WorldWideScience

Sample records for energy basic plan

  1. Japan's new basic energy plan

    International Nuclear Information System (INIS)

    Duffield, John S.; Woodall, Brian

    2011-01-01

    In June 2010, the Japanese cabinet adopted a new Basic Energy Plan (BEP). This was the third such plan that the government has approved since the passage of the Basic Act on Energy Policy in 2002, and it represents the most significant statement of Japanese energy policy in more than four years, since the publication of the New National Energy Strategy (NNES) in 2006. Perhaps more than its predecessors, moreover, the new plan establishes a number of ambitious targets as well as more detailed measures for achieving those targets. Among the targets are a doubling of Japan's 'energy independence ratio,' a doubling of the percentage of electricity generated by renewable sources and nuclear power, and a 30 percent reduction in energy-related CO 2 emissions, all by 2030. This paper explains the origins of the 2010 BEP and why it was adopted. It then describes the content of the plan and how it differs from the NNES. A third section analyzes the appropriateness of the new goals and targets contained in the BEP and their feasibility, finding that achievement of many of the targets was likely to be quite challenging even before the March 2011 earthquake, tsunami, and nuclear crisis. - Highlights: → Origins of Japan's new Basic Energy Plan. → Content of Japan's new Basic Energy Plan. → Feasibility of achieving the targets in Japan's new Basic Energy Plan. → Impact of 2011 earthquake and tsunami on Japanese energy policy.

  2. 1989 basic plan for atomic energy development and utilization

    International Nuclear Information System (INIS)

    1989-01-01

    A Basic Plan for Atomic Energy Development and Utilization has been established each year based on the guidelines set up by the Atomic Energy Commission of Japan, with the aim of promoting the development and utilization of atomic energy schematically and efficiently. The Basic Plan shows specific projects to achieve the objectives specified in the Long-Range Plan for Atomic Energy Development and Utilization. The Basic Plan specifies efforts to be made for overall strengthening of safety measures (safety policies, safety research, disaster prevention, etc.), promotion of nuclear power generation, establishment of the nuclear fuel cycle (securing of uranium, technology for uranium enrichment, reprocessing, etc.), development of new types of power reactors (fast breeder reactor, new types of converter reactors, plutonium fuel processing technology), promotion of leading projects (nuclear fusion, utilization of radiations, atomic powered ships, high-temperature engineering tests), promotion of basic technology development (basic research, training of scientists and engineers), voluntary and active international activities (international cooperation), and acquisition of understanding and cooperation of the general public. (N,K.)

  3. Basic plan of the development and utilization of atomic energy in 1980

    International Nuclear Information System (INIS)

    1980-01-01

    The Nuclear Safety Commission reported to the prime minister on March 28, 1980, on the basic plan of the development and utilization of atomic energy in 1980 that it was decided as the original draft of the plan. This draft of the basic plan in 1980 was referred to the Nuclear Safety Commission on March 27, 1980. Japan relies the most of primary energy upon imported petroleum, therefore it is important to save oil consumption and to promote the development and utilization of substitute energy to petroleum. The development and utilization of atomic energy must be promoted as the most important subject in energy policy, because it is the most promising substitute energy. The scale of the total nuclear power generation in Japan is 35 plants with about 28 million kW capacity, including those under construction and in preparation. But owing to the difficulty in the location of new plants, the attainment of 1985 target is behind schedule. The development and utilization of atomic energy are in progress in Japan, but more efforts to promote them are necessary. Japan contributes positively to the formation of the new order based on the results of INFCE. As for the basic policy in 1980, the strengthening of the measures to secure safety, the establishment of nuclear fuel cycle, the development of new power reactors, the research and development of nuclear fusion, the promotion of the utilization of radiation and others are discussed. (Kako, I.)

  4. Fourth energy basic plan of Japan. Approved by cabinet in April 2014

    International Nuclear Information System (INIS)

    Ohsaki, Kazumasa

    2015-01-01

    The fourth Energy Basic Plan prepared mainly by the Ministry of Economy, Trade and Industry (METI) is the first plan after Fukushima Nuclear Accident. In this plan, the challenges and the directions of energy policy are discussed considering the mid- and long-term energy demand structure, especially 2018-2020 as the period of intensive reform. However, the energy mix indicates the composition of electrical sources and so on is not included due to the uncertainty about the prospect in the restart of nuclear power plant and the introduction of renewable energy sources. This article discusses the issues in the energy demand structure in Japan indicated in this plan, the principles in energy policy, as well as the perspectives for reform. These are summarized in three categories of (1) primary energy sources, (2) secondary energy supply, and (3) cross-sectional main subjects, particularly focusing on the viewpoints described in the chapter 2 and later. (S.K.)

  5. Concerning 1991 basic plan for atomic energy development and application (subjected to examination)

    International Nuclear Information System (INIS)

    1990-01-01

    The prime minister developed a draft 1991 Basic Plan for Atomic Energy Development and Application and sent it to the Nuclear Safety Commission for examination. The Commission started the examination at its 14th meeting. The report outlines results of the examination. A Basic Plan is developed each year to promote efforts at atomic energy development and application systematically and efficiently. In particular, it identifies specific activities required to realize the basic policies shown in the Long Term Program for Atomic Energy Development and Application. In the present report, activities required for improving the safety measures in general are described first, with special emphasis placed on the improvement in nuclear safety regulations and promotion of nuclear safety research. Activities required for promoting nuclear power generation are then outlined. It also insists that the nuclear fuel cycle should be established by promoting measures for uranium resources, uranium enrichment, spent fuel enrichment, and radioactive waste disposal. Other required efforts include the development of improved power reactors, implementation of major projects, and development of basic technology. (N.K.)

  6. Basic plans of atomic energy development and utilization for fiscal 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The Government has promoted the development and utilization of atomic energy as one of the most important measures for energy supplies. In Japan, due to the unrest concerning safety of nuclear power, siting of nuclear power plants is difficult, thereby the nuclear power generation program is delayed. Then, in major research and development projects such as those of uranium enrichment, fast breeder reactors, an advanced thermal reactor and nuclear fusion, while the remarkable results are being accumulated, the practical aspects are in need of positive governmental measures. Under this situation, the long range program of atomic energy development and utilization is being revised. For the fiscal year 1978 (from April, 1978 to March, 1979), based on the revision, the basic plans are presented, first, the basic policy, and second, the practical measures: strengthening of the safety measures; establishment of the nuclear fuel cycle; development of the new types of power reactors; promotion of the basic researches; securing of the people's understanding and cooperation. (Mori, K

  7. Basic plans of nuclear energy development and utilization for fiscal 1982 (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Prime Minister, concerning the basic plans of nuclear energy development and utilization for fiscal 1982, was presented; the NSC has decided on the plans drawn up by the Prime Minister. Nuclear power generation as the nucleus of petroleum substitutes must be developed steadily. For the purpose, nuclear fuel cycle should be established, including the securing of uranium resources, uranium enrichment, fuel reprocessing, and waste management. The contents are as follows: the strengthening of nuclear safety measures, the promotion of nuclear power generation, the establishment of nuclear fuel cycle, the development of advanced types of reactors, the research on nuclear fusion, the research and development of nuclear powered ships, the promotion of radiation utilization, the strengthening of basis for nuclear energy development and utilization, the promotion of international cooperation, the strengthening of safeguard and nuclear material protection measures, fiscal 1982 budgets related to nuclear energy. (Mori, K.)

  8. Wind power installations in Switzerland - Regional planning basics and impact

    International Nuclear Information System (INIS)

    Ott, W.; Kaufmann, Y.; Steiner, P.; Gilgen, K.; Sartoris, A.

    2008-01-01

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at the basics of regional planning and its impact on the construction of wind-energy installations in Switzerland. The authors state that the planning and realisation of wind turbine installations is often time and resource consuming: this document presents and discusses the results obtained in a project that aimed to supply consolidated knowledge on project-relevant basics and their effect with respect to wind-energy installations. Experience gained in Switzerland and in other countries is discussed. This report on the basics of wind-energy planning with its detailed information formed the basis of a checklist described in a further report. In nine chapters, regional planning aspects, environment and landscape-relevant aspects, effects on the national and regional economies and social acceptance factors are discussed. Also, success-factors and possible solutions for the successful realisation of wind-energy projects are looked at.

  9. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  10. Energy use and planning in France

    International Nuclear Information System (INIS)

    Nicolaon, G.A.

    1983-01-01

    Energy planning in France must compensate for a lack of natural resources and a 77% dependence on imports with conservation, an increased use of domestic sources, and diversified supplies. One problem is a high per-capita energy consumption that, although only half that of the US, has been a financial drain in recent years. Current plans to reduce oil consumption 25% by 1990 and energy dependence to less than 50% include conservation goals set for each sector. Nuclear energy is a cost-effective energy source that is compatible with France's energy goals and is the focus of much energy research. The emphasis on realistic goals and continuity are basic to France's continued success in energy planning. 4 figures, 10 tables

  11. The Atomic energy basic law

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to secure future energy resources, push forward progress of science and advancement of industry for welfare of the mankind and higher standard of national life by helping research, development and utilization of atomic power. Research, development and utilization of atomic power shall be limited to the peaceful purpose with emphasis laid on safety and carried on independently under democratic administration. Basic concepts and terms are defined, such as: atomic power; nuclear fuel material; nuclear raw material; reactor and radiation. The Atomic Energy Commission and the Atomic Energy Safety Commission shall be set up at the Prime Minister's Office deliberately to realize national policy of research, development and utilization of atomic power and manage democratic administration for atomic energy. The Atomic Energy Commission shall plan, consider and decide matters concerning research, development and utilization of atomic energy. The Atomic Energy Safety Commission shall plan, consider and decide issues particularly concerning safety securing among such matters. The Atomic Energy Research Institute shall be founded under the governmental supervision to perform research, experiment and other necessary affairs for development of atomic energy. The Power Reactor and Nuclear Fuel Development Corporation shall be established likewise to develop fast breeding reactor, advanced thermal reactor and nuclear fuel materials. Development of radioactive minerals, control of nuclear fuel materials and reactors and measures for patent and invention concerning atomic energy, etc. are stipulated respectively. (Okada, K.)

  12. Energy-oriented planning of enterprises. Energieorientierte Unternehmensplanung

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H

    1983-01-01

    The book first of all analysis, from an energy point of view, the planning field, which can be characterized by factors relating to the enterprise, environmental factors and the basic business policy pursued. Chapter 2 deals with the enterprise parameters that form the object of planning. Different variables of action are pointed out: aims, strategies (and/or stratetic paths), and actions related to certain areas of function. The aims to be fixed are closely connected with the basic business policy and are discussed in this context. In the part dealing with strategies, particular attention is paid to the efficiency-oriented path ''rational energy utilization'' and the effectiveness-oriented path ''energy-oriented product and market design''. Both strategic framework concepts are viewed in close relation to the aims envisaged, the basic business policy and the environmental and business analysis, and are worked out in this connection. The general strategy discussion covering all sectors is followed by a detailed analysis of the action potential specific to certain areas of function. The physical transformation stages procurement, production and sale are chosen as areas of function to be investigated. Finally the book discusses questions related to the realization of energy concepts. These are, besides implementation conditions and control tasks, resistances encountered and the limits of energy-oriented planning.

  13. Wind Energy Basics | NREL

    Science.gov (United States)

    Wind Energy Basics Wind Energy Basics We have been harnessing the wind's energy for hundreds of grinding grain. Today, the windmill's modern equivalent-a wind turbine can use the wind's energy to most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and

  14. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  15. Solar Energy Basics | NREL

    Science.gov (United States)

    Solar Energy Basics Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from the technologies convert sunlight to usable energy for buildings. The most commonly used solar technologies for

  16. Significant and Basic Innovations in Urban Planning

    Science.gov (United States)

    Kolyasnikov, V. A.

    2017-11-01

    The article considers the development features of the innovative urban planning in the USSR and Russia in XVIII - XX centuries. Innovative urban planning is defined as an activity on innovations creation and their implementation to obtain a socio-economic, political, environmental or other effect. In the course of urban development history this activity represents a cyclic wave process in which there are phases of rise and fall. The study of cyclic waves in the development of innovative urban planning uses the concept of basic and epochal innovations selection. This concept was developed by scientists for the study of cyclic wave processes in economics. Its adaptation to the conditions of innovative urban planning development allows one to introduce the concept of “basic innovation” and “significant innovation” in the theory and practice of settlement formation and their systems as well as to identify opportunities to highlight these innovations in the history of Russian urban planning. From these positions, six innovation waves committed to the urban development over the past 300 years are being investigated. The observed basic innovations in the domestic urban area show that urban development is a vital area for ensuring the country’s geopolitical security. Basic innovations are translated in time and modernized under new conditions of urban planning development. In this regard, we can predict the development of four basic innovations in post-Soviet Russia.

  17. Wind power installations in Switzerland - Regional planning basics and impact; Windkraftanlagen in der Schweiz - Raumplanerische Grundlagen und Auswirkungen - Grundlagenbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ott, W.; Kaufmann, Y.; Steiner, P. [Econcept AG, Zuerich (Switzerland); Gilgen, K.; Sartoris, A. [IRAP-HSR, Institut fuer Raumentwicklung an der Hochschule fuer Technik Rapperswil, Rapperswil (Switzerland)

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at the basics of regional planning and its impact on the construction of wind-energy installations in Switzerland. The authors state that the planning and realisation of wind turbine installations is often time and resource consuming: this document presents and discusses the results obtained in a project that aimed to supply consolidated knowledge on project-relevant basics and their effect with respect to wind-energy installations. Experience gained in Switzerland and in other countries is discussed. This report on the basics of wind-energy planning with its detailed information formed the basis of a checklist described in a further report. In nine chapters, regional planning aspects, environment and landscape-relevant aspects, effects on the national and regional economies and social acceptance factors are discussed. Also, success-factors and possible solutions for the successful realisation of wind-energy projects are looked at.

  18. Centralisation and decentralisation in strategic municipal energy planning in Denmark

    DEFF Research Database (Denmark)

    Sperling, Karl; Hvelplund, Frede; Mathiesen, Brian Vad

    2011-01-01

    need for better coordination of municipal energy planning activities at the central level. It is suggested that the role of municipalities as energy planning authorities needs to be outlined more clearly in, e.g., strategic energy planning which integrates savings, efficiency and renewable energy...... vision. The paper outlines a basic division of tasks between the central and the local level within such a strategic energy planning system.......Denmark’s future energy system is to be entirely based on renewable energy sources. Municipalities will play an important role as local energy planning authorities in terms of adopting and refining this vision in different local contexts. Based on a review of 11 municipal energy plans, this paper...

  19. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    CERN Multimedia

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  20. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  1. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    International Nuclear Information System (INIS)

    Domen, Kazunari

    2011-01-01

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, 'Global Perspectives on Frontiers in Energy Research.' In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  2. The challenges and directions for nuclear energy policy in Japan. Japan's nuclear energy national plan

    International Nuclear Information System (INIS)

    Yanase, Tadao

    2007-01-01

    According to the 'framework for nuclear energy policy' (October, 2005 adopted by cabinet), basic goals of nuclear policy are (1) for nuclear energy to continue to meet more than around 30-40% of electricity supply, and also (2) to further promote a fuel cycle steadily aiming at commercial introduction of a fast breeder by 2050. In order to realize an aim of this framework for nuclear energy policy', the nuclear energy subcommittee of the METI advisory committee deliberated concrete actions and the subcommittee recommendations were drawn up as 'Japan's nuclear energy national plan' in August, 2006 and incorporated as main part of the revised 'basic plan on energy' adopted by the cabinet in March 2007. Backgrounds and directions of future actions for nuclear energy policy were described. (T. Tanaka)

  3. Economics, modeling, planning and management of energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; Khan, A.M.; Furlan, G.

    1989-01-01

    The Workshop attended by 89 participants from 40 countries aimed to provide participants with an overview of global and regional issues and to familiarize them with analytical tools and modeling techniques appropriate for the analysis and planning of national energy systems. Emphasis was placed on energy-economy-interaction, modelling for balancing energy demand and supply, technical-economic evaluation of energy supply alternatives and energy demand management. This volume presents some of the lectures delivered at the Workshop. The material has been organized in five parts under the headings General Review of Current Energy Trends, Energy and Technology Menu, Basic Analytical Approaches, Energy Modeling and Planning, and Energy Management and Policy. A separate abstract was prepared for each of the lectures presented. Refs, figs and tabs

  4. The atomic energy basic law

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes clearly the principles that Japan makes R and D, and utilizations of atomic energy only for the peaceful purposes. All the other laws and regulations concerning atomic energy are based on the law. The first chapter lays down the above mentioned objective of the law, and gives definitions of basic concepts and terms, such as atomic energy, nuclear fuel material, nuclear source material, nuclear reactor and radiation. The second chapter provides for the establishment of Atomic Energy Commission which conducts plannings and investigations, and also makes decisions concerning R and D, and utilizations of atomic energy. The third chapter stipulates for establishment of two government organizations which perform R and D of atomic energy developments including experiments and demonstrations of new types of reactors, namely, Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. Chapters from 4th through 8th provide for the regulations on development and acquisition of the minerals containing nuclear source materials, controls on nuclear fuel materials and nuclear reactors, administrations of the patents and inventions concerning atomic energy, and also prevention of injuries due to radiations. The last 9th chapter requires the government and its appointee to compensate the interested third party for damages in relation to the exploitation of nuclear source materials. (Matsushima, A.)

  5. Plan to promote new energy introduction in Niigata Prefecture area; Niigataken chiiki shin energy donyu suishin keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The 'Plan to promote new energy introduction in Niigata Prefecture area' was established to leave the conditions that everybody can live with affluence and comfort in the next generation. The plan lasts for ten years until 2010. Upon identifying the district characteristics of Niigata Prefecture, and based on the results of investigations on new energy existence quantity, utilization possibility thereof, and consciousness of residents of the prefecture, considerations were given that the plan shows the basic policy to promote proliferation of the new energies, and serves as the guideline for practical implementation. The plan document is composed of the following four items: 1) the foreword, 2) the current status of energies, 3) new energies expected of introduction, and 4) basic measures. The energy consumption was estimated to increase to 1.345 times that of fiscal 1990 in the year 2010, the increase being mainly in consumer and household use. The targeted quantity for new energy introduction was set to 90,000 kl annually as converted to petroleum. Expected new energy applications would include photovoltaic power generation, snow energy and solar heat utilization, and cogeneration utilizing natural gas. (NEDO)

  6. The Method of Multiple Spatial Planning Basic Map

    Science.gov (United States)

    Zhang, C.; Fang, C.

    2018-04-01

    The "Provincial Space Plan Pilot Program" issued in December 2016 pointed out that the existing space management and control information management platforms of various departments were integrated, and a spatial planning information management platform was established to integrate basic data, target indicators, space coordinates, and technical specifications. The planning and preparation will provide supportive decision support, digital monitoring and evaluation of the implementation of the plan, implementation of various types of investment projects and space management and control departments involved in military construction projects in parallel to approve and approve, and improve the efficiency of administrative approval. The space planning system should be set up to delimit the control limits for the development of production, life and ecological space, and the control of use is implemented. On the one hand, it is necessary to clarify the functional orientation between various kinds of planning space. On the other hand, it is necessary to achieve "multi-compliance" of various space planning. Multiple spatial planning intergration need unified and standard basic map(geographic database and technical specificaton) to division of urban, agricultural, ecological three types of space and provide technical support for the refinement of the space control zoning for the relevant planning. The article analysis the main space datum, the land use classification standards, base map planning, planning basic platform main technical problems. Based on the geographic conditions, the results of the census preparation of spatial planning map, and Heilongjiang, Hainan many rules combined with a pilot application.

  7. THE METHOD OF MULTIPLE SPATIAL PLANNING BASIC MAP

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2018-04-01

    Full Text Available The “Provincial Space Plan Pilot Program” issued in December 2016 pointed out that the existing space management and control information management platforms of various departments were integrated, and a spatial planning information management platform was established to integrate basic data, target indicators, space coordinates, and technical specifications. The planning and preparation will provide supportive decision support, digital monitoring and evaluation of the implementation of the plan, implementation of various types of investment projects and space management and control departments involved in military construction projects in parallel to approve and approve, and improve the efficiency of administrative approval. The space planning system should be set up to delimit the control limits for the development of production, life and ecological space, and the control of use is implemented. On the one hand, it is necessary to clarify the functional orientation between various kinds of planning space. On the other hand, it is necessary to achieve “multi-compliance” of various space planning. Multiple spatial planning intergration need unified and standard basic map(geographic database and technical specificaton to division of urban, agricultural, ecological three types of space and provide technical support for the refinement of the space control zoning for the relevant planning. The article analysis the main space datum, the land use classification standards, base map planning, planning basic platform main technical problems. Based on the geographic conditions, the results of the census preparation of spatial planning map, and Heilongjiang, Hainan many rules combined with a pilot application.

  8. Basic planning and work performance of Hanford Site environmental management activities

    International Nuclear Information System (INIS)

    Piper, L.L.

    1997-01-01

    This document provides an overview of the basic planning and work of the Department of Energy Richland Operations Office (DOE-RL). It defines key terms, concepts, and processes used in Hanford's Environmental Management (EM) activities. It is not intended to provide complete details on the topics discussed. It does, however, provide a roadmap of the overall process so that opportunities for tribal, regulator, and public involvement can be clearly identified. Many documents are referenced in this plan. Each is described in some detail in Section 5, and cross-references to that section are provided throughout the discussion in Sections 1 through 4

  9. Safety research basic plan of JNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Japan Nuclear Cycle Development Institute (JNC) formally succeeded to Power Reactor and Nuclear Fuel Development Corporation (PNC) on October, 1 1998. This report describes the basic plan for major program of JNC which consists of two parts: management philosophy of the new institute and the latest revised medium term program. In the first part, the primary mission of JNC is to perform its R and D concentrating on fast breeder reactor and its fuel cycle, and treatment and disposal of high-level radioactive wastes, while at the same time giving special consideration to safety. In the second, individual programs in the new basic plan are discussed in detail. The outline and schedule of each program are also attached in the table form. (H. Itami)

  10. Centralisation and decentralisation in strategic municipal energy planning in Denmark

    International Nuclear Information System (INIS)

    Sperling, Karl; Hvelplund, Frede; Mathiesen, Brian Vad

    2011-01-01

    Denmark's future energy system is to be entirely based on renewable energy sources. Municipalities will play an important role as local energy planning authorities in terms of adopting and refining this vision in different local contexts. Based on a review of 11 municipal energy plans, this paper examines to what extent municipal energy planning matches national 100% renewable energy strategies. The results indicate a willingness among Danish municipalities to actively carry out energy planning, and the plans reveal a large diversity of (new) activities. At the same time, however, there is a strong need for better coordination of municipal energy planning activities at the central level. It is suggested that the role of municipalities as energy planning authorities needs to be outlined more clearly in, e.g., strategic energy planning which integrates savings, efficiency and renewable energy in all (energy) sectors. This requires the state to provide municipalities with the necessary planning instruments and establish a corresponding planning framework. Consequently, there is a need for a simultaneous centralisation and decentralisation during the implementation of the 100% renewable energy vision. The paper outlines a basic division of tasks between the central and the local level within such a strategic energy planning system. - Research highlights: → There is a large variety of energy-related activities in the 11 municipal energy and climate plans. → Only few plans contain all relevant sectors and activities in relation to a 100% RES. → Neglected areas are private transport, system regulation/integration and private buildings. → There is an acute need for coordination of municipal energy planning at the central level. → Strategic energy planning should integrate national policy with municipal energy planning.

  11. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  12. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  13. Energy and nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1985-01-01

    In this publication of the IAEA, after the introduction, four substantive parts follow. Part I, Energy demand and rational energy supply, deals with the needs for energy, primary energy resources and reserves, energy transport, storage, distribution and conservation, including the environmental effects on energy development. Part II, Economic aspects of energy development, presents an integrated view of the basic concepts of energy economics, evaluation of alternative energy projects with an in-depth comparison of electricity generation costs of nuclear and fossil-fuelled power plants. Part III, World energy development status and trends, begins with an overview of the world energy status and trends and continues with a presentation of the energy situation in industrialized countries and in developing countries. Part IV, Energy planning, deals with the optimization techniques, energy planning concepts and computerized models. The launching conditions and implementation of a nuclear power programme are described in detail. 582 references are given in the text and a bibliographical list of 356 titles has been added

  14. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-07-19

    ... Basic Energy Sciences Computational Materials Science and Chemistry for Innovation Workshop Final Report... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic...

  15. Basic Energy Sciences at NREL

    International Nuclear Information System (INIS)

    Moon, S.

    2000-01-01

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies

  16. Basic Energy Sciences at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.

    2000-12-04

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

  17. Basic Energy Sciences: Summary of Accomplishments

    Science.gov (United States)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  18. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.

  19. Energy the basics

    CERN Document Server

    Schobert, Harold

    2013-01-01

    People rarely stop to think about where the energy they use to power their everyday lives comes from and when they do it is often to ask a worried question: is mankind's energy usage killing the planet? How do we deal with nuclear waste? What happens when the oil runs out? Energy: The Basics answers these questions but it also does much more. In this engaging yet even-handed introduction, readers are introduced to: the concept of 'energy' and what it really means the ways energy is currently generated and the sources used new and emerging energy technologies such as solar power and biofuels the impacts of energy use on the environment including climate change Featuring explanatory diagrams, tables, a glossary and an extensive further reading list, this book is the ideal starting point for anyone interested in the impact and future of the world's energy supply.

  20. THE METHOD OF MULTIPLE SPATIAL PLANNING BASIC MAP

    OpenAIRE

    Zhang, C.; Fang, C.

    2018-01-01

    The “Provincial Space Plan Pilot Program” issued in December 2016 pointed out that the existing space management and control information management platforms of various departments were integrated, and a spatial planning information management platform was established to integrate basic data, target indicators, space coordinates, and technical specifications. The planning and preparation will provide supportive decision support, digital monitoring and evaluation of the implementation of the p...

  1. Wind power installations in Switzerland - Regional planning basics and impact; Eoliennes en Suisse. Bases de planification pour l'amenagement du territoire et effets. Rapport de base

    Energy Technology Data Exchange (ETDEWEB)

    Ott, W.; Kaufmann, Y.; Steiner, P. [Econcept AG, Zuerich (Switzerland); Gilgen, K.; Sartoris, A. [IRAP-HSR, Institut fuer Raumentwicklung an der Hochschule fuer Technik Rapperswil, Rapperswil (Switzerland)

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at the basics of regional planning and its impact on the construction of wind-energy installations in Switzerland. The authors state that the planning and realisation of wind turbine installations is often time and resource consuming: this document presents and discusses the results obtained in a project that aimed to supply consolidated knowledge on project-relevant basics and their effect with respect to wind-energy installations. Experience gained in Switzerland and in other countries is discussed. This report on the basics of wind-energy planning with its detailed information formed the basis of a checklist described in a further report. In nine chapters, regional planning aspects, environment and landscape-relevant aspects, effects on the national and regional economies and social acceptance factors are discussed. Also, success-factors and possible solutions for the successful realisation of wind-energy projects are looked at.

  2. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  3. Amendment of Atomic Energy Basic Law and the development of Atomic Energy Administration

    International Nuclear Information System (INIS)

    Ochi, Kenji

    1978-01-01

    This article explains the key points of the major development of Atomic Energy Administration recently made by amendments of Atomic Energy Basic Law and other two relating laws. These amendments passed through the Diet and were enacted on 7th, June, 1978. The aim of them is focussed on reinforcement and rearrangement of safety controls on nuclear reactors. Previously, although the approval of the installation plan with basic designs of a nuclear reactor has been done by Prime Minister, further approvals of detailed designs and process of construction works, as well as inspections before and after operation have been conducted by each responsible minister, respectively. That is, those controls for power reactors have been within jurisdiction of minister of Trade and Industry, and for nuclear ships' reactors minister of Transportation has been responsible. Under the new system, above mentioned ministers continue to exercise almost same controls over reactors within their jurisdiction respectively, however the new laws have established so-called ''double check'' principle in that: when each responsible minister approves the installation, detailed designs and further stages of construction and operation of the reactor, he should hear and pay a great regard for opinions of Atomic Energy Commission and Atomic Energy Safety Commission. The latter is newly established organization which has similar status and authority to the former. (J.P.N.)

  4. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  5. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  6. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  7. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  8. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  9. Energy Efficiency Plan 2009-2012; Energie Efficiency Plan 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Meulen, M.M.W. (ed.)

    2009-02-15

    The aim of the Energy Efficiency Plan is to give an overview of the energy conservation plans of the Eindhoven University of Technology in Eindhoven, Netherlands, which must result in efficient use of energy conform the long-range agreements between businesses, industry and organizations and the Dutch government to improve energy efficiency (MJA3) [Dutch] Het doel van het EEP (Energie Efficiency Plan) is het in beeld brengen van de energiebesparingsplannen die leiden tot een efficienter gebruik van energie conform de MJA-3 afspraak (de derde Meerjaren Afspraak)

  10. Energy Leap (Energiesprong). Long-term Plan. Update 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    The Dutch government considers the transition process to be necessary and stimulates investments in energy innovations in the built environment. This innovation effort is the programme 'Energy Leap' (Energiesprong), which is being carried out by the Steering Group Experimental Housing (SEV) on behalf of the Dutch Ministry of the Interior and Kingdom Relations (BZK). The programme is derived from the Innovation Agenda for Energy in the Built Environment. The SEV 'Energy Leap' programme aims to make a substantial contribution to the conditions under which the energy transition can be achieved effectively. In this basic plan, it is explained how the market can arrive at this, and which activities will be supported, set up and/or implemented by Energy Leap.

  11. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a two-year period. The Committee will provide advice and recommendations to the Office of Science on the...

  12. Basic considerations in simulated treatment planning for the Stanford Medical Pion Generator (SMPG)

    International Nuclear Information System (INIS)

    Pistenma, D.A.; Li, G.C.; Bagshaw, M.A.

    1977-01-01

    Recent interest in charged heavy particle irradiation is based upon expected improved local tumor control rates because of the greater precision in dose localization and the increased biological effectiveness of the high linear energy transfer ionization of particle beams in their stopping regions (Bragg peaks). A novel 60 beam cylindrical geometry pion spectrometer designed for a hospital-based pion therapy facility has been constructed at Stanford. In conjunction with the development and testing of the SMPG a program of simulated treatment planning is being conducted. This paper presents basic considerations in treatment planning for pions and other charged heavy particles. It also presents the status of simulated treatment planning calculations for the SMPG including a discussion of the principle of irradiation of hypothetical tumor volumes illustrated by examples of simplified treatment plans incorporating tissue density inhomogeneity corrections. Also presented are considerations for realistic simulated treatment planning calculations using computerized tomographic scan cross sections of actual patients and a conceptual plan for an integrated treatment planning and patient treatment system for the SMPG

  13. National Energy Plan II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This volume contains the Administration's second National Energy Plan, as required by section 801 of the Department of Energy Organization Act (Public Law 95-91). A second volume will contain an assessment of the environmental trends associated with the energy futures reported here. Detailed appendices to the Plan will be published separately. The eight chapters and their subtitles are: Crisis and Uncertainty in the World Energy Future (The Immediate Crisis and the Continuing Problem, The Emergence of the Energy Problem, The Uncertainties of the World Energy Future, World Oil Prices, Consequences for the U.S.); The U.S. Energy Future: The Implications for Policy (The Near-, Mid-, and Long-Term, The Strategy in Perspective); Conservation (Historical Changes in Energy Use, Post-Embargo Changes - In Detail, Conservation Policies and Programs, The Role of Conservation); Oil and Gas (Oil, Natural Gas); Coal and Nuclear (Coal, Nuclear, Policy for Coal and Nuclear Power); Solar and Other Inexhaustible Energy Sources (Solar Energy, Geothermal, Fusion, A Strategy for Inexhaustible Resources); Making Decisions Promptly and Fairly (Managing Future Energy Crises: Emergency Planning, Managing the Current Shortfall: The Iranian Response Plan, Managing the Long-Term Energy Problem: The Institutional Framework, Fairness in Energy Policy, Public Participation in the Development of Energy Policy); and NEP-II and the Future (The Second National Energy Plan and the Nation's Energy Future, The Second National Energy Plan and the Economy, Employment and Energy Policy, The Second National Energy Plan and Individuals, The Second National Energy Plan and Capital Markets, and The Second National Energy Plan and the Environment). (ERA citation 04:041097)

  14. Opportunities and Challenges of AC/DC Transmission Network Planning Considering High Proportion Renewable Energy

    Directory of Open Access Journals (Sweden)

    Arslan Habib

    2018-03-01

    Full Text Available The time and space distribution characteristics of future high proportion of renewable energy sources will bring unprecedented challenges to the electric power system’s processing and planning, the basic form of electric power system and operating characteristics will have fundamental changes. Based on the research status quo at home and abroad, this paper expounds the four scientific problems of the transmission network planning with high proportion of renewable energy. Respectively, from the network source collaborative planning, transmission network flexible planning. With the distribution network in conjunction with the transmission network planning, transmission planning program comprehensive evaluation and decision-making methods. This paper puts forward the research ideas and framework of transmission network planning considering the high proportion of renewable energy. At the end, the future high proportion of (renewable energy grid-connected transmission network’s opportunities and challenges are presented.

  15. Long term plan of atomic energy development and utilization

    International Nuclear Information System (INIS)

    1982-01-01

    The atomic energy utilization and development in Japan have progressed remarkably, and already nuclear power generation has borne an important part in electric power supply, while radiation has been utilized in the fields of industry, agriculture, medicine and so on. Now, atomic energy is indispensable for national life and industrial activity. The former long term plan was decided in September, 1978, and the new long term plan should be established since the situation has changed largely. The energy substituting for petroleum has been demanded, and the expectation to nuclear power generation has heightened because it enables stable and economical power supply. The independently developed technology related to atomic energy must be put in practical use. The peaceful utilization of atomic energy must be promoted, while contributing to the nuclear non-proliferation policy. The Atomic Energy Commission of Japan decided the new long term plan to clearly show the outline of the important measures related to atomic energy development and utilization in 10 years hereafter, and the method of its promotion. The basic concept of atomic energy development and utilization, the long term prospect and the concept on the promotion, the method of promoting the development and utilization, and the problems of funds, engineers and location are described. (kako, I.)

  16. Energy Leap (Energiesprong). Long-term Plan. Update 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    The Dutch government considers the transition process to be necessary and stimulates investments in energy innovations in the built environment. This innovation effort is the programme 'Energy Leap' (Energiesprong), which is being carried out by the Steering Group Experimental Housing (SEV) on behalf of the Dutch Ministry of the Interior and Kingdom Relations (BZK). The programme is derived from the Innovation Agenda for Energy in the Built Environment. The SEV 'Energy Leap' programme aims to make a substantial contribution to the conditions under which the energy transition can be achieved effectively. In this basic plan, it is explained how the market can arrive at this, and which activities will be supported, set up and/or implemented by Energy Leap.

  17. Report of subcommittee on Promotion of basic technology

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization decided in June, 1987, the policy of promoting the development of the basic technology that connects basic research to project development was shown, placing emphasis on the creative and innovative aspect of atomic energy. It is necessary to accomplish the international responsibility and to make breakthrough in the present day problems such as the heightening of safety, reliability and economical efficiency imposed on atomic energy by purposefully and efficiently advancing the development of these basic technologies, in this way, to build up atomic energy technological system for the beginning of 21st century. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the trend of developing atomic energy technology hereafter and the basic technology, the concept of developing material technology, artificial intelligence technology, laser technology and the technology for evaluating and reducing radiation risks, the plan of the development of basic technology for atomic energy and the efficient promotion of its development are discussed. (K.I.)

  18. Development plan of basic technology for a high intensity proton linear accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.

    1990-01-01

    The national program called OMEGA (Option Making Extra Gains from Actinide and Fission Products) has started with the aim of promoting the research and development of the new technologies for nuclear waste partitioning and transmutation. As a part of this program, Japan Atomic Energy Research Institute, JAERI, has laid out several R and D plans for accelerator based actinide transmutation. The present article first outlines the status of the high intensity proton linear accelerator. Then it describes the time schedule for the development of a high intensity proton linac, focusing on the first step development (basic technology accelerator), second step development (engineering test accelerator, and third step development (commercial plant). It also outlines the conceptual design study and preliminary design calculations for basic technology accelerator, focusing on general consideration, ion source, radio frequency quadrupole, drift tube linac, and high beta linac. (N.K.)

  19. Energy planning in Spain

    International Nuclear Information System (INIS)

    Cortina Garcia, J.

    1995-01-01

    This report aims to describe energy planning in Spain. It briefly analyses the three completed national energy plans (Plan Energetico Nacional, PEN). The fourth PEN 1991-2000 is analysed in detail, by reference to its objectives and characteristics and to developments during its first five years in operation. The Ministry of Industry and Energy has updated PEN en 1995, almost halfway through its period, and this is also summarised. Finally, there are some reflections on the future of energy planning. (Author) 46 refs

  20. Planning for seven generations: Energy planning of American Indian tribes

    International Nuclear Information System (INIS)

    Brookshire, Daniel; Kaza, Nikhil

    2013-01-01

    The prevalence of energy resources on American Indian lands, the links between energy management and tribal sovereignty, and recent federal government incentives make tribal energy planning an interesting case study for community energy planning in the US. This paper studies the strategic energy planning efforts, energy resource development, and energy efficiency policies established by tribes within the continental US. The paper analyzes the results of a survey of various tribes′ energy resource development and planning efforts and supplements the responses with publicly available information on resources, economics, and demographics. We find that incentives and advisory services from the federal government are key to developing the capacity of the tribes to pursue energy planning and energy resource development. These incentives largely avoid the misdeeds of past federal policy by promoting tribal control over energy planning and energy resource development efforts. Tribes with formal energy plans or visions are more likely to develop energy resources than tribes without them and are engaged in a more comprehensive and sustainable approach to energy resource development and energy efficiency. - Highlights: • American Indian tribal energy planning is an understudied topic. • Tribal energy planning is interconnected with tribal sovereignty and sustainability. • We report the results of a survey of energy planning and development efforts. • Federal Government assistance is critical to the efforts of the tribes. • Tribes with energy plans take a more comprehensive approach to energy resource development

  1. On the scope of the Federal Government to issue orders in plan approval procedures under para. 9b of the Atomic Energy Act as provided by article 85 section 3 of the Basic Law

    International Nuclear Information System (INIS)

    Ossenbuehl, F.

    1991-01-01

    Under Paragraph 9b of the Atomic Energy Act the Lower Saxonian Minister of the Environment has the competence for the plan approval procedure concerning the final disposal site Konrad. The plan approval procedure under atomic energy law is a unitary administrative procedure which makes further administrative procedures and administrative decisions superfluous on the strength of its unitary character and without impingement on constitutional law. In conducting the plan approval procedure the Lower Saxonican Minister of the Environment is acting within the framework of Laender administration on behalf of the Federation. To this extent he is subject to the orders of the Federal Minister of the Enviroment under Article 85 Section 3 of The Basic Law with respect to the formation of the procedure and procedural decisions as well as decisions on the merits pending. The concentrating effect of the plan approval procedure under atomic energy law also extends to permits under water law. (orig./HSCH) [de

  2. Energy and nuclear power planning study for Algeria

    International Nuclear Information System (INIS)

    1985-01-01

    This study, conducted jointly by a team of engineers and economists from the Sonelgaz company and the IAEA, had three objectives: (1) To perform a preliminary economic study aimed at initiating thinking on the role that nuclear power could play in Algeria's long-term energy structure and to suggest reasonable hypotheses on what share of the energy market nuclear power might supply. (2) To train a team of Algerian engineers and economists in long-term economic planning techniques. Once the team has gained a basic knowledge through this preliminary study, it will be in a position to continue the process, to perform other, more detailed independent analyses and to review the entire process should economic conditions change. (3) To introduce in Algeria the computer techniques and facilities needed to carry out such energy investment planning studies for electricity production. The main aim throughout the studies was to train a team of Algerian engineers in energy planning rather than to come to definitive conclusions on the problem of introducing nuclear power in Algeria. Two successive analyses were performed. The first consisted in evaluating the final energy requirements which will result in the medium and long term (by 2015) from the implementation of the economic development policies in the Five Year Plan (up to 1984) and in the proposals for the next decade (up to 1990) being studied by the Algerian Ministry of Planning. The second part is concerned only with the results regarding future electricity requirements, which are used as input data in studying the optimization of Algeria's future electricity generating system. Various methods of generation are analysed and included in an econometric model in order to make a sequential determination of the most economic composition of power generating capacity

  3. Accounting for greenhouse gas emissions outside the national borders in FENCH-GHG energy planning

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    This paper aims at providing guidance to the workshop discussion on the accountability of full-energy-chain greenhouse gas emissions from the use of energy sources if emissions did not take place inside the national borders of a country. Examples of such emissions are those from the generation of imported electricity or from mining and transportation of coal and natural gas. The FENCH-GHG approach, if used in energy planning, would automatically take such greenhouse gas emissions, which are inherent to energy systems, into account. The paper raises the basics, practicality and the feasibility of dealing with extra-boundary emissions in energy planning. (author). 3 refs

  4. Are the electric plans following the Brazilian energy policy?

    International Nuclear Information System (INIS)

    Metri, Paulo

    2013-01-01

    The first article of Brazilian law 9.478, enacted in 1997, provides the main objectives for the country's energy policy. After this law came into force, all public and private investments bringing about increase in energy offers should comply with these objectives. The 1990's saw privatizations of major distribution companies as well as of some generation companies, stretching even into the 2000's. At the same time, the basic rules for the electric sector were also modified. The Government maintained its planning role in this sector. Law 10.847, enacted in 2004, sets forth the guidelines for the electric sector's activities. Since then, many rounds of bids have been conducted in order to meet increasing needs of generation and transmission. Now, almost ten years after the introduction of the new rules, some electric-generating plants and transmission lines have been built or are under construction. There is doubt whether these rounds will suffice in satisfying the original goals. Today, nuclear energy is produced exclusively by the State, and it seems that it will remain so for years to come. It is usual to hear that the nuclear energy does not participate in the natural competition existing in the planning stage, because this source is a State imposition. Nuclear plants are built in a pace that guarantees the maintenance of nuclear technology in the country. But nuclear energy has not been banned from electric planning. This planning must encompass all possible judgment criteria, so that the positive aspects of nuclear energy may also stand out. In this way, the objectives established by Law 9,478 may not comprise best judgment criteria. If the planning shows nuclear energy as an attractive alternative, it should not then be adopted as an obligation. (author)

  5. The electric energy demand-side planning: necessity and possibilities of execution

    International Nuclear Information System (INIS)

    Sposito, E.S.

    1991-05-01

    Aiming at reducing the level of investments, is presented a demand-side planning approach, divided into two parts. The first part is an analysis on the actual need of our demand-side approaching. In view of this, is showed a set of data and comments both on economic and technological aspects concerning the electric network and sector, as well as evaluation of the social, ecological and financial aspects which could act against the full expansion of the electric system. In the second part, a demand-side planning methodology is introduced, as well as its main concepts, its variables and its instruments of affecting the demand: energy conservation, replacement of sources, reduction of losses and electric power decentralized generation. Each of them is fully detailed in a set of planning policies and actions. Concluding is presented the basic elements of a National Electric Energy Substitution and Conservation Plan - PLANSCON. (author)

  6. Energy Organizational Planning

    Energy Technology Data Exchange (ETDEWEB)

    Gina C. Paradis; James Yockey; Tracey LeBeau

    2009-04-17

    As the Seneca Nation of Indians (SNI) continues to refine and finalize its Strategic Energy Plan, it became necessary to insure that a sustainable organization structure was developed through which the energy program and its initiatives could be nurtured and managed. To that end, SNI undertook a study to thoroughly evaluate the existing organizational structures and assess the requisite changes and/or additions to that framework that would complement the mission of the Strategic Plan. The goal of this study was to analyze, work with staff and leadership and recommend the most effective plan for the development of an organizational framework within which the Seneca could more effectively exercise energy sovereignty – control and manage their natural resource assets – i.e. develop its own energy resources, meet the current and projected energy needs of their community, and “sit at the table” with other regional energy providers to deal with issues on a peer-to-peer basis.

  7. Energy in urban and regional planning. ; Energia yhdyskuntasuunnittelussa. Rohkeita ratkaisuja kestaevaempaeaen tulevaisuuteen

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, A.-M.; Nuorkivi, A. (eds.)

    2013-03-01

    Urban and regional planner is the first in the row to choose whether any renewable energy system, comprising production, storing and distribution, will be economic and environmentally sound in the subject planning area during the years to come. In order make right choices, understanding of the links prevailing between urban and energy planning as well as co-planning with energy experts is essential. So far there has not been systematic training to develop these competencies among urban and regional planners. In the UP-RES project (Urban Planners with Renewable Energy Skills) the project partners organized several pilot trainings in Germany, Hungary, Spain and the United Kingdom during 2011-2012. The objective of the pilots was to train planners understand the basics of renewable energy and energy related emissions. Training of urban and regional planners to understand energy issues as well as supporting co-planning between energy and urban planning experts have appeared to be productive ways towards more sustainable communities. This publication has been an essential part of the Finnish pilot training. The learning project case reports in this publication have been written by the training participants as a completion of their course. The cases were made in groups and the topics were chosen by the groups themselves. All projects focused on utilizing renewable energies and promoting energy efficiency in urban and regional planning. This publication consists of five reports: Inclusion of energy on various hierarchical levels of planning: major pain spots, gate keepers and points of impact. Comparison of measuring tools for renewable energy and energy efficiency. Inclusion of renewable energy systems and energy efficiency in regional planning cases in Finnish cities of Oulu, Espoo, Jyvaskyla and Kuopio. Metamorphosis of Talma village to a sustainable suburban area. Measures to improve energy efficiency of spatial plans. Based on the project reports, energy

  8. Birth planning in Cuba: a basic human right.

    Science.gov (United States)

    Swanson, J M

    1981-01-01

    This paper reports on the development of birth planning in Cuba and strategies that are relevant to nurses in the communities of Cuba. Cuba reduced its crude birth rate by 40% from 1964-75 without formal family planning programs and resources. By 1975, Cuba had achieved the lowest birth rate in Latin America (21/1000) except Barbados (19/1000). By 1978, Cuba's crude birth rate declined to a low of 15.3/1000. The demographic transition in Cuba has been a process of equalization by: 1) community participation to ensure basic human rights for everyone, 2) increasing the status of women while providing child care centers, 3) providing equal availability of health care services including contraceptive services, sterilization, and abortion, and 4) focusing on individual birth choice, not on limiting population growth. Emphasis in Cuba for reducing fertility has been put on literacy, education, and infant mortality. The illiteracy rate in 1961 decreased from 20% to 4%. Infant mortality decreased from 38.8/1000 live births in 1970 to 22.3/1000 in 1978. 1/3 of Cuban women were participating fully in the labor force in 1978. Polyclinics have been established as preventive care medical centers throughout Cuba and health care is free. Family planning options are integrated into routine primary health care at polyclinics and assure equal access to the total Cuban population. Abortion is freely available and increased to 61/1000 in 1976. The implications for nursing are that: 1) the traditional work of nurses places them in a key position to help extend basic human rights beyond current levels, 2) nurses can initiate discussions of birth planning with women and men in a variety of settings, and 3) nurses can increase case-finding related to birth planning needs both in health care classes or within established groups in the community.

  9. NANA Strategic Energy Plan & Energy Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson; Brian Yanity

    2008-12-31

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine.

  10. A National Plan for Energy Research, Development and Demonstration: Creating Energy Choices for the Future (1976)

    Energy Technology Data Exchange (ETDEWEB)

    Seamans, Jr., Robert C. [Energy Research and Development Administration (ERDA), Washington, DC (United States)

    1976-04-15

    This is the first annual update of the initial report submitted to you in June 1975 (ERDA-48), and complies with the requirements of Section 15 of the Federal Nonnuclear Energy Research and Development Act of 1974. This report represents an evolution in approach over the previous document. ERDA's proposed National Plan has been expanded in scope and depth of coverage and the basic goals and strategy are refined, but remain essentially intact. The Plan summarizes ERDA's current views on the energy technologies the Nation will need to achieve longer-term energy independence, specifically: The paramount role of the private sector in the development and commercialization of new energy technologies is addressed; Conservation (energy efficiency) technologies are singled out for increased attention and are now ranked with several supply technologies as being of the highest priority for national action; The President's 1977 budget requests a large increase - 30% over 1976 - in funding for energy RD&D with particular emphasis on accelerating energy RD&D programs directed at achieving greater long-term energy independence, encouraging cost-sharing with private industry and avoiding the undertaking of RD&D more appropriately the responsibility of the private sector, and supporting the commercial demonstration of synthetic fuel production by providing loan guarantees beginning in FY 76; Federal programs to assist industry in accelerating the market penetration of energy technologies with near-term potential are a key element of the Plan.

  11. Resources | Energy Plan

    Science.gov (United States)

    Skip to main content Navigate Up This page location is: Department for Energy Development and Independence Department for Energy Development and Independence Resources Pages EnergyPlan Sign In Ky.gov An Official Website of the Commonwealth of Kentucky Energy and Environment Cabinet Department for Energy

  12. Guam Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.

    2013-07-01

    Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

  13. IAEA Tools and Methodology for Energy System Planning and Nuclear Energy System Assessments

    International Nuclear Information System (INIS)

    2015-01-01

    Energy is essential for all human activities, and its availability is critical to economic and social development. Energy is the engine for the production of goods and services across all economic sectors. It is vital to the provision of basic civic services in education, health care, clean water supply and sanitation, and also for wealth creation. Lack of energy is a contributing factor to the poverty of individuals, communities, nations and regions. While not an end itself, energy, jointly with appropriate technologies and infrastructure, generates the services modern societies demand (transportation, lighting, air conditioning, information exchange, etc.). Meeting the United Nations Millennium Development Goals can be only accomplished with access to affordable energy services. Energy planning aims at ensuring that decisions on energy demand and supply infrastructures involve all stake holders, consider all possible energy supply and demand options, and are consistent with overall goals for national sustainable development. The concept of sustainable development encompasses three interdependent and mutually reinforcing pillars : social development, economic development and environmental protection, linked by effective government institutions. (author)

  14. Basic Science for a Secure Energy Future

    Science.gov (United States)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  15. [Local planning: the speech of basic health care center manager].

    Science.gov (United States)

    Cubas, Márcia Regina

    2005-01-01

    As planning is understood as a management tool, this article offers an argument through the speech framework of Basic Health Care Center Managers in the city of Curitiba-PR, by means of the Collective Subject Speech Methodology on local planning aspects. Its purpose is to bring local managers to a reflection concerning their styles, practices and experiences, as well as to collaborate with central level leading teams towards building their planning processes in an upward, participatory, communicative and strategic way. Considerations of the speeches built from central ideas are presented: planning methodology; inter-sectoriality; territorial basis; team and community participation; training, autonomy and particular profile of local managers; the manager's agenda; and institutional culture.

  16. Towards a European Energy Technology Policy - The European Strategic Energy Technology Plan (Set-Plan)

    International Nuclear Information System (INIS)

    Mercier, A.; Petric, H.; Peteves, E.

    2008-01-01

    The transition to a low carbon economy will take decades and affect the entire economy. There is a timely opportunity for investment in energy infrastructure. However, decisions to invest in technologies that are fully aligned with policy and society priorities do not necessarily come naturally, although it will profoundly affect the level of sustainability of the European energy system for decades to come. Technology development needs to be accelerated and prioritized at the highest level of the European policy agenda. This is the essence of the European Strategic Energy Technology Plan (SET-Plan). The SET-Plan makes concrete proposals for action to establish an energy technology policy for Europe, with a new mind-set for planning and working together and to foster science for transforming energy technologies to achieve EU energy and climate change goals for 2020, and to contribute to the worldwide transition to a low carbon economy by 2050. This paper gives an overview of the SET-Plan initiative and highlights its latest developments. It emphasises the importance of information in support of decision-making for investing in the development of low carbon technologies and shows the first results of the technology mapping undertaken by the newly established Information System of the SET-Plan (SETIS).(author)

  17. A study on the planning for the research and development of nuclear energy

    International Nuclear Information System (INIS)

    Noh, Byong Chull; Won, B. C.; Bang, J. K.; Jung, Y. H.; Kim, M. R.; Cho, C. Y.; Lee, H. S.; Kim, J. U.; Yeo, J. W.; Hong, Y. P.; Kim, I. C.; Rha, K. H.; Yoon, Y. S.; Park, J. H.; Ko, Y. S.; Kim, S. S.; Kang, W. J.; Lee, Y. H.; Shim, H. W.

    1997-01-01

    This study has performed aiming to provide the government with the basic input to establish 'the comprehensive promotion plan for utilization, research and development of nuclear energy' and 'the mid- and long-term nuclear research and development program', thus the government set it up as a national plan after endorsement of Atomic Energy Commission. Next, the feasibility study of the proton accelerators construction which is expected to use for nuclear research and development and industry. And a systematic and integrated research and development management system for the large-scale projects has been studied considering the inherent uncertainty and high risk of research and development. (author). 24 tabs., 6 figs

  18. Preliminary study for the National Energy Plan (PEN) uses the Community market as a reference base. El ante-proyecto del Plan Energetico Nacional (PEN) toma referencia basica del mercado comunitario

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The National Energy Plan (PEN) for the period 1991 to 2000 lays down basic guidelines for a Spanish energy policy. This includes a wide range of economic measures. The PEN is divided into five main sections with two appendices. The sections are: the international situation; energy demand; energy supply; energy and the environment; and R D policy. The appendices are: Energy-saving and energy-efficiency plan; and General plan for radioactive waste. The PEN provides for 4-year research programmes which aim to reduce the environmental impact of energy production and use. General demand for energy during this period will increase by2.4% and investment in power installations and in the gas sector will be some 1.5 thousand million pesetas. 4 figs., 3 tabs.

  19. Planning for renewable energy in Devon

    International Nuclear Information System (INIS)

    1993-04-01

    The aim of the Study was to examine the technical, planning and environmental factors, and the resource availability, which may affect the development of renewable energy schemes in Devon, with particular reference to West Devon. The study was undertaken to draw up a specimen planning policy framework for the development of renewable energy in Devon, looking at each major renewable energy source and at the relevant environmental and planning constraints; using this framework, to amplify the draft Structure Plan policy for renewable energy; to draw up draft guidance and specimen policies for a Local Plan covering renewable energy for a District Council, in this case, West Devon Borough; and to provide a pilot study for implementing the draft Planning Policy Guidance (PPG) on renewable energy. (author)

  20. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    International Nuclear Information System (INIS)

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE's two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document

  1. A basic study for development of environmental standard review plan of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Cho, Jae Seon; You, Young Woo [Seoul Nationl Univ., Seoul (Korea, Republic of)] (and others)

    1999-12-15

    In this study is performed a basic study to be ready for the development and detail analysis of NUREG-1555 ESRP. As a fundamental research for literature survey and development of draft review plan, review and translation of NUREG-1555 published by NRC, and which is applied to licensing procedure of Nuclear Power Plants are included. These provided the basic information for the developments of the environmental standard review plan.

  2. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  3. Basic plans on measures of mine site at the Ningyo-Toge Environmental Engineering Center

    International Nuclear Information System (INIS)

    2002-04-01

    At the Ningyo-Toge and its peripheries, there are some mine relating facilities and apparatuses finishing their actions such as wasted stones and slags accumulation sites, and so on formed by results of searching and mining works of uranium mine carried out from beginning of 1950s by the Nuclear Fuels Corporation and the Power Reactor and Nuclear Fuel Development Corporation, both of which are predecessors of the Japan Nuclear Cycle Development Institute (JNC). These facilities are, at present, adequately maintained and managed by the Ningyo-Toge Environmental Engineering Center, but as resource development of uranium was positioned to a disposal business on JNC, JNC has investigated on optimal measuring methods and testing plans to evaluate their safety under cooperation with other works of JNC, to summarize a draft of the basic plans on measures of mine site'. Here were described two drafts of the 'Basic plans on measures of mine site' summarized on concepts and indications of whole of measures of mine relating facilities sites and of the 'Proof test plan' summarized on testing plans containing concrete measures to obtain basic data and knowledge required for progressing the measures and a proof test. (G.K.)

  4. Guam Energy Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    Describes the four near-term strategies selected by the Guam Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. Each strategy addresses one of the energy sectors identified in the earlier Guam strategic energy plan as being an essential component of diversifying Guam's fuel sources and reducing fossil energy consumption 20% by 2020. The four energy strategies selected are: (1) expanding public outreach on energy efficiency and conservation, (2) establishing a demand-side management revolving loan program, (3) exploring waste-to-energy options, and (4) influencing the transportation sector via anti-idling legislation, vehicle registration fees, and electric vehicles.

  5. Limerick Clare Energy Plan

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Dubuisson, Xavier

    2012-01-01

    at a national level, but they need to be supplemented by local plans also, since the most successful renewable energy projects to date are at a local level. For example, it is evident from the transition to renewable energy in Denmark, that 100% renewable energy systems can already be implemented at a local...... level. Hence, by initiating local action, national targets can be met and exceeded, while also creating a template for a wider transition to renewable energy. Accordingly, the primary goal of the project is: To develop a local energy plan for Limerick and Clare which is based on a quantified assessment...

  6. Planning new basic guideline to the radiological risk. Content, radiological criteria and implementation

    International Nuclear Information System (INIS)

    Calvin Cuartero, M.; Vega Riber, R. de la; Martin Calvarro, J. M.

    2011-01-01

    The most important aspects of the Basic Guideline focus on their area of planning, groups of potential radiological emergencies in the type of activity associated with the levels of response planning and responsible organizations, structure and functions for each level, radiological criteria, implementation and maintenance of the effectiveness of the level of response plans abroad.

  7. Regional energy-environmental planning

    International Nuclear Information System (INIS)

    Colavecchio, Antonio

    2007-01-01

    In consideration of the relationship existing between energy and environment, it's clear that tools are needed to reach a pre-emptive convergence of different interests coming from the management of these sectors. The main tool to realize the above-mentioned convergence of interests in the Regional Energy and Environment Plan (PEAR). The plan allows italian Regions to schedule and to address energy measures in their own area and to regulate Local entities functions [it

  8. Energy and urban planning

    DEFF Research Database (Denmark)

    Fertner, Christian

    How can spatial planning reduce energy use in our cities? How do different geographical, regional, cultural or political contexts influence our options? How can we measure and monitor its effects? And where do we set the boundaries for the definition of action and goals? Findings from the interna......How can spatial planning reduce energy use in our cities? How do different geographical, regional, cultural or political contexts influence our options? How can we measure and monitor its effects? And where do we set the boundaries for the definition of action and goals? Findings from...... the international EU-FP7 project PLEEC (‘Planning for energy efficient cities’, 2013-2016) and spin-off projects list options and challenges....

  9. Basic energy sciences at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Postma, H.

    1985-01-01

    The testimony expresses concerns about two areas of the FY-86 budget and goes on to discuss basic energy science programs at ORNL, scientific results, support of technologies, user facilities, recent significant discoveries, support of major facilities and ORNL trends in basic research

  10. Interactive Energy Planning

    DEFF Research Database (Denmark)

    Blarke, Morten Boje

    2006-01-01

    Though it is being questioned whether planning theory should be fitted into neat typologies, some have described evolving planning theory as a journey away from ethnocentrism, through the lands of rationalism, pragmatism, socio-ecological idealism, political-economic mobilization, currently...... anchoring along the shores of the land of communications and collaboration. Whether or not a particular typology is applicable, theory and praxis are establishing standpoints, which strengthens our understanding of the planning complex, and which should inspire improved energy planning methodologies...

  11. MEET : project action plan for AUMA energy management program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-22

    The Municipal Energy Efficiency Trust (MEET) action plan offers a framework to help municipalities in Alberta demonstrate leadership in reducing energy consumption. It sets out targets for energy reductions and the associated capital investment. As more information is compiled from energy audits, the targets will be refined. AUMA and Enmax Energy Corp have partnered to provide energy audits designed to allow all municipalities to undertake energy savings projects. The program is divided into 8 basic categories for energy savings projects including: water and sewage collection, treatment and distribution; recreation centres such as pools and skating rinks; streetlights; office buildings; garages, shops and parking lots; other and innovative projects; municipal audit evaluation support; and, direct grants applied to each project. The estimates for energy savings within each category are provided. The maximum allowable payback period for the project is assumed to be 15 years. Total municipal energy use in Alberta is estimated at 1,100,000 MWh per year. A province wide program will enable AUMA to provide centralized services such as project management and procurement services to address municipal resource constraints and provide some economies of scale for smaller municipalities. AUMA will act as the fund administrator and will set criteria for acceptable projects. The action plan focuses on the energy audit program, municipal facility data collection, municipal staff education, and the establishment of a funding pool. The target for 2002/2003 will be to identify projects with energy savings of at least 15,000 MWh for water treatment and distribution recreation centres for a total capital cost of $13,500,000. 1 tab., 3 figs.

  12. Construction products performances and basic requirements for fire safety of facades in energy rehabilitation of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Construction product means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works, or parts thereof, and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works. Safety in case of fire and Energy economy and heat retention represent two among seven basic requirements which building has to meet according to contemporary technical rules on planning and construction. Performances of external walls building materials (particularly reaction to fire could significantly affect to fire spread on the façade and other building parts. Therefore, façade shaping and materialization in building renewal process, has to meet the fire safety requirement, as well as the energy requirement. Brief survey of fire protection regulations development in Serbia is presented in the paper. Preventive measures for fire risk reduction in building façade energy renewal are proposed according to contemporary fire safety requirements.

  13. Energy planning and security of supply in Spain and their compliance with the European legal framework

    International Nuclear Information System (INIS)

    Dolader, J.

    2004-01-01

    The electricity and gas markets in Spain were liberalized by the 1997 Electricity Act and the 1998 Hydrocarbons Act, respectively. The final step of the liberalization process was completed in January 2003 with the full eligibility of Spanish electricity and gas consumers. The liberalization Acts include in addition a two-way long-term energy planning process within a ten-year time scope. On the one hand the planning process involves binding planning concerning the so called 'basic infrastructures' (which include the electricity and gas transmission networks plus the total re-gasification capacity), and on the other hand, an indicative energy planning aimed at facilitating the decision making of administrations and agents by forecasting energy demand, and analyzing its coverage under the premises of security of supply. The present paper describes the current energy planning system in Spain, the provisions to ensure the security of supply and their compliance with the new European legislation - both the proposed and the existent one - regarding the security of supply in the EU.(author)

  14. Basic survey for Joint Implementation on Jinling Petrochemical Corporation, China. Energy conservation project for Nanjing Refinery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, the basic survey was conducted on potential energy conservation at Nanjing Refinery, Jiangsu Nanjing city, China. Investigational studies were made on the repair of the power recovery system in line with the plan to enlarge the fluid catalytic cracker (FCC) and the power recovery using exhaust gas from the RFCC catalytic regeneration system. Moreover, the energy conservation technology to reduce power loads of the refining system was adopted to this project. As a result, it was found out that this repair plan makes recovery of the power equivalent to 10.6MW possible and produces the effect of reducing the fuel to be used. The realization of this project brings the CO2 reduction amount of approximately 70,000 t/y. It was also found out that this project not only reduces a large amount of greenhouse effect gas emissions, but contributes to profits of the plant concerned and helps improve the environment in the area concerned. For the implementation of this project, the detailed plan is expected to be further discussed. (NEDO)

  15. In-House Energy Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    DOE facilities are required to develop a documented energy management program encompassing owned and leased facilities and vehicles and equipment. The program includes an Energy Management Plan consistent with the requirements of the DOE ten-year In-House Energy Management Plan, an ECP specifying actions associated with the sudden disruption in the supply of critical fuels, an Energy Management Committee comprised of WIPP employees, and reporting criteria for quarterly energy consumption reporting to DOE Headquarters. The In-House Energy Management Program will include an implementation plan, a budget, and an interaction and coordination plan. The goal of this program is to sensitize the WIPP employees to the energy consequences of their actions and to motivate them to use energy more efficiently. To achieve this goal, the program is designed to both improve energy conservation at the WIPP through the direct efforts of every employee, and to encourage employees to take the lead in conserving energy at home, on the road, and in the community

  16. Resilience and Renewable Energy Planning in Greenland

    DEFF Research Database (Denmark)

    Carruth, Susan

    2014-01-01

    Using a combination of thematic analysis and studio-based planning proposals in West Greenland, this paper proposes that there is more than one interpretation of resilience in renewable energy planning. All energy transitions, from one system to another, are protracted and unpredictable, and the ......Using a combination of thematic analysis and studio-based planning proposals in West Greenland, this paper proposes that there is more than one interpretation of resilience in renewable energy planning. All energy transitions, from one system to another, are protracted and unpredictable......, and the transition to a renewable energy system is proving no exception. Such a transition is particularly amplified in the context of Greenland – a country undergoing rapid transformation in many fields, including energy. Resilience theory offers an approach for how to plan for this energy transition, but how...... to translate resilience theory into planning practices remains underdeveloped. The paper begins by outlining some of the challenges in planning a transition to renewable energy, and sketching Greenland’s energy landscape. It then discusses the key characteristics of resilience thinking, before proposing...

  17. Energy research strategic plan

    International Nuclear Information System (INIS)

    1995-08-01

    Research and development is an essential element of economic prosperity and a traditional source of strength for the U.S. economy. During the past two decades, the way of introducing technological developments into the national economy has changed steadily. Previously, industry did most long-term technology development and some basic research with private funding. Today, the Nation's industry relies mostly on federally-funded research to provide the knowledge base that leads to new technologies and economic growth. In the 1980s, U.S. firms lost major technology markets to foreign competition. In response, many firms increased emphasis on technology development for near term payoff while decreasing long term research for new technology. The purpose of the Office of Energy Research of the U.S. Department of Energy (DOE) is to provide basic research and technology development that triggers and drives economic development and helps maintain U.S. world leadership in science. We do so through programs of basic and applied research that support the Department's energy, environmental and national defense missions and that provide the foundation for technical advancement. We do so by emphasizing research that maintains our world leadership in science, mathematics, and engineering and through partnerships with universities, National Laboratories, and industries across the Nation

  18. The BC energy plan : a vision for clean energy leadership

    International Nuclear Information System (INIS)

    2007-02-01

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs

  19. The BC energy plan : a vision for clean energy leadership

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs.

  20. Thematic report on urban energy planning

    DEFF Research Database (Denmark)

    Meijers, Evert; Romein, Arie; Stead, Dominic

    The report reviews relations between urban structure (spatial structure + institutional structure) and four core themes of urban energy: • Urban planning and energy use in buildings (mainly residential buildings) • Industrial energy use and urban form • Spatial Planning, Urban Form and Transport...... Energy Consumption • Urban energy generation The reports ends with a summary of potential measure and policies of spatial planning in each of the four themes. However, we highlight also that it is crucial to consider the wider perspective and include considerations of potential rebound effects on direct...

  1. Urban structure, energy and planning

    DEFF Research Database (Denmark)

    Große, Juliane; Fertner, Christian; Groth, Niels Boje

    2016-01-01

    Transforming energy use in cities to address the threats of climate change and resource scarcity is a major challenge in urban development. This study takes stock of the state of energy in urban policy and planning and reveals potentials of and constraints to energy-efficient urban development....... The relationship between energy and urban structure provides a framework for discussing the role of urban planning to increase energy efficiency in cities by means of three in-depth case studies of medium-sized cities in Northern Europe: Eskilstuna in Sweden, Turku in Finland and Tartu in Estonia. In some ways...... these cities go ahead when it comes to their national climate and energy policies and aim to establish urban planning as an instrument to regulate and influence the city’s transition in a sustainable way. At the same time, the cities are constantly facing goal conflicts and limitations to their scope of action...

  2. Action plan for energy efficiency 2003-2006. A Working Group Proposal

    International Nuclear Information System (INIS)

    2003-02-01

    proposed to be launched in order to promote energy saving in transport and energy efficiency in the community structure. The Working Group also proposes considering the possibility of further strengthening building regulations. For the improvement of the information on energy saving, the Working Group proposes drawing up of a communication plan for the action plan period. The action plan proposed by the Working Group is estimated to save Finland the emission of some 4-6 million tonnes of CO 2 , depending on the fuel to be replaced, in comparison with the basic scenario for 2010. The action plan is estimated to result in a 4-6 percent reduction in the consumption of primary sources of energy in 2010 compared with a situation where no new actions were taken. The Working Group proposes setting up of a monitoring group for the implementation and monitoring of the impact of the action plan. The data obtained from monitoring will be published in connection with the monitoring of the implementation of the climate strategy. The Working Group considers that the measures proposed should be subjected to a new evaluation in connection with the national introduction of the EU scheme for emission allowance trading. (orig.)

  3. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  4. Towards sustainable energy planning and management

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Sperling, Karl

    2014-01-01

    Rising energy costs, anthropogenic climate change, and fossil fuel depletion calls for a concerted effort within energy planning to ensure a sustainable energy future. This article presents an overview of global energy trends focusing on energy costs, energy use and carbon dioxide emissions....... Secondly, a review of contemporary work is presented focusing on national energy pathways with cases from Ireland, Denmark and Jordan, spatial issues within sustainable energy planning and policy means to advance a sustainable energy future....

  5. Cities & counties - back to the basics: Creating a local energy program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Outlined in this brochure are steps that local governments, or communities at large, can follow to devise an energy efficiency program. In general, an energy efficiency policy is first legislated by the local governing body. Then, an energy program is created to support the policy by developing and executing an action plan. The steps are: Determine how much you spend on energy; Designate or create a lead office; Link energy programs with community goals; Build grassroots community support; Don`t reinvent the wheel; Prioritize actions and develop a draft plan; Implement the plan; Evaluate success and update the plan; and, Publicize the benefits.

  6. Resilience and Renewable Energy Planning in Greenland

    DEFF Research Database (Denmark)

    Carruth, Susan

    2014-01-01

    Using a combination of thematic analysis and studio-based planning proposals in West Greenland, this paper proposes that there is more than one interpretation of resilience in renewable energy planning. All energy transitions, from one system to another, are protracted and unpredictable......, and the transition to a renewable energy system is proving no exception. Such a transition is particularly amplified in the context of Greenland – a country undergoing rapid transformation in many fields, including energy. Resilience theory offers an approach for how to plan for this energy transition, but how...... to translate resilience theory into planning practices remains underdeveloped. The paper begins by outlining some of the challenges in planning a transition to renewable energy, and sketching Greenland’s energy landscape. It then discusses the key characteristics of resilience thinking, before proposing...

  7. Summary report on urban energy planning

    DEFF Research Database (Denmark)

    Fertner, Christian; Große, Juliane; Groth, Niels Boje

    Based on the case study (Deliverables 4.2) as well as the thematic (Deliverable 4.3) work, a list of 29 spatial planning measures and policies was elaborated. The measures can increase energy efficiency, reduce energy use or increasing the share of renewable energy in a city. In the main part...... should take into consideration when working on their Energy Efficiency Action Plans: (1) How can spatial planning reduce energy use in our cities? (2) How do different geographical, regional, cultural or political contexts influence options? (3) How can we measure and monitor its effects? (4) What...

  8. Energy planning and management plan

    International Nuclear Information System (INIS)

    1996-01-01

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration's final draft and environmental impact statement, and Energy Planning and Management Program

  9. Planning competitiveness on the energy sector

    International Nuclear Information System (INIS)

    Hennicke, P.

    1991-01-01

    The book reviews the concept of least cost planning which can be applied in all stages of energy management. It is a system-analytical concept of planning, cost optimisation, and application of investment alternatives in energy supply and energy conversion. In particular, the authors discuss inhowfar the positive results achieved in the USA with cost saving programmes based on least-cost planning can be applied to the situation of the Federal Republic of Germany. It is shown that least-cost planning could make a key contribution to operations scheduling of public utilities, in the establishment and implementation of local and regional energy concepts, and especially in the theory and practice of state supervision of the energy sector. The 14 contributions can be found as separate records in this database. (orig./HP) With 31 figs [de

  10. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  11. Energy future Santa Cruz: A citizens' plan for energy self-reliance

    Science.gov (United States)

    Cohn, J.; Stayton, R.

    The results of a grassroots energy conservation project which involved more than 3,100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The energy plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy education and financing, and solar, wind, and ocean energy. An energy implementation guide and glossary are included.

  12. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  13. Ontario's energy action plan

    International Nuclear Information System (INIS)

    2003-07-01

    In the fall of 2002, the government of Ontario announced an action plan designed to ensure stable electricity prices while additional electricity generating capacity is built. The action plan included a strategy for encouraging major private sector investments in wind, solar and other renewable energy sources. The strategies for new renewable energy projects include: property tax incentives, business income tax incentives, and sales tax rebates. Initiatives to increase supply include: Toronto's Portland 550 megawatt, natural gas-fired generating station, Niagara Falls' Beck Tunnel Project, and Windsor's 580 megawatt natural gas-fired generating station. The government is promoting energy conservation by reducing its electricity consumption by 10 per cent, and setting a target where 20 per cent of electricity consumed in the province must be from renewable energy sources. The use of interval meters by Ontario residents is being encouraged. A provincial sales tax rebate is being offered to customers buying select energy efficient appliances. In its commitment to environmental protection, the Ontario government is phasing out coal, offering rebates for solar energy systems, implementing measures to reduce acid rain, and investing $3.25 billion over ten years to renew and expand public transit. In Chatham, Ontario, a plant producing ethanol from corn was built, and others are planned for other parts of the province. Tax incentives are also offered for alternative fuel users. 1 ref., 1 tab

  14. European Energy Charter. ; Status of basic agreement negotiation. Oshu energy kensho; Kihon kyotei kosho no jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Ijuin, T. (Agency of Natural Resources and Energy, Tokyo (Japan))

    1993-02-10

    From its title, the European Energy Charter has tended to lead to a misunderstanding that it is an European framework. However, a first expanded European Energy Charter meeting was held where the charter was established as an international framework. An article in the Charter calls for continuing a discussion on a basic agreement to be used as an international treaty and protocols by areas. The Charter text itself that has no legal binding power has been agreed by more than 40 charter participating nations based on the draft prepared by EC. However, no consensus has been reached on the negotiation for the basic agreement that has a legal binding power and the protocols in several important points. The basic agreement is a multi-national treaty specifying basic rules important in leading the former Soviet Union and East European nations to market economy and promoting energy development utilizing the investments from private sectors in the West. This paper describes the investment liberalization and investor protection, consistency with GATT, and its influence to the energy industries when Japan has joined the charter as a member nation.

  15. Basics of energy policy; Grundlagen der Energiepolitik

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, D. (ed.)

    2005-07-01

    This book displays basics of German and international energy policy. It explains the subject area for newcomers like students as well as for experts from industry, sciences or journalism and is intended to be a valuable source of information and helpfull reference book. It is made purposely in a way to be read section-wise. How is the state of development of special energy sources as coal, wind power or tidal and wave power respectively? Which actors operate in energy policy, what instruments of energy policy can be used by the legislator? The book is supposed to answer those questions. It was tried to achieve a high level of readability and useability by structuring and the use of many pictures and tables. (orig./uke)

  16. 76 FR 45606 - Desert Renewable Energy Conservation Plan, Habitat Conservation Plan and Possible Land Use Plan...

    Science.gov (United States)

    2011-07-29

    ...-N131; 80221-1112-80221-F2] Desert Renewable Energy Conservation Plan, Habitat Conservation Plan and Possible Land Use Plan Amendment, Southern California: Environmental Impact Statement AGENCY: Fish and..., as amended, for the proposed Desert Renewable Energy Conservation Plan (DRECP). The EIS will be a...

  17. Wind energy basics a guide to home- and community-scale wind energy systems

    CERN Document Server

    Gipe, Paul

    2009-01-01

    The availability of clean, renewable power is without question going to be the defining challenge and goal of the 21st century, and wind will lead the way. Internationally acclaimed wind energy expert Paul Gipe is as soberly critical of past energy mistakes as he is convincingly optimistic about the future. The overwhelming challenge of transforming our world from one of fossil carbon to one of clean power seems daunting at best-and paralyzingly impractical at worst. "Wind Energy Basics" offers a solution. Wind power can realistically not only replace the lion's share of oil-, coal-, and natural gasndash; fired electrical plants in the U.S., but also can add enough extra power capacity to allow for most of the cars in the nation to run on electricity. Gipe explains why such a startlingly straightforward solution is eminently doable and can be accomplished much sooner than previously thought-and will have the capacity to resuscitate small and regional economies. "Wind Energy Basics" offers a how-to for home-ba...

  18. Action plan for renewable energy sources

    International Nuclear Information System (INIS)

    2000-03-01

    In the Finnish Energy Strategy, approved by the Finnish Government in 1997, the emphasis is laid on the importance of bioenergy and other renewable energy sources for the creation of such prerequisites for the Finnish energy economy that the supply of energy can be secured, the price on energy is competitive and the emissions from energy generation are within the limits set by the international commitments made by Finland. In 1998, the European Union Meeting of the Ministers of Energy adopted a resolution taking a positive attitude to the Communication from the Commission 'Energy for the future: Renewable sources of energy' - White Paper for a Community Strategy and Action Plan. National measures play a key role in the achievement of the objectives set in the White Paper. This Action Plan for Renewable Energy Sources is a national programme in line with the EU's White Paper. It comprises all renewable sources of energy available in Finland. It encompasses even peat, which in Finland has traditionally been considered to be a solid biofuel but is internationally classified as one of the non-renewable sources of energy. In the Action Plan, objectives are set for the volume of renewable energy sources used in the year 2010 including a prognosis on the development by the year 2025. The goal is that by the year 2010 the volume of energy generated using renewable energy sources has increased by 50% compared with the year 1995. This would mean an increase by 3 Mtoe, which is about 1 Mtoe more than anticipated in the outlook based on the Finnish Energy Strategy. A further goal is to double the use of renewable energy sources by the year 2025. The aggregate use of renewable energy sources depends to a large extent both on the development of the price on energy produced using other energy sources and on possible changes in the production volume of the Finnish forest industry. The most important objective stated in the Action Plan is to improve the competitiveness of renewable

  19. FY 2000 Project report on survey for drawing district energy-saving visions for City of Ginowan; 2000 nendo Ginowan-shi sho energy vision sakutei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    The Ginowan municipal energy-saving vision drawing committee is established. It is responsible for drawing the energy-saving visions for the city, to study the basic guidelines and promotion measures for energy saving and promote the energy-saving measures suitable for the local characteristics. The studied items include background of and basic guidelines for the plans, analysis of energy consumption, survey on energy-saving consciousness and actual situations, prediction of potentially saved energy, drawing of the basic plans for energy saving and plan implementation programs, and surveys on preceding examples. The action plans include green planning for and revamping of public facilities, green purchasing, energy-saving diagnosis, drawing the design guidelines for energy saving and environmental considerations in public facilities, introduction of low-pollution local transportation systems, drawing the environment-related technology lists, including energy saving, and promotion of clean energy vehicles. (NEDO)

  20. National energy projections and plans of the USA

    International Nuclear Information System (INIS)

    1977-01-01

    Within the context of dwindling United States and world oil and gas resources, the development and evolution of the Energy Research and Development Administration's National Plan for Energy Research, Development and Demonstration is reviewed and basic goals and strategies are discussed. U.S. energy projections to the end of this century are estimated and ways of meeting them assessed. Options are then considered for the introduction of new technologies designed to lessen the nation's 75-per cent dependence on oil and gas fuels while simultaneously creating alternative energy choices for the future. The Plan singles out energy efficiency technologies for increased attention; identifies the major near and mid-term supply technologies; outlines initial program steps to overcome technological barriers to the large-scale implementation of these technologies, and reviews longer-range energy programs and prospects. To provide the basis for setting technology development priorities and for establishing implementation strategies, eight national energy technology goals are presented. Then, the strategies for attaining these goals are outlined for the near term (to 1985 and beyond), the mid term (1985-2000 and beyond), and the long term (21st century). Preliminary analyses have shown that only by introducing a number of these technologies in a combination of approaches can adequate solutions be found to pressing national energy problems. It is demonstrated that light water reactor power generation is crucial to the future U.S. energy supply. A number of nuclear areas requiring increased emphasis are then considered, including continued improvements in LWR technology; better definition of recoverable domestic uranium resources; expansion of U.S. capacity to meet future domestic and foreign demand for uranium enrichment services; development of a commercial fuel reprocessing and recycling capacity; demonstration of safe and environmentally acceptable waste treatment, storage

  1. Energy efficiency action plan. Policy action plan for promotion of energy efficiency in the Czech Republic to 2010

    International Nuclear Information System (INIS)

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply and environmental protection. Therefore, the Czech government aims to promote these two sustainable options. The Energy Policy White Paper, which is being developed at the time of writing (June 1999), will provide the general framework for the future role of energy efficiency and renewable energy in the Czech Republic. In addition, it is necessary to develop specific policies. The National Energy Efficiency Study aimed to support the Czech government in the formulation of energy efficiency and renewable energy policy. The National Energy Efficiency Study has resulted in the following documents: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (this report); The Renewable Energy Action Plan (separate report; ECN-C--99-064) deals with policy on promotion of renewable energy production. These two Action Plans provide policy makers in the Czech government with essential information on potentials, targets, budgets and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation; and (2) The National Energy Efficiency Study NEES (separate report; ECN-C--99-063). This report is the background document to the two Action Plans. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is included to support project identification

  2. Renewable energy action plan. Policy action plan for promotion of renewable energy in the Czech Republic to 2010

    International Nuclear Information System (INIS)

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply; and environmental protection. Therefore, the Czech government promotes these two sustainable options. The Energy Policy White Paper, which is being developed at the time of writing (June 1999), will provide the general framework for the future role of energy efficiency and renewable energy in the Czech Republic. However, in addition, it is necessary to develop specific policies. The National Energy Efficiency Study aimed to support the Czech government in the formula tion of energy efficiency and renewable energy policy. The National Energy Efficiency Study has resulted in the following documents: (1) The Renewable Energy Action Plan (this report) addresses renewable energy production. The Energy Efficiency Action Plan focuses on the promotion of energy efficiency in end use (separate report; ECN-C--99-065). These two Action Plans provide policy makers in the Czech government with information on potentials, targets, budgets and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation; (2) The National Energy Efficiency Study NEES (separate report; ECN-C--99-063). This report is the background document to the two Action Plans. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy. Also, it includes recommendations for financing schemes to overcome the invest ment constraints in the Czech Republic. Finally, a list of concrete projects is included to support project identification

  3. Nuclear energy national plan. The directions for nuclear energy policy in Japan

    International Nuclear Information System (INIS)

    2006-11-01

    Nuclear energy is a key attaining an integrated solution for energy security and global warming issues. Under the Framework for Nuclear Energy Policy Japan aims to (1) maintain the 30 to 40% or more share of nuclear energy on electricity generation up to 2030 and afterwards, (2) promote the nuclear fuel cycle and (3) commercialize the fast-breeder reactors. As for policies to realize the basic targets, the 'Nuclear Energy National Plan' was compiled in August 2006 as follows: (1) Investment to construct new nuclear power plants and replace existing reactors in an era of electric power liberalization, 2) Appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, (3) Steady advancement of the nuclear fuel cycle and strategic reinforcement of nuclear fuel cycle industries, (4) Strategy to secure uranium supplied, (5) Early commercialization of the fast breeder reactor cycle, (6) Achieving and developing advanced, technologies, industries and personnel, (7) Assisting the Japanese nuclear industry in promoting the international development, (8) Involved in and/or creating international frameworks to uphold both nonproliferation and expansion of nuclear power generation, (9) Fostering trust between the sates and communities where plants are located by making public hearings and public relations highly detailed and (10) Steady promotion of measures for disposal of radioactive wastes. Implementation policies were presented in details in this book with relevant data and documents. (T. Tanaka)

  4. Planning for energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    Magai, B S [Dept. of Mech. Eng., IIT Bombay, India

    1975-01-01

    A general review is provided of the national energy resources of India. They include wind power, tidal power, geothermal energy, and nuclear fission and fusion. Their present (1975) contribution to India's total energy requirements and the possibility of their accelerated development and impact on the national economy are discussed. Due to the serious proportions which the energy situation is assuming, it is suggested that a national energy council be set up within the Ministry of Energy to review all matters pertaining to energy, and to assume planning and evaluation responsibilities. It is also recommended that a Department of Energy Research, Development, and Demonstration be established as an autonomous agency which would carry out programs in utilization, conservation, environment, economics, and education. Present efforts by various ministries are fragmented and diverge in policy, leadership, and planning. It is believed that the proposed organizations would coordinate energy programs with national objectives.

  5. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  6. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  7. Energy planning in the Arab world

    Energy Technology Data Exchange (ETDEWEB)

    Elshafei, A.N.

    1979-09-01

    Efficient use of energy is of interest to the energy-surplus regions as well as the energy-deficit regions. Similarly, concern about energy conservation is not confined to the industrially developed regions of the world. This article discusses energy planning from the Arab point of view. A framework for Arab energy modeling is first described. Then the application of a computer model - that of Mesarovic and Pestel - to Arab energy-planning needs is discussed and some of the results are presented. Finally, current priorities in Arab energy-modeling studies are outlined. The Appendix surveys some existing models which address regional and international energy problems.

  8. Basic science and energy research sector profile: Background for the National Energy Strategy

    Energy Technology Data Exchange (ETDEWEB)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  9. Samish Indian Nation Long-Term Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Christine Woodward; B. Beckley; K. Hagen

    2005-06-30

    The Tribes strategic energy planning effort is divided into three phases: (1) Completing an Energy Resource Assessment; (2) Developing a Long-Term Strategic Energy Plan; and (3) Preparing a Strategic Energy Implementation Plan for the Samish Homelands. The Samish Indian Nation developed a comprehensive Strategic Energy plan to set policy for future development on tribal land that consists of a long-term, integrated, systems approach to providing a framework under which the Samish Community can use resources efficiently, create energy-efficient infrastructures, and protect and enhance quality of life. Development of the Strategic Energy plan will help the Samish Nation create a healthy community that will sustain current and future generations by addressing economic, environmental, and social issues while respecting the Samish Indian Nation culture and traditions.

  10. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  11. Energy planning in India

    International Nuclear Information System (INIS)

    Venu, S.

    1982-01-01

    A review is presented of India's planning for energy requirements in coal, oil, gas and nuclear power and in the fields of solar energy and the extension of forest areas to provide firewood. Coal and natural gas supplies will be increased to reduce oil demand. There will be an accelerated programme of development of bio-gas, an exploration of solar energy potential and extensive afforestation to provide additional energy sources. (author)

  12. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  13. Frame, methods and instruments for energy planning in the new economic order of electricity economics

    International Nuclear Information System (INIS)

    Stigler, H.

    1999-01-01

    The introduction of the new economic order of the electricity economy causes new focal tasks for the individual market participants and therefore new requirements for planning. As a precondition for energy planning, the Internal Market Electricity Directive and the ElWOG are examined and the tasks for the market participants are derived. Liberalization raises the risks for the enterprises. Increasing competition sets up higher requirements for planning. The planning instruments have no longer the destination of minimum costs but have to maximize the results of the enterprise. Price fixing requires a raised alignment to marginal costs considerations. Increasing electricity trade requires the introduction of new planning instruments. Further new tasks refer to electricity transfer via other networks and especially to congestion management. New chances but also new risks arise for the renewable energy sources. From the market result new requirements for the planning instruments. The basics in this respect are prepared and concrete examples from practice are submitted. Models of enterprises are developed, which consist of a technical and a business part. Central importance has the modeling of competition in the liberalized market. A model of competition between enterprises in the electricity market is developed. (author)

  14. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  15. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  16. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  17. Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry

    International Nuclear Information System (INIS)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.

  18. The “cost of not doing” energy planning: The Spanish energy bubble

    International Nuclear Information System (INIS)

    Gómez, Antonio; Dopazo, César; Fueyo, Norberto

    2016-01-01

    The Spanish power generation sector is facing dire problems: generation overcapacity, various tariff hikes over recent years, uncertainty over the financial viability of many power plants and a regulatory framework that lacks stability. This situation is the consequence of both poor energy policies and the economic crisis in the late 2000s and early 2010s. In this paper we analyze the following three points from an energy planning perspective: how the country has arrived at this situation; whether other alternatives would have been possible through adequate planning; and the quantitative benefits that would have been accrued from such planning. We do so by developing a LEAP model, and building three scenarios that allow to segregate the costs of the economic crisis from the costs of the lack of planning. We find that appropriate energy planning could have reduced investments in the Spanish power sector by 2010€28.6 billion without compromising on performance in terms of sustainability or energy security, while improving affordability. The main causes of these surplus investments were two supply bubbles: those of gas combined cycles and of solar technologies. The results of this work highlight the value of rigorous, quantitative energy planning, and the high costs of not doing it. - Highlights: • We analyze the costs of the lack of quantitative planning for energy-policy making. • We separate the costs of the economic crisis in Spain from the cost of not planning. • We find the “cost of not doing” energy planning to be 28.6 billion 2010EUR.

  19. American Samoa Energy Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States); Herdrich, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bodell, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Visser, Charles [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-08-01

    Describes the five near-term strategies selected by the American Samoa Renewable Energy Committee (ASREC) during action planning workshops conducted in May 2013, and outlines the actions being taken to implement those strategies. Each option is tied to a priority identified in the earlier draft American Samoa Strategic Energy Plan as being an essential component of reducing American Samoa'spetroleum energy consumption. The actions described for each strategy provide a roadmap to facilitate the implementation of each strategy. This document is intended to evolve along with the advancement of the projects, and will be updated to reflect progress.

  20. Results and future plans for the innovative basic research on high temperature engineering

    International Nuclear Information System (INIS)

    2001-05-01

    The High Temperature Engineering Test Reactor (HTTR) is under the rise-to-power stage at the Oarai Research Establishment of Japan Atomic Energy Research Institute (JAERI). This reactor is aimed not only at establishment of the infrastructural technology on high temperature gas-cooled reactor and its upgrading, but also at promotion of the innovative basic research on high temperature engineering. The research is a series of innovative high-temperature irradiation studies, making the best use of the characteristic of the HTTR that it provides a very wide irradiation space at high temperatures. The JAERI has been conducting preliminary tests of the innovative research since 1994, in collaboration with universities and other research institutes, in the fields of 1) new materials development, 2) high temperature radiation chemistry and fusion-related research, and 3) high temperature irradiation techniques and other nuclear research. The HTTR Utilization Research Committee has been examining the results and methodology of the preliminary tests and the future plans, as well as examining the preparatory arrangements of facilities for the HTTR irradiation and post-irradiation examinations. This report presents a summary of results of the preliminary tests and preparatory arrangements for about seven years, together with an outline of the future plans. (author)

  1. Energy future Santa Cruz. A citizens plan for energy self-reliance: Executive summary

    Science.gov (United States)

    Cohn, J.; Stayton, R.

    A grassroots energy conservation project which involved more than 3100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy eduction and financing, and solar, wind, and ocean energy. If the plan is successfully implemented, the energy that the community is projected to use in 1991 can be lowered by 24 to 35 percent.

  2. Danish Experience in Local Energy Planning

    DEFF Research Database (Denmark)

    Lund, Henrik; Sørensen, Per Alex

    2003-01-01

    The paper describes the influence from public participation brings examples of local energy planning from Ærø and Samsø islands in Denmark.......The paper describes the influence from public participation brings examples of local energy planning from Ærø and Samsø islands in Denmark....

  3. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    Energy Technology Data Exchange (ETDEWEB)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  4. Basic research in theoretical high energy physics. Progress report

    International Nuclear Information System (INIS)

    Adler, S.L.

    1984-01-01

    Activities in numerous areas of basic research in theoretical high energy physics are listed, and some highlights are given. Areas of research include statistical mechanics, quantum field theory, lattice gauge theories, and quantum gravity. 81 references

  5. Effective energy planning for improving the enterprise’s energy performance

    Directory of Open Access Journals (Sweden)

    Păunescu Carmen

    2016-09-01

    Full Text Available The global pressing need to protect the environment, save energy and reduce greenhouse gas emissions worldwide has prompted the enterprises to implementing both individual energy saving measures and a more systematic approach to improve the overall enterprise’s energy performance. Energy management is becoming a priority as enterprises strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. As such, enterprises are encouraged to manage their energy related matters in a systematic manner and a more harmonized way, to ensure continual improvement on their energy efficiency. Despite the increasing interest in energy management standards, a gap persists between energy management literature and current implementation practices. The release of the ISO 50001 international standard was meant to help the organizations develop sound energy management systems and effective process-based energy management structures that could be recognized through third-party certification. Building on the energy management literature and energy management standards, the current paper presents the essential steps the enterprises should take to practically design a sustainable energy management system. Also, by using multiple case studies of enterprises that have implemented an ISO 50001 energy management system, it introduces a structured approach that companies can use to effectively develop their energy planning and improve energy performance. The key components of the enterprise’s energy planning are discussed, as well as practical examples of energy objectives and performance indicators from various industries are offered. The paper shows that by establishing an effective energy planning system, this will efficiently meet demands for achieving energy performance indicators and international certification.

  6. Quinault Indian Nation Renewable Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Don Hopps, Institute for Washington' s Future; Jesse Nelson, Institute for Washington' s Future

    2006-11-28

    The Quinault Indian Nation (Nation) initiated this study on conservation and production of renewable energy because this approach created the opportunity: • To become self-sufficient and gain greater control over the energy the Nation uses; • To generate jobs and businesses for its members; • To better manage, sustain, and protect its resources; • To express the cultural values of the Nation in an important new arena. The Nation has relatively small energy needs. These needs are concentrated at two separate points: the Quinault Beach Resort and Casino (QBRC) and Taholah on the Quinault Indian Reservation (QIR). Except for the town of Queets, energy needs are small and scattered. The needs vary greatly over the season. The small scale, widely dispersed, and variable nature of these needs presents a unique challenge to the Nation. Meeting these needs requires a resource and technology that is flexible, effective, and portable. Conservation is the most cost-effective way to meet any need. It is especially effective in a situation like this where production would leave a high per unit cost. This plan is based on first gaining energy savings through conservation. Major savings are possible through: 1. Upgrading home appliances on the QIR. 2. Weatherizing homes and facilities. 3. Changes in lighting/ventilation in the QBRC pool room. These elements of the plan are already being implemented and promise to save the Nation around a quarter of its present costs. Wood biomass is the best resource available to the QIN for energy production either on-site or for commercial development. It is abundant, flexible and portable. Its harvesting has high job potential and these jobs are a good fit for the present “skill set” of the QIN. This plan focuses on using wood biomass to produce energy and other value-added products. Our study considered various technologies and approaches to using wood for energy. We considered production for both on-site and commercial production

  7. 15 CFR 923.13 - Energy facility planning process.

    Science.gov (United States)

    2010-01-01

    ... facility planning process. The management program must contain a planning process for energy facilities... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... affected public and private parties will be involved in the planning process. [61 FR 33806, June 28, 1996...

  8. Decentralized energy planning and consensus in energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T. J.

    1980-05-02

    This paper explores the following three propositions and their relationships: (1) that, in our pluralistic policymaking environment, we cannot solve our nation's energy problems unless we can reach agreement among a diverse group of interested parties about specific actions; (2) that, short of a manifest emergency, such a consensus is difficult to reach unless the scale of the decision-making unit is relatively small; and therefore (3) that one of the keys to an effective energy policy in the United states is to rely heavily on local and regional energy planning and decision-making. First, the paper reviews our problem of irresolution and its roots, and it summaries the policy options for resolving it. Then it explores one of those options, decentralized planning, in a little more detail. Finally, it offers some speculations about the viability of a decentralized approach to energy planninng.

  9. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  10. Solar Energy Validation for Strategic Investment Planning via Comparative Data Mining Methods: An Expanded Example within the Cities of Turkey

    OpenAIRE

    Yuregir, Oya H.; Sagiroglu, Cagri

    2016-01-01

    Energy supply together with the data management is one of the key challenges of our century. Specifically, to decrease the climate change effects as energy requirement increases day by day poses a serious dilemma. It can be adequately reconciled with innovative data management in (renewable) energy technologies. The new environmental-friendly planning methods and investments that are discussed by researchers, governments, NGOs, and companies will give the basic and most important variables in...

  11. Community energy planning in Canada. The role of renewable energy

    International Nuclear Information System (INIS)

    St Denis, Genevieve; Parker, Paul

    2009-01-01

    An emerging trend in Canada is the creation of community energy plans, where decisions that used to be left to regional level energy agencies or private individuals are now being considered at the community level. A desire to reduce greenhouse gas emissions and to become more energy self-sufficient is driving this change. Theoretically, local level management is desirable because it achieves these goals through improvements in the three areas of energy efficiency, energy conservation and switching to renewable energy sources. The analysis of 10 of the first community energy plans in Canadian communities, ranging in population size from 500 to one million, finds that communities are choosing policies and programs centred on increasing energy efficiency and conservation while renewable energy receives much less attention. Municipal operations were called upon to set higher targets than the general community. Communities that recognized the substantial potential of renewable energy often focused on technologies that the municipal sector could implement, such as bio-fuels for their transportation fleet. Wind, passive solar design, solar photovoltaics and solar thermal options were only recommended in a few cases. Overall, only one of the five larger communities (Calgary) recommended implementing multiple renewable energy technologies while three of the five smaller communities proposed multiple renewable energy sources. The implication is that smaller and more remote communities may be the most willing to lead in the planned introduction of renewable energy systems. (author)

  12. An Asset-Based Approach to Tribal Community Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Rachael A. [Pratt Inst., Brooklyn, NY (United States). City and Regional Planning; Martino, Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials, Devices, and Energy Technologies; Begay, Sandra K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials, Devices, and Energy Technologies

    2016-08-01

    Community energy planning is a vital component of successful energy resource development and project implementation. Planning can help tribes develop a shared vision and strategies to accomplish their energy goals. This paper explores the benefits of an asset-based approach to tribal community energy planning. While a framework for community energy planning and federal funding already exists, some areas of difficulty in the planning cycle have been identified. This paper focuses on developing a planning framework that offsets those challenges. The asset-based framework described here takes inventory of a tribe’s capital assets, such as: land capital, human capital, financial capital, and political capital. Such an analysis evaluates how being rich in a specific type of capital can offer a tribe unique advantages in implementing their energy vision. Finally, a tribal case study demonstrates the practical application of an asset-based framework.

  13. Issues - I. Renewable energies and urban planning law - Urban planning law and renewable energies: I love you, neither I

    International Nuclear Information System (INIS)

    Gregory Kalfleche

    2012-01-01

    After having noticed that fossil energies must still be used beside renewable energies, and that renewable energies have some negative impacts on landscape and on the environment, the author highlights the fact that the French urban planning law gives a strong support to small renewable energy production units. In a second part, he shows that despite a commitment for the development of renewable energies, urban planning law mostly remains a constraint as far as the development of large units is concerned

  14. Resilience and Renewable Energy Planning in Greenland

    DEFF Research Database (Denmark)

    Carruth, Susan

    2014-01-01

    to translate resilience theory into planning practices remains underdeveloped. The paper begins by outlining some of the challenges in planning a transition to renewable energy, and sketching Greenland’s energy landscape. It then discusses the key characteristics of resilience thinking, before proposing...

  15. Army Mobility Energy Research & Development Plan.

    Science.gov (United States)

    1980-01-01

    Energy Utilization MAJOR TECHNOLOGICAL BARRIERS: None. APPROACH: Develop (1) movie simulator, or (2) computer simulator with video display, or (3) working...cut-up chicken from slaughter, 3.5 weeks frozen storage to cooked condition, has an energy requirement of 46,000 kJ/kg edible portion contrasted to...radiation sterilized, cooked individual servings which have a comparable energy requirement of 14,160 kJ/kg edible portion. APPROACH: Conduct basic and

  16. Energy conservation: its planning and management

    International Nuclear Information System (INIS)

    Nanda, K.S.; Patra, K.C.

    1995-01-01

    Energy conservation, its planning and management and the development of renewable energy systems of proven design are very worthy challenges for all. Energy education at various levels is most important particularly in the development of renewable energy technology. 2 refs., 3 tabs

  17. TRUE multi-annual energy planning

    International Nuclear Information System (INIS)

    Bringault, Anne; Cormier, Cyrille; Arditi, Maryse

    2016-01-01

    A multi-annual energy planning (PPE) has been introduced by the French government to transcribe the objectives of the law on energy transition into evolutions for energy consumption and production for different periods (2016-2018 and 2019-2023). This publication first indicates various assessments for these periods regarding energy consumption, electricity consumption, fossil energy consumption, renewable energy production, the share of electric renewable energies, and the decrease of the nuclear share. These objectives are then discussed with respect to different scenarios, and notably a reference scenario

  18. Final Report for the Soboba Strategic Tribal Energy Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Kim [EPA Specialist

    2013-09-17

    In 2011 the Tribe was awarded funds from the Department of Energy to formulate the Soboba Strategic Tribal Energy Plan. This will be a guiding document used throughout the planning of projects focused on energy reduction on the Reservation. The Soboba Strategic Tribal Energy Plan's goal is to create a Five Year Energy Plan for the Soboba Band of Luiseno Indians in San Jacinto, California. This plan will guide the decision making process towards consistent progress leading to the Tribal goal of a 25% reduction in energy consumption in the next five years. It will additionally outline energy usage/patterns and will edentify areas the Tribe can decrease energy use and increase efficiency. The report documents activities undertaken under the grant, as well as incldues the Tribe's strategif energy plan.

  19. Final Report - Development of a Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Maracas, Kate; Hooks, Todd

    2006-11-30

    The Agua Caliente Band of Cahuilla Indians was awarded a grant under the U.S. Department of Energy’s (“DOE”) Tribal Energy Program to develop a comprehensive Tribal energy plan. The grant, awarded under DOE’s First Steps program, supported the development of a strategic energy plan that integrates with the Tribe’s overall planning and economic development goals, and aligns with Tribal cultural, social, political, and spiritual values. The Tribe set out to incorporate its energy plan into (i) a broader economic development strategy developed by investigators at the University of California at Riverside, and (ii) the overarching goals for job-creation and wealth-creation that are held by both the Tribe and the surrounding Coachella Valley. With these wide-ranging objectives in mind, the Tribe and its consultant, Red Mountain Energy Partners, engaged in a phased approach to creating the strategic energy plan. As illustrated in Figure 1 below, the proposed approach involved both “serial” and “parallel” activities. The capacity-building component of this approach occurred throughout the duration of the project period.

  20. New energy vision in Tochigi Prefectural area; Tochigiken chiiki shin energy vision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to structure a circulation type society that imposes less load on the environment, a new energy vision was established in the Tochigi Prefectural area. This plan is an overall plan to promote introduction of new energies, and at the same time serves as a guideline when prefectural residents, business entities and the administration attempt to introduce new energies. The plan was prepared upon viewing the year 2010. The new energy introduction quantity in 2010 was estimated to be 470,000 kL as converted into crude oil (4.7% of the consumption in fiscal 1997). The plan document covers the following five fields: 1) the basic conception of the vision establishment, 2) the current status and problems surrounding the energies, 3) the basic directionality in introducing new energies, 4) policy systems and role sharing toward introducing new energies, and 5) case studies and case presentation. Item 4 is composed of policy systems for new energy introduction, projects to be implemented with emphasis, roles of working organizations, and institutions for promotion. The projects to be executed with emphasis consist of five items including initiative introduction into facilities utilized by the prefectural residents. (NEDO)

  1. An interval-possibilistic basic-flexible programming method for air quality management of municipal energy system through introducing electric vehicles.

    Science.gov (United States)

    Yu, L; Li, Y P; Huang, G H; Shan, B G

    2017-09-01

    Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Regional energy planning: some suggestions to public administration

    Energy Technology Data Exchange (ETDEWEB)

    Sozzi, R

    1982-01-01

    A methodology is proposed to estimate the relevant data and to improve the energy efficiency in regional energy planning. The quantification of the regional energy system is subdivided in three independent parameters which are separetely estimated: energy demand, energy consumption, and transformation capacity. Definitions and estimating procedures are given. The optimization of the regional planning includes the application, wherever possible, of the technologies which centralize the space-heating energy production or combine the production of electric energy with space-heating energy distribution.

  3. Regional energy planning: Some suggestions to public administration

    Science.gov (United States)

    Sozzi, R.

    A methodology is proposed to estimate the relevant data and to improve the energy efficiency in regional energy planning. The quantification of the regional energy system is subdivided in three independent parameters which are separetely estimated: energy demand, energy consumption, and transformation capacity. Definitions and estimating procedures are given. The optimization of the regional planning includes the application, wherever possible, of the technologies which centralize the space-heating energy production or combine the production of electric energy with space-heating energy distribution.

  4. Basic DTU Wind Energy controller

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Henriksen, Lars Christian

    This report contains a description and documentation, including source code, of the basic DTU Wind Energy controller applicable for pitch-regulated, variable speed wind turbines. The controller features both partial and full load operation capabilities as well as switching mechanisms ensuring......-integral controller to counter the effects of changing dynamics of the wind turbine for different wind speeds. Blade pitch servo and generator models are not included in this controller and should be modeled separately, if they are to be included in the simulations....... dependent minimum blade pitch in partial load operation. The controller uses the collective blade pitch angle and electromagnetic generator torque to control the wind turbine. In full load operation a feedback term from the collective blade pitch angle is used to schedule the gains of the proportional...

  5. Long-term optimal energy mix planning towards high energy security and low GHG emission

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Khambadkone, Ashwin M.; Karimi, Iftekhar A.

    2015-01-01

    Highlights: • We develop long-term energy planning considering the future uncertain inputs. • We analyze the effect of uncertain inputs on the energy cost and energy security. • Conventional energy mix prone to cause high energy cost and energy security issues. • Stochastic and optimal energy mix show benefits over conventional energy planning. • Nuclear option consideration reduces the energy cost and carbon emissions. - Abstract: Conventional energy planning focused on energy cost, GHG emission and renewable contribution based on future energy demand, fuel price, etc. Uncertainty in the projected variables such as energy demand, volatile fuel price and evolution of renewable technologies will influence the cost of energy when projected over a period of 15–30 years. Inaccurate projected variables could affect energy security and lead to the risk of high energy cost, high emission and low energy security. The energy security is an ability of generation capacity to meet the future energy demand. In order to minimize the risks, a generic methodology is presented to determine an optimal energy mix for a period of around 15 years. The proposed optimal energy mix is a right combination of energy sources that minimize the risk caused due to future uncertainties related to the energy sources. The proposed methodology uses stochastic optimization to address future uncertainties over a planning horizon and minimize the variations in the desired performance criteria such as energy security and costs. The developed methodology is validated using a case study for a South East Asian region with diverse fuel sources consists of wind, solar, geothermal, coal, biomass and natural gas, etc. The derived optimal energy mix decision outperformed the conventional energy planning by remaining stable and feasible against 79% of future energy demand scenarios at the expense of 0–10% increase in the energy cost. Including the nuclear option in the energy mix resulted 26

  6. State of Oregon 4th biennial energy plan

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    State law directs the Oregon Department of Energy (ODOE) to prepare an energy plan every two years. This is the Fourth Biennial Energy Plan. The Plan is a policy blueprint for how to best meet Oregon's future energy needs. It identifies the key energy issues facing the state and sets forth policies and actions to achieve our energy goals of reliable, least-cost, and environmentally safe supply. This book presents: Oregon's demand and supply picture today. The progress Oregon has made toward energy efficiency. Oregon's energy demand and supply outlook for the next 20 years. Estimates of cost-effective conservation and other resources that could contribute to the state's energy supply. The major energy-related health, safety, and environmental issues facing the state. A strategy to reduce greenhouse gas emissions 20 percent from 1988 levels by 2005. A two-year Action Plant that spells out ODOE's recommended actions for achieving Oregon's energy goals

  7. Energy and climate: Brussels plan put to the test; Energie et climat: le plan de Bruxelles mis a l'epreuve

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-07-01

    In early 2008, the European Commission presented its highly ambitious plan to reduce greenhouse gas emissions. Two stumbling blocks stand in the way: industry's obvious reluctance, and the unanswered but crucial question of how to fund the proposed measures. Included are measures to reduce energy consumption, increase the share of renewable energies and boost energy efficiency. But controversy surrounds the proposed plan: nuclear power is ignored in the EU document, the plan price tag is 90 billion euros in 2020 and seven member states ask for clarification. The Commission is hoping for approval of its plan before the end of 2008.

  8. Energy Supply and Demand Planning Aspects in Slovenia

    International Nuclear Information System (INIS)

    Tomsic, M.; Urbancic, A.; Al Mansour, F.; Merse, S.

    1997-01-01

    Slovenia can be considered a sufficiently homogenous region, even though specific climatic conditions exist in some parts of the country. Urban regions with high energy consumptions density differ in logistic aspects and in the potential of renewable energy sources. The difference in household energy demand is not significant. The planning study is based on the ''Integrated Resource Planning'' approach. A novel energy planning tool, the MESAP-PlaNet energy system model, supplemented by auxiliary models of technology penetration, electricity demand analysis and optimal expansion planning (the WASP package) has been used. The following segments has been treated in detail: industry, households and both central and local supply systems. Three intensities of energy efficiency strategies are compared: Reference, Moderate and Intensive. The intensity of demand side management programs influence the level and dynamics of activation of conservation potentials. Energy tax is considered in the Moderate and Intensive strategies. On the supply side the issue of domestic coal use is discussed. Reduction in the use of coal is linked to energy efficiency strategies. It has been found that energy efficiency strategies consistently improve economic efficiency, security of supply and protection of health and environment. The only conflicting area is social acceptability, due to both the energy tax reform and the loss of mining jobs. (author)

  9. Action plan for Nordic energy co-operation 2006-2009

    International Nuclear Information System (INIS)

    2005-01-01

    The Action Plan for Nordic Energy Co-operation 2006-2009 is targeted at creating a visible and sustainable contribution to solving the most important and politically most relevant energy policy challenges faced by the Nordic region. The plan concentrates on three main areas: Energy markets; Sustainable energy system; and Nordic impact on the international agenda. The Action Plan is the energy sector's contribution to the implementation of the Nordic strategy 'Sustainable Development - New Bearing for the Nordic Countries' and to a number of the Nordic Council's recommendations for the development of the Nordic energy sector. An important element of the implementation of the action plan is on-going contact and information sharing between the Nordic Energy Policy co-operation and the Nordic Energy Research. The continues dialogue between the Nordic Council of Energy Ministers and The Nordic Council on future energy policy challenges will likewise be an important part of the political process. (BA)

  10. Optimal planning of integrated multi-energy systems

    DEFF Research Database (Denmark)

    van Beuzekom, I.; Gibescu, M.; Pinson, Pierre

    2017-01-01

    In this paper, a mathematical approach for the optimal planning of integrated energy systems is proposed. In order to address the challenges of future, RES-dominated energy systems, the model deliberates between the expansion of traditional energy infrastructures, the integration...... and sustainability goals for 2030 and 2045. Optimal green- and brownfield designs for a district's future integrated energy system are compared using a one-step, as well as a two-step planning approach. As expected, the greenfield designs are more cost efficient, as their results are not constrained by the existing...

  11. Research planning in the energy sector

    International Nuclear Information System (INIS)

    Graenicher, H.

    1977-06-01

    The author considers research planning split into four separate aspects: the character of the research situation; the function of planning stages; the type of research target; and the limit of the application of research planning by planning stages. He then considers the specific problem of energy research and discusses the question of what the state is to do and how to do it with particular attention to the Swiss situation. (G.T.H)

  12. Annual report, Basic Sciences Branch, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  13. Energy and nuclear power planning using the IAEA's ENPEP computer package. Proceedings of a workshop

    International Nuclear Information System (INIS)

    1997-09-01

    The Regional (Europe) Technical Co-operation Project on the Study of Energy Options Using the IAEA Planning Methodologies was first implemented by the IAEA in 1995. The project aims at improving national capabilities for energy, electricity and nuclear power planning and promoting regional co-operation among participating countries in the European region. The project includes the organization of workshops, training activities at the regional and national levels, scientific visits, etc. The proceedings of a workshop held in Warsaw, Poland, from 4 to 8 September 1995 are contained herein. The workshop had as a basic objective the analysis of the specific problems encountered by the represented countries during application of the IAEA's ENPEP package in the conduct of national studies and to provide a forum for further co-operation among participating countries. A second objective of the workshop was to make proposals for future activities to be organized within the project. This publication is intended to serve as reference for the users of the IAEA's ENPEP package, as well as for energy and electricity planners in general. Refs, figs, tabs

  14. A study on the research and development planning of nuclear energy

    International Nuclear Information System (INIS)

    Noh, Byong Chull; Won, B. C.; Kim, J. W.; Cho, C. Y.; Cheon, S. H.; Kim, J. U.; Kim, I. C.; Hong, Y. P.; Kang, W. J.; Lee, H. S.; Yoon, Y. S.; Park, J. H.; Kim, S. S.; Park, C. S.; Yang, M. S.; Lee, Y. H.

    1998-01-01

    This study was performed aiming to provide the basic input to establish 'the mild and long-term nuclear R and D program (1997 - 2006)' for government. This program is announced by the government as an official plan after endorsement of Atomic Energy Commission (AEC). Second, the historical formation and transition of both nuclear R and D policy and nuclear R and D development system after the introduction of nuclear energy in Korea were analyzed. Third, the current status of several nuclear-related R and D projects and R and D management, which have been conducted at KAERI were analyzed and a better direction for effective and efficient R and D activities was suggested. Finally, on the basis of above analysis, this study made an effort to extract the appropriate lessons for future directions for carrying out nuclear R and D projects. (author). 19 refs., 40 tabs., 10 figs

  15. A study on the research and development planning of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byong Chull; Won, B. C.; Kim, J. W.; Cho, C. Y.; Cheon, S. H.; Kim, J. U.; Kim, I. C.; Hong, Y. P.; Kang, W. J.; Lee, H. S.; Yoon, Y. S.; Park, J. H.; Kim, S. S.; Park, C. S.; Yang, M. S.; Lee, Y. H

    1998-01-01

    This study was performed aiming to provide the basic input to establish `the mild and long-term nuclear R and D program (1997 - 2006)` for government. This program is announced by the government as an official plan after endorsement of Atomic Energy Commission (AEC). Second, the historical formation and transition of both nuclear R and D policy and nuclear R and D development system after the introduction of nuclear energy in Korea were analyzed. Third, the current status of several nuclear-related R and D projects and R and D management, which have been conducted at KAERI were analyzed and a better direction for effective and efficient R and D activities was suggested. Finally, on the basis of above analysis, this study made an effort to extract the appropriate lessons for future directions for carrying out nuclear R and D projects. (author). 19 refs., 40 tabs., 10 figs

  16. Recent experience in the use of IAEA planning methodologies for energy, electricity and nuclear power planning among Member States of Europe, the Middle East and North Africa. Proceedings of a workshop

    International Nuclear Information System (INIS)

    1996-02-01

    This report contains the proceedings of a workshop held in Budapest, Hungary, from 18 to 22 July 1994. The workshop had, as a basic objective, the promotion of the regional exchange of experience in the use of the IAEA's planning tools and of providing a forum for further co-operation among participating countries. This report is intended to serve as a useful guide for the users of the IAEA planning models, as well as energy and electricity planners in general. Refs, figs, tabs

  17. 77 FR 52754 - Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning Area

    Science.gov (United States)

    2012-08-30

    ...-FF03E00000] Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning... our planning partners, intend to prepare the Midwest Wind Energy Multi-Species Habitat Conservation... decommissioning of wind energy facilities within all or portions of the eight-State planning area. Activities...

  18. Integrated National Energy Planning (INEP) in developing countries

    International Nuclear Information System (INIS)

    Munasinghe, M.

    1989-01-01

    Issues of coordinated energy planning are emphasized, with particular reference to interrelationships among the policies adopted in various energy sub-sectors such as electric power (including hydro, nuclear, geothermal, oil and coal sources), petroleum, natural gas, coal, non-conventional (solar, bio-gas, mini-hydro) and traditional fuels (woodfuel, bagasse or vegetable residue). The scope and objectives of integrated national energy planning, the policy tools available, and constraints particular to the developing countries are discussed next. Section 3.0 outlines how energy planning is carried out, while the problems of implementing the resulting policy conclusions are examined in section 4.0. 5 refs, 4 figs

  19. 77 FR 60457 - Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning...

    Science.gov (United States)

    2012-10-03

    ...-FF03E00000] Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning... of comments pertaining to the development of the Midwest Wind Energy Multi-Species Habitat..., intend to prepare the Midwest Wind Energy Multi-Species Habitat Conservation Plan (MSHCP) under the...

  20. MuSAE: A European Project for the Diffusion of Energy and Environmental Planning in Small-Medium Sized Municipalities

    Directory of Open Access Journals (Sweden)

    Giorgio Baldinelli

    2015-12-01

    Full Text Available The basic idea of the EU LIFE+ 2011 project MuSAE (“Municipalities Subsidiarity for Actions on Energy”, code LIFE11 ENV/IT/000016 consists of transferring the skills and experience related to energy planning, acquired by the leading beneficiary, the Municipality of Perugia, to three small- or medium-sized Umbrian Municipalities (Marsciano, Umbertide and Lisciano Niccone. This transfer is aimed, among other objectives, at the drafting of the Municipal Energy and Environmental Plan (MEEP and the opening of an energy information office in each partner Municipality, in cooperation with CIRIAF and Umbria Region. The present paper provides a summary of MuSAE activities, analyzing the procedures and modalities of implementation of the various phases of the MEEPs, on the basis of the experience gained over the years through the collaboration with the Municipality of Perugia and adapted to smaller territories such as those represented by the other partner Municipalities. A summary of the dissemination activities and pilot projects is also presented, testifying the first concrete results of the planning activity developed by each administration within the project.

  1. Distributed Energy Planning for Climate Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Stout, Sherry R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Day, Megan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    At various levels of government across the United States and globally climate resilient solutions are being adopted and implemented. Solutions vary based on predicted hazards, community context, priorities, complexity, and available resources. Lessons are being learned through the implementation process, which can be replicated regardless of level or type of government entity carrying out the resiliency planning. Through a number of analyses and technical support across the world, NREL has learned key lessons related to resilience planning associated with power generation and water distribution. Distributed energy generation is a large factor in building resilience with clean energy technologies and solutions. The technical and policy solutions associated with distributed energy implementation for resilience fall into a few major categories, including spatial diversification, microgrids, water-energy nexus, policy, and redundancy.

  2. Lancashire and Yorkshire Renewable Energy Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The central aims of the Lancashire and Yorkshire Renewable Energy Planning Study (LYREPS) are to: identify renewable energy resources in the region and evaluate the opportunities for their deployment; promote a local-level development plan policy framework for the utilisation of renewable energy sources which is fully integrated with established land use and economic development strategies in the region. The availability of the following resources was investigated: landfill gas; municipal and industrial wastes; animal slurry; biomass; straw; active solar; passive solar design; photovoltaics; hydro; and wind. (author)

  3. Micmac Strategic Energy Planning Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Fred Corey

    2007-02-02

    In February 2005 the Aroostook Band of Micmacs submitted a grant application to the U.S. Department of Energy’s (DOE) Tribal First Steps Program. The purpose of the application was to request funding and technical assistance to identify and document Tribal energy issues, develop a Tribal energy vision, evaluate potential energy opportunities, and to develop an action plan for future Tribal energy activities. The grant application was subsequently funded by DOE, and the Aroostook Band of Micmacs hired an energy consultant to assist with completion of the project. In addition to identification and documentation of Tribal energy issues, and the development of a Tribal energy vision, the potential for wind energy development on Tribal land, and residential energy efficiency issues were thoroughly evaluated.

  4. Recent experience in the use of IAEA planning methodologies for energy, electricity and nuclear power planning among Member States of Europe, the Middle East and North Africa. Proceedings of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This report contains the proceedings of a workshop held in Budapest, Hungary, from 18 to 22 July 1994. The workshop had, as a basic objective, the promotion of the regional exchange of experience in the use of the IAEA`s planning tools and of providing a forum for further co-operation among participating countries. This report is intended to serve as a useful guide for the users of the IAEA planning models, as well as energy and electricity planners in general. Refs, figs, tabs.

  5. Global Nuclear Energy Partnership Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  6. Ontario's long-term energy plan, building our clean energy future

    International Nuclear Information System (INIS)

    2010-01-01

    The first energy priority of the plan is to provide all Ontarians with a clean, modern and reliable electricity system. It gives a summary of the means implemented to help families and businesses with increasing electricity costs. The plan is to shift the province from a coal-dependent system. Over the next 20 years, 15,000 MW (megawatt) of generating capacity will have to be rebuilt or constructed to replace older Ontario's energy infrastructures. In Ontario, an increase of about 3.5% per year in residential prices, resulting from the need to enjoy clean air, reliable generation and modernized transmission, is expected to occur over the next two decades. The expected electricity needs in Ontario and efficient means to satisfy them are described in this plan.

  7. Commonwealth of the Northern Mariana Islands Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    Describes various energy strategies available to CNMI to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption. The information presented in this strategic energy plan will be used by the CNMI Governor's Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, and expanding the use of a range of energy technologies, including renewable electricity production and buildings energy efficiency and conservation.

  8. Lafayette, Colorado: Using Energy Data for Electric Vehicle Infrastructure Planning (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "Lafayette, Colorado: Using Energy Data for Electric Vehicle Infrastructure Planning" explains how the City of Lafayette used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  9. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  10. Strategic energy planning in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Bogach, S.; Ding, G.; Sabourin, J. [Bogach and Associates Ltd. (Canada)

    1995-12-31

    Describes the development and implementation of the Strategic Energy Planning Project for China due to international cooperation between China and Canada. Aspects considered include development of energy resources available, identifying energy shortages of traditional fuels, good quality coal, diesel fuel and electric power, environmental factors and government policies. 16 refs., 2 figs., 1 tab.

  11. Energy-Performance as a driver for optimal production planning

    International Nuclear Information System (INIS)

    Salahi, Niloofar; Jafari, Mohsen A.

    2016-01-01

    Highlights: • A 2-dimensional Energy-Performance measure is proposed for energy aware production. • This is a novel approach integrates energy efficiency with production requirements. • This approach simultaneously incorporates machine and process related specifications. • The problem is solved as stochastic MILP with constraints addressing risk averseness. • The optimization is illustrated for 2 cases of single and serial machining operation. • Impact of various electricity pricing schemes on proposed production plan is analyzed. - Abstract: In this paper, we present energy-aware production planning using a two-dimensional “Energy-Performance” measure. With this measure, the production plan explicitly takes into account machine-level requirements, process control strategies, product types and demand patterns. The “Energy-Performance” measure is developed based on an existing concept, namely, “Specific Energy” at machine level. It is further expanded to an “Energy-Performance” profile for a production line. A production planning problem is formulated as a stochastic MILP with risk-averse constraints to account for manufacturer’s risk averseness. The objective is to attain an optimal production plan that minimizes the total loss distribution subject to system throughput targets, probabilistic risk constraints and constraints imposed by the underlying “Energy-Performance” pattern. Electricity price and demand per unit time are assumed to be stochastic. Conditional Value at Risk (CVaR) of loss distributions is used as the manufacturer’s risk measure. Both single-machine and production lines are studied for different profiles and electricity pricing schemes. It is shown that the shape of “Energy-Performance” profile can change optimal plans.

  12. Report on the basic survey on the commercialization of innovative energy technology in the Tibet district; Tibet chiku ni okeru kakushinteki energy gijutsu jitsuyoka no jisshi ni kansuru kiso chosa report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A field survey was conducted with the aim of commercializing innovative energy technology in the Tibet district. The survey included the energy supply/demand situation and supply plan and the situation of new energy utilization in the Tibet district. And, based on the concrete circumstances in the Tibet district, a realistic plan was presented for solution to the energy supply/demand problem. To carry out the project, used are a lot of solar energy and wind power energy resources which are abundant in Tibet. In about 5 years, 100 sets of village use system and 80,000 sets of household use system are to be installed, which solves the problem on electric power demand in a part of the non-electrified houses. Accordingly, farmers/stockbreeders living in the non-electrified region will alter their life patterns which are closed and behind other countries, get out of the poverty, basically enhance the quality of life, promote the communication of various knowledge/information of scientific technology, renew their life/production concepts, and heighten the production efficiency for the wealthy society. The project itself belongs to the construction for protection of ecological environment. It produces no exhaust gas/solid waste which do harm to the environment. The ecological environment efficiency is very high. (NEDO)

  13. Chapter 8: Planning Tools to Simulate and Optimize Neighborhood Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhivov, Alexander Michael; Case, Michael Patrick; Jank, Reinhard; Eicker, Ursula; Booth, Samuel

    2017-03-15

    This section introduces different energy modeling tools available in Europe and the USA for community energy master planning process varying from strategic Urban Energy Planning to more detailed Local Energy Planning. Two modeling tools used for Energy Master Planning of primarily residential communities, the 3D city model with CityGML, and the Net Zero Planner tool developed for the US Department of Defense installations are described in more details.

  14. Conservation and energy efficiency plan 2006

    International Nuclear Information System (INIS)

    2005-11-01

    This plan outlined details of Nova Scotia's proposed $5 million incremental investment in energy efficiency and conservation measures in 2006. The plan was developed through consultation with various Canadian utilities, customers and external stakeholders. A team of stakeholders identified lighting, pricing, partnerships and education as opportunities offering the greatest potential for results. Market research was conducted to identify market potential and the identification of barriers to customer adoption of programs as well as customer expectations regarding program implementation. It was anticipated that the plan will reduce electricity usage and result in significant savings for customers, as well as reducing greenhouse gas (GHG) emissions. The aim of the plan is to help build a conservation and energy efficiency culture in Nova Scotia and to bring Nova Scotia Power together with community-based partners. Specific plans for 2007 included: a 72 GWh reduction in annual electricity usage; approximately $7.7 million in annual savings to customers; a 16 MW reduction in peak electricity demand; and a 50 thousand tonne reduction of GHGs. A business case was presented along with details of proposed residential, commercial and industrial programs. A cost benefit analysis was provided, as well as an outline of the plan's budget and organizational structure. It was concluded that the success of the various program elements will be based on quantitative and qualitative data on the actual effect on energy use of each customer sector, as well as its effect on system demand profiles. Data will be collected through the use of customer surveys, questionnaires, and direct feedback from partners, educators and manufactures and suppliers. 11 tabs., 16 figs

  15. Energy and nuclear power planning using the IAEA`s ENPEP computer package. Proceedings of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Regional (Europe) Technical Co-operation Project on the Study of Energy Options Using the IAEA Planning Methodologies was first implemented by the IAEA in 1995. The project aims at improving national capabilities for energy, electricity and nuclear power planning and promoting regional co-operation among participating countries in the European region. The project includes the organization of workshops, training activities at the regional and national levels, scientific visits, etc. The proceedings of a workshop held in Warsaw, Poland, from 4 to 8 September 1995 are contained herein. The workshop had as a basic objective the analysis of the specific problems encountered by the represented countries during application of the IAEA`s ENPEP package in the conduct of national studies and to provide a forum for further co-operation among participating countries. A second objective of the workshop was to make proposals for future activities to be organized within the project. This publication is intended to serve as reference for the users of the IAEA`s ENPEP package, as well as for energy and electricity planners in general. Refs, figs, tabs.

  16. Town of Canmore Energy Management Action Plan (EMAP)

    International Nuclear Information System (INIS)

    2005-03-01

    In 1999, the Town of Canmore, Alberta joined the Federation of Canadian Municipalities' Partners for Climate Protection (PCP) Program and committed to reducing greenhouse gas (GHG) emissions from municipal operations by 20 per cent and community-wide emissions by 6 per cent of 2000 levels by 2012. To date, the City has completed a baseline analysis for municipal operations and the community. It has also initiated an Energy Management Action Plan (EMAP) to identify opportunities in sustainable development through energy, GHG and air quality management. The broad community objectives include housing and transportation management, job creation and local economic development. The city has adopted The Natural Step (TNS) framework which defines sustainability and the guiding principles for decision-making. The objectives of EMAP are to define and evaluate options for a practical strategy and action plan to meet the city's GHG reduction targets; raise local awareness of the issues and opportunities of energy planning and GHG reductions and develop a local action plan outlining action items to reduce energy use and GHG emissions from municipal operations throughout the community. This report explained the methodology and framework for EMAP management and presented a community profile for the Town of Canmore. It also included an energy and emissions inventory and forecast with reference to corporate energy and emissions baseline; community energy and emissions baseline; corporate energy and emissions forecast; community energy and emissions forecast and corporate and community GHG targets. refs., tabs., figs

  17. Energy Efficiency/Renewable Energy Programs in State Implementation Plans - Guidance Documents

    Science.gov (United States)

    final document that provides guidance to States and local areas on quantifying and including emission reductions from energy efficiency and renewable energy measures in State Implementation Plans (SIPS).

  18. Guideline on action plans and strategies to mobilize waste-to-energy production

    Energy Technology Data Exchange (ETDEWEB)

    Loonik, J.; Saarepera, R.; Kaeger, M. [and others

    2012-12-15

    This report presents some results of the REMOWE project and sets guidelines for regional policy makers, SME's and the general public as well for more deep realization of waste-to-energy policy principles in action. The overall objective of the project is, on regional levels, to contribute to a decreased negative effect on the environment by reduction of carbon dioxide emission by creating a balance between energy consumption and sustainable use of renewable energy sources (waste-to-energy cycle). Reduction of carbon dioxide emissions and use of renewable energy sources are broad areas and this project will focus on energy resources from waste and actions to facilitate implementation of energy efficient technology in the Baltic Sea region within the waste-to-energy area. The focus is to utilise waste from cities, farming and industry for energy purposes in an efficient way. The project seeks to facilitate the implementation of sustainable systems for waste-to-energy in the Baltic Sea region and specifically, in a first step, in the project partner regions. The project's duration is 12/2009-12/2012. This report is structured into 8 chapters, which are further divided into subchapters if needed. Relevant data about current situation about waste generation and management in partner regions of REMOWE project are described in Chapter 1. There are guidelines on action plan and strategies for regional policy makers, SME's and the general public to mobilize waste to energy production in Chapter 2. Beside guidelines, this report contains references to basic political acts of waste and energy management of EU and best practices of implementation them in regional level (Chapter 3). The focus of Chapters 4 and 5 is on energetic potential of waste and technologies for utilisation of waste for energy purposes. During the project period in each of partner region innovation processes were realised and innovation ides evaluated, basic results are collected into

  19. Basic and energy physics: the multiple faces of energy; Physique fondamentale et energetique: les multiples visages de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Balian, R. [Academie des Sciences, 75 - Paris (France)

    2001-07-01

    After an historical presentation of the elaboration of the energy concept, this document recalls, first, the basic physical principles linked with this concept: first and second principle of thermodynamics, dynamics of irreversible processes, hierarchy of elementary interactions. Then, their consequences on energy problems are examined by comparing the different common types of energy from different points of view: concentration, degradation, transport, storage, reserves and harmful effects. These comparisons rely on the characteristic values of the data involved. (J.S.)

  20. Wind energy planning in Denmark

    International Nuclear Information System (INIS)

    Godtfredsen, F.; Lemming, J.; Nielsen, S.R.; Jessien, S.

    1992-01-01

    The total capacity of the about 3300 Danish wind turbines is approximately 450 MW. Most of the wind turbines have been erected detached or in small clusters by private citizens - especially by joint ownership. 100 MW of the capacity have been installed by the power companies, mainly in wind farms. Up till now the privately owned wind turbines have been erected without a previous planning process. Increased expansion of wind energy makes demands on physical planning, since access to suitable locations in Denmark is limited. Hence more coordination is called for between the interested parties to ensure optimal utilization of the sites allocated by the physical planning authorities. A siting committee appointed by the Government has recommended locations for additional 100 MW power company wind farms as well as a more detailed planning in each local community. The detailed planning in the municipality of Thisted is described. (au)

  1. Basic environmental principles for the promotion of clean and efficient energy

    International Nuclear Information System (INIS)

    Hanmer, R.; Connor-Lajambe, H.

    1994-01-01

    The purpose of this paper is to reiterate what might be considered basic principles for promoting clean and efficient energy. These principles have very important implications for the design of energy supply and transportation facilities, but they go far beyond that to unify such design with the design, use and maintenance of many other types of facilities and goods. These principles also affect the way we consider energy security in the context of sustainable development. In annex, this paper presents the recommendation of the Council, with a list of environmentally favourable energy options. (TEC). 2 refs., Annex

  2. Environmental performance evaluation of Beijing's energy use planning

    International Nuclear Information System (INIS)

    Wang Lei; Xu Linyu; Song Huimin

    2011-01-01

    In line with rapid economic development, urban energy consumption is increasing rapidly, resulting in environmental problems. After considering several methods to evaluate the environmental performance of energy use, including: energy ecological footprint, input-output analysis, emergy-exergy analysis, and multi-criteria decision-making, an environmental performance evaluation model is proposed, which combines the analytical hierarchy process, fuzzy extent analysis, and membership degree analysis. In the model, 18 sub-indicators of environmental performance from energy use planning are classified into four categories: structure of energy use and industry, technology and efficiency of energy use, environmental impacts caused by energy use, and the socio-economic benefits of energy use. Membership degree analysis is applied to each indicator. Three energy use scenarios which are, respectively, environment-friendly, technology-led, and economic policy-led are evaluated. The results show that the technology-led energy use planning is best. The sustainable energy use policies are proposed from three aspects, including optimizing the energy use and industrial structure, encouraging development of energy-saving and air pollution control technologies, and enhancing legislation on energy use management. The policies are helpful to optimize the trade-offs between economic growth and environmental protection in Beijing. - Highlights: → Our paper establishes a system of indicators according to the structure of urban energy use planning. → We have created a comprehensive environmental performance evaluation model in the research. → The model and results can serve as an important basis for decision-making to guide local government.

  3. The decentralization of the environmental administration in Colombia from the perspective of the energy planning

    International Nuclear Information System (INIS)

    Machado, Eduardo

    1999-01-01

    This paper, part of an analysis on the relationship between the satisfaction of the basic necessities and the achievement of a sustainable human development The author makes a recount of the evolution of the environmental legislation in Colombia, emphasizing in the character decentralization and environmentalist of the constitution of 1991 and his implications on the environmental administration of the municipalities. At the end it is approached and the national energy politics is evaluated, specifically the national energetic Plan, 1997-2010 inside the context of the development of the country

  4. Annual report, Basic Sciences Branch, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

  5. Energy and nuclear power planning study for Armenia

    International Nuclear Information System (INIS)

    2004-07-01

    The Energy and Nuclear Power Planning (ENPP) study for Armenia has been conducted under the technical cooperation programme of the International Atomic Energy Agency (IAEA). The objective of the study was to analyze the electricity demand as part of the total final energy demand in various scenarios of Armenian socioeconomic and technological development, and to develop economically optimized electric generating system expansion plans for meeting the electric power demand, and to assess the role that nuclear energy could play within these optimal programs. The specific objectives of this study were: to define the role that nuclear power could play in the future electricity supply in Armenia, based on a least-cost expansion planning analysis of the country's power system; to analyze the environmental impacts of such a nuclear power development; to evaluate the financial viability of the envisaged nuclear power development program; to train a group of Armenian experts in the use of the IAEA's energy models

  6. Energy Strategy and Regional Planning in Croatia

    International Nuclear Information System (INIS)

    Toljan, I.

    1997-01-01

    The paper describes the relationship between energy strategy and regional planning in Croatia, the targets, environmental issues and preconditions to be met for the establishment of a modern energy sector. (author)

  7. Municipal Energy Planning under Conditions of Globalization: Imperatives and Objectives

    Directory of Open Access Journals (Sweden)

    Horban Vasylyna B.

    2017-12-01

    Full Text Available The article reveals the importance of energy planning for local authorities in the path of achieving the goals of sustainable development. The quintessence of energy planning in territorial communities of Ukraine and Europe has been outlined from the perspective of analyzing the infrastructure sectors of the municipal economy. The article is based on observing certain international methodologies related to local energy and climate planning. The evolution of Covenant of Mayors initiative is briefly described with a focus on its intensive expanding in terms of energy and climate issues. The experience in the development of municipal sustainable energy and climate action plans in European countries and Ukraine is studied. A survey of empirical data on the consumption of fuel and energy resources and greenhouse gas emissions in territorial communities of Ukraine and European countries is conducted. The European methodological guidelines on the subject under study are highlighted based on the key policy documents. A few practical examples of Ukrainian and European cities are presented in order to illustrate possible actions corresponding to the defined problem. A systematic framework is proposed to describe the various and complex aspects of energy planning in cities with regard to rational implementation of energy efficient measures. The innovative mechanisms, main barriers and opportunities for the effective implementation of energy efficient projects in territorial communities of Ukraine and European countries are revealed. It is substantiated that under the current conditions of globalization, using project-oriented paradigm, municipal energy planning instruments become key motivational factors for development sustainable energy policy.

  8. Sustainable resource planning in energy markets

    International Nuclear Information System (INIS)

    Kamalinia, Saeed; Shahidehpour, Mohammad; Wu, Lei

    2014-01-01

    Highlights: • Sustainable resource planning with the consideration of expected transmission network expansion. • Incomplete information non-cooperative game-theoretic method for GEP. • Maximizing utility value whiling considering merits of having various generation portfolios. • Minimizing risk of investment using renewable generation options. • Application of the stochastic approach for evaluating the unpredictability of opponent payoffs and commodity values. - Abstract: This study investigates the role of sustainable energy volatility in a market participant’s competitive expansion planning problem. The incomplete information non-cooperative game-theoretic method is utilized in which each generation company (GENCO) perceives strategies of other market participants in order to make a decision on its strategic generation capacity expansion. Sustainable generation incentives, carbon emission penalties, and fuel price forecast errors are considered in the strategic decisions. The market clearing process for energy and reserves is simulated by each GENCO for deriving generation expansion decisions. A merit criterion (i.e., the utility value) is proposed for a more realistic calculation of the expected payoff of a GENCO with sustainable energy resources. Finally, the impact of transmission constraints is investigated on the GENCO’s expansion planning decision. The case studies illustrate the effectiveness of the proposed method

  9. HEPAP White Paper on planning for U.S. high-energy physics [High Energy Physics Advisory Panel

    International Nuclear Information System (INIS)

    2000-01-01

    High-energy physicists seek to understand what the universe is made of, how it works, and where it has come from. They investigate the most basic particles and the forces between them. Experiments and theoretical insights over the past several decades have made it possible to see the deep connection between apparently unrelated phenomena, and to piece together more of the story of how a rich and complex cosmos could evolve from just a few kinds of elementary particles. The 1998 Subpanel of the High Energy Physics Advisory Panel (HEPAP) laid out a strategy for U.S. high-energy physics for the next decade. That strategy balanced exciting near-term opportunities with preparations for the most important discovery possibilities in the longer-term. Difficult choices were made to end several highly productive programs and to reduce others. This year HEPAP was charged to take the plan given in the Subpanel's report, understand it in the context of worldwide progress, and update it. In response to that charge, this White Paper provides an assessment of where we stand, states the next steps to take in the intermediate term, and serves as input for a longer range planning process involving a new HEPAP subpanel and high-energy physics community evaluation in 2001. Since the 1998 Subpanel, there have been important developments and a number of the Subpanel's recommendations have been implemented. Notably, construction of the B-factory at SLAC, the Main Injector at Fermilab, and the upgrade of CESR at Cornell have all been finished on schedule and on budget. We have gained great confidence in the performance of these accelerators and the associated detectors. The B-factory at SLAC is already operating above design luminosity and plans are in place to reach three times the design in the next few years. In addition, there have been major physics developments that lead us to believe that these completed projects are guaranteed to produce frontier physics results and have an

  10. Long-term energy planning with uncertain environmental performance metrics

    International Nuclear Information System (INIS)

    Parkinson, Simon C.; Djilali, Ned

    2015-01-01

    Highlights: • Environmental performance uncertainty considered in a long-term energy planning model. • Application to electricity generation planning in British Columbia. • Interactions with climate change mitigation and adaptation strategy are assessed. • Performance risk-hedging impacts the technology investment strategy. • Sensitivity of results to model formulation is discussed. - Abstract: Environmental performance (EP) uncertainties span a number of energy technology options, and pose planning risk when the energy system is subject to environmental constraints. This paper presents two approaches to integrating EP uncertainty into the long-term energy planning framework. The methodologies consider stochastic EP metrics across multiple energy technology options, and produce a development strategy that hedges against the risk of exceeding environmental targets. Both methods are compared within a case study of emission-constrained electricity generation planning in British Columbia, Canada. The analysis provides important insight into model formulation and the interactions with concurrent environmental policy uncertainties. EP risk is found to be particularly important in situations where environmental constraints become increasingly stringent. Model results indicate allocation of a modest risk premium in these situations can provide valuable hedging against EP risk

  11. Energy management information systems - planning manual and tool

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    An Energy Management Information System (EMIS) provides relevant information that makes energy, performance visible to various levels of an organization, enabling individuals and departments to plan, make decisions and take effective action to manage energy. This manual has two objectives: 1. To enable companies to conduct EMIS audits and prepare EMIS implementation plans; 2. To provide companies with the tools to prepare a financial business case for EMIS implementation. This manual consists of four parts: 1. EMIS Audit is theoretical and provides the methodology to be used by outside or in-house engineers and consultants to do a thorough EMIS Audit. 2. Implementation Plan is to help industry do the work themselves. 3. Appendices is to help the user develop an EMIS Audit, gather data and score their company, prepare a conceptual and detailed design, as well as a business and financial plan for implementation.

  12. Rethinking Participation in Smart Energy System Planning

    NARCIS (Netherlands)

    Lammers, Imke; Arentsen, Maarten J.

    2017-01-01

    While the technical layout of smart energy systems is well advanced, the implementation of these systems is slowed down by the current decision-making practice regarding such energy infrastructures. We call for a reorganisation of the decision-making process on local energy planning and address the

  13. Magnetic Fusion Program Plan

    International Nuclear Information System (INIS)

    1985-02-01

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  14. Urban energy planning in Tartu

    DEFF Research Database (Denmark)

    Große, Juliane; Groth, Niels Boje; Fertner, Christian

    The Estonian planning system allots the main responsibilities for planning activities to the local level, whereas the regional level (county) is rather weak. That implies a gap of cooperation on the regional level, leading to dispersed urban development in suburban municipalities and ongoing urban...... sprawl in the vicinity of Tartu. This development appears contrary to the concept of “low-density urbanised space” as formulated in the National Spatial Plan “Estonia 2030+” (NSP) as the central spatial development concept for Estonia and also to a compact and intensive city development as formulated...... in the Master Plan of Tartu. Since Tartu has no relevant big industries, the main employers are the municipality and the university, energy related challenges occur from transport and residential (district) heating. The modal split shows big differences between journeys within Tartu and journeys between Tartu...

  15. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  16. The energy-climate continuum lessons from basic science and history

    CERN Document Server

    Bret, Antoine

    2014-01-01

    An entertaining, highly informative introduction to the intimate linkage between the energy and climate debates Illustrates the basic science behind energy and climate with back-of-the-envelope calculations, that even non-experts can easily follow without a calculator Thus provides an access to getting an accurate feeling for orders of magnitudes from simple estimations A conversation starter for some of the most debated topics of today Compares the actual situation with historic cases of societies at a turning point and finds warning as well as encouraging examples For everyone, who wan

  17. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, S.; Viramonte, J.G. [Instituto GEONORTE, Facultad de Ciencias Naturales, Universidad Nacional de Salta and CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina); Nunez, V. [Instituto de Recursos Naturales y Ecodesarrollo (IRNED), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avda. Bolivia 5150, Campo Castanares, Salta CP 4400 (Argentina); Franco, J. [Instituto Nacional de Energias No Convencionales (INENCO), Facultad de Ciencias Exactas, Universidad Nacional de Salta, CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina)

    2009-08-15

    -environmental conditions is basic for the creation of energy resource-related territorial plans. (author)

  18. Energy Resource Planning. Optimal utilization of energy resources

    International Nuclear Information System (INIS)

    Miclescu, T.; Domschke, W.; Bazacliu, G.; Dumbrava, V.

    1996-01-01

    For a thermal power plants system, the primary energy resources cost constitutes a significant percentage of the total system operational cost. Therefore a small percentage saving in primary energy resource allocation cost for a long term, often turns out to be a significant monetary value. In recent years, with a rapidly changing fuel supply situation, including the impact of energy policies changing, this area has become extremely sensitive. Natural gas availability has been restricted in many areas, coal production and transportation cost have risen while productivity has decreased, oil imports have increased and refinery capacity failed to meet demand. The paper presents a mathematical model and a practical procedure to solve the primary energy resource allocation. The objectives is to minimise the total energy cost over the planning period subject to constraints with regards to primary energy resource, transportation and energy consumption. Various aspects of the proposed approach are discussed, and its application to a power system is illustrated.(author) 2 figs., 1 tab., 3 refs

  19. Energy for tomorrow - planning of today

    International Nuclear Information System (INIS)

    Goergmaier, D.; Scholz, L.; Bayer, A.; Schmidtner, F.X.; Gottschlich, H.; Reiter, K.; Birkhofer, A.; Mansfeld, G.; Hofrichter, E.; Renn, O.

    1978-01-01

    The present book, which has many maps and coloured illustrations, shows the many facets of the Federal Republic of Germany and EC energy policy. Apart from the fundamental problem of economic growth and future energy demand, present alternatives to nuclear power are presented and the limitations of primary energy carriers are pointed out. A team of twelve authors from science research, industry, and administrative authorities introduces the reader to all problems of nuclear power, from the basics of reactor functioning to reactor types, siting, and reactor technology. Problems of environmental protection (immission protection, avoiding water pollution and heat-up, local climate, etc.) are discussed in detail in the context of power generation from coal and nuclear energy. (orig./UA) [de

  20. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  1. Strategic Energy Planning in the Öresund Region

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Sperling, Karl; Mathiesen, Brian Vad

    on the national goals and direction of development and the municipalities’ role and potential to act in this context. The results contain a number of policy recommendations to improve the municipalities’ ability to do strategic energy planning (SEP) e.g. in Sweden to have more ambitious goals and in Denmark......In this project the municipalities’ role in the transition to a renewable energy system is studied. For the study municipalities in Sweden and Denmark located in the Öresund Region have been chosen as cases. A number of interviews have been carried out to give the perspective of municipal planning...... to have requirements of doing SEP. A number of areas with potential knowledge transfer have also been identified. For example to use the Swedish experience with environmental assessment of energy plans in Denmark or to use the Danish experience with a progression in time in the building energy codes...

  2. Efficient energy utilization and environmental issues applied to power planning

    International Nuclear Information System (INIS)

    Campbell, Hector; Montero, Gisela; Perez, Carlos; Lambert, Alejandro

    2011-01-01

    This document shows the importance of policies for electric energy savings and efficient energy utilization in power planning. The contributions of economic, social, and environmental items were evaluated according to their financial effects in the delay of investments, reduction of production costs and decrement of environmental emissions. The case study is Baja California, Mexico; this system has a unique primary source: geothermal energy. Whether analyzing the planning as usual or planning from the supply side, the forecast for 2005-2025 indicates that 4500 MW additional installed capacity will be required (3-times current capacity), representing an investment that will emit 12.7 Mton per year of CO 2 to the atmosphere and will cost US$2.8 billion. Systemic planning that incorporates polices of energy savings and efficiency allows the reduction of investments and pollutant emissions. For example, a reduction of 20% in the growth trend of the electricity consumption in the industrial customers would save US$10.4 billion over the next 20 years, with a potential reduction of 1.6 Mton/year of CO 2 . The increase in geothermal power generation is also attractive, and it can be combined with the reduction of use and energy losses of utilities, which would save US$13.5 billion and prevent the discharge of 8.5 Mton/year of CO 2 . - Highlights: → We contrast power planning methods for supply electricity for economy development. → Importance of policies for electricity savings and efficient use in power planning. → Systemic planning facilitates decision-making process for electricity optimization. → Supply-side planning will cause climb in prices and loss of energy self-sufficiency. → Power planning should be immersed in an environment of appropriate energy policies.

  3. Developing The Organized Village of Kasaan's Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, Glenn P. [The Organized Village of Kasaan, Ketchikan, AK (United States)

    2013-02-01

    The overall goal of this project is to create a Tribal Energy Action Plan that will serve as the Tribe's blueprint for creating long term energy self sufficiency. The Plan will be developed with input from a committed group of key stakeholders and landowners in the area, will be based on sound data and research, and will address both supply side options of the development of sustainable energy sources, as well as demand-side options for reducing energy consumption. The resulting plan will include defined comprehensive energy strategies and built upon a baseline assessment of where the Tribe currently is in terms of alternative and renewable energy activities; a vision of where the Tribe wants to go; and an action plan of how the Tribe will reach its vision including the identification of viable energy options based on the long-term strategic plan of the Tribe.

  4. Developing a regional energy plan for two counties in Ireland

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Lund, Henrik

    2011-01-01

    Developing a sustainable energy supply will most likely require a transition from large-scale centralised plants to decentralised distributed generation. Consequently, local planning authorities will play a more important role in energy planning in the coming years, as more decentralised energy f...

  5. The role of nuclear energy in the Italian National Energy Plan

    International Nuclear Information System (INIS)

    Di Menza, R.

    1984-01-01

    The Italian energy pattern is today still characterized by a worrisome and high use of oil. If one examines data taken from 1980's final balance, which are unlikely to vary much during 1981, one finds, in fact, that oil covers 67.3% of Italy's total energy consumption and that oil contribution to generate electric power is also of considerable importance: 55.8%. Among all western countries, only Japan presents a similar structure of primary energy use. On the other hand, the nuclear source provided but a modest contribution towards meeting electricity production: in 1980, it accounted for 1.2% in Italy against 23.3% in France, 14 Mwg in the United Kingdom, 11.8% in the United States, 11.5% in the Federal Republic of Germany, and 10.1% in Canada. If the Italian energy situation were to be assessed on the basis of the above data, one would have to draw a negative prognosis on the competitive position of the Italian industry in the international market. A moderately optimistic position can, however, be justified by the recent evolution of the political and industrial scene. A short time ago, the Government submitted to Parliament a new National Energy Plan. The Plan includes significant energy conservation measures and sets a 1990 objective 185 MTOE as total energy demand against the corresponding value of 146.9 MTOE for 1980. To achieve this result specific measures are required. In order to further eliminate waste, it is necessary to introduce energy saving technologies, modify the industrial mix and adopt adequate tariff policies. The plan assigns each source alternative to petroleum the realistic maximum role it can play in reducing oil dependence. The role of nuclear energy together with that of coal is considered essential

  6. Optimal Investment Planning of Bulk Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Dina Khastieva

    2018-02-01

    Full Text Available Many countries have the ambition to increase the share of renewable sources in electricity generation. However, continuously varying renewable sources, such as wind power or solar energy, require that the power system can manage the variability and uncertainty of the power generation. One solution to increase flexibility of the system is to use various forms of energy storage, which can provide flexibility to the system at different time ranges and smooth the effect of variability of the renewable generation. In this paper, we investigate three questions connected to investment planning of energy storage systems. First, how the existing flexibility in the system will affect the need for energy storage investments. Second, how presence of energy storage will affect renewable generation expansion and affect electricity prices. Third, who should be responsible for energy storage investments planning. This paper proposes to assess these questions through two different mathematical models. The first model is designed for centralized investment planning and the second model deals with a decentralized investment approach where a single independent profit maximizing utility is responsible for energy storage investments. The models have been applied in various case studies with different generation mixes and flexibility levels. The results show that energy storage system is beneficial for power system operation. However, additional regulation should be considered to achieve optimal investment and allocation of energy storage.

  7. Revision of the basic plans of the first nuclear-powered ship development

    International Nuclear Information System (INIS)

    1978-01-01

    Along with the law for Japan Nuclear Ship Development Agency, the basic plans of development of the first nuclear-powered ship have been revised. After explaining the basic policy concerning the matter, the development program is described as follows: ship type/kind, nuclear power plant, construction, training of ship crew, experimental voyage, compilation of the development results, and works after the experimental voyage. The first nuclear-powered ship of about 8,000 tons gross tonnage, 10,000 horsepower main engine output, and about 16 knots, sea speed will be the ship for special cargo transport and crew training. A pressurized water reactor is used for the power plant. Following the repair of shielding and the overall inspection of safety, the ship is to be completed as early as possible. After completion of the ship, its experimental voyage will be carried out, aiming at the aspects of operational familiarization, ship performance, reliability, port call experience, etc. (Mori, K

  8. Big Pylons: Mixed signals for transmission. Spatial planning for energy distribution

    International Nuclear Information System (INIS)

    Ritchie, Heather; Hardy, Maelíosa; Lloyd, M. Greg; McGreal, Stanley

    2013-01-01

    The effective delivery of a sustainable energy future raises many challenges in relation to energy distribution where a new understanding of spatial planning is needed in relation to energy production, consumption and storage. Understanding the emergent low carbon energy economy in terms of its production, distribution and consumption characteristics has prompted a deliberate spatial planning interest. This paper examines issues relating to spatial planning, regulation, political legitimacy and accountability in the current and future systems for energy distribution. In particular it examines the Beauly Denny public inquiry in Scotland as a case study in terms of demonstrating the changing state–market–civil relations in an energy transition context with differentiated values and interests. The case study highlights implications for the regulation in the public interest of highly contested spaces, places and development schemes, together with a synopsis of government structure and change that is influencing the future of spatial planning and energy distribution in particular. - Highlights: • We examine links between spatial planning and regulation of energy distribution. • We examine the Beauly Denny public inquiry in Scotland. • We highlight challenges surrounding the development of a resilient energy system. • We highlight links between spatial planning and infrastructural development

  9. On Korean strategy and plan for fusion energy

    International Nuclear Information System (INIS)

    Kim, H.J.; Choi, W-J.; Park, C.; Kim, H.C.

    2012-01-01

    In developing KSTAR (Korean Superconducting Tokamak Advanced Research), Korea had initiated a mid-entry strategy to catch up with the technologies required for the development of a fusion reactor, based on the tokamak magnetic confinement concept. Upon joining ITER (International Thermonuclear Experimental Reactor), Korean government enacted a promotional law for the fusion energy development. Under this promotional law the national promotional plans for developing fusion energy have been established. The National Fusion Research Institute (NFRI) developed the strategy and plan for a fusion DEMO program to realize the magnetic fusion energy. (author)

  10. On Korean strategy and plan for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.J. [National Fusion Research Inst., Daejeon (Korea, Republic of); Choi, W-J. [Chungnam National Univ., Daejeon (Korea, Republic of); Park, C. [POSTECH, Pohang (Korea, Republic of); Kim, H.C. [National Fusion Research Inst., Daejeon (Korea, Republic of)

    2012-07-01

    In developing KSTAR (Korean Superconducting Tokamak Advanced Research), Korea had initiated a mid-entry strategy to catch up with the technologies required for the development of a fusion reactor, based on the tokamak magnetic confinement concept. Upon joining ITER (International Thermonuclear Experimental Reactor), Korean government enacted a promotional law for the fusion energy development. Under this promotional law the national promotional plans for developing fusion energy have been established. The National Fusion Research Institute (NFRI) developed the strategy and plan for a fusion DEMO program to realize the magnetic fusion energy. (author)

  11. On new evolution in development of basic technology of atomic energy

    International Nuclear Information System (INIS)

    1993-01-01

    In 1988, the expert committee on the promotion of basic technology organized in the Atomic Energy Commission presented the report and showed concretely the subjects of research and development to be promoted in four fields of material technology, artificial intelligence technology, laser technology and the technology for evaluating and reducing radiation risks for atomic energy, and the measures of efficiently promoting the technical development. The research and development achieved the steady results following this report. The creation of radiation resistant materials, the development of knowledge base system and robot technology, the development of the laser technology required for atomic energy, and the technology for evaluating and reducing radiation risks and so on have been carried out. As the measures for efficiently promoting the technical development, the promotion of the active interchange of researches, the intentional rearing of creative men, the positive development of international interchange, the introduction of the new evaluation of research and the promotion of spread of the results of research have been carried out. The state of execution and the new development measures of the development of the basic technology are reported. (K.I.)

  12. EU Research and Innovation (R and I) in renewable energies: The role of the Strategic Energy Technology Plan (SET-Plan)

    Energy Technology Data Exchange (ETDEWEB)

    Hervas Soriano, Fernando [Joint Research Centre, Institute for Prospective Technological Studies, Edificio EXPO, c/ Inca Garcilaso 3, E-41092 Seville (Spain); Mulatero, Fulvio, E-mail: fulvio.mulatero@ec.europa.eu [Joint Research Centre, Institute for Prospective Technological Studies, Edificio EXPO, c/ Inca Garcilaso 3, E-41092 Seville (Spain)

    2011-06-15

    The SET-Plan established a strategy to use Research and Innovation (R and I) to green the EU energy sector while ensuring a secure supply and increasing EU competitiveness. The strategy sets clear objectives and programming plans and takes stock of existing initiatives in the energy sector, fosters a cooperative approach to R and I, introduces a high-level steering group (the SET-Plan Steering Group) to monitor progress, creates a dedicated information system (the SETIS) to fill the void in policy information and produces estimates of financial needs over the programming period. In this respect, the SET-Plan could serve as a blueprint for R and I strategies to tackle other societal challenges. To be effective, such strategies should further clarify the hierarchy of existing objectives and instruments, introduce specific instruments to pull the demand of new technologies, strengthen links with education and training policies and formalize links with the governance structures of existing initiatives. - Highlights: > This paper assesses the impact of the SET-Plan on EU renewable energy policy. > We analyze the degree of complementarity and duplication with existing initiatives. > We discuss the role of a new system of indicators (SETIS). > The analysis of financing reveals the existence of sizeable shortfalls. > Lessons for future similar initiatives are sketched.

  13. EU Research and Innovation (R and I) in renewable energies: The role of the Strategic Energy Technology Plan (SET-Plan)

    International Nuclear Information System (INIS)

    Hervas Soriano, Fernando; Mulatero, Fulvio

    2011-01-01

    The SET-Plan established a strategy to use Research and Innovation (R and I) to green the EU energy sector while ensuring a secure supply and increasing EU competitiveness. The strategy sets clear objectives and programming plans and takes stock of existing initiatives in the energy sector, fosters a cooperative approach to R and I, introduces a high-level steering group (the SET-Plan Steering Group) to monitor progress, creates a dedicated information system (the SETIS) to fill the void in policy information and produces estimates of financial needs over the programming period. In this respect, the SET-Plan could serve as a blueprint for R and I strategies to tackle other societal challenges. To be effective, such strategies should further clarify the hierarchy of existing objectives and instruments, introduce specific instruments to pull the demand of new technologies, strengthen links with education and training policies and formalize links with the governance structures of existing initiatives. - Highlights: → This paper assesses the impact of the SET-Plan on EU renewable energy policy. → We analyze the degree of complementarity and duplication with existing initiatives. → We discuss the role of a new system of indicators (SETIS). → The analysis of financing reveals the existence of sizeable shortfalls. → Lessons for future similar initiatives are sketched.

  14. Proposed business plan for energy efficiency in Brazil

    International Nuclear Information System (INIS)

    De Oliveira, Lilian Silva; Shayani, Rafael Amaral; De Oliveira, Marco Aurelio Gonçalves

    2013-01-01

    The Brazilian Ministry of Mines and Energy published the National Energy and Efficiency Plan, which calls for electricity savings of 10% by 2030. At first sight, the projected goal does not seem too ambitious, but this figure is nearly eighteen times the known historical savings for the country. Adjustments need to be made to the current energy efficiency business plan. This article suggests what should be changed in order to make the program more attractive and effective. These include changes on its organizational structure, legislation, verification of results and transparency. The new plan aims to eliminate some existing barriers and introduce new mechanisms that should help the country meet its future goals. - Highlights: • Brazil's successful efficiency program was presented, including the government's goal to increase the savings 25 times until 2030. • To achieve this huge goal, the national energy efficiency program needs a new approach, including new institutional arrangements. • These arrangements proposals are the useful contribution from this paper

  15. Energy audit role in building planning

    Science.gov (United States)

    Sipahutar, Riman; Bizzy, Irwin

    2017-11-01

    An energy audit is one way to overcome the excessive use of energy in buildings. The increasing growth of population, economy, and industry will have an impact on energy demand and the formation of greenhouse gas emissions. Indonesian National Standard (SNI) concerning the building has not been implemented optimally due to the socialization process by a government not yet been conducted. An energy audit of buildings has been carried out at offices and public services. Most electrical energy in buildings used for air refresher equipment or air conditioning. Calculation of OTTV has demonstrated the importance of performing since the beginning of the planning of a building to get energy-efficient buildings.

  16. Economy, energy and environment in the Netherlands, 1980-2000. Economie, energie en milieu in Nederland, 1980-2000

    Energy Technology Data Exchange (ETDEWEB)

    Driehuis, W; van Ierland, E C; van den Noord, P J

    1983-01-01

    The CE (Center for Energy conservation) has developed an energy policy plan based on energy conservation (families and industries), total energy systems, intensivation of non fossil energy sources like wind power, solar energy, biogas, geothermal energy and non use of nuclear energy in the Netherlands (CE-scenario). This energy plan is compared with the Netherlands Energy Plan developed for the Broad Public Discussion and meant as unchanged policy (Reference-scenario) and an energy policy plan based on a somewhat different energy plan with a somewhat lower aggregation level based on the same starting points. A summary is given of the data of the Reference-scenario, the basic projection and the CE-scenario. Among others the data refer to the Netherlands' energy consumption in million ton oil equivalents MTOE, welfare, unemployment and environment indicators. As environment indicators are summed up sulfur dioxide, nitrogen oxides and radioactive waste.

  17. Health Insurance Basics

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Health Insurance Basics KidsHealth / For Teens / Health Insurance Basics What's ... thought advanced calculus was confusing. What Exactly Is Health Insurance? Health insurance is a plan that people buy ...

  18. Yerington Paiute Tribe Energy Plan Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Consulting, BB9 [BB9 Consulting; Director, Environmental

    2014-04-01

    The Yerington Paiute Tribe has made energy management and planning a priority. The Tribal Council has recognized that energy is an important component of their goal of self-sufficiency. Recognizing energy development as a component of the Tribe’s natural resources provides for needed economic development.A number of priorities have been identified for energy development. These range from immediate housing needs such as weatherization and solar to interest in energy as economic development.

  19. Manual on high energy teletherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1992-01-01

    Apart from a basic guide to the principles of the production of ionizing radiation and to methods of radiation protection and dose measurements, this booklet contains information about radiation protection measures for high-energy teletherapy

  20. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  1. Evaluation of mid-to-long term basic research for environmental restoration

    International Nuclear Information System (INIS)

    1989-09-01

    This document describes a long-term basic research program for the US Department of Energy (DOE) that complements departmental initiatives in waste management and site cleanup. The most important problems faced by DOE are environmental restoration of waste sites and cleanup of inactive facilities. Environmental restoration is defined in this report as characterization, assessment, remediation, and post-closure verification within the waste/environmental system at DOE sites. Remediation of inactive, contaminated waste-disposal sites is the largest and most expensive task facing DOE. Immobilization, isolation, separation, and destruction of waste, either aboveground or in situ, are difficult and costly tasks. Technologies for these tasks are primitive or do not exist. Departmental problems in the long term are being analyzed scientifically and research needs are being identified. When completed, the Office of Energy Research's (OER's) basis research plan will describe potential scientific research needs for universities, national laboratories, and others as a basis for research proposals to DOE. Extensive interaction with the scientific community is planned to further refine and prioritize research needs. Basic research within DOE is directed toward fundamental knowledge leading to the discovery of new scientific or engineering concepts and principles that may or may not have immediate specific technological applications. However, because DOE is a mission-oriented agency, basic research in DOE is strongly influenced by national energy and environmental policy and may be multidisciplinary in nature. Basic research will provide innovative concepts and the fundamental knowledge base that facilitates the development and application of new and emerging technologies. 41 refs., 5 figs., 9 tabs

  2. Design and Implementation of Regional and Communal Energy Plans

    International Nuclear Information System (INIS)

    Jilek, W.

    1997-01-01

    Local energy planning has become a common thing, particularly after the first oil shock in the year 1973. This kind of planning claims to follow an integrated approach, i.e. to treat not only the economic problems connected with the supply of energy, but also the environmental problems concerned and the questions related to the conservation of resources. In Styria, such ''integrated'' plans have emerged in more than 25 municipalities, so far. Most of these concepts - harmonized with the clearly defined goals and objectives of the province's energy and environmental policy - may be termed a success insofar, as the measures considered therein are already in the process of practical implementation. (author)

  3. Commonwealth of the Northern Mariana Islands Energy Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    This document describes the three near-term energy strategies selected by the CNMI Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. The three energy strategies selected by the task force are (1) designing a demand-side management program focusing on utility, residential and commercial sectors, (2) developing an outreach and education plan focused on energy conservation in government agencies and businesses, including workplace rules, and (3) exploring waste-to-energy options. The task force also discussed several other medium- and long-term energy strategies that could be explored at a future date.

  4. Long term planning for wind energy development

    International Nuclear Information System (INIS)

    Trinick, M.

    1995-01-01

    In a planning system intended to be governed primarily by policies in statutory plans a reasonable horizon for long term planning is 10 years or longer. Because of statutory requirements, developers have no option but to pay due regard to, and take a full part in, long term planning. The paper examines the type of policies which have emerged in the last few years to cater for wind energy development. It canvasses the merits of different types of policies. Finally, it discusses the policy framework which may emerge to cater for development outside NFFO. (Author)

  5. Approach and practices of district energy planning to achieve low carbon outcomes in China

    International Nuclear Information System (INIS)

    Xu, Baoping; Zhou, Shaoxiang; Hao, Lin

    2015-01-01

    District energy planning is an important methodology to assist in realizing a lower carbon target. However, district energy planning has not yet been incorporated into the statutory planning system in China, primarily because there are no clear standards and specifications for these plans. In this paper, we propose a general framework and low carbon estimation method for district energy planning, which is based on evaluating the low carbon energy planning practices of several new districts in China. In addition, several key points of concern in the planning process are extracted and discussed: overall infrastructure planning; co-operation between city planning and other special low carbon eco-planning; investment, financing and profitable operation; planning management mechanisms; and the management of the construction of the energy system to coincide with the project schedule. We carried out a case study of a low carbon energy plan for a new district of Beijing to evaluate our framework. Finally, we conclude that to realize the low carbon target, regional energy planning covering technologies, the market and management should be standardized as soon as possible. -- Highlights: •A general framework for district energy planning is proposed. •A case study of a low carbon energy plan for a new district is carried out. •District energy planning should be standardized as soon as possible. •The most suitable spatial scale for energy planning is at the municipal level

  6. ESnet Program Plan 1994

    Energy Technology Data Exchange (ETDEWEB)

    Merola, S.

    1994-11-01

    This Program Plan characterizes ESnet with respect to the current and future needs of Energy Research programs for network infrastructure, services, and development. In doing so, this document articulates the vision and recommendations of the ESnet Steering Committee regarding ESnet`s development and its support of computer networking facilities and associated user services. To afford the reader a perspective from which to evaluate the ever-increasing utility of networking to the Energy Research community, we have also provided a historical overview of Energy Research networking. Networking has become an integral part of the work of DOE principal investigators, and this document is intended to assist the Office of Scientific Computing in ESnet program planning and management, including prioritization and funding. In particular, we identify the new directions that ESnet`s development and implementation will take over the course of the next several years. Our basic goal is to ensure that the networking requirements of the respective scientific programs within Energy Research are addressed fairly. The proliferation of regional networks and additional network-related initiatives by other Federal agencies is changing the process by which we plan our own efforts to serve the DOE community. ESnet provides the Energy Research community with access to many other peer-level networks and to a multitude of other interconnected network facilities. ESnet`s connectivity and relationship to these other networks and facilities are also described in this document. Major Office of Energy Research programs are managed and coordinated by the Office of Basic Energy Sciences, the Office of High Energy and Nuclear Physics, the Office of Magnetic Fusion Energy, the Office of Scientific Computing, and the Office of Health and Environmental Research. Summaries of these programs are presented, along with their functional and technical requirements for wide-area networking.

  7. ESnet Program Plan 1994

    International Nuclear Information System (INIS)

    Merola, S.

    1994-01-01

    This Program Plan characterizes ESnet with respect to the current and future needs of Energy Research programs for network infrastructure, services, and development. In doing so, this document articulates the vision and recommendations of the ESnet Steering Committee regarding ESnet's development and its support of computer networking facilities and associated user services. To afford the reader a perspective from which to evaluate the ever-increasing utility of networking to the Energy Research community, we have also provided a historical overview of Energy Research networking. Networking has become an integral part of the work of DOE principal investigators, and this document is intended to assist the Office of Scientific Computing in ESnet program planning and management, including prioritization and funding. In particular, we identify the new directions that ESnet's development and implementation will take over the course of the next several years. Our basic goal is to ensure that the networking requirements of the respective scientific programs within Energy Research are addressed fairly. The proliferation of regional networks and additional network-related initiatives by other Federal agencies is changing the process by which we plan our own efforts to serve the DOE community. ESnet provides the Energy Research community with access to many other peer-level networks and to a multitude of other interconnected network facilities. ESnet's connectivity and relationship to these other networks and facilities are also described in this document. Major Office of Energy Research programs are managed and coordinated by the Office of Basic Energy Sciences, the Office of High Energy and Nuclear Physics, the Office of Magnetic Fusion Energy, the Office of Scientific Computing, and the Office of Health and Environmental Research. Summaries of these programs are presented, along with their functional and technical requirements for wide-area networking

  8. Framework for reports on urban energy planning in 6 case cities

    DEFF Research Database (Denmark)

    Fertner, Christian; Groth, Niels Boje; Große, Juliane

    a general model for energy efficiency and sustainable city planning. By connecting scientific excellence and innovative enterprises in the energy sector with ambitious and well-organized cities, the project aims to reduce energy use in Europe in the near future and will therefore be an important tool...... on the case study reports (D4.2). The wider target group are other PLEEC partners who are interested in WP4’s work as well as other professionals who would like to get inspiration how to conduct an analysis of energy issues in relation to spatial planning and urban form in medium-sized cities. Five main...... chapters are suggested to follow in all case study reports: • Overview of city (geography, socio-economic, history, …) • Historical urban development and spatial planning development • Evolution of national and local energy planning • Management of urban planning and energy today • Pilot projects / good...

  9. Optimization of energy planning strategies in municipalities

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    approach, suffers from insufficient information, tools and resources. Municipalities are often unable to take on a steering role in community energy planning. To overcome these barriers and guide municipalities in the pre-project phase, a decision-support methodology, based on community energy profiles...

  10. Lac du Flambeau Band of Lake Superior Chippewa Indians Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bryan Hoover

    2009-11-16

    This plan discusses the current energy use on the Lac du Flambeau Reservation, the current status of the Tribe's energy program, as well as the issues and concerns with energy on the reservation. This plan also identifies and outlines energy opportunities, goals, and objectives for the Tribe to accomplish. The overall goal of this plan is to address the energy situation of the reservation in a holistic manner for the maximum benefit to the Tribe. This plan is an evolving document that will be re-evaluated as the Tribe's energy situation changes.

  11. U.S. Navy Energy Plan

    Science.gov (United States)

    1977-01-01

    plans) be assessed to determine environ- mental effects. If these assessments show "significant effect on the human environment," or are, in any way...specific energy conservation and management areas for review by the Inspector General of the Navy. (II) Act as Program and Resourec Sponsor for Navy

  12. Fiscal Year 1986 Department of Energy authorization (basic research programs). Volume II-B. Hearing before the Subcommittee on Energy Development and Applications of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Volume II-B of the hearing record contains Appendix 3 and Appendix 4 of Volume II-A. Appendix 3 provides supporting materials on the accomplishments and project summaries of the various departments under the Office of Basic Energy Sciences. This includes DOE supported work in engineering, chemistry, biology, mathematics, geology, and the energy sciences. Appendix 4 provides summaries of DOE supported work on high energy physics, which investigates the nature of matter and the behavior of matter and energy. Over 90% of the funding for this work comes from DOE, which is responsible for national planning in the effort to develop accelerator facilities, the superconducting super collider, and other physics programs

  13. Business plan basics for engineers

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Rasmussen, Erik Stavnsager; Riber Hansen, Katrine

    2016-01-01

    This chapter focuses on the nature of business planning activities from an engineering entre-/intra-preneurial perspective. It is therefore not limited to technology start-ups or newly created engineering firms but equally relevant for established firms investing in projects that assemble......-driven business environments which are typical the business playground for engineering professionals, the chapter focuses on describing the two key components of the business planning process: the articulation and the development of a viable business model, and managing the scaling up and the growth...... of the business. The de-scription does not pretend to exhaust the topic and continuously refers to several excellent recent publications that could complement the learning process of young and advanced engi-neering professionals interested in knowing more about the business planning process....

  14. Continental energy plan. Canadian perspectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The 'continental energy plan' was first mentioned by US President George Bush during his election campaign, and relates to the adjustment of energy resources development in Canada and Mexico. The US energy policy aims to reduce US dependence on middle east oil supplies, increase US energy production, increase regional integration of energy supplies throughout North America, increase US refining capacity, reduce regulatory barriers, increase use of alternative energies, and to increase support for research and development. Under the Canada/US FTA (Free Trade Agreement) and NAFTA (North American Free Trade Agreement), not less than 50% of Canadian crude oil and natural gas are imported to the US market. As for Mexico, it exempted most portions of its energy sector from the agreement during the NAFTA negotiations. Now that Mexico itself is facing energy shortage, however, it is anticipated that under President Vincente Fox it will adopt a policy like that of Canada and start development by introducing foreign money into the fields of oil, gas, and electricity. (NEDO)

  15. Designing an energy planning concept for enhancing the dissemination of renewable energy technologies in developing countries

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Lund, Søren

    2014-01-01

    This paper stresses the need for adapting a sustainable energy planning concept, which can support the implementation of renewable energy in developing countries; exemplified by a Vietnamese case. Many developing countries heavily rely on fossil fuel resources and will face energy supply security...... countries, while relevant policies, tools and plans etc. simultaneously are being deployed, enhancing the framework conditions for renewable energy implementation...

  16. A multi-objective approach for developing national energy efficiency plans

    International Nuclear Information System (INIS)

    Haydt, Gustavo; Leal, Vítor; Dias, Luís

    2014-01-01

    This paper proposes a new approach to deal with the problem of building national energy efficiency (EE) plans, considering multiple objectives instead of only energy savings. The objectives considered are minimizing the influence of energy use on climate change, minimizing the financial risk from the investment, maximizing the security of energy supply, minimizing investment costs, minimizing the impacts of building new power plants and transmission infrastructures, and maximizing the local air quality. These were identified through literature review and interaction with real decision makers. A database of measures is established, from which millions of potential EE plans can be built by combining measures and their respective degree of implementation. Finally, a hybrid multi-objective and multi-criteria decision analysis (MCDA) model is proposed to search and select the EE plans that best match the decision makers’ preferences. An illustration of the working mode and the type of results obtained from this novel hybrid model is provided through an application to Portugal. For each of five decision perspectives a wide range of potential best plans were identified. These wide ranges show the relevance of introducing multi-objective analysis in a comprehensive search space as a tool to inform decisions about national EE plans. - Highlights: • A multiple objective approach to aid the choice of national energy efficiency plans. • A hybrid multi-objective MCDA model is proposed to search among the possible plans. • The model identified relevant plans according to five different idealized DMs. • The approach is tested with Portugal

  17. The Role of Nuclear Energy for Long-term National Energy Planning

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y; Adiwardojo; Soentono, Soedyartomo

    2001-01-01

    Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1997- 2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. Then continued with the optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The result shows that Indonesia's need for final energy is forecasted to increase two times, from 4,028.4 PJ at the beginning of study become 8,145.6 PJ at the end of study. The more the use of fossil fuels are tightened and enforced because of its environmental impact, the earlier the nuclear power becomes part of the optimum generation mix. In the case IEA1001 (reduction of 1% CO 2 emission), nuclear energy is needed in Jawa-Bali region in the earliest possibility i.e. year 2018 corresponding to 0.37 GW and it will increase in the next years

  18. American Samoa: Energy Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ness, J. Erik [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Conrad, Misty [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This document outlines actions being taken to reduce American Samoa's petroleum consumption. It describes the four near-term strategies selected by the American Samoa Renewable Energy Committee during action-planning workshops conducted in May 2016, and describes the steps that will need to be taken to implement those strategies.

  19. Lost in transmission : a comprehensive critique of the BC energy plan

    International Nuclear Information System (INIS)

    Shaffer, M.; Hove, J.; Yamashita, J.

    2007-06-01

    This document presented an independent critique and review of the British Columbia (BC) 2007 energy plan. The critique focused on BC hydro-related policies in the energy plan, and was presented in three policy papers. The first paper addressed self-sufficiency and insurance issues. It examined the need for new sources of electricity supply in terms of imports and other market purchases that are currently used to meet BC Hydro's requirements. The second paper addressed BC Hydro electricity rates and the impacts and costs of buying high and selling low. It identified the impacts and costs of the low electricity rate policy in the energy plan, a policy that would inflate the demand for electricity and exaggerate the need for new sources of power caused by the self-sufficiency and insurance policies in the energy plan. Specifically, the second paper discussed BC Hydro rates under the energy plan, the limitations of power smart programs, distributional issues and alternative strategy. The third paper addressed supply issues in the energy plan, with particular reference to targeting low value/high cost resources. It focused on the types of resources BC Hydro had to acquire. It specifically addressed the pressure to acquire run-of-river and wind energy which, despite their superficial appeal, are low in value and high in cost, and could have significant environmental impact. It was concluded that despite the attempt to address environmental concerns, the province's energy plan is designed to artificially increase the market for new independent power producer supply. 76 refs., 9 tabs., 4 figs

  20. Sustainable urban energy planning: A strategic approach to meeting climate and energy goals

    Energy Technology Data Exchange (ETDEWEB)

    Dobriansky, Larisa

    2010-09-15

    Meeting our 21st century challenges will require sustainable energy planning by our cities, where over half of the population resides. This already has become evident in the State of California, which has set rigorous greenhouse gas emission reduction targets and timeframes. To attain these targets will necessitate technically-integrated and cost-optimum solutions for innovative asset development and management within urban communities. Using California as a case study, this paper focuses on the crucial role for sustainable energy planning in creating the context and conditions for integrating and optimizing clean and efficient energy use with the urban built environment and infrastructure.

  1. Energy conservation and management plan for plant facilities at the Livermore site

    Energy Technology Data Exchange (ETDEWEB)

    Ng, W.; Szybalski, S.; Kerr, W. H.; Meyer, H. J.

    1976-03-15

    An energy conservation and management plan for the Livermore site of the Lawrence Livermore Laboratory is presented. The plan defines the energy-conservation goals for the next 10 years and proposes the ways and means of attaining them. The main features contained in this plan are as follows: development of the criteria and underlying assumptions required for long range planning, including energy growth rates and the case for using the concept of the technical-fix energy growth rate, LLL energy outlook and fuel cost projections, and life-cycle-cost criteria; targets of the long-range plan include between 1975 and 1985, an annual energy usage growth equal to 5.8 percent of the 1975 energy consumption, 1985 and thereafter, zero energy growth, a change from the current dependence on natural gas to the use of other fuels for heating, and a doubling of the 30-day strategic oil storage capacity; and cost schedule for the next 10 years.

  2. Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization

    International Nuclear Information System (INIS)

    Moghadam, Ahmad; Seifi, Ali Reza

    2014-01-01

    Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function

  3. Renewable Energy Zone (REZ) Transmission Planning Process: A Guidebook for Practitioners

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hurlbut, David J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    Achieving clean energy goals may require new investments in transmission, especially if planners anticipate economic growth and increased demand for electricity. The renewable energy zone (REZ) transmission planning process can help policymakers ensure their infrastructure investments achieve national goals in the most economical manner. Policymakers, planners, and system operators around the world have used variations of the REZ process to chart the expansion of their transmission networks and overcome the barriers of traditional transmission planning. This guidebook seeks to help power system planners, key decision makers, and stakeholders understand and use the REZ transmission planning process to integrate transmission expansion planning and renewable energy generation planning.

  4. Regional new energy vision for Fukuoka city; Fukuokashi chiiki shin energy vision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    A regional new energy vision has been formulated for Fukuoka city, Fukuoka Prefecture, which will serve as a basic guide to the promotion of new energy introduction which is one of the measures for coping with environmental problems. The vision is described in five chapters of (1) the local characteristics of Fukuoka city, (2) energy situation in Fukuoka city, (3) basic program, (4) high priority plans, and (5) efforts to enhance the vision toward realization. Discussed as high priority plans are the introduction of new energy into public buildings above all others, high efficiency utilization of refuse-derived energy, utilization of new energy at water supply and drainage facilities, utilization of water temperature difference energy, introduction of clean energy vehicles, promotion of a new energy industry, and the extension of assistance for encouraging citizens and industrialists to adopt new energy. In extending assistance for encouraging the introduction of new energy, studies are made about measures for introducing new energy into individual residences and about a citizenry-involving new energy adopting industry (offering a site to the power generation industry) under the basal conditions that information be supplied sufficiently and that the citizenry and administration cooperate with each other in driving forward the vision. (NEDO)

  5. Hopi Sustainable Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  6. Data for Renewable Energy Planning, Policy, and Investment

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-17

    Reliable, robust, and validated data are critical for informed planning, policy development, and investment in the clean energy sector. The Renewable Energy (RE) Explorer was developed to support data-driven renewable energy analysis that can inform key renewable energy decisions globally. This document presents the types of geospatial and other data at the core of renewable energy analysis and decision making. Individual data sets used to inform decisions vary in relation to spatial and temporal resolution, quality, and overall usefulness. From Data to Decisions, a complementary geospatial data and analysis decision guide, provides an in-depth view of these and other considerations to enable data-driven planning, policymaking, and investment. Data support a wide variety of renewable energy analyses and decisions, including technical and economic potential assessment, renewable energy zone analysis, grid integration, risk and resiliency identification, electrification, and distributed solar photovoltaic potential. This fact sheet provides information on the types of data that are important for renewable energy decision making using the RE Data Explorer or similar types of geospatial analysis tools.

  7. Experience in energy and electricity supply and demand planning with emphasis on MAED and WASP among member states in Europe, the Middle East and North Africa

    International Nuclear Information System (INIS)

    1991-05-01

    The 22 participants and 8 observers from 16 IAEA member States attended the workshop, the basic objective of which was to promote the exchange of information and experience in the area of electric system expansion planning, including nuclear power planning. The second objective of the meeting was to consider whether improvements need to be made to the MAED/WASP model for better adaptation to the needs of the countries in the region. The third objective was to discuss energy and electricity planning in general, and the acceptance of the MAED and WASP models on the part of the decision makers. Future activities to be organized in the framework of the new energy and nuclear power planning project were also considered. Eighteen papers were presented by the participants. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  8. Residential Energy Efficiency Research Planning Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  9. Development of school energy policy and energy education plans: A comparative case study in three Wisconsin school communities

    International Nuclear Information System (INIS)

    Lane, Jennie F.; Floress, Kristin; Rickert, Melissa

    2014-01-01

    Through a qualitative comparative case study, this investigation examined the process by which three school districts in Wisconsin, U.S.A., developed a school energy policy and complementary energy education plan. To guide the process, the researchers created an outline of recommended steps for the districts to follow. Although there were variations in the sequence and perceived ease of the steps, the Energy Task Force members involved in the process found the outline to be a supportive guide. Further analysis of the cases involved interviewing members of the Energy Task Forces to identify facilitating and obstructing factors. The study concluded that factors such as level of environmental literacy, along with aspects of the school culture and leadership, interacted to influence the successful drafting of school energy policies and education plans. In addition to introducing an outline of recommended steps that can be used by other school policy development teams interested in promoting energy efficiency, this study adds insights into the analysis of energy policy work within the context of a school setting. - Highlights: • School energy policy and complementary energy education plans can be successfully developed with guidelines for policy team membership. • Teacher agency, including environmental literacy, helps overcome barriers in developing school policy and energy education plans. • Administrative support of energy conservation is a key to the development of school energy policies and complementary energy education plans

  10. Fiscal 1999 technical survey report. Basic survey for energy consumption rationalization and cooperative project on energy conservation seminar; 1999 nendo energy shohi koritsuka kiso chosa oyobi sho energy seminar kyoryoku jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    A survey was conducted of Myanmar's energy-consuming industries for exploring the feasibility of introducing practical energy conservation techniques and facilities to this country and for collecting basic data for the implementation of the project in the future. On the other hand, some lecturers were dispatched to an energy conservation seminar which was held in cooperation with the Government of Myanmar. Visited during the basic survey were (1) the Kyan Gin plant of Myanmar Ceramic Enterprise representing Myanmar's cement making industry, (2) the Thanlyin plant of Myanmar Petrochemical Enterprise representing Myanmar's oil refining industry, and (3) the Siftong plant of Myanmar Paper and Chemical Enterprise representing Myanmar's paper making industry. In the study of energy conservation measures for which stabilization of operation through reinforced facility maintenance and management were required, it was concluded that much time was necessary before Japan's advanced energy conservation technologies might be introduced into Myanmar. Three to six propositions were presented to each of the three plants. At the seminar, the importance of energy conservation promoting measures and the results of the basic survey were introduced to the audience. A lecture meeting was also held to familiarize some participants with NEDO-DB (Database of New Energy and Industrial Technology Development Organization). (NEDO)

  11. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Lars [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Smythe, Louisa [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Sarquilla, Lindsey [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Ferguson, Kelly [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States)

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  12. Home energy rating system business plan feasibility study in Washington state

    Energy Technology Data Exchange (ETDEWEB)

    Lineham, T.

    1995-03-01

    In the Fall of 1993, the Washington State Energy Office funded the Washington Home Energy Rating System project to investigate the benefits of a Washington state HERS. WSEO established a HERS and EEM Advisory Group. Composed of mortgage lenders/brokers, realtors, builders, utility staff, remodelers, and other state agency representatives, the Advisory Group met for the first time on November 17, 1993. The Advisory Group established several subcommittees to identify issues and options. During its March 1994 meeting, the Advisory Group formed a consensus directing WSEO to develop a HERS business plan for consideration. The Advisory Group also established a business plan subcommittee to help draft the plan. Under the guidance of the business plan subcommittee, WSEO conducted research on how customers value energy efficiency in the housing market. This plan represents WSEO`s effort to comply with the Advisory Group`s request. Why is a HERS Business Plan necessary? Strictly speaking this plan is more of a feasibility plan than a business plan since it is designed to help determine the feasibility of a new business venture: a statewide home energy rating system. To make this determination decision makers or possible investors require strategic information about the proposed enterprise. Ideally, the plan should anticipate the significant questions parties may want to know. Among other things, this document should establish decision points for action.

  13. Linac upgrade plan for the KEK B-Factory

    International Nuclear Information System (INIS)

    Enomoto, Atsushi; Anami, Shozo; Kamitani, Takuya; Hanaki, Hirofumi; Shidara, Tetsuo; Sato, Isamu

    1993-01-01

    In the KEK B-Factory plan, e+/e- collider rings with 3.5- GeV positions and 8-GeV electrons are being considered, and full-energy injection from the existing linac is required. The acceleration energy of the linac must be upgraded from 2.5 to 8 GeV. The most effective way has been searched from several points of view, such as the beam quality, ease of beam handling, and construction. This article describes the basic plan of the energy upgrade and recent progress regarding this project

  14. Energy Strategic Planning & Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  15. Development of Comprehensive Nuclear Safety Regulation Plan for 2007-2011

    International Nuclear Information System (INIS)

    Choi, Young Sung; Kim, Woong Sik; Park, Dong Keuk; Kim, Ho Ki

    2006-01-01

    The Article 8-2 of Atomic Energy Act requires the government to establish Atomic Energy Promotion Plan every five years. It sets out national nuclear energy policies in a systematic and consistent way. The plan presents the goals and basic directions of national nuclear energy policies on the basis of current status and prospects. Both areas of utilization and safety management of nuclear energy are included and various projects and schedules are delineated based on the national policy directions. The safety management area in this plan deals with the overall safety and regulation policy. Its detail projects and schedule should be developed in separate plans by responsible ministries under the mediation of the MOST. As a regulatory authority, MOST is responsible for safety management area and its technical support organization, KINS has developed Comprehensive Nuclear Safety Regulation Plan as an implementation plan of safety area. This paper presents the development process and specific projects contained in the Comprehensive Nuclear Safety Regulation Plan which is under development now

  16. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. (Oak Ridge National Lab., TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); Kamel, A.M. (Ain Shams Univ., Cairo (Egypt)); Santiago, H.T. (USDOE, Washington, DC (United States))

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  17. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. [Oak Ridge National Lab., TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); Kamel, A.M. [Ain Shams Univ., Cairo (Egypt); Santiago, H.T. [USDOE, Washington, DC (United States)

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  18. Understanding sport continuation: an integration of the theories of planned behaviour and basic psychological needs.

    Science.gov (United States)

    Gucciardi, Daniel F; Jackson, Ben

    2015-01-01

    Fostering individuals' long-term participation in activities that promote positive development such as organised sport is an important agenda for research and practice. We integrated the theories of planned behaviour (TPB) and basic psychological needs (BPN) to identify factors associated with young adults' continuation in organised sport over a 12-month period. Prospective study, including an online psycho-social assessment at Time 1 and an assessment of continuation in sport approximately 12 months later. Participants (N=292) aged between 17 and 21 years (M=18.03; SD=1.29) completed an online survey assessing the theories of planned behaviour and basic psychological needs constructs. Bayesian structural equation modelling (BSEM) was employed to test the hypothesised theoretical sequence, using informative priors for structural relations based on empirical and theoretical expectations. The analyses revealed support for the robustness of the hypothesised theoretical model in terms of the pattern of relations as well as the direction and strength of associations among the constructs derived from quantitative summaries of existing research and theoretical expectations. The satisfaction of basic psychological needs was associated with more positive attitudes, higher levels of perceived behavioural control, and more favourable subjective norms; positive attitudes and perceived behavioural control were associated with higher behavioural intentions; and both intentions and perceived behavioural control predicted sport continuation. This study demonstrated the utility of Bayesian structural equation modelling for testing the robustness of an integrated theoretical model, which is informed by empirical evidence from meta-analyses and theoretical expectations, for understanding sport continuation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Evaluation of Mexico's 1975-2000 energy plan

    International Nuclear Information System (INIS)

    Bazan-Perkins, Sergio D.; Fernandez-Zayas, Jose L.

    2008-01-01

    The certainty and trustworthiness of a planning model can best be assessed when projections can be compared with actual developments. The ability to design scenarios and to evaluate demographic, economic and technological change is also increased with periodic comparisons between plans and actual facts. In 1976, the Mexican government published a 25 year power supply plan for the country, in which a development of non-fossil fuel plants was recommended, largely due to environmental considerations. It was proposed that the new demand should be met mainly with renewable energy sources and nuclear power. The study stated that hydrocarbons would reach a peak between 2003 and 2005, and that after this point the descent of fuel consumption would proceed at an increased velocity. Under this program, the dependence of Mexico on fuel for electricity would be gradually reduced as the 21st century progressed. The suggestion was not assumed by successive governments, and fossil fuel plants took the place of the proposed nuclear plants. However, the original 25 years power plan has proved to be quite accurate in its social and economic previsions, and allows the validation of a new, more powerful and reliable planning model. This paper presents the results of the validation of the model, as well as major considerations to be heeded in the future to increase certainty in further planning efforts. The projection of a better, more sustainable and reliable energy future is also proposed

  20. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  1. Selection of projects in the regional energy planning

    International Nuclear Information System (INIS)

    Ramirez P, R.; Navas M, F.

    1993-01-01

    The processes of regional energy planning have changed vastly in the last years and it will continue changing in the future for the new norm of the State. This work tries to show the use of systematic tools in the selection of regional energy projects. It discusses a methodology of selection of projects based on a multivariate technical. It is applied in the Southwestern region of Colombia and both selection and priority results are obtained. The designed methodology allows to make the selection of projects in an automatic way with a software designed for such an end. In the case of Southwestern it arrives to a briefcase of projects for an energy plan and made for other races

  2. A Critical Review on the National Energy Efficiency Action Plan of Egypt.

    Directory of Open Access Journals (Sweden)

    Hatem Elrefaei

    2014-03-01

    Full Text Available Egypt, as with other developing countries, faces a major energy security problem, which strongly impacts all national plans for economic development. A sound energy strategy is crucially needed, and should be based on two pillars: first, boosting the production of clean energy from various renewable and non-renewable sources, and second, managing and rationalizing energy demand, with related reforms. Some steps were taken by previous Egyptian governments regarding these two pillars. In February 2008, the Ministry of Electricity and Energy of Egypt put a target of 20% of electricity to come from renewable energy resources by 2020. In July 2012, the Ministerial Cabinet approved both the Egyptian Solar Plan targeting 3500 MW of solar energy by 2027, and the National Energy Efficiency Action Plan (NEEAP to reduce energy consumption 5% during the period from 2012-2015 compared to the average consumption of the previous 5 years. We believe that these plans will not bring their expected fruits unless they are well orchestrated with other sectoral development plans in areas such as agriculture, transport, housing and services, amongst others. This paper aims to investigate the Egyptian NEEAP and assess whether the adopted national energy efficiency plan and the associated policies on all other development sectors adopted by the government have sound implications. We aim to find out whether the development policies with a focus on energy policy are set in an integrated or fragmented way.

  3. A New Method for Local Energy Planning in Developing Countries

    International Nuclear Information System (INIS)

    Van Beeck, N.

    2001-01-01

    Energy planning is an essential tool in the economic development of industrialized as well as developing countries. Energy planning in this paper is restricted to the selection of new energy systems for the production of proper energy forms in order to meet increased energy demand. This demand is actually the desire for certain energy services, which are the starting point of the new decision support method for local energy planning presented in this paper. In the decision making process concerning energy planning at the local level it is important to include context-related issues because the context determines for a large part the viability of the technologies or systems used. The context, in turn, is represented by the aims of the relevant actors, which are translated into measurable indicators to compare the different options. The impact assessment must allow for inclusion of all the indicators, either quantitative or qualitative in order to find the most appropriate technology for a region rather than the technically best or economically most optimal one. Appropriateness is defined by the context and is thus case specific, but the framework described in this paper is generally applicable within the given limitations. Note that the new method described in this paper is a decision support tool, implying that it does not decide for the energy planner which actions to take. The ultimate decision must be made by the planners themselves

  4. Improving energy audit process and report outcomes through planning initiatives

    Science.gov (United States)

    Sprau Coulter, Tabitha L.

    Energy audits and energy models are an important aspect of the retrofit design process, as they provide project teams with an opportunity to evaluate a facilities current building systems' and energy performance. The information collected during an energy audit is typically used to develop an energy model and an energy audit report that are both used to assist in making decisions about the design and implementation of energy conservation measures in a facility. The current lack of energy auditing standards results in a high degree of variability in energy audit outcomes depending on the individual performing the audit. The research presented is based on the conviction that performing an energy audit and producing a value adding energy model for retrofit buildings can benefit from a revised approach. The research was divided into four phases, with the initial three phases consisting of: 1.) process mapping activity - aimed at reducing variability in the energy auditing and energy modeling process. 2.) survey analysis -- To examine the misalignment between how industry members use the top energy modeling tools compared to their intended use as defined by software representatives. 3.) sensitivity analysis -- analysis of the affect key energy modeling inputs are having on energy modeling analysis results. The initial three phases helped define the need for an improved energy audit approach that better aligns data collection with facility owners' needs and priorities. The initial three phases also assisted in the development of a multi-criteria decision support tool that incorporates a House of Quality approach to guide a pre-audit planning activity. For the fourth and final research phase explored the impacts and evaluation methods of a pre-audit planning activity using two comparative energy audits as case studies. In each case, an energy audit professionals was asked to complete an audit using their traditional methods along with an audit which involved them first

  5. US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    White, D.L. [Oak Ridge National Lab., TN (United States); Mihlmester, P.E. [Aspen Systems Corp., Oak Ridge, TN (United States)

    1993-12-17

    The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

  6. Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Nilsson, Lars J.; Åhman, Max; Schneider, Clemens

    2016-01-01

    The need for deep decarbonisation in the energy intensive basic materials industry is increasingly recognised. In light of the vast future potential for renewable electricity the implications of electrifying the production of basic materials in the European Union is explored in a what-if thought-experiment. Production of steel, cement, glass, lime, petrochemicals, chlorine and ammonia required 125 TW-hours of electricity and 851 TW-hours of fossil fuels for energetic purposes and 671 TW-hours of fossil fuels as feedstock in 2010. The resulting carbon dioxide emissions were equivalent to 9% of total greenhouse gas emissions in EU28. A complete shift of the energy demand as well as the resource base of feedstocks to electricity would result in an electricity demand of 1713 TW-hours about 1200 TW-hours of which would be for producing hydrogen and hydrocarbons for feedstock and energy purposes. With increased material efficiency and some share of bio-based materials and biofuels the electricity demand can be much lower. Our analysis suggest that electrification of basic materials production is technically possible but could have major implications on how the industry and the electric systems interact. It also entails substantial changes in relative prices for electricity and hydrocarbon fuels. - Highlights: • Energy intensive basic materials industry has a high share in EU greenhouse gas emissions. • Decarbonising these industries is very important, but still relatively unexplored. • Electrification is possible regarding renewable energy resources and technologies. • Combination with energy and materials efficiency, biofuels and CCS is crucial. • Electrification needs very high amounts of electricity and strong policies.

  7. State energy conservation plan for New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The energy-savings and energy-management programs set up by state agencies in New Mexico are presented. Also the energy-savings and energy-management programs for public schools are presented. Plans and summaries are also given for the following program: solar water heaters for secondary schools; solar portable classroom demonstration; energy-savings and energy-management programs for county and municipal governments; energy-savings programs for commercial and residential sectors; weatherization; solar sustenance; energy-savings programs for hospitals and industrial buildings; carpools and vanpools; a program encouraging compliance with the national 55-mph speed limit; waste-oil recycling; utilitites; agriculture; procurement; modification; public information; and an administrative packet containing information on how to facilitate internal accounting procedures.

  8. National Action Plan for Energy Efficiency Report

    Energy Technology Data Exchange (ETDEWEB)

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  9. Electricity market readiness plan : Ontario Energy Board

    International Nuclear Information System (INIS)

    2001-03-01

    This document informs electric power market participants of the Ontario Energy Board's newly developed market readiness plan and target timelines that local distribution companies (LDCs) must meet for retail marketing. The Ontario Energy Board's plan incorporates relevant independent market operator (IMO)-administered market milestones with retail market readiness targeted for September 2001. The market readiness framework involves a self-certification process for LDCs by August 10, 2001, through which the Board will be able to monitor progress and assess the feasibility of meeting the target timelines. For retail market readiness, all LDCs will have to calculate settlement costs, produce unbundled bills, provide standard supply service, change suppliers and accommodate retail transactions. LDCs must be either authorized participants in the IMO-administered market or become retail customers of their host LDC. Unbundled bills will include itemized charges for energy price, transmission, distribution and debt retirement charge. 1 tab., 1 fig

  10. Nordic Energy basics

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Pursiheimo, E. [VTT, Espoo (Finland)

    2004-01-01

    This report gives numerical data of the existing energy systems in Denmark, Finland, Island, Norway and Sweden. The data includes: 1) Primary fossil fuel production and fuel reserves; 2) Energy production and consumption; 3) Hydrogen production in the Nordic countries; 4) Energy balances of the Nordic countries. The above data has been used as background information during the Nordic H{sub 2} Energy Foresight project. The data has been collected from public literature sources and also from project partners. (au)

  11. Energy Conservation and Development Plan. Southern Tier Central Region, New York

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    A summary is presented of the work of 40 volunteers working with regional planners to imagine, assess, and prescribe for the development of local energy resources (wind, solar, biomass, and water) and for conservation of all forms of energy. The plan contains a brief summary of the process the citizens followed in formulating the plan, the plans themselves, and appendices which contain more detailed comments by citizens on the possible consequences of the development of each resource. The areas (Chemung, Steuben, and Schuyler counties) experienced severe natural gas curtailments during the winter of 1976-1977. The formulation of an emergency energy conservation plan is also presented.

  12. Waste management plan for pipeline construction works: basic guideline for its preparation

    Energy Technology Data Exchange (ETDEWEB)

    Serricchio, Claudio; Caldas, Flaviana V [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Souza, Izabel C.A. de; Araujo, Ronaldo G. de [TELSAN, Rio de Janeiro, RJ (Brazil); Souza, Tania Mara [IMC-SASTE, Sao Paulo,SP (Brazil); Veronez, Fernanda A [Bourscheid, Porto Alegre, RS (Brazil)

    2009-07-01

    During the stage of implementation of the land pipes enterprise, one of the main environmental aspects to be considered was the creation of solid and liquid waste. To mitigate the possible impacts to the environment, the main adopted mitigate measure was the implementation of a Waste Management Plan - WMP. Thus, the management of waste from pipes construction has the challenge of a great variety of stages and phases for the implementation of pipes and the diversity of local situations related to the topographic and hydro-geologic conditions. Considering the peculiarity of the pipes activities, this article proposes the elaboration of a Basic Guide to be used as reference for the creation of WMP's for similar enterprises, using as foundation the data from the three Gas Pipelines: Cabiunas - Vitoria; Vitoria - Cacimbas and Cacimbas - Catu. After the analysis of the three mentioned enterprises, it was verified that the waste management generated on the building and assembling of the land pipes normally occurs in accord with previous planning, but there's no systematization for the waste to be better recycled and reutilized, thus mitigating their creation. (author)

  13. The role of geodata and geotools in sustainable energy planning. The Interreg project 'North Sea Sustainable Energy Planning'; Die Bedeutung von Geodaten und Geowerkzeugen fuer eine nachhaltige Energieplanung. Das Interreg-Projekt 'North Sea Sustainable Energy Planning'

    Energy Technology Data Exchange (ETDEWEB)

    Knies, Juergen [Jade Hochschule Wilhelmshaven/Oldenburg/Elsfleth, Oldenburg (DE). Inst. fuer Angewandte Photogrammetrie und Geoinformatik (IAPG)

    2012-07-01

    The Interreg IVB project 'North Sea Sustainable Energy Planning' is to promote the development of models for regional development in consideration of renewable energy sources and the implementation of measures for higher energy efficiency in consideration of regional and international boundary conditions. Geodata and geotools provide a basis for sustainable energy planning. The Institute of Applied Photogrammetry and Geoinformatics of Jade Hochschule University developed concepts and geotools to support decision-makers in this task. The concepts and tools are presented in this paper.

  14. Pricing and Capacity Planning Problems in Energy Transmission Networks

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer

    strategy. In the Nordic electricity system a market with zonal prices is adopted. We consider the problem of designing zones in an optimal way explicitly considering uncertainty. Finally, we formulate the integrated problem of pipeline capacity expansion planning and transmission pricing in natural gas...... necessitates a radical change in the way we plan and operate energy systems. Another paradigm change which began in the 1990’s for electricity systems is that of deregulation. This has led to a variety of different market structures implemented across the world. In this thesis we discuss capacity planning...... and transmission pricing problems in energy transmission networks. Although the modelling framework applies to energy networks in general, most of the applications discussed concern the transmission of electricity. A number of the problems presented involves transmission switching, which allows the operator...

  15. Feasibility of dual-energy computed tomography in radiation therapy planning

    Science.gov (United States)

    Sheen, Heesoon; Shin, Han-Back; Cho, Sungkoo; Cho, Junsang; Han, Youngyih

    2017-12-01

    In this study, the noise level, effective atomic number ( Z eff), accuracy of the computed tomography (CT) number, and the CT number to the relative electron density EDconversion curve were estimated for virtual monochromatic energy and polychromatic energy. These values were compared to the theoretically predicted values to investigate the feasibility of the use of dual-energy CT in routine radiation therapy planning. The accuracies of the parameters were within the range of acceptability. These results can serve as a stepping stone toward the routine use of dual-energy CT in radiotherapy planning.

  16. Profit Allocation of Hybrid Power System Planning in Energy Internet: A Cooperative Game Study

    Directory of Open Access Journals (Sweden)

    Jicheng Liu

    2018-02-01

    Full Text Available The rapid development of Energy Internet (EI has prompted numbers of generators to participate, leading to a hybrid power system. Hence, how to plan the hybrid power system and allocate its profit becomes necessary. In this paper, the cooperative game theory is introduced to discuss this problem. We first design the basic structure of EI, and point out the object of this study—coal power plant-wind farm-photovoltaic power station-energy storage provider (CWPE alliance. Subsequently, average allocation strategy (AAS, capacity-based allocation strategy (CAS and Shapley value allocation strategy (SAS are proposed, and then the modified disruption propensity (MDP index is constructed to judge the advantages and disadvantages of the three schemes. Thirdly, taking a certain area of A Province as an example, the profits of CWPE under three strategies are calculated respectively. Finally, by analyzing individual rationality and collective rationality of cooperative game and the MDP index of the three profit allocation schemes, we find that SAS is the most stable.

  17. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Abbasi, Ali Reza; Seifi, Ali Reza

    2014-01-01

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  18. Polymer materials basic research needs for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Macknight, W.J.; Baer, E.; Nelson, R.D. (eds.)

    1978-08-01

    The larger field covered in the workshop consists of (1) synthesis and characterization, (2) physical chemistry, (3) physics, and (4) engineering. Polymeric materials are properly regarded as new materials in their own right, not as replacements for existing materials. As such they need to be studied to understand the properties which are unique to them by virtue of their particular molecular structures. Technological applications will rationally follow from such studies. It is the objective of this report to point out basic research needs in polymer materials related to energy. The development of sophisticated instrumentation makes the task of molecular characterization possible on a level hitherto unattainable. Many of these instruments because of their size and complexity must of necessity be located at the DOE National Laboratories. The importance of personnel trained in the polymer field located at these facilities is emphasized. In the past there has been relatively little concerted polymer research within the energy community. This report attempts to describe the present situation and point out some needs and future research directions. (GHT)

  19. Regional new energy vision for Aogaki town; Aogakicho chiiki shin energy vision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    A regional new energy vision has been formulated as part of Phase 4 of the Town Development Program of Aogaki town, Hyogo Prefecture, calling for 'building a town, comfortable to live in and full of hope, by utilizing rich natural environments.' The results of activities conducted in this connection are summarized in five chapters, which are (1) the description of the new energy vision, (2) Aogaki-town's energy characteristics, (3) basic plan, (4) driving forward of prioritized plans, and (5) toward the driving forward of the new energy vision. Chapter (4) comprises the goal of the formulation of the prioritized plans, the definition of the prioritized plans, and the establishment of individual projects. Established as the individual projects are the introduction of new energy linked to the inhibition of carbon dioxide gas emissions, use of wind energy for multiple purposes, public facilities preceding others in the introduction of new energy, building of environmentally symbiotic residences utilizing new energy, utilization of new energy at recreation facilities, and the popularization of and enlightening about new energy and its introduction through the participation of the local population. (NEDO)

  20. Encountering energy strategies and plans with the social context of household practice

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Nyborg, Sophie; Røpke, Inge

    Encountering energy strategies and plans with the social context of household practices Governments and utility companies have developed a great deal of strategies and plans on how to cope with energy saving in households, since this represents a major issue for climate change remediation. Many...... in households, and provides important clues about the potentiality to anchor energy strategies and plans in the social context of local households....

  1. Fiscal 1998 research report on the basic research on energy saving for Huta Katowice, Poland; 1998 nendo Poland Katowice seitetsusho sho energy kihon chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For reduction of greenhouse effect gas emission by Japan- Poland joint project, research was made on the improvement plan of Huta Katowice, a typical ironworks in Poland. The applicability of energy saving facilities was studied for the coke factory, sintering factory, blast furnace and converter which are consuming the most amount of energy in Huta Katowice, from the viewpoints of the amount of energy saving and CO{sub 2} reduction, and an investment effect. Research was also made on the power plant, flow of by-product gas, generated energy and purchased energy for obtaining the total energy consumption. From the energy saving research results for every process, the priority of the improvement plan was prepared. The proposed plan showed huge reduction of energy and greenhouse effect gas emission. Although the plan is too serious for comfort because of current low energy cost in Poland, it becomes reasonable if a lower-interest fund loan is granted, from the viewpoint of an investment effect. (NEDO)

  2. Energy-Aware Path Planning for UAS Persistent Sampling and Surveillance

    Science.gov (United States)

    Shaw-Cortez, Wenceslao

    The focus of this work is to develop an energy-aware path planning algorithm that maximizes UAS endurance, while performing sampling and surveillance missions in a known, stationary wind environment. The energy-aware aspect is specifically tailored to extract energy from the wind to reduce thrust use, thereby increasing aircraft endurance. Wind energy extraction is performed by static soaring and dynamic soaring. Static soaring involves using upward wind currents to increase altitude and potential energy. Dynamic soaring involves taking advantage of wind gradients to exchange potential and kinetic energy. The path planning algorithm developed in this work uses optimization to combine these soaring trajectories with the overarching sampling and surveillance mission. The path planning algorithm uses a simplified aircraft model to tractably optimize soaring trajectories. This aircraft model is presented and along with the derivation of the equations of motion. A nonlinear program is used to create the soaring trajectories based on a given optimization problem. This optimization problem is defined using a heuristic decision tree, which defines appropriate problems given a sampling and surveillance mission and a wind model. Simulations are performed to assess the path planning algorithm. The results are used to identify properties of soaring trajectories as well as to determine what wind conditions support minimal thrust soaring. Additional results show how the path planning algorithm can be tuned between maximizing aircraft endurance and performing the sampling and surveillance mission. A means of trajectory stitching is demonstrated to show how the periodic soaring segments can be combined together to provide a full solution to an infinite/long horizon problem.

  3. Energy-Integrating Master Plan for the City of Atlantic City, New Jersey: energy conservation element. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The Master Plan describes a coordinated energy-conservation effort for the City, the effective application and ultimate success of which depend primarily on the active involvement of the City government and its functional departments. Following an introductory section, Section XXI, Community Energy Determinants, describes the natural and man-made environment, growth and energy profiles, and the institutional environment. Additional sections are entitled: Energy-Conservation Options (passive energy options and active energy-conservation options); Energy Integration; Community Energy Management; Energy-Conservation Implementation Plan; and an appendix containing an energy-related glossary, a directory to various sources of information on energy conservation, various technical documents, a copy of the National Energy Act, and a bibliography. (MCW)

  4. Energy and the environment, Czech energy policy and plans

    International Nuclear Information System (INIS)

    Dlouhy, V.

    1995-01-01

    The article is the text of a lecture delivered by the Minister of Industry and Trade of the Czech Republic. The changes in the Czech energy sector following the political change in 1989 are highlighted. The basic strategic goal in the energy policy of the Czech Government consists in ensuring a stable and reliable power supply while promoting provisions in the production and energy raw material procurement and in the related pricing that would be in support of the strong system provisions within the whole Czech national economy. In the short run, the privatization and restructuring of the Czech power sector will be completed, the share of state ownership in utilities will be reduced, and control mechanisms to affect the function of natural monopolies will be developed. Environmental aspects of the Czech energy policy are particularly aimed at reducing the final consumption of solid fuels, reducing air pollution by flue ashes, phasing-out fossil fuel fired power plants, and increasing power generation by nuclear power plants. The governmental pricing control policy expects that the fuel and power retail prices will be increasing about 15% annually till the year 2000. (J.B.)

  5. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  6. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    International Nuclear Information System (INIS)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-01-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  7. Learning curves in energy planning models

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, L; Kypreos, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This study describes the endogenous representation of investment cost learning curves into the MARKAL energy planning model. A piece-wise representation of the learning curves is implemented using Mixed Integer Programming. The approach is briefly described and some results are presented. (author) 3 figs., 5 refs.

  8. Econometric methods for energy planning and policy

    International Nuclear Information System (INIS)

    Bhatia, R.

    1989-01-01

    The paper reports on the following: econometric models are often used in energy planning and policy for energy demand analysis at the macro and sectorial levels; estimating income and price elasticities of demand which can be used to analyze effects of growth and price changes; assessing interfuel and interfactor substitutions; forecasting energy demand; and estimating cost functions and forecasting supply. The illustrations in the paper are confined to single equation systems estimated by least squares method as used in analyzing changes in aggregate energy demand and sectorial energy demand. The use of econometric methods is illustrated with the help of empirical studies from a few countries (notably India). 2 tabs

  9. Penobscot Indian Nation's Strategic Energy Planning Efficiency on tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Sockalexis, Mike; Fields, Brenda

    2006-11-30

    The energy grant provided the resources to evaluate the wind, hydro, biomass, geothermal and solar resource potential on all Penobscot Indian Naiton's Tribal lands. The two objectives address potential renewable energy resources available on tribal lands and energy efficiency measures to be taken after comprehensive energy audits of commercial facilities. Also, a Long Term Strategic Energy Plan was developed along with a plan to reduce high energy costs.

  10. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  11. Fossil Energy Planning for Navajo Nation

    Energy Technology Data Exchange (ETDEWEB)

    Acedo, Margarita [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-11

    This project includes fossil energy transition planning to find optimal solutions that benefit the Navajo Nation and stakeholders. The majority of the tribe’s budget currently comes from fossil energy-revenue. The purpose of this work is to assess potential alternative energy resources including solar photovoltaics and biomass (microalgae for either biofuel or food consumption). This includes evaluating carbon-based reserves related to the tribe’s resources including CO2 emissions for the Four Corners generating station. The methodology for this analysis will consist of data collection from publicly available data, utilizing expertise from national laboratories and academics, and evaluating economic, health, and environmental impacts. Finally, this report will highlight areas of opportunities to implement renewable energy in the Navajo Nation by presenting the technology requirements, cost, and considerations to energy, water, and environment in an educational structure.

  12. Comparative Review of a Dozen National Energy Plans: Focus on Renewable and Efficient Energy

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.; James, T. L.

    2009-03-01

    Dozens of groups have submitted energy, environmental, and economic recovery plans for consideration by the Obama administration and the 111th Congress. This report provides a comparative analysis of 12 national proposals, focusing especially on energy efficiency (EE) and renewable energy (RE) market and policy issues.

  13. Basic DTU Wind Energy controller

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M.; Henriksen, Lars Christian

    2013-01-15

    This report contains a description and documentation, including source code, of the basic DTU Wind Energy controller applicable for pitch-regulated, variable speed wind turbines. The controller features both partial and full load operation capabilities as well as switching mechanisms ensuring smooth switching between the two modes of operation. The partial and full load controllers are both based on classical proportional-integral control theory as well as additional filters such as an optional drive train damper and a notch filter mitigating the influence of rotor speed dependent variations in the feedback. The controller relies on generator speed as the primary feedback sensor. Additionally, the reference generator power is used as a feedback term to smoothen the switching between partial and full load operation. Optionally, a low-pass filtered wind speed measurement can be used for wind speed dependent minimum blade pitch in partial load operation. The controller uses the collective blade pitch angle and electromagnetic generator torque to control the wind turbine. In full load operation a feedback term from the collective blade pitch angle is used to schedule the gains of the proportional-integral controller to counter the effects of changing dynamics of the wind turbine for different wind speeds. Blade pitch servo and generator models are not included in this controller and should be modeled separately, if they are to be included in the simulations. (Author)

  14. An overview of Ontario's 2013 long term energy plan

    International Nuclear Information System (INIS)

    Jobe, C.

    2014-01-01

    Ontario's 2013 Long Term Energy /Plan (LTEP) takes a pragmatic approach. The plan is designed to balance the following five principles namely: Cost effectiveness, Reliability, Clean energy, Community engagement, and Emphasis on conservation and demand management before building new generation. By taking a pragmatic and flexible approach and balancing these principles, Ontario's 2013 Long Term Energy Plan builds on the foundation laid by the 2010 LTEP while also lowering the projected total system costs. The key elements of the 2013 LTEP are described in this paper by highlighting the major features of these elements. (author)

  15. Energy efficient process planning based on numerical simulations

    OpenAIRE

    Neugebauer, Reimund; Hochmuth, C.; Schmidt, G.; Dix, M.

    2011-01-01

    The main goal of energy-efficient manufacturing is to generate products with maximum value-added at minimum energy consumption. To this end, in metal cutting processes, it is necessary to reduce the specific cutting energy while, at the same time, precision requirements have to be ensured. Precision is critical in metal cutting processes because they often constitute the final stages of metalworking chains. This paper presents a method for the planning of energy-efficient machining processes ...

  16. PCAET to understand, to build, and to implement - Territorial climate-air-energy plan - Elected representatives, what is to be known about PCAETs - Territorial climate-air-energy plan

    International Nuclear Information System (INIS)

    Martin, Camille; Moille, Sandra; Legendre, Solenn; Vesine, Eric; Carrega, Marie; Brender, Pierre; Lunet, Joseph; Chabanel, Christiane; Saliou, Nelly

    2016-11-01

    A first document is a guide which presents what needs to be known about the regulatory evolution of French climate plans. A first part describes how energy transition can be an opportunity for a territory, and outlines what would be the cost of inaction. A second part explains how the PCAET supports local action in the struggle against climate change and air pollution, and describes its articulation with other planning tools, urban planning documents, and other individual and voluntary actions for a sustainable development. The third part describes the different steps for action: preparation of objectives, questions to be addressed, realisation of a territory diagnosis, elaboration of a territorial strategy, definition and support of an action plan, and practical aspects. It also proposes a focus on the different sectors: housing and office building, transports, agriculture, forests and soils, industry and other economic activities, energy production and distribution and development of renewable energies, wastes. A second document briefly presents the regulatory evolution of climate plans within the frame of the law on energy transition and for a green growth, mainly at the destination of elected representatives. It presents this new legal framework for the PCAET, its role and ambitions, the opportunities and benefits it gives to elected representatives, and some examples. It briefly describes the articulation of the plan with other planning tools and approaches to sustainable development, indicates the main steps for the plan elaboration and implementation, how to validate a PCAET

  17. Green power: A renewable energy resources marketing plan

    International Nuclear Information System (INIS)

    Barr, R.C.

    1997-01-01

    Green power is electricity generated from renewable energy sources such as power generated from the sun, the wind, the heat of the earth, and biomass. Green pricing is the marketing strategy to sell green power to customers who voluntarily pay a premium for it. Green pricing is evolving from the deregulation of the electric industry, the need for clean air, reflected in part as concern over global warming, and technology advances. The goal of the renewable energy marketing plan is to generate enough revenues for a utility to fund power purchase agreements (PPAs) with renewable energy developers or construct its own renewable facilities. Long-term, fixed price PPAs enable developers to obtain financing to construct new facilities, sometimes taking technological risks which a utility might not take otherwise. The marketing plan is built around different rate premiums for different categories of ratepayers, volunteer customer participation, customer participation recognition, and budget allocations between project costs and power marketing costs. Green prices are higher than those for conventional sources, particularly prices from natural gas fired plants. Natural gas is abundant relative to oil in price per British thermal unit (Btu). Green pricing can help bridge the gap between the current oversupply of gas and the time, not far off, when all petroleum prices will exceed those for renewable energy. The rapid implementation of green pricing is important. New marketing programs will bolster the growing demand for renewable energy evidenced in many national surveys thus decreasing the consumption of power now generated by burning hydrocarbons. This paper sets forth a framework to implement a green power marketing plan for renewable energy developers and utilities working together

  18. Programme of basic nuclear research and associated fields 1977-1981

    International Nuclear Information System (INIS)

    1978-01-01

    Nuclear research and development have been intensively pursued in West Germany by the Government and the Laender since 1955. In this period, the aims and official measures for fostering the research and use of nuclear power for peaceful purposes were laid down in four nuclear programmes. The 4th Nuclear Programme covers the period 1973 to 1976. From 1977, nuclear development became part of the energy research programme which was published by the West German Government in the spring of 1977. The basic nuclear research, however, was regarded as part of a total concept for fostering basic research (to be developed). While all the activities of research in the natural sciences and arts fostered by the West German Ministry of Research and Technology were to be co-ordinated in a more schematic form in the plan for 'Basic Research', it is the aim of the present statement to take stock of the present situation in 'Basic Nuclear Research' including the associated fields of 'Nuclear Solid Research' and 'Synchrotron Radiation', to analyse their structure, to describe the scientific aims for the next five years and to determine the total financial requirements. The basis for determining the financial programme worked out by the expert committee on 'Physical Research in the Nuclear Field' and the other committees in this field. The plans are in agreement with the medium term plan of the West German Ministry of Research and Technology (at 27.10.1977) and their contents correspond to the state of affairs at the end of 1977. (orig./UA) [de

  19. Planning regional energy system in association with greenhouse gas mitigation under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.P.; Huang, G.H. [Research Academy of Energy and Environmental Studies, North China Electric Power University, Beijing 102206 (China); Chen, X. [Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2011-03-15

    Greenhouse gas (GHG) concentrations are expected to continue to rise due to the ever-increasing use of fossil fuels and ever-boosting demand for energy. This leads to inevitable conflict between satisfying increasing energy demand and reducing GHG emissions. In this study, an integrated fuzzy-stochastic optimization model (IFOM) is developed for planning energy systems in association with GHG mitigation. Multiple uncertainties presented as probability distributions, fuzzy-intervals and their combinations are allowed to be incorporated within the framework of IFOM. The developed method is then applied to a case study of long-term planning of a regional energy system, where integer programming (IP) technique is introduced into the IFOM to facilitate dynamic analysis for capacity-expansion planning of energy-production facilities within a multistage context to satisfy increasing energy demand. Solutions related fuzzy and probability information are obtained and can be used for generating decision alternatives. The results can not only provide optimal energy resource/service allocation and capacity-expansion plans, but also help decision-makers identify desired policies for GHG mitigation with a cost-effective manner. (author)

  20. Community energy and emissions planning : a guide for BC local governments

    International Nuclear Information System (INIS)

    2008-09-01

    British Columbia (BC) local governments are becoming more interested in completing an energy and greenhouse gas emissions plan for their community as awareness of climate change grows and energy prices escalate. The purpose of this guide was to support local government elected officials and staff in undertaking an energy and emissions planning process. This guide described the purpose and content of a community energy and emissions plan, its benefits, and how to go about creating one. Specifically, the guide provided practical tips, examples from BC communities, and links to more detailed information. Topics that were presented in the guide included engagement; inventories; target-setting; action plan; implementation and monitoring; and funding and resources. It was concluded that the key to long-term success is to maintain good communication with council/board, staff and the public. The document emphasized that it is important to make sure that people know the work being undertaken, and the results achieved, so that momentum is not lost. refs., tabs., figs

  1. BC Hydro best practices : energy efficiency and integrated planning

    International Nuclear Information System (INIS)

    Henriques, D.

    2004-01-01

    The key elements to success in energy efficiency include integrated energy planning, a review of conservation potential, pursuing a target, risk sharing between all parties, and long term planning when making investments in demand side management (DSM). The barriers to cost effective energy efficiency investment were also outlined along with the scope of the conservation potential review which included 95 per cent of electricity end use applications in all market sectors including residential, commercial, institutional and industrial. BC Hydro's Power Smart program focuses on energy efficiency and load displacement to meet 35 per cent of the utility's forecasted growth by 2012. The sources of savings within each of the market sectors were identified. Key recommendations regarding energy efficiency and conservation were also presented with reference to financial incentives offered by BC Hydro to consumers to encourage a switch to more efficient lighting systems. 10 figs

  2. Waste management plan for pipeline construction works: basic guideline for its preparation

    Energy Technology Data Exchange (ETDEWEB)

    Serricchio, Claudio; Caldas, Flaviana V. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Souza, Izabel C.A. de; Araujo, Ronaldo G. de [TELSAN, Rio de Janeiro, RJ (Brazil); Souza, Tania Mara [IMC-SASTE, Sao Paulo,SP (Brazil); Veronez, Fernanda A. [Bourscheid, Porto Alegre, RS (Brazil)

    2009-07-01

    During the stage of implementation of the land pipes enterprise, one of the main environmental aspects to be considered was the creation of solid and liquid waste. To mitigate the possible impacts to the environment, the main adopted mitigate measure was the implementation of a Waste Management Plan - WMP. Thus, the management of waste from pipes construction has the challenge of a great variety of stages and phases for the implementation of pipes and the diversity of local situations related to the topographic and hydro-geologic conditions. Considering the peculiarity of the pipes activities, this article proposes the elaboration of a Basic Guide to be used as reference for the creation of WMP's for similar enterprises, using as foundation the data from the three Gas Pipelines: Cabiunas - Vitoria; Vitoria - Cacimbas and Cacimbas - Catu. After the analysis of the three mentioned enterprises, it was verified that the waste management generated on the building and assembling of the land pipes normally occurs in accord with previous planning, but there's no systematization for the waste to be better recycled and reutilized, thus mitigating their creation. (author)

  3. Achieving Smart Energy Planning Objectives. The Approach of the Transform Project

    Directory of Open Access Journals (Sweden)

    Ilaria Delponte

    2014-05-01

    Full Text Available Cities play a dual role in the field of energy and integrated planning. They function as institutional planning and decision making bodies and interfere as actors, e.g. as project developers or launching customers. In the first case their attempts at integrated plans are often unsuccessful in integrating vision, goals and instruments of all stakeholders so that waste, water, energy cycles, urban planning and budgets proceed with no connection to each other.  TRANSFORM Project “Transformation Agenda for Low Carbon Cities” (FP7 tries to improve the integrated energy policy and decision making process of cities, both at a strategic and operational level, by providing the cities with a framework based on overall planning experiences and on-the-field projects and qualitative and quantitative analysis support models. The project intends also to make a step further in the quality of research, by providing a replicable and tested framework for the production of a strategic Transformation Agenda for the city as a whole, combined with district Implementation Plans.

  4. Quantifying the geopolitical dimension of energy risks: A tool for energy modelling and planning

    International Nuclear Information System (INIS)

    Muñoz, Beatriz; García-Verdugo, Javier; San-Martín, Enrique

    2015-01-01

    Energy risk and security are topical issues in energy analysis and policy. However, the quantitative analysis of energy risk presents significant methodological difficulties, especially when dealing with certain of its more qualitative dimensions. The aim of this paper is to quantitatively estimate the geopolitical risk of energy supply with the help of a multivariate statistical technique, factor analysis. Four partial energy risk factors were computed for 122 countries, which were subsequently aggregated to form the composite GESRI (Geopolitical Energy Supply Risk Index). The results demonstrate that advanced economies present a lower level of geopolitical energy risk, especially countries with energy resources, while less-developed countries register higher levels of risk regardless of their energy production. Although this indicator is computed for countries, it can be aggregated for regions or corridors, and it could also be applied to model and scenario building. The different uses of the GESRI could eventually lead to practical implications in the energy policy field, as well as in the energy planning and energy management areas. - Highlights: • We quantitatively estimate the multidimensional geopolitical risk of energy supply. • Factor analysis was used to reveal energy risk, a variable not directly observable. • Advanced economies with energy resources present the lowest level of energy risk. • Less-developed countries obtain high risk values even when they are energy producers. • The proposed index can be used for energy planning and energy management purposes

  5. Integrated energy, air quality and greenhouse gas management plan

    International Nuclear Information System (INIS)

    2004-03-01

    This report outlines the measures that the Resort Municipality of Whistler has taken to become a sustainable community. In 2000, the Municipality adopted the Natural Step, a tool developed by international scientists to integrate ecological principles into the practices of communities, organizations and individuals. In 2001, the Municipality adopted a comprehensive sustainability plan. This report describes the efforts to manage energy, air quality, and greenhouse gases (GHG). More than 90 per cent of the common air contaminants that contribute to air quality problems in Whistler come from the combustion of fossil fuels. The community can reduce emissions of carbon monoxide, oxides of nitrogen, oxides of sulphur, volatile organic compounds, and particulate matter by managing energy and GHG emissions. This report is divided into several sections dealing with corporate and community energy use. It presents a community profile for Whistler, its energy and emissions inventory from 2000, and an integrated energy plan. An energy and emissions forecast for 2000 to 2020 was also included along with an implementation strategy for a sustainable energy future for Whistler. refs., tabs., figs

  6. Uncovering the multiple objectives behind national energy efficiency planning

    International Nuclear Information System (INIS)

    Haydt, Gustavo; Leal, Vítor; Dias, Luís

    2013-01-01

    This work seeks to identify the fundamental objectives behind the development of energy efficiency (EE) plans for countries. It also presents a method to quantify the degree of achievement of each objective, through the identification and operationalization of attributes. This was achieved by applying Keeney's value-focused thinking approach. For that purpose, three key decision makers in EE planning were interviewed along with a bibliographic review on the subject. From this process six fundamental objectives were identified formalizing the problem as a multi-objective one: (i) to minimize the influence of energy use on climate change; (ii) to minimize the financial risk from the investment; (iii) to maximize the security of energy supply; (iv) to minimize investment costs; (v) to minimize the impacts of building new power plants and transmission infrastructures and (vi) to maximize the local air quality. The respective attributes were: (i) CO 2 emissions savings; (ii) payback; (iii) imported energy savings; (iv) investment cost; (v) electricity savings; and (vi) total suspended particles savings. To show the usefulness of the work, the objectives and attributes identified were used to show the possible outcomes from five hypothetical EE plans for Portugal

  7. Highlights of the new U.S. Energy Policy Plan

    International Nuclear Information System (INIS)

    Rusche, B.C.

    1982-01-01

    This paper gives the highlights of the New U.S. Energy Policy Plan, a reformulation of policies affecting energy, as part of President Reagan's comprehensive Program for Economic Recovery. A survey is given of the different energy sources and their importances now and in the future along with a definition of the government's and the private sector's roles in energy production. (orig.)

  8. Study of information-orientation carry-out plan in energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Kang, T W [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1998-04-01

    Carrying out an information-orientation plan in the energy sector is indispensable if Korea is to survive in this unlimited competition age and global management system. It is also for maximizing the management efficiency of national energy resources as well as increasing the development of related industries and national welfare. The management of the energy resources sector of Korea, which is becoming diversified escaping from the past simple quantitative management of supplier-orientation, requires versatile and ample high-class information management system and high-level decision support system. In order to satisfy these requests, this study investigated and analyzed overall policies of the energy sector for carrying out information-orientation, neighborhood environment, organizational chart, information transfer method, the current condition of information-orientation, problems and improvements, demand of information-orientation of the future, and also reviewed the information-orientation status of advanced countries. Based on these, an information-orientation carryout plan in the energy sector is broken into three stages of `establishment of information transfer system`, `development of database`, and `establishment of decision support system` and presented per detailed work. It advised manpower, equipment and budget implementation plan, and a development schedule plan required for carrying out information-orientation as well as overall environmental build-up, and policy recommendation for the successful implementation of information-orientation. 24 refs., 27 figs., 15 tabs.

  9. Wind energy on the farm: planning and environmental considerations

    International Nuclear Information System (INIS)

    Trinick, Marcus

    1994-01-01

    The current flavour of planning practice in wind energy development in the UK is reviewed, with particular emphasis upon the requirements and strategies relevant to installations on farm property. The planning difficulties associated with noise emission and electromagnetic interference are discussed as individual issues. (author)

  10. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  11. 78 FR 62970 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Science.gov (United States)

    2013-10-23

    ... Standard E. Definition of Basic Model F. Statistical Sampling Plans G. Information To Be Provided in... administrative convenience based on their nature or type. Under EPCA, the energy conservation program consists... Reference of Standards 5. Basic Models 6. Statistical Sampling Plans 7. Information To Be Provided in...

  12. Reliability planning in distributed electric energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, E.

    1978-10-01

    The goal of this paper is to develop tools for technology evaluation that address questions involving the economics of large-scale systems. The kind of cost discussed usually involves some dynamic aspect of the energy system. In particular, such properties as flexibility, stability, and resilience are features of entire systems. Special attention must be paid to the question of reliability, i.e., availability on demand. The storage problem and the planning for reliability in utility systems are the subjects of this paper. The introductory chapter addresses preliminary definitions--reliability planning, uncertainty, resilience, and other sensitivities. The study focuses on the contrast between conventional power generation technologies with controllable output and intermittent resources such as wind and solar electric conversion devices. The system studied is a stylized representation of California conditions. Significant differences were found in reliability planning requirements (and therefore costs) for systems dominated by central station plants as opposed to those dominated by intermittent resource technologies. It is argued that existing hydroelectric facilities need re-optimization. These plants provide the only currently existing bulk power storage in electric energy systems. 38 references. (MCW)

  13. A Chinese-style energy transition: the new five-year plan for energy

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-01-01

    After having recalled the six major problems identified by Chinese leaders as they assessed the past evolution of the energy market (constraints on resources, environmental and ecologic degradations due to intensive consumption, an energy efficiency to be improved, an inadequate energy infrastructure, a weak capacity of the energy industry for technological innovation, and required deeper and quicker reforms of the energy market), the author presents and comments the content of the last five-year plan for energy (some data are provided in appendix). The addressed issues are: energy consumption revised downwards and controlled, definition of ambitious objectives for the transformation of the electric system (for the coal sector, the gas sector, the oil sector, electricity production, production location and international cooperation)

  14. Solar Energy Technologies Program: Multi-Year Technical Plan 2003-2007 and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This publication charts a 5-year planning cycle for the U.S. Department of Energy Solar Energy Technologies Program. The document includes anticipated technical plans for the next 5 years for photovoltaics, concentrating solar power, solar water and space heating, solar hybrid lighting, and other new concepts that can take advantage of the solar resource. Solar energy is described as a clean, abundant, renewable energy resource that can benefit the nation by diversifying our energy supply.

  15. Energy Strategic Planning & Self-Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Greg Retzlaff

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  16. Renewable energy sources in the Colombian energy policy, analysis and perspectives

    International Nuclear Information System (INIS)

    Ruiz, B.J.; Rodriguez-Padilla, V.

    2006-01-01

    In this work; five basic elements for the formulation of a policy on renewable energy sources for Colombia, are discussed. A balance of the institutions of the energy sector related to the formulation, elaboration and execution of plans, programs and projects on renewable energy sources is carried out. The technology costs that take advantage of such sources are compared and the 967 Law issued in 2001 and its regulatory decree are analyzed. This law promotes the efficient and rational use of energy and also promotes the alternative energies

  17. State planning for winter energy emergencies: workshop materials

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Workshops were conducted in 5 cities to improve communications between the states and the Federal government so that both might be better prepared to avoid or mitigate the impacts of energy emergencies during the winter; to provide a forum for the exchange of technical information regarding selected energy demand restraint measures which could be implemented by individual states or regions in an energy emergency; and to promote the concept of pre-crisis contingency planning and strategy development, with particuliar emphasis on the need for interstate coordination of emergency plans. The major topics addressed by the discussion guide involved net energy use impact, implementation procedures and problems, and social and economic effects. The Task Force performed extensive research into the technical considerations and prior experience in implementing each of the demand restraint measures selected for discussion. Results and conclusions are summarized for reduction of thermostat setting for space conditioning and water heating; reduction in hours of operation and lighting in commercial establishments; reduction in hours of operation in school, and industrial fuel substitution. (MCW)

  18. Energy and nuclear power planning study for Thailand

    International Nuclear Information System (INIS)

    1989-08-01

    The present report describes the study conducted in co-operation with several agencies and organizations from Thailand and covers the energy and electricity requirements and the optimal expansion plans for the power generating system for this country up to year 2011. It is emphasized that the study was carried out by a team of experts from the Electricity Generating Authority of Thailand (EGAT), the National Economic and Social Development Board (NESDB), the National Energy Administration (NEA) and the Office of Atomic Energy for Peace (OAEP), who were fully responsible for all phases of the study, including the production of the present report. The IAEA's responsibility was to provide overall co-ordination and general guidance during the conduct of the study, as well as training and assistance in the implementation and use of the IAEA's computerized planning methodologies on the computer facilities of Thailand. Refs, figs and tabs

  19. Planning and operating energy efficient factories; Energieeffiziente Fabriken planen und betreiben

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Egon; Strauch, Joerg [Technische Univ. Chemnitz (Germany). Professur fuer Fabrikplanung und Fabrikbetrieb; Engelmann, Joerg [Volkswagen Sachsen GmbH, Zwickau (Germany). Werktechnik / Umweltplanung; Loeffler, Thomas [Technische Univ. Chemnitz (Germany). Professur fuer Fabrikplanung und Fabrikbetrieb; IREGIA e.V., Chemnitz (Germany)

    2009-07-01

    This book presents systematic approaches to developing energy saving potentials in the planning and operation of factories. The authors describe the drivers of the current energy debate and the state of the art in making factories energy efficient. They explain important principles that must be observed in considering factories as a system and in order to understand questions relating to energy. They have developed methods for finding appropriate energy-efficient solutions in factory planning. Detailed explanations are given on energy-relevant installations which require planning such as drives, compressed air systems or ventilation systems. The book presents methods and instruments for the analysis and evaluation of energy consumption which can be used for assessment purposes during the initial planning as well as for monitoring and influencing energy consumption during normal operation. Selected practical examples, notably from the automotive industry, serve to illustrate the material presented. The book is intended primarily for planning and production engineers in the piece goods industry as well as for students in related fields. [German] Das Buch zeigt auf, wie beim Planen und Betreiben von Fabriken systematisch Potenziale fuer Energieeinsparungen erschlossen werden koennen. Die Autoren beschreiben die Treiber der aktuellen Energiedebatte und den Status Quo der ''Energieeffizienten Fabrik''. Sie erlaeutern wichtige Grundlagen, um die Fabrik als System und energetische Zusammenhaenge zu verstehen. Eine von ihnen entwickelte Methodik hilft, bereits bei der Planung von Fabriken adaequate energieeffiziente Loesungen zu finden. Energierelevante Planungsobjekte wie elektrische Antriebe, Druckluft- oder Lueftungssysteme werden naeher erlaeutert. Fuer die Analyse und Bewertung des Energieverbrauchs werden Methoden und Instrumente vorgestellt, mit denen sowohl die Ausgangsituation bei der Planung beurteilt als auch der Energieverbrauch im

  20. Basic survey report on regional new energy vision for Ehime Prefecture; Ehimeken chiiki shin energy vision kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A new energy vision has been formulated to establish guidelines for popularizing and utilizing new energy which generates but a small amount of environmental impact. The results of surveys conducted in this connection are described in five chapters, which cover (1) the trend of new energy, (2) current situation of new energy in Ehime Prefecture, (3) calculation of the existing amount and available amount of new energy, (4) calculation of the introducible amount of new energy, and (5) the basic policy toward the introduction of new energy. Part (4) covers solar energy, wind energy, waste-derived energy, temperature difference energy, minor scale hydroelectric power generation, biomass energy, and like others. It states that a total of 540,000 kl/year will be available in terms of oil, equivalent to approximately 6% of Ehime Prefecture's 1997 energy consumption, and that it is expected that in fiscal 2010 photovoltaic/passive solar energy utilization, cogeneration, and wind power will yield 152,000, 314,000, and 27,000 kl/year respectively. (NEDO)

  1. Sustainable energy planning by using multi-criteria analysis application in the island of Crete

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Drandaki, Maria; Frantzeskaki, Niki; Iosifidis, Eleftherios; Kiosses, Ioannis

    2009-01-01

    The sustainable energy planning includes a variety of objectives, as the decision-making is directly related to the processes of analysis and management of different types of information (technological, environmental, economic and social). Very often, the traditional evaluation methods, such as the cost-benefit analysis and macro-economic indicators, are not sufficient to integrate all the elements included in an environmentally thorough energy plan. On the contrary the multiple criteria methods provide a tool, which is more appropriate to assemble and to handle a wide range of variables that is evaluated in different ways and thus offer valid decision support. This paper exploits the multi-criteria methodology for the sustainable energy planning on the island of Crete in Greece. A set of energy planning alternatives are determined upon the implementation of installations of renewable energy sources on the island and are assessed against economic, technical, social and environmental criteria identified by the actors involved in the energy planning arena. The study constitutes an exploratory analysis with the potential to assist decision makers responsible for regional energy planning, providing them the possibility of creating classifications of alternative sustainable energy alternatives.

  2. Cautious but Committed: Moving Toward Adaptive Planning and Operation Strategies for Renewable Energy's Wildlife Implications

    Science.gov (United States)

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned—creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  3. Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy's wildlife implications.

    Science.gov (United States)

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned-creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  4. Renewable Energy Zone (REZ) Transmission Planning Process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-08

    A REZ is a geographical area that enables the development of profitable, cost-effective, grid-connected renewable energy (RE). The REZ Transmission Planning Process is a proactive approach to plan, approve, and build transmission infrastructure connecting REZs to the power system which helps to increase the share of solar, wind and other RE resources in the power system while maintaining reliability and economics, and focuses on large-scale wind and solar resources that can be developed in sufficient quantities to warrant transmission system expansion and upgrades.

  5. Transition to low carbon energy policies in China-from the Five-Year Plan perspective

    International Nuclear Information System (INIS)

    Yuan Xueliang; Zuo Jian

    2011-01-01

    Energy policy plays a critical role not only in the energy development, but also in the social and environmental aspects of a nation. Five-Year Plan for National Economic and Social Development is one of the most important government plans, which documents the national strategy during that period. This study presents a critical review of 12 Five-Year Plans that have been released by the Chinese central government in last 58 years. In particular, the recently released Twelfth Five-Year Plan is reviewed. The results clearly show a pattern of increasingly level of attention of Chinese government to energy efficiency improvement, air pollutant emission reduction, new and renewable energy development, carbon dioxide emission and climate change. - Highlights: → Critical review of the energy related contents in the 12 Five-Year Plans. → Energy policy of China is focusing on energy efficiency, new and renewable energy. → China is improving the capability of dealing with CO 2 emission and climate change. → China is on transition to low carbon energy policies for a sustainable development.

  6. Dictionary of applied energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Kut, D

    1982-01-01

    The escalating cost of energy is drawing an ever increasing number of people into the planning and execution of energy conservation measures and programs and confronts them with the specialist terminology of the conservationist. The object of this illustrated dictionary is to list the generality of terms employed in energy conservation practice and to explain, with the aid of appropriate illustrations, the basic definitions and underlying techniques.

  7. Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters

    International Nuclear Information System (INIS)

    Mavrotas, George; Florios, Kostas; Vlachou, Dimitra

    2010-01-01

    For more than 40 years, Mathematical Programming is the traditional tool for energy planning at the national or regional level aiming at cost minimization subject to specific technological, political and demand satisfaction constraints. The liberalization of the energy market along with the ongoing technical progress increased the level of competition and forced energy consumers, even at the unit level, to make their choices among a large number of alternative or complementary energy technologies, fuels and/or suppliers. In the present work we develop a modelling framework for energy planning in units of the tertiary sector giving special emphasis to model reduction and to the uncertainty of the economic parameters. In the given case study, the energy rehabilitation of a hospital in Athens is examined and the installation of a cogeneration, absorption and compression unit is examined for the supply of the electricity, heating and cooling load. The basic innovation of the given energy model lies in the uncertainty modelling through the combined use of Mathematical Programming (namely, Mixed Integer Linear Programming, MILP) and Monte Carlo simulation that permits the risk management for the most volatile parameters of the objective function such as the fuel costs and the interest rate. The results come in the form of probability distributions that provide fruitful information to the decision maker. The effect of model reduction through appropriate data compression of the load data is also addressed.

  8. Renewable energy and integrated resource planning

    International Nuclear Information System (INIS)

    Porter, K.L.

    1992-01-01

    Integrated resource planning, or IRP, is a new means of comparing resource choices for electric and gas utilities. Since its inception in 1986, at least 15 states have implemented IRP, and more are considering adopting IRP or have limited IRP processes in place. Some of the characteristics of IRP, such as increased public participation and an expanded analysis of the costs and benefits of energy resources, can contribute to addressing some of the technical and market barriers that hinder the increased deployment of renewable energy technologies. This paper looks at the status of some of these issues

  9. The method of planning the energy consumption for electricity market

    Science.gov (United States)

    Russkov, O. V.; Saradgishvili, S. E.

    2017-10-01

    The limitations of existing forecast models are defined. The offered method is based on game theory, probabilities theory and forecasting the energy prices relations. New method is the basis for planning the uneven energy consumption of industrial enterprise. Ecological side of the offered method is disclosed. The program module performed the algorithm of the method is described. Positive method tests at the industrial enterprise are shown. The offered method allows optimizing the difference between planned and factual consumption of energy every hour of a day. The conclusion about applicability of the method for addressing economic and ecological challenges is made.

  10. Basic program of atomic energy development and utilization for fiscal 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Nuclear power generation is capable of supplying large quantity of energy as the core of petroleum substitutes. Besides its costs are low, it can contribute in number of ways, such as the suppression of price rise and the stabilization of international balance of payments. Its development and utilization are the important aspects of the energy policy of Japan. In the promotion of atomic energy development, securing its safety is the foremost prerequisite. Meanwhile, the nuclear fuel cycle must be established as early as possible, concerning such as the securing of uranium resources, the domestic production of enriched uranium and the establishment of domestic fuel reprocessing. The basic program in fiscal 1981 is described as follows: the strengthening of the safety measures, the promotion of nuclear power generation, the establishment of the nuclear fuel cycle, the research on nuclear fusion, and so on. (J.P.N.)

  11. Energy emergency planning guide: Winter 1977-78

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-01

    This Energy Emergency Planning Guide for Winter, 1977-78 has been prepared in order to: identify and evaluate actions available to deal with energy emergencies this winter; provide an advance indication to the public of those actions considered most likely to be taken by the government, and provide industry, state, and local governments with suggestions about actions which they can take to deal with energy emergencies. The Guide contains specifications for over 50 standby programs and procedures, recommended implementation guidelines for using these programs keyed to a pre-emergency phase and three phases of shortfalls, and a design for an Energy Emergency Center. Flexible implementation guidelines are proposed for natural gas, petroleum, electricity/coal, and propane shortages. (MCW)

  12. Basic principles of thermo-acoustic energy and temporal profile detection of microwave pulses

    CERN Document Server

    Andreev, V G; Vdovin, V A

    2001-01-01

    Basic principles of a thermo-acoustic method developed for the detection of powerful microwave pulses of nanosecond duration are discussed.A proposed method is based on the registration of acoustic pulse profile originated from the thermal expansion of the volume where microwave energy was absorbed.The amplitude of excited acoustic transient is proportional to absorbed microwave energy and its temporal profile resembles one of a microwave pulse when certain conditions are satisfied.The optimal regimes of microwave pulse energy detection and sensitivity of acoustic transient registration with piezo-transducer are discussed.It was demonstrated that profile of a microwave pulse could be detected with temporal resolution of 1 - 3 nanosecond.

  13. Treatment planning for laser-accelerated very-high energy electrons

    International Nuclear Information System (INIS)

    Fuchs, T; Szymanowski, H; Oelfke, U; Glinec, Y; Rechatin, C; Faure, J; Malka, V

    2009-01-01

    In recent experiments, quasi-monoenergetic and well-collimated very-high energy electron (VHEE) beams were obtained by laser-plasma accelerators. We investigate their potential use for radiation therapy. Monte Carlo simulations are used to study the influence of the experimental characteristics such as beam energy, energy spread and initial angular distribution on the dose distributions. It is found that magnetic focusing of the electron beam improves the lateral penumbra. The dosimetric properties of the laser-accelerated VHEE beams are implemented in our inverse treatment planning system for intensity-modulated treatments. The influence of the beam characteristics on the quality of a prostate treatment plan is evaluated. In comparison to a clinically approved 6 MV IMRT photon plan, a better target coverage is achieved. The quality of the sparing of organs at risk is found to be dependent on the depth. The bladder and rectum are better protected due to the sharp lateral penumbra at low depths, whereas the femoral heads receive a larger dose because of the large scattering amplitude at larger depths.

  14. Strategic Energy Management Plan For Fort Buchanan, Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Steven A.; Hunt, W. D.

    2001-10-31

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Strategic Energy Management Plan for the Site. A strategy has been developed with three major elements in mind: 1) development of a strong foundation from which to build, 2) understanding technologies that are available, and 3) exploring financing options to fund the implementation of improvements. The objective of this report is to outline a strategy that can be used by Fort Buchanan to further establish an effective energy management program. Once a strategy is accepted, the next step is to take action. Some of the strategies defined in this Plan may be implemented directly. Other strategies may require the development of a more sophisticated tactical, or operational, plan to detail a roadmap that will lead to successful realization of the goal. Similarly, some strategies are not single events. Rather, some strategies will require continuous efforts to maintain diligence or to change the culture of the Base occupants and their efforts to conserve energy resources.

  15. Considering wind energy in regional planning guidelines and communal land-use planning; Die Beruecksichtigung der Windenergie in der Richt- und Nutzungsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Soguel, R. [Atelier North and Robyr, Neuchatel (Switzerland); Henz, H.R. [Metron Raumplanung AG, Brugg (Switzerland)

    2001-07-01

    This report made for the Swiss Federal Office of Energy (SFOE) discusses the situation in Switzerland regarding the planning guidelines required at regional and communal level that are required for the granting of permission to build wind energy installations. Various types of wind turbines and wind farms are described and topics such as planning tools, landscape protection and promotional concepts are discussed. The role of the Swiss Cantons in the promotion of wind energy is examined and the question of how to integrate wind energy plant into cantonal and communal planning guidelines is looked at. This working guide introduces two schemes that demonstrate how the planning process for the construction of wind farms can be co-ordinated with the development of land-use plans. Examples of current cantonal guidelines are presented in the appendix to the report.

  16. A Comparative Review of a Dozen National Energy Plans. Focus on Renewable and Efficient Energy

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); James, Ted L. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-03-01

    Dozens of groups have submitted energy, environmental, and economic recovery plans for consideration by the Obama administration and the 111th Congress. This report provides a comparative analysis of 12 national proposals, focusing especially on energy efficiency (EE) and renewable energy (RE) market and policy issues.

  17. Planning and the Energy-Water Nexus

    Science.gov (United States)

    Tidwell, V. C.; Bailey, M.; Zemlick, K.; Moreland, B.

    2015-12-01

    While thermoelectric power generation accounts for only 3-5% of the nation's consumptive use of freshwater, its future potential to exert pressure on limited water supplies is of concern given projected growth in electric power generation. The corresponding thermoelectric water footprint could look significantly different depending on decisions concerning the mix of fuel type, cooling type, location, and capacity, which are influenced by such factors as fuel costs, technology evolution, demand growth, policies, and climate change. The complex interplay among these disparate factors makes it difficult to identify where water could limit siting choices for thermoelectric generation or alternatively, thermoelectric development could limit growth in other water use sectors. These arguments point to the need for joint coordination, analysis and planning between energy and water managers. Here we report on results from a variety of planning exercises spanning scales from the national, interconnection, to the utility. Results will highlight: lessons learned from the integrated planning exercises; the broad range in potential thermoelectric water use futures; regional differences in the thermoelectric-water nexus; and, opportunities for non-traditional waters to ease competition over limited freshwater supplies and to harden thermoelectric generation against drought vulnerability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Golden Eagle Monitoring Plan for the Desert Renewable Energy Conservation Plan

    Science.gov (United States)

    Wiens, David; Kolar, Patrick; Katzner, Todd

    2018-01-01

    This report describes options for monitoring the status and population trends of the golden eagle (Aquila chrysaetos) within the Desert Renewable Energy Conservation Plan (DRECP) area of Southern California in maintaining stable or increasing population in the planning area. The report profiles the ecology of golden eagles in the region and provides a range of potential sampling options to address monitoring needs and objectives. This approach also focused on links between changes in human land-use, golden eagle nesting and foraging habitat conditions, and population dynamics. The report outlines how monitoring data from demographic, prey, and habitat studies were used to develop a predictive demographic model for golden eagles in the DRECP area. Results from the model simulations suggest increases in renewable energy development could have negative consequences for population trajectories. Results also suggest site-specific conservation actions could reduce the magnitude of negative impacts to the local population of eagles. A monitoring framework is proposed including: (1) annual assessments of site-occupancy and reproduction by territorial pairs of golden eagles (including rates at which sites become colonized or vacated over time); (2) estimates of survival, movements, and intensity of use of landscapes by breeding and non-breeding golden eagles; (3) periodic (conducted every two to four years) assessments of nesting and foraging habitats, prey populations, and associations with land-use and management activities; and (4) updating the predictive demographic model with new information obtained on eagles and associated population stressors. The results of this research were published in the Journal of Rapture Research, Wiens, David,Inman, Rich D., Esque, Todd C., Longshore, Kathleen M. and Nussear, Kenneth (2017). Spatial Demographic Models to Inform Conservation Planning of Golden Eagles in Renewable Energy Landscapes. 51(3):234-257.

  19. National Energy Audit Tool for Multifamily Buildings Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; MacDonald, Michael [Sentech, Inc.; Accawi, Gina K [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2012-03-01

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program (WAP) enables low-income families to reduce their energy costs by providing funds to make their homes more energy efficient. In addition, the program funds Weatherization Training and Technical Assistance (T and TA) activities to support a range of program operations. These activities include measuring and documenting performance, monitoring programs, promoting advanced techniques and collaborations to further improve program effectiveness, and training, including developing tools and information resources. The T and TA plan outlines the tasks, activities, and milestones to support the weatherization network with the program implementation ramp up efforts. Weatherization of multifamily buildings has been recognized as an effective way to ramp up weatherization efforts. To support this effort, the 2009 National Weatherization T and TA plan includes the task of expanding the functionality of the Weatherization Assistant, a DOE-sponsored family of energy audit computer programs, to perform audits for large and small multifamily buildings This report describes the planning effort for a new multifamily energy audit tool for DOE's WAP. The functionality of the Weatherization Assistant is being expanded to also perform energy audits of small multifamily and large multifamily buildings. The process covers an assessment of needs that includes input from national experts during two national Web conferences. The assessment of needs is then translated into capability and performance descriptions for the proposed new multifamily energy audit, with some description of what might or should be provided in the new tool. The assessment of needs is combined with our best judgment to lay out a strategy for development of the multifamily tool that proceeds in stages, with features of an initial tool (version 1) and a more capable version 2 handled with currently available resources. Additional

  20. Swiss energy research program on energy economics basics for 2008-2011; Energieforschungsprogramm. Energiewirtschaftliche Grundlagen (EWG) fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, N. A.

    2009-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) introduces the energy research programme on energy economics basics for the years 2008 - 2011. The programme is very interdisciplinary and uses many theoretical and empirical methods from the areas of micro and macro-economy, political science and socio-psychology. The budget available for research in this area is discussed and the various institutions involved are noted. Both public and private funding is discussed. The main areas of research being targeted for the period 2008 - 2011 in the areas of energy policy and applied research are discussed. These include improvements in the methods used for energy perspectives and innovation as well as social and individual factors influencing the use of energy.

  1. Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery

    Directory of Open Access Journals (Sweden)

    Efthymios Rodias

    2017-10-01

    Full Text Available Various types of sensors technologies, such as machine vision and global positioning system (GPS have been implemented in navigation of agricultural vehicles. Automated navigation systems have proved the potential for the execution of optimised route plans for field area coverage. This paper presents an assessment of the reduction of the energy requirements derived from the implementation of optimised field area coverage planning. The assessment regards the analysis of the energy requirements and the comparison between the non-optimised and optimised plans for field area coverage in the whole sequence of operations required in two different cropping systems: Miscanthus and Switchgrass production. An algorithmic approach for the simulation of the executed field operations by following both non-optimised and optimised field-work patterns was developed. As a result, the corresponding time requirements were estimated as the basis of the subsequent energy cost analysis. Based on the results, the optimised routes reduce the fuel energy consumption up to 8%, the embodied energy consumption up to 7%, and the total energy consumption from 3% up to 8%.

  2. Business plan basics for the nurse.

    Science.gov (United States)

    Crawford, Pam

    2013-01-01

    In conclusion, no nurse should shy away from understanding the finances of the health care world. We must all embrace the need to understand the costs of care. As we gain this basic understanding, we can excel in demonstrating ideas to improve health care in the most efficient manner, a winning combination in today's financially focused world!

  3. A methodology for the electrical energy system planning of Tamil Nadu state (India)

    International Nuclear Information System (INIS)

    Daniel, J.; Dicorato, M.; Forte, G.; Iniyan, S.; Trovato, M.

    2009-01-01

    In this paper, an energy planning optimisation procedure of a selected territory is illustrated and applied using an energy flow optimisation model. The developed approach takes into account various electricity generating options to meet the energy needs of various demand sectors. Energy saving techniques and hybrid technologies are considered and various scenarios are developed by assessing the contribution of renewable energy technologies over the planning period. The procedure aims to reduce the total actualised cost of energy generation over selected time horizon and predicts the additional installations required along with the existing facilities to meet the energy demand. At the same time the role of renewable energy technologies and of energy saving measures is evaluated by imposing suitable constraints on CO 2 emissions and primary energy sources exploitation. The procedure is applied to the territory of Tamil Nadu state (India) by considering different energy planning scenarios

  4. Building capacity for energy and electricity planning for sustainable development

    International Nuclear Information System (INIS)

    2008-09-01

    The IAEA, through its Planning and Economic Studies Section (PESS), assists Member States to build their capacities to perform analyses for developing alternative strategies for sustainable energy development, evaluate the energy-economic-environmental implications and assess the potential contribution of nuclear energy in securing affordable and clean supplies of energy

  5. Identification of optimal strategies for energy management systems planning under multiple uncertainties

    International Nuclear Information System (INIS)

    Cai, Y.P.; Huang, G.H.; Yang, Z.F.; Tan, Q.

    2009-01-01

    Management of energy resources is crucial for many regions throughout the world. Many economic, environmental and political factors are having significant effects on energy management practices, leading to a variety of uncertainties in relevant decision making. The objective of this research is to identify optimal strategies in the planning of energy management systems under multiple uncertainties through the development of a fuzzy-random interval programming (FRIP) model. The method is based on an integration of the existing interval linear programming (ILP), superiority-inferiority-based fuzzy-stochastic programming (SI-FSP) and mixed integer linear programming (MILP). Such a FRIP model allows multiple uncertainties presented as interval values, possibilistic and probabilistic distributions, as well as their combinations within a general optimization framework. It can also be used for facilitating capacity-expansion planning of energy-production facilities within a multi-period and multi-option context. Complexities in energy management systems can be systematically reflected, thus applicability of the modeling process can be highly enhanced. The developed method has then been applied to a case of long-term energy management planning for a region with three cities. Useful solutions for the planning of energy management systems were generated. Interval solutions associated with different risk levels of constraint violation were obtained. They could be used for generating decision alternatives and thus help decision makers identify desired policies under various economic and system-reliability constraints. The solutions can also provide desired energy resource/service allocation and capacity-expansion plans with a minimized system cost, a maximized system reliability and a maximized energy security. Tradeoffs between system costs and constraint-violation risks could be successfully tackled, i.e., higher costs will increase system stability, while a desire for lower

  6. Technological progress and the Basic Law: Peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    Degenhart, C.

    1983-01-01

    The author explains that whereas the arguments put forward against the use of nuclear energy are largely based on our Basic Law, the opposite view, namely reasons speaking in favour of the peaceful use of nuclear energy, so far have not been given a comparably good footing of legitimation on constitutional grounds. He than proceeds in asking whether and how it is possible to find good reasons in our constitution to faster the peaceful use of nuclear energy, what effect this might have, and whether this is desirable for practical licensing work in accordance with the Atomic Energy Act. This question is important as problems of a general nature are currently discussed and decided within the framework of licensing procedures involving individual nuclear installations. As examples the author discusses the problem of determining the seriousness and type of risks on the basis of the constitution, or a general licence for certain types of industrial plants, the fundamental problem of waste management, but also questions of procedure or competence. (orig./HP) [de

  7. Evaluation of the basic concepts of approaches for the coexistence of nuclear energy and people/local community

    International Nuclear Information System (INIS)

    Kondo, Shunsuke; Kuroki, Shinichi; Nakagiri, Yuko

    2007-01-01

    In November 2007, the Policy Evaluation Committee compiled the report, which evaluated the basic concepts of approaches to the coexistence of nuclear energy and people/local community, specified in the Framework for Nuclear Energy Policy. The report states that the 'concerned administrative bodies are carrying out measures related to the coexistence of nuclear energy and people/local communities in line with these basic concept' and summarizes fifteen proposals conductive to the betterment and improvement of these measures, which were classified as 1) secure transparency and promotion of mutual understanding with the public, 2) development and enrichment of learning opportunities and public participation, 3) relationship between the government and local governments and 4) coexistence with local residents. The Japan Atomic Energy Commission (JAEC) considers this report to be reasonable. This article presented an overview of this activity. (T. Tanaka)

  8. Multi-annual energy plan of Martinique 2015/2018 - 2019/2023

    International Nuclear Information System (INIS)

    2015-11-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Martinique island (French West Indies). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 4-years period (2015-2018) followed by a second 5-years period (2019-2023)

  9. Multi-annual energy plan for Corsica 2016-2018/2019-2023

    International Nuclear Information System (INIS)

    2015-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Corsica Island (Mediterranean Sea). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  10. Multi-annual energy plan for Mayotte 2016-2018 / 2019- 2023

    International Nuclear Information System (INIS)

    2016-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Mayotte Island (Indian Ocean). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  11. A study on research and development planning of the nuclear energy

    International Nuclear Information System (INIS)

    Won, Byung Chul; Kim, Y. J.; Hong, J. J.

    2002-01-01

    In this research planning, planning object is taken as 4 projects in nuclear safety field, 2 projects in reactor and nuclear fuel field, 2 projects in basic and fundamental field among 'Mid and Long-term Nuclear R and D Program'. These projects were all carried out by KAERI and their intermediate R and D phase is closed in 2001. Major planning contents in each project contains 1) R and D's necessity and aim, 2) Technological level and depth, 3) R and D's plan, 4) R and D's results application. The planning results are summarized as follows: - Development of risk management technology - Development of optimal severe accident management strategy and engineering safety features - Development of verification and assessment technology for thermal hydraulic safety - Technology development for enhancing component and structure integrity - Proliferation-resistant fuel technology development - Liquid metal reactor design technology development - Nuclear material technology development: characterization and improvement of nuclear materials - Development of a large proton accelerator for innovative researches

  12. Smooth and Energy Saving Gait Planning for Humanoid Robot Using Geodesics

    Directory of Open Access Journals (Sweden)

    Liandong Zhang

    2012-01-01

    Full Text Available A novel gait planning method using geodesics for humanoid robot is given in this paper. Both the linear inverted pendulum model and the exact Single Support Phase (SSP are studied in our energy optimal gait planning based on geodesics. The kinetic energy of a 2-dimension linear inverted pendulum is obtained at first. We regard the kinetic energy as the Riemannian metric and the geodesic on this metric is studied and this is the shortest line between two points on the Riemannian surface. This geodesic is the optimal kinetic energy gait for the COG because the kinetic energy along geodesic is invariant according to the geometric property of geodesics and the walking is smooth and energy saving. Then the walking in Single Support Phase is studied and the energy optimal gait for the swing leg is obtained using our geodesics method. Finally, experiments using state-of-the-art method and using our geodesics optimization method are carried out respectively and the corresponding currents of the joint motors are recorded. With the currents comparing results, the feasibility of this new gait planning method is verified.

  13. Energy models for generation planning and midterm operation of hydrothermal power systems

    Energy Technology Data Exchange (ETDEWEB)

    Amthauer, E

    1981-01-01

    The aims of generation planning and midterm operation of a power system are reliable and economical load coverage at any moment. For solving some of the planning tasks, it is advantageous to use energy models, if a large amount of power is installed in hydro-storage plants. Energy models apply the probability of load coverage in a given period as a quantitative measure for a power system's reliability provided the availability of the transmission network is given. Reliability may be influenced by installing new plants (longterm) or by committing the existing plants in a particular fashion. An evaluation of these activities makes it possible to determine decisions which optimize a given object function. In this thesis, energy models for the Swiss hydrothermal power system are derived and tested by simulation. For this utility, energy supply during the emptying period of the storage plants in winter is of special interest. Therefore, the criteria for generation planning are derived by analysing the distribution functions of future energy balances in winter periods. The committment of the existing plants and energy exchange with other utilities in a straight following winter period are planned by means of a sequential decision process. It is shown how strategies for these planning tasks are found with the models. Those model parameters, having the highest influence on reliable and economical load coverage are extracted by means of sensitivity analysis.

  14. Energy-water analysis of the 10-year WECC transmission planning study cases.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

    2011-11-01

    In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports

  15. Resources and Energy Management: the case of the Agropoli Urban Plan

    OpenAIRE

    Francesco Domenico Moccia

    2013-01-01

    The theme of the resources management, of the energy-environment retrofitting framed in strategies to mitigate and adapt to climate change, aimed at energy saving, energy generating from alternative sources, metabolism and natural resources is one of the central topics the City Urban Planning of the City of Agropoli, currently approved by Resolution of the City Council no. 110 of 18.04.2013.The plan is part of the wider system of actions taken by the Municipality to achieve the objectives on ...

  16. Integrated Electricity Planning Comprise Renewable Energy and Feed-In Tariff

    OpenAIRE

    Ho Wai Shin; Haslenda Hashim

    2012-01-01

    Problem statement: Mitigation of global warming and energy crisis has called upon the need of an efficient tool for electricity planning. This study thus presents an electricity planning tool that incorporates RE with Feed in-Tariff (FiT) for various sources of Renewable Energy (RE) to minimize grid-connected electricity generation cost as well as to satisfy nominal electricity demand and CO2 emission reduction target. Approach: In order to perform these tasks, a general Mixed Integer Linear ...

  17. Mountainous areas and decentralized energy planning: Insights from Greece

    International Nuclear Information System (INIS)

    Katsoulakos, Nikolas M.; Kaliampakos, Dimitris C.

    2016-01-01

    Mountainous areas have particular characteristics, whose influence on energy planning is explored in this paper, through a suitably tailored methodology applied to the case of Greece. The core element of the methodology is a linear optimization model with a “total cost” objective function, which includes financial, as well as external costs and benefits. Altitude proves to have decisive influence on energy optimization results, because it affects energy demand. The improvement of local energy systems provides greater socioeconomic benefits in mountainous settlements, due to the high shares of renewables and energy efficiency interventions in the optimal solutions. Energy poverty can be alleviated by redesigning local energy systems and the structure of the energy market. However, spatial and aesthetic restrictions, presented often in mountainous settlements, may affect the operational costs of energy systems, which is a crucial parameter for confronting energy poverty. Furthermore, the study indicates that it could be better to electrify remote areas, far from electricity grids, by decentralized systems than by grid expansion. The results of this study and the assumptions made about the way in which energy market should function, could be utilized for reconsidering energy policy measures, aiming at supporting sensitive societies to improve their development perspectives. - Highlights: •The influence of mountains' characteristics on energy planning was analyzed. •Optimal energy solutions present differentiations with respect to altitude. •Greater socioeconomic benefits by energy optimization in mountainous areas. •Remoteness favors the development of decentralized energy systems. •The study is based on data from Greece.

  18. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  19. Nuclear energy for the green development of Korea

    International Nuclear Information System (INIS)

    Jung, Young-Eek; Kim, Il-Dong; Lee, Sang-Don; Jeong, Young-Gi

    2009-01-01

    The Korean government announced the 'Basic Plan for National Energy towards 2030' last year. The goal of the plan is to achieve energy security, energy efficiency and environmental protection. To achieve green development Korean government plans to increase the portion of nuclear and renewable energy and reduce that of coal and oil energy. According to the plan, Korea will build another 9 units until 2030 and nuclear energy will represent 59% of electricity demands by 2030 which is about 20% higher than last year. Even though environment surrounding the nuclear industry is changing favorably and the government has a plan to increase nuclear energy for green development and optimal energy mix, we have to meet some challenges in the area of safety, waste disposal, public acceptance, and technology development. In this paper, we introduced the history, current status and future prospect of the nuclear industry in Korea, discussed new roles of nuclear energy, and made suggestions how to meet challenges and brace up for the global nuclear renaissance. (author)

  20. On the use of an energy certification database to create indicators for energy planning purposes: Application in northern Italy

    International Nuclear Information System (INIS)

    Dall’O’, Giuliano; Sarto, Luca; Sanna, Nicola; Tonetti, Valeria; Ventura, Martina

    2015-01-01

    Energy certification of buildings, mandatory under the European Directive EPBD provides interesting data on the thermo-physical properties and geometry of existing buildings. Although the energy certificate is intended to provide the characteristics of individual buildings, so stimulating the real estate market toward ever better energy performance, data management of the certificates issued over time, using a national or regional energy cadastre, makes available a data base which is useful for energy planning in the building sector. This paper provides the needed results of a benchmarking study on data from the energy cadastre of the Lombardy Region, northern Italy. By integrating data from the energy cadastre (175.778 energy certificates) with the statistical data obtained from the national census, indicators were obtained on the energy performance of existing buildings. The energy indicators obtained, characterised by building type and construction period, normalised as a function of Degree-Days, become an effective tool for energy planning at local and regional scales. In the specific case, the energy indicators have been used to estimate the potential for energy retrofit of existing buildings in the Lombardy Region. The same indicators can also be used by municipalities for energy planning at the municipal or district level. -- Highlights: •A methodology in order to obtain energy performance indicators from an energy cadastre. •Data contained in the energy certificates can be used to understand the thermo-physical properties of an existing building. •Energy indicators on existing buildings are used as a tool for energy planning. •The analysis of the energy cadastre (official register) can detect errors in the registered energy certificates. •The energy indicators are used in order to quantify the energy retrofit potential in existing building stocks

  1. Strategic energy planning: Modelling and simulating energy market behaviours using system thinking and systems dynamics principles

    International Nuclear Information System (INIS)

    Papageorgiou, George Nathaniel

    2005-01-01

    In the face of limited energy reserves and the global warming phenomenon, Europe is undergoing a transition from rapidly depleting fossil fuels to renewable unconventional energy sources. During this transition period, energy shortfalls will occur and energy prices will be increasing in an oscillating manner. As a result of the turbulence and dynamicity that will accompany the transition period, energy analysts need new appropriate methods, techniques and tools in order to develop forecasts for the behaviour of energy markets, which would assist in the long term strategic energy planning and policy analysis. This paper reviews energy market behaviour as related to policy formation, and from a dynamic point of view through the use of ''systems thinking'' and ''system dynamics'' principles, provides a framework for modelling the energy production and consumption process in relation to their environment. Thereby, effective energy planning can be developed via computerised simulation using policy experimentation. In a demonstration model depicted in this paper, it is shown that disasters due to attractive policies can be avoided by using simple computer simulation. (Author)

  2. Energy management: a program of energy conservation for the community college facility. [Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Various Authors

    1978-01-01

    This handbook developes helps for assessing and improving the energy efficiency of the community-college facility. The TEEM approach (Total Educational Energy Management) is a labor-intensive approach which requires the commitment and participation of all segments of the college community. The TEEM program presented here defines a series of tasks selected, ordered, and implemented in such a way as to achieve two basic objectives: (1) reducing campus energy requirements, and (2) meeting those reduced energy requirements more efficiently without adversely affecting the quality of educational programs. This guide to large-scale energy conservation on college campuses includes step-by-step procedures for establishing a program task force, defining specific tasks, and assigning responsibilities. Action plans are developed, energy consumption monitored, goals set, and conservation measures implemented. A series of appendices provides more detailed information, charts, and worksheets related to all aspects of energy use. The TEEM program provides the basic structure for achieving a significant reduction in campus energy costs.

  3. GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues

    Directory of Open Access Journals (Sweden)

    Bernd Resch

    2014-05-01

    Full Text Available In the face of the broad political call for an “energy turnaround”, we are currently witnessing three essential trends with regard to energy infrastructure planning, energy generation and storage: from planned production towards fluctuating production on the basis of renewable energy sources, from centralized generation towards decentralized generation and from expensive energy carriers towards cost-free energy carriers. These changes necessitate considerable modifications of the energy infrastructure. Even though most of these modifications are inherently motivated by geospatial questions and challenges, the integration of energy system models and Geographic Information Systems (GIS is still in its infancy. This paper analyzes the shortcomings of previous approaches in using GIS in renewable energy-related projects, extracts distinct challenges from these previous efforts and, finally, defines a set of core future research avenues for GIS-based energy infrastructure planning with a focus on the use of renewable energy. These future research avenues comprise the availability base data and their “geospatial awareness”, the development of a generic and unified data model, the usage of volunteered geographic information (VGI and crowdsourced data in analysis processes, the integration of 3D building models and 3D data analysis, the incorporation of network topologies into GIS, the harmonization of the heterogeneous views on aggregation issues in the fields of energy and GIS, fine-grained energy demand estimation from freely-available data sources, decentralized storage facility planning, the investigation of GIS-based public participation mechanisms, the transition from purely structural to operational planning, data privacy aspects and, finally, the development of a new dynamic power market design.

  4. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  5. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  6. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia

    Science.gov (United States)

    Abdullah, Lazim; Najib, Liana

    2016-04-01

    Energy consumption for developing countries is sharply increasing due to the higher economic growth due to industrialisation along with population growth and urbanisation. The increasing demand of energy leads to global energy crisis. Selecting the best energy technology and conservation requires both quantitative and qualitative evaluation criteria. The fuzzy set-based approach is one of the well-known theories to handle fuzziness, uncertainty in decision-making and vagueness of information. This paper proposes a new method of intuitionistic fuzzy analytic hierarchy process (IF-AHP) to deal with the uncertainty in decision-making. The new IF-AHP is applied to establish a preference in the sustainable energy planning decision-making problem. Three decision-makers attached with Malaysian government agencies were interviewed to provide linguistic judgement prior to analysing with the new IF-AHP. Nuclear energy has been decided as the best alternative in energy planning which provides the highest weight among all the seven alternatives.

  7. Energy R and D. Conservation planning and management should be strengthened

    International Nuclear Information System (INIS)

    Hale, Richard A.; Fishkin, Christine M.B.; MacLeod, Molly W.; Davis, Alphonse R.; Crawford, John T.; Dowd, Leonard L.; Sisson, John W.; Sugimura, Richard H.

    1990-07-01

    Increased energy efficiency can lessen our dependence on imported oil, reduce environmental problems associated with the use of fossil fuels, and enhance the competitive position of U.S. companies internationally. Following a decade in which conservation R and D program funding declined by more than 50 percent, the Secretary of Energy has said that energy conservation will be given increased priority in DOE. Increased priority for DOE's energy efficiency R and D program would support interim DOE National Energy Strategy (NES) report findings. DOE's interim NES report said that broad public support exists for increasing energy efficiency and protecting the environment from the effects of energy production and use. In the 1970s and 1980s, the DOE conservation R and D program produced some commercially successful technologies, such as fluorescent lighting advances and low emissivity window coatings, that are providing energy savings and are expected to provide substantial savings in the future. In the early 1980s energy conservation R and D funding and staff were reduced substantially, reflecting the administration's view that conservation research should be conducted primarily by the private sector. Since the large cutback, funding has been relatively stable, it was $346 million in 1980, $152 million in 1982, and $149 million in 1990. The 1991 budget request reflects a 9-percent program reduction compared with the prior year's appropriations. Since 1983, DOE's Office of Conservation has used a long-term planning process to produce an energy conservation multi-year R and D plan. However, the plan and the planning process could be strengthened to more fully meet the needs of policy makers. For example, the plan's usefulness and credibility would be improved if it provided detailed information on individual projects. Also, the planning process does not include systematic project reviews at DOE headquarters or use a uniform project prioritization methodology to rank

  8. Multi-annual energy plan. Part relating to the Ponant islands. The Energy transition for green growth

    International Nuclear Information System (INIS)

    2016-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for the inhabited and non-interconnected Ponant Islands (Ouessant, Molene, Sein). It establishes the priority actions for all energy sources with respect to demand control, supply diversification, supply security, supply and demand management, renewal of production means. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  9. Value of spatial planning for large mining and energy complexes. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Matko, Z; Spasic, N

    1982-01-01

    In the example of the Kosovo complex (Socialist Federated Republic of Yugoslovia) an examination is made of the value of developing a spatial plan for the territory of large mining-energy complexes. The goals and expected results of spatial planning are discussed. The open method of working lignite, fuel shale and other fossil energy raw material fields at the modern level of development of technology, in addition to large-volume physical interferences in space, causes considerable structural changes of functional-economic, socioeconomic and psychological-sociological nature in the direct zone of influence of the mining-energy complex. Improvement in technology of working a lignite field does not guarantee in the near future any solutions in developing the mining-energy complexes, and therefore it is necessary to count on considerable volume of degradation of space which is governed by the existing technology. Under these conditions detailed planning and regulation of space is especially important, if one views them as a component part of long term policy for development of the mining energy complex and the zones of its influence.

  10. Survey on hydraulic power resources. Survey plan (draft) (For clean energy of the future generations); Chikyu kibo suiryoku shigen chosa chosa keikakusho (an). Mirai no sedai ni clean energy wo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    Promotion of development of hydraulic power and others as fossil fuel alternative energy sources is one of the most important measures for solving the global environmental problems. This draft plan proposes, first of all, to conduct surveys on hydraulic power resources on a global scale, to collect the basic data for development of the energy sources. It is estimated that developed hydraulic power resources account for approximately 14% of the total developable resources, the remainder being left untouched. By region, these percentages rise to approximately 55 and 45% in North America and Europe, respectively. These percentages in Asia, Africa, Latin America and FSU are significantly lower, and their undeveloped resources are estimated to total approximately 6 times as large as those already developed worldwide. It is expected that the hydraulic power resources are surveyed on a 10-year plan (1991 to 2000) with a total budget of 30 billion yen, to collect the data and establish the databases in cooperation with international organizations, e.g., UN organizations, regional organizations (e.g., ASEAN organizations) and newly founded organizations. (NEDO)

  11. An Integrated Decentralized Energy Planning Model considering Demand-Side Management and Environmental Measures

    Directory of Open Access Journals (Sweden)

    Seyed Mahmood Kazemi

    2013-01-01

    Full Text Available Decentralized energy planning (DEP is looked upon as an indisputable opportunity for energy planning of villages, isolated islands, and far spots. Nonetheless, at this decentralized planning level, the value of demand-side resources is not fairly examined, despite enjoying great advantages. Therefore, the core task of this study is to integrate demand-side resources, as a competing solution against supply-side alternatives, with decentralized energy planning decisions and demonstrate the rewarding role it plays. Moreover, sustainability indicators (SIs are incorporated into DEP attempts in order to attain sustainable development. It is emphasized that unless these indicators are considered at lower energy planning levels, they will be ignored at higher planning levels as well. Hence, to the best knowledge of the authors, this study for the first time takes into account greenhouse gas (GHG emissions produced by utilization of renewable energies in DEP optimization models. To address the issues mentioned previously, multiobjective linear programming model along with a min-max goal programming approach is employed. Finally, using data taken from the literature, the model is solved, and the obtained results are discussed. The results show that DSM policies have remarkably contributed to significant improvements especially in terms of environmental indicators.

  12. Summer institute of sustainability and energy

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George W. [Univ. of Illinois, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-08-01

    The vision for the Summer Institute on Sustainability and Energy (SISE) is to integrate advancements in basic energy sciences with innovative energy technologies to train the next generation of interdisciplinary scientists and policy makers for both government and industry. Through BES related research, these future leaders will be equipped to make educated decisions about energy at the personal, civic, and global levels in energy related fields including science, technology, entrepreneurship, economics, policy, planning, and behavior. This vision explicitly supports the 2008 report by the Department of Energy’s Basic Energy Science Advisory Committee (2), which outlines scientific opportunities and challenges to achieve energy security, lower CO2 emissions, reduce reliance on foreign oil and create enduring economic growth through discovery, development and the marketing of new technologies for sustainable energy production, delivery, and use (3).

  13. Overview of energy-conserving development planning and design techniques based on five case studies

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Findings and recommendations are presented of a review of five case studies of ways to conserve energy through development planning and site design in communities. Two approaches were used. In the first approach, a conventional, pre-existing plan was analyzed to determine potential energy use. Once energy-conservation options were identified and evaluated, the conventional plan was modified by employing those options. This approach was used in The Woodlands, Burke Center, and Radisson studies. In the second approach, energy-conservation options are independently identified and evaluated. Those options that passed specific criteria screening were then utilized in developing one or more totally new plans based on energy objectives. This approach was used in Greenbrier and Shenandoah. Radisson is a new town on the outskirts of Syracuse, New York. Greenbrier is a 3000 acre planned community adjacent to Norfolk and Virginia Beach. Shenandoah is a proposed new town in the Atlanta urbanized area. The Woodlands is a new community under development north of Houston. Burke Center is a residential planned unit development in Fairfax County, Virgnia. (MCW)

  14. A Comprehensive Approach to Bi-National Regional Energy Planning in the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Matt Morrison

    2007-12-31

    The Pacific NorthWest Economic Region, a statutory organization chartered by the Northwest states of Alaska, Washington, Idaho, Montana, and Oregon, and the western Canadian provinces of British Columbia, Alberta, and the Yukon through its Energy Working Group launched a bi-national energy planning initiative designed to create a Pacific Northwest energy planning council of regional public/private stakeholders from both Canada and the US. There is an urgent need to deal with the comprehensive energy picture now before our hoped for economic recovery results in energy price spikes which are likely to happen because the current supply will not meet predicted demand. Also recent events of August 14th have shown that our bi-national energy grid system is intricately interdependent, and additional planning for future capacity is desperately needed.

  15. Agro-energy supply chain planning: a procedure to evaluate economic, energy and environmental sustainability

    OpenAIRE

    Fabrizio Ginaldi; Francesco Danuso; Franco Rosa; Alvaro Rocca; Oxana Bashanova; Emiliano Sossai

    2012-01-01

    The increasing demand for energy and expected shortage in the medium term, solicit innovative energy strategies to fulfill the increasing gap between demand-supply. For this purpose it is important to evaluate the potential supply of the energy crops and finding the areas of EU where it is most convenient. This paper proposes an agro-energy supply chain approach to planning the biofuel supply chain at a regional level. The proposed methodology is the result of an interdisciplinary team work a...

  16. Probabilistic tools for planning and operating power systems with distributed energy storage

    DEFF Research Database (Denmark)

    Klöckl, Bernd; Papaefthymiou, George; Pinson, Pierre

    2008-01-01

    Stochastic energy flows are an increasingly important phenomenon in today's power system planning and operation. They are – among other reasons – caused by large amounts of stochastic generation such as wind. The inclusion of energy storage devices, distributed in future systems (distributed energy...... owners are either the grid operators, the generation owners, or the energy traders. For the grid operators being the DES owners, storage operation will have to be integrated into the planning of the system, therefore multivariate nonparametric time series analysis and synthesis methods have to be applied...... to recorded data of stochastic energy resources. Together with suited storage models, the implications of DES on the planning of the system can then be assessed. For the producers or traders being the owners of the DES, the topic to be addressed is the real-time operation of each storage device in the power...

  17. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Juan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Anderson, Art [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-02

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations. This plan is a living document that will be updated and refined throughout the lifetime of the facility.

  18. Renewable energy plan of action for American Samoa

    Energy Technology Data Exchange (ETDEWEB)

    Shupe, J.W. (USDOE San Francisco Operations Office, Honolulu, HI (USA). Pacific Site Office); Stevens, J.W. (Sandia National Labs., Albuquerque, NM (USA))

    1990-11-01

    American Samoa has no indigenous fossil fuels and is almost totally dependent for energy on seaborne petroleum. However, the seven Pacific Islands located at 14 degrees south latitude that constitute American Samoa have a wide variety of renewable resources with the potential for substituting for imported oil. Included as possible renewable energy conversion technologies are solar thermal, photovoltaics, wind, geothermal, ocean thermal, and waste-to-energy recovery. This report evaluates the potential of each of these renewable energy alternatives and establishes recommended priorities for their development in American Samoa. Rough cost estimates are also included. Although renewable energy planning is highly site specific, information in this report should find some general application to other tropical insular areas.

  19. Planning Energy Sector Development in Croatian Agricultural Sector Following Guidelines of the European Energy Policy 20-20-20

    International Nuclear Information System (INIS)

    Kirac, M.; Krajacic, G.; Duic, N.

    2009-01-01

    Energy system planning is among the most important tasks of any society. A stable energy system is a foundation for economic growth, growing living standard and general prosperity of the society. Agriculture represents an important factor in overall Croatian economy; therefore, planning of the agriculture's energy system is a major task. To foresee the trend of consumption and to ensure reasonable economic energy supply in accordance with this trend is a process which should be continuously optimised so that the planned scenario could reflect actual situation. The agriculture, thanks to natural resources, land features and climate advantages represents a major economic sector. This activity has significant impact on food industry, trade, tourism, transport, chemical industry, etc. The relevance of agriculture is also visible in the present number of employees, future potential for employment and foreign trade balance. According to numerous parameters, agricultural activities in Croatia lag behind the EU countries. Great potential can be achieved by implementation of measures for energy intensity reduction and productivity increase.(author).

  20. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-10-14

    The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

  1. Hydromechanics - basic properties

    International Nuclear Information System (INIS)

    Lee, Sung Tak; Lee, Je Geun

    1987-03-01

    This book tells of hydromechanics, which is about basic properties of hydromechanics such as conception, definition, mass, power and weight, and perfect fluid and perfect gas, hydrostatics with summary, basic equation of hydrostatics, relative balance of hydrostatics, and kinematics of hydromechanics, description method of floating, hydromechanics about basic knowledge, equation of moment, energy equation and application of Bernoulli equation, application of momentum theory, inviscid flow and fluid measuring.

  2. Jicarilla Apache Utility Authority Renewable Energy and Energy Efficiency Strategic Planning

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, K.R.

    2008-06-28

    The purpose of this Strategic Plan Report is to provide an introduction and in-depth analysis of the issues and opportunities, resources, and technologies of energy efficiency and renewable energy that have potential beneficial application for the people of the Jicarilla Apache Nation and surrounding communities. The Report seeks to draw on the best available information that existed at the time of writing, and where necessary, draws on new research to assess this potential. This study provides a strategic assessment of opportunities for maximizing the potential for electrical energy efficiency and renewable energy development by the Jicarilla Apache Nation. The report analyzes electricity use on the Jicarilla Apache Reservation in buildings. The report also assesses particular resources and technologies in detail, including energy efficiency, solar, wind, geothermal, biomass, and small hydropower. The closing sections set out the elements of a multi-year, multi-phase strategy for development of resources to the maximum benefit of the Nation.

  3. An energy efficiency plan for the Iranian building sub-sector

    International Nuclear Information System (INIS)

    Sadegh Zadeh, S.M.

    2007-01-01

    The objective of this paper is to develop a 25-year least cost plan for energy management in the Iranian building sub-sector. For this purpose, an energy flow optimization from the point where the final energy is delivered to consumers, until the useful energy and energy services point is investigated. This will help to select the most economically feasible technologies as well as energy carriers considering all technical and social constraints. Based on the optimization results, absorption cooling for the regions where natural gas network is available, grades A and B evaporative coolers and air conditioners for those areas where there is no gas service, gas fired heating systems, wall insulation, double-glazed windows, equipments and appliances with highest energy labelling grade and compact and non-compact fluorescent lamps are among the selections. The results of the sensitivity analysis indicates that if the cost of natural gas network development to the regions where there is no gas will result in the tripling rate of the actual cost of the natural gas, in those areas, the priority should be still given to the consumption of gas. The proposed energy efficiency plan results in 27%, 54% and 10% saving in energy consumption, energy cost and investment cost, respectively

  4. Planning woody biomass logistics for energy production: A strategic decision model

    International Nuclear Information System (INIS)

    Frombo, F.; Robba, M.; Minciardi, R.; Sacile, R.; Rosso, F.

    2009-01-01

    One of the key factors on which the sustainable development of modern society should be based is the possibility to take advantage of renewable energies. Biomass resources are one of the most common and widespread resources in the world. Their use to produce energy has many advantages, such as the reduction of greenhouse emissions. This paper describes a GIS-based Environmental Decision Support System (EDSS) to define planning and management strategies for the optimal logistics for energy production from woody biomass, such as forest biomass, agricultural scraps and industrial and urban untreated wood residues. The EDSS is characterized by three main levels: the GIS, the database, and the optimization. The optimization module is divided in three sub-modules to face different kinds of decision problems: strategic planning, tactical planning, and operational management. The aim of this article is to describe the strategic planning level in detail. The decision variables are represented by plant capacity and harvested biomass in a specific forest parcel for each slope class, while the objective function is the sum of the costs related to plant installation and maintenance, biomass transportation and collection, minus the benefits coming from the energy sales at the current market price, including the renewable energy certificates. Moreover, the optimization problem is structured through a set of parameters and equations that are able to encompass different energy conversion technologies (pyrolysis, gasification or combustion) in the system. A case study on the Liguria Region (Savona Province) is presented and results are discussed. (author)

  5. A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece

    International Nuclear Information System (INIS)

    Mourmouris, J.C.; Potolias, C.

    2013-01-01

    Rational energy planning under the pressure of environmental and economic problems is imperative to humanity. An evaluational framework is proposed in order to support energy planning for promoting the use of renewable energy sources. A multi-criteria decision analysis is adopted, detailing exploitation of renewable energy sources (including Wind, Solar, Biomass, Geothermal, and small Hydro) for power and heat generation. The aim of this paper is the analysis and development of a multilevel decision-making structure, utilizing multiple criteria for energy planning and exploitation of Renewable Energy Sources of at the regional level. The proposed evaluation framework focuses on the use of a multi-criteria approach as a tool for supporting energy planning in the area of concern, based on a pool of qualitative and quantitative evaluation criteria. The final aim of this study is to discover the optimal amount of each Renewable Energy Source that can be produced in the region and to contribute to an optimal energy mix. In this paper, a case study for the island of Thassos, Greece is analyzed. The results prove that Renewable Energy Sources exploitation at a regional level can satisfy increasing power demands through environmental-friendly energy systems that combine wind power, biomass and PV systems. - Highlights: ► An evaluational framework is proposed in order to support energy planning. ► A multi-criteria decision analysis is adopted, detailing exploitation of RES for power and heat generation. ► The aim is to discover the optimal amount of each RES that can be produced in each region.

  6. The Center for Frontiers of Subsurface Energy Security (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Pope, Gary A.

    2011-01-01

    'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  7. Southern African Power Pool: Planning and Prospects for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Miketa, Asami [IRENA, Bonn (Germany); Merven, Bruno [Energy Research Centre, Univ. of Cape Town (South Africa)

    2013-06-25

    With the energy systems of many African countries dominated by fossil-fuel sources that are vulnerable to global price volatility, regional and intra-continental power systems with high shares of renewable energy can provide least-cost option to support continued economic growth and address the continent’s acute energy access problem. Unlocking Africa’s huge renewable energy potential could help to take many people out of poverty, while ensuring the uptake of sustainable technologies for the continent’s long-term development. The report examines the ''renewable scenario'' based on a modelling tool developed by IRENA and tested in cooperation with the South African National Energy Development Institute (SANEDI) and the Southern African Development Community (SADC). Initial results from the System Planning and Test (SPLAT) model show that the share of renewable technologies in Southern Africa could increase from the current 10% to as much as 46% in 2030, with 20% of decentralised capacity coming from renewable sources and nearly 80% of the envisaged capacity additions between 2010 and 2030 being provided by renewable energy technologies. Deployment and export of hydropower from the Democratic Republic of Congo’s Inga hydropower project to the SADC region would significantly reduce average electricity generation costs. Analysis using SPLAT – along with a similar model developed for West Africa – can provide valuable input for regional dialogue and energy projects such as the East and Southern Africa Clean Energy Corridor and the Programme for Infrastructure and Development in Africa (PIDA). IRENA, together with partner organisations, has started plans to set up capacity building and development support for energy system modelling and planning for greater integration of renewables in Africa. IRENA is also completing a similar model and study for East Africa and intends to extend this work to Central and North Africa.

  8. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  9. Application Framework Of Integrated Energy Resources Planning Considering Full Environmental Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, Paulo Helio; Morales Udaeta, Miguel Edgar; Ribeiro Galvao, Luis Claudio; Baesso Grimoni, Jose Aquiles

    2010-09-15

    This paper describes the full environmental accounting being used in RAA (Administrative Region of Aracatuba), an area composed of 43 municipalities in Sao Paulo, Brazil. The full environment accounting shows the vulnerabilities and advantages in the region that can be used as a tool for public awareness and involvement in decision making to choose the most appropriate energy resources of the region. It is characterized by four main environmental categories: aerial, aquatic, land and anthropogenic mediums, each to be used as a tool for decision making in energy planning, specifically with the methodology of PIR - Integrated Energy Resources Planning.

  10. Towards efficient energy networks: the role of territorial planning. ADeus' Notes Nr 231, May 2017

    International Nuclear Information System (INIS)

    Pons, Anne; Berlet, Jessica; Masse, Camille; Gaugler, Karin; Prachazal, Nicolas; Commessie, Fabienne; Isenmann, Jean; Michaut, Chloe

    2017-05-01

    This publication states that things are evolving towards a common view of development by town planners and energy operators as they now share common stakes (a safe and optimised energy supply with anticipation of energy demand and of costs and investments) and are in a situation of mutual support (consistency between planning and energy networks, optimisation of investment programs, energy solidarity between territories). The need of a dialogue between local actors prior to the start of town planning projects is outlined and discussed, as well as the introduction of energy supply planning into town planning documents

  11. The development of sectoral final and basic energy demand in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Reents, H.

    1977-08-01

    The detailed knowledge of the demand structures and their determining factors is an important precondition for estimating the possible developments of future energy demand. In this report the past developments of the final and basic energy demand in the different demand categories private households, commercial sector, industry and transportation will be analyzed. The demonstrated relations are the basis for a final energy demand model. With the help of this model a scenario of the future development of the final energy demand in the different sectors will be built. It is the aim of this scenario to show, how alternative actions (insulation, gas-heat pump) influence the future development of the final energy demand. (orig.) [de

  12. Report on establishment of new energy vision in Akeno Village (Yamanashi Prefecture); Akenomura shin energy vision sakutei hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    A new energy vision was established to move positively forward the introduction of reproducible new energies and promotion of energy conservation at the district level, based on the basic conception of 'protecting and nurturing nature and culture of Akeno Village to leave them to the future generations'. The activity achievements were put into order by the following five items: 1) basic conception and basic policy in establishing the new energy vision, 2) the general situation of Akeno Village, 3) investigation on energy demand and supply in Akeno Village, 4) estimation of existence quantity of new energies, and 5) the new energy introduction vision. Item 5 is composed of the conception in establishing the idea, new energy introduction plans, and new energy introduction projects. The new energy introduction projects include introduction of photovoltaic power generation into Akeno Middle School, installation of wind power generation facilities at open space in the 'Road Station', introduction of hybrid street lights using micro wind mills and solar cells into the school zone roads, and introduction of clean energy fueled automobiles into official use automobiles. (NEDO)

  13. Optimal dimensioning of low-energy district heating networks with operational planning

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    in design stage resulted in satisfaction of heat demand of the house in low temperature operation. In this paper the operational planning of the low-energy DH systems was investigated to reduce the dimensions of the distribution network with consideration given both to current high-heat and future low......-heat demand situations. The operational planning was based on boosting (increasing) the supply temperature at peak-demand situations which occur rarely over a year period. Hence optimal pipe dimensions of low-energy DH systems were investigated based on the dynamic response of in-house heating systems...... of operational planning in comparison to DH network dimensioned according to high heat demand situation....

  14. Extension planning for electrical energy supply systems

    International Nuclear Information System (INIS)

    Bieselt, R.

    1975-01-01

    In the future as well as in the past, and in particular in the next decade a considerable increase in electrical energy demand can be expected. To satisfy this demand in a reliable and sufficient manner will force the utilities to invest large sums of money for the operation and the extension of power generation and distribution plants. The size of these investments justifies the search for more and more comprehensive and at the same time more detailed planning methods. With the help of system analysis a planning model for the electricity supply industry of a major supply area will be designed. (orig./RW) [de

  15. 8432 - Order of 29 March 1989 publishing the Agreement of the Council of Ministers of 3 March 1989 on approval of the Basic Nuclear Emergency Plan

    International Nuclear Information System (INIS)

    1989-04-01

    The Order approves and reproduces the Basic Nuclear Emergency Plan. The Plan contains the instructions to be complied with when nuclear emergency plans are established at Province level in accordance with the radiological criteria laid down by the Nuclear Safety Council, in the event an area is affected by an accident originating in a nuclear power plant [fr

  16. The multi-annual Energy Plan - Executive summary. The energy transition for the green growth

    International Nuclear Information System (INIS)

    2017-07-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms our commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help us to meet our objectives to keep greenhouse gas emissions to a minimum in line with our commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment in France

  17. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    International Nuclear Information System (INIS)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants

  18. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

  19. Energy and nuclear power planning studies

    International Nuclear Information System (INIS)

    Bennett, L.L.; Molina, P.E.; Mueller, T.

    1990-01-01

    The article focuses on the procedures established by the IAEA for providing assistance to international Member States in conducting studies for the analysis of the economic viability of a nuclear power programme. This article specifically reviews energy and nuclear power planning (ENPP) studies in Algeria, Jordan, and Thailand. It highlights major accomplishments in the context of study objectives and organizations, and the principal lessons learned in the process. 4 figs, 1 tab

  20. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  1. FY 2000 Project report on survey for drawing district energy-saving visions for City of Oguchi; 2000 nendo Oguchi-shi chiiki sho energy vision sakutei nado jigyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    The energy-saving visions are drawn for City of Oguchi to help spread the energy-saving practices through the citizens, based on the studies on more efficient and realizable energy-saving measures, including effective utilization of district energy. The energy-saving activities cover the following 6 areas: (1) energy demand trends and current status of energy-saving measures, (2) basic environmental conditions related to energy saving in the district, (3) prediction of energy demands, (4) basic conception of the district energy saving, and introduction methodology, (5) energy-saving implementation plans, and (6) promotion of and problems involved in introduction of the energy-saving measures. The energy-saving implementation plans cover the public facilities, household, schools and private enterprises, and the energy-saving measures studied for the public facilities include introduction of microhydroelectric power generation systems for service water and sewer systems, revolving doors for libraries, high-efficiency illumination systems, and various types of solar systems. Those for household include economic utilization of home electric appliances and automobiles, and those for cooperation by the administration and citizens include thorough separation of garbage. (NEDO)

  2. Fiscal 1999 research report. Basic research for promotion of joint implementation programs (Research on energy saving plan for NORSI Refinery); 1999 nendo NORSI seiyusho sho energy keikaku chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This is a feasibility study desired to connect to a joint implementation program in the future, which plans to modify the oil refining system now in existence at the NORSI Refinery in the Russian Federation. The modification plan for energy efficiency improvement consists of (1) the reconstruction of the heat exchanger network, addition of three high-efficiency heating furnaces, and the introduction of stripping steam into the pre-distillation tower for the atmospheric/vacuum distillation system, (2) the addition of two combined heat exchangers, replacement of the reboiler with a steam reboiler, and the use of reflux line in the deethanization tower for the reforming section of the catalytic reforming unit, and (3) the addition of combined heat exchangers and the installation of two high-efficiency heater furnaces for the hydrodesulfurization unit for kerosene and light oil. The plan requires 40,470,000 dollars, and will save 48,000 tons/year in terms of oil and reduce CO2 emissions by 120,000 tons/year. No settlement has been reached, however, about financing, agreement to cost performance, or apportioning of the amount of reduction in CO2 emissions to the parties involved in case of transfer under a joint implementation program. It is desired that these problems will be solved for the promotion of the project. (NEDO)

  3. U.S. Department of Energy defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Jordan, E.A.

    1988-01-01

    The Program Implementation Plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  4. West African Power Pool: Planning and Prospects for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Miketa, Asami [IRENA, Bonn (Germany); Merven, Bruno [Energy Research Centre, Univ. of Cape Town (South Africa)

    2013-06-25

    With the energy systems of many African countries dominated by fossil-fuel sources that are vulnerable to global price volatility, regional and intra-continental power systems with high shares of renewable energy can provide least-cost option to support continued economic growth and address the continent’s acute energy access problem. Unlocking Africa’s huge renewable energy potential could help to take many people out of poverty, while ensuring the uptake of sustainable technologies for the continent’s long-term development. The report examines a ''renewable scenario'' based on a modelling tool developed by IRENA and tested with assistance from the Economic Community of West African States (ECOWAS). Initial results from the ECOWAS Renewable Energy Planning (EREP) model for continental ECOWAS countries show that the share of renewable technologies in the region could increase from the current 22% of electricity generation to as much as 52% in 2030, provided that the cost of these technologies continues to fall and fossil fuel prices continue to rise. In this scenario, nearly half of the envisaged capacity additions between 2010 and 2030 would be with renewable technologies. Analysis using EREP – along with a similar model developed for Southern Africa – can provide valuable input for regional dialogue and energy projects such as the East and Southern Africa Clean Energy Corridor and the Programme for Infrastructure and Development in Africa (PIDA). IRENA, together with partner organisations, has started plans to set up capacity building and development support for energy system modelling and planning for greater integration of renewables in Africa. IRENA is also completing a similar model and study for East Africa and intends to extend this work to Central and North Africa.

  5. Renewable energy technology portfolio planning with scenario analysis: A case study for Taiwan

    International Nuclear Information System (INIS)

    Chen, T.-Y.; Yu, Oliver S.; Hsu, George Jyh-yih; Hsu, Fang-Ming; Sung, W.-N.

    2009-01-01

    This paper presents the results of a case study of applying a systematic and proven process of technology portfolio planning with the use of scenario analysis to renewable energy developments in Taiwan. The planning process starts with decision values of technology development based on a survey of society leaders. It then generates, based on expert opinions and literature search, a set of major technology alternatives, which in this study include: wind energy, photovoltaic, bio-energy, solar thermal power, ocean energy, and geothermal energy. Through a committee of technical experts with diversified professional backgrounds, the process in this study next constructs three scenarios ('Season in the Sun', 'More Desire than Energy', and 'Castle in the Air') to encompass future uncertainties in the relationships between the technology alternatives and the decision values. Finally, through a second committee of professionals, the process assesses the importance and risks of these alternative technologies and develops a general strategic plan for the renewable energy technology portfolio that is responsive and robust for the future scenarios. The most important contributions of this paper are the clear description of the systematic process of technology portfolio planning and scenario analysis, the detailed demonstration of their application through a case study on the renewable energy development in Taiwan, and the valuable results and insights gained from the application.

  6. Multi-annual energy plan 2016/2018/2019/2023 of Guadeloupe. Decree no. 2017-570 from april 19, 2017 relating to the multi-annual energy plan of Guadeloupe

    International Nuclear Information System (INIS)

    2017-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Guadeloupe island (French West Indies). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  7. 1997 U.S. Department of Energy Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1997-09-01

    With the end of the Cold War and the election of President Clinton, the Department of Energy (DOE) set a new course which began with the publication of its first departmental strategic plan in April 1994. Entitled ``Fueling a Competitive Economy, it provided the framework and shared vision for meeting responsibilities in energy, national security, environmental quality, and science and technology. The strategic plan was the guidepost for the formulation of the Department`s FY 1996, FY 1997, and FY 1998 budgets and was critical to the development of the Department`s Strategic Alignment Initiative, designed to save $1.7 billion over five years. This current plan, which has been significantly improved through a very close consultation process with Congress and customers stakeholders, takes DOE to the next important performance level by being more directly linked to actions and results. It defines a strategic goal for each of the Department`s four business lines and, in the spirit of the Government Performance and Results Act and the National Performance Review, identifies a fifth goal addressing corporate management. Reengineering the business practices, managing for results, being open with neighbors and stakeholders, and ensuring the safety and health of DOE workers and the public are, and will continue to be, among the highest of priorities. Over the coming years, DOE plans to achieve their strategic goals through specific identifiable strategies. Each business line has clear objectives and straightforward ways of defining whether DOE has succeeded in meeting those objectives.

  8. Research and development plan of fusion technologies in JAERI toward DEMO reactors

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hayashi, Takumi; Abe, Tetsuya; Akiba, Masato; Isono, Takaaki; Inoue, Takashi; Enoeda, Mikio; Okuno, Kiyoshi; Koizumi, Norikiyo; Sakamoto, Keishi; Sato, Satoshi; Jitsukawa, Shiro; Sugimoto, Masayoshi; Suzuki, Satoshi; Seki, Shogo; Takatsu, Hideyuki; Tanzawa, Sadamitsu; Tsuchiya, Kunihiko; Nishi, Masataka; Hayashi, Kimio; Matsui, Hideki; Yamanishi, Toshihiko; Watanabe, Kazuhiro

    2005-03-01

    In accordance with the 'Third Phase Basic Program on Fusion Research and Development' established by the Fusion Council of the Japan Atomic Energy Commission, research and development (R and D) of fusion technologies aim at realization of two elements: development of ITER key components and their improvement for higher performances; and construction of sound technical basis of fusion nuclear technologies essential for fusion energy utilization. JAERI has been assigned in the Third Phase Basic Program as a responsible institute for developing the above two elements, and accordingly has been implementing technology R and Ds categorized in the following three areas: R and D for ITER construction and operation; R and D for ITER utilization (blanket testing in ITER) and toward DEMO; and R and D on basic fusion technologies. The present report reviews the status and the plan of fusion technology R and Ds in the latter two areas, and presents the technical objectives, technical issues, status of R and D and near-term R and D plans for: breeding blankets; structural materials; the IFMIF program; improvements of the key ITER components for higher performances toward DEMO; and basic fusion technologies. (author)

  9. A Comparative study on the Role of Energy Efficiency in Urban Planning Instruments of Iran and Germany

    Directory of Open Access Journals (Sweden)

    Mahta Mirmoghtadaee

    2015-12-01

    Full Text Available In recent years energy efficiency in different levels become of prime importance. Studies have been shown that urban planning can play a critical role in this area. At the same time in oil-producing countries like Iran, energy efficiency has not been considered as a national priority. However, in recent years with increase in the population growth, rapid urbanization and acceleration of environmental degradation, the issue is gaining more importance. Iran has adopted its first national building code on energy efficiency in 90’s. However, as the country lacks a hierarchical energy planning system, its achievements were below the expectations. To improve the situation, it is important to study the experiences of other countries. Germany with a solid and successful energy planning in different scales can be considered as one of the pioneering countries, and its programs could be used as a guideline to achieve similar goals in other countries. Recently the German government has adopted a highly ambitious energy program, called “Energy transition” (Energiewende. The program will affect all planning instruments and ordinances in the country. As a comprehensive and upper level plan, "Energy transition" can be studied form different viewpoints. In the current study, its influence on urban planning instruments will be the main focus. The main objective is to compare the role of energy in urban planning instruments of Iran and Germany, and to develop some solutions and strategies to be considered in Iran. The first step in this study is the introduction of urban planning systems and instruments in the two countries, then the role of energy in each country will be introduced and with an analytical review, some suggestion for Iranian planning instruments will be made. Using comparative study as the research methodology, the study will focus on "comprehensive plan" and "detailed plan" as two main urban planning instruments in Iran, and "binding land

  10. Planners to the rescue: spatial planning facilitating the development of offshore wind energy.

    Science.gov (United States)

    Jay, Stephen

    2010-04-01

    The development of offshore wind energy has started to take place surprisingly quickly, especially in North European waters. This has taken the wind energy industry out of the territory of planning systems that usually govern the siting of wind farms on land, and into the world of departmental, sectoral regulation of marine activities. Although this has favoured the expansion of offshore wind energy in some respects, evidence suggests that the practice and principles of spatial planning can make an important contribution to the proper consideration of proposals for offshore wind arrays. This is especially so when a strategic planning process is put in place for marine areas, in which offshore wind is treated as part of the overall configuration of marine interests, so that adjustments can be made in the interests of wind energy. The current process of marine planning in the Netherlands is described as an illustration of this. (c) 2009 Elsevier Ltd. All rights reserved.

  11. Professional analysis in spatial planning

    Directory of Open Access Journals (Sweden)

    Andrej Černe

    2005-12-01

    Full Text Available Spatial analysis contributes to accomplishment of the three basic aims of spatial planning: it is basic element for setting spatial policies, concepts and strategies, gives basic information to inhabitants, land owners, investors, planners and helps in performing spatial policies, strategies, plans, programmes and projects. Analysis in planning are generally devoted to: understand current circumstances and emerging conditions within planning decisions; determine priorities of open questions and their solutions; formulate general principles for further development.

  12. The regional (Europe) project on study of energy options using the IAEA planning methodologies

    International Nuclear Information System (INIS)

    Molina, P.

    1997-01-01

    As a means to assist developing IAEA Member States in the Europe region in the broad area of energy, electricity and nuclear power planning, a new project has been implemented as part of the IAEA Technical Cooperation Programme. This paper describes the major objectives of this regional TC project and the activities to be organized in order to provide the required assistance. Focus is made on the present workshop and the current activities sponsored by the IAEA for further developments of the IAEA planning tools for energy, electricity and nuclear power planning with emphasis on the Energy and Power Evaluation Program (ENPEP) and the Wien Automatic System Planning (WASP) packages. (author)

  13. The regional (Europe) project on study of energy options using the IAEA planning methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Molina, P [Division of Nuclear Power, International Atomic Energy Agency, Vienna (Austria)

    1997-09-01

    As a means to assist developing IAEA Member States in the Europe region in the broad area of energy, electricity and nuclear power planning, a new project has been implemented as part of the IAEA Technical Cooperation Programme. This paper describes the major objectives of this regional TC project and the activities to be organized in order to provide the required assistance. Focus is made on the present workshop and the current activities sponsored by the IAEA for further developments of the IAEA planning tools for energy, electricity and nuclear power planning with emphasis on the Energy and Power Evaluation Program (ENPEP) and the Wien Automatic System Planning (WASP) packages. (author).

  14. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)

    2015-05-22

    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research

  15. The planning and construction of Distributed Energy System in Qingdao Sino-German Eco-park

    Science.gov (United States)

    Wei, Cun; Zhang, Gaijing; Song, Peipei

    2018-04-01

    This paper introduce the development and characteristics of new energy, Eco-city and Distributed Energy System in China, a case study of Qingdao Sino-German Eco-park, research on practical application about planning and construction of Distributed Energy System in Eco-city. Results show that: we must first do a good job in energy planning, giving full play to their own advantages, and Distributed Energy System based renewable energy resources is a promising option for reducing emissions from electricity generation in Eco-city.

  16. Basic plan of partitioning and transmutation technology development

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Ozawa, Masaki

    2003-04-01

    Basic plan of partitioning and transmutation technology development has been made in more detail and concrete manner in terms of development goal, nuclides to be portioned and to be transmuted, and development schedule, based on the pre-evaluation results of the Research Evaluation Committee on Research and development of partitioning and transmutation technology for long life nuclides' held in August 2000. A step by step approach, consists of three steps, to reach the goal of partitioning and transmutation technology has been adopted under the recognition that the partitioning and transmutation technology development should be progressed steadily as a long term them. The first step is supposed to be able to attain within about 5 years by the present technology and on the extension of it. Such researches as collective separation of TRU, MA/Ln effective separation, and irradiation experiment of iodine and technetium. The second step is such a goal that is expected to be able to realize the engineering feasibility, within about 15 years, through the progress of science technology in future, although the engineering feasibility is not sufficiently foreseen at present. It will need revolutionary technology or breakthrough. Nuclides to be partitioned and to be transmuted have been selected in view points of 'radioactivity and radio-toxicity', 'geological repository', and 'effective utilization', corresponding to the each step of the development goal. Collaboration with other research organizations and with universities in the world should be pursued. Especially, such collaborations with France, with which information exchange on JOYO/PHENIX irradiation experiments is progressing, and with USA, which has recently developed positive activities in this field, are strongly expected. (author)

  17. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    International Nuclear Information System (INIS)

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey; Jensen, Christopher; Maxim, Peter G.; Loo, Billy W.; Hårdemark, Björn; Hynning, Elin

    2015-01-01

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric

  18. Japanese government makes the first step of the nuclear energy policy. The 'Nuclear Power Nation Plan' that shows the future of the nuclear energy policy of Japan

    International Nuclear Information System (INIS)

    Yanase, Tadao

    2006-01-01

    The Nuclear Energy Subcommittee of the METI Advisory Committee deliberated concrete actions for achieving the basic goals of the framework for nuclear energy policy, namely 1) continuing to meet at least 30 to 40% of electricity supply even after 2030 by nuclear power generation, 2) future promoting the nuclear fuel cycle, and 3) aiming at commercializing practical FBR cycle. In August 2006, the subcommittee recommendations were drawn up as a 'Nuclear Energy National Plan'. This report includes 1) building new nuclear power plants in liberalized electricity market, 2) appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, 3) promoting nuclear fuel cycle and strategically reinforcing of nuclear industries, 4) early commercialization of FBR cycle, 5) assuming ample technical and human resources to support the next generation, 6) supporting for international development of Japan's nuclear industry, 7) positive involvement in creating an international framework to uphold both non-proliferation and the expansion of nuclear power generation, 8) building trust between government and local communities through detailed communication and 9) reinforcement of measures for radioactive waste disposal. (S.Y.)

  19. U.S. Department of Energy, defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Chee, T.

    1988-01-01

    This paper reports that the program implementation plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  20. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    Science.gov (United States)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and

  1. Energy Frontier Research Center Materials Science of Actinides (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Burns, Peter

    2011-01-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  2. Annual plan of research on safety techniques against low level radioactive wastes, 1984-1988

    International Nuclear Information System (INIS)

    1984-01-01

    The establishment of the countermeasures for treating and disposing radioactive wastes has become an important subject for promoting the utilization of atomic energy. Especially as to low level radioactive wastes, the cumulative quantity has reached about 460,000 in terms of 200 l drums as of the end of March, 1983, and accompanying the development of the utilization of atomic energy, its rapid increase is expected. So far, as for the disposal of low level radioactive wastes, the research and development and the preparation of safety criteria and safety evaluation techniques have been carried out, following the basic policy of the Atomic Energy Commission to execute land disposal and ocean disposal in combination, first to make the test disposal after preliminary safety evaluation, and to shift to the full scale disposal based on the results. The annual plan was decided on July 22, 1983, and the first revision was carried out this time, therefore, it is reported here. The basic policy of establishing this annual plan, and the annual plan for safety technique research are described. (Kako, I.)

  3. Planning new basic guideline to the radiological risk. Content, radiological criteria and implementation; Nueva direcctriz basica de planificacion ante el riesgo radiologico. Contenido, criterio radiologicos e implantacion

    Energy Technology Data Exchange (ETDEWEB)

    Calvin Cuartero, M.; Vega Riber, R. de la; Martin Calvarro, J. M.

    2011-07-01

    The most important aspects of the Basic Guideline focus on their area of planning, groups of potential radiological emergencies in the type of activity associated with the levels of response planning and responsible organizations, structure and functions for each level, radiological criteria, implementation and maintenance of the effectiveness of the level of response plans abroad.

  4. Urban and energy planning in Santiago de Compostela : Final Report

    NARCIS (Netherlands)

    Fernandez Maldonado, A.M.

    2015-01-01

    The purpose of Deliverable 4.2 is to give an overview of urban energy planning in the six PLEEC partner cities. The six reports illustrate how cities deal with different challenges of the urban energy transformation from a structural perspective including issues of urban governance and spatial

  5. Assessment of China's renewable energy contribution during the 12th Five Year Plan

    International Nuclear Information System (INIS)

    Hong, Lixuan; Zhou, Nan; Fridley, David; Raczkowski, Chris

    2013-01-01

    In recent years, China has been ambitious in investing and developing renewable energy technologies, aiming to enhance its energy security, mitigate its energy-related CO 2 emissions and develop renewable energy industry. The 12th Five Year Plan (2011–2015) has set clear targets on installed capacities of different renewable energy technologies. This study aimed to assess the possible contribution of 12th Five Year Plan for China's future energy system and identify factors that might influence its impacts. First, current status of renewable energy development in China has been reviewed. Then several energy scenarios have been developed in an hourly simulation using an energy system analysis tool EnergyPLAN. It was identified that existing grid bottleneck would greatly reduce the potential contribution of renewable installations in terms of share of renewable electricity generation, share of non-fossil fuels in primary energy and system CO 2 emissions. In contrast, improving technical performance of renewable energy technologies and sectoral energy efficiency plays an important role in increasing the share of renewables and promoting China’s energy system transition. Finally, some policy suggestions were drawn to facilitate a better implementation of the renewable energy plan. - Highlights: • China's renewable energy contribution during the 12th Five Year Plan was assessed. • Non-fossil fuel targets in primary energy for 2015 and 2020 could be easily achieved. • Grid bottlenecks severely decrease the share of RES-E in electricity generation through the 12th Five Year Period. • Improved technical performance of renewable technologies and sectoral energy efficiency are extremely important for achieving higher RES-E share. • Several policy suggestions were drawn

  6. New energy technology development related database construction survey (wind power generation); Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (furyoku hatsuden)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To arrange systematic data relating to new energy, the latest published data relating to the wind energy conversion systems have been collected and arranged. For the overview of wind energy conversion system, wind turbines with horizontal axis and vertical axis, specification of wind turbine, and conceptual figure of wind energy conversion systems are illustrated. For the installation examples, introduction development of wind energy conversion systems in the world is described for Japan, the USA, Germany, Denmark, Spain, Sweden, India, and Belgium. For the relevant legislation and support plan, relevant legislation for the introduction of wind energy conversion in Japan, support plan in Japan, and support plans in foreign countries are described. Prices of wind turbines by wind turbine makers in the world, construction cost by Japanese makers, basic term, and subsidiary company and organization are shown

  7. Trigeneration primary energy saving evaluation for energy planning and policy development

    International Nuclear Information System (INIS)

    Chicco, Gianfranco; Mancarella, Pierluigi

    2007-01-01

    Trigeneration or combined heat, cooling and power (CHCP) is becoming an increasingly important energy option, particularly on a small-scale basis (below 1 MW e ), with several alternatives nowadays available for the cooling power production and the coupling to cogeneration systems. This paper deals with the introduction of a suitable framework for assessing the energy saving performance of trigeneration alternatives, orientated towards energy planning studies and the development of regulatory policies. In particular, a new generalized performance indicator-the trigeneration primary energy saving (TPES)-is introduced and discussed, with the aim of effectively evaluating the primary energy savings from different CHCP alternatives. The potential of the TPES indicator is illustrated through specific analyses run over different combinations of trigeneration equipment, providing numerical examples based on time-domain simulations to illustrate the dependence of the energy saving characteristics on the CHCP system configurations and equipment, as well as on the loading levels. In addition, the key aspect of adequately establishing the reference efficiencies for the conventional separate production of electrical, thermal and cooling power is addressed in detail. This aspect affects both equipment selection and potential profitability of the considered solutions under the outlook of receiving financial incentives

  8. Takane new energy vision. Creation of life environment with affluence using natural energies; Takane shin energy vision. Shizen energy wo ikashita yutakana seikatsu kankyo no sozo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    A new energy vision was established that discusses how the way the new energy introduction consistent with district characteristics should be, and has at the same time the leadership and specificity. Takane Town in Yamanashi Prefecture is a town located in the south skirt of Mt. Yatsugatake, having a population of about 9400 and households of about 3200. The town consumes energies converted into petroleum of about 19,000 kL/year. The activity achievements were put into order by the following five items: 1) what is the new energy vision?, 2) district characteristics, 3) the basic plan, 4) plans placed with emphasis, and 5) promotion of the vision. Item 4 includes introduction of new energies into the welfare, education and cultural facilities, utilization of bio-mass energy using livestock resources, introduction of new energies into the Hananomori Park at South Yatsugatake, introduction of clean energy fueled automobiles, and small hydropower generation utilizing clean streams in the Kiyosato area, introduction of new energies into the Kiyosato Station square, introduction of next generation agriculture utilizing new energies, and communications with nature and ecology of Takane Town. (NEDO)

  9. Basic research projects

    International Nuclear Information System (INIS)

    1979-04-01

    The research programs under the cognizance of the Office of Energy Research (OER) are directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical and biological sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall DOE effort and the fundamental principles of natural phenomena so that these phenomena may be understood, and new principles, formulated. The DOE-OER outlay activities include three major programs: High Energy Physics, Nuclear Physics, and Basic Energy Sciences. Taken together, these programs represent some 30 percent of the Nation's Federal support of basic research in the energy sciences. The research activities of OER involve more than 6,000 scientists and engineers working in some 17 major Federal Research Centers and at more than 135 different universities and industrial firms throughout the United States. Contract holders in the areas of high-energy physics, nuclear physics, materials sciences, nuclear science, chemical sciences, engineering, mathematics geosciences, advanced energy projects, and biological energy research are listed. Funding trends for recent years are outlined

  10. Multicriteria Decisions in Urban Energy System Planning: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Cajot, Sébastien, E-mail: sebastien.cajot@alumni.epfl.ch [European Institute for Energy Research, Karlsruhe (Germany); Industrial Process and Energy Systems Engineering Group, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Mirakyan, Atom [Energy Economics and Planning Department, Lahmeyer International, Bad Vilbel (Germany); Koch, Andreas [European Institute for Energy Research, Karlsruhe (Germany); Maréchal, François [Industrial Process and Energy Systems Engineering Group, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2017-05-30

    Urban energy system planning (UESP) is a topic of growing concern for cities in deregulated energy markets, which plan to decrease energy demand, reduce their dependency on fossil fuels, and increase the share of renewable energy sources. UESP being a highly multisectoral and multi-actor task, multicriteria decision analysis (MCDA) methods are frequently used in the decision processes. These methods may provide support in organizing and identifying solutions to problems with conflicting objectives. However, knowing which method to use is generally not straightforward, as the appropriateness of a method or combination of methods depends on the decision problem’s context. Therefore, this article reviewed scientific papers to characterize and analyze MCDA problems and methods in the context of UESP. The review systematically explores issues such as the scope of the problems, the alternatives and criteria considered, the expected decision outcomes, the decision analysis methods and the rationales for selecting and combining them, and the role of values in driving the decision problems. The final outcome is a synthesis of the data and insights obtained, which may help potential users identify appropriate decision analysis methods based on given problem characteristics.

  11. Multicriteria Decisions in Urban Energy System Planning: A Review

    International Nuclear Information System (INIS)

    Cajot, Sébastien; Mirakyan, Atom; Koch, Andreas; Maréchal, François

    2017-01-01

    Urban energy system planning (UESP) is a topic of growing concern for cities in deregulated energy markets, which plan to decrease energy demand, reduce their dependency on fossil fuels, and increase the share of renewable energy sources. UESP being a highly multisectoral and multi-actor task, multicriteria decision analysis (MCDA) methods are frequently used in the decision processes. These methods may provide support in organizing and identifying solutions to problems with conflicting objectives. However, knowing which method to use is generally not straightforward, as the appropriateness of a method or combination of methods depends on the decision problem’s context. Therefore, this article reviewed scientific papers to characterize and analyze MCDA problems and methods in the context of UESP. The review systematically explores issues such as the scope of the problems, the alternatives and criteria considered, the expected decision outcomes, the decision analysis methods and the rationales for selecting and combining them, and the role of values in driving the decision problems. The final outcome is a synthesis of the data and insights obtained, which may help potential users identify appropriate decision analysis methods based on given problem characteristics.

  12. National plan for the accelerated commercialization of solar energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    After a brief profile of the Mid-American region and characterization of the residential and commercial markets and the industry of the region, a short description is given of a regional planning meeting held for the purpose of preparing input for the Mid-American section of the National Program for the Accelerated Commercialization of Solar Energy (NPAC) Implementation plans. For each of thirty-eight programs, the objective, rationale, task statement/description, evaluation measures, and implementor are given. The programs are in these areas: public education/awareness; education/training; legislative/regulatory; performance/analysis; design/planning;demonstrations; state interface; technology; information dissemination; legal and regulatory; analysis and assessment; and regional coordination. Two policy statements are included - one on cratering a solar society and the other recommending the expansion of the commercialization to encompass and include the concepts of utilization and popularization in the plan for the advancement of solar energy. (LEW)

  13. Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective

    NARCIS (Netherlands)

    Vandevijvere, H.; Stremke, S.

    2012-01-01

    Urban planning for a renewable energy future requires the collaboration of different disciplines both in research and practice. In the present article, the planning of a renewable energy future is approached from a designer’s perspective. A framework for analysis of the planning questions at hand is

  14. Approach for planning and operation of energy-efficient production systems; Vorgehensweise fuer Planung und Betrieb energieeffizienter Produktionssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Weinert, Nils

    2010-07-02

    The integration of energy efficiency criteria into planning and operating of production systems substantially contributes to resource productivity and thus is an essential prerequisite for global sustainable development. Great potential can be identified for an early consideration of energy efficiency measures in an early planning phase. It is necessary to determine energy requirements during the planning process before the system is implemented. The objective of this thesis is the development of a planning system for the detailed prognosis of a production system's energy consumption. A concept is derived, by which a time based prediction of the amount of energy required by each machine and thus by the whole production system becomes possible. The planning system is methodologically integrated with well established approaches for manufacturing and factory planning. The methodology is based on the separation of production processes into segments, each with specific energy consumption. These segments, which are defined for equipment according to the possible operational states, are called EnergyBlocks. Each EnergyBlock describes the energy consumed and has a fixed or variable duration. A fixed duration results from operational states which last the shortest time technically possible, for example a machine start process. Variable durations represent operational states, whose length are dependant of the production task. Examples are manufacturing processes. The energy consumption of one block is mathematically described using power series. The energy consumption profile of a planned, not yet realized production process is modeled by arranging the EnergyBlocks to sequences. Depending on when the developed planning system is applied in the process of manufacturing and factory planning, energy consumption prognosis can be calculated as a power profile or as total consumption values, using the same model for both cases. Thus, the information density can be chosen

  15. Urban Planners with Renewable Energy Skills

    Directory of Open Access Journals (Sweden)

    Arto Emerik Nuorkivi

    2013-06-01

    Full Text Available There is no much tradition to combine urban and energy planning together to fight Climate Change even though energy production with fossil fuels is the main cause to the Change. Pilot training of urban planners in five EU countries such Finland, Germany, Hungary, Spain and the United Kingdom to understand the basics of renewable energy sources (RES and energy efficiency (EE has been carried out during 2011-2012 under co-financing of Intelligent Energy Europe. Organizing such pilot training was challenging for many reasons, but the outcome can be consdered highly statisfactory, based on the recorded feedback of trainees and other stakeholders. The project encourages other planning schools in Europe to learn from the experience and to use the published training materials available in ten languages in their curricula.

  16. International energy-promotion-activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Comprehensive promotion of energy and environmental measures are demanded in order to realize improvement in energy demand/supply structures in developing countries where increase in energy demand is anticipated. To achieve this goal, technical transfer related to energy saving technologies and clean coal as well as international energy promotion activities are implemented in China and Indonesia since fiscal 1993. In the field of energy saving, model operations are performed to improve efficiency in such energy consuming fields as steel making, power generation, and oil refining, in addition to cooperation in structuring databases and establishing master plans. In the clean coal field, model operations are conducted to reduce environmental load in coal utilizing areas, in addition to cooperation in establishing master plans for coal utilization. This paper describes feasibility studies on environmentally harmonious coal utilization systems in developing countries, assistance to introduction thereof, and joint verification operations. To rationalize international energy usage, basic surveys on energy utilization efficiency improvement and model operations are carried out mainly in the Asia-Pacific countries.

  17. Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community

    Energy Technology Data Exchange (ETDEWEB)

    Kushman, Chris [Inter-Tribal Council of Michigan, Inc., Sault Ste. Marie, MI (United States). Environmental Services Division

    2014-03-01

    In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and the Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act as a guide to the Community’s first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating

  18. Proceedings of the 8. Brazilian congress on energy: energy policy, regulation and sustainable development. v. 2: energy planning and policy, energy conservation and rational use

    International Nuclear Information System (INIS)

    1999-01-01

    The theme energy policy, regulation and sustainable development chosen for the 8. Brazilian congress on energy to be held in Rio de Janeiro from 30 November of 1999 to 02 December of 1999, specifically means the contribution of energy to a satisfactory quality of life for everyone. Within such a context, the congress technical programme theme has been structured around six different divisions: energy, environment and development; energy sector regulation; energy policy and planning; technology innovation; energy conservation; and renewable energy sources and rural areas energy supply

  19. The nuclear emergency plans

    International Nuclear Information System (INIS)

    Fuertes Menendez, M. J.; Gasco Leonarte, L.; Granada Ferrero, M. J.

    2007-01-01

    Planning of the response to emergencies in nuclear plants is regulated by the Basic Nuclear Emergency Plan (PLABEN). This basic Plan is the guidelines for drawing up, implementing and maintaining the effectiveness of the nuclear power plant exterior nuclear emergency plans. The five exterior emergency plans approved as per PLABEN (PENGUA, PENCA, PENBU, PENTA and PENVA) place special emphasis on the preventive issues of emergency planning, such as implementation of advance information programs to the population, as well as on training exercises and drills. (Author)

  20. Adult Basic Education: Aligning Adult Basic Education and Postsecondary Education

    Science.gov (United States)

    Texas Higher Education Coordinating Board, 2008

    2008-01-01

    In 2007, the 80th Texas Legislature included a rider to the General Appropriations Act for the Texas Higher Education Coordinating Board. The rider directed the agency to coordinate with the Texas Education Agency to develop and implement plans to align adult basic education with postsecondary education. The Coordinating Board, in collaboration…

  1. Fiscal 2000 basic survey report for vision formulation. Regional new energy vision for Sabae city, Fukui prefecture; Sabaeshi chiiki shin energy vision. 2000 nendo sakutei kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Sabae city, Fukui Prefecture, has worked out a regional new energy vision for which the inhabitants, industrialists, and administrators combined their efforts to build a daily life related culture, friendly to environments and peculiar to the locality. The fruits of their activities are summarized in five chapters, which are (1) the basic philosophy, (2) survey of the amounts of new energy in existence, (3) survey of the amount of energy demanded, (4) various surveys conducted with the participation of the citizenry, (5) and summarization of important topics. Discussed in chapter (2) is the basic policy toward reckoning the amounts of new energy in existence, such as photovoltaic energy, solar heat energy, wind energy, hydraulic energy, temperature difference energy, and other energy resources remaining to be utilized. It states that they, when converted into electric power, 2.0 times 10{sup 8} kWh/year will be available and, when converted into heat energy, 2.92 times 10{sup 11} kcal/year will be available, accounting for approximately 30% of the city's energy consumption. When the energy resources are broken down by type, it is found that solar energy, wind energy, and refuse-derived energy are in existence aplenty. (NEDO)

  2. City-Level Energy Decision Making. Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Alexandra [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Day, Megan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Donohoo-Vallett, Paul [U.S. Department of Energy, Washington, DC (United States)

    2015-07-08

    The Cities-LEAP technical report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities, explores how a sample of cities incorporates data into making energy-related decisions. This report provides the foundation for forthcoming components of the Cities-LEAP project that will help cities improve energy decision making by mapping specific city energy or climate policies and actions to measurable impacts and results.

  3. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Kim, Jung-in; Heon Choi, Chang; Chie, Eui Kyu; Kim, Il Han; Ye, Sung-Joon [Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744, Korea and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of) and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of) and Department of Intelligent Convergence Systems, Seoul National University, Seoul, 151-742 (Korea, Republic of)

    2012-03-15

    Purpose: To demonstrate the feasibility of photon energy-modulated radiotherapy during beam-on time. Methods: A cylindrical device made of aluminum was conceptually proposed as an energy modulator. The frame of the device was connected with 20 tubes through which mercury could be injected or drained to adjust the thickness of mercury along the beam axis. In Monte Carlo (MC) simulations, a flattening filter of 6 or 10 MV linac was replaced with the device. The thickness of mercury inside the device varied from 0 to 40 mm at the field sizes of 5 x 5 cm{sup 2} (FS5), 10 x 10 cm{sup 2} (FS10), and 20 x 20 cm{sup 2} (FS20). At least 5 billion histories were followed for each simulation to create phase space files at 100 cm source to surface distance (SSD). In-water beam data were acquired by additional MC simulations using the above phase space files. A treatment planning system (TPS) was commissioned to generate a virtual machine using the MC-generated beam data. Intensity modulated radiation therapy (IMRT) plans for six clinical cases were generated using conventional 6 MV, 6 MV flattening filter free, and energy-modulated photon beams of the virtual machine. Results: As increasing the thickness of mercury, Percentage depth doses (PDD) of modulated 6 and 10 MV after the depth of dose maximum were continuously increased. The amount of PDD increase at the depth of 10 and 20 cm for modulated 6 MV was 4.8% and 5.2% at FS5, 3.9% and 5.0% at FS10 and 3.2%-4.9% at FS20 as increasing the thickness of mercury from 0 to 20 mm. The same for modulated 10 MV was 4.5% and 5.0% at FS5, 3.8% and 4.7% at FS10 and 4.1% and 4.8% at FS20 as increasing the thickness of mercury from 0 to 25 mm. The outputs of modulated 6 MV with 20 mm mercury and of modulated 10 MV with 25 mm mercury were reduced into 30%, and 56% of conventional linac, respectively. The energy-modulated IMRT plans had less integral doses than 6 MV IMRT or 6 MV flattening filter free plans for tumors located in the

  4. Survey report for fiscal 1993 on basic survey project for energy consumption efficiency improvement in developing countries. Database development project 5 (The Philippines); 1993 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo (database kochiku jigyo). 5. Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Volume 5 covers the Philippines. The database development project has two goals. One is to collect basic data for joint projects for preparing energy conservation master plans for China and Indonesia, and the other is to build a comprehensive database for 8 countries including the said 2 countries (China, Indonesia, the Philippines, Thailand, Malaysia, Korea, Taiwan, and Japan) for contribution to the enhancement of energy conservation in the region involved. This Volume 5, dealing with 5 countries out of the 8 excluding China, Indonesia, and Japan, accommodates data on the Philippines, with whom a data collecting contract has just been signed in this fiscal year, which cannot be appropriately accommodated in Volume 1. The data referred to just above include the progress marked in this fiscal year in the preparation for the collection of actual data about energy consumption in Filipino factories scheduled to be carried out in and after the next fiscal year. (NEDO)

  5. UY 100 standard basic regulation of protection and radiological safety: approve by Industry Energy and Mining Ministry 28/6/2002 Resolution

    International Nuclear Information System (INIS)

    2002-01-01

    The following standard studies basic purposes of the radiological protection,practices classification, required for authorization in nuclear installations, equipment and radiation sources to grant permission, occupational, medical, and public exposition, and emergency plans

  6. Assessing the efficiency versus the inefficiency of the energy sectors in formerly centrally planned economies

    Energy Technology Data Exchange (ETDEWEB)

    Vorsatz, D. [Lawrence Berkeley Laboratory, CA (United States)

    1995-12-01

    As much the extreme inefficiency of Eastern European energy sectors is emphasized, as little attention their relatively efficient aspects receive. Indeed, a few efficiency indicators show the highest global efficiencies for the formerly centrally planned economies, such as the overall primary to useful energy efficiency. These figures draw the attention to an underestimated feature of former socialist energy sectors and to crucial policy implications: in some respects central planning lead to a more efficient use of energy than the market economy. Consequently, if transitions from the central planning to the market economy are not managed carefully, further reductions in energy efficiency can be expected in some sectors of the economy.

  7. Resources and Energy Management: the case of the Agropoli Urban Plan

    Directory of Open Access Journals (Sweden)

    Francesco Domenico Moccia

    2013-07-01

    Full Text Available The theme of the resources management, of the energy-environment retrofitting framed in strategies to mitigate and adapt to climate change, aimed at energy saving, energy generating from alternative sources, metabolism and natural resources is one of the central topics the City Urban Planning of the City of Agropoli, currently approved by Resolution of the City Council no. 110 of 18.04.2013.The plan is part of the wider system of actions taken by the Municipality to achieve the objectives on the environment posed by the European Union with the Directive " EP seals climate change package 20-20-20". In particular the planning tool provides a series of actions aimed at containing the uses energy through measures to rationalize, do not waste and reduce the use of non-renewable resources, by promoting "best practices" from the management of public assets, the use of innovative technologies in all sectors and activities; the diffusion of renewable energy production, with care to avoid impacts and interference with the historical landscape, including the promotion of programs and interventions of public management. The different strategic projects will take care of specific actions also for the experimental use of innovative technologies.The article proposes, within the framework of strategies and actions at the European level for small municipalities, the example of the City of Agropoli drawing conclusions and reflections on the theme of energy saving relative to the housing stock.

  8. Proposed plan for education and training in nonnuclear and nuclear energy technologies

    International Nuclear Information System (INIS)

    Vachon, R.I.; Griffith, D.E.

    1977-02-01

    This report presents the results of a systems approach by an ERDA/ASEE Task Force to a charge from the 94th Congress to the Energy Research and Development Administration to develop a plan for a comprehensive program for education and training in nonnuclear energy technologies. The PLAN as presented is the recommendation of the Task Force and is not to be construed as the ERDA Plan. The interpretation of the charge leads to the following definitive statements. The PLAN should consist of a program and organizational and administrative means within ERDA to develop and manage the program. The program should: (1) include general educational subprograms, vocational skill subprograms to degree and post degree programs; (2) include nuclear as well as nonnuclear education and training; (3) encourage, assist, and utilize all institutions from labor unions to universities to assure educated and trained manpower to meet the nation's energy needs; (4) be catalytic in nature and rely not only on funding as a catalytic agent but also on information and leadership; (5) give equal opportunity to all seeking or needing education and training to become a part of the energy labor market in all regions of the nation; (6) be supplementary to what can be accomplished by the private sector; (7) promote interaction between ERDA and other Federal government agencies and state and local governments; (8) be responsive as well as anticipatory; (9) be applicable from energy resource exploration to energy and use; and (10) provide for input and feedback from the private sector

  9. Conference on territorial planning of wind energy - engine or hindrance of climate policy? A French-German comparison

    International Nuclear Information System (INIS)

    Lengyel, Jacques; Von Nicolai, Helmuth; Thomas, Isabelle; Lueer, Michael; Eric Virvaux

    2009-01-01

    In the framework of the 2009 edition of the European Wind Energy Conference, the French-German office for Renewable energies (OFAEnR) organised a side event on the territorial planning of wind energy. During this French-German exchange of experience, participants exchanged views on: the importance given to climate policy with respect to other territorial planning goals, like nature protection; the involvement of project managers and citizens; the conciliation between 'regional development scheme' and wind energy development areas; and the regional implementation of government objectives. This document brings together the available presentations (slides) made during this event: 1 - Territorial planning of wind energy (Jacques Lengyel); 2 - The German planning systems for the definition of wind energy development areas (Helmuth von Nicolai); 3 - The wind energy regional scheme in Brittany - Accompanying the deployment of 1000 MW by 2010 (Isabelle Thomas); 4 - Definition of wind energy development areas in the framework of the German regional planning - Advantages and drawbacks for the wind energy industry (Michael Lueer); 5 - Implementation of the regional schemes for the development of renewable energies: the Renewable Energies Syndicate (SER)/France Wind Energy (FEE) proposals for the wind energy aspect (Eric Virvaux)

  10. Energy-optimised planning and operation of UPS installations. Guidelines for planners and operators; Energieoptimierte Planung und Betrieb von USV-Anlagen. Ein Leitfaden fuer Planer und Betreiber

    Energy Technology Data Exchange (ETDEWEB)

    Neyer, A.; Schnyder, G.; Mauchle, P.

    2004-09-15

    This comprehensive brochure elaborated for the Swiss Federal Office of Energy (SFOE) is one of a set of nine reports that provide an overall review of the energy-efficiency of UPS systems. This brochure for planners and operators of UPS installations takes a look at how UPS installations can be optimised in order to reduce losses and to provide optimal operation as far as energy efficiency is concerned. The brochure explains the various types of UPS systems and their use and gives tips on ordering. Operational modes, load considerations, system configuration and specifications for putting to tender are looked at, as are the requirements to be placed on the systems for optimal operation. Basic rules for planning activities are quoted. Finally, rotating UPS installations and dynamic energy storage are briefly looked at. The paper is completed with checklists and a quality/energy-matrix.

  11. Wind farms and planning

    International Nuclear Information System (INIS)

    Arkesteijn, L.; Havinga, R.; Benner, J.H.B.

    1992-01-01

    The siting of wind farms is becoming an increasingly important issue in the Netherlands. This paper gives an overview of the current situation concerning the planning of wind farms. We will pay attention to: Wind energy in official Dutch planning policy. To select the optimal sites, the government has made an administrative agreement with the 7 windy provinces. Nevertheless, wind energy is still fighting for a rightful position in physical planning policy. Some examples will illustrate this. Studies on siting and siting problems in the Netherlands. In order to gain more insight into aspects of wind farming several studies have been executed. In this paper special attention will be paid to the results of a study on the potential impact of large windturbine clusters on an existing agricutural area. Experiences with siting of wind farms in the Netherlands. Based on experiences with the planning and realization of farms, this paper gives the main problems. In the final part of the paper we present some general conclusions. Generally speaking, the knowledge is available for selecting optimal sites in the Netherlands. The basic problems for wind farming nowadays seem to be the visual impact and actually obtaining the ground. Nevertheless, there do seem to be enough sites for realizing the goals in the Netherlands. (au)

  12. Methods for Aquifer Thermal Energy Storage planning; The hidden side of cities.

    Science.gov (United States)

    Jaxa-Rozen, M.; Bloemendal, M.; Theo, O.

    2017-12-01

    Aquifer Thermal Energy Storage (ATES) systems reduce energy use and greenhouse gas emissions in urban areas, by supplying heating and cooling to buildings with a heat pump combined with seasonal heat storage in aquifers. The climactic and geohydrological conditions required for this technology can be found in many temperate regions around the world; In The Netherlands there are currently approximately 2,200 active systems. Despite this modest adoption level, many urban areas in the Netherlands already struggle to accommodate the subsurface claims needed to further develop ATES under current planning regulations. To identify best practices for ATES planning and maximize the technology's future potential, this work first reviews a set of 24 ATES-plans which were used for the spatial layout of ATES in various urban areas in The Netherlands and the method used to make those plans. This analysis revealed that three crucial elements are found to be missing in current ATES planning: i) a consistent assessment framework which can be used to compare the performance of different planning strategies; ii) a systematic adjustment of ATES design parameters to suit local conditions; iii) the identification and use of aquifer allocation thresholds to guide the choice of a planning strategy. All three steps are elaborated and added to the method. For the latter, these thresholds are identified by exploratory numerical modelling, using a coupled agent-based/geohydrological (MODFLOW) simulation to explore a broad range of scenarios for ATES design and layout parameters. The results give insight in how technical ATES-well design choices affect optimal use of subsurface space and in the trade-of between individual efficiency and overall emission reductions. The improved ATES-planning method now fosters planning and design rules ensuring optimal and sustainable use of subsurface space, i.e. maximizing energy saving by accommodating as much ATES systems as possible while maintaining

  13. 49 CFR 633.21 - Basic requirement.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.21 Basic requirement. (a) If a project meets the definition of major capital project, the recipient shall submit a project management plan prepared in accordance with § 633.25 of this part, as a condition of Federal financial...

  14. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  15. BASIC APPROACHES TO THE RESEARCH OF RENEWABLE SOURCES OF ENERGY AS THE ENERGY POTENTIAL OF TERRITORIES AND BUILT-UP AREAS

    Directory of Open Access Journals (Sweden)

    Poddaeva Olga Igorevna

    2012-10-01

    renewable sources of energy include water, sun, and wind. Wind power engineering best fits the conditions of the Russian territories. However, experts believe that the wind power is to be backed by other sources due to the irregularity of its generation. This approach to the power generation and planning of territories coupled with the integration of renewable energy technologies into architectural designs of buildings and structures will make it possible to identify the prerequisites for the energy generation specialization of the subjects of the Russian Federation on the basis of their climatic conditions and urban development patterns. Private investments into renewable sources of energy will assure sustainable population settlement patterns and optimal energy generation and consumption.

  16. Planning for energy needs: a look at three new communities

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, B

    1981-05-01

    Case histories describe how three communities are building in new sites in order to increase their self-sufficiency. Each community acted as its own developer. Cerro Gordo, Oregon is planned as a self-contained, laissez faire shelter from urban blight, but problems have kept investors and developers away. Rock Ridge Community, Wisconsin is building earth-sheltered duplex buildings out of prestressed concrete to provide a simple life for the Quaker community. Septic-tank placement and other probjems have raised costs, but the settlement plan remains viable. Soldiers Grove, Wisconsin residents are rebuilding above the floodplain in an urban-renewal project which uses volunteers and local talent to build energy-efficient structures that rely heavily on passive solar energy. (DCK)

  17. Multi-annual energy plan 2016-2018 and 2019-2023 of French Guiana

    International Nuclear Information System (INIS)

    2016-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for French Guiana overseas region. It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  18. Consultation paper : Nova Scotia's renewed energy strategy and climate change action plan

    International Nuclear Information System (INIS)

    2007-10-01

    The Nova Scotia Department of Energy is seeking to create a sustainable and prosperous Nova Scotia that is responsive to climate change. The purpose of this report was to inform public discussion around two upcoming documents, namely the renewed energy strategy focusing on broad energy policy and a climate change action plan for Nova Scotia to reduce greenhouse gas emissions. The report discussed mitigation measures, as it is closely tied with energy use. The consultation process to inform the two documents was to include public forums and direct stakeholder consultation. The report discussed Nova Scotia's strategy for dealing with climate change and the world of energy. Recent changes in energy prices, exploration, awareness, and emerging but uncertain technologies were presented. Long term planning and a review of policy changes were also addressed. The report also presented options for a renewed energy strategy and discussed air quality; energy conservation and efficiency; electricity; natural gas; energy opportunities; government action; and government intervention. Submissions were also sought as input to the discussion paper. refs., tabs., figs., appendices

  19. Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-10

    This Environmental Monitoring Plan was prepared for the US Department of Energy`s (DOE`s) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan`s purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner.

  20. Renewable Energy

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Bent Sorensen’s Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, Fifth Edition, continues the tradition by providing a thorough and current overview of the entire renewable energy sphere. Since its first edition, this standard reference source helped put...... renewable energy on the map of scientific agendas. Several renewable energy solutions no longer form just a marginal addition to energy supply, but have become major players, with the promise to become the backbone of an energy system suitable for life in the sustainability lane. This volume is a problem...... structured around three parts in order to assist readers in focusing on the issues that impact them the most for a given project or question. PART I covers the basic scientific principles behind all major renewable energy resources, such as solar, wind, and biomass. PART II provides in-depth information...

  1. The Strategic Plan of the Nuclear Energy Agency, 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The OECD has been engaged in the past few years in a process of reform to take account of the impact of globalization on its Members' economies, and to allow for proper refocusing of its work, notably on the subject of sustainable development. These developments are having an impact on the Nuclear Energy Agency (NEA). The group on the future role of the NEA delivered its report at the end of January 1998 and one key recommendation is the elaboration of a strategic plan for the Agency. The recommendations made in the report served to stimulate a review of NEA goals, priorities, methods of work and products. This review has taken account of the recommendations in the report. The review served as the basis for this Strategic Plan for the NEA, which has been developed to provide guidance to the Agency in planning its activities and implementing its programmes over a five-year period. The report contains detailed description of the following topics:Mission of NEA: Strategic arenas of work, including sectorial arenas, Data bank, Information and communication; Interactions; Relations with non-member countries; Role of the Steering Committee for Nuclear Energy; Working methods; Resources. (R.P.)

  2. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  3. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Shyam Pokharel

    2013-10-01

    Full Text Available Purpose: This study investigated the dosimetric impact of mixing low and high energy treatment plans for prostate cancer treated with volumetric modulated arc therapy (VMAT technique in the form of RapidArc.Methods: A cohort of 12 prostate cases involving proximal seminal vesicles and lymph nodes was selected for this retrospective study. For each prostate case, the single-energy plans (SEPs and mixed-energy plans (MEPs were generated.  First, the SEPs were created using 6 mega-voltage (MV energy for both the primary and boost plans. Second, the MEPs were created using 16 MV energy for the primary plan and 6 MV energy for the boost plan. The primary and boost MEPs used identical beam parameters and same dose optimization values as in the primary and boost SEPs for the corresponding case. The dosimetric parameters from the composite plans (SEPs and MEPs were evaluated. Results: The dose to the target volume was slightly higher (on average <1% in the SEPs than in the MEPs. The conformity index (CI and homogeneity index (HI values between the SEPs and MEPs were comparable. The dose to rectum and bladder was always higher in the SEPs (average difference up to 3.7% for the rectum and up to 8.4% for the bladder than in the MEPs. The mean dose to femoral heads was higher by about 0.8% (on average in the MEPs than in the SEPs. The number of monitor units and integral dose were higher in the SEPs compared to the MEPs by average differences of 9.1% and 5.5%, respectively.Conclusion: The preliminary results from this study suggest that use of mixed-energy VMAT plan for high-risk prostate cancer could potentially reduce the integral dose and minimize the dose to rectum and bladder, but for the higher femoral head dose.-----------------------------------------------Cite this article as:Pokharel S. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer. Int J Cancer Ther Oncol 2013;1(1:01011.DOI: http

  4. Basic infrastructure for a nuclear power project

    International Nuclear Information System (INIS)

    2006-06-01

    There are several stages in the process of introducing nuclear power in a country. These include development of nuclear policies and regulations, feasibility studies, public consultations, technology evaluation, requests for proposals and evaluations, contracts and financing, supply, construction, commissioning, operation and finally decommissioning. This publication addresses the 'basic' infrastructure needs, which are adequate until the issue of the construction license. It is obvious that a fully developed nuclear infrastructure will be required for the further implementation stages of a nuclear power reactor. The officials and experts in each country will undertake the transition from a basic infrastructure to a fully developed infrastructure that covers the stages of construction, commissioning, operation and decommissioning. The publication is directed to provide guidance for assessing the basic infrastructure necessary for: - A host country to consider when engaging in the implementation of nuclear power, and - A supplier country to consider when assessing whether the recipient country is in an acceptable condition to begin the implementation of a nuclear power project. The target users are decision makers, advisers and senior managers in the governmental organizations, utilities, industrial organizations and regulatory bodies in the countries adopting nuclear power programmes or exporting supplies for these programmes. The governmental organizations that may find this publication useful include: Ministries of Economy, Energy, Foreign Affairs, Finance, Mining, Internal Affairs, Academic Institutions, Nuclear Energy Agencies and Environmental Agencies. This publication was produced within the IAEA programme directed to increase the capability of Member States to plan and implement nuclear power programmes and to establish and enhance national nuclear infrastructure. This publication should be used in conjunction with the IAEA Safety Standards Series and other

  5. Champagne-Ardenne Climate-Air-Energy Plan + Synthesis + Wind energy regional plan + Report and conclusion of the consultation and dialogue organised from January 20 to March 20, 2012. Territorial Climate-Energy Plan Coeur d'Ardenne urban community, Sedan region community of communes

    International Nuclear Information System (INIS)

    Guillot, Michel; Bachy, Jean-Paul

    2012-05-01

    After a recall of stakes and challenges related to climate, air and energy, an introduction presents the Champagne-Ardenne Regional Climate Air Energy Plan (PCAER), recalls national and international commitments (struggle against greenhouse effect, improvement of air quality, development of renewable energies, energy demand management), describes the PCAER elaboration process, indicates its legal status and value, and its relationship with other schemes and plans. The next part proposes a situational analysis with a presentation of the territory (economy, geography, demography, organisation), an assessment of its final energy consumption, and an assessment of potential energy savings, energy efficiency improvements and energy demand management. It proposes an assessment of renewable and recovery energy production and of its potential development, an inventory of greenhouse gas emissions and of atmospheric pollutant emissions, an assessment of air quality, and a discussion of territory vulnerability to climate change. The next part is a more prospective one as it defines orientations for land and urban development, mobility, good transport, agriculture and viticulture, forest and wood valorisation, buildings, renewable and recovery energies, water, natural, technological and health risks, the tertiary sector, industry, communities, and governance for the PCAER implementation. A second document is a synthesis of this PCAER and proposes an overview of the situation and challenges, of objectives to be reached, and the definition of a roadmap, with a focus on the regional scheme for wind energy (SRE). This last one discusses the wind energy development (legal and regulatory framework, role in regional development, issues related to land development, dialogue, impacts), proposes an overview of the different types of constraints and servitudes (environmental, technical, heritage, landscape, and so on). The next document reports the consultation and dialogue process and

  6. Community energy plan : village of Burns Lake

    International Nuclear Information System (INIS)

    Rivard, B.

    2008-09-01

    Climate change has a significant impact on the lives of Canadians and their economies. In northern British Columbia, the ability to grow, process and transport food will likely change. The rising cost of fuel and other natural resources will create a need for more resilient communities. This report presented a community energy plan for Burns Lake in order to provide the first steps toward building on an already resilient community. The report answered questions about Burns Lake's energy consumption and greenhouse gas (GHG) emissions as well as the community's views on energy issues. The report provided background information on the Village of Burns Lake and discussed climate change in Burns Lake, energy use, and greenhouse gas emissions. The report also described community engagement by way of a questionnaire on fuel prices, homes and public opinion in Burns Lake. A strategy was also outlined. It was concluded that the village of Burns Lake is well positioned to face challenges regarding future energy use. The community is looking to the municipality for support and leadership, in order to deliver through active opportunities to reduce greenhouse gas emissions. 6 figs., 4 appendices.

  7. Energy conversion processes for the use of geothermal heat

    Energy Technology Data Exchange (ETDEWEB)

    Minder, R. [Minder Energy Consulting, Oberlunkhofen (Switzerland); Koedel, J.; Schaedle, K.-H.; Ramsel, K. [Gruneko AG, Basel (Switzerland); Girardin, L.; Marechal, F. [Swiss Federal Institute of Technology (EPFL), Laboratory for industrial energy systems (LENI), Lausanne (Switzerland)

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on energy conversion processes that can be used when geothermal heat is to be used. The study deals with both theoretical and practical aspects of the conversion of geothermal heat to electricity. The report is divided into several parts and covers general study, practical experience, planning and operation of geothermal power plants as well as methodology for the optimal integration of energy conversion systems in geothermal power plants. In the first part, the specific properties and characteristics of geothermal resources are discussed. Also, a general survey of conversion processes is presented with special emphasis on thermo-electric conversion. The second part deals with practical aspects related to planning, construction and operation of geothermal power plant. Technical basics, such as relevant site-specific conditions, drilling techniques, thermal water or brine quality and materials requirements. Further, planning procedures are discussed. Also, operation and maintenance aspects are examined and some basic information on costs is presented. The third part of the report presents the methodology and results for the optimal valorisation of the thermodynamic potential of deep geothermal systems.

  8. Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan

    Directory of Open Access Journals (Sweden)

    Nayyar Hussain Mirjat

    2018-03-01

    Full Text Available The now over a decade-long electricity crisis in Pakistan has adversely affected the socio-economic development of the country. This situation is mainly due to a lack of sustainable energy planning and policy formulation. In this context, energy models can be of great help but only a handful of such efforts have been undertaken in Pakistan. Two key shortcomings pertaining to energy models lead to their low utilization in developing countries. First, the models do not effectively make decisions, but rather provide a set of alternatives based on modeling parameters; and secondly, the complexity of these models is often poorly understood by the decision makers. As such, in this study, the Analytical Hierarchy Process (AHP methodology of Multi-Criteria Decision-Making (MCDM has been used for the sustainability assessment of energy modeling results for long-term electricity planning. The four scenario alternatives developed in the energy modeling effort, Reference (REF, Renewable Energy Technologies (RET, Clean Coal Maximum (CCM and Energy Efficiency and Conservation (EEC, have been ranked using the Expert Choice® tool based on the AHP methodology. The AHP decision support framework of this study revealed the EEC scenario as the most favorable electricity generation scenario followed by the REF, RET and CCM scenarios. Besides that, this study proposes policy recommendations to undertake integrated energy modeling and decision analysis for sustainable energy planning in Pakistan.

  9. Local governance of energy. Clarification of stakes and illustration by spatial planning

    International Nuclear Information System (INIS)

    Saujot, Mathieu; Ruedinger, Andreas; Guerry, Anais

    2014-01-01

    As energy transition implies important societal transformations, the authors developed an analysis framework about the main questions raised by local governance: role of the different levels of local communities in the definition and implementation of strategies, key stakes of the sharing of skills between the State and communities, and stakes regarding spatial planning in this context. The authors first address the issue of relevance of the different territorial scales in a context of evolution of energy policies. They propose an overview of this issue with reference to the debate on local governance of transition. They discuss the return on experience of decentralisation in other fields of action of local policies, notably urban planning and spatial planning

  10. Regional energy planning on the base of household consumption analysis in the county

    International Nuclear Information System (INIS)

    Majstrovic, M.; Goic, R.; Sutlovic, E.

    1999-01-01

    The regional planning concept accepted by the Croatian energy sector demands to establish regional energy centres. The first phase of the project was realized in Dalmatian county as 'Southern Croatian counties energy development strategy' which tasks were to collect data, to make the survey and database and to present the main characteristics of energy consumption in county households. The county was separated into ten zones according to geographic location, living standards and energy consumption. Answers to 79 questions divided into 8 groups (household general data, space heating, water heating and cooking, economic status, household ownership, energy demand, car information and future investments) made the database and the simple model formed 9 tables. The second phase consists of industrial, service and traffic sector analysis. Table data for the total energy consumption per zones, per inhabitant and zones, by energy mode and by energy use. This database and further information development will contribute to better energy planning

  11. Decision regarding Gazifere Inc.'s request to maintain current tariffs, its distribution plan and energy efficiency plan

    International Nuclear Information System (INIS)

    Cote-Verhaaf, A.; Patoine, M.A.; Tanguay, F.

    2002-01-01

    In June 2002 Gazifere Inc. applied to Quebec's Regie de l'energie for approval to maintain its current gas tariffs in its area of operation, the Outaouais region of Quebec. Gazifere also presented its program for energy efficiency and its distribution program with a request to extend its distribution network in the Outaouais. The energy efficiency program includes the rental of residential water heaters, water and gas savings, high efficiency furnaces, rental of commercial water heaters, and a program for low income families. The Regie reviewed the application and declared that the current fees could remain in effect until October 1, 2002. It also approved the modifications proposed by Gazifere to the adjustment of rates. The Regie reviewed the objectives of the energy efficiency programs and approved a volumetric budget for the plan and authorized that the deferred rate be kept in the energy efficiency program. The Regie approved that the energy efficiency plan should extend over 3 years with the exception of the residential inspection program until more information could be gathered on the energy savings in the residential sector. The Regie made a request to Gazifere to provide data on industrial consumption before authorizing $3,730,200 for extension of their distribution network. It approved the amount $5,306,400 as exploitation charges for the year 2002-2003. refs., tabs

  12. Consumption of forest chips as an energy source as part of the national action plan for renewable energy

    International Nuclear Information System (INIS)

    Ylitalo, E.

    2004-01-01

    A specific Action Plan for Renewable Energy was introduced in 1999 in order to increase the utilisation of renewable energy sources in Finland. The Plan was renewed in 2002, taking into account a revision of the goals defined in the statements given by the Parliament in the de-bate on national Climate Strategy and the decision on building a new nuclear power plant. The main reason for increasing the consumption of renewable energy is the aim of decreasing emissions of greenhouse gases caused by fossil fuels. The renewed Action Plan includes aims and means of how to increase the consumption of renewable energy in practice in the future. Specific goals for separate renewable energy sources were set for the years 2005, 2010 and 2025. Proportional targets were set for the consumption of forest chips: in 2010 consumption is expected to be four times larger than in 2001 and in 2025 seven times larger. In Finland, the most important source for renewable energy is wood and wood waste, which currently makes up approximately 20 per cent of total energy consumption. Wood waste (incl. waste liquor and solid wood waste) produced by the forest industries can be considered as being fully utilized at the moment. Therefore, the most important means of increasing the consumption of wood energy in the future is in the utilisation of forest chips resources. Since 2000, the Finnish Forest Re-search Institute has compiled statistics on the consumption of forest chips and forest industry by-products used in energy generation. One aim of these statistics is to monitor the fruition of the Action Plan mentioned. In 2003, the volume of forest chips consumed in energy generation was 2.1 mill. m3, i.e. approximately five per cent of all energy sources consumed. According to the statistics, the consumption of forest chips has doubled during the period 2000-2003 with an annual average increase of 0.4 mill. m 3 . The goals set in the Action Plan can be considered to be high. In order to achieve

  13. Practical application of Integrated National Energy Planning (INEP) using microcomputers

    International Nuclear Information System (INIS)

    Munasinghe, M.

    1989-01-01

    The paper describes the use of a practical microcomputer-based, hierarchical modelling framework for Integrated National Energy Planning (INEP), and policy analysis. The rationale for the concept and the development of the methodology are traced, following the energy crises of the 1970s. Details of the INEP process, which includes analysis at three hierarchical levels (the energy-microeconomic, energy sector and energy subsector) are given. A description of the various models, the scenarios and assumptions used in the analysis, as well as the linkages and interactions, is provided. The Sri Lanka energy situation is summarized, and the principal energy issues and options derived from the modelling are used to synthesize a national energy strategy. (author). 11 refs, 8 figs, 11 tabs

  14. Energy and sustainability

    International Nuclear Information System (INIS)

    Brunner, D.

    2001-01-01

    This article describes the further education concepts of the Swiss Federal Government and the Swiss Cantons in the energy area with particular emphasis on post-graduate courses on energy and sustainability in building and civil engineering. The activities of a working group on further education in these areas and the basic objectives of the concepts in the planning, implementation and operational areas are discussed. The courses offered by various Swiss technical colleges in the building and energy areas are examined and experience gained within the framework of the Swiss 'Energy 2000' programme is discussed. Finally, the Penta Project on renewable energy sources, set up jointly by the SwissEnergy programme and various professional associations to provide further education and training for target audiences in the energy and building technical services areas, is looked at

  15. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    International Nuclear Information System (INIS)

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions

  16. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article

  17. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  18. Cogeneration an opportunity for industrial energy saving

    International Nuclear Information System (INIS)

    Pasha, R.A.; Butt, Z.S.

    2011-01-01

    This paper is about the cogeneration from industrial energy savings opportunities perspective. The energy crisis in these days forces industry to find ways to cope with critical situation. There are several energy savings options which if properly planned and implemented would be beneficial both for industry and community. One way of energy saving is Cogeneration i.e. Combined Heat and Power. The paper will review the basic methods, types and then discuss the suitability of these options for specific industry. It has been identified that generally process industry can get benefits of energy savings. (author)

  19. Basic science right, not basic science lite: medical education at a crossroad.

    Science.gov (United States)

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  20. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I H; Lee, H S; Jeong, Y H; Sung, K W; Han, J H; Lee, J T; Lee, H K; Kim, S J; Kang, H S; An, D H; Kim, K R; Park, S D; Han, C H; Jung, M K; Oh, Y J; Kim, K H; Kim, S H; Back, J H; Kim, C H; Lim, K S; Kim, Y Y; Na, J W; Ku, J H; Lee, D H

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.