities. In 2012, DOE provided NNMREC an opportunity to propose an additional effort to begin work on a utility scale, grid connected wave energy test facility. That project, initially referred to as the Pacific Marine Energy Center, is now referred to as the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) and involves work directly toward establishing the facility, which will be in Newport Oregon, as well as supporting instrumentation for wave energy converter testing. This report contains a breakdown per subtask of the funded project. Under each subtask, the following

  10. Clean Energy Solutions Center (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  11. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers

    International Nuclear Information System (INIS)

    Hourdakis, Constantine J.; Boziari, A.

    2008-01-01

    Background and purpose: Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002 - 2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. Materials and Methods: The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. Results: The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside ±3% and 31% outside ±5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and

  12. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.

    Science.gov (United States)

    Hourdakis, Constantine J; Boziari, A

    2008-04-01

    Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a

  13. Promoting Safe, Secure, and Peaceful Growth of Nuclear Energy: Next Steps for Russia and the United States

    OpenAIRE

    Bunn, Matthew G.; Vyacheslav P. Kuznetzov

    2010-01-01

    Russia, the United States and other countries must cooperate to enable large-scale growth of nuclear energy around the world while achieving even higher standards of safety, security, and nonproliferation than are in place today. This will require building a new global framework for nuclear energy, including new or strengthened global institutions. The Belfer Center's Managing the Atom (MTA) Project and the Russian Research Center's Kurchatov Institute developed these and additional recommend...

  14. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency; Brown, Richard E; Brown, Richard; Masanet, Eric; Nordman, Bruce; Tschudi, Bill; Shehabi, Arman; Stanley, John; Koomey, Jonathan; Sartor, Dale; Chan, Peter; Loper, Joe; Capana, Steve; Hedman, Bruce; Duff, Rebecca; Haines, Evan; Sass, Danielle; Fanara, Andrew

    2007-08-02

    This report is the appendices to a companion report, prepared in response to the request from Congress stated in Public Law 109-431 (H.R. 5646),"An Act to Study and Promote the Use of Energy Efficient Computer Servers in the United States." This report assesses current trends in energy use and energy costs of data centers and servers in the U.S. (especially Federal government facilities) and outlines existing and emerging opportunities for improved energy efficiency. It also makes recommendations for pursuing these energy-efficiency opportunities broadly across the country through the use of information and incentive-based programs.

  15. Computation studies into architecture and energy transfer properties of photosynthetic units from filamentous anoxygenic phototrophs

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, Juha Matti [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Freiberg, Arvi [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)

    2014-10-06

    We have used different computational methods to study structural architecture, and light-harvesting and energy transfer properties of the photosynthetic unit of filamentous anoxygenic phototrophs. Due to the huge number of atoms in the photosynthetic unit, a combination of atomistic and coarse methods was used for electronic structure calculations. The calculations reveal that the light energy absorbed by the peripheral chlorosome antenna complex transfers efficiently via the baseplate and the core B808–866 antenna complexes to the reaction center complex, in general agreement with the present understanding of this complex system.

  16. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  17. Northeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Tom [Pace Univ., New York, NY (United States)

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: Reduction of greenhouse gas emissions and criteria pollutants; Improvements in energy efficiency resulting in lower costs of doing business; Productivity gains in industry and efficiency gains in buildings; Lower regional energy costs; Strengthened energy security; Enhanced consumer choice; Reduced price risks for end-users; and Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences

  18. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  19. Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center

    International Nuclear Information System (INIS)

    Cho, Jinkyun; Kim, Yundeok

    2016-01-01

    Highlights: • Energy-optimized data center’s cooling solutions were derived for four different climate zones. • We studied practical technologies of green data center that greatly improved energy efficiency. • We identified the relationship between mutually dependent factors in datacenter cooling systems. • We evaluated the effect of the dedicated cooling system applications. • Power Usage Effectiveness (PUE) was computed with energy simulation for data centers. - Abstract: Data centers are approximately 50 times more energy-intensive than general buildings. The rapidly increasing energy demand for data center operation has motivated efforts to better understand data center electricity use and to identify strategies that reduce the environmental impact. This research is presented analytical approach to the energy efficiency optimization of high density data center, in a synergy with relevant performance analysis of corresponding case study. This paper builds on data center energy modeling efforts by characterizing climate and cooling system differences among data centers and then evaluating their consequences for building energy use. Representative climate conditions for four regions are applied to data center energy models for several different prototypical cooling types. This includes cooling system, supplemental cooling solutions, design conditions and controlling the environment of ICT equipment were generally used for each climate zone, how these affect energy efficiency, and how the prioritization of system selection is derived. Based on the climate classification and the required operating environmental conditions for data centers suggested by the ASHRAE TC 9.9, a dedicated data center energy evaluation tool was taken to examine the potential energy savings of the cooling technology. Incorporating economizer use into the cooling systems would increase the variation in energy efficiency among geographic regions, indicating that as data centers

  20. The Center for Frontiers of Subsurface Energy Security (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Pope, Gary A.

    2011-01-01

    'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  1. University of Kentucky Center for Applied Energy Research

    Science.gov (United States)

    University of Kentucky Center for Applied Energy Research Search Help Research Our Expertise University of Kentucky Center for Applied Energy Research | An Equal Opportunity University All Rights Remediation Power Generation CAER TechFacts CAER Factsheets CAER Affiliations Research Contacts Publications

  2. History of United States Energy. A Basic Teaching Unit on Energy. Revised.

    Science.gov (United States)

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Intended as a supplement to the units "Oil: Fuel of the Past" and "Coal: Fuel of the Past, Hope of the Future," this 3-4 day unit contains three activities which briefly explain the chronological development of energy resources and the formation and development of the Organization of Petroleum Exporting Countries (OPEC). The…

  3. Energy Frontier Research Center Materials Science of Actinides (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Burns, Peter

    2011-01-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  4. Energy options in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S C [ed.

    1975-01-01

    The United Kingdom faces two issues: how can it survive the present massive increases in oil prices and the probability of even more expensive supplies in the future or how can it adjust to the eventual exhaustion of both fossil and nuclear fuels. The theme of the symposium concerned a search for a practical alternative source of energy to fossil and nuclear fuels and which ones would work in the United Kingdom. Papers were presented entitled: Geothermal Energy; Solar Energy in Britain; and Wind and Water Sources of Energy in the United Kingdom. A final paper, High- and Low-Growth Scenarios, examined these two types for the future. Many questions, answeres and comments about energy sources are contained in a final presentation. (MCW)

  5. U.S. DOE Intermountain Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Case, Patti [Etc Group, LLC, Salt Lake City, UT (United States)

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  6. Heat-pump-centered integrated community energy systems: system development summary

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  7. Sociopolitical ramifications of nuclear energy centers

    International Nuclear Information System (INIS)

    Meier, P.M.

    1977-01-01

    The sociopolitical ramifications of nuclear energy centers, as emerging from a case study in Ocean County, New Jersey, are examined from the standpoint of identifying key issues of public controversy, and with emphasis on implications for national energy planning and the course of nuclear debate. Various dimensions of institutional tension are analyzed, including interstate issues and federal preemption, and the ability of the institutional and political framework to address the many equity issues that are exacerbated by clustered siting. The evolution of public attitudes, and the subsequent mobilization of effective political channels in opposition to proposed NEC's are discussed in light of New Jersey experience. The degree to which energy centers affect public attitudes to nuclear power is identified as the key issue requiring further analysis before widespread implementation of the concept can be advocated

  8. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, Tim [Univ. of California, Berkeley, CA (United States); Kammen, Dan [Univ. of California, Berkeley, CA (United States); McDonell, Vince [Univ. of California, Irvine, CA (United States); Samuelsen, Scott [Univ. of California, Irvine, CA (United States); Beyene, Asfaw [San Diego State Univ., CA (United States); Ganji, Ahmad [San Francisco State Univ., CA (United States)

    2013-09-30

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC

  9. Energy management of internet data centers in smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    This book reports the latest findings on intelligent energy management of Internet data centers in smart-grid environments. The book gathers novel research ideas in Internet data center energy management, especially scenarios with cyber-related vulnerabilities, power outages and carbon emission constraints. The book will be of interest to university researchers, R&D engineers and graduate students in communication and networking areas who wish to learn the core principles, methods, algorithms, and applications of energy management of Internet data centers in smart grids.

  10. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  11. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  12. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  13. Stockbridge Munsee Community Health and Wellness Center and the Mohican Family Center Renewable Energy and Energy Efficiency Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    DeRocher, Andy [Stockbridge-Munsee Health and Wellness Center, Bowler, WI (United States); Barrnett, Michael [Stockbridge-Munsee Health and Wellness Center, Bowler, WI (United States)

    2014-03-14

    The results of the Renewable Energy and Energy Efficiency Feasibility Study of Stockbridge Munsee Community’s Health and Wellness Center (HWC) indicate that a variety of renewable energy options and energy conservation measures (ECMs) exist for the facility. A requirement of the Request for Proposal for this study was to assess renewable energy options that could offset 30 to 100 percent of the HWC’s energy use. This study identifies that a geothermal system is the most cost effective renewable energy option available to decrease the HWC’s energy consumption by 30 to 100 percent. Currently the HWC performs in the lowest 8 percent of buildings in its building category, as scored in the EPA portfolio manager benchmarking tool. Multiple ECM opportunities have been identified with paybacks of less than five years to yield an estimated 25-percent decrease in annual energyconsumption. The ECMs within this payback period are estimated to save $26,800 per year with an implementation cost of just $4,650 (0.2 year payback). For the Mohican Family Center document: The results of the Renewable Energy and Energy Efficiency Feasibility Study of Stockbridge Munsee Community’s Mohican Family Center (MFC) indicate that a variety of renewable energy options and energy conservation measures (ECMs) exist for the facility. A requirement of the Request for Proposal for this study was to assess renewable energy options that could offset 30 to 100 percent of the MFC’s energy use. This study identifies that a geothermal system is the most cost effective renewable energy option available to decrease the MFC’s energy consumption by 30 to 100 percent. Currently the MFC performs better than 80 percent of buildings in its building category, as scored in the EPA portfolio manager benchmarking tool. Multiple ECM opportunities have been identified with short term paybacks to yield an estimated 13-percent decrease in energy consumption. The ECMs within this payback period are estimated

  14. Factors of Renewable Energy Deployment and Empirical Studies of United States Wind Energy

    Science.gov (United States)

    Can Sener, Serife Elif

    increase in economic factors is related to a significant increase in the installed wind energy capacity, whereas, the increase in environmental factors is related to a significant decrease in the installed wind capacity. The final study explores the factors of diffusion of state- and local-level wind energy support policies which are considered fundamental factors of the continuum and development of wind power in the United States. To reveal the internal determinants of state's wind energy policy diffusion, we further narrow the scope and control for the geographical region in the final study. We limit our analysis to seven neighboring Midwestern states, which are located in the center of United States wind energy corridor. Using data from 2008 to 2015, the study investigates the significance of the following internal factors: wind power potential, per capita gross state product, unemployment rate, per capita value of the agriculture sector, number of establishments in agricultural sector, and state government control. Through the addition of interaction terms, the study also considers the behavioral differences in the explanatory variables under Republican and non-Republican state governance. Our findings suggest that the economic development potential and related environmental benefits were the common motivation for state- and local-level policy makers. Lastly, technical terms and agricultural sector presence provides additional motives for the state level diffusion of wind energy policies. The findings of this dissertation are expected to contribute to the understanding of how countries and states might best stimulate and support renewable energy, and in particular wind energy, deployment.

  15. Strategic Energy Planning for Renewable Energy Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Becky [Cabazon Band of Mission Indians, Indio, CA (United States); Crandell, George [Cabazon Band of Mission Indians, Indio, CA (United States)

    2014-04-10

    The focus of this project is to support the addition of renewable energy technologies to the existing CBMI resource recovery park, known as the Cabazon Resource Recovery Park (CRRP) in Mecca, California. The concept approved for this project was to determine if the resources and the needs existed for the addition of a Renewable Energy Demonstration Center (REDC) at the CRRP. The REDC concept is envisioned to support the need of startup renewable companies for a demonstration site that reduces their development costs.

  16. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  17. Accelerator Center for Energy Research (ACER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Accelerator Center for Energy Research (ACER) exploits radiation chemistry techniques to study chemical reactions (and other phenomena) by subjecting samples to...

  18. The Pacific Marine Energy Center - South Energy Test Site (PMEC-SETS)

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States); Hellin, Dan [Oregon State Univ., Corvallis, OR (United States)

    2018-02-07

    The overall goal of this project was to build on existing progress to establish the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) as the nation's first fully permitted test site for wave energy converter arrays. Specifically, it plays an essential role in reducing levelized cost of energy for the wave energy industry by providing both the facility and resources to address the challenges of cost reduction.

  19. Assessment of water resources for nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, G.

    1976-09-01

    Maps of the conterminous United States showing the rivers with sufficient flow to be of interest as potential sites for nuclear energy centers are presented. These maps show the rivers with (1) mean annual flows greater than 3000 cfs, with the flow rates identified for ranges of 3000 to 6000, 6000 to 12,000, 12,000 to 24,000, and greater than 24,000 cfs; (2) monthly, 20-year low flows greater than 1500 cfs, with the flow rates identified for ranges of 1500 to 3000, 3000 to 6000, 6000 to 12,000, and greater than 12,000 cfs; and (3) annual, 20-year low flows greater than 1500 cfs, with the flow rates identified for ranges of 1500 to 3000, 3000 to 6000, 6000 to 12,000, and greater than 12,000 cfs. Criteria relating river flow rates required for various size generating stations both for sites located on reservoirs and for sites without local storage of cooling water are discussed. These criteria are used in conjunction with plant water consumption rates (based on both instantaneous peak and annual average usage rates) to estimate the installed generating capacity that may be located at one site or within a river basin. Projections of future power capacity requirements, future demand for water (both withdrawals and consumption), and regions of expected water shortages are also presented. Regional maps of water availability, based on annual, 20-year low flows, are also shown. The feasibility of locating large energy centers in these regions is discussed.

  20. Assessment of water resources for nuclear energy centers

    International Nuclear Information System (INIS)

    Samuels, G.

    1976-09-01

    Maps of the conterminous United States showing the rivers with sufficient flow to be of interest as potential sites for nuclear energy centers are presented. These maps show the rivers with (1) mean annual flows greater than 3000 cfs, with the flow rates identified for ranges of 3000 to 6000, 6000 to 12,000, 12,000 to 24,000, and greater than 24,000 cfs; (2) monthly, 20-year low flows greater than 1500 cfs, with the flow rates identified for ranges of 1500 to 3000, 3000 to 6000, 6000 to 12,000, and greater than 12,000 cfs; and (3) annual, 20-year low flows greater than 1500 cfs, with the flow rates identified for ranges of 1500 to 3000, 3000 to 6000, 6000 to 12,000, and greater than 12,000 cfs. Criteria relating river flow rates required for various size generating stations both for sites located on reservoirs and for sites without local storage of cooling water are discussed. These criteria are used in conjunction with plant water consumption rates (based on both instantaneous peak and annual average usage rates) to estimate the installed generating capacity that may be located at one site or within a river basin. Projections of future power capacity requirements, future demand for water (both withdrawals and consumption), and regions of expected water shortages are also presented. Regional maps of water availability, based on annual, 20-year low flows, are also shown. The feasibility of locating large energy centers in these regions is discussed

  1. Significance of atmospheric effects of heat rejection from energy centers in the semi arid northwest

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Drake, R.L.; Young, J.R.

    1976-01-01

    The results presented in this paper have been obtained using simple atmospheric models in an attempt to optimize heat sink management in a conceptual nuclear energy center (NEC) at Hanford. The models have been designed to be conservatice in the sense that they are biased toward over prediction of the impact of cooling system effluents on humidity and fog. Thus the models are screening tools to be used to identify subjects for further, more realistic examination. Within this context the following conclusions have been reached: the evaluation of any atmospheric impact postulated for heat dissipation must be conducted in quantitative terms which can be used to determine the significance of the impact; of the potential atmospheric impacts of large heat releases from energy centers, the one most amenable to quantitative evaluation in meaningful terms as the increase in fog; a postulated increase in frequency of fog can be translated into terms of visibility and both can be evaluated statistically; the translation of a increase in fog to visibility terms permits economic evaluation of the impact; and the predicted impact of the HNEC on fog and visibility is statistically significant whether the energy center consists of 20 or 40 units

  2. Pilot project for a commercial buildings Energy Analysis and Diagnostic Center (EADC) program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Capehart, B.L.

    1996-02-01

    Commercial energy use costs businesses around $70 billion annually. Many of these businesses are small and medium sized organizations that do not have the resources to help themselves, or to pay for professional engineering services to help reduce their energy costs and improve their economic competitiveness. Energy cost reduction actions with payback times of around two years could save the commercial sector 15--20%, or $10--$15 billion per year. This project was initially intended to evaluate the feasibility of performing commercial energy audits as an adjunct to the industrial audit program run by the US Department of Energy Industrial Office. This program is housed in 30 universities throughout the United States. Formerly known as Energy Analysis and Diagnostic Centers (EADC`s), the university programs are now called Industrial Assessment Centers (IAC`s) to reflect their expansion from energy use analyses to include waste and productivity analyses. The success of the EADC/IAC program in helping the manufacturing sector provides an excellent model for a similar program in the commercial buildings sector. This project has investigated using the EADC/IAC approach to performing energy audits for the commercial sector, and has determined that such an approach is feasible and cost effective.

  3. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  4. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  5. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov (United States)

    Station in Arkansas Krug Energy Opens Natural Gas Fueling Station in Arkansas to someone by E -mail Share Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in Arkansas on Facebook Tweet about Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in

  6. Estimated United States Transportation Energy Use 2005

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  7. Final report. Conceptual studies nuclear energy center Lake Hartwell, S.C., Phase III

    International Nuclear Information System (INIS)

    1981-01-01

    This document summarizes a conceptual study on the feasibility and practicality of developing a nuclear energy center (NEC) at a specific site in the SSEB region. The site selected for this conceptual study is at Lake Hartwell, South Carolina. The conceptual NEC at Lake Hartwell consists of twelve nuclear electric generating units, arranged on the site in four clusters of three units each, known as triads. The nominal distance between triads was selected as 2-1/2 miles. Each unit was assumed to be a 1250 MW(e). The total electric output of 15,000 MWe would be transmitted to five major utilities in South Carolina, North Carolina, and Georgia. The basic finding was that the concept of a NEC on the Lake Hartwell site is feasible, but further analysis of institutional issues and possible legislation would be required

  8. Alternative Energy Center, Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, Howard D.; Marshall, JaNice C.

    2007-09-07

    The Lansing Community College Alternative Energy Center was created with several purposes in mind. The first purpose was the development of educational curricula designed to meet the growing needs of advanced energy companies that would allow students to articulate to other educational institutions or enter this growing workforce. A second purpose was the professional development of faculty and teachers to prepare them to train tomorrow's workforce and scholars. Still another purpose was to design, construct, and equip an alternative energy laboratory that could be used for education, demonstration, and public outreach. Last, the Center was to engage in community outreach and education to enhance industry partnerships, inform decision makers, and increase awareness and general knowledge of hydrogen and other alternative energy technologies and their beneficial impacts on society. This project has enabled us to accomplish all of our goals, including greater faculty understanding of advanced energy concepts, who are now able to convey this knowledge to students through a comprehensive alternative energy curriculum, in a facility well-equipped with advanced technologies, which is also being used to better educate the public on the advantages to society of exploring alternative energy technologies.

  9. Toward sustainable data centers: a comprehensive energy management strategy

    OpenAIRE

    Guitart Fernández, Jordi

    2016-01-01

    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data c...

  10. Detection unit with corrected energy dependence

    International Nuclear Information System (INIS)

    Viererbl, L.

    1989-01-01

    The detection unit consists of a plastic scintillator with a layer of a powder semicrystalline scintillator deposited on its surface. An inorgaic monocrystalline scintillator is placed inside the plastic scintillator and surrounded with an absorption layer, except for the window. The advantage of the detection unit is a reduced energy dependence of response, especially in the energy range 100 to 400 keV. (E.J.). 3 figs

  11. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  12. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ., Bozeman, MT (United States); Alcorn-Windy Boy, Jessica [Montana State Univ., Bozeman, MT (United States); Abedin, Md. Joynal [Montana State Univ., Bozeman, MT (United States); Maglinao, Randy [Montana State Univ., Bozeman, MT (United States)

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy duty diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.

  13. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm)

    Energy Technology Data Exchange (ETDEWEB)

    Blakeslee, Samuel Norman [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Inst. for Advanced Technology and Public Policy; Toman, William I. [Protean Wave Energy Ltd., Los Osos, CA (United States); Williams, Richard B. [Leidos Maritime Solutions, Reston, VA (United States); Davy, Douglas M. [CH2M, Sacramento, CA (United States); West, Anna [Kearns and West, Inc., San Francisco, CA (United States); Connet, Randy M. [Omega Power Engineers, LLC, Anaheim, CA (United States); Thompson, Janet [Kearns and West, Inc., San Francisco, CA (United States); Dolan, Dale [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Baltimore, Craig [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Jacobson, Paul [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Potter, Chris [California Natural Resources Agency, Sacramento, CA (United States); Dooher, Brendan [Pacific Gas and Electric Company, San Francisco, CA (United States); Wendt, Dean [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Sheppard, Colin [Humboldt State Univ., Arcata, CA (United States); Harris, Andrew [Humboldt State Univ., Arcata, CA (United States); Lawson, W. Graham [Power Delivery Consultants, Inc., Albany, NY (United States)

    2017-07-31

    to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.

  14. Staff roster for 1979: National Center for Analysis of Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This publication is a compilation of resumes from the current staff of the National Center for Analysis of Energy Systems. The Center, founded in January 1976, is one of four areas within the Department of Energy and Environment at Brookhaven National Laboratory. The emphasis of programs at the Center is on energy policy and planning studies at the regional, national, and international levels, involving quantitative, interdisciplinary studies of the technological, economic, social, and environmental aspects of energy systems. To perform these studies the Center has assembled a staff of experts in the areas of science, technology, economics planning, health and safety, information systems, and quantitative analysis.

  15. Solar energy in the United States

    International Nuclear Information System (INIS)

    Ochoa, D.; Slaoui, A.; Soler, R.; Bermudez, V.

    2009-01-01

    Written by a group of five French experts who visited several research centres, innovating companies and solar power stations in the United States, this report first proposes an overview of solar energy in the United States, indicating and commenting the respective shares of different renewable energies in the production, focusing on the photovoltaic energy production and its RD sector. The second part presents industrial and research activities in the solar sector, and more specifically photovoltaic technologies (silicon and thin layer technology) and solar concentrators (thermal solar concentrators, photovoltaic concentrators). The last chapter presents the academic research activities in different universities (California Tech Beckman Institute, Stanford, National Renewable Energy Laboratory, Colorado School of Mines)

  16. Energy balance in the transformation centers

    International Nuclear Information System (INIS)

    Alvim, Carlos Feu; Ferreira, Omar Campos; Eidelman, Frida.

    2005-01-01

    Carbon balance is an important instrument to identify the emission sources of greenhouse effect gases. Since energy use and transformation are fundamental for increasing these gases in the atmosphere, the carbon balance survey can be used to identify sectors and fuels to which priority should be given regarding emissions mitigation. In the case of transformation centers (installations where primary or secondary sources are converted into sub-products or other energy form) the balance indicated some problems regarding the Brazilian inventory calculation. Problems concerning the National Energy Balance data used here were also identified. (author)

  17. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  18. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  19. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... average unit costs of residential energy in a Federal Register notice entitled, ``Energy Conservation... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  20. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  1. Comparison of building energy use data between the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jianjun; Hong, Tianzhen; Shen, Qi; Feng, Wei; Yang, Le; Im, Piljae; Lu, Alison; Bhandari, Mahabir

    2013-10-30

    Buildings in the United States and China consumed 41percent and 28percent of the total primary energy in 2011, respectively. Good energy data are the cornerstone to understanding building energy performance and supporting research, design, operation, and policy making for low energy buildings. This paper presents initial outcomes from a joint research project under the U.S.-China Clean Energy Research Center for Building Energy Efficiency. The goal is to decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders. This paper first reviews and compares several popular existing building energy monitoring systems in both countries. Next a standard energy data model is presented. A detailed, measured building energy data comparison was conducted for a few office buildings in both countries. Finally issues of data collection, quality, sharing, and analysis methods are discussed. It was found that buildings in both countries performed very differently, had potential for deep energy retrofit, but that different efficiency measures should apply.

  2. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2013-03-22

    ... Conservation Program for Consumer Products: Representative Average Unit Costs of Energy'', dated April 26, 2012... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  3. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  4. Highly-resolved modeling of personal transportation energy consumption in the United States

    International Nuclear Information System (INIS)

    Muratori, Matteo; Moran, Michael J.; Serra, Emmanuele; Rizzoni, Giorgio

    2013-01-01

    This paper centers on the estimation of the total primary energy consumption for personal transportation in the United States, to include gasoline and/or electricity consumption, depending on vehicle type. The bottom-up sector-based estimation method introduced here contributes to a computational tool under development at The Ohio State University for assisting decision making in energy policy, pricing, and investment. In order to simulate highly-resolved consumption profiles three main modeling steps are needed: modeling the behavior of drivers, generating realistic driving profiles, and simulating energy consumption of different kinds of vehicles. The modeling proposed allows for evaluating the impact of plug-in electric vehicles on the electric grid – especially at the distribution level. It can serve as a tool to compare different vehicle types and assist policy-makers in estimating their impact on primary energy consumption and the role transportation can play to reduce oil dependency. - Highlights: • Modeling primary energy consumption for personal transportation in the United States. • Behavior of drivers has been simulated in order to establish when driving events occur and the length of each event. • Realistic driving profiles for each driving event are generated using a stochastic model. • The model allows for comparing the initial cost of different vehicles and their expected energy-use operating cost. • Evaluation of the impact of PEVs on the electric grid – especially at the distribution level – can be performed

  5. Southern Energy Efficiency Center (SEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  6. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  7. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  8. The United States and world energy markets

    International Nuclear Information System (INIS)

    Ramsay, W.C.

    1992-01-01

    The United States, dominating the world's energy markets as a producer and consumer, is sensitive to changes in this market and intends to influence the development of global energy policy. Supply will be increased by nations such as Venezuela, Indonesia and perhaps in the future a United Yemen and the Commonwealth of Independent States, moving to freer market economies which will allow investment opportunities previously inaccessible to foreign companies. Although world energy demand will grow, little of this will be in the US where, under the National Energy Strategy, comprehensive measures are being introduced to improve energy efficiency. The US energy security will be further improved by such measures as diversification of supply, larger domestic production and increasing interdependence between suppliers, traders and consumers. (author)

  9. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  10. Activities of the Sofia EC Energy Center in the framework of the THERMIE programme

    International Nuclear Information System (INIS)

    Latinski, K.

    1993-01-01

    The European Community Energy Center in Sofia is responsible for the EC implementation of the THERMIE programme. The programme's activities are promotion and dissemination of existing European technologies leading to better energy management and covering the fields of rational use of hydrocarbons, solid fuels and renewable energy sources. Application of these technologies would lead to substantial energy savings resulting in significant financial and environmental benefits. During its one-year operation the EC Energy Centre has organized and performed specific action as energy audits (food and beverage industrial units and buildings), demonstration projects (local heating control in buildings, diesel engine regulation of buses), training courses and seminars (in energy management and in space heating measuring and regulation), workshops (energy conservation in buildings, the bricks and clays sector and the food and beverage sector) and studies (wind energy potential, 'clean' coal technologies potential). Some of these actions have had very encouraging results showing potential energy savings of the order of 10-20% just by application of simple measures and with small additional investment. The activities of the EC Energy Centre in the coming year aimed at electricity savings along the entire line of electricity generation, transmission and consumption are outlined. (author)

  11. Highlighting High Performance: National Renewable Energy Laboratory's Visitors Center, Golden, Colorado

    International Nuclear Information System (INIS)

    Burgert, S.

    2001-01-01

    The National Renewable Energy Laboratory Visitors Center, also known as the Dan Schaefer Federal Building, is a high-performance building located in Golden, Colorado. The 6,400-square-foot building incorporates passive solar heating, energy-efficient lighting, an evaporative cooling system, and other technologies to minimize energy costs and environmental impact. The Visitors Center displays a variety of interactive exhibits on energy efficiency and renewable energy, and the building includes an auditorium, a public reading room, and office space

  12. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert P. [International District Energy Association, Westborough, MA (United States)

    2013-12-20

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems. A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  13. Clean Energy Application Centers: Annual Metrics Report for Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    Between fiscal year (FY) 2010 and 2013, the U.S. Department of Energy (DOE) funded nine Clean Energy Application Centers (CEACs) with national coverage to promote and assist in transforming the market for Combined Heat and Power (CHP), Waste Heat to Power CHP, and district energy (DE) with CHP1. Prior to that, similar services were provided by eight Regional Application Centers (RACs). The key services that the CEACs provided were market assessments, education and outreach, and technical assistance. There were eight regional CEACs, each of which served a specific area of the country, and a separate center operated by the International District Energy Association (IDEA) which supported the regional centers with technical assistance, education, training, publicity, and outreach related to district energy with CHP. Oak Ridge National Laboratory (ORNL) has performed four previous studies of CEAC activities. The first one examined what the centers had done each year from the initiation of the program through FY 2008; the second addressed center activities for FY 2009; the third one focused on what was accomplished in FY 2010; and the fourth looked at the CEACs’ FY 2011 accomplishments, with a heightened emphasis on the adoption of CHP\\DE technologies and the activities thought to be most closely related to CHP/DE development and use. The most recent study, documented in this report, examines CEAC activities in FY 2012.

  14. The Austrian Research Centers activities in energy risks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    1998-01-01

    Among the institutions involved in energy analyses in Austria the risk context is being treated by three different entities: the Energy Consumption Agency, internationally known as EVA, the Federal Environmental Protection Agency, or Urnweltbundesarnt assessing mainly the environmental risks involved and the Austrian Research Centers, working on safety and risk evaluation. The Austrian Research Center Seibersdorf draws form its proficiency in Reactor Safety and Fusion Research, two fields of experience it has been involved in since its foundation, for some 40 years now. Nuclear energy is not well accepted by the Austrian population. Therefore in our country only energy systems with advanced safety level might be accepted in the far future. This means that the development of methods to compare risks is an important task. The characteristics of energy systems featuring advanced safety levels are: A very low hazard potential and a focus on deterministic safety instead of probabilistic safety, meaning to rely on inherently safe physics concepts, confirmed by probabilistic safety evaluation results. This can be achieved by adequate design of fusion reactors, advanced fission reactors and all different renewable sources of energy

  15. Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark A

    2013-03-01

    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

  16. Best Practices Guide for Energy-Efficient Data Center Design

    Energy Technology Data Exchange (ETDEWEB)

    O. VanGeet: NREL

    2010-02-24

    This guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery.

  17. Renewable energies in United Kingdom

    International Nuclear Information System (INIS)

    Baize, T.

    1993-01-01

    An evaluation of research and development policy in United Kingdom on renewable energy sources is presented with economical studies (short or long term profitability), engaged programs and electric production. (A.B.). refs. tabs

  18. A Comparative Analysis of Patient Access Modes at Wilford Hall United States Air Force Medical Center and Selected Civilian Medical Centers

    Science.gov (United States)

    1983-12-01

    In A COMPARATIVE ANALYSIS OF PATIENT ACCESS MODES AT WILFORD HALL UNITED STATES AIR FORCE MEDICAL CENTER N AND SELECTED CIVILIAN MEDICAL CENTERS0 N...current patient access modes at WHMC and several civilian medical centers of comparable size. This project has pursued the subject of patient access in...selected civilian medical centers which are comparable to WHMC in size, specialty mix, workload, and mission, providing responsive and efficient patient

  19. ERDA nuclear energy center program. Phase I. Program definition. Final report

    International Nuclear Information System (INIS)

    1977-06-01

    This Phase I report describes the procedures used and the results obtained from a survey of SINB states and major utilities to determine their interest in participating in an ERDA-sponsored study to investigate the technical, economic, and institutional practicality of establishing a potential Nuclear Energy Center at a specific site. The State of South Carolina was the only SINB member to express positive interest in ERDA's Nuclear Energy Center Program, and to offer to submit a proposal through the SINB to select and evaluate a site in South Carolina having the potential for being developed into a Nuclear Energy Center

  20. Best Practices Guide for Energy-Efficient Data Center Design: Revised March 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-01

    This guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery. IT system energy efficiency and environmental conditions are presented first because measures taken in these areas have a cascading effect of secondary energy savings for the mechanical and electrical systems. This guide concludes with a section on metrics and benchmarking values by which a data center and its systems energy efficiency can be evaluated. No design guide can offer 'the most energy-efficient' data center design but the guidelines that follow offer suggestions that provide efficiency benefits for a wide variety of data center scenarios.

  1. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  2. Techbelt Energy Innovation Center

    Energy Technology Data Exchange (ETDEWEB)

    Marie, Hazel [Youngstown State Univ., OH (United States); Nestic, Dave [TechBelt Energy Innovation Center, Warren, OH (United States); Hripko, Michael [Youngstown State Univ., OH (United States); Abraham, Martin [Youngstown State Univ., OH (United States)

    2017-06-30

    This project consisted of three main components 1) The primary goal of the project was to renovate and upgrade an existing commercial building to the highest possible environmentally sustainable level for the purpose of creating an energy incubator. This initiative was part of the Infrastructure Technologies Program, through which a sustainable energy demonstration facility was to be created and used as a research and community outreach base for sustainable energy product and process incubation; 2) In addition, fundamental energy related research on wind energy was performed; a shrouded wind turbine on the Youngstown State University campus was commissioned; and educational initiatives were implemented; and 3) The project also included an education and outreach component to inform and educate the public in sustainable energy production and career opportunities. Youngstown State University and the Tech Belt Energy Innovation Center (TBEIC) renovated a 37,000 square foot urban building which is now being used as a research and development hub for the region’s energy technology innovation industry. The building houses basic research facilities and business development in an incubator format. In addition, the TBEIC performs community outreach and education initiatives in advanced and sustainable energy. The building is linked to a back warehouse which will eventually be used as a build-out for energy laboratory facilities. The projects research component investigated shrouded wind turbines, and specifically the “Windcube” which was renamed the “Wind Sphere” during the course of the project. There was a specific focus on the development in the theory of shrouded wind turbines. The goal of this work was to increase the potential efficiency of wind turbines by improving the lift and drag characteristics. The work included computational modeling, scale models and full-sized design and construction of a test turbine. The full-sized turbine was built on the YSU

  3. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  4. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  5. The Energy Puzzle Between the United States and China

    Science.gov (United States)

    2013-03-01

    securing China’s status as a great power.2 As of 2011, China is the second largest consumer of natural resources (oil, liquefied petroleum gas ( LPG ...pursuit of natural resources, (oil, natural gas , coal or renewable energy sources) is reshaping the world’s energy security. The United States is...pursuit of natural resources, (oil, natural gas , coal or renewable energy sources) is reshaping the world’s energy security. The United States is

  6. Energy policy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, M

    1978-06-01

    Energy policy in the United States is examined with particular regard to the nuclear power industry. The advantages of nuclear power over conventional and other sources are presented and the vigorous expansion of research and development is advocated. Future energy supplies are discussed and the author stresses the necessity for continued research into breeder technology.

  7. Ultra-low-energy wide electron exposure unit

    International Nuclear Information System (INIS)

    Yonago, Akinobu; Oono, Yukihiko; Tokunaga, Kazutoshi; Kishimoto, Junichi; Wakamoto, Ikuo

    2001-01-01

    Heat and ultraviolet ray processes are used in surface dryness of paint, surface treatment of construction materials and surface sterilization of food containers. A process using a low-energy wide-area electron beam (EB) has been developed that features high speed and low drive cost. EB processing is not widespread in general industry, however, due to high equipment cost and difficult maintenance. We developed an ultra-low-energy wide-area electron beam exposure unit, the Mitsubishi Wide Electron Exposure Unit (MIWEL) to solve these problems. (author)

  8. National Center for Analysis of Energy Systems: program summaries for 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This Center, founded in January 1976, is one of four areas comprising the Department of Energy and Environment at Brookhaven National Laboratory. The major ongoing activities of the Center concern integrated, quantitative analyses of technological, economic, and environmental aspects of energy at the regional, national, and international levels. The objectives, activities, and sources of support of each of the programs are described and the major accomplishments during the year are outlined. Some of the planned future activities of the Center are indicated, and recent publications are listed.

  9. Gulf Coast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Dillingham, Gavin [Houston Advanced Research Center, TX (United States)

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  10. Teachers Environmental Resource Unit: Energy and Power.

    Science.gov (United States)

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  11. Decentralized control of units in smart grids for the support of renewable energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenschein, Michael, E-mail: Michael.Sonnenschein@Uni-Oldenburg.DE [University of Oldenburg, Department of Computing Science, D-26111 Oldenburg (Germany); Lünsdorf, Ontje, E-mail: Ontje.Luensdorf@OFFIS.DE [OFFIS Institute for Information Technology, Escherweg 2, D-26121 Oldenburg (Germany); Bremer, Jörg, E-mail: Joerg.Bremer@Uni-Oldenburg.DE [University of Oldenburg, Department of Computing Science, D-26111 Oldenburg (Germany); Tröschel, Martin, E-mail: Martin.Troeschel@OFFIS.DE [OFFIS Institute for Information Technology, Escherweg 2, D-26121 Oldenburg (Germany)

    2015-04-15

    controlled appliance sets is necessary. We introduce a method for self-organized clustering for this purpose and show how control of such clusters can affect load peaks in distribution grids. Subsequently, we give a short overview on how we are going to expand the idea of self-organized clusters of units into creating a virtual control center for dynamic virtual power plants (DVPP) offering products at a power market. For an efficient organization of DVPPs, the flexibilities of units have to be represented in a compact and easy to use manner. We give an introduction how the problem of representing a set of possibly 10{sup 100} feasible schedules can be solved by a machine-learning approach. In summary, this article provides an overall impression how we use agent based control techniques and methods of self-organization to support the further integration of distributed and renewable energy sources into power grids and energy markets. - Highlights: • Distributed load management for electrical vehicles supports local supply from PV. • Appliances can self-organize into so called virtual appliances for load control. • Dynamic VPPs can be controlled by extensively decentralized control centers. • Flexibilities of units can efficiently be represented by support-vector descriptions.

  12. Decentralized control of units in smart grids for the support of renewable energy supply

    International Nuclear Information System (INIS)

    Sonnenschein, Michael; Lünsdorf, Ontje; Bremer, Jörg; Tröschel, Martin

    2015-01-01

    controlled appliance sets is necessary. We introduce a method for self-organized clustering for this purpose and show how control of such clusters can affect load peaks in distribution grids. Subsequently, we give a short overview on how we are going to expand the idea of self-organized clusters of units into creating a virtual control center for dynamic virtual power plants (DVPP) offering products at a power market. For an efficient organization of DVPPs, the flexibilities of units have to be represented in a compact and easy to use manner. We give an introduction how the problem of representing a set of possibly 10 100 feasible schedules can be solved by a machine-learning approach. In summary, this article provides an overall impression how we use agent based control techniques and methods of self-organization to support the further integration of distributed and renewable energy sources into power grids and energy markets. - Highlights: • Distributed load management for electrical vehicles supports local supply from PV. • Appliances can self-organize into so called virtual appliances for load control. • Dynamic VPPs can be controlled by extensively decentralized control centers. • Flexibilities of units can efficiently be represented by support-vector descriptions

  13. Energy options for the United Kingdom

    International Nuclear Information System (INIS)

    Warner, P.C.

    1979-03-01

    The purpose of this paper is to put together a picture of the energy policy options of the United Kingdom, drawn mainly from official documents but supplemented by comments and conclusions from the author. For some people the current energy debate is simplified down to nuclear power for and against. Much of this thinking seems to arise from misunderstanding, and the more the technical and social facts behind policy can be sorted out by discussions, the more sensible eventual policy will be. One extreme view, for instance, is that opinion is divided between those who are 'pro-industry, pro-production, and pro-nuclear' and those who are 'interested in ecology and therefore anti-nuclear.' Associations like those are high on the list of myths that need to be dispelled. It is therefore a further purpose of this paper to contribute to the general background of facts for those who are interested in this country's energy policies and who may not have time or the opportunity to work through original sources. Although the theme throughout is energy in the United Kingdom, it will be realised that extension to the world scale simply enhances shortages and problems. The paper is in sections, entitled: overall UK energy consumption; coal; oil; gas; the energy gap; alternative energy sources; the balance of primary resource need; electricity; the nuclear power programme; timing of power plant orders; conclusions. (U.K.)

  14. Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)

    International Nuclear Information System (INIS)

    Chu, Steven

    2011-01-01

    Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to 'unleash America's science and research community' to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  15. Clean Energy Solutions Center and SE4All: Partnering to Support Country Actions

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    Since 2012, the Clean Energy Solutions Center (Solutions Center) and Sustainable Energy for All (SE4All) have partnered to deliver information, knowledge and expert assistance to policymakers and practitioners in countries actively working to achieve SE4All objectives. Through SE4All efforts, national governments are implementing integrated country actions to strategically transform their energy markets. This fact sheet details the Solutions Center and SE4All partnership and available areas of technical assistance.

  16. High energy physics in the United States

    International Nuclear Information System (INIS)

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  17. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  18. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2015-01-01

    Highlights: • A parameter to indicate the energy efficiency ratio of PCTES units is defined. • The characteristics of the energy efficiency ratio of PCTES units are reported. • A combined parameter of the physical properties of the working mediums is found. • Some implications of the energy efficiency ratio in design of PCTES units are analyzed. - Abstract: From aspect of energy consuming to pump heat transfer fluid, there is no sound basis on which to create an optimum design of a thermal energy storage unit. Thus, it is necessary to develop a parameter to indicate the energy efficiency of such unit. This paper firstly defines a parameter that indicates the ratio of heat storage of phase change thermal energy storage unit to energy consumed in pumping heat transfer fluid, which is called the energy efficiency ratio, then numerically investigates the characteristics of this parameter. The results show that the energy efficiency ratio can clearly indicate the energy efficiency of a phase change thermal energy storage unit. When the fluid flow of a heat transfer fluid is in a laminar state, the energy efficiency ratio is larger than in a turbulent state. The energy efficiency ratio of a shell-and-tube phase change thermal energy storage unit is more sensitive to the outer tube diameter. Under the same working conditions, within the heat transfer fluids studied, the heat storage property of the phase change thermal energy storage unit is best for water as heat transfer fluid. A combined parameter is found to indicate the effects of both the physical properties of phase change material and heat transfer fluid on the energy efficiency ratio

  19. Evaluating energy saving system of data centers based on AHP and fuzzy comprehensive evaluation model

    Science.gov (United States)

    Jiang, Yingni

    2018-03-01

    Due to the high energy consumption of communication, energy saving of data centers must be enforced. But the lack of evaluation mechanisms has restrained the process on energy saving construction of data centers. In this paper, energy saving evaluation index system of data centers was constructed on the basis of clarifying the influence factors. Based on the evaluation index system, analytical hierarchy process was used to determine the weights of the evaluation indexes. Subsequently, a three-grade fuzzy comprehensive evaluation model was constructed to evaluate the energy saving system of data centers.

  20. 75 FR 68607 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Science.gov (United States)

    2010-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-001] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing November 1, 2010. Take notice that on October 28, 2010, CenterPoint Energy--Illinois Gas Transmission Company submitted a revised...

  1. Continental integration and energy demand in the United States

    International Nuclear Information System (INIS)

    Manning, D.J.

    2004-01-01

    This presentation highlighted some of the major issues regarding energy demand in the United States and continental integration. The energy markets in Canada and the United States are economically integrated with large cross-border investment. Therefore, the energy infrastructure can be significantly affected by inconsistencies between the two countries in policy, regulatory processes and fiscal regimes. The author discussed the inelasticity in the natural gas demand in the United States in the near-term, and how natural gas consumption, particularly for power generation, is greater than North America's supply capacity. New supplies such as liquefied natural gas and arctic gas are needed to meet growing demands. The role of renewable energy technologies and energy efficiency was also discussed. It was emphasized that imbalances in supply and demand inevitably lead to price volatility and that high prices are a major obstacle to economic growth. tabs., figs

  2. Renewable Energy at NASA's Johnson Space Center

    Science.gov (United States)

    McDowall, Lindsay

    2014-01-01

    NASA's Johnson Space Center has implemented a great number of renewable energy systems. Renewable energy systems are necessary to research and implement if we humans are expected to continue to grow and thrive on this planet. These systems generate energy using renewable sources - water, wind, sun - things that we will not run out of. Johnson Space Center is helping to pave the way by installing and studying various renewable energy systems. The objective of this report will be to examine the completed renewable energy projects at NASA's Johnson Space Center for a time span of ten years, beginning in 2003 and ending in early 2014. This report will analyze the success of each project based on actual vs. projected savings and actual vs. projected efficiency. Additionally, both positive and negative experiences are documented so that lessons may be learned from past experiences. NASA is incorporating renewable energy wherever it can, including into buildings. According to the 2012 JSC Annual Sustainability Report, there are 321,660 square feet of green building space on JSC's campus. The two projects discussed here are major contributors to that statistic. These buildings were designed to meet various Leadership in Energy and Environmental Design (LEED) Certification criteria. LEED Certified buildings use 30 to 50 percent less energy and water compared to non-LEED buildings. The objectives of this project were to examine data from the renewable energy systems in two of the green buildings onsite - Building 12 and Building 20. In Building 12, data was examined from the solar photovoltaic arrays. In Building 20, data was examined from the solar water heater system. By examining the data from the two buildings, it could be determined if the renewable energy systems are operating efficiently. Objectives In Building 12, the data from the solar photovoltaic arrays shows that the system is continuously collecting energy from the sun, as shown by the graph below. Building 12

  3. Hanford Nuclear Energy Center study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-03-16

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants.

  4. Hanford Nuclear Energy Center study

    International Nuclear Information System (INIS)

    Harty, H.

    1976-01-01

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants

  5. Ant Colony Optimization Algorithm to Dynamic Energy Management in Cloud Data Center

    Directory of Open Access Journals (Sweden)

    Shanchen Pang

    2017-01-01

    Full Text Available With the wide deployment of cloud computing data centers, the problems of power consumption have become increasingly prominent. The dynamic energy management problem in pursuit of energy-efficiency in cloud data centers is investigated. Specifically, a dynamic energy management system model for cloud data centers is built, and this system is composed of DVS Management Module, Load Balancing Module, and Task Scheduling Module. According to Task Scheduling Module, the scheduling process is analyzed by Stochastic Petri Net, and a task-oriented resource allocation method (LET-ACO is proposed, which optimizes the running time of the system and the energy consumption by scheduling tasks. Simulation studies confirm the effectiveness of the proposed system model. And the simulation results also show that, compared to ACO, Min-Min, and RR scheduling strategy, the proposed LET-ACO method can save up to 28%, 31%, and 40% energy consumption while meeting performance constraints.

  6. 76 FR 2903 - Interconnection of the Proposed Hyde County Wind Energy Center Project (DOE/EIS-0461), and...

    Science.gov (United States)

    2011-01-18

    ... Wind Energy Center Project (DOE/EIS-0461), and Proposed Crowned Ridge Wind Energy Center Project (DOE... to prepare environmental impact statements (EISs) for the Hyde County Wind Energy Center Project and the Crowned Ridge Wind Energy Center Project in the Federal Register on November 30, 2010. Both...

  7. Regency Centers Develops Leadership in Energy-Efficient Renovations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    Regency Centers (Regency) partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  8. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim [Pennsylvania State Univ., University Park, PA (United States)

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  9. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  10. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Andrew [Univ. of Kentucky, Lexington, KY (United States); Liu, Kunlei [Univ. of Kentucky, Lexington, KY (United States); Challman, Don [Univ. of Kentucky, Lexington, KY (United States); Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States); Jacques, David [Univ. of Kentucky, Lexington, KY (United States)

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in

  11. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  12. Geographic distribution of trauma centers and injury-related mortality in the United States.

    Science.gov (United States)

    Brown, Joshua B; Rosengart, Matthew R; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L

    2016-01-01

    Regionalized trauma care improves outcomes; however, access to care is not uniform across the United States. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Level I or II trauma centers in the contiguous United States were mapped. State-level age-adjusted injury fatality rates per 100,000 people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNRs) were generated for each state. A NNR less than 1 indicates clustering, while a NNR greater than 1 indicates dispersion. NNRs were tested for difference from random geographic distribution. Fatality rates and NNRs were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Fatality rates were spatially autocorrelated (Moran's I = 0.35, p center distribution. Fatality rate and NNR were correlated (ρ = 0.34, p = 0.03). Clustered states had a lower median injury fatality rate compared with dispersed states (56.9 [IQR, 46.5-58.9] vs. 64.9 [IQR, 52.5-77.1]; p = 0.04). Dispersed compared with clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% vs. 1.2%, p distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers associated with lower fatality rates. This may be a result of access relative to population density. These results may have implications for trauma system planning and require further study to investigate underlying mechanisms. Therapeutic/care management study, level IV.

  13. Large-scale fuel cycle centers

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The United States Nuclear Regulatory Commission (NRC) has considered the nuclear energy center concept for fuel cycle plants in the Nuclear Energy Center Site Survey - 1975 (NECSS-75) -- an important study mandated by the U.S. Congress in the Energy Reorganization Act of 1974 which created the NRC. For the study, NRC defined fuel cycle centers to consist of fuel reprocessing and mixed oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle center sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000 - 300,000 MWe. The types of fuel cycle facilities located at the fuel cycle center permit the assessment of the role of fuel cycle centers in enhancing safeguarding of strategic special nuclear materials -- plutonium and mixed oxides. Siting of fuel cycle centers presents a considerably smaller problem than the siting of reactors. A single reprocessing plant of the scale projected for use in the United States (1500-2000 MT/yr) can reprocess the fuel from reactors producing 50,000-65,000 MWe. Only two or three fuel cycle centers of the upper limit size considered in the NECSS-75 would be required in the United States by the year 2000 . The NECSS-75 fuel cycle center evaluations showed that large scale fuel cycle centers present no real technical difficulties in siting from a radiological effluent and safety standpoint. Some construction economies may be attainable with fuel cycle centers; such centers offer opportunities for improved waste management systems. Combined centers consisting of reactors and fuel reprocessing and mixed oxide fuel fabrication plants were also studied in the NECSS. Such centers can eliminate not only shipment of plutonium, but also mixed oxide fuel. Increased fuel cycle costs result from implementation of combined centers unless the fuel reprocessing plants are commercial-sized. Development of plutonium-burning reactors could reduce any

  14. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology

  15. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ. Northern, Havre, MT (United States); Windy Boy, Jessica [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Maglinao, Randy Latayan [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Abedin, Md. Joynal [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence

    2017-03-02

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additives considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally

  16. 78 FR 28214 - Gainesville Renewable Energy Center, LLC; Supplemental Notice That Initial Market-Based Rate...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1348-000] Gainesville Renewable Energy Center, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Gainesville Renewable Energy Center, LLC's application for market- based rate authority, with an accompanying...

  17. Zero-point energies in the two-center shell model. II

    International Nuclear Information System (INIS)

    Reinhard, P.-G.

    1978-01-01

    The zero-point energy (ZPE) contained in the potential-energy surface of a two-center shell model (TCSM) is evaluated. In extension of previous work, the author uses here the full TCSM with l.s force, smoothing and asymmetry. The results show a critical dependence on the height of the potential barrier between the centers. The ZPE turns out to be non-negligible along the fission path for 236 U, and even more so for lighter systems. It is negligible for surface quadrupole motion and it is just on the fringe of being negligible for motion along the asymmetry coordinate. (Auth.)

  18. A preliminary assessment of the potential for 'team science' in DOE Energy Innovation Hubs and Energy Frontier Research Centers

    International Nuclear Information System (INIS)

    Boardman, Craig; Ponomariov, Branco

    2011-01-01

    President Obama has called for the development of new energy technologies to address our national energy needs and restore US economic competitiveness. In response, the Department of Energy has established new R and D modalities for energy research and development designed to facilitate collaboration across disciplinary, institutional, and sectoral boundaries. In this research note, we provide a preliminary assessment of the potential for essential mechanisms for coordinated problem solving among diverse actors within two new modalities at the DOE: Energy Innovation Hubs and Energy Frontier Research Centers. - Highlights: → Energy Frontier Research Centers may lack the basic mechanisms for coordinating diverse actors. → Divergent goals across diverse actors may hinder coordination in Energy Innovation Hubs. → The implementation of these and similar energy policies require further investigation.

  19. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Mendenhall Glacier Visitor Center, Juneau, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); LoVullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    This report summarizes results from the energy efficiency, water efficiency, and renewable energy site assessment of the Mendenhall Glacier Visitor Center and site in Juneau, Alaska. The assessment is an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory conducted the assessment with U.S. Forest Service personnel August 19-20, 2015, as part of ongoing efforts by USFS to reduce energy and water use.

  20. Assessment of PWR plutonium burners for nuclear energy centers

    International Nuclear Information System (INIS)

    Frankel, A.J.; Shapiro, N.L.

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible

  1. Study of a conceptual nuclear energy center at Green River, Utah: licensing considerations

    International Nuclear Information System (INIS)

    Dowdle, M.; Russell, R.; Zillman, D.

    1982-04-01

    This report examines the laws governing the location of a 9-unit nuclear energy center (NEC) near Green River, Utah. The time frame being considered for development of the conceptual NEC is from 1995 to 2013. Accordingly, the report is forced to speculate about some aspects of the plant, its site and its construction. Most of the report examines existing legal requirements for constructing an NEC. Where pertinent, changes in the law are discussed that would affect an NEC that is to be licensed in one or two decades. In general, no insurmountable legal problems exist that would prevent an NEC from being licensed at the Green River location. Several legal requirements pose significant concerns and would have to be faced before an NEC could be built. Among the major legal constraints are radiation protection, regulatory approval of financing, access to water, and local zoning restrictions. Two other constraints that involve legal matters are the wisdom of standardization of the units and the responsibility of the NEC builder to correct socio-economic impacts on the local area

  2. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  3. Nuclear Energy Center Site Survey, 1975. Part V. Resource availability and site screening

    International Nuclear Information System (INIS)

    1976-01-01

    Resource requirements for nuclear energy centers are discussed and the large land areas which meet these requirements and may contain potential sites for a nuclear energy center (NEC) are identified. Maps of the areas are included that identify seismic zones, river flow rates, and population density

  4. The Caspian energy game: views from the United States and United Kingdom

    International Nuclear Information System (INIS)

    Bird, H.

    2003-01-01

    The importance of the Caspian Sea region to energy production is increasing and the forces influencing it are changing. The attention on this region focuses on its oil and natural gas reserves. A series of interviews with Western experts mainly from the United States and United Kingdom, including those in international organizations, academia, policy institutions, and government and industry officials identified key trends and issues that are important to their future policies and the significance of the Caspian oil and gas to the world energy market. The overriding issues are: The influence of Russia on regional security, stability, and the transportation of oil and gas products in the Caspian region. The outcome of the test between the United States and Iraq and the major effects it could have on commercial interests in the region and on who will be the major actors. Tensions caused by Iran refusal to settle the international demarcation of the Caspian Sea. Turkey position as a player, the affect of its new islamic-dominated government and its energy policies. Europe need to import gas and to diversify its supply. The construction of a pipeline to China. The impact of September 11, 2001 and terrorism on the Caspian region issues. The stability of the former Soviet Republics in the region. (author)

  5. The Caspian energy game: views from the United States and United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Bird, H

    2003-07-01

    The importance of the Caspian Sea region to energy production is increasing and the forces influencing it are changing. The attention on this region focuses on its oil and natural gas reserves. A series of interviews with Western experts mainly from the United States and United Kingdom, including those in international organizations, academia, policy institutions, and government and industry officials identified key trends and issues that are important to their future policies and the significance of the Caspian oil and gas to the world energy market. The overriding issues are: The influence of Russia on regional security, stability, and the transportation of oil and gas products in the Caspian region. The outcome of the test between the United States and Iraq and the major effects it could have on commercial interests in the region and on who will be the major actors. Tensions caused by Iran refusal to settle the international demarcation of the Caspian Sea. Turkey position as a player, the affect of its new islamic-dominated government and its energy policies. Europe need to import gas and to diversify its supply. The construction of a pipeline to China. The impact of September 11, 2001 and terrorism on the Caspian region issues. The stability of the former Soviet Republics in the region. (author)

  6. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  7. Energy Efficient Multiresource Allocation of Virtual Machine Based on PSO in Cloud Data Center

    Directory of Open Access Journals (Sweden)

    An-ping Xiong

    2014-01-01

    Full Text Available Presently, massive energy consumption in cloud data center tends to be an escalating threat to the environment. To reduce energy consumption in cloud data center, an energy efficient virtual machine allocation algorithm is proposed in this paper based on a proposed energy efficient multiresource allocation model and the particle swarm optimization (PSO method. In this algorithm, the fitness function of PSO is defined as the total Euclidean distance to determine the optimal point between resource utilization and energy consumption. This algorithm can avoid falling into local optima which is common in traditional heuristic algorithms. Compared to traditional heuristic algorithms MBFD and MBFH, our algorithm shows significantly energy savings in cloud data center and also makes the utilization of system resources reasonable at the same time.

  8. Guidelines for Datacenter Energy Information System

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mahdavi, Rod [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [Center for Environmental Planning and Technology (CEPT) Univ., Ahmedabad (India)

    2013-12-01

    The purpose of this document is to provide structured guidance to data center owners, operators, and designers, to empower them with information on how to specify and procure data center energy information systems (EIS) for managing the energy utilization of their data centers. Data centers are typically energy-intensive facilities that can consume up to 100 times more energy per unit area than a standard office building (FEMP 2013). This guidance facilitates “data-driven decision making,” which will be enabled by following the approach outlined in the guide. This will bring speed, clarity, and objectivity to any energy or asset management decisions because of the ability to monitor and track an energy management project’s performance.

  9. Nuclear Energy Center study. Phase II. Site suitability analysis. Final report

    International Nuclear Information System (INIS)

    Fellows, W.S.; Sharp, J.M.; Benator, B.I.

    1978-06-01

    A site screening study was conducted to identify a site or sites for detailed, site-specific study as a nuclear energy center. Using technical criteria of water requirements, geotechnical constraints, and projected load center and transmission considerations as well as environmental and institutional considerations, five potential study sites in the State of South Carolina were identified, evaluated against established criteria, and ranked according to their acceptability as potential nuclear energy center study sites. Consideration of what is ''representative'' of a site as well as the ranking score was factored into site recommendations, since the site deemed easiest to license and permit may not be the most desirable site for future study of the technical and institutional feasibility and practicality of a specific site. The sites near Lake Hartwell and the Savannah River Plant (SRP) of the Department of Energy were selected as potential study sites after consideration of the above criteria. Because the Lake Hartwell site offers the opportunity to consider institutional issues which may be more representative of other possible NEC sites, it is recommended that the Lake Hartwell site be studied to establish the feasibility and practicality of the nuclear energy concept on a site-specific basis

  10. Nuclear energy center site survey: fuel cycle studies

    International Nuclear Information System (INIS)

    1976-05-01

    Background information for the Nuclear Regulatory Commission Nuclear Energy Center Site Survey is presented in the following task areas: economics of integrated vs. dispersed nuclear fuel cycle facilities, plutonium fungibility, fuel cycle industry model, production controls and failure contingencies, environmental impact, waste management, emergency response capability, and feasibility evaluations

  11. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm) - Volume #2 - Appendices #16-17

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, Brendan [Pacific Gas and Electric Company, San Ramon, CA (United States). Applied Technical Services; Toman, William I. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Inst. of Advanced Technology and Public Policy; Davy, Doug M. [CH2M Hill Engineers, Inc., Sacramento, CA (United States); Blakslee, Samuel N. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2017-07-31

    to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.

  12. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  13. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Seneca Rocks Discovery Center, Seneca Rocks, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, Kosol [National Renewable Energy Lab. (NREL), Golden, CO (United States); Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-22

    As part of ongoing efforts by the U.S. Forest Service to reduce energy use and incorporate renewable energy technologies into its facilities, the Department of Energy's National Renewable Energy Laboratory performed an energy efficiency and renewable energy site assessment of the Seneca Rocks Discovery Center in Seneca Rocks, West Virginia. This report documents the findings of this assessment, and provides site-specific information for the implementation of energy and water conservation measures, and renewable energy measures.

  14. 78 FR 54669 - Draft Environmental Impact Statement for the Proposed RES Americas Moapa Solar Energy Center...

    Science.gov (United States)

    2013-09-05

    ... Environmental Impact Statement for the Proposed RES Americas Moapa Solar Energy Center, Clark County, Nevada... environmental impact statement (DEIS) for the proposed RES Americas Moapa Solar Energy Center on the Moapa River... Progress and on the following Web site: www.MoapaSolarEnergyCenterEIS.com . In order to be fully considered...

  15. Meteorological evaluation of multiple reactor contamination probabilities for a Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Diebel, D.I.

    1978-03-01

    The conceptual Hanford energy center is composed of nuclear power plants, hence the name Hanford Nuclear Energy Center (HNEC). Previous topical reports have covered a variety of subjects related to the HNEC including: electric power transmission, fuel cycle, and heat disposal. This report discusses the probability that a radiation release from a single reactor in the HNEC would contaminate other facilities in the center. The risks, in terms of reliability of generation, of this potential contamination are examined by Clark and Dowis

  16. Insight on the energy in the United States

    International Nuclear Information System (INIS)

    Jamet, Ph.

    2006-11-01

    This document recapitulates the main characteristics and the key data of the energy in the United States (fossil energies, renewable energies, electric power production). The main american strategies are then described as the actions at the international scale during the last five years. The main data of the research programs in the energy domain are presented and the possible consequences of the government change at the Congress are analyzed. (A.L.B.)

  17. Assessment center energy collector system of crude Puerto Escondido

    International Nuclear Information System (INIS)

    Rodríguez Sosa, Yadier; Morón Álvarez, Carlos J.; Gozá León, Osvaldo

    2015-01-01

    In this paper the results of the evaluation of the energy system Collector Crude Center of Puerto Escondido in the first half of 2014. By implementing the overall strategy presented Process Analysis developed and implemented an energy assessment procedure allowed characterize current plant conditions, and raise a number of measures and recommendations that lead to improved energy use and reduced environmental impact. It also presents the computational tools used for both process simulation (Hysys v 3.2) as for technical analysis - economic and environmental (Microsoft Excel). (full text)

  18. Solar-energy heats a transportation test center--Pueblo, Colorado

    Science.gov (United States)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  19. The High-Energy Astrophysics Learning Center, Version 1. [CD-ROM].

    Science.gov (United States)

    Whitlock, Laura A.; Allen, Jesse S.; Lochner, James C.

    The High-Energy Astrophysics (HEA) Learning Center gives students, teachers, and the general public a window into the world of high-energy astrophysics. The universe is revealed through x-rays and gamma rays where matter exists under extreme conditions. Information is available on astrophysics at a variety of reading levels, and is illustrated…

  20. ENERGY AND EXERGY ANALYSIS OF A POWDER DETERGENT UNIT

    International Nuclear Information System (INIS)

    G. Bektas; F. Balkan

    2008-01-01

    In the recent years, there is a growing interest on minimization of energy utilization in various plants and thereby improving the performance. As an efficient tool for examining the processes, the exergy analysis gains importance. In the present work, the application of exergy analysis to powder detergent unit of a powder detergent production plant located at Izmir, Turkey were performed y using actual plant operational data. Also the energy analyses were considered for comparison. Although there are a number of energy and exergy analyses in various areas of industry, this study will be likely the first one for powder detergent production. The energy and exergy efficiencies of the equipments were calculated and it was concluded that according to the overall balance around the unit, the energy efficiency was 0.76 and the exergy efficiency was 0.40

  1. ENERGY AND EXERGY ANALYSIS OF A POWDER DETERGENT UNIT

    Energy Technology Data Exchange (ETDEWEB)

    G. Bektas; F. Balkan [Ege University, Chemical Engineering Department, Izmir (Turkey)

    2008-09-30

    In the recent years, there is a growing interest on minimization of energy utilization in various plants and thereby improving the performance. As an efficient tool for examining the processes, the exergy analysis gains importance. In the present work, the application of exergy analysis to powder detergent unit of a powder detergent production plant located at Izmir, Turkey were performed y using actual plant operational data. Also the energy analyses were considered for comparison. Although there are a number of energy and exergy analyses in various areas of industry, this study will be likely the first one for powder detergent production. The energy and exergy efficiencies of the equipments were calculated and it was concluded that according to the overall balance around the unit, the energy efficiency was 0.76 and the exergy efficiency was 0.40.

  2. Energy conserving site design case study, Burke Center, Virginia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The pattern of energy consumption within a modern suburban community, Burke Center, is examined. A variety of actions that could be incorporated to reduce its future energy demands is proposed. Recommendations have been limited to those that are technically feasible today, are reasonably cost-effective, and that should generate little or no market resistance. Findings are that: of the total energy consumed by the Burke Center Community, 57% will go to off-site transportation needs; energy conserving site planning generally coincides with cost-effective site planning; water-to-air heat pumps proved to be the most efficient and cost-effective method available today in the study area for reducing heating and cooling costs in buildings; certain public services such as the collection of solid waste, mail pick-up and delivery, and other routine activities can be made more energy efficient; and the use of available water saving devices in residential and commercial buildings can reduce a community's total utility energy consumption by as much as 20%. (MCW)

  3. Energy Materials Center at Cornell: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Abruña, Héctor [Cornell Univ., Ithaca, NY (United States); Mutolo, Paul F [Cornell Univ., Ithaca, NY (United States)

    2015-01-02

    The mission of the Energy Materials Center at Cornell (emc2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods for structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.

  4. U.S. DOE Southeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Panzarella, Isaac [North Carolina State Univ., Raleigh, NC (United States); Mago, Pedro [North Carolina State Univ., Raleigh, NC (United States); Kalland, Stephen [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end

  5. Nuclear Energy Center study. Phase II. Site suitability analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, W.S.; Sharp, J.M.; Benator, B.I.

    1978-06-01

    A site screening study was conducted to identify a site or sites for detailed, site-specific study as a nuclear energy center. Using technical criteria of water requirements, geotechnical constraints, and projected load center and transmission considerations as well as environmental and institutional considerations, five potential study sites in the State of South Carolina were identified, evaluated against established criteria, and ranked according to their acceptability as potential nuclear energy center study sites. Consideration of what is ''representative'' of a site as well as the ranking score was factored into site recommendations, since the site deemed easiest to license and permit may not be the most desirable site for future study of the technical and institutional feasibility and practicality of a specific site. The sites near Lake Hartwell and the Savannah River Plant (SRP) of the Department of Energy were selected as potential study sites after consideration of the above criteria. Because the Lake Hartwell site offers the opportunity to consider institutional issues which may be more representative of other possible NEC sites, it is recommended that the Lake Hartwell site be studied to establish the feasibility and practicality of the nuclear energy concept on a site-specific basis.

  6. Annual Report (No. 1) of Center for Advanced Research of Energy Technology, Hokkaido University; Hokkaido Daigaku energy sentan kogaku kenkyu center nenpo dai 1 go

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The activities of the Center cover basic researches into chemistry, physics, and materials necessary for the development of technologies relating to high-efficiency conversion of coal-centered fossil fuel resources and to the security of new energy sources. Studies under way in the field of carbonaceous resources conversion reaction involve the process of transfer of heat and substance in the coal conversion reaction, behavior of short-life intermediate products, and the structure and physical properties of coal as a molecular solid or macromolecule. Studies being conducted in the field of carbonaceous resources assessment include the search for and development of high-efficiency catalysts for coal conversion reaction systems, elucidation of physical and chemical structures of coal and coal-derived oils, energy conversion of the low-entropy type, creation of carbon-based functional materials, etc. Furthermore, research and development is under way for enhanced-efficiency conversion of high-temperature thermal energy acquired by fossil fuel combustion into electrical energy and for materials that will constitute nuclear fusion reactors and atomic reactors and will withstand combustion plasma. (NEDO)

  7. Distributed energy generation in the best enterprise center of Latin America; Geracao distribuida no melhor centro empresarial da America Latina

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti Filho, Enzo; Vasconcelos, Luiz Guilherme [Newmar Energia, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    In order to maintain a continuous reliable supply of electrical energy to the buildings that constitutes the best Office Building in Latin America, the United Nations Business Center (CENU) decided to implement its own source of electric power, that operates alternatively with the electrical energy supplied by the grid. The fuel chosen in this project is Natural Gas, (05 sets of generator group, installed at the first underground ) and no problems with storage and pollution are present. NewmarEnergia is actuating in this project since the initial development to the final operation and management of it, and a good performance is being verified. (author)

  8. About the renewable and the seas energies in the United States

    International Nuclear Information System (INIS)

    Jamet, Ph.

    2006-01-01

    This report aims to bring some information on the regulations and the technologies in the United States in the domain of the seas energies. After a presentation of the different seas and renewable energies and the corresponding regulations in the United States, the author concludes of an energy in its infancy except for the offshore wind power where some big projects are implemented. (A.L.B.)

  9. DOE Heat Pump Centered Integrated Community Energy Systems Project

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J. M.

    1979-01-01

    The Heat Pump Centered Integrated Community Energy Systems (HP-ICES) Project is a multiphase undertaking seeking to demonstrate one or more operational HP-ICES by the end of 1983. The seven phases include System Development, Demonstration Design, Design Completion, HP-ICES Construction, Operation and Data Acquisition, HP-ICES Evaluation, and Upgraded Continuation. This project is sponsored by the Community Systems Branch, Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applicaions, U.S. Department of Energy (DOE). It is part of the Community Systems Program and is managed by the Energy and Environmental Systems Division of Argonne Natinal Laboratory.

  10. Function of "nontrauma" surgeons in level I trauma centers in the United States.

    Science.gov (United States)

    Pate, J W

    1997-06-01

    Although the general "trauma" surgeon is usually the team leader in level I trauma centers, the use of surgical subspecialists and nonsurgeons is frequently ill-defined. This study was done to gain data in regard to actual use of subspecialists in busy centers. First, a survey of the patterns of staffing in 140 trauma centers was elicited by mail questionnaire, supplemented by telephone cells. Second, records of 400 consecutive patients at the Elvis Presley Trauma Center were reviewed to determine the use of subspecialists during the first 24 hours of care of individual patients. There were differences in the use of surgical subspecialists and nonsurgeons at different centers: in receiving, admitting, operating, and critical care areas and in privileges for admission and attending of inpatients. Consultation "guidelines" are used for many specific injuries. At our center, a mean of 1.92 subspecialists, in addition to general surgeons, were involved in the early care of each patient. Problems exist in many centers regarding the use of subspecialists, especially for management of facial and chest injuries. In some centers nonsurgeons function in the intensive care unit, and as admitting and attending physicians of trauma patients.

  11. Johnson Space Center's Solar and Wind-Based Renewable Energy System

    Science.gov (United States)

    Vasquez, A.; Ewert, M.; Rowlands, J.; Post, K.

    2009-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas has a Sustainability Partnership team that seeks ways for earth-based sustainability practices to also benefit space exploration research. A renewable energy gathering system was installed in 2007 at the JSC Child Care Center (CCC) which also offers a potential test bed for space exploration power generation and remote monitoring and control concepts. The system comprises: 1) several different types of photovoltaic panels (29 kW), 2) two wind-turbines (3.6 kW total), and 3) one roof-mounted solar thermal water heater and tank. A tie to the JSC local electrical grid was provided to accommodate excess power. The total first year electrical energy production was 53 megawatt-hours. A web-based real-time metering system collects and reports system performance and weather data. Improvements in areas of the CCC that were detected during subsequent energy analyses and some concepts for future efforts are also presented.

  12. [Developmental centered care. Situation in Spanish neonatal units].

    Science.gov (United States)

    López Maestro, M; Melgar Bonis, A; de la Cruz-Bertolo, J; Perapoch López, J; Mosqueda Peña, R; Pallás Alonso, C

    2014-10-01

    Developmental centered care (DC) is focused on sensorineural and emotional development of the newborns. In Spain we have had information on the application of DC since 1999, but the extent of actual implementation is unknown. To determine the level of implementation of DC in Spanish neonatal units where more than 50 infants weighing under 1500g were cared for in 2012. A comparison was made with previous data published in 2006. A descriptive observational cross-sectional study was performed using a survey with seven questions as in the 2006 questionnaire. The survey was sent to 27 units. The response rate was 81% in 2012 versus 96% in 2006. Noise control measures were introduced in 73% of units in 2012 versus 11% in 2006 (P<.01). The use of saccharose was 50% in 2012 versus 46% in 2006 (P=.6). Parents free entry was 82% in 2012 versus 11% in 2006 (P<.01). Kangaroo care was used without restriction by 82% in 2012 compared to 31% in 2006 (P<.01). The implementation of the DC in Spain has improved. There is still room for improvement in areas, such as the use of saccharose or noise control. However, it is important to highlight the positive change that has occurred in relation to unrestricted parental visits. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    Science.gov (United States)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  14. The nuclear energy in the United Kingdom

    International Nuclear Information System (INIS)

    2006-02-01

    With challenges like the climatic change, the hydrocarbons prices increase and the energy supply security, the nuclear park is becoming a decisive and an urgent question in the United Kingdom. The author proposes an historical aspect of the nuclear energy in UK, the actors of the today nuclear industry and the technologies used in 2006, the radioactive wastes management, the programs of the future and the british opinion on the nuclear. (A.L.B.)

  15. A preliminary assessment of the potential for 'team science' in DOE Energy Innovation Hubs and Energy Frontier Research Centers

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Craig, E-mail: boardman.10@osu.edu [John Glenn School of Public Affairs, Ohio State University (United States); Ponomariov, Branco, E-mail: branco.ponomariov@utsa.edu [Department of Public Administration, University of Texas at San Antonio (United States)

    2011-06-15

    President Obama has called for the development of new energy technologies to address our national energy needs and restore US economic competitiveness. In response, the Department of Energy has established new R and D modalities for energy research and development designed to facilitate collaboration across disciplinary, institutional, and sectoral boundaries. In this research note, we provide a preliminary assessment of the potential for essential mechanisms for coordinated problem solving among diverse actors within two new modalities at the DOE: Energy Innovation Hubs and Energy Frontier Research Centers. - Highlights: > Energy Frontier Research Centers may lack the basic mechanisms for coordinating diverse actors. > Divergent goals across diverse actors may hinder coordination in Energy Innovation Hubs. > The implementation of these and similar energy policies require further investigation.

  16. Energy and environmental policy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hibbard, P.J.; Tierney, S.F

    2003-08-15

    The energy and environmental policies of the United States are, like those of any nation, greatly shaped by a particular economic, institutional and political context. Understanding that context is useful for providing insights into the substance of US energy and environmental policy, the challenges and opportunities associated with it, and future potential for change. This article examines this policy context, focusing on the interaction of energy and environmental policies related to the electric industry. (author)

  17. Energy and environmental policy in the United States

    International Nuclear Information System (INIS)

    Hibbard, P.J.; Tierney, S.F.

    2003-08-01

    The energy and environmental policies of the United States are, like those of any nation, greatly shaped by a particular economic, institutional and political context. Understanding that context is useful for providing insights into the substance of US energy and environmental policy, the challenges and opportunities associated with it, and future potential for change. This article examines this policy context, focusing on the interaction of energy and environmental policies related to the electric industry. (author)

  18. Solar energy potential of the largest buildings in the United States

    Science.gov (United States)

    Wence, E. R.; Grodsky, S.; Hernandez, R. R.

    2017-12-01

    Sustainable pathways of land use for energy are necessary to mitigate climate change and limit conversion of finite land resources needed for conservation and food production. Large, commercial buildings (LCBs) are increasing in size and number throughout the United States (US) and may serve as suitable recipient environments for photovoltaic (PV) solar energy infrastructure that may support a low carbon, low land footprint energy transition. In this study, we identified, characterized, and evaluated the technical potential of the largest, commercial building rooftops (i.e., exceeding 110,000 m2) and their associated parking lots in the US for PV solar energy systems using Aurora, a cloud-based solar optimization platform. We also performed a case study of building-specific electricity generation: electricity consumption balance. Further, we quantified the environmental co-benefit of land sparing and associated avoided emissions (t-CO2-eq) conferred under the counterfactual scenario that solar development would otherwise proceed as a ground-mounted, utility-scale PV installation of equal nominal capacity. We identified and mapped 37 LCBs (by rooftop area) across 18 states in the US, spanning from as far north as the state of Minnesota to as far south as Florida. Rooftop footprints range from 427,297 to 113,689 m2 and have a cumulative surface area of 99.8 million ft2. We characterize the LCBs as either: distribution/warehouse, factory, shopping center, or administrative office/facility. Three of the 37 LCBs currently support rooftop PV and the numbers of associated, detached buildings number up to 38. This study elucidates the extent to which LCBs and their respective parking lots can serve as suitable sites for PV solar energy generation. Lastly, this study demonstrates research-based applications of the Aurora energy modeling platform and informs decision-making focused on redirecting energy development towards human-modified landscapes to prioritize land use for

  19. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  20. Regional Super ESPC Saves Energy and Dollars at NASA's Johnson Space Center

    International Nuclear Information System (INIS)

    Federal Energy Management Program

    2001-01-01

    This case study about energy saving performance contacts (ESPCs) presents an overview of how the NASA's Johnson Space Flight Center established an ESPC contract and the benefits derived from it. The Federal Energy Management Program instituted these special contracts to help federal agencies finance energy-saving projects at their facilities

  1. Production of strontium-82 for the Cardiogen trademark PET generator: a project of the Department of Energy Virtual Isotope Center

    International Nuclear Information System (INIS)

    Phillips, D.R.; Peterson, E.J.; Taylor, W.A.; Jamriska, D.J.; Hamilton, V.T.; Kitten, J.J.; Valdez, F.O.; Salazar, L.L.; Pitt, L.R.; Heaton, R.C.; Kolsky, K.L.; Mausner, L.F.; Kurczak, S.; Zhuikov, B.L.; Kokhanyuk, V.M.; Konyakhin, N.A.; Nortier, F.M.; Walt, T.N. van der; Hanekom, J.; Sosnowski, K.M.; Carty, J.S.

    2000-01-01

    In December of 1989, the United States Food and Drug Administration approved 82 Rb chloride in saline solution for cardiological perfusion imaging by positron emission tomography (PET). The solution is derived from a 82 Sr generator system that is presently manufactured by Bristol Myers Squibb and distributed for clinical application in the United States by Bracco Diagnostics, Inc. Many years of research and development by people in several institutions led up to the approval for clinical use. Currently, there are about 15 sites in the U.S. that perform clinical myocardial perfusion imaging by PET using 82 Rb chloride from the generator. In order to manufacture the generators, Bristol Myers Squibb requires about 1600 mCi of 82 Sr every 30 days. The United States Department of Energy and MDS Nordion, Canada are the current suppliers with qualified Drug Master Files for the production and distribution of this nuclide for the Cardiogen trademark generator. These two entities have worked together over the years to assure the regular, reliable supply of the 82 Sr. Here we describe the facilities and methods used by the Department of Energy in its Virtual Isotope Center to make and distribute the nuclide. (orig.)

  2. Measurements of the center-of-mass energies at BESIII via the di-muon process

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuhn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin (Lin), D. X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    From 2011 to 2014, the BESIII experiment collected about 5 fb(-1) data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e(+)e(-)->gamma ISR/FSR mu(+)mu(-), the center-of-mass energies of the data

  3. Estimating the unit costs of public hospitals and primary healthcare centers.

    Science.gov (United States)

    Younis, Mustafa Z; Jaber, Samer; Mawson, Anthony R; Hartmann, Michael

    2013-01-01

    Many factors have affected the rise of health expenditures, such as high-cost medical technologies, changes in disease patterns and increasing demand for health services. All countries allocate a significant portion of resources to the health sector. In 2008, the gross domestic product of Palestine was estimated to be at $6.108bn (current price) or about $1697 per capita. Health expenditures are estimated at 15.6% of the gross domestic product, almost as much as those of Germany, Japan and other developed countries. The numbers of hospitals, hospital beds and primary healthcare centers in the country have all increased. The Ministry of Health (MOH) currently operates 27 of 76 hospitals, with a total of 3074 beds, which represent 61% of total beds of all hospitals in the Palestinian Authorities area. Also, the MOH is operating 453 of 706 Primary Health Care facilities. By 2007, about 40 000 people were employed in different sectors of the health system, with 33% employed by the MOH. This purpose of this study was to develop a financing strategy to help cover some or all of the costs involved in operating such institutions and to estimate the unit cost of primary and secondary programs and departments. A retrospective study was carried out on data from government hospitals and primary healthcare centers to identify and analyze the costs and output (patient-related services) and to estimate the unit cost of health services provided by hospitals and PHCs during the year 2008. All operating costs are assigned and allocated to the departments at MOH hospitals and primary health care centers (PPHCs) and are identified as overhead departments, intermediate-service and final-service departments. Intermediate-service departments provide procedures and services to patients in the final-service departments. The costs of the overhead departments are distributed to the intermediate-service and final-service departments through a step-down method, according to allocation

  4. Unit root behavior in energy futures prices

    OpenAIRE

    Serletis, Apostolos

    1992-01-01

    This paper re-examines the empirical evidence for random walk type behavior in energy futures prices. In doing so, tests for unit roots in the univariate time-series representation of the daily crude oil, heating oil, and unleaded gasoline series are performed using recent state-of-the-art methodology. The results show that the unit root hypothesis can be rejected if allowance is made for the possibility of a one-time break in the intercept and the slope of the trend function at an unknown po...

  5. 76 FR 32188 - Hatch Solar Energy Center 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2011-06-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3635-000] Hatch Solar Energy Center 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Hatch Solar Energy Center 1, LLC's application for market-based rate authority, with an accompanying...

  6. Low energy building with novel cooling unit using PCM

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, Samar

    2012-02-13

    This thesis aims to reduce the energy consumption as well as greenhouse gases to the environment without negatively affecting the thermal comfort. In the present work, thermal, energetic and economic impacts of employing passive solar systems combined with energy conservation systems have been investigated. These energy systems have been integrated with a typical residential building located in three different climate zones in Europe and Middle East regions.Hour-by-hour energy computer simulations have been carried out using TRNSYS and INSEL programs to analyze the performance of integrated energy systems. Furthermore, IESU software module has been developed to simulate a novel cooling unit using Phase Change Material (PCM). This unit is named as Indirect Evaporative and Storage Unit (IESU). Thereafter, complete economic equations for the Life Cycle Cost (LCC) criterion have been formulated. Furthermore this criterion has been optimized for different variables as a function of thermal parameters and economic figures from local markets. An optimum design of both residential buildings and energy systems has great impact on energy consumption. In fact, results showed that the energy consumption is reduced by 85.62%, 86.33% and 74.05% in Berlin, Amman and Aqaba, respectively. Moreover, the LCC criterion is reduced by 41.85% in Berlin, 19.21% in Amman and 15.22% in Aqaba.The macro economic analysis shows that once this research is applied in one million typical residential buildings in the selected climate zones, the annual avoided CO{sub 2} emissions are estimated to be about 5.7 million Tons in Berlin. In Aqaba, around 2.96 million Tons CO{sub 2} emissions will be saved annually and in Amman about 2.98 million Tons will be reduced. The payback period from the achieved saving is 18 years, 11 years and 8.6 years in Amman, Aqaba and Berlin, respectively.

  7. Two-electron germanium centers with a negative correlation energy in lead chalcogenides

    International Nuclear Information System (INIS)

    Terukov, E. I.; Marchenko, A. V.; Zaitseva, A. V.; Seregin, P. P.

    2007-01-01

    It is shown that the charge state of the 73 Ge antisite defect that arises in anionic sublattices of PbS, PbSe, and PbTe after radioactive transformation of 73 As does not depend on the position of the Fermi level, whereas the 73 Ge center in cationic sublattices of PbS and PbSe represents a two-electron donor with the negative correlation energy: the Moessbauer spectrum for the n-type samples corresponds to the neutral state of the donor center (Ge 2+ ), while this spectrum corresponds to the doubly ionized state (Ge 4+ ) of the center in the p-type samples. In partially compensated PbSe samples, a fast electron exchange between the neutral and ionized donor centers is realized. It is shown by the method of Moessbauer spectroscopy for the 119 Sn isotope that the germanium-related energy levels are located higher than the levels formed in the band gap of these semiconductors by the impurity tin atoms

  8. DataCenterCooling. Climatization for extreme low energy consumption. Part 1; DataCenterKoeling. Klimatisering voor extreem laag energiegebruik. Deel 1

    Energy Technology Data Exchange (ETDEWEB)

    Havenaar, D.

    2012-12-15

    A data center (or computer center) for IT equipment (e.g. servers) has various amenities (e.g. air conditioning, fire alarm system and backup energy / power emergency supply). Additionally, a datacenter consist of fast Internet connections and physical security measures with access and camera control. Previously, each company had irs own server space with energy consuming comfort air conditioning systems in which their ICT equipment was placed [Dutch] Een datacenter (rekencentrum) voor bedrijfskritische ICT-apparatuur zoals servers, heeft diverse voorzieningen (klimaatbeheersing, brandmeldsysteem en back-up energie/noodstroomvoorziening. Daarnaast bevat een datacenter snelle internetverbindingen en is het voorzien van fysieke veiligheidsmaatregelen met toegangscontrole en camerabewaking. Voorheen hadden bedrijven ieder hun eigen serverruimte met energie verslindende comfort airco installaties) waarin hun ICT-apparatuur was geplaatst.

  9. DataCenterCooling. Climatization for extreme low energy consumption. Part 2; DataCenterKoeling. Klimatisering voor extreem laag energiegebruik. Deel 2

    Energy Technology Data Exchange (ETDEWEB)

    Havenaar, D.

    2013-01-15

    A data center (or computer center) for IT equipment (e.g. servers) has various amenities (e.g. air conditioning, fire alarm system and backup energy / power emergency supply). Additionally, a datacenter consist of fast Internet connections and physical security measures with access and camera control. Previously, each company had irs own server space with energy consuming comfort air conditioning systems in which their ICT equipment was placed [Dutch] Een datacenter (rekencentrum) voor bedrijfskritische ICT-apparatuur zoals servers, heeft diverse voorzieningen (klimaatbeheersing, brandmeldsysteem en back-up energie/noodstroomvoorziening. Daarnaast bevat een datacenter snelle internetverbindingen en is het voorzien van fysieke veiligheidsmaatregelen met toegangscontrole en camerabewaking. Voorheen hadden bedrijven ieder hun eigen serverruimte met energie verslindende comfort airco installaties) waarin hun ICT-apparatuur was geplaatst.

  10. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  11. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds

  12. Simulation of Thermal Distribution and Airflow for Efficient Energy Consumption in a Small Data Centers

    Directory of Open Access Journals (Sweden)

    Jing Ni

    2017-04-01

    Full Text Available Data centers have become ubiquitous in the last few years in an attempt to keep pace with the processing and storage needs of the Internet and cloud computing. The steady growth in the heat densities of IT servers leads to a rise in the energy needed to cool them, and constitutes approximately 40% of the power consumed by data centers. However, many data centers feature redundant air conditioning systems that contribute to inefficient air distribution, which significantly increases energy consumption. This remains an insufficiently explored problem. In this paper, a typical, small data center with tiles for an air supply system with a raised floor is used. We use a fluent (Computational Fluid Dynamics, CFD to simulate thermal distribution and airflow, and investigate the optimal conditions of air distribution to save energy. The effects of the airflow outlet angle along the tile, the cooling temperature and the rate of airflow on the beta index as well as the energy utilization index are discussed, and the optimal conditions are obtained. The reasonable airflow distribution achieved using 3D CFD calculations and the parameter settings provided in this paper can help reduce the energy consumption of data centers by improving the efficiency of the air conditioning.

  13. Nuclear energy and education in the United Kingdom

    International Nuclear Information System (INIS)

    Ginniff, M.E.

    1994-01-01

    The thesis of this paper is that sources of energy for a country must be dependable and their use from the production of the basic fuel to the disposal of the wastes should be up to standards which people can understand and accept. In the United Kingdom, the educational system is the source of basic information on sources of energy that are available and which sources are currently being developed to supply present and future energy needs. THe author provides a synopsis of educational techniques and materials which are used to educate the public about nuclear energy production

  14. Study of a conceptual nuclear energy center at Green River, Utah. Power demand, load center assessment and transmission

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.R.; Thaik, A.; Pingel, P.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramification of constructing a nuclear energy center in an arid western region. In this phase of the study. The projected power demands and load center locations were reviewed and assessed. Alternative transmission systems were analysed and a conceptual transmission for bulk power transportation is proposed with potential line routes. Environmental impacts of the proposed transmission were also identified.

  15. Study of a conceptual nuclear energy center at Green River, Utah. Power demand, load center assessment and transmission

    International Nuclear Information System (INIS)

    Smith, D.R.; Thaik, A.; Pingel, P.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramification of constructing a nuclear energy center in an arid western region. In this phase of the study. The projected power demands and load center locations were reviewed and assessed. Alternative transmission systems were analysed and a conceptual transmission for bulk power transportation is proposed with potential line routes. Environmental impacts of the proposed transmission were also identified

  16. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  17. Tests of the 30-MJ superconducting magnetic-energy storage unit

    International Nuclear Information System (INIS)

    Boenig, H.J.; Dean, J.W.; Rogers, J.D.; Schermer, R.I.; Hauer, J.F.

    1983-01-01

    A 30-MJ (8.4 kWh) superconducting magnetic energy storage (SMES) unit with a 10-MW converter was installed during the later months of 1982 at the Bonneville Power Administration (BPA) Tacoma substation in Tacoma, Washington. The unit, which is capable of absorbing and releasing up to 10 MJ of energy at a frequency of 0.35 Hz, was designed to damp the dominant power swing mode of the Pacific AC Intertie. Extensive tests were performed with the unit during the first half of 1983. This paper will review the major components of the storage unit and describe the startup and steady state operating experience with the coil, dewar, refrigerator and converter. The unit has absorbed power up to a level of 11.8 Mw. Real power was modulated following a sinusoidal power demand with frequencies from 0.1 to 1.2 Hz and a power level up to +- 8.3 MW. The unit has performed in accordance with design expectations and no major problems have developed

  18. Fuel cell-based cogeneration system covering data centers’ energy needs

    International Nuclear Information System (INIS)

    Guizzi, Giuseppe Leo; Manno, Michele

    2012-01-01

    The Information and Communication Technology industry has gone in the recent years through a dramatic expansion, driven by many new online (local and remote) applications and services. Such growth has obviously triggered an equally remarkable growth in energy consumption by data centers, which require huge amounts of power not only for IT devices, but also for power distribution units and for air-conditioning systems needed to cool the IT equipment. This paper is dedicated to the economic and energy performance assessment of a cogeneration system based on a natural gas membrane steam reformer producing a pure hydrogen flow for electric power generation in a polymer electrolyte membrane fuel cell. Heat is recovered from both the reforming unit and the fuel cell in order to supply the needs of an office building located near the data center. In this case, the cooling energy needs of the data center are covered by means of a vapor-compression chiller equipped with a free-cooling unit. Since the fuel cell’s output is direct current rather than alternate current, the possibility of further improving data centers’ energy efficiency adopting DC-powered data center equipment is also discussed. -- Highlights: ► Data centers' energy needs are discussed and possible savings from advanced energy management techniques are estimated. ► The thermal energy requirements of an office building close to the data center are added to the energy scenario. ► Significant energy and cost savings can be obtained by means of free-cooling, high-voltage direct current, and a cogeneration facility. ► The cogeneration system is based on a natural gas membrane reformer and a PEM fuel cell. ► Energy flows in the membrane reformer are analyzed and an optimal value of steam-to-carbon ratio is found in order to minimize the required membrane area.

  19. Nuclear Energy Center Site Survey, 1975. Part III. Technical considerations

    International Nuclear Information System (INIS)

    1976-01-01

    Studies of the technical feasibility of nuclear energy centers (NECs) and the comparison between NEC technical feasibility and that of nuclear facilities on dispersed sites are reviewed. The conclusions related to technical feasibility of NEC are summarized. Technical feasibility was found to rest mainly on five major issues: heat dissipation, transmission, facility construction, radiological impact, and environmental impact. Although general conclusions can be reached in these five areas, it is recognized that they are interdependent, and detailed site-by-site analysis will be necessary. Some general conclusions on technical feasibility of NECs are presented, then detailed conclusions derived from the technical evaluation of NECs compared to dispersed site facilities are presented. The findings of this study on each of the five major feasibility issues are then discussed in sequence. The study concludes that nuclear energy centers, as defined herein, are technically feasible

  20. Energy policies of IEA countries: United States - 2007 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-15

    The United States is the largest economy and energy user in the world. Significant developments have taken place in its energy policy since the last IEA review in 2002. Most important is the Energy Policy Act 2005 - a comprehensive energy legislation which has set new directions, including opening the way for a nuclear renaissance. Two closely connected challenges shape all debates on the nation's energy policy path: how to increase security by reducing the dependence on imported supplies; and how to address growing emissions of greenhouse gases. The United States national strategy is to find solutions largely through technology. It is a world leader in R&D and is driving development of carbon capture and storage and second-generation biofuels. But thus far, no federal government policy is in place to establish as a target an absolute reduction of CO2 emissions. The resulting uncertainty risks holding back investments into new technologies and may delay projects that are urgently required. The transport sector will be a key to a sustainable success. In the short to medium term, reduced fuel demand through higher vehicle efficiency will increase security and reduce CO2 emissions. Yet the policy for the revision of CAFE (the corporate average fuel economy) standards will leave consumers with vehicles that fall short of the technological possibilities. This review takes an in-depth look at these issues and provides recommendations on how the United States can do more to answer the challenges of both improving its security of energy supply and lowering its emissions intensity, demonstrating the significant improvements that can already be realised through existing technologies.

  1. Energy policies of IEA countries: United States - 2007 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-15

    The United States is the largest economy and energy user in the world. Significant developments have taken place in its energy policy since the last IEA review in 2002. Most important is the Energy Policy Act 2005 - a comprehensive energy legislation which has set new directions, including opening the way for a nuclear renaissance. Two closely connected challenges shape all debates on the nation's energy policy path: how to increase security by reducing the dependence on imported supplies; and how to address growing emissions of greenhouse gases. The United States national strategy is to find solutions largely through technology. It is a world leader in R&D and is driving development of carbon capture and storage and second-generation biofuels. But thus far, no federal government policy is in place to establish as a target an absolute reduction of CO2 emissions. The resulting uncertainty risks holding back investments into new technologies and may delay projects that are urgently required. The transport sector will be a key to a sustainable success. In the short to medium term, reduced fuel demand through higher vehicle efficiency will increase security and reduce CO2 emissions. Yet the policy for the revision of CAFE (the corporate average fuel economy) standards will leave consumers with vehicles that fall short of the technological possibilities. This review takes an in-depth look at these issues and provides recommendations on how the United States can do more to answer the challenges of both improving its security of energy supply and lowering its emissions intensity, demonstrating the significant improvements that can already be realised through existing technologies.

  2. Low Energy Technology. A Unit of Instruction on Energy Conservation in Field Crop Production.

    Science.gov (United States)

    Davis, George; Scanlon, Dennis C.

    This unit of instruction on energy conservation in field crop production was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate…

  3. Report of 'the 2014 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Future direction toward promoting non-proliferation and the ideal method of developing human resources using Centers of Excellence (COEs) following the new strategic energy plan'

    International Nuclear Information System (INIS)

    Yamaga, Chikanobu; Tomikawa, Hirofumi; Kobayashi, Naoki; Naoi, Yosuke; Oda, Tetsuzo; Mochiji, Toshiro

    2015-10-01

    The Japan Atomic Energy Agency (JAEA) held 'International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Future direction toward promoting non-proliferation and the ideal method of developing human resources using Centers of Excellence (COEs) following the New Strategic Energy Plan -' on 3 December 2014, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, and International Nuclear Research Center, Tokyo Institute of Technology as co-hosts. In the Forum, officials and experts from Japan, the United States explained their efforts regarding peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Discussion was made in two panels, entitled 'Effective and efficient measures to ensure nuclear non-proliferation based on domestic and foreign issues and the direction and role of technology development' and 'Roles of nuclear security COEs and future expectations'. In Panel Discussion 1, as the nuclear non-proliferation regime is facing various problems and challenges under current international circumstances, how to implement effective and efficient safeguards was discussed. In Panel Discussion 2, panelists discussed the following three points: 1. Current status of Nuclear Security Training and Support Centers and COEs, and Good Practice; 2. What these centers can do to enhance nuclear security (New role for COEs); 3. Regional cooperation in the Nuclear Security Training and Support Center (NSSC) and COEs in states, which the IAEA recommends establishing, and international cooperation and partnerships with international initiatives (New Role). Officials and experts from Japan, IAEA, the United States, France, Republic of Korea, and Indonesia participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the

  4. Renewable Energy Atlas of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J. [Environmental Science Division; Hlava, K. [Environmental Science Division; Greenwood, H. [Environmentall Science Division; Carr, A. [Environmental Science Division

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  5. Building America Case Study: New Town Builders' Power of Zero Energy Center, Denver, Colorado (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a 'Power of Zero Energy Center' linked to its model home in the Stapleton community of Denver. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. The case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  6. Renewable energy atlas of the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J.A.; Hlava, K.Greenwood, H.; Carr, A. (Environmental Science Division)

    2012-05-01

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. It is designed for the U.S. Department of Agriculture Forest Service (USFS) and other federal land management agencies to evaluate existing and proposed renewable energy projects. Much of the content of the Atlas was compiled at Argonne National Laboratory (Argonne) to support recent and current energy-related Environmental Impact Statements and studies, including the following projects: (1) West-wide Energy Corridor Programmatic Environmental Impact Statement (PEIS) (BLM 2008); (2) Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2010); (3) Supplement to the Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2011); (4) Upper Great Plains Wind Energy PEIS (WAPA/USFWS 2012, in progress); and (5) Energy Transport Corridors: The Potential Role of Federal Lands in States Identified by the Energy Policy Act of 2005, Section 368(b) (in progress). This report explains how to add the Atlas to your computer and install the associated software; describes each of the components of the Atlas; lists the Geographic Information System (GIS) database content and sources; and provides a brief introduction to the major renewable energy technologies.

  7. DCDM1: Lessons Learned from the World's Most Energy Efficient Data Center

    Energy Technology Data Exchange (ETDEWEB)

    Sickinger, David E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Geet, Otto D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carter, Thomas [Johnson Controls

    2018-05-03

    This presentation discusses the holistic approach to design the world's most energy-efficient data center, which is located at the U.S. Department of Energy National Renewable Energy Laboratory (NREL). This high-performance computing (HPC) data center has achieved a trailing twelve-month average power usage effectiveness (PUE) of 1.04 and features a chiller-less design, component-level warm-water liquid cooling, and waste heat capture and reuse. We provide details of the demonstrated PUE and energy reuse effectiveness (ERE) and lessons learned during four years of production operation. Recent efforts to dramatically reduce the water footprint will also be discussed. Johnson Controls partnered with NREL and Sandia National Laboratories to deploy a thermosyphon cooler (TSC) as a test bed at NREL's HPC data center that resulted in a 50% reduction in water usage during the first year of operation. The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device with an open cooling tower.

  8. Design and Performance of Energy Conversion Units of Betavoltaic Isotopic Batteries

    International Nuclear Information System (INIS)

    Wang Guanquan; Yang Yuqing; Zhang Huaming; Hu Rui; Wei Hongyuan; Xiong Xiaoling; Luo Shunzhong

    2010-01-01

    Based on the single crystal silicon semiconductor junction devices, the relationships between their configurable parameters and the electrical properties were discussed for the purpose of design of energy conversion units of betavoltaic isotopic batteries. Two kinds of silicon semiconductor junction devices as energy conversion units of betavoltaic batteries were designed and customized. The electrical output properties of the devices irradiated by 63 Ni source were measured. The results show that the new designed devices perform better than the existing commercial one in open-circuit voltage, output power and energy conversion efficiency. (authors)

  9. Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)

    Science.gov (United States)

    Klima, K.; Hoss, F.; Welle, P.; Larkin, S.

    2013-12-01

    Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form

  10. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  11. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Guy; Denis, Dominique; Boulet, Alain [Commissariat a l' energie Atomique et aux Energies Alternatives - CEA-Cadarache, DEN/CEACAD/UCAP, 13108 Saint Paul lez Durance Cedex (France)

    2013-07-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m{sup 2} allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the

  12. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    International Nuclear Information System (INIS)

    Brunel, Guy; Denis, Dominique; Boulet, Alain

    2013-01-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m 2 allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the visitors

  13. Preliminary design of an energy-conversion unit of radiation-voltaic battery

    International Nuclear Information System (INIS)

    Yang Yuqing; Wang Guanquan; Hu Rui; Gao Hui; Liu Yebing; Zhang Huaming; Luo Shunzhong

    2010-01-01

    Based on the principle of radiation-voltaic effect, a preliminary energy-conversion unit of radiation-voltaic battery was designed. Three energy-conversion units were manufactured and their electric I-V properties under irradiation of solid sources of 63 Ni and 3 H were measured. The I-V curves were analyzed and some ideas for improvement were presented. It was found that the designed energy-conversion unit deteriorated dramatically under irradiation of 241 Am source. The best U oc and I sc gained under irradiation of 2.96 x 10 8 Bq 63 Ni were 0.267 V and 28.4 nA, and were 0.260 V and 62.8 nA under irradiation of a 5.09 x 10 9 Bq 3 H source. Further efforts are being made to improve the design. (authors)

  14. United States academic medical centers: priorities and challenges amid market transformation.

    Science.gov (United States)

    Thompson, Irene M; Anason, Barbara

    2012-01-01

    United States academic medical centers (AMCs) have upheld their long-standing reputation for excellence by teaching and training the next generation of physicians, supporting medical research, providing world-class medical care, and offering breakthrough treatments for highly complex medical cases. In recent years, the pace and direction of change reshaping the American health care industry has created a set of new and profound challenges that AMC leaders must address in order to sustain their institutions. University HealthSystem Consortium (UHC) is an alliance of 116 leading nonprofit academic medical centers and 276 of their affiliated hospitals, all of which are focused on delivering world-class patient care. Formed in 1984, UHC fosters collaboration with and among its members through its renowned programs and services in the areas of comparative data and analytics, performance improvement, supply chain management, strategic research, and public policy. Each year, UHC surveys the executives of its member institutions to understand the issues they view as most critical to sustaining the viability and success of their organizations. The results of UHC's most recent 2011 member survey, coupled with a 2012 Strategic Health Perspectives Harris Interactive presentation, based in parton surveys of major health care industry stakeholders reveal the most important and relevant issues and opportunities that hospital leaders face today, as the United States health care delivery system undergoes a period of unprecedented transformation.

  15. Energy Frontier Research Centers: A View from Senior EFRC Representatives (2011 EFRC Summit, panel session)

    International Nuclear Information System (INIS)

    Drell, Persis; Armstrong, Neal; Carter, Emily; DePaolo, Don; Gunnoe, Brent

    2011-01-01

    A distinguished panel of scientists from the EFRC community provide their perspective on the importance of EFRCs for addressing critical energy needs at the 2011 EFRC Summit. Persis Drell, Director at SLAC, served as moderator. Panel members are Neal Armstrong (Director of the Center for Interface Science: Solar Electric Materials, led by the University of Arizona), Emily Carter (Co-Director of the Combustion EFRC, led by Princeton University. She is also Team Leader of the Heterogeneous Functional Materials Center, led by the University of South Carolina), Don DePaolo (Director of the Center for Nanoscale Control of Geologic CO2, led by LBNL), and Brent Gunnoe (Director of the Center for Catalytic Hydrocarbon Functionalization, led by the University of Virginia). The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate

  16. Zero-point energies in the two-center shell model

    International Nuclear Information System (INIS)

    Reinhard, P.G.

    1975-01-01

    The zero-point energies (ZPE) contained in the potential-energy surfaces (PES) of a two-center shell model are evaluated. For the c.m. motion of the system as a whole the kinetic ZPE was found to be negligible, whereas it varies appreciably for the rotational and oscillation modes (about 5-9MeV). For the latter two modes the ZPE also depends sensitively on the changing pairing structure, which can induce strong local fluctuations, particularly in light nuclei. The potential ZPE is very small for heavy nuclei, but might just become important in light nuclei. (Auth.)

  17. Representation and preservation of the water-energy dose unit

    International Nuclear Information System (INIS)

    Roos, M.

    1992-01-01

    To represent the water-energy dose unit for high-energy photon and electron radiation, the chemical procedure was expanded into a fundamental measuring technique, and established as a primary normal measuring device of the Federal Republic of Germany. In addition, the water-energy calorimetric dosemeter, a definition measuring method, is being developed which seems to be destined for making a contribution, over the longer term, to reducing measuring uncertainties in dosimetry. (orig./DG) [de

  18. Progress and plans for wind energy in the United States

    International Nuclear Information System (INIS)

    Ancona, D.F.; Goldman, P.R.; Thresher, R.W.

    1996-01-01

    Under its wind energy research and development program, the U.S. Department of Energy (DOE) works as a partner with industry to improve understanding of wind system technology and to develop and deploy advanced wind turbines in multi-regional markets. Installed capacity in the U.S. reached 1770 MW by the end of 1995. However, this figure does not include some capacity that was retired or brought off line. Growth of about 140 MW during 1995, is attributed to improved and lower cost turbines and was stimulated in part by the availability of energy tax credits and production and financial incentives. In addition, there are nearly 500 MW of firm contracts for new domestic wind plants. Recently, there has been substantial growth in both Europe and the rest of the world, those countries other than Europe and the U.S. The U.S. DOE Wind Energy Systems Program is continuing broad based research and technology development focusing on advanced wind turbine development. Contracts have been placed with industry for next generation design studies, innovative subsystems applied research, and value engineering to improve existing turbines. Some of these turbines are now being deployed in utility verification projects. Over the past year, the U.S. opened its National Wind Technology Center, located near Golden, Colorado. The center will include a new user facility to serve as a wind turbine blade and system testing and research center for industry. (author)

  19. The Chinese family-centered care survey for adult intensive care unit: A psychometric study.

    Science.gov (United States)

    Wang, Wen-Ling; Feng, Jui-Ying; Wang, Chi-Jen; Chen, Jing-Huei

    2016-02-01

    This study aimed to develop a family-centered care survey for Chinese adult intensive care units and to establish the survey's psychometric properties. Family-centered care (FCC) is widely recognized as an ideal model of care. Few studies have explored FCC perceptions among family members of adult critical care patients in Asian countries, and no Chinese FCC measurement has been developed. An English version of the 3-factor family-centered care survey for adult intensive care units (FCCS-AICU) was translated into Chinese using a modified back translation procedure. Based on the literature review, two additional concepts, information and empowerment, were added to the Chinese FCCS-AICU. The psychometric properties of the Chinese FCCS-AICU were determined with 249 family members from a medical center in Taiwan and were tested for construct and convergent validity, and internal consistency. Both the monolingual and bilingual equivalence tests of the English and Chinese versions of the 3-factor FCCS-AICU were supported. Exploratory factor analysis supported the 5-factor structure of the Chinese FCCS-AICU with a total explained variance of 58.34%. The Chinese FCCS-AICU was correlated with the Chinese Critical Care Family Needs Inventory. Internal consistency, determined by Cronbach's α, for the overall scale was .94. The Chinese FCCS-AICU is a valid and reliable tool for measuring perceptions of FCC by family members of adult intensive care patients within Chinese-speaking communities. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Executive summary. Conceptual studies nuclear energy center Lake Hartwell, S.C., Phase III

    International Nuclear Information System (INIS)

    1981-01-01

    This document summarizes a conceptual study on the feasibility and practicality of developing a nuclear energy center (NEC) at a specific site in the SSEB region. The site selected for this conceptual study is at Lake Hartwell, South Carolina. The conceptual NEC at Lake Hartwell consists of twelve 1250-MW(e) LWRs arranged on the site in four cluster of three units each, know as triads. The nominal distance between triads was selected as 2-1/2 miles. The total electric output of 15,000 MWe to be generated by the NEC would be transmitted to five major utilities in South Carolina, North Carolina, and Georgia. Objective of the study was to assess the technical, socioeconomic, environmental, and institutional issues relating to the NEC at the conceptual study site. The basic finding was that the concept of a NEC on the Lake Hartwell site is feasible, but further analysis of institutional issues and possible legislation would be required

  1. Stroke Mortality in Intensive Care Unit from Tertiary Care Neurological Center

    Directory of Open Access Journals (Sweden)

    Lekhjung Thapa

    2013-06-01

    Full Text Available Introduction: Stroke is the second most common cause of death and major cause of disability worldwide. About a quarter of stroke patients are dead within a month, about a third by 6 months, and a half by 1 year. Although the most substantial advance in stroke has been the routine management of patients in stroke care units, intensive care unit has remained the choice for stroke patients’ care in developing countries. This study explores the mortality of stroke patients in intensive care unit setting in tertiary care neurological centre in a developing country. Methods: We collected data of stroke patients admitted in our ICU from August 2009 to Aug 2010 and analyzed. Results: Total 44 (10.25% patients were admitted for acute stroke. Age ranged from 17-93 years. Low GCS (Glasgow Coma Scale, uncontrolled hypertension and aspiration pneumonia were common indications for admission in ICU. Total 23 (52.3% patients had hemorrhagic stroke and 21(47.7% patients had ischemic stroke. 13 (29.54% patients of stroke died within 7 days, 9 (69.23% patients of hemorrhagic stroke died within 6 days, and 4 patients (30.76% of ischemic stroke died within 7 days. 6 (13.63% patients left hospital against medical advice. All of these patients had ischemic stroke. Conclusions: Stroke mortality in intensive care unit remains high despite of care in tertiary neurological center in resource poor settings. Stroke care unit, which would also help dissemination of knowledge of stroke management, is an option for improved outcome in developing countries Keywords: intensive care unit; mortality; stroke; stroke care unit.

  2. Determination of the activation energy of A-center in the uniaxially deformed n-Ge single crystals

    Directory of Open Access Journals (Sweden)

    S. V. Luniov

    2017-08-01

    Full Text Available Based on the decisions of electroneutrality equation and experimental results of measurements of the piezo-Hall-effect the dependences of activation energy of the deep level A-center depending on the uniaxial pressure along the crystallographic directions [100], [110] and [111] for n-Ge single crystals, irradiated by the electrons with energy 10 MeV are obtained. Using the method of least squares approximational polynomials for the calculation of these dependences are obtained. It is shown that the activation energy of A-center deep level decreases linearly for the entire range of uniaxial pressure along the crystallographic direction [100]. For the cases of uniaxial deformation along the crystallographic directions [110] and [111] decrease of the activation energy according to the linear law is observed only at high uniaxial pressures, when the A-center deep level interacts with the minima of the germanium conduction band, which proved the lower at the deformation. The various dependences of the activation energy of A-center depending on the orientation of the axis of deformation may be connected with features of its microstructure.

  3. Measurements of the center-of-mass energies at BESIII via the di-muon process

    Science.gov (United States)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- → γISR/FSRμ+μ-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  4. Investigation of sensitizer ions tunable-distribution in fluoride nanoparticles for efficient accretive three-center energy transfer

    International Nuclear Information System (INIS)

    Guo, Hui; Yu, Hua; Lao, Aiqing; Chang, Lifen; Gao, Shaohua; Zhang, Haoxiong; Zhou, Taojie; Zhao, Lijuan

    2014-01-01

    Cooperative upconversion luminescence of Yb 3+ -Yb 3+ couples and three-center energy transfer mechanisms have been deeply investigated in Yb 3+ doped and Yb 3+ -Tb 3+ co-doped β-PbF 2 nanoparticles. As sensitizer ions, the distribution of Yb 3+ ions, which is a key factor that affects the cooperative upconversion luminescence and three-center energy transfer processes, can be tuned by the structure of nanoparticles. Based on the three-center distributions in tetragonal PbYb x Tb 1−x F 5 nanoparticles, two different energy transfer models, Cooperative Energy Transfer (CET) and Accretive Energy Transfer (AET) mechanisms were established. Especially, AET model is observed and verified in this work for the first time. Experimental results obtained from photoluminescence spectroscopy study are in agreement with the theoretical calculations by applying rate equations in these models, strongly supporting the proposed three-center energy transfer mechanisms. The sensitization between Yb 3+ ions only existing in AET process can greatly improve the energy transfer rates, further to enhance the quantum efficiency. The results that the calculated luminescence quantum efficiency in AET quantum cutting process is much higher than that in CET process (134% and 104%, respectively), can benefit for further increasing the conversion efficiency of c-Si solar cells.

  5. Tiger Team Assessment, Energy Technology Engineering Center

    International Nuclear Information System (INIS)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies

  6. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  7. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  8. 2016 Offshore Wind Energy Resource Assessment for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  9. The United States toward Energy Independence?

    International Nuclear Information System (INIS)

    Nardon, Laurence

    2013-01-01

    The U.S.'s exploitation of 'unconventional' domestic oil reserves is reviving its economy. It will also have effects on the country's energy independence and thus its geopolitical position. While it is unlikely that the relationship between Washington and the Middle East region will be fundamentally altered, the U.S.'s relationships with China, Russia, and Europe could be affected. The United States will have to incorporate these changes into its global strategies

  10. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  11. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  12. Public relations activities of the Karlsruhe Nuclear Research Center - a national research center contributes to opinion forming

    International Nuclear Information System (INIS)

    Koerting, K.

    1988-01-01

    At the Karlsruhe Nuclear Research Center, the Public Relations Department directly reports to the Chief Executive Officer. The head of the Public Relation Department acts as spokesman of the center in the public, which requires him to be fully informed of the work of all units and of the policy goals of the executive board. The key tools used by the Public Relations Department are KfK-Hausmitteilungen, accident information, the scientific journal KfK-Nachrichten, press releases, exhibitions, fairs, guided tours, and nuclear energy information staff. (DG)

  13. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  14. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully

  15. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability

  16. Energy Sprawl Is the Largest Driver of Land Use Change in United States.

    Directory of Open Access Journals (Sweden)

    Anne M Trainor

    Full Text Available Energy production in the United States for domestic use and export is predicted to rise 27% by 2040. We quantify projected energy sprawl (new land required for energy production in the United States through 2040. Over 200,000 km2 of additional land area will be directly impacted by energy development. When spacing requirements are included, over 800,000 km2 of additional land area will be affected by energy development, an area greater than the size of Texas. This pace of development in the United States is more than double the historic rate of urban and residential development, which has been the greatest driver of conversion in the United States since 1970, and is higher than projections for future land use change from residential development or agriculture. New technology now places 1.3 million km2 that had not previously experienced oil and gas development at risk of development for unconventional oil and gas. Renewable energy production can be sustained indefinitely on the same land base, while extractive energy must continually drill and mine new areas to sustain production. We calculated the number of years required for fossil energy production to expand to cover the same area as renewables, if both were to produce the same amount of energy each year. The land required for coal production would grow to equal or exceed that of wind, solar and geothermal energy within 2-31 years. In contrast, it would take hundreds of years for oil production to have the same energy sprawl as biofuels. Meeting energy demands while conserving nature will require increased energy conservation, in addition to distributed renewable energy and appropriate siting and mitigation.

  17. Analysis of the overall energy intensity of alumina refinery process using unit process energy intensity and product ratio method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering,The University of Melbourne, Vic. 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-07-15

    Alumina refinery is an energy intensive industry. Traditional energy saving methods employed have been single-equipment-orientated. Based on two concepts of 'energy carrier' and 'system', this paper presents a method that analyzes the effects of unit process energy intensity (e) and product ratio (p) on overall energy intensity of alumina. The important conclusion drawn from this method is that it is necessary to decrease both the unit process energy intensity and the product ratios in order to decrease the overall energy intensity of alumina, which may be taken as a future policy for energy saving. As a case study, the overall energy intensity of the Chinese Zhenzhou alumina refinery plant with Bayer-sinter combined method between 1995 and 2000 was analyzed. The result shows that the overall energy intensity of alumina in this plant decreased by 7.36 GJ/t-Al{sub 2}O{sub 3} over this period, 49% of total energy saving is due to direct energy saving, and 51% is due to indirect energy saving. The emphasis in this paper is on decreasing product ratios of high-energy consumption unit processes, such as evaporation, slurry sintering, aluminium trihydrate calcining and desilication. Energy savings can be made (1) by increasing the proportion of Bayer and indirect digestion, (2) by increasing the grade of ore by ore dressing or importing some rich gibbsite and (3) by promoting the advancement in technology. (author)

  18. A Method for Estimating Potential Energy and Cost Savings for Cooling Existing Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, Otto

    2017-04-24

    NREL has developed a methodology to prioritize which data center cooling systems could be upgraded for better efficiency based on estimated cost savings and economics. The best efficiency results are in cool or dry climates where 'free' economizer or evaporative cooling can provide most of the data center cooling. Locations with a high cost of energy and facilities with high power usage effectiveness (PUE) are also good candidates for data center cooling system upgrades. In one case study of a major cable provider's data centers, most of the sites studied had opportunities for cost-effective cooling system upgrades with payback period of 5 years or less. If the cable provider invested in all opportunities for upgrades with payback periods of less than 15 years, it could save 27% on annual energy costs.

  19. About the renewable and the seas energies in the United States; Apercus sur les energies renouvelables et l'energie des mers aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, Ph

    2006-07-01

    This report aims to bring some information on the regulations and the technologies in the United States in the domain of the seas energies. After a presentation of the different seas and renewable energies and the corresponding regulations in the United States, the author concludes of an energy in its infancy except for the offshore wind power where some big projects are implemented. (A.L.B.)

  20. New Whole-House Solutions Case Study: New Town Builders' Power of Zero Energy Center - Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its model home in the Stapleton community. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. This case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  1. Joint flow routing-scheduling for energy efficient software defined data center networks : A prototype of energy-aware network management platform

    NARCIS (Netherlands)

    Zhu, H.; Liao, X.; de Laat, C.; Grosso, P.

    Data centers are a cost-effective infrastructure for hosting Cloud and Grid applications, but they do incur tremendous energy cost and CO2 emissions. Today's data center network architectures such as Fat-tree and BCube are over-provisioned to guarantee large network capacity and meet peak

  2. DRI Renewable Energy Center (REC) (NV)

    Energy Technology Data Exchange (ETDEWEB)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable

  3. Climate Prediction Center (CPC) Three Month Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a series of thirteen probabilistic three-month precipitation outlooks for the United States. CPC issues the thirteen...

  4. Climate Prediction Center (CPC) Three Month Probabilistic Temperature Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a series of thirteen probabilistic three-month temperature outlooks for the United States. CPC issues the thirteen...

  5. 75 FR 51990 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-000] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing August 17, 2010. Take notice that on August 12, 2010, the applicant listed above submitted their baseline filing of its Statement of Operating...

  6. 77 FR 46768 - Notice of Intent To Prepare an Environmental Impact Statement for the Moapa Solar Energy Center...

    Science.gov (United States)

    2012-08-06

    ... Impact Statement for the Moapa Solar Energy Center on the Moapa River Indian Reservation, Clark County NV... Environmental Impact Statement (EIS) that evaluates a solar energy generation center on the Moapa River Indian... . SUPPLEMENTARY INFORMATION: The Proposed Action consists of constructing and operating a solar generation energy...

  7. Energy efficiency of computer power supply units - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, B. [cepe - Centre for Energy Policy and Economics, Swiss Federal Institute of Technology Zuerich, Zuerich (Switzerland); Huser, H. [Encontrol GmbH, Niederrohrdorf (Switzerland)

    2002-11-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the efficiency of computer power supply units, which decreases rapidly during average computer use. The background and the purpose of the project are examined. The power supplies for personal computers are discussed and the testing arrangement used is described. Efficiency, power-factor and operating points of the units are examined. Potentials for improvement and measures to be taken are discussed. Also, action to be taken by those involved in the design and operation of such power units is proposed. Finally, recommendations for further work are made.

  8. Cerebral angioplasty practice at major medical centers in the United States

    International Nuclear Information System (INIS)

    Chaturvedi, S.; St Pierre, M.E.; Bertasio, B.

    2000-01-01

    Concern has been expressed recently regarding the proliferation of angioplasty and/or stenting of cerebral vessels. However, little is known about the volume of angioplasties being performed or the number of experienced interventionalists. A questionnaire was mailed to directors of accredited radiology residency programs in the United States, to define the level of expertise available at teaching hospitals in terms of angioplasty and/or stenting. Of 200 programs surveyed, 111 responded (56 %). Of 111 program directors 47 (42 %) indicated that cerebral angioplasty was being performed at their center. The greatest experience is currently for angioplasty of post-subarachnoid hemorrhage vasospasm (mean 16 procedures performed) and the least experience for dilation of basilar artery atherosclerosis (mean five procedures performed). The reported stroke and/or death rate in centers performing angioplasty of the extracranial carotid system is 1.5 %. Comparisons with other medical specialties (e. g., cardiologists, neurologists, neurosurgeons) are necessary to determine the full scope of extracranial neurovascular procedures being performed and the corresponding complication rates. (orig.)

  9. Surface relaxation and surface energy of face –centered Cubic ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Surface relaxation and surface energy of face –centered Cubic metals. 1AGHEMENLO H E; *2IYAYI, S E; 3AVWIRI ,G O. 1, 3 Department of Physics, Ambrose Alli University, Ekpoma, Nigeria. 2 Department of Physics, University of Benin, Benin City, Nigeria. 3 Department of Physics, University of Port Harcourt, PH, Nigeria.

  10. Insight on the energy in the United States; Apercus sur l'energie aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, Ph

    2006-11-15

    This document recapitulates the main characteristics and the key data of the energy in the United States (fossil energies, renewable energies, electric power production). The main american strategies are then described as the actions at the international scale during the last five years. The main data of the research programs in the energy domain are presented and the possible consequences of the government change at the Congress are analyzed. (A.L.B.)

  11. Climate Prediction Center (CPC) One Month Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a probabilistic one-month precipitation outlook for the United States twice a month. CPC issues an initial monthly outlook...

  12. Climate Prediction Center (CPC) One Month Probabilistic Temperature Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a probabilistic one-month temperature outlook for the United States twice a month. CPC issues an initial monthly outlook...

  13. Mobilising for marine wind energy in the United Kingdom

    International Nuclear Information System (INIS)

    Jay, Stephen

    2011-01-01

    Since 2000, the United Kingdom has enthusiastically adopted marine wind energy as a potentially major source of electricity production and has become the leading nation in terms of output. This is in contrast to its relatively poor attainment of wind energy on land, and raises questions about the reasons for this difference in performance. This article traces the phases of development of marine wind energy in the UK with reference to factors that are instrumental in the uptake of this form of renewable energy. A number of features emerge from this analysis that stand in some contrast to the situation on land and help to explain the UK's current status. These include: recognition of an exceptional resource and relative ease of exploitation; government commitment and policy geared to controlled growth and strategic oversight, adequate economic support and start-up investment; the unusual rights and interests of the Crown Estate; and growing scale, confidence and organisation on the part of the industry. Set against these factors are the complexities of consenting, supply bottlenecks, and some stakeholder and public resistance, though these are outmatched by the drivers in favour of development and are being partly addressed. - Highlights: → The United Kingdom is demonstrating enthusiastic commitment to marine wind energy. → The features contributing to marine wind energy growth are analysed. → The UK has unique factors favouring the uptake of marine wind energy. → UK policy is geared to controlled growth and strategic oversight. → The Crown Estate's seabed rights and interests are a driver in implementation.

  14. Opportunities and barriers to pumped-hydro energy storage in the United States

    International Nuclear Information System (INIS)

    Yang, Chi-Jen; Jackson, Robert B.

    2011-01-01

    As concerns about global warming grow, societies are increasingly turning to the use of intermittent renewable energy resources, where energy storage becomes more and more important. Pumped-hydro energy storage (PHES) is the most established technology for utility-scale electricity storage. Although PHES has continued to be deployed globally, its development in the United States has largely been dormant since the 1990s. In recent years, however, there has been a revival of commercial interests in developing PHES facilities. In this paper we examine the historical development of PHES facilities in the United States, analyze case studies on the controversies of disputed projects, examine the challenges to and conflicting views of future development in the United States, and discuss new development activities and approaches. The main limiting factors for PHES appear to be environmental concerns and financial uncertainties rather than the availability of technically feasible sites. PHES developers are proposing innovative ways of addressing the environmental impacts, including the potential use of waste water in PHES applications. In some cases, a properly designed PHES system can even be used to improve water quality through aeration and other processes. Such new opportunities and the increasing need for greater energy storage may lead policymakers to reassess the potential of PHES in the United States, particularly for coupling with intermittent renewable energy sources such as wind and solar power. (author)

  15. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  16. Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire

    International Nuclear Information System (INIS)

    Safarpour, Gh.; Barati, M.; Zamani, A.; Niknam, E.

    2014-01-01

    The binding energy as well as the linear, third-order nonlinear and total optical absorption coefficient and refractive index changes of an off-center hydrogenic donor impurity in an InAs spherical quantum dot placed at the center of a GaAs cylindrical nano-wire have been investigated. In this regard, the effective-mass approximation approach is considered and eigenvalues and corresponding eigenfunctions are calculated via the finite element method. The binding energy is plotted as a function of the dot size and impurity position along with optical properties as a function of photon energy. In this study two different directions have been considered for impurity position, along the nano-wire axis and perpendicular to it. It has been found that the binding energy, absorption coefficient and refractive index changes are impressively affected not only by the dot radius but also by the position of the impurity and its direction. Additionally, the optical saturation can be tuned by the direction of the impurity and incident optical intensity. -- Highlights: • We consider spherical quantum dot located at the center of a cylindrical nano-wire. • An off-center hydrogenic donor impurity is considered in the system. • Binding energy is affected by orientation of impurity and its distance from center. • Saturation depends on the orientation of impurity position. • By shifting impurity position, orientation and dot radius blue- and red-shifts appear

  17. Power from Perspective: Potential future United States energy portfolios

    International Nuclear Information System (INIS)

    Tonn, Bruce; Healy, K.C.; Gibson, Amy; Ashish, Ashutosh; Cody, Preston; Beres, Drew; Lulla, Sam; Mazur, Jim; Ritter, A.J.

    2009-01-01

    This paper presents United States energy portfolios for the year 2030, developed from seven different Perspectives. The Perspectives are characterized by different weights placed on fourteen defining values (e.g., cost, social acceptance). The portfolios were constructed to achieve three primary goals, energy independence, energy security, and greenhouse gas reductions. The portfolios are also evaluated over a comprehensive set of secondary criteria (e.g., economic growth, technical feasibility). It is found that very different portfolios based on very different defining values can achieve the three primary goals. Commonalities among the portfolios include reliance upon cellulosic ethanol, nuclear power, and energy efficiency to meet year 2030 energy demands. It is concluded that the US energy portfolio must be diverse and to achieve national energy goals will require an explicit statement of goals, a strong role for government, and coordinated action across society

  18. Nuclear energy center finance and ownership considerations

    International Nuclear Information System (INIS)

    Morris, J.A.; Wilder, R.P.

    1980-09-01

    Finance and ownership alternatives for a nuclear energy center (NEC) in South Carolina are analyzed in the context of the capital market and tax differences among alternatives. The ownership alternatives considered are (1) the private or private/public joint venture, (2) full public ownership and (3) a hybrid ownership form featuring federal involvement in the initial site development and permit phase, followed by a transition to private ownership. Public ownership is associated with considerably lower out-of-pocket costs than private ownership; the difference between the two, however, is related to subsidies from other parts of society to electricity customers of a publicly owned NEC. The attitudes of participating utilities on ownership forms are examined, with the finding of general strong opposition to increased federal involvement in the electric utility industry through NEC ownership. The conclusion is that the private-private/public joint venture is the preferable ownership form and that public ownership should be employed only if the private sector fails to respond to future energy demand

  19. Sweden, United States and nuclear energy. The establishment of a Swedish nuclear materials control 1945-1995

    International Nuclear Information System (INIS)

    Jonter, T.

    1999-05-01

    This report deals mainly with the United States nuclear energy policy towards Sweden 1945-1960. Although Sweden contained rich uranium deposits and retained high competence in the natural sciences and technology, the country had to cooperate with other nations in order to develop the nuclear energy. Besides developing the civil use of nuclear power, the Swedish political elite also had plans to start a nuclear weapons programme. From the beginning of the 1950s up to 1968, when the Swedish parliament decided to sign the non-proliferation treaty, the issue was widely debated. In this report, American policy is analyzed in two periods. In the first period, 1945-1953, the most important aim was to prevent Sweden from acquiring nuclear materials, technical know-how, and advanced equipment which could be used in the production of nuclear weapons. The Swedish research projects were designed to contain both a civil and military use of nuclear energy. The first priority of the American administration was to discourage the Swedes from exploiting their uranium deposits, especially for military purposes. In the next period, 1953-1960, the American policy was characterized by extended aid to the development of the Swedish energy programme. Through the 'Atoms for Peace'-programme, the Swedish actors now received previously classified technical information and nuclear materials. Swedish companies and research centers could now buy enriched uranium and advanced equipment from the United States. This nuclear trade was, however, controlled by the American Atomic Energy Commission (AEC). The American help was shaped to prevent the Swedes from developing nuclear weapons capability. From mid-50s Swedish politicians and defence experts realised that a national production of nuclear bombs would cost much more money than was supposed 4-5 years earlier. As a consequence, Swedish officials started to explore the possibilities of acquiring nuclear weapons from United States. The American

  20. Renewable Energy Policy Fact sheet - United Kingdom

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. In the United Kingdom RES-E are supported through a feed-in tariff, Contracts for Difference scheme, a quota system and tax regulation mechanism. For RES-H and C a subsidy and price-based mechanisms are available for supporting RES-H installations. Furthermore, a quota system for biofuels and a grant scheme for transport is in place. A training programme for RES-E plant installers is in place, as well as a certification programme for RES-E installations. An overarching Renewable Energy Roadmap relating to RES-E has been laid down and implemented

  1. The nuclear energy in the United Kingdom; L'energie nucleaire au Royaume-Uni

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    With challenges like the climatic change, the hydrocarbons prices increase and the energy supply security, the nuclear park is becoming a decisive and an urgent question in the United Kingdom. The author proposes an historical aspect of the nuclear energy in UK, the actors of the today nuclear industry and the technologies used in 2006, the radioactive wastes management, the programs of the future and the british opinion on the nuclear. (A.L.B.)

  2. 76 FR 40754 - Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units...

    Science.gov (United States)

    2011-07-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0100; Docket Nos. 50-413 and 50-414; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, And 50-287] Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3; Notice...

  3. Design of a didactic unit: the energy

    International Nuclear Information System (INIS)

    Meneses V, J.A.; Caballero S, C.

    2003-01-01

    In order to design didactic units a model is proposed which includes the following items: justify the subject of study, carry out a didactic approach and scientific analysis, specify the main principles, spell out the teaching materials and their sequence, define the teaching process and the activities programme, and finally to agree on the criteria and assessment strategies involved. An example of a lesson about the energy concept is shown. (Author)

  4. The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories

    International Nuclear Information System (INIS)

    Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin

    1990-02-01

    A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)

  5. The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories

    International Nuclear Information System (INIS)

    Pfirsch, D.; Morrison, P.J.

    1990-02-01

    A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs

  6. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nicholi S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  7. Management of Energy Flows in Low-temperature Separation Units

    Directory of Open Access Journals (Sweden)

    Trishyn F.A.

    2018-04-01

    Full Text Available . The aim of this work is to study the effect of medium and low power ultrasound on the crystallization and separation processes. A thesis about the importance of using thermal energy converters in separation units has been suggested. The prospects of desalination freezing units and ways of their improvement have been justified. Based on the system analysis, the energy flows in an ice recycling facility have been considered. For the first time, the overall energy efficiency estimation technique based on the hypothesis of direct and reverse energy flows has been proposed. The new results on the effect of ultrasonic fields on the separation and crystallization process have been obtained. It has been proved that the use of ultrasonic field is effective in controlling the energy flows during block freezing. It has been established that the salt content in the ice block is reduced by 2-3 times. The relationship between the ice block separation kinetics and the power and frequency has been determined. The similarity theory methods have been used to summarize the experimental data obtained. The criterion models have been presented to calculate the block porosity and the filtration rate. It has been established that the Euler wavenumber modified by the authors successfully generalizes the databases of the experimental findings. Using the numerical simulation methods, the thermal field in the block which depends on its porosity has been established. The results of the simulation have been presented in the form of a nomogram.

  8. Water Use in the United States Energy System: A National Assessment and Unit Process Inventory of Water Consumption and Withdrawals.

    Science.gov (United States)

    Grubert, Emily; Sanders, Kelly T

    2018-06-05

    The United States (US) energy system is a large water user, but the nature of that use is poorly understood. To support resource comanagement and fill this noted gap in the literature, this work presents detailed estimates for US-based water consumption and withdrawals for the US energy system as of 2014, including both intensity values and the first known estimate of total water consumption and withdrawal by the US energy system. We address 126 unit processes, many of which are new additions to the literature, differentiated among 17 fuel cycles, five life cycle stages, three water source categories, and four levels of water quality. Overall coverage is about 99% of commercially traded US primary energy consumption with detailed energy flows by unit process. Energy-related water consumption, or water removed from its source and not directly returned, accounts for about 10% of both total and freshwater US water consumption. Major consumers include biofuels (via irrigation), oil (via deep well injection, usually of nonfreshwater), and hydropower (via evaporation and seepage). The US energy system also accounts for about 40% of both total and freshwater US water withdrawals, i.e., water removed from its source regardless of fate. About 70% of withdrawals are associated with the once-through cooling systems of approximately 300 steam cycle power plants that produce about 25% of US electricity.

  9. Design of an information and documentation center for the Peruvian Institute of Nuclear Energy

    International Nuclear Information System (INIS)

    Lopez Castilla, D.I. de

    1981-01-01

    The first steps in the formation of the Center are described, corresponding with the reorganization of the library which was included. Afterwards, the activities and the physical units are described which are established for this purpose. (author)

  10. Predictors of intensive care unit refusal in French intensive care units: a multiple-center study.

    Science.gov (United States)

    Garrouste-Orgeas, Maité; Montuclard, Luc; Timsit, Jean-François; Reignier, Jean; Desmettre, Thibault; Karoubi, Philippe; Moreau, Delphine; Montesino, Laurent; Duguet, Alexandre; Boussat, Sandrine; Ede, Christophe; Monseau, Yannick; Paule, Thierry; Misset, Benoit; Carlet, Jean

    2005-04-01

    To identify factors associated with granting or refusing intensive care unit (ICU) admission, to analyze ICU characteristics and triage decisions, and to describe mortality in admitted and refused patients. Observational, prospective, multiple-center study. Four university hospitals and seven primary-care hospitals in France. None. Age, underlying diseases (McCabe score and Knaus class), dependency, hospital mortality, and ICU characteristics were recorded. The crude ICU refusal rate was 23.8% (137/574), with variations from 7.1% to 63.1%. The reasons for refusal were too well to benefit (76/137, 55.4%), too sick to benefit (51/137, 37.2%), unit too busy (9/137, 6.5%), and refusal by the family (1/137). In logistic regression analyses, two patient-related factors were associated with ICU refusal: dependency (odds ratio [OR], 14.20; 95% confidence interval [CI], 5.27-38.25; p refused patients, and 1.03 (95% CI, 0.28-1.75) for later-admitted patients. ICU refusal rates varied greatly across ICUs and were dependent on both patient and organizational factors. Efforts to define ethically optimal ICU admission policies might lead to greater homogeneity in refusal rates, although case-mix variations would be expected to leave an irreducible amount of variation across ICUs.

  11. Solar heating and cooling demonstration project at the Florida solar energy center

    Science.gov (United States)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  12. Overview of new, upgraded, or proposed high energy physics facilities in the United States and Canada

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1994-01-01

    This article reviews six new, proposed, or upgraded accelerator facilities in the United States and Canada. All of the accelerators that are presented here in one form or fashion challenge the validity of the Standard Model of high energy physics which ''currently explains'' all experimentally know phenomena. These facilities include the Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, the Kaon Factory at TRIUMF in Vancouver, British Columbia, Canada, the Asymmetric B Factory at the Stanford Linear Accelerator Center (SLAC) in Palo Alto, California, the Relativistic Heavy Ion Collider (RHIC) facility at Brookhaven National Laboratory in Upton, New York, the injector upgrade project at the Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, and the Superconducting Super Collider Laboratory (SSCL) in Waxachachie, Texas

  13. Center for Beam Physics, 1993

    International Nuclear Information System (INIS)

    1994-05-01

    The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center's mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993

  14. MRI quality assurance using the ACR phantom in a multi-unit imaging center

    International Nuclear Information System (INIS)

    Ihalainen, Toni M.; Kuusela, Linda J.; Savolainen, Sauli E.; Loennroth, Nadja T.; Peltonen, Juha I.; Uusi-Simola, Jouni K.; Timonen, Marjut H.; Sipilae, Outi E.

    2011-01-01

    Background. Magnetic resonance imaging (MRI) instrumentation is vulnerable to technical and image quality problems, and quality assurance is essential. In the studied regional imaging center the long-term quality assurance has been based on MagNET phantom measurements. American College of Radiology (ACR) has an accreditation program including a standardized image quality measurement protocol and phantom. The ACR protocol includes recommended acceptance criteria for clinical sequences and thus provides possibility to assess the clinical relevance of quality assurance. The purpose of this study was to test the ACR MRI phantom in quality assurance of a multi-unit imaging center. Material and methods. The imaging center operates 11 MRI systems of three major manufacturers with field strengths of 3.0 T, 1.5 T and 1.0 T. Images of the ACR phantom were acquired using a head coil following the ACR scanning instructions. Both ACR T1- and T2-weighted sequences as well as T1- and T2-weighted brain sequences in clinical use at each site were acquired. Measurements were performed twice. The images were analyzed and the results were compared with the ACR acceptance levels. Results. The acquisition procedure with the ACR phantom was faster than with the MagNET phantoms. On the first and second measurement rounds 91% and 73% of the systems passed the ACR test. Measured slice thickness accuracies were not within the acceptance limits in site T2 sequences. Differences in the high contrast spatial resolution between the ACR and the site sequences were observed. In 3.0 T systems the image intensity uniformity was slightly lower than the ACR acceptance limit. Conclusion. The ACR method was feasible in quality assurance of a multi-unit imaging center and the ACR protocol could replace the MagNET phantom tests. An automatic analysis of the images will further improve cost-effectiveness and objectiveness of the ACR protocol

  15. U.S. Renewable Energy Policy and Industry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ella

    2015-10-01

    From 2005 to 2014, wind and solar power generation has seen an almost tenfold increase in the United States. Such rapid development is the result of a variety of federal and state, top-down and bottom-up drivers, as well as the macro-environment of cost-reduction globally and early adoption in Europe. This presentation, prepared for a meeting with China National Renewable Energy Center and National Energy Administration (of China), is a summary of some of the key drivers for renewable energy deployment in the United States.

  16. Cost-income analysis of oral health units of health care centers in Yazd city

    Directory of Open Access Journals (Sweden)

    Hosein Fallahzadeh

    2012-01-01

    Full Text Available Background and Aims: Increasing demands for health care's services on one hand and limited resources on the other hand brings about pressure over governments to find out a mechanism for fair and appropriate distribution of resources. Economic analysis is one of the appropriate tools for policy making on this priority. The aim of this study was to assess capital and consumption of oral health units of health care centers in Yazd city and comparing it with revenue of these centers and determining of cost effectiveness.Materials and Methods: In this descriptive cross sectional study, all health care centers of Yazd city with active dentistry department were evaluated. The data has been extracted from current documents in health care center of county based issued receipts and daily information registers.Results: Expended cost for providing of oral hygiene services in second half of 2008 in 13 medical health centers of Yazd included active dentistry section was 557.887.500 Rials and revenue to cost ratio was about 34%. The most provided service was related to tooth extraction and the average of tooth restoration in each working day was 0.48.Conclusion: With attention to low tariffs of dentistry services in medical health centers and paying subsidy to target groups, expenses of oral hygiene are always more than its revenue.

  17. Preliminary assessment of a hypothetical nuclear energy center in New Jersey: executive summary

    International Nuclear Information System (INIS)

    1975-11-01

    Site selection aspects are summarized for a nuclear energy center in New Jersey. This analysis, which was intended to be representative of coastal locations in general, included consideration of energy demand projections, power transmission, organizational issues, siting constraints, land use issues, environmental issues, taxation, and institutional and political issues. Recommendations are made for follow-on studies

  18. Green energy laws and Republican legislators in the United States

    International Nuclear Information System (INIS)

    Coley, Jonathan S.; Hess, David J.

    2012-01-01

    The policy context for green energy laws in the United States has changed over the past few years, because the Republican Party has increasingly opposed renewable electricity and other green energy policies. In this study, we draw on a database of 6071 votes on RPS (renewable portfolio standards) and PACE (Property-Assessed Clean Energy) laws by individual state legislators in the United States to examine the circumstances shaping Republican votes for green energy laws from 2007–2011. We find that votes on these laws are indeed increasingly partisan, with Republicans supporting RPS laws especially less than Democrats. However, Republicans' support for these laws is higher in states with weaker fossil fuel industries. Furthermore, Republicans tend to support the laws where median household income is lower, environmental organizations are weaker, labor-environmental coalitions are absent, and the proportion of Democrats in the legislature is lower, suggesting a reactive effect against green energy policies in more progressive settings. - Highlights: ► We analyze Republican votes for state RPS and PACE laws from 2007–2011. ► Support for RPS laws declined, while support for PACE laws remained steady. ► Support for both laws is lower in states with strong fossil fuel industries. ► Support for both laws is lower in more Democratic legislatures.

  19. Information about the CENA: Agriculture Nuclear Energy Center

    International Nuclear Information System (INIS)

    1982-10-01

    The purposes of the CENA-Brazil is described in this paper such as to develop and absorb techniques and nuclear methods of research interest and agricultural applications; to spread the methods and techniques through the courses, scientific exchange and publications; to develop in permanent character, researches, studies and works of nuclear energy application in agricultural problems and transfer the technology to the public; cooperation programs with the others units and USP-Sao Paulo University in graduation and post-graduation courses. (L.M.J.)

  20. Status report: conceptual fuel cycle studies for the Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Merrill, E.T.; Fleischman, R.M.

    1975-07-01

    A summary is presented of the current status of studies to determine the logistics of onsite plutonium recycle and the timing involved in introducing the associated reprocessing and fabrication fuel cycle facilities at the Hanford Nuclear Energy Center

  1. Energy policies of IEA countries: the United Kingdom 2006 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The United Kingdom is facing a critical moment in its energy policy: North Sea oil and gas production is declining, dependence on imported energy is increasing, while rising energy prices and climate change considerations pose further challenges. The second thematic review of the UK addresses these challenges, focusing on energy investment, energy efficiency, and the return of nuclear power to the political agenda. Almost all coal-fired and nuclear power capacity in the United Kingdom will be retired within the next 15 years. The review encourages the government to maintain its trust in the market mechanism for the delivery of required investment and security of supply. However, it also identifies the need for the government to play a more active role in setting the framework. On the demand side, the IEA considers the government's 'Energy Efficiency Commitment' (EEC) an impressive success. The EEC was introduced in 2002 and is an energy-saving programme under which suppliers must achieve efficiency targets in households. Challenges, such as the requirement that 50 per cent of savings come from low-income households, remain, and the review invites the government to investigate ways in which fuel poverty could be reduced without distorting the EEC. The review also assesses the government's shifting direction on nuclear energy and backs this new path. It argues that the development of a positive investment framework in planning and licensing - without direct intervention in investment decisions favouring nuclear - will allow investors to judge the viability of new plants. 3 apps.

  2. Solar energy facility at North Hampton Recreation Center, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    The solar energy facility located at the North Hampton Park Recreation and Health Center, Dallas, Texas is presented. The solar energy system is installed in a single story (two heights), 16,000 sq ft building enclosing a gymnasium, locker area, and health care clinic surrounded by a recreational area and athletic field. The solar energy system is designed to provide 80 percent of the annual space heating, 48 percent of the annual space cooling, and 90 percent of the domestic hot water requirements. The system's operation modes and performance data acquisition system are described. The system's performance during the months of June, July, August, September, and October of 1979 are presented and show a negative savings of energy. Experience to date indicates however that the system concept has promise of acceptable performance. It is concluded that if proper control and sequencing components was maintained, then the system performance would improve to an acceptable level.

  3. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  4. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2014-01-01

    Highlights: • This study compares Japan with other developed countries for energy efficiency at the industry level. • We compute the total-factor energy efficiency (TFEE) for industries in 14 developed countries in 1995–2005. • Energy conservation can be further optimized in Japan’s industry sector. • Japan experienced a slight decrease in the weighted TFEE from 0.986 in 1995 to 0.927 in 2005. • Japan should adapt energy conservation technologies from the primary benchmark countries: Germany, UK, and USA. - Abstract: Japan’s energy security is more vulnerable today than it was before the Fukushima Daiichi nuclear power plant accident in March 2011. To alleviate its energy vulnerability, Japan has no choice but to improve energy efficiency. To aid in this improvement, this study compares Japan’s energy efficiency at the industry level with that of other developed countries. We compute the total-factor energy efficiency (TFEE) of industries in 14 developed countries for 1995–2005 using data envelopment analysis. We use four inputs: labor, capital stock, energy, and non-energy intermediate inputs. Value added is the only relevant output. Results indicate that Japan can further optimize energy conservation because it experienced only a marginal decrease in the weighted TFEE, from 0.986 in 1995 to 0.927 in 2005. To improve inefficient industries, Japan should adapt energy conservation technologies from benchmark countries such as Germany, the United Kingdom, and the United States

  5. Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Suprotim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Raje, Sanyukta [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kumar, Satish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenberg, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – September 2015) and Phase 2 (October 2015 – September 2016).

  6. Technological drivers in data centers and telecom systems: Multiscale thermal, electrical, and energy management

    International Nuclear Information System (INIS)

    Garimella, Suresh V.; Persoons, Tim; Weibel, Justin; Yeh, Lian-Tuu

    2013-01-01

    Highlights: ► Thermal management approaches reviewed against energy usage of IT industry. ► Challenges of energy efficiency in large-scale electronic systems highlighted. ► Underlying drivers for progress at the business and technology levels identified. ► Thermal, electrical and energy management challenges discussed as drivers. ► Views of IT system operators, manufacturers and integrators represented. - Abstract: We identify technological drivers for tomorrow’s data centers and telecommunications systems, including thermal, electrical and energy management challenges, based on discussions at the 2nd Workshop on Thermal Management in Telecommunication Systems and Data Centers in Santa Clara, California, on April 25–26, 2012. The relevance of thermal management in electronic systems is reviewed against the background of the energy usage of the information technology (IT) industry, encompassing perspectives of different sectors of the industry. The underlying drivers for progress at the business and technology levels are identified. The technological challenges are reviewed in two main categories – immediate needs and future needs. Enabling cooling techniques that are currently under development are also discussed

  7. Energy consumption, income, and carbon emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Soytas, Ugur [Department of Business Administration, Middle East Technical University Ankara, Turkey 06531 (Turkey); Sari, Ramazan [Department of Economics, Abant Izzet Baysal University Bolu, Turkey 14280 (Turkey); Ewing, Bradley T. [Rawls College of Business Texas Tech University Lubbock, TX 79409-2101 (United States)

    2007-05-15

    This paper investigates the effect of energy consumption and output on carbon emissions in the United States. Earlier research focused on testing the existence and/or shape of an environmental Kuznets curve without taking energy consumption into account. We investigate the Granger causality relationship between income, energy consumption, and carbon emissions, including labor and gross fixed capital formation in the model. We find that income does not Granger cause carbon emissions in the US in the long run, but energy use does. Hence, income growth by itself may not become a solution to environmental problems. (author)

  8. Energy transfer between the Eu2+ dipole and aggregate centers in CsBr:Eu crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Turchak, R.; Voznjak, T.

    2007-01-01

    The energy transfer between the Eu 2+ -V Cs dipole centers and presumable CsEuBr 3 aggregate centers has been studied in CsBr:Eu crystals by means of investigation of their time-resolved emission spectra and luminescence decay kinetics at 300 K

  9. Measure Guideline. Five Steps to Implement the Public Housing Authority Energy-Efficient Unit Turnover Checklist

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, Christine [Building American Research Alliance, Kent, WA (United States)

    2015-07-09

    Five Steps to Implementing the PHA Energy Efficient Unit Turnover Package (ARIES, 2014) is a guide to prepare for the installation of energy efficient measures during a typical public housing authority unit turnover. While a PHA is cleaning, painting and readying a unit for a new resident, there is an opportunity to incorporate energy efficiency measures to further improve the unit's performance. The measures on the list are simple enough to be implemented by in-house maintenance personnel, inexpensive enough to be folded into operating expenses without needing capital budget, and fast enough to implement without substantially changing the number of days between occupancies, a critical factor for organizations where the demand for dwelling units far outweighs the supply. The following guide lays out a five step plan to implement the EE Unit Turnover Package in your PHA, from an initial Self-Assessment through to Package Implementation.

  10. First-Annual Global Clean Energy Manufacturing Report Shows Strong Domestic Benefits for the United States

    Energy Technology Data Exchange (ETDEWEB)

    EERE Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-02-01

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) commissioned the Clean Energy Manufacturing Analysis Center to conduct the first-ever annual assessment of the economic state of global clean energy manufacturing. The report, Benchmarks of Global Clean Energy Manufacturing, makes economic data on clean energy technology widely available.

  11. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  12. Element partitioning in combustion- and gasification-based waste-to-energy units

    International Nuclear Information System (INIS)

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-01-01

    Highlights: ► Element partitioning of waste-to-energy units by means of a substance flow analysis. ► A comparison between moving grate combustors and high temperature gasifiers. ► Classification of key elements according to their behavior during WtE processes. ► Slags and metals from waste gasifiers are completely and immediately recyclable. ► Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal

  13. FY 1994 Report on the results of the joint research project for optimum introduction of development of fuel cell technologies for urban energy centers; 1994 nendo toshi energy center nado nenryo denchi gijutsu kaihatsu saiteki donyu chosa seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Described herein are the FY 1994 results of the joint research project for optimum introduction of development of fuel cell technologies for urban energy centers or the like. The necessary economic conditions for introduction of a fuel cell system to be competitive with the conventional system which individually supplies electric power and heat are 250,000 yen/kW as the construction unit cost, 0.10m{sup 2}/kW as the installation area, 5 years as the cell body life, use of an inexpensive fuel gas (2 to 6 yen/Mcal). Moreover, it is an indoor system which shall have the operational characteristics to follow daily demand fluctuations while operating under the optimum conditions in the urban redevelopment area considered. A 5,000kW-class fuel cell plant burning fuel gas (2 yen/Mcal) will need a total floor area of approximately 400,000 m{sup 2} in an energy-intensive office type demand area. These conditions shall be met in order to economically introduce the 5,000kW-class plant. It is also necessary to compare the plant with the competitive cogeneration plants. The specifications for the prototype now under consideration are sufficient for the energy-saving effect, and it is premised that these specifications and characteristics are secured. (NEDO)

  14. Disaggregate energy consumption and industrial output in the United States

    International Nuclear Information System (INIS)

    Ewing, Bradley T.; Sari, Ramazan; Soytas, Ugur

    2007-01-01

    This paper investigates the effect of disaggregate energy consumption on industrial output in the United States. Most of the related research utilizes aggregate data which may not indicate the relative strength or explanatory power of various energy inputs on output. We use monthly data and employ the generalized variance decomposition approach to assess the relative impacts of energy and employment on real output. Our results suggest that unexpected shocks to coal, natural gas and fossil fuel energy sources have the highest impacts on the variation of output, while several renewable sources exhibit considerable explanatory power as well. However, none of the energy sources explain more of the forecast error variance of industrial output than employment

  15. Epidemiological studies of employees of the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    Fraser, P.; Beral, V.; Booth, M.; Inskip, H.; Carpenter, L.

    1987-01-01

    The Epidemiological Monitoring Unit at the London School of Hygiene and Tropical Medicine is carrying out several epidemiological studies of employees of the United Kingdom Atomic Energy Authority (UKAEA) in which mortality is being investigated in relation to radiation exposure. This paper summarises the results obtained so far and describes briefly studies currently in progress. (author)

  16. Study of a conceptual nuclear energy center at Green River, Utah. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.T. (ed.)

    1982-09-01

    This document summarizes a conceptual study on the feasibility and practicality of developing a nuclear energy center (NEC) at a representative Western site. The site selected for this conceptual study, an area of about 50 square miles, is located 15 miles south of Green River, Utah. The conceptual NEC would consist of nine nuclear electric generating units, arranged on the site in three clusters of three reactors each (triads), separated by about 2 1/2 miles. Of the total electric output of 11,250 MWe that the NEC could produce, about 82% is assumed to be transmitted out of Utah to Colorado, New Mexico, Arizona, Nevada, and California. The technical engineering issues studied included geology and seismology, plant design, low-level radioactive waste disposal, transmission, and construction schedules and costs. Socioeconomic issues included were demographics, land use, community service needs, and fiscal impacts. Environmental considerations included terrestrial and aquatic ecology, visual impact, and secondary population impacts. Radiological issues were concerned with the safety and risks of an NEC and an on-site low-level waste facility. Institutional issues included methods of ownership, taxation, implications of energy export, and water allocation. The basic finding was that an NEC would be technically feasible, but a number of socioeconomic and institutional issues would require resolution before a Western regional NEC could be considered a viable power plant siting option.

  17. Study of a conceptual nuclear energy center at Green River, Utah. Final summary report

    International Nuclear Information System (INIS)

    Williams, J.T.

    1982-09-01

    This document summarizes a conceptual study on the feasibility and practicality of developing a nuclear energy center (NEC) at a representative Western site. The site selected for this conceptual study, an area of about 50 square miles, is located 15 miles south of Green River, Utah. The conceptual NEC would consist of nine nuclear electric generating units, arranged on the site in three clusters of three reactors each (triads), separated by about 2 1/2 miles. Of the total electric output of 11,250 MWe that the NEC could produce, about 82% is assumed to be transmitted out of Utah to Colorado, New Mexico, Arizona, Nevada, and California. The technical engineering issues studied included geology and seismology, plant design, low-level radioactive waste disposal, transmission, and construction schedules and costs. Socioeconomic issues included were demographics, land use, community service needs, and fiscal impacts. Environmental considerations included terrestrial and aquatic ecology, visual impact, and secondary population impacts. Radiological issues were concerned with the safety and risks of an NEC and an on-site low-level waste facility. Institutional issues included methods of ownership, taxation, implications of energy export, and water allocation. The basic finding was that an NEC would be technically feasible, but a number of socioeconomic and institutional issues would require resolution before a Western regional NEC could be considered a viable power plant siting option

  18. Measuring energy efficiency in the United States` economy: A beginning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Energy efficiency is a vital component of the Nation`s energy strategy. One of the Department of Energy`s missions are to promote energy efficiency to help the Nation manage its energy resources. The ability to define and measure energy efficiency is essential to this objective. In the absence of consistent defensible measures, energy efficiency is a vague, subjective concept that engenders directionless speculation and confusion rather than insightful analysis. The task of defining and measuring energy efficiency and creating statistical measures as descriptors is a daunting one. This publication is not a final product, but is EIA`s first attempt to define and measure energy efficiency in a systematic and robust manner for each of the sectors and the United States economy as a whole. In this process, EIA has relied on discussions, customer reviews, in-house reviews, and seminars that have focused on energy efficiency in each of the sectors. EIA solicits the continued participation of its customers in further refining this work.

  19. Deep Energy Retrofit Guidance for the Building America Solutions Center

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services and miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs. They are intended for inclusion in the online resource the Building America Solutions Center (BASC). This document is an assemblage of multiple entries in the BASC, each of which addresses a specific aspect of Deep Energy Retrofit best practices for projects targeting at least 50% energy reductions. The contents are based upon a review of actual DERs in the U.S., as well as a mixture of engineering judgment, published guidance from DOE research in technologies and DERs, simulations of cost-optimal DERs, Energy Star and Consortium for Energy Efficiency (CEE) product criteria, and energy codes.

  20. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    OpenAIRE

    Dongmin Yu; Yuanzhu Meng; Gangui Yan; Gang Mu; Dezhi Li; Simon Le Blond

    2017-01-01

    Many combined heat and power (CHP) units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity ...

  1. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    Science.gov (United States)

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  2. Applied energy solutions to grain elevator units; Cogeracao em unidades armazenadoras de graos

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Carlos Alberto [Universidadfe Federal Rural de Pernambuco (UAST/UFRPE), Serra Talhada, PE (Brazil). Dept. de Agronomia], E-mail: carlos.teixeira@uast.ufrpe.br; Oliveira Filho, Delly; Lacerda Filho, Adilio Flauzino de; Martins, Jose Helvecio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola

    2009-07-01

    Solutions of energy can be adopted, to help the demand side management. The distributed generation and the cogeneration are management at the supply side, that should be adopted in grain elevator units. Aiming to point energy solutions to grain elevator units to become more energetically independent from the utilities and oscillations of the market. This study was done in a grain elevator units from Sao Paulo State. They were considered: (I) the patterns of electric power consumption in this crop periods; (II) different types of cogeneration systems; and (III) connection costs. The main conclusions of this work were: cogeneration is possible and viable in grain elevator units; the price of sale of the surplus energy in the cogeneration system influences, directly, decision to implement a cogeneration system; the electric power generation with the own production of firewood was decisive in the profitability of the cogeneration project; the option of connection of the electric power net favors the implantation of a cogeneration system; and the possibility of rejection steam use for drying grains (author)

  3. Thermodynamic evaluation of a kerosene pre- Fraction unit using energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasemi

    2017-09-01

    Full Text Available This work applies the method of energy and exergy analysis over first step of linear alkyl benzene (LAB production namely kerosene pre fraction plant, to determine unit energy and exergy performance and loss, besides of opportunities for improvement based on operational data. For this purpose macroscopic energy and exergy balance was developed over main equipment including electro pumps, heat exchangers, air coolers, and distillation columns. The results shows that total energy performance of plant is 92.62% by 19.76 MW energy lost, while from exergy perspective, unit performance is 78.08% by 17.92 MW exergy lost. Maximum local exergy lost occurs in the feed pre heater exchanger by 27% performance which is designed to recover energy from top product of second column, furthermore results shows that upgrading low quality energy in air coolers based on heat pump concept would protect energy and exergy emission to the environment and reduce 40% of total lost energy and 16% of total lost exergy in plant.

  4. The potential for energy conservation in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Carlsmith, R.S. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The period of high oil prices between 1973 and 1985 was traumatic in the United States, as it was also in the rest of the world. It was also instructive in showing the kinds of adaptation that could occur rapidly in a very large industrialized economy. During the period, energy use remained essentially constant while the economy continued to grow. The efficiency of energy use, as indicated by the ratio of energy consumption to gross domestic product, increased by 24 percent. Since 1985 there has been little further improvement in energy efficiency. Can this kind of improvement in efficiency be repeated, and if so, what can make it happen? A number of energy analysts have recently made projections for the next 20 years. The projections all indicate steady increases of about 1 percent per year in the level of energy use. Since these projections assumed that gross domestic product will increase by about 2.3 percent per year, the implication is that energy efficiency is expected to increase slowly during the next two decades.

  5. Rewriting the history: a new future for the nuclear energy in United Kingdom?

    International Nuclear Information System (INIS)

    Woodman, B.

    2009-01-01

    From ends of the ninety, the new nuclear energy has been rejected three times like an option of viable energy generation for United Kingdom: once during the privatization of the electric supply industry and twice during the subsequent revisions to the energy politicians carried out in 2003. Nevertheless, three years more late, a new debate around the energy politics gave an unusual turning in the industry destination, characterized by the firm consideration in the political calendar about the new reactors development, as well as of governmental politicians guided to impel it. This recent interest arises of restlessness regarding the future security of the supply and to the necessity of reducing the carbon dioxide emissions of United Kingdom. With the purpose of obtaining the sufficient support of civil politicians and investors for the new construction project, the industry will have to devise convincing arguments to prove that it has already solved those problems that it suffered in the past and, also that deserves to receive a special treatment in the liberated market of the electricity. This document synthesizes the structure of the nuclear industry in United Kingdom, some recent historical data and the reasons for those that the new nuclear reactors were not very received in the past. It also indicates the measures that have taken in recent times to modify that perspective. Finally, it analyzes the possible future of the nuclear energy at long term in United Kingdom. (Author)

  6. DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans Beacon House

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    United Way of Long Island’s Housing Development Corporation built this 3,719-ft2 two–story, 5-bedroom home in Huntington Station, New York, to the rigorous performance requirements of the U.S. Department of Energy’s Zero Energy Ready Home Program. The home is packed with high-performance features like LED lighting and ENERGY STAR appliances. The asymmetrical, optimally angled roof provides plenty of space for roof-mounted solar panels for electric generation and hot water.

  7. Energy efficiency and environmental considerations for green data centers

    International Nuclear Information System (INIS)

    Uddin, M.; Shah, A.

    2014-01-01

    The advancement of business and social practices based on information and social practices based on information and communication technologies (ICTs) in the last few decades has transformed many, if not most, economies and businesses into e-economies and businesses into e-businesses. For economies, ICTs are increasingly playing a critical role in transforming and generating economic opportunities. Technology has a potential to create sustainable business and society both in grim and green economic times. Especially, the recovery from the current economic crisis is going to lead to more greener and energy efficient industries. Data centers are found to be major culprits in consuming too much energy and generating higher level of CO/sub 2/ in their overall operations. In order to handle the sheer magnitude of today's data, servers have become larger, denser, hotter, and significantly more costly operate using more power than being used earlier. This paper determines the properties and attributes of green IT infrastructures and the way they will be helpful in achieving green sustainable businesses. The proposed attributes and characteristics of green IT using Virtualization technology are very productive and efficient and green, hence reducing the emission of greenhouse gases so that their overall effect on global warming can be reduced or even eliminated. The proposed attributes indicate the qualities of green IT to enhance the proper utilization of hardware and software resources available in the data center. (author)

  8. Report on the establishment and operation of the Federal Energy Regulatory Commission's Daycare Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-16

    We have completed an inspection of the Federal Energy Regulatory Commission's (FERC) Daycare Center (Center). The purpose of the inspection was to review for efficiency, economy and compliance with laws and regulations, FERC's establishment and operation of the Center. The inspection objectives were to review: (1) FERC's compliance with Federal laws and requirements of the General Services Administration and the District of Columbia; (2) the source and amount of funds for establishing and operating the Center; and (3) the organizational relationships between FERC, the Center and the contractor operating the Center.

  9. United states technical and social programs for Chornobyl and Slavutych

    International Nuclear Information System (INIS)

    Terner, D.

    2002-01-01

    Major United States initiatives for Chornobyl and Slavutych: Slavutych division of the International Chornobyl Center; international radioecology laboratory; nuclear, fire and workers safety upgrade at Chornobyl nuclear power plant; Chornobyl closure; Ukraine off-site training and emergency center; Slavutych-Richland community partnership program; employment transition services and economic development; Slavutych energy efficiency program; Slavutych business incubator; Chornobyl management interactions with hanford site; humanitarian assistance for Slavutych

  10. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects

  11. Siting studies for an asymptotic U.S. energy supply system based primarily on nuclear energy

    International Nuclear Information System (INIS)

    Burwell, C.C.

    1977-01-01

    The nuclear energy center (NEC) concept is an approach to siting wherein nuclear facilities would be clustered in and delimited to a relatively small number of locations throughout the United States. These designated centers would be concurrently developed to their full capability over several decades, at which time, they would be several times larger than the largest nuclear power stations in existence today. The centers would be permanently dedicated to nuclear operations including the future decommissioning of functionally obsolescent facilities as well as the commissioning of their replacements. The criteria for and characteristics of an acceptable nuclear energy system that could supply most of the U.S. energy requirements in the distant future are discussed. The time period is unspecified but occurs when fossil-fuel resources are depleted to such an extent that their use is economic only in special situations, and is not economic, in general, for use as fuel

  12. Boxes, Boosts, and Energy Duality: Understanding the Galactic-Center Gamma-Ray Excess through Dynamical Dark Matter

    CERN Document Server

    Boddy, Kimberly K.

    2017-03-28

    Many models currently exist which attempt to interpret the excess of gamma rays emanating from the Galactic Center in terms of annihilating or decaying dark matter. These models typically exhibit a variety of complicated cascade mechanisms for photon production, leading to a non-trivial kinematics which obscures the physics of the underlying dark sector. In this paper, by contrast, we observe that the spectrum of the gamma-ray excess may actually exhibit an intriguing "energy-duality" invariance under $E_\\gamma \\rightarrow E_\\ast^2/E_\\gamma$ for some $E_\\ast$. As we shall discuss, such an energy duality points back to a remarkably simple alternative kinematics which in turn is realized naturally within the Dynamical Dark Matter framework. Observation of this energy duality could therefore provide considerable information about the properties of the dark sector from which the Galactic-Center gamma-ray excess might arise, and highlights the importance of acquiring more complete data for the Galactic-Center exce...

  13. Assessing the energy efficiency of pumps and pump units background and methodology

    CERN Document Server

    Bernd Stoffel, em Dr-Ing

    2015-01-01

    Assessing the Energy Efficiency of Pumps and Pump Units, developed in cooperation with Europump, is the first book available providing the background, methodology, and assessment tools for understanding and calculating energy efficiency for pumps and extended products (pumps+motors+drives). Responding to new EU requirements for pump efficiency, and US DOE exploratory work in setting pump energy efficiency guidelines, this book provides explanation, derivation, and illustration of PA and EPA methods for assessing energy efficiency. It surveys legislation related to pump energy eff

  14. The Creation and Role of the USDA Biomass Research Centers

    Science.gov (United States)

    William F. Anderson; Jeffery Steiner; Randy Raper; Ken Vogel; Terry Coffelt; Brenton Sharratt; Bob Rummer; Robert L. Deal; Alan Rudie

    2011-01-01

    The Five USDA Biomass Research Centers were created to facilitate coordinated research to enhance the establishment of a sustainable feedstock production for bio-based renewable energy in the United States. Scientists and staff of the Agricultural Research Service (ARS) and Forest Service (FS) within USDA collaborate with other federal agencies, universities and...

  15. Coherent memory functions for finite systems: hexagonal photosynthetic unit

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1990-10-01

    Coherent memory functions entering the Generalized Master Equation are presented for an hexagonal model of a photosynthetic unit. Influence of an energy heterogeneity on an exciton transfer is an antenna system as well as to a reaction center is investigated. (author). 9 refs, 3 figs

  16. United States and Spain sign energy R and D agreement

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In two memoranda signed June 6, 1986, the United States Department of Energy and two Spanish governmental agencies have agreed to conduct cooperative energy research and development projects. These five-year bilateral agreements mark the first formal cooperative energy efforts between the two countries. Areas of cooperation in one memorandum between the DOE and the Spanish Junta de Energia Nuclear are as follows: nuclear energy (including nuclear safety technology), radioactive waste management, renewable energy (including biomass), and coal and gas technologies. The second memorandum, signed by the DOE and the Spanish Instituto Geologico y Minero, deals solely with coal gasification and geothermal energy technologies. No specific projects or development efforts are discussed in the memoranda. Rather, the terms for exchanges of personnel, technology conferences, establishment of projects, etc. are more to outline areas to possible future cooperation

  17. Energy response of imaging plates to radiation beams from standard beta sources, ortho-voltage and cobalt-60 units and linear accelerators

    Science.gov (United States)

    Gonzalez, Albin Leonel

    The response to different types of radiation beams of commercial imaging plates used for diagnostic computed radiography has been investigated in this work. Imaging plates are designed with a phosphor layer which after been irradiated; information is stored in the form of photostimulable luminescence (PSL) centers. Initial measurements of the dose distribution of a radioactive stent with the imaging plates showed similar results to those with radiochromic films, but with much shorter exposure time due to their higher sensitivity. In order to investigate further their response, the imaging plates were irradiated with calibrated beams from: standard beta sources, orthovoltage and Co-60 units and therapy linear accelerator. Initially it was found that the energy to create the storage centers (generation efficiency) when irradiated with the three standard beta sources (225 keV to 2.28 MeV) was the same. For the rest of the calibrated beams an in house reader system was built in order to perform the bleaching of the plates with a He-Ne laser (632.8 nm) and to measure the absolute number of the emitted PSL photons (storage centers produced). Bleaching curves were then obtained for different exposure times for each beam. From the graph of the calculated area under the bleaching curves (total number of storage center) versus the absorbed dose to the phosphor layer it was possible to calculate the energy to create the storage centers (generation efficiency) for photon and electron beams. The dose to the phosphor layer was calculated in the case of the electron beams following a scaling procedure, while in the case of the photon beams Monte Carlo simulations were performed. For the photons beams the measurement of the generation efficiency energy of 126 +/- 8% eV per PSL storage center, coincide with measurements using a different approach (˜148 eV) by previous investigators. The generation efficiency for the electron beam was 807 +/- 3% eV, no reference was found in the

  18. Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester

    Directory of Open Access Journals (Sweden)

    Jae Eun Kim

    2013-07-01

    Full Text Available We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.

  19. Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM

    International Nuclear Information System (INIS)

    Meng, Z.N.; Zhang, P.

    2017-01-01

    Highlights: • A tube-in-tank latent thermal energy storage (LTES) unit using composite PCM is built. • Thermal performances of the LTES unit are experimentally and numerically studied. • Thermal performances of the LTES unit under different operation conditions are comparatively studied. • A 3D numerical model is established to study the heat transfer mechanisms of the LTES unit. - Abstract: Paraffin is a commonly used phase change material (PCM) which has been frequently applied for thermal energy storage. A tube-in-tank latent thermal energy storage (LTES) unit using paraffin as PCM is built in the present study, which can be used in many applications. In order to enhance the thermal performance of the LTES unit, the composite PCM is fabricated by embedding copper foam into pure paraffin. The performances of the LTES unit with the composite PCM during the heat charging and discharging processes are investigated experimentally, and a series of experiments are carried out under different inlet temperatures and inlet flow velocities of the heat transfer fluid (HTF). The temperature evolutions of the LTES unit are obtained during the experiments, and the time-durations, mean powers and energy efficiencies are estimated to evaluate the performance of the LTES unit. Meanwhile, a three-dimensional (3D) mathematical model based on enthalpy-porosity and melting/solidification models is established to investigate the heat transfer mechanisms of the LTES unit and the detailed heat transfer characteristics of the LTES unit are obtained. It can be concluded that the LTES unit with the composite PCM shows good heat transfer performance, and larger inlet flow velocity of the HTF and larger temperature difference between the HTF and PCM can enhance the heat transfer and benefit the thermal energy utilization. Furthermore, a LTES system with larger thermal energy storage capacity can be easily assembled by several such LTES units, which can meet versatile demands in

  20. Energy research and development in the United Kingdom. Report of the Group set up by the Council of the Royal Society to examine, discuss and report on the Department of Energy Paper 'Energy R and D in the United Kingdom - A discussion document' (Energy Paper no. 11)

    International Nuclear Information System (INIS)

    1977-01-01

    Following an Introduction and Summary, the report is in sections, entitled: energy supply and demand, and possible economic futures in the United Kingdom; energy sources available to the United Kingdom (coal; offshore oil; nuclear fission power; nuclear fusion power; alternative power sources, e.g. wave power, solar energy, tidal power); energy conservation; consequential energy R and D strategy. In connection with nuclear fission power it is the opinion of the group that sufficient approval for the UK single commercial fast breeder reactor project should be given so that all the necessary planning and practical studies can be started immediately. Safety and environmental problems should be intensively studied. The group would like to see a much stronger R and D programme concerned with the disposal of nuclear wastes. (U.K.)

  1. United Nations: preparing to examine energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Radka, Mark [United Nations Environment Programme, Paris (France)

    2000-08-01

    This article examines the progress on sustainable development at the international level, and discusses the forthcoming meeting of the Commission for Sustainable Development (CSD-9) and the review of the progress of the Earth Summit in Rio in 1992. Details are given of the anticipated Third Assessment report of the Intergovernmental Panel on Climate Change which is expected to increase pressure to reduce emissions of greenhouses gases, the link between policies of sustainable development and renewable energy, the challenge of the growing demand for energy in the developing countries and the need to mitigate against environmental damage, and the setting up of the Sustainable Energy Advisory Facility (SEAF) by the United Nations Environment Programme to aid developing countries to participate in the CSD-9 process.

  2. United Nations: preparing to examine energy and sustainable development

    International Nuclear Information System (INIS)

    Radka, Mark

    2000-01-01

    This article examines the progress on sustainable development at the international level, and discusses the forthcoming meeting of the Commission for Sustainable Development (CSD-9) and the review of the progress of the Earth Summit in Rio in 1992. Details are given of the anticipated Third Assessment report of the Intergovernmental Panel on Climate Change which is expected to increase pressure to reduce emissions of greenhouses gases, the link between policies of sustainable development and renewable energy, the challenge of the growing demand for energy in the developing countries and the need to mitigate against environmental damage, and the setting up of the Sustainable Energy Advisory Facility (SEAF) by the United Nations Environment Programme to aid developing countries to participate in the CSD-9 process

  3. Comparative Studies of Traditional (Non-Energy Integration and Energy Integration of Catalytic Reforming Unit using Pinch Analysis

    Directory of Open Access Journals (Sweden)

    M. Alta

    2012-12-01

    Full Text Available Energy Integration of Catalytic Reforming Unit (CRU of Kaduna Refinery and petrochemicals Company Kaduna Nigeria was carried out using Pinch Technology. The pinch analysis was carried out using Maple. Optimum minimum approach temperature of 20 °C was used to determine the energy target. The pinch point temperature was found to be 278 °C. The utilities targets for the minimum approach temperature were found to be 72711839.47 kJ/hr and 87105834.43 kJ/hr for hot and cold utilities respectively. Pinch analysis as an energy integration technique was found to save more energy and utilities cost than the traditional energy technique. Key words: Pinch point, CRU, Energy Target, Maple

  4. Energy audit and conservation opportunities for pyroprocessing unit of a typical dry process cement plant

    International Nuclear Information System (INIS)

    Kabir, G.; Abubakar, A.I.; El-Nafaty, U.A.

    2010-01-01

    Cement production process has been highly energy and cost intensive. The cement plant requires 8784 h per year of the total operating hours to produce 640,809 tonnes of clinker. To achieve effective and efficient energy management scheme, thermal energy audit analysis was employed on the pyroprocessing unit of the cement plant. Fuel combustion generates the bulk of the thermal energy for the process, amounting to 95.48% (4164.02 kJ/kg cl ) of the total thermal energy input. Thermal efficiency of the unit stands at 41%, below 50-54% achieved in modern plants. The exhaust gases and kiln shell heat energy losses are in significant quantity, amounting to 27.9% and 11.97% of the total heat input respectively. To enhance the energy performance of the unit, heat losses conservation systems are considered. Waste heat recovery steam generator (WHRSG) and Secondary kiln shell were studied. Power and thermal energy savings of 42.88 MWh/year and 5.30 MW can be achieved respectively. Financial benefits for use of the conservation methods are substantial. Environmental benefit of 14.10% reduction in Greenhouse gases (GHG) emissions could be achieved.

  5. Energy audit and conservation opportunities for pyroprocessing unit of a typical dry process cement plant

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, G.; Abubakar, A.I.; El-Nafaty, U.A. [Chemical Engineering Programme, Abubakar Tafawa Balewa University, P. M. B. 0248, Bauchi (Nigeria)

    2010-03-15

    Cement production process has been highly energy and cost intensive. The cement plant requires 8784 h per year of the total operating hours to produce 640,809 tonnes of clinker. To achieve effective and efficient energy management scheme, thermal energy audit analysis was employed on the pyroprocessing unit of the cement plant. Fuel combustion generates the bulk of the thermal energy for the process, amounting to 95.48% (4164.02 kJ/kg{sub cl}) of the total thermal energy input. Thermal efficiency of the unit stands at 41%, below 50-54% achieved in modern plants. The exhaust gases and kiln shell heat energy losses are in significant quantity, amounting to 27.9% and 11.97% of the total heat input respectively. To enhance the energy performance of the unit, heat losses conservation systems are considered. Waste heat recovery steam generator (WHRSG) and Secondary kiln shell were studied. Power and thermal energy savings of 42.88 MWh/year and 5.30 MW can be achieved respectively. Financial benefits for use of the conservation methods are substantial. Environmental benefit of 14.10% reduction in Greenhouse gases (GHG) emissions could be achieved. (author)

  6. Brazilian energy balance 1996: calendar year 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances

  7. Brazilian energy balance 1998: calendar year 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances

  8. Tiger Team Assessment of the Pittsburgh Energy Technology Center, [August 19--September 13, 1991

    International Nuclear Information System (INIS)

    1991-09-01

    This report documents the results of the Department of Energy (DOE) Tiger Team Assessment conducted at Pittsburgh Energy Technology Center (PETC) near Pittsburgh, Pennsylvania, between August 19 and September 13, 1991. A team comprised of professionals from the Department, its contractors, and consultants conducted the assessment. The purpose of the assessment was to provide the Secretary of Energy the status of environment, safety, and health (ES ampersand H) programs at PETC. A management assessment was performed

  9. Hanford Nuclear Energy Center: a conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H. (comp.)

    1978-09-30

    The objective of the study is to develop an improved understanding of the nuclear energy center (NEC) concept and to identify research and development needed to evaluate the concept fully. A specific context was selected for the study--the Hanford site. Thus, the study primarily addresses the HNEC concept, but the findings are extrapolated to generic NECs where possible. The major emphasis in the HNEC study was to explore potential technical and environmental problems in a specific context and in sufficient detail to evaluate potential problems and propose practical solutions. The areas of concern are typical of those considered in preparing environmental and safety analysis reports, including: topics dealing with engineering choices (e.g., site selection, heat sink management, electrical transmission, and reliability of generation); environmental matters (e.g., terrestrial and radiological effects); socioeconomic factors (e.g., community impacts); and licensing considerations.

  10. Climate Prediction Center (CPC) 6 to 10 Day Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues 6 to 10 day probabilistic precipitation outlooks for the United States. The 6-10 day Outlook gives the confidence that a...

  11. Climate Prediction Center (CPC) 8 to 14 Day Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues 8 to 14 day probabilistic precipitation outlooks for the United States. The 8-14 day Outlook gives the confidence that a...

  12. Climate Prediction Center (CPC) 6 to 10 Day Probabilistic Temperature Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues 6 to 10 day probabilistic temperature outlooks for the United States. The 6-10 day Outlook gives the confidence that a...

  13. Climate Prediction Center (CPC) 8 to 14 Day Probabilistic Temperature Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues 8 to 14 day probabilistic temperature outlooks for the United States. The 8-14 day Outlook gives the confidence that a...

  14. Assistance Focus: Asia/Pacific Region; Clean Energy Solutions Center (CESC)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-11

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to governments in the Asia/Pacific region, including the benefits of that assistance.

  15. Energy-conserving site-design case study, Radisson, New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Radisson is a 2,950-acre new community currently being developed by the New York State Urban Development Corporation and located in central New York, 12 miles north-west of Syracuse. Case-study sites selected for this project are a 95-acre residential site and the 51-acre Town Center of the new community. Development on the Residential Site is a low-density (2.8 dwelling units/acre) mixture of single-family, townhouse and multi-family units. Development on the Town Center site is a mixture of small-scale commercial use (144,000 sq. ft.) and 330+ multi-family dwelling units. Energy-conserving plans developed for both sites have focused on passive measures to reduce energy use for space heating. Utility-system options have been identified for both sites, but require further study as to feasibility and cost. This report summarizes energy savings and cost differentials due to passive measures incorporated in both the residential and Town Center Plans. The future implementation schedule, also discussed, summarizes the procedures an schedule required for implementation of the passive measures, as well as further study required for the development of utility-system options. 4 tables.

  16. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  17. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units

    International Nuclear Information System (INIS)

    Gao, Mingming; Hong, Feng; Liu, Jizhen

    2017-01-01

    Highlights: • The model of energy storage of subcritical CFB boilers is established. • The capacity and increment rate of heat storage are quantified. • A novel load control strategy is proposed to improve the quick load change ability. • An application on the 300 MW CFB unit proves the load change rate to 5–8 MW/min. - Abstract: The energy storage of circulating fluidized bed (CFB) boilers on fuel side cannot be ignored due to the special combustion type different from pulverized coal boilers. The sizable energy storage makes it possible for CFB units to enhance the quick load change ability and to increase the scale of new energy power connected into grid. Through mechanism analysis, the model of energy storage of subcritical CFB boilers has been established for the first time. Then by the project practice, the quantitative analysis is demonstrated for the capacity and control characteristics of energy storage on fuel side and steam water side. Based on the control characteristics and the transformation of the energy storage, a coordinated control system (CCS) control strategy named advanced energy balance (AEB) is designed to shorten the response time through the use of energy storage and to accelerate the load change speed of subcritical CFB units. Finally, a case study on a 300 MW CFB unit proves the feasibility of the proposed control strategy.

  18. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  19. Role and services of the Nuclear Energy Unit

    International Nuclear Information System (INIS)

    Ahmad Tajuddin bin Ali

    1985-01-01

    This article contains the research and development activities planned to be undertaken, and the services to be provided by the Nuclear Energy Unit. The fields of research have been selected to aid the development in the use of Nuclear Science and Technology, whilst the proposed services are geared towards widening the use to this technology in socio-economic development. Objectives in the research fields have been identified following a number of consultations with IAEA, foreign and local experts, and involved careful study of local requirements. The services provided will cater for all, especially institutions involved in nuclear technology both from the public and private sectors. This effort is in line with the role of the Unit as the national promoter and coordinator in the utilization of nuclear technology in the country

  20. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  1. Energy Optimized Envelope for Cold Climate Indoor Agricultural Growing Center

    Directory of Open Access Journals (Sweden)

    Caroline Hachem-Vermette

    2017-07-01

    Full Text Available This paper presents a study of the development of building envelope design for improved energy performance of a controlled indoor agricultural growing center in a cold climate zone (Canada, 54° N. A parametric study is applied to analyze the effects of envelope parameters on the building energy loads for heating, cooling and lighting, required for maintaining growing requirement as obtained in the literature. A base case building of rectangular layout, incorporating conventionally applied insulation and glazing components, is initially analyzed, employing the EnergyPlus simulation program. Insulation and glazing parameters are then modified to minimize energy loads under assumed minimal lighting requirement. This enhanced design forms a base case for analyzing effects of additional design parameters—solar radiation control, air infiltration rate, sky-lighting and the addition of phase change materials—to obtain an enhanced design that minimizes energy loads. A second stage of the investigation applies a high lighting level to the enhanced design and modifies the design parameters to improve performance. A final part of the study is an investigation of the mechanical systems and renewable energy generation. Through the enhancement of building envelope components and day-lighting design, combined heating and cooling load of the low level lighting configuration is reduced by 65% and lighting load by 10%, relative to the base case design. Employing building integrated PV (BIPV system, this optimized model can achieve energy positive status. Solid Oxide Fuel Cells (SOFC, are discussed, as potential means to offset increased energy consumption associated with the high-level lighting model.

  2. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  3. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  4. Energy efficiency and pollution control for thermal units in the Egyptian industry

    International Nuclear Information System (INIS)

    Said Abdel-wahab; Ismail, W.M.

    1999-01-01

    Energy conservation and environmental protection project (ECEP) is a Usaid sponsored project. Its main objective is to promote energy conservation and pollution protection in the egyptian industry through a group of demonstrated projects. One of the implemented activities is the boilers and furnaces tune-up program, which aims to increase energy efficiency and reduce pollution. To achieve this objective. (ECEP) distributed 100 electronic portable exhaust gas analyzers to cover eight industrial sectors at six different geographical locations in egypt. These analyzers were used to measure the contents of exhaust gases to help operators tune up their equipment on regular basis. The result is that the firing thermal units operate at the highest possible combustion efficiency to reduce the amount of fuel consumption as well as pollution emissions. The analyzer used measures two types of temperature, five different stack gases, draft and smoke density. moreover it computes the efficiency of combustion as well as Co2 and excess air percentage. Thermal units that rested by these analyzers were consuming a huge amount of fossil fuel from different types. The average combustion efficiency for thermal units tested was improved by 14%, 15% and 28% for boilers, furnaces and diesel respectively

  5. Annual Report (No. 2) of Center for Advanced Research of Energy Technology, Hokkaido University; Hokkaido Daigaku energy sentan kogaku kenkyu center nenpo dai 2 go

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Compiled into this report are the activities and achievements of the center in fiscal 1995. Under study in the field of carbonaceous resources conversion reaction are the high-molecular coagulation structure, pyrolysis and carbonization, ignition, complex conversion of resources together with other resources, etc. Under study in the field of carbonaceous resources assessment are catalytic chemistry, organic chemistry, physical chemistry, and analytical chemistry. Under study in the field of the control of energy conversion are the generation of high-temperature thermal energy and its conversion into electromagnetic energy. In the study of ultimate materials engineering, materials are studied for use under hostile conditions such as in a nuclear fusion reactor. As for papers published in fiscal 1995, there are 9 in the field of carbonaceous resources conversion reaction, 11 in the field of carbonaceous resources assessment, 7 in the field of energy conversion control, 10 in the field of ultimate materials engineering, and 4 in other fields. Published also are 9 articles covering general remarks, interpretations, and reviews. As for academic lectures, 13 are given in the field of carbonaceous resources conversion reaction, 14 in the field of carbonaceous resources assessment, 27 in the field of energy conversion control, and 39 in the field of ultimate materials engineering. (NEDO)

  6. Annual Report (No. 3) of Center for Advanced Research of Energy Technology, Hokkaido University; Hokkaido Daigaku energy sentan kogaku kenkyu center nenpo dai 3 go

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Compiled into this report are the activities and achievements of the center in fiscal 1996. Its studies in the field of carbonaceous resources conversion reaction involve the high-molecular coagulation structure, pyrolysis and carbonization, ignition, complex conversion of resources together with other resources, etc.Under study in the field of carbonaceous resources evaluation are catalytic chemistry, organic chemistry, physical chemistry, and analytical chemistry. Under study in the field of the control of energy conversion are the generation of high-temperature thermal energy and its conversion into electromagnetic energy. In the study of ultimate materials engineering, materials are studied for use under hostile conditions such as in a nuclear fusion reactor, atomic reactor, and combustion plasma. As for papers published in fiscal 1996, there are 19 in the field of carbonaceous resources conversion reaction, 17 in the field of carbonaceous resources assessment, 6 in the field of energy conversion control, and 26 in the field of ultimate materials engineering. Published also are 8 articles covering general remarks, interpretations, and reviews. As for academic lectures, 31 are given in the field of carbonaceous resources conversion reaction, 20 in the field of carbonaceous resources assessment, 30 in the field of energy conversion control, and 38 in the field of ultimate materials engineering. (NEDO)

  7. Annual Report (No. 4) of Center for Advanced Research of Energy Technology, Hokkaido University; Hokkaido Daigaku energy sentan kogaku kenkyu center nenpo dai 4 go

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Compiled into this report are the activities and achievements of the center in fiscal 1997. Under study in the field of carbonaceous resources conversion reaction are the high-molecular coagulation structure, pyrolysis and carbonization, ignition, complex conversion of resources together with other resources, etc. Under study in the field of carbonaceous resources assessment are catalytic chemistry, organic chemistry, physical chemistry, and analytical chemistry. Under study in the field of the control of energy conversion are the generation of high-temperature thermal energy and its conversion into electromagnetic energy. In the study of ultimate materials engineering, materials are studied for use under hostile conditions such as in a nuclear fusion reactor. As for papers published in fiscal 1997, there are 18 in the field of carbonaceous resources conversion reaction, 10 in the field of carbonaceous resources assessment, 13 in the field of energy conversion control, and 17 in the field of ultimate materials engineering. Published also are 10 articles covering general remarks, interpretations, and reviews. As for academic lectures, 26 are given in the field of carbonaceous resources conversion reaction, 13 in the field of carbonaceous resources assessment, 29 in the field of energy conversion control, and 45 in the field of ultimate materials engineering. (NEDO)

  8. Annual Report (No. 5) of Center for Advanced Research of Energy Technology, Hokkaido University; Hokkaido Daigaku energy sentan kogaku kenkyu center nenpo dai 5 go

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Compiled into this report are the activities and achievements of the center in fiscal 1998. Under study in the field of carbonaceous resources conversion reaction are the high-molecular coagulation structure, pyrolysis and carbonization, ignition, complex conversion of resources together with other resources, etc. Under study in the field of carbonaceous resources assessment are catalytic chemistry, organic chemistry, physical chemistry, and analytical chemistry. Under study in the field of the control of energy conversion are the generation of high-temperature thermal energy and its conversion into electromagnetic energy. In the study of ultimate materials engineering, materials are studied for use under hostile conditions such as in a nuclear fusion reactor. As for papers published in fiscal 1998, there are 24 in the field of carbonaceous resources conversion reaction, 8 in the field of carbonaceous resources assessment, 10 in the field of energy conversion control, and 17 in the field of ultimate materials engineering. Published also are 4 articles covering general remarks, interpretations, and reviews. As for academic lectures, 21 are given in the field of carbonaceous resources conversion reaction, 25 in the field of carbonaceous resources assessment, 23 in the field of energy conversion control, and 47 in the field of ultimate materials engineering. (NEDO)

  9. Energy Survey of Eisenhower Army Medical Center, Fort Gordon, Augusta, Georgia. Volume 2. Appendices

    National Research Council Canada - National Science Library

    1996-01-01

    ...) including low cost/no cost ECO's and perform complete evaluations of each. Energy equipment replacement projects already underway, approved, or planned by the Medical Center staff will be factored into the evaluations...

  10. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  11. Brazilian energy balance 1999: calendar year 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 1998. It is divided into nine sections: a summary from 1983 to 1998; energy supply and demand by source; energy consumption by sector; energy foreign trading; transformation centers balances; energy resources and reserves; energy and socio-economy; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances

  12. Brazilian energy balance 1995: calendar year 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 1998. It is divided into nine sections: a summary from 1979 to 1994; energy supply and demand by source; energy consumption by sector; energy foreign trading; transformation centers balances; energy resources and reserves; energy and socio-economy; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances

  13. Brazilian energy balance 1997: calendar year 1996

    International Nuclear Information System (INIS)

    1997-01-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 1998. It is divided into nine sections: a summary from 1981 to 1996; energy supply and demand by source; energy consumption by sector; energy foreign trading; transformation centers balances; energy resources and reserves; energy and socio-economy; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances

  14. Brazilian energy balance 2000: calendar year 1999

    International Nuclear Information System (INIS)

    2000-01-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 1999. It is divided into nine sections: a summary from 1984 to 1999; energy supply and demand by source; energy consumption by sector; energy foreign trading; transformation centers balances; energy resources and reserves; energy and socio-economy; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances

  15. Center for Beam Physics: 1994--95

    International Nuclear Information System (INIS)

    1995-05-01

    The Center for Beam Physics is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Lawrence Berkeley Laboratory of the University of California. At the heart of the Center's mission is a fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Dedicated to exploring the frontiers of particle and photon beam physics, its primary mission is to promote the science and technology of the production, manipulation, storage, and control of systems of charged particles and photons. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP's team and gives a brief review of the multifaceted activities during 1994 and 1995

  16. Womens Business Center

    Data.gov (United States)

    Small Business Administration — Women's Business Centers (WBCs) represent a national network of nearly 100 educational centers throughout the United States and its territories, which are designed...

  17. Affiliations of community health centers with the accredited schools and colleges of optometry in the states and territories of the United States.

    Science.gov (United States)

    2008-10-01

    In 2006, the American Optometric Association Community Health Center Committee surveyed schools/colleges of optometry in the United States and its territories to assess collaborations between community health centers and optometric institutions. The survey investigated the number and structure of affiliations that existed between Federally Qualified Health Centers and schools/colleges of optometry in the United States. The survey reached the schools through the American Optometric Association Faculty Relations Committee or personal contact (Inter-American University of Puerto Rico). The survey showed wide variation in affiliations of community health centers with optometry programs. Six schools had no affiliations, whereas the remaining 11 ranged from 1 to 14. Information relating to 37 community health centers was reported. Results showed that schools utilized community health centers for fourth-year students in 5 schools, and both third- and fourth-year students in the remaining 6 schools. Schools vary regarding how precepting is managed with either full-time faculty (64.9%) or adjunct faculty. Business models also vary between schools. Affiliations between school/colleges of optometry and community health centers differ considerably. Optometric affiliations with community health centers can result in increased access to eye care for underserved populations and increased clinical experience for optometry students and residents. Opportunities exist to establish additional affiliations. Educational benefits and costs associated with affiliations should be explored before entering into a collaborative model of eye care delivery.

  18. Aerial radiological survey of the United States Department of Energy's Battelle Nuclear Science Facility, West Jefferson, Ohio, date of survey: May 1977

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-05-01

    An aerial radiological survey to measure terrestrial gamma radiation was carried out over the United States Department of Energy's Battelle Nuclear Science Facility located in West Jefferson, Ohio. Gamma ray data were collected over a 5.5 km 2 area centered on the facility by flying east-west lines spaced 61 m apart. Processed data indicated that on-site radioactivity was primarily due to radionuclides currently being processed due to the hot lab operations. Off-site data showed the radioactivity to be due to naturally occurring background radiation consistent with variations due to geologic base terrain and land use of similar areas

  19. An office or a bedroom? Challenges for family-centered care in the pediatric intensive care unit.

    Science.gov (United States)

    Macdonald, Mary Ellen; Liben, Stephen; Carnevale, Franco A; Cohen, S Robin

    2012-09-01

    Although the modern pediatric intensive care unit (PICU) has followed general pediatrics and adopted the family-centered care model, little is known about how families prospectively experience PICU care. The authors' goal was to better understand the experiences of families whose child was hospitalized in a PICU. They conducted a 12-month prospective ethnographic study in a PICU in a tertiary care hospital in a large North American urban center. Data were obtained via participant-observation and formal and informal interviews with 18 families and staff key informants. Findings revealed a disconnect between the espoused model of family-centered care and quotidian professional practices. This divergence emerged in the authors' analysis as a heuristic that contrasts a professional "office" to a sick child's "bedroom." PICU practices and protocols transformed the child into a patient and parents into visitors; issues such as noise, visitation, turf, and privacy could favor staff comfort and convenience over that of the child and family. The authors' discussion highlights suggestions to overcome this divergence in order to truly make the PICU family centered.

  20. The International Center for Integrated Water Resources Management (ICIWaRM): The United States' Contribution to UNESCO IHP's Global Network of Water Centers

    Science.gov (United States)

    Logan, W. S.

    2015-12-01

    The concept of a "category 2 center"—i.e., one that is closely affiliated with UNESCO, but not legally part of UNESCO—dates back many decades. However, only in the last decade has the concept been fully developed. Within UNESCO, the International Hydrological Programme (IHP) has led the way in creating a network of regional and global water-related centers.ICIWaRM—the International Center for Integrated Water Resources Management—is one member of this network. Approved by UNESCO's General Conference, the center has been operating since 2009. It was designed to fill a niche in the system for a center that was backed by an institution with on-the-ground water management experience, but that also had strong connections to academia, NGOs and other governmental agencies. Thus, ICIWaRM is hosted by the US Army Corps of Engineers' Institute for Water Resources (IWR), but established with an internal network of partner institutions. Three main factors have contributed to any success that ICIWaRM has achieved in its global work: A focus on practical science and technology which can be readily transferred. This includes the Corps' own methodologies and models for planning and water management, and those of our university and government partners. Collaboration with other UNESCO Centers on joint applied research, capacity-building and training. A network of centers needs to function as a network, and ICIWaRM has worked together with UNESCO-affiliated centers in Chile, Brazil, Paraguay, the Dominican Republic, Japan, China, and elsewhere. Partnering with and supporting existing UNESCO-IHP programs. ICIWaRM serves as the Global Technical Secretariat for IHP's Global Network on Water and Development Information in Arid Lands (G-WADI). In addition to directly supporting IHP, work through G-WADI helps the center to frame, prioritize and integrate its activities. With the recent release of the United Nation's 2030 Agenda for Sustainable Development, it is clear that

  1. Study of a conceptual nuclear energy center at Green River, Utah: water allocation issues

    International Nuclear Information System (INIS)

    Harper, N.J.

    1982-04-01

    According to preliminary studies, operation of a nine-reactor Nuclear Energy Center near Green River, Utah would require the acquisition of 126,630 acre-feet per year. Groundwater aquifers are a potential source of supply but do not present a viable option at this time due to insufficient data on aquifer characteristics. Surface supplies are available from the nearby Green and San Rafael Rivers, tributaries of the Colorado River, but are subject to important constraints. Because of these constraints, the demand for a dependable water supply for a Nuclear Energy Center could best be met by the acquisition of vested water rights from senior appropriators in either the Green or San Rafael Rivers. The Utah Water Code provides a set of procedures to accomplish such a transfer of water rights

  2. U.S. Department of Energy's Genomics: GTL Bioenergy Research Centers White Paper

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-08-01

    The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy’s mission and goals.

  3. Economics of superconductive energy storage inductor-converter units in power systems

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1975-01-01

    Since the original proposal by Boom and Peterson in 1972, there has been growing interest in superconductive energy storage inductor converter units (IC units) for use in large power systems for peak shaving and load leveling. Different aspects of it are being studied at the University of Wisconsin and elsewhere. An economic study of such IC units shows that large IC units, bigger than about 1000 MWh, are economically competitive with other peaking alternatives, larger units being more economical. External electrical circuit losses in IC units have negligible effect on their storage and power capacities. There are three credits which could be of significant economic value to IC units. These are: (1) transmission credit which varied from about $4 to $60/kW peak power, with a typical value of about $35/kW; (2) pollution credit which varied from about $5 to $160/kW with a typical value of $80/kW; and Spinning Reserve Credit which varied from about $20 to $370/kW with a typical value of $90/kW

  4. Energy research and development in the United Kingdom: a discussion document. [Monograph

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This paper provides a framework for the future planning of United Kingdom research and development in energy technologies. It contains the first steps in the formulation of a national energy R and D strategy. Decision on energy R and D must be taken in the light of the overall aims of energy policies. The main objectives of energy policy are to meet the energy needs of the country at minimum cost in real resources over time, while paying due regard to security of supply, to public safety, to protection of the environment and, where major change is in prospect, to the social consequences of change.

  5. NIH Clinical Centers

    Data.gov (United States)

    Federal Laboratory Consortium — The NIH Clinical Center consists of two main facilities: The Mark O. Hatfield Clinical Research Center, which opened in 2005, houses inpatient units, day hospitals,...

  6. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  7. Allegheny County Municipal Building Energy and Water Use

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains energy and water use information from 2010 to 2014 for 144 County-operated buildings. Metrics include: kBtu (thousand British thermal units),...

  8. White Paper: Unleashing Energy Efficiency Retrofits Through Energy Performance Contracts in China and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Lynn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liu, Manzhi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meng, Lu [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miao, Pei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Fan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roshchanka, Volha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-15

    Energy performance contracting (EPC) is a mechanism that uses private sector investment and expertise to deploy energy efficiency retrofits in buildings, industries, and other types of facilities. China and the United States both have large, growing EPC markets. This White Paper shares key insights on each market, including strengths and barriers inherent to these markets, compares the two markets, and sets forth options for enhancing EPC markets in each country. The White Paper concludes with recommendations structured around common goals of both countries.

  9. Design electronic of manual control for cobalt unit Alcyon II of the National Center of Radiotherapy

    International Nuclear Information System (INIS)

    Morraz V, E.; Campos, X.

    2002-01-01

    A manual control for the cobalt unit, of French production, it was designed by the team of electronic of the national center of radiotherapy with materials found in the national trade. The control has the same characteristics that the original one and it is also adapted a switch from which you can control the lights of the room of the cobalt

  10. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  11. Conserving Our Energy. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 11.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with: (1) the importance of energy in students' everyday lives; (2) energy forms and…

  12. The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Mao, Ho-kwang

    2011-01-01

    'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO 2 , water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO 2 (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

  13. Socioeconomic impacts: study of a conceptual nuclear energy center at Green River, Utah

    International Nuclear Information System (INIS)

    Weaver, R.; Taylor, J.; Burnett, K.; Greenberg, B.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramifications of constructing a nuclear energy center (NEC) in an arid western region. In this phase of the study, the impacts on socioeconomic conditions in the surrounding communities and possible ways of financing and mitigating these impacts were examined. The general conclusion reached is that the socioeconomic impacts of a nuclear energy center in the Green River area of Southeastern Utah would not impose an absolute bar to NEC development. The economy of the NEC impact area would be substantially transformed by the NEC. In particular, Green River city itself would change from its current status as a relatively stable rural economy with an agricultural, mining, and recreation base to a major city with over 20,000 permanent relatively high income residents. The NEC, by itself, would provide a tax base more than adequate to finance required expansion of public facilities and public human service provisions

  14. Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center

    International Nuclear Information System (INIS)

    Rotty, R.M.; Bauman, H.; Bennett, L.L.

    1976-05-01

    Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makes an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected

  15. Socioeconomic impacts: study of a conceptual nuclear energy center at Green River, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, R.; Taylor, J.; Burnett, K.; Greenberg, B.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramifications of constructing a nuclear energy center (NEC) in an arid western region. In this phase of the study, the impacts on socioeconomic conditions in the surrounding communities and possible ways of financing and mitigating these impacts were examined. The general conclusion reached is that the socioeconomic impacts of a nuclear energy center in the Green River area of Southeastern Utah would not impose an absolute bar to NEC development. The economy of the NEC impact area would be substantially transformed by the NEC. In particular, Green River city itself would change from its current status as a relatively stable rural economy with an agricultural, mining, and recreation base to a major city with over 20,000 permanent relatively high income residents. The NEC, by itself, would provide a tax base more than adequate to finance required expansion of public facilities and public human service provisions.

  16. Brazilian energy balance 1999: 1983 to 1998 period

    International Nuclear Information System (INIS)

    1999-01-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the 1983 to 1998 period. It is divided into nine chapters, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy import and export; transformation centers balances; energy resources and reserves; energy and socio economy; energy data relating to brazilian states; and appendices - installed capacity, world data, general structure of the balance, information processing, conversion units and consolidated energy balance

  17. Brazilian energy balance 1999: 1983 to 1998 period

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the 1983 to 1998 period. It is divided into nine chapters, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy import and export; transformation centers balances; energy resources and reserves; energy and socio economy; energy data relating to brazilian states; and appendices - installed capacity, world data, general structure of the balance, information processing, conversion units and consolidated energy balance.

  18. Remapping of the Wind Energy Resource in the Midwestern United States: Preprint

    International Nuclear Information System (INIS)

    Schwartz, M.; Elliot, D.

    2001-01-01

    A recent increase in interest and development of wind energy in the Midwestern United States has focused the need for updating wind resource maps of this area. The wind resource assessment group at the National Renewable Energy Lab., a U.S. Department of Energy (DOE) laboratory, has produced updated high-resolution (1-km) wind resource maps for several states in this region. This abstract describes the computerized tools and methodology used by NREL to create the higher resolution maps

  19. The diverging paths of German and United States policies for renewable energy: Sources of difference

    International Nuclear Information System (INIS)

    Laird, Frank N.; Stefes, Christoph

    2009-01-01

    The United States and Germany started out with very similar policies for renewable energy after the energy crisis of the 1970s. By the year 2000 they were on very different policy paths and, as a result, the German renewable energy industry has moved well ahead of that in the United States, both in terms of installed capacity in the country and in terms of creating a highly successful export market. In this paper, we reject some of the conventional explanations for this difference. Instead, these differences arise from the intersection of contingent historical events with the distinctive institutional and social structures that affect policy making in each country. Our analysis of the historical path-dependent dynamics of each country suggests that those who wish to further renewable energy policy in the United States need to take into account these institutional and social factors so that they will better be able to exploit the next set of favorable historical circumstances.

  20. Functional unit, technological dynamics, and scaling properties for the life cycle energy of residences.

    Science.gov (United States)

    Frijia, Stephane; Guhathakurta, Subhrajit; Williams, Eric

    2012-02-07

    Prior LCA studies take the operational phase to include all energy use within a residence, implying a functional unit of all household activities, but then exclude related supply chains such as production of food, appliances, and household chemicals. We argue that bounding the functional unit to provision of a climate controlled space better focuses the LCA on the building, rather than activities that occur within a building. The second issue explored in this article is how technological change in the operational phase affects life cycle energy. Heating and cooling equipment is replaced at least several times over the lifetime of a residence; improved efficiency of newer equipment affects life cycle energy use. The third objective is to construct parametric models to describe LCA results for a family of related products. We explore these three issues through a case study of energy use of residences: one-story and two-story detached homes, 1,500-3,500 square feet in area, located in Phoenix, Arizona, built in 2002 and retired in 2051. With a restricted functional unit and accounting for technological progress, approximately 30% of a building's life cycle energy can be attributed to materials and construction, compared to 0.4-11% in previous studies.

  1. 76 FR 12955 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2011-03-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-78-000] CenterPoint Energy Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed Line AM- 46 Replacement Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review The staff of the...

  2. Annual Energy Review 2002

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2003-10-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2002. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration (EIA) under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications. Related Publication: Readers of the AER may also be interested in EIA’s Monthly Energy Review, which presents monthly updates of many of the data in the AER. Contact our National Energy Information Center for more information.

  3. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2016-01-01

    Highlights: • The parameter effect on the performance of PCTES unit using fins is reported. • The configurations of PCTES unit using fins in optimum performance are suggested. • Two parameters to indicate the effects of PCM and tube material properties are found. • The working conditions of PCTES unit using fins in optimum performance are analyzed. - Abstract: The performance of a phase change thermal energy storage (PCTES) unit using circular finned tube is affected by many parameters. Thorough studies of the parameter effect on the performance of PCTES unit are strongly required in its optimum design process. Based on a reported energy efficiency ratio and a newly defined parameter named the heat storage rate, the parameter effect on the performance of PCTES unit using circular finned tube is numerically investigated. When the fin pitch is greater than 4 times of the inner radius of the tube, the fin height and the fin thickness have little effect on the energy efficiency ratio and the heat storage rate. When the fin pitch is small, the performance of PCTES unit becomes better using large fin height and width. The energy efficiency ratio and the heat storage rate are more sensitive to the outer tube diameter. The performance of PCTES unit using circular finned tube is best when water is used as the heat transfer fluid (HTF). When the fluid flow of HTF is in a laminar state, the energy efficiency ratio and the heat storage rate are larger than that in a turbulent state.

  4. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  5. An example of a United States Nuclear Research Center

    International Nuclear Information System (INIS)

    Bhattacharyya, S. K.

    1999-01-01

    Under the likely scenario in which public support for nuclear energy remains low and fossil fuels continue to be abundant and cheap, government supported nuclear research centers must adapt their missions to ensure that they tackle problems of current significance. It will be critical to be multidisciplinary, to generate economic value, and to apply nuclear competencies to current problems. Addressing problems in nuclear safety, D and D, nuclear waste management, nonproliferation, isotope production are a few examples of current needs in the nuclear arena. Argonne's original mission, to develop nuclear reactor technology, was a critical need for the U.S. in 1946. It would be wise to recognize that this mission was a special instance of a more general one--to apply unique human and physical capital to long term, high risk technology development in response to society's needs. International collaboration will enhance the collective chances for success as the world moves into the 21st century

  6. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  7. Migration energy barriers of symmetric tilt grain boundaries in body-centered cubic metal Fe

    International Nuclear Information System (INIS)

    Wu, Minghui; Gu, Jianfeng; Jin, Zhaohui

    2015-01-01

    Graphical abstract: DFT calculated migration energy barrier (left) for symmetric grain boundary in metals is an essential physical property to measure the trend of grain boundary migration, in particular, in terms of the classical homogeneous nucleation model of GB dislocation/disconnection loops (right). - Migration energy barriers of two symmetric tilt grain boundaries in body-centered cubic metal Fe are obtained via first-principles calculations in combination with the nudged elastic band methods. Although the two grain boundaries show similar grain boundary energies, the migration energy barriers are different. Based on a homogeneous nucleation theory of grain-boundary dislocation loops, the calculated energy barrier provides a measure of intrinsic grain-boundary mobility and helps to evaluate effects due to vacancy and interstitial atoms such as carbon

  8. Radiation decontamination unit for the community hospital

    International Nuclear Information System (INIS)

    Waldron, R.L. II; Danielson, R.A.; Shultz, H.E.; Eckert, D.E.; Hendricks, K.O.

    1981-01-01

    Freestanding radiation decontamination units including surgical capability can be developed and made operational in small/medium sized community hospitals at relatively small cost and with minimal plant reconstrution. The Radiological Assistance Program of the United States Department of Energy and the Radiation Emergency Assistance Center Training Site of Oak Rige Associated Universities are ready to support individual hospitals and physicians in this endeavor. Adequate planning rather than luck, should be used in dealing with potential radiation accident victims. The radiation emergency team is headed by a physician on duty in the hospital. The senior administrative person on duty is responsible for intramural and extramural communications. Rapid mobilization of the radiation decontamination unit is important

  9. Intelligent Distributed Generation and Storage Units for DC Microgrids - A New Concept on Cooperative Control without Communications Beyond Droop Control

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    . Typically, voltage droop loops are used for interconnecting several different units in parallel to a microgrid. This paper proposes a new decentralized strategy based on fuzzy logic that ensures stored energy balance, for a low voltage DC microgrid with distributed battery energy storage systems......Low voltage DC microgrids have been widely used for supplying critical loads, such as data centers and remote communication stations. Consequently, it is important to ensure redundancy and enough energy capacity in order to support possible increments in load consumption. This is achieved by means...... of expansion of the energy storage system by adding extra distributed energy storage units. However, using distributed energy storage units adds more challenges in microgrids control, since stored energy should be balanced in order to avoid deep discharge or over-charge in one of the energy storage units...

  10. China’s Growing Energy Demand: Implications for the United States

    Science.gov (United States)

    2015-06-01

    14 increase to 30 GW by 2020.28 In substitutes for transportation fuel, China is also increasing its capacity to produce bioethanol and biodiesel ...Policies to address higher or more volatile oil prices could give U.S. consumers more flexibility in using oil-based transportation or could reduce...the transportation sector. Even so, the use of energy per person in China was only about a quarter of the energy per person used in the United States

  11. Brazilian energy balance 2006: calendar year 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 2006. It is divided into nine chapters: energy analysis and aggregated data; energy supply and consumption by source 1990/2005; energy consumption by sector 1990/2005; energy import and export 1990/2005; transformation center balances 1990/2005; Brazilian energy resources and reserves 1974/2005; energy and socio-economic 1990/2005; federal states data and appendices including installed capacity; world energy data; general structure of the Brazilian Energy Balance; treatment of information; conversion units and consolidated Energy Balance 1970-2005

  12. Activities of the Sofia EC Energy Center in the framework of the THERMIE programme. Dejnost na centyra po energetika na EO v Sofia v ramkite na programata TERMIE

    Energy Technology Data Exchange (ETDEWEB)

    Latinski, K

    1993-01-01

    The European Community Energy Center in Sofia is responsible for the EC implementation of the THERMIE programme. The programme's activities are promotion and dissemination of existing European technologies leading to better energy management and covering the fields of rational use of hydrocarbons, solid fuels and renewable energy sources. Application of these technologies would lead to substantial energy savings resulting in significant financial and environmental benefits. During its one-year operation the EC Energy Centre has organized and performed specific action as energy audits (food and beverage industrial units and buildings), demonstration projects (local heating control in buildings, diesel engine regulation of buses), training courses and seminars (in energy management and in space heating measuring and regulation), workshops (energy conservation in buildings, the bricks and clays sector and the food and beverage sector) and studies (wind energy potential, 'clean' coal technologies potential). Some of these actions have had very encouraging results showing potential energy savings of the order of 10-20% just by application of simple measures and with small additional investment. The activities of the EC Energy Centre in the coming year aimed at electricity savings along the entire line of electricity generation, transmission and consumption are outlined. (author).

  13. A study on the evaluation of ventilation system suitable for outside air cooling applied in large data center for energy conservation

    International Nuclear Information System (INIS)

    Kwon, Yong Il

    2016-01-01

    In developed countries, expansion of communication technology has resulted in continual increase in the construction of data centers with high-density cooling loads. Throughout a year, IT equipment installed in a data center generates large and constant cooling load. As a result, data centers may be consuming an ever-growing amount of energy. The cooling system utilizing the energy of outside air is applied universally to reduce data center energy consumption. The application of the cooling system to the outdoor air cooling system of a data center considers that temperature efficiency and ventilation performance vary depending on the type of ventilation system. The displacement and mixed ventilation method can be applied generally to a data center. The efficiency of a ventilation system depends on inside temperature or contaminant concentrations in room and outlets. This study thus aims to evaluate the ventilation performance that varies according to type of ventilation system installed in the data center. Ventilation efficiency is assessed by applying the concept of total air age and considers the fresh air ratio and age of return air. Further, temperature efficiency gained by utilizing temperature difference is used to assess causes for changes in ventilation performance.

  14. A study on the evaluation of ventilation system suitable for outside air cooling applied in large data center for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Il [Shinhan University, Euijungbu (Korea, Republic of)

    2016-05-15

    In developed countries, expansion of communication technology has resulted in continual increase in the construction of data centers with high-density cooling loads. Throughout a year, IT equipment installed in a data center generates large and constant cooling load. As a result, data centers may be consuming an ever-growing amount of energy. The cooling system utilizing the energy of outside air is applied universally to reduce data center energy consumption. The application of the cooling system to the outdoor air cooling system of a data center considers that temperature efficiency and ventilation performance vary depending on the type of ventilation system. The displacement and mixed ventilation method can be applied generally to a data center. The efficiency of a ventilation system depends on inside temperature or contaminant concentrations in room and outlets. This study thus aims to evaluate the ventilation performance that varies according to type of ventilation system installed in the data center. Ventilation efficiency is assessed by applying the concept of total air age and considers the fresh air ratio and age of return air. Further, temperature efficiency gained by utilizing temperature difference is used to assess causes for changes in ventilation performance.

  15. Geothermal Energy Development in the Eastern United States. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    This document represents the final report from the Applied Physics Laboratory (APL) of The Johns Hopkins University on its efforts on behalf of the Division of Geothermal Energy (DGE) of the Department of Energy (DOE). For the past four years, the Laboratory has been fostering development of geothermal energy in the Eastern United States. While the definition of ''Eastern'' has changed somewhat from time to time, basically it means the area of the continental United States east of the Rocky Mountains, plus Puerto Rico but excluding the geopressured regions of Texas and Louisiana. During these years, the Laboratory developed a background in geology, hydrology, and reservoir analysis to aid it in establishing the marketability of geothermal energy in the east. Contrary to the situation in the western states, the geothermal resource in the east was clearly understood to be inferior in accessible temperature. On the other hand, there were known to be copious quantities of water in various aquifers to carry the heat energy to the surface. More important still, the east possesses a relatively dense population and numerous commercial and industrial enterprises, so that thermal energy, almost wherever found, would have a market. Thus, very early on it was clear that the primary use for geothermal energy in the east would be for process heat and space conditioning--heating and cool electrical production was out of the question. The task then shifted to finding users colocated with resources. This task met with modest success on the Atlantic Coastal Plain. A great deal of economic and demographic analysis pinpointed the prospective beneficiaries, and an intensive ''outreach'' campaign was mounted to persuade the potential users to invest in geothermal energy. The major handicaps were: (1) The lack of demonstrated hydrothermal resources with known temperatures and expected longevity; and (2) The lack of a &apos

  16. 75 FR 43571 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; Environmental Assessment And...

    Science.gov (United States)

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-413 and 50-414; NRC-2010-0260] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; Environmental Assessment And Finding of No Significant... Energy Carolinas, LLC (the licensee), for operation of the Catawba Nuclear Station, Units 1 and 2...

  17. Brazilian energy balance 1996: 1980 to 1995 period

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the 1980 to 1995 period. It`s divided into nine chapters, as follows: summary; energy supply and consumption by source; energy import and export; transformation centers balances; energy sources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances 1 fig., 68 graphs., 145 tabs.

  18. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  19. Center for beam physics 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Center for Beam Physics (CBP) is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Ernest Orlando Lawrence Berkeley National Laboratory of the University of California. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Special features of the Center`s program include addressing R&D issues needing long development time and providing a platform for conception, initiation, and support of institutional projects based on beams. The Center brings to bear a significant amount of diverse, complementary, and self-sufficient expertise in accelerator physics, synchrotron radiation, advanced microwave techniques, plasma physics, optics, and lasers on the forefront R&D issues in particle and photon beam research. In addition to functioning as a clearinghouse for novel ideas and concepts and related R&D (e.g., various theoretical and experimental studies in beam physics such as nonlinear dynamics, phase space control, laser-beam-plasma interaction, free-electron lasers, optics, and instrumentation), the Center provides significant support to Laboratory facilities and initiatives. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP`s outstanding team and gives a flavor of their multifaceted activities during 1996 and 1997.

  20. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  1. Disparities in Geographic Accessibility of National Cancer Institute Cancer Centers in the United States.

    Science.gov (United States)

    Xu, Yanqing; Fu, Cong; Onega, Tracy; Shi, Xun; Wang, Fahui

    2017-11-11

    The National Cancer Institute (NCI) Cancer Centers form the backbone of the cancer care system in the United States since their inception in the early 1970s. Most studies on their geographic accessibility used primitive measures, and did not examine the disparities across urbanicity or demographic groups. This research uses an advanced accessibility method, termed "2-step floating catchment area (2SFCA)" and implemented in Geographic Information Systems (GIS), to capture the degree of geographic access to NCI Cancer Centers by accounting for competition intensity for the services and travel time between residents and the facilities. The results indicate that urban advantage is pronounced as the average accessibility is highest in large central metro areas, declines to large fringe metro, medium metro, small metro, micropolitan and noncore rural areas. Population under the poverty line are disproportionally concentrated in lower accessibility areas. However, on average Non-Hispanic White have the lowest geographic accessibility, followed by Hispanic, Non-Hispanic Black and Asian, and the differences are statistically significant. The "reversed racial disadvantage" in NCI Cancer Center accessibility seems counterintuitive but is consistent with an influential prior study; and it is in contrast to the common observation of co-location of concentration of minority groups and people under the poverty line.

  2. Energy market environments in Europe and the United States

    International Nuclear Information System (INIS)

    Puettgen, H.B.; Haubrich, H.J.; Stotz, J.; Winje, D.; Klappa, G.; Denton, D.H.

    1997-01-01

    On July 21, the technical program of the IEEE Power Engineering Society (PES) 1997 Summer Meeting began with a joint plenary, cosponsored by VDE-ETG. Simultaneous translation allowed the audience to listen to the presentations in either German or English. Emerging Energy Market Environments in Europe and the United states was chaired by H.J. Haubrich, RWTH, and H.B. Puettgen, Georgia Institute of Technology. Following welcome addresses and introductory remarks by E.F. Peschke, chair or the local organizing committee, K. Bechtold, BEWAG, Berlin, H. Wolters, VDE chair, L. Bochanky, ETG chair, Charles K. Alexander, IEEE president, and Robert A. Dent, PES president, the following presentations were given: The Process of Integration of the East and West European Networks, Juergen Stotz, VEAG, Germany; Electric Power Turns into a Commodity: A Change of Paradigm in the Power Industry, Dietmar Winje, BEWAG, Germany; The Brave New World of Customer Satisfaction, Gale Klappa, Southwest Utilities, United Kingdom; Deregulation Risks and Opportunities, Donald H. Denton, Jr., Duke Power Company, United States. Summaries of the four presentations are included

  3. Brazilian energy balance 2008 - year 2007

    International Nuclear Information System (INIS)

    2008-01-01

    The Brazilian energy balance - BEB - is divided into eight chapters and eleven annexes, whose contents are as follow: chapter 1 - energy analysis and aggregated data; chapter 2 - energy supply and demand by source; chapter 3 - energy consumption by sector; chapter 4 - energy imports and exports; chapter 5 - balance of transformation centers; chapter 6 - energy resources and reserves; chapter 7 - energy and socioeconomics; chapter 8 - state energy data; annex I - installed capacity; annex II - self-generation of electricity; annex III - world energy data; annex IV - world energy evolution; annex V - useful energy balance; annex VI - general structure of the BEN; annex VII - treatment of information; annex VIII - units; annex IX - conversion factors; annex X - consolidated energy balances 1970/2007; annex XI - energy balance 2007. (author)

  4. Spatiotemporal Co-variability of Surface Climate for Renewable Energy across the Contiguous United States: Role of the North Atlantic Subtropical High

    Science.gov (United States)

    Doering, K.; Steinschneider, S.

    2017-12-01

    The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.

  5. Development of the Nordic Bioeconomy: NCM reporting: Test centers for green energy solutions - Biorefineries and business needs

    DEFF Research Database (Denmark)

    Lange, Lene; Björnsdóttir, Bryndís; Brandt, Asbjørn

    In 2014 the Nordic Council of Ministers initiated a new bioeconomy project: “Test centers for green energy solutions – Biorefineries and Busi-ness needs”. The purpose was to strengthen green growth in the area of the bioeconomy by analyzing and mapping the current status of the bio-economy in the......In 2014 the Nordic Council of Ministers initiated a new bioeconomy project: “Test centers for green energy solutions – Biorefineries and Busi-ness needs”. The purpose was to strengthen green growth in the area of the bioeconomy by analyzing and mapping the current status of the bio...

  6. Evaluation of the online-presence (homepage) of burn units/burn centers in Germany, Austria and Switzerland.

    Science.gov (United States)

    Selig, H F; Lumenta, D B; König, C; Andel, H; Kamolz, L P

    2012-05-01

    A successful online presence is an important key factor in the competition among hospitals today. However, little is known about the internet presence and the quality of websites of burn units on the World Wide Web. The aim was to assess the online presence of hospitals provided by specialized burn units in German speaking countries with a focus on the rate and the performance of actively run websites. A multicenter, observational, cross-sectional study was performed over a period of 1.5 month (October-December 2010). Forty-four burn units were assessed by using a previously generated criteria list. The list included 36 criteria with following topics: "research and teaching"; "patient care"; "clinical emphases", "general information"; "information brokerage". Overall, the websites examined offered a good overview about their different online services with many multimedia-based elements included. All websites consisted of hyperlinks, general multimedia-based elements and information on means of communication with the hospital, respectively. In contrast, the quality of specific information for burn patients was relatively poor. With regard to the need of elderly people, the usability and the layout, the different websites offer a lot of options for future improvements. Burn centers in Germany, Austria and Switzerland already consider the World Wide Web as an important tool for self-promotion and communication. The potential of burn center websites to function as a knowledge base for first aid as well as preventive measurements should be considered and realized in future web site designs. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  7. 78 FR 39279 - United States Department of Energy; Bonneville Power Administration; Notice of Petition for...

    Science.gov (United States)

    2013-07-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ13-10-000] United States Department of Energy; Bonneville Power Administration; Notice of Petition for Declaratory Order Take notice... (OATT) and a Petition for Declaratory Order requesting the Commission find that Bonneville's OATT, as...

  8. Career Counseling Centers in Higher Education: A Study of Cross-Cultural Applications from the United States to Korea

    Science.gov (United States)

    Goh, Michael; Lee, Je-Kyung

    2003-01-01

    Interest in career development and career counseling is growing in Korea. Nevertheless, neither the research nor the literature adequately address the question as to what applications can be cross-culturally transferred from career counseling centers in the United States to Korea. This study qualitatively examines the practice of career counseling…

  9. The Wind Energy Workforce Gap in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne I [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-14

    There are more than 100,000 jobs in the U.S. wind industry today, and the second-fastest growing job in the United States in 2017 was wind technician. A vibrant wind industry needs workers, and students who graduate from wind energy education and training programs need jobs. The goal of this research is to better understand the needs of wind-related businesses, education and training requirements, and the make-up of current and future domestic workforces. Educators are developing and training future workers. Educational institutions need to know which courses to provide to connect students with potential employers and to justify their wind energy programs by being able to place graduates into well-paying jobs. In interviews with 250 wind energy firms and 50 educational institutions, many respondents reported difficulty hiring qualified candidates, while many educational institutions reported graduates not finding jobs in the wind industry. We refer to this mismatch as the 'workforce gap.' This conference poster explores this gap.

  10. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  11. Technical, environmental, and socioeconomic factors associated with dry-cooled nuclear energy centers

    International Nuclear Information System (INIS)

    1976-04-01

    The report includes a review of the current state-of-the-art of dry-cooling technology for industrial and power-generating facilities and an evaluation of its technical potential and cost for large nuclear power plants. Criteria are formulated for coarse screening of the arid regions of the Western United States to select a surrogate site for more detailed site-specific analyses. The screening criteria included seismic considerations, existing transportation facilities, institutional and jurisdictional constraints, waste heat dissipation effects, water requirements, and ecologic and socioeconomic considerations. The Galt site near Las Vegas, Nevada was selected for the surrogate site analysis to assess important issues related to the construction and operation of twelve dry-cooled nuclear power plants at an arid location remote from major load centers. The assessment covers geotechnical, atmospheric and hydrologic considerations, special aspects of transporting large equipment overland to the site from seaports, analyses of potential transmission routes to major load centers, local institutional and taxing provisions, and ecologic and socioeconomic impacts

  12. Technical, environmental, and socioeconomic factors associated with dry-cooled nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    The report includes a review of the current state-of-the-art of dry-cooling technology for industrial and power-generating facilities and an evaluation of its technical potential and cost for large nuclear power plants. Criteria are formulated for coarse screening of the arid regions of the Western United States to select a surrogate site for more detailed site-specific analyses. The screening criteria included seismic considerations, existing transportation facilities, institutional and jurisdictional constraints, waste heat dissipation effects, water requirements, and ecologic and socioeconomic considerations. The Galt site near Las Vegas, Nevada was selected for the surrogate site analysis to assess important issues related to the construction and operation of twelve dry-cooled nuclear power plants at an arid location remote from major load centers. The assessment covers geotechnical, atmospheric and hydrologic considerations, special aspects of transporting large equipment overland to the site from seaports, analyses of potential transmission routes to major load centers, local institutional and taxing provisions, and ecologic and socioeconomic impacts.

  13. Cotton gin trash in the western United States: Resource inventory and energy conversion characterization

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.G.; Quinn, M.W.; Whittier, J.P. [NEOS Corp., Lakewood, CO (United States); Cohen, T.M.; Lansford, R.R. [New Mexico State Univ., Las Cruces, NM (United States); Craig, J.D. [Cratech Inc., Tahoka, TX (United States); Swanson, D.S.; Morgan, G. [Western Regional Biomass Energy Program, Golden, CO (United States)

    1993-12-31

    The disposal of wastes associated with the processing of cotton is posing increasing problems for cotton gin operators in the western United States. Traditional disposal methods, such as open-air incineration and landfilling are no longer adequate due to increasing environmental concerns. This paper evaluates the technical, economic and environmental feasibility for cotton gin trash to serve as an energy resource. Cotton gin trash has been quantified, by county, in the five cotton-growing states of the western United States. The energy conversion technology that appears to offer the most promise is gasification. An economic evaluation model has been developed that will allow gin operators to analyze their own situation to determine the profitability of converting gin trash to energy.

  14. Measurement of integrated luminosity and center-of-mass energy of data taken by BESIII at

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Küuhn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; (BESIII Collaboration

    2017-11-01

    To study the nature of the state Y (2175), a dedicated data set of e+e- collision data was collected at the center-of-mass energy of 2.125 GeV with the BESIII detector at the BEPCII collider. By analyzing large-angle Bhabha scattering events, the integrated luminosity of this data set is determined to be 108.49±0.02±0.85 pb-1, where the first uncertainty is statistical and the second one is systematic. In addition, the center-of-mass energy of the data set is determined with radiative dimuon events to be 2126.55±0.03±0.85 MeV, where the first uncertainty is statistical and the second one is systematic. Supported in part by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11235011, 11322544, 11335008, 11425524, 11635010, 11675184, 11735014), the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particles and Interactions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1232201, U1332201, U1532257, U1532258), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS; National 1000 Talents Program of China; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG (Collaborative Research Center CRC 1044, FOR 2359), Istituto Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (NSFC) (11505010), The Swedish Resarch Council; U. S. Department of Energy (DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069), U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  15. A Multiagent Energy Management System for a Small Microgrid Equipped with Power Sources and Energy Storage Units

    Science.gov (United States)

    Radziszewska, Weronika; Nahorski, Zbigniew

    An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.

  16. Prospects of Nuclear Energy in the United States in the 21st Century

    International Nuclear Information System (INIS)

    Newman, R. E.

    1988-01-01

    The Nuclear Industry is now over 40 years old and a proven, mature product has been developed. That proven mature product has evolve into a small set of standardized designs - designs based on evolution of the best and safest features, not revolutionary changes. Just as the product design must be standardized, the regulatory process must also be standardized. With a predictable regulatory environment and rate structure the economic advantages of Nuclear Power will be self-evident. The Nuclear Industry in the United States has had a history of cycles as the economy and need for power has changed. The need for electricity to support growth is a given. With a strong focus on the standardization of the process and the product, a competent engineering approach to safety, and improved economies, the 21st century will see nuclear power assume its appropriate role as a key source in the energy mix in the United States. Presenting a discussion dealing with the future is always a risky thing. One man's prognosis is another mans wild guess. Today, I would like to talk briefly on my views of the future, and especially my views on the Prospects for Nuclear Energy in the U. S. in that future. Though it is clear that nuclear energy will play a key role in fulfilling the energy needs of the world, the future of nuclear energy in the United States is not as clear. A discussion of the future of the U. S. Nuclear Industry is especially appropriate here today because I am firmly confident that the Republic of Korea will play a major role in that future. The world energy situation and the role of nuclear power has undergone a number of upsets in the last decade. Often we tend to dwell on the gloom of the past and overlook the strengths that the Nuclear Industry has developed. Presently over 437 gigawatts of electricity in the world is planned to be produced by 564 nuclear units. There are over 32 countries with commercial nuclear programs. One of the brightest of these being here in

  17. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    International Nuclear Information System (INIS)

    Linnanto, J.M.; Korppi-Tommola, J.E.I.

    2009-01-01

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency

  18. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, J.M. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)], E-mail: juha.m.linnanto@jyu.fi; Korppi-Tommola, J.E.I. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)

    2009-02-23

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency.

  19. United States Energy Association Final Report International Partnership for the Hydrogen Economy Ministerial Conference

    Energy Technology Data Exchange (ETDEWEB)

    William L. Polen

    2006-04-05

    This report summarizes the activities of the United States Energy Association as it conducted the initial Ministerial Meeting of the International Partnership for the Hydrogen Economy in Washington, DC on November 18-21, 2003. The report summarizes the results of the meeting and subsequent support to the Office of Energy Efficiency and Renewable Energy in its role as IPHE Secretariat.

  20. Review of optical wireless communications for data centers

    Science.gov (United States)

    Arnon, Shlomi

    2017-10-01

    A data center (DC) is a facility either physical or virtual, for running applications, searching, storage, management and dissemination of information known as cloud computing, which consume a huge amount of energy. A DC includes thousands of servers, communication and storage equipment and a support system including an air conditioning system, security, monitoring equipment and electricity regulator units. Data center operators face the challenges of meeting exponentially increasing demands for network bandwidth without unreasonable increases in operation and infrastructure cost. In order to meet the requirements of moderate increase in operation and infrastructure cost technology, a revolution is required. One way to overcome the shortcomings of traditional static (wired) data center architectures is use of a hybrid network based on fiber and optical wireless communication (OWC) or free space optics (FSO). The OWC link could be deployed on top of the existing cable/fiber network layer, so that live migration could be done easily and dynamically. In that case the network topology is flexible and adapts quickly to changes in traffic, heat distribution, power consumption and characteristics of the applications. In addition, OWC could provide an easy way to maintain and scale up data centers. As a result total cost of ownership could be reduced and the return on investment could be increased. In this talk we will review the main OWC technologies applicable for data centers, indicate how energy could be saved using OWC multichannel communication and discuss the issue of OWC pointing accuracy for data center scenario.

  1. The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology): Lessons Learned from an Innovative Research-Education-Outreach Center at Colorado School of Mines

    Science.gov (United States)

    Hogue, T. S.; Blaine, A. C.; Martin, A. C.

    2016-12-01

    The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology) is a testament to the power of collaboration and innovation. WE2ST began as a partnership between ConocoPhillips (foundation gift) and the Colorado School of Mines (CSM) with the goal of fostering solutions to water-energy challenges via education, research and outreach. The WE2ST center is a training ground for the next generation of water-energy-social scientists and engineers and is a natural fit for CSM, which is known for its expertise in water resources, water treatment technologies, petroleum engineering, geosciences, and hydrology. WE2ST has nine contributing faculty researchers that combine to create a web of expertise on sustainable energy and water resources. This research benefits unconventional energy producers, water-reliant stakeholders and the general public. Areas of focus for research include water sources (quality and quantity), integrated water-energy solution viability and risk, and social-corporate responsibility. The WE2ST Center currently provides annual support for 8-9 Graduate Fellows and 13 Undergraduate Scholars. Top-tier graduate students are recruited nationally and funded similar to an NSF Graduate Research Fellowship (GRF). Undergraduate Scholars are also recruited from across the CSM campus to gain experience in faculty laboratories and on research teams. All WE2ST students receive extensive professional skills training, leadership development, communication skills training, networking opportunities in the water-energy industries, and outreach opportunities in the community. The corner stone of the WE2ST Center is a focus on communication with the public. Both in social science research teams and in general interactions with the public, WE2ST seeks to be "an honest broker" amidst a very passionate and complex topic. WE2ST research is communicated by presentations at technical conferences, talking with people at public gatherings

  2. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  3. A Survey of Intravenous Remifentanil Use for Labor Analgesia at Academic Medical Centers in the United States.

    Science.gov (United States)

    Aaronson, Jaime; Abramovitz, Sharon; Smiley, Richard; Tangel, Virginia; Landau, Ruth

    2017-04-01

    Remifentanil is most commonly offered when neuraxial labor analgesia is contraindicated. There is no consensus regarding the optimal administration, dosing strategy, or requirements for maternal monitoring, which may pose a patient safety issue. This exploratory survey evaluated the current practices regarding remifentanil use for labor analgesia at academic centers in the United States. Of 126 obstetric anesthesia directors surveyed, 84 (67%) responded. In 2014 to 2015, an estimated 36% (95% confidence interval: 25.7-46.3) of centers used remifentanil, most of which did so less than 5 times. Some serious maternal and neonatal respiratory complications occurred, emphasizing that clinical protocols and adequate monitoring are key to ensure maternal and neonatal safety.

  4. An Energy History of the United States. Grades 8-9. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy.

    Science.gov (United States)

    National Science Teachers Association, Washington, DC.

    This instructional unit contains eight classroom lessons dealing with a history of energy in the United States for use in grade eight and nine social studies, science, and mathematics courses. The lessons were developed by teachers. The overall objective is to help students understand the present necessity to reexamine and perhaps alter our…

  5. Characterization of edible marijuana product exposures reported to United States poison centers.

    Science.gov (United States)

    Cao, Dazhe; Srisuma, Sahaphume; Bronstein, Alvin C; Hoyte, Christopher O

    2016-11-01

    Edible marijuana products are sold as brownies, cookies, and candies, which may be indistinguishable from counterparts without marijuana and are palatable to children and adults. The consumption of an entire product containing multiple dose-units may result in overdose. To characterize edible marijuana exposures reported to US poison centers with subgroup analysis by age. We analyzed single substance, human exposure calls coded to marijuana brownies, candies, cookies, beverages, or other foods reported to the National Poison Data System from January 2013 to December 2015. Calls were analyzed by state, age, gender, exposure route, clinical effect, therapies, and level of healthcare facility utilization. Four-hundred and thirty calls were reported: Colorado (N = 166, 1.05/100,000 population/year) and Washington (96, 0.46) yielded the highest number of exposures. Three hundred and eighty-one (91%) calls occurred in states with decriminalized medical/recreational marijuana. The number of calls increased every year of the study. The most common age groups were: ≤5 years (N = 109, 0.15/100,000 population/year) and 13-19 (78, 0.09). The most frequent clinical effects were drowsiness/lethargy (N = 118, percentage = 43%), tachycardia (84, 31%), agitated/irritable (37, 14%), and confusion (37, 14%). Children ≤5 years have more drowsiness/lethargy, ataxia, and red eye/conjunctivitis. No deaths were reported. The most common therapies administered were intravenous fluids (85, 20%), dilute/irrigate/wash (48, 11 %), and benzodiazepines (47, 11%). Three patients (ages 4, 10, and 57 years) received intubation. 97 (23%), 217 (50%), and 12 (3%) calls were managed at home, treated/released, admitted to a critical care unit, respectively. Although most clinical effects are minor, ventilatory support may be necessary for children and adults. We speculate the increasing exposures may be related to a combination of delayed absorption kinetics of Δ9

  6. Clean Energy in City Codes: A Baseline Analysis of Municipal Codification across the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dane, Alexander [National Renewable Energy Lab. (NREL), Golden, CO (United States); Day, Megan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Sivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Municipal governments in the United States are well positioned to influence clean energy (energy efficiency and alternative energy) and transportation technology and strategy implementation within their jurisdictions through planning, programs, and codification. Municipal governments are leveraging planning processes and programs to shape their energy futures. There is limited understanding in the literature related to codification, the primary way that municipal governments enact enforceable policies. The authors fill the gap in the literature by documenting the status of municipal codification of clean energy and transportation across the United States. More directly, we leverage online databases of municipal codes to develop national and state-specific representative samples of municipal governments by population size. Our analysis finds that municipal governments with the authority to set residential building energy codes within their jurisdictions frequently do so. In some cases, communities set codes higher than their respective state governments. Examination of codes across the nation indicates that municipal governments are employing their code as a policy mechanism to address clean energy and transportation.

  7. Household energy consumption in the United States, 1987 to 2009: Socioeconomic status, demographic composition, and energy services profiles

    Science.gov (United States)

    Kemp, Robert J.

    This dissertation examines household energy consumption in the United States over the period of 1987 to 2009, specifically focusing on the role of socioeconomic status, demographic composition, and energy services profiles. The dissertation makes use of four cross-sections from the Residential Energy Consumption Survey data series to examine how household characteristics influence annual energy consumption overall, and by fuel type. Chapter 4 shows that household income is positively related to energy consumption, but more so for combustible fuel consumption than for electricity consumption. Additionally, results for educational attainment suggest a less cross-sectional association and more longitudinal importance as related to income. Demographic composition matters, as predicted by the literature; household size and householder age show predicted effects, but when considered together, income explains any interaction between age and household size. Combustible fuels showed a far greater relationship to housing unit size and income, whereas electricity consumption was more strongly related to educational attainment, showing important differences in the associations by fuel type. Taken together, these results suggest a life course-based model for understanding energy consumption that may be strongly linked to lifestyles. Chapter 5 extends the findings in Chapter 4 by examining the patterning of physical characteristics and behaviors within households. The chapter uses Latent Class Analysis to examine a broad set of energy significant behaviors and characteristics to discover five unique energy services profiles. These profiles are uniquely patterned across demographic and socioeconomic compositions of households and have important effects on energy consumption. These profiles are likely byproducts of the lifestyles in which the household takes part, due to factors such as their socioeconomic status and household demographic composition. Overall, the dissertation

  8. Characterization of the southwest United States for the production of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; Folger, A.G.

    1987-03-01

    The southwest United States, an area of diverse climate, topography, terrain, soils, and vegetation, is characterized to determine the feasibility of growing terrestrial energy crops there. The emphasis in the study is on delineating general zones of relative resource and environmental suitability, which are then evaluated to estimate the potential of the region for energy crop production. 100 refs., 25 figs., 24 tabs.

  9. Energy from the wind. [For United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, P J

    1977-01-01

    An assessment is made of the amount of power/energy in the wind with emphasis on calculations for the United Kingdom. Windmills must be deployed over a given area in a pattern that takes account of the distribution of directions from which the wind can be expected. In the U.K., one such array can be provided in the Western Isles. The author recommends deploying such an array in the shallow waters of the southern North Sea. He concludes that deploying such an array in the shallow offshore region would have the potential for providing a very significant part of the total electricity requirements. He also concludes that such a wind-power system appears competitive with nuclear power systems. 8 references. (MCW)

  10. Hydrogen-based energy storage unit for stand alone PV systems

    International Nuclear Information System (INIS)

    Labbe, J.

    2006-12-01

    Stand alone systems supplied only by a photovoltaic generator need an energy storage unit to be fully self sufficient. Lead acid batteries are commonly used to store energy because of their low cost, despite several operational constraints. A hydrogen-based energy storage unit (HESU) could be another candidate, including an electrolyser, a fuel cell and a hydrogen tank. However many efforts still need to be carried out for this technology to reach an industrial stage. In particular, market outlets must be clearly identified. The study of small stationary applications (few kW) is performed by numerical simulations. A simulator is developed in the Matlab/Simulink environment. It is mainly composed of a photovoltaic field and a storage unit (lead acid batteries, HESU, or hybrid storage HESU/batteries). The system component sizing is achieved in order to ensure the complete system autonomy over a whole year of operation. The simulator is tested with 160 load profiles (1 kW as a yearly mean value) and three locations (Algeria, France and Norway). Two coefficients are set in order to quantify the correlation between the power consumption of the end user and the renewable resource availability at both daily and yearly scales. Among the tested cases, a limit value of the yearly correlation coefficient came out, enabling to recommend the use of the most adapted storage to a considered case. There are cases for which using HESU instead of lead acid batteries can increase the system efficiency, decrease the size of the photovoltaic field and improve the exploitation of the renewable resource. In addition, hybridization of HESU with batteries always leads to system enhancements regarding its sizing and performance, with an efficiency increase by 10 to 40 % depending on the considered location. The good agreement between the simulation data and field data gathered on real systems enabled the validation of the models used in this study. (author)

  11. United States of America Department of Energy Environmental Management Advisory Committee Public Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This reports contains documentation of presentations given at the United States of America Department of Energy Environmental Management Advisory Committee Public Meeting held December 14--15, 1993 in Alexandria, Virginia.

  12. 75 FR 43572 - Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and...

    Science.gov (United States)

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-369 and 50-370; NRC-2010-0259] Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and Finding of No Significant... Energy Carolinas, LLC (the licensee), for operation of the McGuire Nuclear Station, Units 1 and 2...

  13. Projectile Coulomb center effects on low-energy electron emission from H[sup +][yields]Ne collisions

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S. (Centro Atomico Bariloche e Inst. Balseiro, Comision Nacional de Energia Atomica, S.C. de Bariloche, Rio Negro (Argentina)); Garibotti, C. (Centro Atomico Bariloche e Inst. Balseiro, Comision Nacional de Energia Atomica, S.C. de Bariloche, Rio Negro (Argentina) Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)); Bernardi, G. (Centro Atomico Bariloche e Inst. Balseiro, Comision Nacional de Energia Atomica, S.C. de Bariloche, Rio Negro (Argentina) Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)); Focke, P. (Centro Atomico Bariloche e Inst. Balseiro, Comision Nacional de Energia Atomica, S.C. de Bariloche, Rio Negro (Argentina)); Meckbach, W. (Centro Atomico Bariloche e Inst. Balseiro, Comision Nacional de Energia Atomica, S.C. de Bariloche, Rio Negro (Argentina) Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina))

    1994-03-01

    We present doubly differential energy distributions of low-energy electrons emitted in collisions of 106 keV H[sup +] on Ne atoms. We find a relevant dependence of the measured distribution of low-energy electrons on the physical extension of the gas target and discuss a correction procedure. Our measurements enable a quantitative analysis of the shape of the soft electron peak, which is clearly evidenced by measured contour lines. Present results indicate that ''two center effects'' must be considered in order to account for the strong asymmetry of the soft electron peak observed experimentaly. (orig.)

  14. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan [School of Information Science & Technology, Chengdu University of Technology, Chengdu (China); Wu, Qi-fan [Department of Engineering Physics, Tsinghua University, Beijing (China)

    2017-06-21

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  15. NNDC [National Nuclear Data Center] support for fusion nuclear data needs

    International Nuclear Information System (INIS)

    Dunford, C.L.

    1988-01-01

    The National Data Center (NNDC) located at Brookhaven National Laboratory is an outgrowth of the Sigma Center founded by D.J. Hughes to compile low energy neutron reaction data in the 1950's. The center has played a lead role in the production of evaluated nuclear data (ENDF/B) for the United States nuclear power program. This data file, now in its sixth version, is produced as a cooperative effort of many DOE funded organizations via the Cross Section Evaluation Working Group (GSEWG). The NNDC's role, in addition to providing the structure and leadership for CSEWG, is to supply compiled bibliographic and experimental data and provide file processing, checking, distribution and documentation services. In the past, the NNDC has also produced nuclear data evaluations.lt. slash

  16. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  17. Energy drink exposures reported to Texas poison centers: Analysis of adverse incidents in relation to total sales, 2010-2014.

    Science.gov (United States)

    Borron, Stephen W; Watts, Susan H; Herrera, Jessica; Larson, Joshua; Baeza, Salvador; Kingston, Richard L

    2018-05-21

    The ill-defined term "energy drink" includes a disparate group of products (beverages, shots, concentrates, and workout powders) having large differences in caffeine content and concentration and intended use. Hence, inaccurate conclusions may be drawn when describing adverse events associated with "energy drinks". The FDA is considering new regulation of these products but product specificity is needed to evaluate safety. To help address this, we queried Texas Poison Center Network data for single substance exposures to "energy drinks" from 2010 to 2014, then analyzed adverse events by product type. We specifically compared energy beverage exposures with sales data for the same time period to evaluate the safety profile of this category of energy drinks. Among 855 documented "energy drink" exposures, poison center-determined outcome severity revealed 291 with no/minimal effects, 417 judged nontoxic or minor/not followed, 64 moderate and 4 major effects, and no deaths. Serious complications included 2 seizures and 1 episode of ventricular tachycardia. Outcome severity by category for beverages: 11 moderate/1 major effects (none in children energy drinks". Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Use of antivenom for snakebites reported to United States poison centers.

    Science.gov (United States)

    Spiller, Henry A; Bosse, George M; Ryan, Mark L

    2010-09-01

    In 2001, a new antivenin was introduced to the United States and became widely available in the snakebite season of 2002. We investigated what impact this may have had on snakebite treatment and medical outcome. The study used a retrospective review of all snakebites to humans reported to the National Poison Center Database System from 2000 to 2007. During the 8 years, there were 37,760 snakebites, with a mean of 4720 bites per year. There was a 27% increase in bites reported to a Poison center for the 8-year period and an overall 13.5% increase in the use of antivenin. The 2 categories primarily responsible for the increased use of antivenin were copperhead and crotaline-unknown. Rattlesnake bites remained the category most frequently treated with antivenin with a mean 52.5% treatment rate and only moderate increase for the 8 years. There was no change in the percentage or number of patients with a major outcome (mean, 3.8%) or death (mean, 0.5%). There was a decrease in patients with a minor outcome and an increase in patients with a moderate outcome. The new antivenin is reported to have a reduced potential for adverse reactions. This may have had a role in the decision of which snakebite victims received antivenin. With the introduction of a new antivenin, there has been a dramatic increase in the number of snakebite patients treated with antivenin. This has been most noticeable in snake bite categories that were less frequently treated with antivenin in the past. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. An Analysis of Information Technology Adoption by IRBs of Large Academic Medical Centers in the United States.

    Science.gov (United States)

    He, Shan; Botkin, Jeffrey R; Hurdle, John F

    2015-02-01

    The clinical research landscape has changed dramatically in recent years in terms of both volume and complexity. This poses new challenges for Institutional Review Boards' (IRBs) review efficiency and quality, especially at large academic medical centers. This article discusses the technical facets of IRB modernization. We analyzed the information technology used by IRBs in large academic institutions across the United States. We found that large academic medical centers have a high electronic IRB adoption rate; however, the capabilities of electronic IRB systems vary greatly. We discuss potential use-cases of a fully exploited electronic IRB system that promise to streamline the clinical research work flow. The key to that approach utilizes a structured and standardized information model for the IRB application. © The Author(s) 2014.

  20. Issues in clustered nuclear siting: a comparison of a hypothetical nuclear energy center in New Jersey with dispersed nuclear siting

    International Nuclear Information System (INIS)

    Meier, P.M.; Morell, D.

    1976-09-01

    The report is an analysis of a hypothetical nuclear energy center (NEC) conducted in support of the recently completed study by the Nuclear Regulatory Commission, mandated by the Congress in the Energy Reorganization Act of 1974. The intent of the analysis of the hypothetical, or ''surrogate'', site was to inject a local and regional perspective into the assessment of technical, environmental, institutional, and socioeconomic issues which could be adequately addressed only by reference to a specific site. The hypothetical NEC site in Ocean County, New Jersey, was chosen to illustrate the problems and impacts of potential energy centers in coastal and near-coastal sites in relatively close proximity to large metropolitan areas. Earlier studies of hypothetical energy centers on the Mississippi River at River Bend, La., and on the Columbia River near Hanford, Washington, were also re-examined for their relevance to this new study effort. Neither Ocean County, nor any of the other surrogate sites, have been considered for actual construction of an NEC, nor does their selection for study purposes imply any judgement of desirability. Indeed, the major finding of the report presented is that Ocean County is a relatively poor location for an energy center, and this may well be true of many coastal locations similar to the Jersey shore. The objective in selecting surrogate sites, then, was not to find the best locations, but to select sites that would illustrate the broadest range of potential public policy and siting issues

  1. Quality of laparoscopic radical hysterectomy in developing countries: a comparison of surgical and oncologic outcomes between a comprehensive cancer center in the United States and a cancer center in Colombia.

    Science.gov (United States)

    Pareja, Rene; Nick, Alpa M; Schmeler, Kathleen M; Frumovitz, Michael; Soliman, Pamela T; Buitrago, Carlos A; Borrero, Mauricio; Angel, Gonzalo; Reis, Ricardo Dos; Ramirez, Pedro T

    2012-05-01

    To help determine whether global collaborations for prospective gynecologic surgery trials should include hospitals in developing countries, we compared surgical and oncologic outcomes of patients undergoing laparoscopic radical hysterectomy at a large comprehensive cancer center in the United States and a cancer center in Colombia. Records of the first 50 consecutive patients who underwent laparoscopic radical hysterectomy at The University of Texas MD Anderson Cancer Center in Houston (between April 2004 and July 2007) and the first 50 consecutive patients who underwent the same procedure at the Instituto de Cancerología-Clínica las Américas in Medellín (between December 2008 and October 2010) were retrospectively reviewed. Surgical and oncologic outcomes were compared between the 2 groups. There was no significant difference in median patient age (US 41.9 years [range 23-73] vs. Colombia 44.5 years [range 24-75], P=0.09). Patients in Colombia had a lower median body mass index than patients in the US (24.4 kg/m(2) vs. 28.7 kg/m(2), P=0.002). Compared to patients treated in Colombia, patients who underwent surgery in the US had a greater median estimated blood loss (200 mL vs. 79 mL, P<0.001), longer median operative time (328.5 min vs. 235 min, P<0.001), and longer postoperative hospital stay (2 days vs. 1 day, P<0.001). Surgical and oncologic outcomes of laparoscopic radical hysterectomy were not worse at a cancer center in a developing country than at a large comprehensive cancer center in the United States. These results support consideration of developing countries for inclusion in collaborations for prospective surgical studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. National Energy Software Center: compilation of program abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.M.; Butler, M.K.; De Bruler, M.M.

    1979-05-01

    This is the third complete revision of program abstracts undertaken by the Center. Programs of the IBM 7040, 7090, and CDC 3600 vintage have been removed. Historical data and information on abstract format, program package contents, and subject classification are given. The following subject areas are included in the library: cross section and resonance integral calculations; spectrum calculations, generation of group constants, lattice and cell problems; static design studies; depletion, fuel management, cost analysis, and power plant economics; space-independent kinetics; space--time kinetics, coupled neutronics--hydrodynamics--thermodynamics and excursion simulations; radiological safety, hazard and accident analysis; heat transfer and fluid flow; deformation and stress distribution computations, structural analysis and engineering design studies; gamma heating and shield design; reactor systems analysis; data preparation; data management; subsidiary calculations; experimental data processing; general mathematical and computing system routines; materials; environmental and earth sciences; electronics, engineering equipment, and energy systems studies; chemistry; particle accelerators and high-voltage machines; physics; magnetic fusion research; data. (RWR)

  3. National Energy Software Center: compilation of program abstracts

    International Nuclear Information System (INIS)

    Brown, J.M.; Butler, M.K.; De Bruler, M.M.

    1979-05-01

    This is the third complete revision of program abstracts undertaken by the Center. Programs of the IBM 7040, 7090, and CDC 3600 vintage have been removed. Historical data and information on abstract format, program package contents, and subject classification are given. The following subject areas are included in the library: cross section and resonance integral calculations; spectrum calculations, generation of group constants, lattice and cell problems; static design studies; depletion, fuel management, cost analysis, and power plant economics; space-independent kinetics; space--time kinetics, coupled neutronics--hydrodynamics--thermodynamics and excursion simulations; radiological safety, hazard and accident analysis; heat transfer and fluid flow; deformation and stress distribution computations, structural analysis and engineering design studies; gamma heating and shield design; reactor systems analysis; data preparation; data management; subsidiary calculations; experimental data processing; general mathematical and computing system routines; materials; environmental and earth sciences; electronics, engineering equipment, and energy systems studies; chemistry; particle accelerators and high-voltage machines; physics; magnetic fusion research; data

  4. Impact of a Hanford Nuclear Energy Center on ground level fog and humidity

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1977-03-01

    This document presents the details of a study of the atmospheric impacts of an Hanford Nuclear Energy Center (HNEC) that might result from the use of evaporative cooling alternatives. Specific cooling systems considered include once-through river cooling, cooling ponds, cooling towers, helper cooling ponds and towers and hybrid wet/dry cooling towers. The specific impacts evaluated are increases in fog and relative humidity

  5. Estimating caffeine intake from energy drinks and dietary supplements in the United States.

    Science.gov (United States)

    Bailey, Regan L; Saldanha, Leila G; Gahche, Jaime J; Dwyer, Johanna T

    2014-10-01

    No consistent definition exists for energy products in the United States. These products have been marketed and sold as beverages (conventional foods), energy shots (dietary supplements), and in pill or tablet form. Recently, the number of available products has surged, and formulations have changed to include caffeine. To help characterize the use of caffeine-containing energy products in the United States, three sources of data were analyzed: sales data, data from federal sources, and reports from the Drug Abuse Warning Network. These data indicate that sales of caffeine-containing energy products and emergency room visits involving their consumption appear to be increasing over time. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 indicate that 2.7% [standard error (SE) 0.2%] of the US population ≥1 year of age used a caffeine-containing energy product, providing approximately 150-200 mg/day of caffeine per day in addition to caffeine from traditional sources like coffee, tea, and colas. The highest usage of these products was among males between the ages of 19 and 30 years (7.6%, SE 1.0). Although the prevalence of caffeine-containing energy product use remains low overall in the US population, certain subgroups appear to be using these products in larger amounts. Several challenges remain in determining the level of caffeine exposure from and accurate usage patterns of caffeine-containing energy products. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. [Differences in attachment and personality in children from child guidance centers, child psychiatry units, and control families].

    Science.gov (United States)

    Zimmermann, Peter; Scheuerer-Englisch, Hermann

    2013-01-01

    Insecure attachment and deficits in self-regulation as personality traits are risk factors for the development of psychopathological symptoms from infancy on. This study examines differences in attachment and personality in late childhood, comparing children from non-clinical families, from a child guidance center, and child psychiatry units with in-patient care. Children's attachment representations, their attachment behavior strategy, reported distressing parental behavior, their emotional openness, and attachment coherency were assessed with the Late Childhood Attachment Interview (LCAI). Ego-resiliency, ego-undercontrol, field-independence, aggressiveness, and anxiety were assessed by means of the California Child Q-Sort. The results show clear attachment differences, with the child guidance group showing more attachment insecurity in the LCAI compared to the control group, and the psychiatric in-patient group even more attachment insecurity, more distressing parenting from both mother and father, and more attachment disorganization than the other two groups. Whereas children from the child guidance center and the child psychiatry unit did not differ in personality, both groups were significantly different from the control group in all personality dimensions. The results suggest that personality differences may be a risk factor for behaviour problems, however problem severity and the choice of the treatment institution seem to be influenced by attachment security.

  7. Center for beam physics 1996-1997

    International Nuclear Information System (INIS)

    1997-02-01

    The Center for Beam Physics (CBP) is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Ernest Orlando Lawrence Berkeley National Laboratory of the University of California. At the heart of the Center's mission is the fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Special features of the Center's program include addressing R ampersand D issues needing long development time and providing a platform for conception, initiation, and support of institutional projects based on beams. The Center brings to bear a significant amount of diverse, complementary, and self-sufficient expertise in accelerator physics, synchrotron radiation, advanced microwave techniques, plasma physics, optics, and lasers on the forefront R ampersand D issues in particle and photon beam research. In addition to functioning as a clearinghouse for novel ideas and concepts and related R ampersand D (e.g., various theoretical and experimental studies in beam physics such as nonlinear dynamics, phase space control, laser-beam-plasma interaction, free-electron lasers, optics, and instrumentation), the Center provides significant support to Laboratory facilities and initiatives. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP's outstanding team and gives a flavor of their multifaceted activities during 1996 and 1997

  8. Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving

    Science.gov (United States)

    Santi, S. S.; Renanto; Altway, A.

    2018-01-01

    The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.

  9. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  10. K+Λ and K+Σ0 photoproduction with fine center-of-mass energy resolution

    International Nuclear Information System (INIS)

    Jude, T.C.; Glazier, D.I.; Watts, D.P.; Aguar-Bartolomé, P.; Akasoy, L.K.; Annand, J.R.M.; Arends, H.J.; Bantawa, K.; Beck, R.; Bekrenev, V.S.; Berghäuser, H.; Braghieri, A.; Branford, D.; Briscoe, W.J.; Brudvik, J.; Cherepnya, S.; Demissie, B.T.; Dieterle, M.; Downie, E.J.; Fil'kov, L.V.

    2014-01-01

    Measurements of γp→K + Λ and γp→K + Σ 0 cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel K + meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy (W) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark–diquark dynamics in the nucleon

  11. Brazilian energy balance 2013 - calendar year 2012: final report

    International Nuclear Information System (INIS)

    2013-01-01

    The BEB is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1- Energy analysis and aggregated data- presents energy highlights per source in 2012 and analyses the evolution of the domestic energy supply and its relationship with economic growth in 2012; Chapter 2- Energy supply and demand by source- has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3- Energy consumption by sector- presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4- Energy imports and exports- presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5- Balance of transformation centers- presents the energy balances for the energy transformation centers including their losses; Chapter 6- Energy resources and reserves- has the basic concepts use in the survey of resources and reserves of primary energy sources; Chapter 7- Energy and socioeconomics- contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8- State energy data- presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential; Relating to annexes the current structure is presented bellow: Annex 1- Installed capacity- shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining; Annex 2- Self-production of electricity- presents disaggregated data of self-production, considering sources and sectors. Annex 3- World energy data- presents the main indicators for the production, import, export and consumption per energy source and region; Annex 4- Useful

  12. Brazilian energy balance 2012 - calendar year 2011: final report

    International Nuclear Information System (INIS)

    2012-01-01

    The BEB is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1- energy analysis and aggregated data- presents energy highlights per source in 2012 and analyses the evolution of the domestic energy supply and its relationship with economic growth in 2011; Chapter 2 - Energy supply and demand by source- has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3 - Energy consumption by sector- presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4 - Energy imports and exports- presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5 - Balance of transformation centers - presents the energy balances for the energy transformation centers including their losses; Chapter 6 - Energy resources and reserves- has the basic concepts use in the survey of resources and reserves of primary energy sources; Chapter 7- Energy and socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8- State energy data- presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential; Relating to annexes the current structure is presented bellow: Annex 1- Installed capacity- shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining.; Annex 2- Self-production of electricity- presents disaggregated data of self-production, considering sources and sectors. Annex 3- World energy data- presents the main indicators for the production, import, export and consumption per energy source and region; Annex 4

  13. Brazilian energy balance 2014 - calendar year 2013: final report

    International Nuclear Information System (INIS)

    2014-01-01

    The BEB is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1- Energy analysis and aggregated data- presents energy highlights per source in 2012 and analyses the evolution of the domestic energy supply and its relationship with economic growth in 2013; Chapter 2- Energy supply and demand by source- has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3- Energy consumption by sector- presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4- Energy imports and exports- presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5- Balance of transformation centers- presents the energy balances for the energy transformation centers including their losses; Chapter 6- Energy resources and reserves- has the basic concepts use in the survey of resources and reserves of primary energy sources; Chapter 7- Energy and socioeconomics- contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8- State energy data- presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential; Relating to annexes the current structure is presented bellow: Annex 1- Installed capacity- shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining.; Annex 2- Self-production of electricity- presents disaggregated data of self-production, considering sources and sectors. Annex 3- World energy data- presents the main indicators for the production, import, export and consumption per energy source and region; Annex 4- Useful

  14. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Patrick [Oregon State Univ., Corvallis, OR (United States)

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  15. Solar Energy: A Middle School Unit. Environmental Education Occasional Paper No. 2.

    Science.gov (United States)

    Mason, Jack L.; Cantrell, Joseph S.

    This collection of teaching activities was developed to provide teachers with guidance in presenting solar energy education to students of middle school age. The unit provides activities presenting learning opportunities involving: (1) passive solar collectors, (2) active solar collectors, (3) concentrating collectors, and (4) photovoltaic cell…

  16. State Clean Energy Policies Analysis (SCEPA) Project: An Analysis of Renewable Energy Feed-in Tariffs in the United States (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Couture, T.; Cory, K.

    2009-06-01

    This report analyzes renewable energy feed-in tariff (FIT) policies and explores the different FIT policies currently implemented in the United States. It also discusses of a few proposed policies, the best practices in FIT policy design, and examines how FITs can be used to target state policy goals. The report covers current and potential future interactions between FITs and other state and federal energy policies while also providing an overview of the impacts FIT policies have in terms of renewable energy deployment, job creation, and economic development.

  17. David Grant Medical Center energy use baseline and integrated resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Richman, E.E.; Hoshide, R.K.; Dittmer, A.L.

    1993-04-01

    The US Air Mobility Command (AMC) has tasked Pacific Northwest Laboratory (PNL) with supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy resource opportunities (EROs) at the David Grant Medical Center (DGMC). This report describes the methodology used to identify and evaluate the EROs at DGMC, provides a life-cycle cost (LCC) analysis for each ERO, and prioritizes any life-cycle cost-effective EROs based on their net present value (NPV), value index (VI), and savings to investment ratio (SIR or ROI). Analysis results are presented for 17 EROs that involve energy use in the areas of lighting, fan and pump motors, boiler operation, infiltration, electric load peak reduction and cogeneration, electric rate structures, and natural gas supply. Typical current energy consumption is approximately 22,900 MWh of electricity (78,300 MBtu), 87,600 kcf of natural gas (90,300 MBtu), and 8,300 gal of fuel oil (1,200 MBtu). A summary of the savings potential by energy-use category of all independent cost-effective EROs is shown in a table. This table includes the first cost, yearly energy consumption savings, and NPV for each energy-use category. The net dollar savings and NPV values as derived by the life-cycle cost analysis are based on the 1992 federal discount rate of 4.6%. The implementation of all EROs could result in a yearly electricity savings of more than 6,000 MWh or 26% of current yearly electricity consumption. More than 15 MW of billable load (total billed by the utility for a 12-month period) or more than 34% of current billed demand could also be saved. Corresponding natural gas savings would be 1,050 kcf (just over 1% of current consumption). Total yearly net energy cost savings for all options would be greater than $343,340. This value does not include any operations and maintenance (O&M) savings.

  18. David Grant Medical Center energy use baseline and integrated resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Richman, E.E.; Hoshide, R.K.; Dittmer, A.L.

    1993-04-01

    The US Air Mobility Command (AMC) has tasked Pacific Northwest Laboratory (PNL) with supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy resource opportunities (EROs) at the David Grant Medical Center (DGMC). This report describes the methodology used to identify and evaluate the EROs at DGMC, provides a life-cycle cost (LCC) analysis for each ERO, and prioritizes any life-cycle cost-effective EROs based on their net present value (NPV), value index (VI), and savings to investment ratio (SIR or ROI). Analysis results are presented for 17 EROs that involve energy use in the areas of lighting, fan and pump motors, boiler operation, infiltration, electric load peak reduction and cogeneration, electric rate structures, and natural gas supply. Typical current energy consumption is approximately 22,900 MWh of electricity (78,300 MBtu), 87,600 kcf of natural gas (90,300 MBtu), and 8,300 gal of fuel oil (1,200 MBtu). A summary of the savings potential by energy-use category of all independent cost-effective EROs is shown in a table. This table includes the first cost, yearly energy consumption savings, and NPV for each energy-use category. The net dollar savings and NPV values as derived by the life-cycle cost analysis are based on the 1992 federal discount rate of 4.6%. The implementation of all EROs could result in a yearly electricity savings of more than 6,000 MWh or 26% of current yearly electricity consumption. More than 15 MW of billable load (total billed by the utility for a 12-month period) or more than 34% of current billed demand could also be saved. Corresponding natural gas savings would be 1,050 kcf (just over 1% of current consumption). Total yearly net energy cost savings for all options would be greater than $343,340. This value does not include any operations and maintenance (O M) savings.

  19. THE CLEAN ENERGY MANUFACTURING JOB MARKET AND ITS ROLE IN THE UNITED STATES ECONOMY

    OpenAIRE

    Plaskacz, Audrey

    2009-01-01

    This paper provides an overview of green jobs in the United States, with a focus on synthesizing various estimates of the current and future number of green jobs, and relating these to estimates of the future number of clean energy manufacturing jobs. In doing so, it answers the following two research questions: ?can lost manufacturing jobs become clean energy jobs?? and ?can existing manufacturing jobs be saved from disappearing by transforming into clean energy jobs?? By combining current f...

  20. Wind Energy Finance in the United States: Current Practice and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, Paul D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Feldman, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Settle, Donald E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fields, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-08

    In the United States, investment in wind energy has averaged nearly $13.6 billion annually since 2006 with more than $140 billion invested cumulatively over that period (BNEF 2017). This sizable investment activity demonstrates the persistent appeal of wind energy and its increasing role in the U.S electricity generation portfolio. Despite its steady investment levels over the last decade, some investors still consider wind energy as a specialized asset class. Limited familiarity with the asset class both limit the pool of potential investors and drive up costs for investors. This publication provides an overview of the wind project development process, capital sources and financing structures commonly used, and traditional and emerging procurement methods. It also provides a high-level demonstration of how financing rates impact a project's all-in cost of energy. The goal of the publication is to provide a representative and wide-ranging resource for the wind development and financing processes.

  1. Brazilian energy balance 2010 - year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    The Brazilian energy balance - BEB - is divided into eight chapters and ten annexes, whose contents are as follow: chapter 1 - energy analysis and aggregated data - presents energy highlights per source in 2009 and analyses the evolution of the internal offer of energy and its relationship with economic growth in 2009; chapter 2 - energy supply and demand by source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; chapter 3 - energy consumption by sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy; chapter 4 - energy imports and exports - presents the evolution of the data on the import and export of energy and the dependence on external energy; chapter 5 - balance of transformation centers - presents the energy balances for the energy transformation centers including their losses; chapter 6 - energy resources and reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources, with the evolution of the data from 1974 to 2009, through graphs and tables; chapter 7 - energy and socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8 - state energy data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. (author)

  2. Brazilian energy balance 2009 - year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    The Brazilian energy balance - BEB - is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1 - Energy Analysis and Aggregated Data - presents energy highlights per source in 2008 and analyses the evolution of the internal offer of energy and its relationship with economic growth in 2008; Chapter 2 - Energy Supply and Demand by Source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3 - Energy Consumption by Sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4 - Energy Imports and Exports - presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5 - Balance of Transformation Centers - presents the energy balances for the energy transformation centers including their losses; Chapter 6 - Energy Resources and Reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources, with the evolution of the data from 1974 to 2008, through graphs and tables; Chapter 7 - Energy and Socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8 - State Energy Data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. (author)

  3. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  4. The Intensive Care Unit Perspective of Becoming a Level I Trauma Center: Challenges of Strategy, Leadership, and Operations Management.

    Science.gov (United States)

    Savel, Richard H; Cohen, Wess; Borgia, Dena; Simon, Ronald J

    2018-01-01

    The primary purpose of this narrative is to elucidate the numerous significant changes that occur at the intensive care unit (ICU) level as a medical center pursues becoming a Level I trauma center. Specifically, we will focus on the following important areas: (1) leadership and strategy issues behind the decision to move forward with becoming a trauma center; (2) preparation needed to take a highly functioning surgical ICU and align it for the inevitable changes that happen as trauma go-live occurs; (3) intensivist staffing changes; (4) roles for and training of advanced practice practitioners; (5) graduate medical education issues; (6) optimizing interactions with closely related services; (7) nursing, staffing, and training issues; (8) bed allocation issues; and (9) reconciling the advantages of a "unified adult critical care service" with the realities of the central relationship between trauma and surgical critical care.

  5. Renewable energies in the United States: support policies and tendencies for research and development

    International Nuclear Information System (INIS)

    2009-11-01

    Illustrated by figures, graphs and tables of data, nine articles give overviews of the present evolutions and tendencies for research and development in the energy sector in the United States of America. After a first article commenting the possible evolution of the energy model in this country, the authors are commenting the priority given to innovation for clean energies, the evolution of patents claimed by US companies, the smart-grid-based energy strategy, the evolution of the wind energy sector, the technological evolutions and decreasing prices of the solar energy, the large investments required for a large scale development of geothermal energy, the voluntary policy and the ambitious objectives in the field of bio-energies and bio-fuels, and California as a leader in the field of renewable energies

  6. Status of networking for high energy physics in the United States

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1985-06-01

    Networks are used extensively for High Energy Physics in the United States. Although the networks have grown in an ad hoc manner with connections typically being made to satisfy the needs of one detector group, they now encompass to large fraction of the US HEP community in one form or another. This paper summarizes the current status and experience with networks

  7. Developing advocacy for geothermal energy in the United States

    International Nuclear Information System (INIS)

    Wright, P.M.

    1990-01-01

    There is little public advocacy for geothermal energy in the United States outside of the geothermal community itself. Yet, broad-based advocacy is needed to provide impetus for a nourishing economic, regulatory and R and D environment. If such an environment could be created, the prosperity of the geothermal industry would improve and positive environmental effects compared to most other energy sources would be realized. We need an organized sustained effort to provide information and education to all segments of our society, including market-makers and end users, administrators, legislators, regulators, educators, special-interest groups and the public. This effort could be provided by an organization of three main components, a network to gather and disseminate pertinent information on marketing, educational and lobbying opportunities to action committees, a repository of current information on geothermal energy, and action committees each responsible for certain parts of the total marketing, education and lobbying task. In this paper, the author suggests a mechanism for forming such an organization and making it work. The author proposes an informal organization staffed largely by volunteered labor in which no one person would have to devote more than a few percent of his or her work time

  8. Use of Archived Information by the United States National Data Center

    Science.gov (United States)

    Junek, W. N.; Pope, B. M.; Roman-Nieves, J. I.; VanDeMark, T. F.; Ichinose, G. A.; Poffenberger, A.; Woods, M. T.

    2012-12-01

    The United States National Data Center (US NDC) is responsible for monitoring international compliance to nuclear test ban treaties, acquiring data and data products from the International Data Center (IDC), and distributing data according to established policy. The archive of automated and reviewed event solutions residing at the US NDC is a valuable resource for assessing and improving the performance of signal detection, event formation, location, and discrimination algorithms. Numerous research initiatives are currently underway that are focused on optimizing these processes using historic waveform data and alphanumeric information. Identification of optimum station processing parameters is routinely performed through the analysis of archived waveform data. Station specific detector tuning studies produce and compare receiver operating characteristics for multiple detector configurations (e.g., detector type, filter passband) to identify an optimum set of processing parameters with an acceptable false alarm rate. Large aftershock sequences can inundate automated phase association algorithms with numerous detections that are closely spaced in time, which increases the number of false and/or mixed associations in automated event solutions and increases analyst burden. Archived waveform data and alphanumeric information are being exploited to develop an aftershock processor that will construct association templates to assist the Global Association (GA) application, reduce the number of false and merged phase associations, and lessen analyst burden. Statistical models are being developed and evaluated for potential use by the GA application for identifying and rejecting unlikely preliminary event solutions. Other uses of archived data at the US NDC include: improved event locations using empirical travel time corrections and discrimination via a statistical framework known as the event classification matrix (ECM).

  9. Energy-efficient specialization of functional units in a Coarse-Grained Reconfigurable Array

    International Nuclear Information System (INIS)

    Van Essen, B.; Panda, R.; Wood, A.; Ebeling, C.; Hauck, S.

    2010-01-01

    Functional units provide the backbone of any spatial accelerator by providing the computing resources. The desire for having rich and expensive functional units is in tension with producing a regular and energy-efficient computing fabric. This paper explores the design trade-off between complex, universal functional units and simpler, limited functional units. We show that a modest amount of specialization reduces the area-delay-energy product of an optimized architecture to 0.86x a baseline architecture. Furthermore, we provide a design guideline that allows an architect to customize the contents of the computing fabric just by examining the profile of benchmarks within the application domains. Functional units are the core of compute-intensive spatial accelerators. They perform the computation of interest with support from local storage and communication structures. Ideally, the functional units will provide rich functionality, supporting operations ranging from simple addition, to fused multiply-adds, to advanced transcendental functions and domain specific operations like add-compare-select. However, the total opportunity cost to support the more complex operations is a function of the cost of the hardware, the rate of occurrence of the operation in the application domain, and the inefficiency of emulating the operation with simpler operators. Examples of operations that are typically emulated in spatial accelerators are division and trigonometric functions, which can be solved using table-lookup based algorithms and the CORDIC algorithm. One reason to avoid having direct hardware support for complex operations in a tiled architecture like a Coarse-Grained Reconfigurable Array (CGRA) is that the expensive hardware will typically need to be replicated in some or all of the architecture's tiles. Tiled architecture are designed such that their tiles are either homogeneous or heterogeneous. Homogeneous architectures are simpler to design but heterogeneous

  10. Investment in the Western Hemisphere energy market

    International Nuclear Information System (INIS)

    Gillam, P.J.

    1991-01-01

    This paper reports that the main characteristics of Western Hemisphere energy markets are well known to those in the energy industry. The United States sits in the northern half of the hemisphere, importing more and more oil from the rest of the world. Brazil, with a market one-tenth of the size of the United Sates, sits in the southern half of the hemisphere, importing less and less oil from the rest of the world. Venezuela sits in the center with an eye to the future as a long-term player in the world petroleum industry. Venezuela has 6 or 7 percent of the world's known conventional petroleum reserves, plus an uncountable bitumen resource which is now being commercialized as Orimulsion, a low-emission substitute for coal. The United States is circled by major producing countries with smaller exports, such as Mexico and Canada, and there are smaller producing or consuming countries of which Colombia is the largest exporter and Argentian the largest importer. The United States dominates the numbers. Half of British Petroleum's (BP) investments have been in the energy industry of the Western Hemisphere. We are maintaining that proportion, but opportunities are becoming more difficult to find

  11. Energy imparted to neonates during X-ray examinations in a special care baby unit

    International Nuclear Information System (INIS)

    Chapple, C.-L.; Faulkner, K.

    1994-01-01

    Neonates in a special care baby unit may receive a large number of X-rays and their dosimetry is of particular importance. A method of calculating energy imparted to neonates has been developed and a survey carried out in one unit, over a period of 18 months. Entrance dose was calculated from the technique factors used and measurement of tube output. Technique factors were recorded by the radiographer for each exposure taken, and output was measured both with and without an incubator present. Field size was determined by measurements made retrospectively from the radiograph, and a Monte Carlo simulation was used to determine factors for conversion to imparted energy. 119 neonates were included in the survey, and the mean total energy imparted was found to be 0.09 mJ. The maximum value was a factor of nine greater than this. The study also highlighted the potential for dose reduction with regard to better collimation and shielding. (author)

  12. Energy imparted to neonates during X-ray examinations in a special care baby unit

    Energy Technology Data Exchange (ETDEWEB)

    Chapple, C.-L.; Faulkner, K. (Newcastle General Hospital (United Kingdom). Regional Medical Physics Dept.); Hunter, E.W. (Royal Victoria Infirmary, Newcastle-upon-Tyne (United Kingdom))

    1994-04-01

    Neonates in a special care baby unit may receive a large number of X-rays and their dosimetry is of particular importance. A method of calculating energy imparted to neonates has been developed and a survey carried out in one unit, over a period of 18 months. Entrance dose was calculated from the technique factors used and measurement of tube output. Technique factors were recorded by the radiographer for each exposure taken, and output was measured both with and without an incubator present. Field size was determined by measurements made retrospectively from the radiograph, and a Monte Carlo simulation was used to determine factors for conversion to imparted energy. 119 neonates were included in the survey, and the mean total energy imparted was found to be 0.09 mJ. The maximum value was a factor of nine greater than this. The study also highlighted the potential for dose reduction with regard to better collimation and shielding. (author).

  13. Study of a conceptual nuclear-energy center at Green River, Utah: site-specific transportation

    International Nuclear Information System (INIS)

    1981-10-01

    The objective of the following report is to assess the adequacy of the local and regional transportation network for handling traffic, logistics, and the transport of major power plant components to the Utah Nuclear Energy Center (UNEC) Horse Bench site. The discussion is divided into four parts: (1) system requirements; (2) description of the existing transportation network; (3) evaluation; (4) summary and conclusions

  14. U.S. Department of Energy National Center of Excellence for Metals Recycle

    International Nuclear Information System (INIS)

    Adams, V.; Bennett, M.; Bishop, L.

    1998-06-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. The Center has gotten off to a fast start. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-12 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer software, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, produce pollution prevention information and documentation, manage their materials inventory, produce independent government estimates, and implement sale/service contracts. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrap yard, and disposition of PCB-contaminated drums. Members of the Center look forward to working with all DOE sites, regulatory authorities, the private sector, and other stakeholders to achieve the metals recycle goals

  15. Planning nuclear energy centers under technological and demand uncertainty

    International Nuclear Information System (INIS)

    Meier, P.M.; Palmedo, P.F.

    1976-01-01

    The question considered is whether new nuclear power plants should be located in nuclear energy centers, or ''power parks'' with co-located fabrication and reprocessing facilities. That issue has been addressed in a recent study by the Nuclear Regulatory Commission and remains under investigation at Brookhaven and elsewhere. So far, however, the advisability of this policy has been analyzed primarily within the framework of a single view of the future. Suggestions of the types of questions that should be asked regarding this policy if it is properly to be viewed as an example of decision making under uncertainty are made. It is concluded that ''A consideration of the various uncertainties involved in the question of dispersed vs. remote siting of energy facilities introduces a number of new elements into the analysis. On balance those considerations provide somewhat greater support for the clustered concept. The NEC approach seems to provide somewhat greater flexibility in accomodating possible future electricity generating technologies. Increased regulatory and construction efficiencies possible in an NEC reduces the impact of demand uncertainty as does the lower costs associated with construction acceleration or deceleration.'' It is also noted that, in the final analysis, ''it is the public's perception of the relative costs and benefits of a measure that determine the acceptability or unacceptability of a particular innovation,'' not the engineer's cost/benefit analysis. It is further noted that if the analysis can identify limits on analytical methods and models, it will not make the job of energy decision-making any easier, but it may make the process more responsive to its impact on society

  16. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  17. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions

  18. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    Abdul Razak Daud

    1995-01-01

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  19. Creative user-centered visualization design for energy analysts and modelers.

    Science.gov (United States)

    Goodwin, Sarah; Dykes, Jason; Jones, Sara; Dillingham, Iain; Dove, Graham; Duffy, Alison; Kachkaev, Alexander; Slingsby, Aidan; Wood, Jo

    2013-12-01

    We enhance a user-centered design process with techniques that deliberately promote creativity to identify opportunities for the visualization of data generated by a major energy supplier. Visualization prototypes developed in this way prove effective in a situation whereby data sets are largely unknown and requirements open - enabling successful exploration of possibilities for visualization in Smart Home data analysis. The process gives rise to novel designs and design metaphors including data sculpting. It suggests: that the deliberate use of creativity techniques with data stakeholders is likely to contribute to successful, novel and effective solutions; that being explicit about creativity may contribute to designers developing creative solutions; that using creativity techniques early in the design process may result in a creative approach persisting throughout the process. The work constitutes the first systematic visualization design for a data rich source that will be increasingly important to energy suppliers and consumers as Smart Meter technology is widely deployed. It is novel in explicitly employing creativity techniques at the requirements stage of visualization design and development, paving the way for further use and study of creativity methods in visualization design.

  20. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.