WorldWideScience

Sample records for energy absorbing fuselage

  1. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.

    1981-01-01

    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  2. Energy absorbers as pipe supports

    International Nuclear Information System (INIS)

    Khlafallah, M.Z.; Lee, H.M.

    1985-01-01

    With the exception of springs, pipe supports currently in use are designed with the intent of maintaining their rigidity under load. Energy dissipation mechanisms in these pipe supports result in system damping on the order presented by Code Case N-411 of ASME Section III code. Examples of these energy dissipation mechanisms are fluids and gaps in snubbers, gaps in frame supports, and friction in springs and frame supports. If energy absorbing supports designed in accordance with Code Case N-420 are used, higher additional damping will result

  3. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  4. Energy Absorbing Effectiveness – Different Approaches

    Directory of Open Access Journals (Sweden)

    Kotełko Maria

    2018-03-01

    Full Text Available In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.

  5. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  6. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    is that the absorbed energy does not depend on the arrangement of the structure, the material properties, and the damage mode.The purpose of the present paper is to establish a new simple relation between the absorbed energy and the destroyed material volume, which can be used as a design tool for analysis of ship...... collisions and grounding. The developed expressions reflect the structural arrangement, the material properties and different damage patterns.The present method is validated against a large number of existing experimental results and detailed numerical simulation results. Applications to full-sale ship...

  7. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  8. High energy model for irregular absorbing particles

    International Nuclear Information System (INIS)

    Chiappetta, Pierre.

    1979-05-01

    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  9. Wave energy extraction by coupled resonant absorbers.

    Science.gov (United States)

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  10. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  11. Absorbed energy for radiation crosslinking in stabilized PE systems

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various γ-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author)

  12. Absorbed energy for radiation crosslinking in stabilized PE systems

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Charlesby, A

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various {gamma}-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author).

  13. Crashworthiness Analysis and Evaluation of Fuselage Section with Sub-floor Composite Sinusoidal Specimens

    Directory of Open Access Journals (Sweden)

    H.L. Mou

    Full Text Available Abstract Crashworthiness is one of the main concerns in civil aviation safety particularly with regard to the increasing ratio of carbon fiber reinforced plastic (CFRP in aircraft primary structures. In order to generate dates for model validations, the mechanical properties of T700/3234 were obtained by material performance tests, and energy-absorbing results were gained by quasi-static crushing tests of composite sinusoidal specimens. The correctness of composite material model and single-layer finite element model of composite sinusoidal specimens were verified based on the simulation results and test results that were in good agreement. A typical civil aircraft fuselage section with composite sinusoidal specimens under cargo floor was suggested. The crashworthiness of finite element model of fuselage section was assessed by simulating the vertical drop test subjected to 7 m/s impact velocity, and the influences of different thickness of sub-floor composite sinusoidal specimens on crashworthiness of fuselage section were also analyzed. The simulation results show that the established finite element model can accurately simulate the crushing process of composite sinusoidal specimens; the failure process of fuselage section is more stable, and the safety of occupants can be effectively improved because of the smaller peak accelerations that was limited to human tolerance, a critical thickness of sub-floor composite sinusoidal specimens can restrict the magnitude of acceleration peaks, which has certain reference values for enhancing crashworthiness capabilities of fuselage section and improving the survivability of passengers.

  14. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  15. Energy Analysis of Solar Collector With perforated Absorber Plate

    Directory of Open Access Journals (Sweden)

    Ammar A. Farhan

    2017-09-01

    Full Text Available The thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decreasing the perforation numbers. Maximum air temperature difference throughout the solar collector with 3, 6 mm perforations and without perforations are 17, 15, and 12 oC, respectively. Also, it can be concluded that the energy gained from the solar collector with 3 mm perforation absorber plate is 28.2 % more than the energy gained from solar collector without holes per day for 0.1 m3/s airflow rate. The maximum values of the thermal performance curves are 0.67, 0.64, and 0.56 for the solar collector with 3, 6 mm, and without perforations, respectively.

  16. Numerical Modeling of a Wave Energy Point Absorber

    DEFF Research Database (Denmark)

    Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning

    2009-01-01

    The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....

  17. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  18. Energy-harvesting shock absorber with a mechanical motion rectifier

    International Nuclear Information System (INIS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-01-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges. (paper)

  19. Solar energy utilization by solar cells and superblack absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D; Selders, M

    1975-10-31

    A review is presented of the physical principles responsible for the characteristics of solar cells, with particular reference to Si homojunction and CdS--Cu/sub 2/S thin film devices. Electric power generation from solar cells still appears uncompetitive economically except in special circumstances, but heating from solar energy using selective absorbers with low reemission is more promising.

  20. Optimized Latching Control of Floating Point Absorber Wave Energy Converter

    Science.gov (United States)

    Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om

    2018-03-01

    There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.

  1. Innovative energy absorbing devices based on composite tubes

    Science.gov (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  2. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    Cecatti, E.R.

    1983-01-01

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author) [pt

  3. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Science.gov (United States)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  4. Absorbing phase transitions in deterministic fixed-energy sandpile models

    Science.gov (United States)

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  5. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    International Nuclear Information System (INIS)

    Kikuchi, Azusa; Nakabai, Yuya; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-01-01

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k T–T , decreases in the following order: k T–T (BMDBM–DOMBM)>k T–T (BMDBM–OMC)≥k T–T (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed

  6. A novel energy absorber based on magnetorheological gel

    Science.gov (United States)

    Pang, Haoming; Xuan, Shouhu; Sun, Chuanlin; Gong, Xinglong

    2017-10-01

    In this work, a novel magnetorheological energy absorber (MREA) was designed by using magnetorheological gel (MRG) as the damping medium. The proposed MREA had tunable piston gap distances and variable inner magnetic flux density distribution. The piston gap distance could be varied from 7-2 mm and the magnetic flux density at the gap increased from 120-860 mT, respectively. Under both low velocity compression and high speed impact, the damping could be divided into three parts. In the impact test, the velocity of a drop hammer could be reduced from to 3.4-0 m s-1 within a very short time (13 ms) and distance (17 mm). The maximum damping force of the MREA reached to as high as 8 kN. The damping force could also be adjusted by changing the current input. Under a 2 A current, the energy absorption ratio increased about 23% (from 4.13-5.07 J mm-1).

  7. Prompt-gamma detection towards absorbed energy monitoring during hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J.; Balleyguier, L.; Dauvergne, D.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, Universite de Lyon 1, IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne cedex (France); Krimmer, J.; Freud, N.; L' etang, J.M. [Universite de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA - Lyon, Universite Lyon 1, Centre Leon Berard (France); Herault, J.; Amblard, R.; Angellier, G. [Centre Antoine Lacassagne, Cyclotron Biomedical, 227 Avenue de la Lanterne, 06200 Nice (France)

    2015-07-01

    Hadrontherapy is an emerging technique which exploits the fact that a large quantity of the energy of the incident particles is deposited at the end of their flight path. This allows a conformation of the applied dose to the tumor volume and a simultaneous sparing of surrounding healthy tissue. A real-time control of the ion range during the treatment is possible via the detection of prompt secondary radiation (gamma rays or charged particles). Besides a monitoring of the ion range, the knowledge of the total energy absorbed inside the patient is also of importance for an improvement of the treatment quality. It has been shown that the ambient dose in a treatment room is correlated to the monitoring units, i.e. the number of protons of the beam delivery system. The present study consists in applying time-of-flight (TOF) information to identify prompt gamma-rays generated by interactions inside the patient which provides a direct information on the energy imparted. Results from test measurements will be given, which show that events generated in the nozzle and the target phantom can be discriminated. Furthermore, a standalone detection system is being developed which will be read out by a standard PC. The status of the developments for the corresponding electronics will be presented. (authors)

  8. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    Science.gov (United States)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  9. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    Science.gov (United States)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy

    2013-11-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.

  10. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    International Nuclear Information System (INIS)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M; Browne, Alan L; Ulicny, John; Johnson, Nancy

    2013-01-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s −1 . Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R and D Center for nominal drop speeds of up to 6 m s −1 . (paper)

  11. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    Science.gov (United States)

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  12. DETERMINATION OF ENERGY LOSSES BY SHOCK ABSORBER IN A FREIGHT CAR AT CRASH MODE

    Directory of Open Access Journals (Sweden)

    Ya. V. Bolzhelarskyi

    2016-08-01

    Full Text Available Purpose. The purpose of this work is to determine the energy losses in the shock absorber of the freight car whose wheel-set moves in the derailed state on the track panel depending on the axle load and structural parameters of spring suspension. Methodology. On the basis of spring suspension construction analysis and operating principle of the friction shock absorber of the freight car bogie the authors provide the method for determining the energy absorbed by it. The calculations take the maximum values of the absorber elements displacement and the regulatory values of spring suspension parameters. Findings. The authors obtained the calculated formula for determining the energy absorbed by shock absorber for regulation-set mounting schemes of elastic bogie elements depending on the axial load. The mentioned curves are parabolic. Originality. The work examines the crash mode of the wheel-set movement on the track panels after its derailment. It is shown that the energy dissipation in the shock absorbers is the reason for increase in resistance to rolling stock movement. The formulas for calculating the amount of energy dissipated in the shock absorber with a maximum displacement of its elements are derived. This energy depends on the axle load and structural parameters of spring suspension. Practical value. The proposed method allows setting the value of the additional resistance to motion that occurs in crash mode which makes it possible to increase the accuracy of traction calculations.

  13. Reducing heat loss from the energy absorber of a solar collector

    Science.gov (United States)

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  14. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  15. Stiffened Composite Fuselage Barrel Optimization

    Science.gov (United States)

    Movva, R. G.; Mittal, A.; Agrawal, K.; Upadhyay, C. S.

    2012-07-01

    In a typical commercial transport aircraft, Stiffened skin panels and frames contribute around 40% of the fuselage weight. In the current study a stiffened composite fuselage skin panel optimization engine is developed for optimization of the layups of composite panels and stringers using Genetic Algorithm (GA). The skin and stringers of the fuselage section are optimized for the strength and the stability requirements. The selection of the GA parameters considered for the optimization is arrived by performing case studies on selected problems. The optimization engine facilitates in carrying out trade studies for selection of the optimum ply layup and material combination for the configuration being analyzed. The optimization process is applied on a sample model and the results are presented.

  16. Bottom Slamming on Heaving Point Absorber Wave Energy Devices

    DEFF Research Database (Denmark)

    De Backer, Griet; Vantorre, Marc; Frigaard, Peter

    2010-01-01

    shapes are considered: a hemisphere and two conical shapes with deadrise angles of 30 and 45, with a waterline diameter of 5 m. The simulations indicate that the risk of rising out of the water is largely dependent on the buoy draft and sea state. Although associated with power losses, emergence......Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy...... occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45 cone is approximately 2, whereas the power absorption is only 4...

  17. A review on the performance of conventional and energy-absorbing rockbolts

    Directory of Open Access Journals (Sweden)

    Charlie C. Li

    2014-08-01

    Full Text Available This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to load–displacement graphs for every type of rockbolt. Conventional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate; a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement; and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.

  18. Excellent solar energy absorbing and retaining fabric material. Chikunetsu hoon sen'i sozai

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, T. (Unitika Ltd., Osaka (Japan). Central Research Lab.)

    1993-11-10

    Carbides of group IV transition metals such as ZrC, which are used as solar energy selective absorption film for solar energy collectors, has characteristics of absorbing light with a high energy of 0.6eV or more and of converting it to heat when exposed to light, and of not absorbing but reflecting light with a low energy of less than 0.6eV. By using ZrC as fabric materials, therefore, portable and durable heat absorbing and retaining materials can be produced. The authors have developed a solar energy absorbing and retaining fabric material, 'Solar [alpha]' (registered trade mark), which absorbs visible and near infrared rays and converts them to heat, and reflects heat from a human body and confines it. The use of Solar [alpha] has been found in various fields such as clothing as a new material for winter-sportswear, slacks, coats, and swimming suits. In this report, the heat absorbing and retaining mechanisms, basic properties of Solar [alpha], and the results of wearing tests are described. 12 refs., 6 figs., 3 tabs.

  19. System for determining absorbed dose and its distribution for high-energy electron radiation

    International Nuclear Information System (INIS)

    Hegewald, H.; Wulff, W.

    1977-01-01

    Taking into account the polarization effect, the dose determination for high-energy electron radiation from particle accelerators depends on the knowledge of the energy dependence of the mass stopping power. Results obtained with thermoluminescent dosemeters agree with theoretical values. For absorbed dose measurements the primary energy of electron radiation has been determined by nuclear photoreactions, and the calculation of the absorbed dose from charge measurements by means of the mass stopping power is described. Thus the calibration of ionization chambers for high-energy electron radiation by absolute measurements with the Faraday cage and chemical dosemeters has become possible. (author)

  20. Gyroscopic power take-off wave energy point absorber in irregular sea states

    DEFF Research Database (Denmark)

    Zhang, Zili; Chen, Bei; Nielsen, Søren R.K.

    2017-01-01

    Highlights •A GyroPTO wave energy point absorber with magnetic coupling mechanism is proposed. •A 4DOF nonlinear model of the GyroPTO absorber has been derived. •Rational approximations are performed on the radiation damping moments. •Synchronization of the device is more easily maintained...... in narrow-banded sea waves. •The generator gain and the magnetic coupling constant influence the performance of the device....

  1. An experimental study of an energy absorbing restrainer for piping systems

    International Nuclear Information System (INIS)

    Sone, A.; Suzuki, K.

    1989-01-01

    Recently, in the seismic design methodology of the piping systems in nuclear power plants, new and improved design criteria and calculation techniques which will lead to more reliable and cost saving design products have been investigated. For instance, problems for reducing the snubbers in nuclear power plants which provide high costs for their inspections and maintenances and related flexible design problems for the dynamic piping systems have been investigated. Thus, in order to replace snubbers, various types of alternative supporting devices such as dynamic absorbers, gapped support and energy absorbing support devices have been proposed. A number of energy absorbing restrainers have been designed in Japan and United-States by allowing yield to occur during strong earthquakes. Advantages and disadvantages of these restrainers were examined analytically and experimentally. In order to overcome the disadvantages, the authors introduced new absorbing material LSPZ (laminated super plastic zinc) in which SPZ is expected to have reliable ductility and also efficient energy absorbability still under the normal temperature condition. This paper is devoted to an experimental works for this updated absorbing restrainer

  2. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  3. Extension of the Commonwealth standard of absorbed dose from cobalt-60 energy to 25 MV

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1986-01-01

    With the introduction of high energy linear accelerators in hospitals, there is a need for direct measurement of absorbed dose for energies to 25 MV for photons and 20 MeV electrons. The present Australian standard for absorbed dose at cobalt-60 energy is a graphite micro-calorimeter maintained at the AAEC Lucas Heights Research Laboratories. A thorough theoretical analysis of calorimeter operation suggests that computer control and monitoring techniques are appropriate. Solution of Newton's law of cooling for a four-body calorimeter allows development of a computer simulation model. Different temperature control algorithms may then be run and assessed using this model. In particular, the application of a simple differencer is examined. Successful implementation of the calorimeter for energies up to 25 MV could lead to the introduction of an Australian absorbed dose protocol based on calorimetry, therby reducing the uncertainties associated with exposure-based protocols

  4. CONSIDERATIONS ON FLUID DYNAMICS INSIDE A HYDRAULIC SEISMIC ENERGY ABSORBER

    Directory of Open Access Journals (Sweden)

    ȘCHEAUA Fănel

    2013-06-01

    Full Text Available This study presents a method for obtaining a simplified model of a seismic energy dissipation device whose operating principle is based on viscous fluid as a solution for structural isolation against seismic actions. The device operation is based on the resistance force developed by the working fluid when the piston tends to move due to occurrence of a seismic motion. A 3D model achieved is introduced in CFD analysis for emphasize dynamic fluid flow inside the device dissipation cylinder.

  5. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  6. Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Kyungil; Kwon, O Bum; Park, Hyung Wook [Ulsan Nat’l Institute of Science and Technology, Ulsan (Korea, Republic of)

    2017-02-15

    Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers’ safety, owing to efficient impact absorption.

  7. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy.

    Science.gov (United States)

    Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng

    2013-09-01

    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    Science.gov (United States)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  9. Optimisation of energy absorbing liner for equestrian helmets. Part II: Functionally graded foam liner

    International Nuclear Information System (INIS)

    Cui, L.; Forero Rueda, M.A.; Gilchrist, M.D.

    2009-01-01

    The energy absorbing liner of safety helmets was optimised using finite element modelling. In this present paper, a functionally graded foam (FGF) liner was modelled, while keeping the average liner density the same as in a corresponding reference single uniform density liner model. Use of a functionally graded foam liner would eliminate issues regarding delamination and crack propagation between interfaces of different density layers which could arise in liners with discrete density variations. As in our companion Part I paper [Forero Rueda MA, Cui L, Gilchrist MD. Optimisation of energy absorbing liner for equestrian helmets. Part I: Layered foam liner. Mater Des [submitted for publication

  10. Design considerations for application of metallic honeycomb as an energy absorber

    International Nuclear Information System (INIS)

    Lee, W.H.; Roemer, R.E.

    1980-01-01

    Design for postulated accidents in nuclear power plants often requires mitigation of impact to safety-related structures. Plastically designed, energy absorbing mechanisms are often used in the design of such mitigating structures. Metallic honeycomb is the most efficient, practical, energy-absorbing material currently in use. Recent tests indicate that its use in this application, however, presents some unique design and fabrication problems. The paper presents the results of static and dynamic crush tests concerned with the effect of impact velocity, material properties, cell density, loading configuration, and overall pad geometry. Specific design recommendations are made in each area, and suggestions are provided to improve fabrication techniques and minimize subsequent problems

  11. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  12. Crush Can Behaviour as an Energy Absorber in a Frontal Impact

    International Nuclear Information System (INIS)

    Bhuyan, Atanu; Ganilova, Olga

    2012-01-01

    The work presented is devoted to the investigation of a state-of-the-art technological solution for the design of a crush-can characterized by optimal energy absorbing properties. The work is focused on the theoretical background of the square tubes, circular tubes and inverbucktube performance under impact with the purpose of design of a novel optimized structure. The main system under consideration is based on the patent US 2008/0185851 A1 and includes a base flange with elongated crush boxes and back straps for stabilization of the crush boxes with the purpose of improvement of the energy-absorbing functionality. The modelling of this system is carried out applying both a theoretical approach and finite element analysis concentrating on the energy absorbing abilities of the crumple zones. The optimization process is validated under dynamic and quasi-static loading conditions whilst considering various modes of deformation and stress distribution along the tubular components. Energy absorbing behaviour of the crush-cans is studied concentrating on their geometrical properties and their diamond or concertina modes of deformation. Moreover, structures made of different materials, steel, aluminium and polymer composites are considered for the material effect analysis and optimization through their combination. Optimization of the crush-can behaviour is done within the limits of the frontal impact scenario with the purpose of improvement of the structural performance in the Euro NCAP tests.

  13. Crush Can Behaviour as an Energy Absorber in a Frontal Impact

    Science.gov (United States)

    Bhuyan, Atanu; Ganilova, Olga

    2012-08-01

    The work presented is devoted to the investigation of a state-of-the-art technological solution for the design of a crush-can characterized by optimal energy absorbing properties. The work is focused on the theoretical background of the square tubes, circular tubes and inverbucktube performance under impact with the purpose of design of a novel optimized structure. The main system under consideration is based on the patent US 2008/0185851 A1 and includes a base flange with elongated crush boxes and back straps for stabilization of the crush boxes with the purpose of improvement of the energy-absorbing functionality. The modelling of this system is carried out applying both a theoretical approach and finite element analysis concentrating on the energy absorbing abilities of the crumple zones. The optimization process is validated under dynamic and quasi-static loading conditions whilst considering various modes of deformation and stress distribution along the tubular components. Energy absorbing behaviour of the crush-cans is studied concentrating on their geometrical properties and their diamond or concertina modes of deformation. Moreover, structures made of different materials, steel, aluminium and polymer composites are considered for the material effect analysis and optimization through their combination. Optimization of the crush-can behaviour is done within the limits of the frontal impact scenario with the purpose of improvement of the structural performance in the Euro NCAP tests.

  14. Selective solar absorbers: A cost effective solution for access to clean energy in rural Africa

    CSIR Research Space (South Africa)

    Katumba, G

    2008-11-01

    Full Text Available by inadequate grid electricity infrastructure. This state of affairs has culminated in massive deforestation and desertification of some parts of Africa. One technology solution is to harness the energy from the sun through solar absorbers. This has applications...

  15. Assessment criteria for assessing energy-absorbing front underrun protection on trucks

    NARCIS (Netherlands)

    Schram, R.; Leneman, F.J.W.; Zweep, C. van der; Wismans, J.S.H.M.; Witteman, W.J.

    2006-01-01

    The objective of this article is to investigate the possibilities to assess (energy-absorbing) front underrun protection (FUP) devices with respect to injuries of the car occupant without using a car and dummy in the test procedure. A large number of different crash configurations are simulated to

  16. Stability analysis of the Gyroscopic Power Take-Off wave energy point absorber

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Zhang, Zili; Kramer, Morten Mejlhede

    2015-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber consists of a float rigidly connected to a lever. The operational principle is somewhat similar to that of the so-called gyroscopic hand wrist exercisers, where the rotation of the float is brought forward by the rotational particle...

  17. Design and control of a point absorber wave energy converter with an open loop hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    Highlights: • Point absorber wave energy converter is presented. • Piston pump module captures and converts wave energy. • Hydraulic accumulator stores/releases the surplus energy. • Fuzzy controller adjusts the displacement of hydraulic motor. • Generator outputs meet the electricity demand precisely. - Abstract: In this paper, a point absorber wave energy converter combined with offshore wind turbine is proposed. In the system, the wave energy is captured and converted into hydraulic energy by a piston pump module, which is combined with a wind turbine floating platform, and then the hydraulic energy is converted into electricity energy by a variable displacement hydraulic motor and induction generator. In order to smooth and stabilize the captured wave energy, a hydraulic accumulator is applied to store and release the excess energy. In order to meet the demand power a fuzzy controller is designed to adjust the displacement of hydraulic motor and controlled the output power. Simulation under irregular wave condition has been carried out to verify the validity of the mathematical model and the effectiveness of the controller strategy. The results show that the wave energy converter system could deliver the required electricity power precisely as the motor output torque is controlled. The accumulator could damp out all the fluctuations in output power, so the wave energy would become a dispatchable power source.

  18. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    Science.gov (United States)

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  19. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  20. Power maximization of a point absorber wave energy converter using improved model predictive control

    Science.gov (United States)

    Milani, Farideh; Moghaddam, Reihaneh Kardehi

    2017-08-01

    This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.

  1. On the absorbed dose determination method in high energy electrons beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co 60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  2. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles

    Science.gov (United States)

    Guo, Sijing; Liu, Yilun; Xu, Lin; Guo, Xuexun; Zuo, Lei

    2016-07-01

    Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions ('Pareto-optimal solutions') are also obtained by considering the trade-off between ride comfort and road handling.

  3. Design and fabrication of an energy-harvesting device using vibration absorber

    Science.gov (United States)

    Heidari, Hamidreza; Afifi, Arash

    2017-05-01

    Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.

  4. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  5. An Overview on Impact Behaviour and Energy Absorption of Collapsible Metallic and Non-Metallic Energy Absorbers used in Automotive Applications

    Science.gov (United States)

    Shinde, R. B.; Mali, K. D.

    2018-04-01

    Collapsible impact energy absorbers play an important role of protecting automotive components from damage during collision. Collision of the two objects results into the damage to one or both of them. Damage may be in the form of crack, fracture and scratch. Designers must know about how the material and object behave under impact event. Owing to above reasons different types of collapsible impact energy absorbers are developed. In the past different studies were undertaken to improve such collapsible impact energy absorbers. This article highlights such studies on common shapes of collapsible impact energy absorber and their impact behaviour under the axial compression. The literature based on studies and analyses of effects of different geometrical parameters on the crushing behaviour of impact energy absorbers is presented in detail. The energy absorber can be of different shape such as circular tube, square tube, and frustums of cone and pyramids. The crushing behaviour of energy absorbers includes studies on crushing mechanics, modes of deformation, energy absorbing capacity, effect on peak and mean crushing load. In this work efforts are made to cover major outcomes from past studies on such behavioural parameters. Even though the major literature reviewed is related to metallic energy absorbers, emphasis is also laid on covering literature on use of composite tube, fiber metal lamination (FML) member, honeycomb plate and functionally graded thickness (FGT) tube as a collapsible impact energy absorber.

  6. The influence of mammographic X-ray spectra on absorbed energy distribution in breast: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Delis, H.; Spyrou, G.; Tzanakos, G.; Panayiotakis, G.

    2005-01-01

    A mathematical model, based on Monte Carlo simulation, is proposed for deriving absorbed energy and dose distribution in mammography utilizing a mathematical water-like phantom. The model was validated for its accuracy against experimental and published data. The main factor discriminating absorbed energy distribution characteristics among different mammographic techniques was considered the X-ray spectrum. The absorbed energy distribution inside the phantom was investigated via percentage depth dose and isodose curves. The influence of the factors affecting X-ray spectrum (tube voltage, anode material, filter material and thickness) on absorbed energy distribution was examined. The hardness of the beam, due to increase of tube voltage or filtration, was found to be the major factor affecting absorbed energy distribution inside the phantom. In general, Mo and W anode systems demonstrated superior dosimetric characteristics against those of W-Mo or Rh. The model presented can be used for estimating absolute and relative breast dose values and their spatial distributions

  7. An Investigation into Power from Pitch-Surge Point-Absorber Wave Energy Converters.

    OpenAIRE

    Chaplin, R. V.; Aggidis, George A.

    2007-01-01

    There is a worldwide opportunity for clean renewable power. The results from the UK Government's "Marine Energy Challenge" showed that marine energy has the potential to become competitive with other forms of energy. The key to success in this lies in a low lifetime-cost of power as delivered to the user. Pitch-surge point-absorber WECs have the potential to do this with average annual powers of around 2 MW in North Atlantic conditions from relatively small devices that would be economically ...

  8. Estimation of RF energy absorbed in the brain from mobile phones in the Interphone Study

    Science.gov (United States)

    Varsier, N; Bowman, J D; Deltour, I; Figuerola, J; Mann, S; Moissonnier, M; Taki, M; Vecchia, P; Villegas, R; Vrijheid, M; Wake, K; Wiart, J

    2011-01-01

    Objectives The objective of this study was to develop an estimate of a radio frequency (RF) dose as the amount of mobile phone RF energy absorbed at the location of a brain tumour, for use in the Interphone Epidemiological Study. Methods We systematically evaluated and quantified all the main parameters thought to influence the amount of specific RF energy absorbed in the brain from mobile telephone use. For this, we identified the likely important determinants of RF specific energy absorption rate during protocol and questionnaire design, we collected information from study subjects, network operators and laboratories involved in specific energy absorption rate measurements and we studied potential modifiers of phone output through the use of software-modified phones. Data collected were analysed to assess the relative importance of the different factors, leading to the development of an algorithm to evaluate the total cumulative specific RF energy (in joules per kilogram), or dose, absorbed at a particular location in the brain. This algorithm was applied to Interphone Study subjects in five countries. Results The main determinants of total cumulative specific RF energy from mobile phones were communication system and frequency band, location in the brain and amount and duration of mobile phone use. Though there was substantial agreement between categorisation of subjects by cumulative specific RF energy and cumulative call time, misclassification was non-negligible, particularly at higher frequency bands. Factors such as adaptive power control (except in Code Division Multiple Access networks), discontinuous transmission and conditions of phone use were found to have a relatively minor influence on total cumulative specific RF energy. Conclusions While amount and duration of use are important determinants of RF dose in the brain, their impact can be substantially modified by communication system, frequency band and location in the brain. It is important to take

  9. Estimation of RF energy absorbed in the brain from mobile phones in the Interphone Study.

    Science.gov (United States)

    Cardis, E; Varsier, N; Bowman, J D; Deltour, I; Figuerola, J; Mann, S; Moissonnier, M; Taki, M; Vecchia, P; Villegas, R; Vrijheid, M; Wake, K; Wiart, J

    2011-09-01

    The objective of this study was to develop an estimate of a radio frequency (RF) dose as the amount of mobile phone RF energy absorbed at the location of a brain tumour, for use in the Interphone Epidemiological Study. We systematically evaluated and quantified all the main parameters thought to influence the amount of specific RF energy absorbed in the brain from mobile telephone use. For this, we identified the likely important determinants of RF specific energy absorption rate during protocol and questionnaire design, we collected information from study subjects, network operators and laboratories involved in specific energy absorption rate measurements and we studied potential modifiers of phone output through the use of software-modified phones. Data collected were analysed to assess the relative importance of the different factors, leading to the development of an algorithm to evaluate the total cumulative specific RF energy (in joules per kilogram), or dose, absorbed at a particular location in the brain. This algorithm was applied to Interphone Study subjects in five countries. The main determinants of total cumulative specific RF energy from mobile phones were communication system and frequency band, location in the brain and amount and duration of mobile phone use. Though there was substantial agreement between categorisation of subjects by cumulative specific RF energy and cumulative call time, misclassification was non-negligible, particularly at higher frequency bands. Factors such as adaptive power control (except in Code Division Multiple Access networks), discontinuous transmission and conditions of phone use were found to have a relatively minor influence on total cumulative specific RF energy. While amount and duration of use are important determinants of RF dose in the brain, their impact can be substantially modified by communication system, frequency band and location in the brain. It is important to take these into account in analyses of risk

  10. Simulation of a Local Collision of SC Wall Using High Energy Absorbing Steel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, H. K.; Chung, C. H.; Park, J.; Lee, J. W. [Dankook University, Yongin (Korea, Republic of); Kim, S. Y. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-05-15

    Local damage evaluations for nuclear power plant(NPP) design are performed against turbine impact, tornado impact, airplane engine impact, etc., where turbine is a internal source of impact, whereas tornado and airplane engine are external sources of impact. The thickness of NPP wall structure is determined at initial design stage not to be penetrated by local impacts. This study investigated the local damage of NPP substructure against internal turbine impact. Simulation of local collisions of SC wall in NPP structure, which consists of two models: one using general steel and the other using high energy absorbing steel, were performed. The performance of SC wall using ductile high energy absorbing steel can be greatly improved on local collisions when compared with that of general steel

  11. Simulation of a Local Collision of SC Wall Using High Energy Absorbing Steel

    International Nuclear Information System (INIS)

    Yoo, H. K.; Chung, C. H.; Park, J.; Lee, J. W.; Kim, S. Y.

    2011-01-01

    Local damage evaluations for nuclear power plant(NPP) design are performed against turbine impact, tornado impact, airplane engine impact, etc., where turbine is a internal source of impact, whereas tornado and airplane engine are external sources of impact. The thickness of NPP wall structure is determined at initial design stage not to be penetrated by local impacts. This study investigated the local damage of NPP substructure against internal turbine impact. Simulation of local collisions of SC wall in NPP structure, which consists of two models: one using general steel and the other using high energy absorbing steel, were performed. The performance of SC wall using ductile high energy absorbing steel can be greatly improved on local collisions when compared with that of general steel

  12. Absorbed dose determination in water in medium energy x-ray beam

    International Nuclear Information System (INIS)

    Nisevic, G.; Spasic-Jokic, V.

    1998-01-01

    Absorbed dose determination in water phantom in medium energy X-ray beam, according to IAEA recommendations is given. This method is applied on Radiotherapy department of Military Academy Hospital in Belgrade. Reference points of measurements are on depth of 5 cm and 2 cm as it recommended in ref. Experimental results are shown in aim to introduce new dosimetric concept based on air kerma calibration factor recommended for application in our radiotherapy centers (author)

  13. Thermoluminescent dosemeters for determining the energy absorbed during X-ray radiography of the vertebral column

    International Nuclear Information System (INIS)

    Liebl, R.

    1983-01-01

    The dose and absorbed energy during normal diagnostic X-ray of various sections of the vertebral column were determined with LiF-dosemeters in a phantom. The paper describes a method to be used to determine integral doses from the dose measurements. The energy absorbed for one X-ray picture of the vertebral column is between 5 and 30 mJ. Compared to other diagnostical X-rays the quantity of the energy absorbed during X-ray of the vertebral column is rather high and is only reached by X-rays in the pelvic region. The speculations on the rate of incidence of malignent neoplasms on the basis of diagnostical X-ray of the vertebral column reveal a value of 50 per 60 x 10 6 persons. This value is likely to overestimate the risk, seems, however, to be low in comparison to other risks of every day life (traffic accident, mountainering, etc). (orig./HP) [de

  14. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  15. Absorbed impact energy and mode of fracture: A statistical description of the micro-structural dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Pontikis, V., E-mail: Vassilis.Pontikis@cea.f [Commissariat a l' Energie Atomique, IRAMIS, Laboratoire des Solides Irradies, CNRS UMR 7642, Ecole Polytechnique, 91191 Gif sur Yvette Cedex (France); Gorse, D. [Commissariat a l' Energie Atomique, IRAMIS, Laboratoire des Solides Irradies, CNRS UMR 7642, Ecole Polytechnique, 91191 Gif sur Yvette Cedex (France)

    2009-10-01

    A statistical model is proposed to account for the influence of the dispersion of the microstructure on the ductile-to-brittle transition in body centered cubic (bcc) metals and their alloys. In this model, the dispersion of the microstructure is expressed via a normal distribution of transition temperatures whereas a simple relation exists between the values of absorbed, lower and upper shelf energies, the ductile area fraction and the distribution parameters. It is shown that via an appropriate renormalization of energies and temperatures, experimental data for different materials and ageing conditions align all together on a master curve, guaranteeing thereby the effectiveness of the proposed statistical description.

  16. Absorbed impact energy and mode of fracture: A statistical description of the micro-structural dispersion

    International Nuclear Information System (INIS)

    Pontikis, V.; Gorse, D.

    2009-01-01

    A statistical model is proposed to account for the influence of the dispersion of the microstructure on the ductile-to-brittle transition in body centered cubic (bcc) metals and their alloys. In this model, the dispersion of the microstructure is expressed via a normal distribution of transition temperatures whereas a simple relation exists between the values of absorbed, lower and upper shelf energies, the ductile area fraction and the distribution parameters. It is shown that via an appropriate renormalization of energies and temperatures, experimental data for different materials and ageing conditions align all together on a master curve, guaranteeing thereby the effectiveness of the proposed statistical description.

  17. Measurements of absorbed energy distributions in water from pulsed electron beams

    International Nuclear Information System (INIS)

    Devanney, J.A.

    1974-01-01

    An evaluation of the use of a holographic interferometer to measure the energy deposition as a function of depth in water from pulsed electron beams, together with a brief description of the interferometer and the technique of generating a hologram are presented. The holographic interferometer is used to measure the energy deposition as a function of depth in water from various pulsed beams of monoenergetic electrons in the energy range from 1.0 to 2.5 MeV. These results are compared to those computed by using a Monte Carlo radiation transport code, ETRAN-15, for the same electron energies. After the discrepancies between the measured and computed results are evaluated, reasonable agreement is found between the measured and computed absorbed energy distributions as a function of depth in water. An evalutation of the response of the interferometer as a function of electron intensities is performed. A comparison among four energy deposition curves that result from the irradiation of water with pulsed electron beams from a Febetron accelerator, model 705, is presented. These pulsed beams were produced by the same vacuum diode with the same charging voltage. The results indicate that the energy distribution of the electrons in the pulsed beam is not always constant. A comparison of the energy deposition curves that result from the irradiation of water with electron pulses from different vacuum diodes but the same charging voltage is presented. These results indicate again that the energy distribution of the electrons in the pulsed beam may vary between vacuum diodes. These differences would not be realized by using a totally absorbing metal calorimeter and Faraday Cup

  18. Simulation of Flow around Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Garipov A.O.

    2013-04-01

    Full Text Available Low fuselage drag has always been a key target of helicopter manufacturers. Therefore, this paper focuses on CFD predictions of the drag of several components of a typical helicopter fuselage. In the first section of the paper, validation of the obtained CFD predictions is carried out using wind tunnel measurements. The measurements were carried out at the Kazan National Research Technical University n.a. A. Tupolev. The second section of the paper is devoted to the analysis of drag contributions of several components of the ANSAT helicopter prototype fuselage using the RANS approach. For this purpose, several configurations of fuselages are considered with different levels of complexity including exhausts and skids. Depending on the complexity of the considered configuration and CFD mesh both the multi-block structured HMB solver and the unstructured commercial tool Fluent are used. Finally, the effect of an actuator disk on the predicted drag is addressed.

  19. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  20. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  1. A new energy-absorbing bolt for rock support in high stress rock masses

    Energy Technology Data Exchange (ETDEWEB)

    Charlie Chunlin Li [Norwegian University of Science and Technology (NTNU) (Norway)

    2010-04-15

    An energy-absorbing rock support device, called a D bolt, has been recently developed to counteract both burst-prone and squeezing rock conditions that occur during underground excavation. The bolt is a smooth steel bar with a number of anchors along its length. The anchors are firmly fixed within a borehole using either cement grout or resin, while the smooth sections of the bolt between the anchors may freely deform in response to rock dilation. Failure of one section does not affect the reinforcement performance of the other sections. The bolt is designed to fully use both the strength and the deformation capacity of the bolt material along the entire length. The bolt has large load-bearing and deformation capacities. Static pull tests and dynamic drop tests show that the bolt length elongates by 14-20% at a load level equal to the strength of the bolt material, thereby absorbing a large amount of energy. The impact average load of a 20 mm D bolt is 200-230 kN, with only a small portion of the load transferred to the bolt plate. The cumulative dynamic energy absorption of the bolt is measured to be 47 kJ/m. D bolts were tested in three deep mines. Filed measurements show that D bolts are loaded less than rebar bolts. This paper presents the layout and principle of the D bolt, and corresponding results from static, dynamic, and field tests.

  2. Parameters Analysis of Hydraulic-Electrical Energy Regenerative Absorber on Suspension Performance

    Directory of Open Access Journals (Sweden)

    Han Zhang

    2014-05-01

    Full Text Available To recycle the vibration energy of vehicles over rough roads, a hydraulic-electricity energy regenerative suspension (HEERS was designed in the present work, and simulations were performed with focus on its performance. On the basis of the system principle, the mathematical model of hydraulic-electrical energy regenerative absorber (HEERA and two degrees of freedom (DOF suspension dynamic model were constructed. Using the model of HEERA, simulations on force-displacement and force-velocity characteristics were performed with a 1.67 Hz frequency and a sinusoidal input adopted. And then in combination with HEERA model and two DOF suspension models, simulations on the performance of HEERS also were carried out. Finally, the influences of charging pressure and volume of the accumulator, hydraulic motor displacement, orifice area of check valve, and inner diameter of hydraulic pipelines on the performance of HEERA and HEERS were investigated in depth. The simulation results indicated that (i the damping characteristic of HEERA was coincident with the damping characteristics of traditional absorber; (ii the most remarkable influencing factor on the performance of HEERS was the hydraulic motor displacement, followed by orifice area of check valve, inner diameter of pipelines, and charging pressure of accumulator, while the effects of charging volume of accumulator were quite limited.

  3. Aluminum ''egg-box'' panel as an energy absorber for pedestrian protection

    Energy Technology Data Exchange (ETDEWEB)

    Nowpada, Sravanthi; Chirwa, Efford C.; Myler, Peter; Matsika, Emmanuel [Bolton Automotive and Aerospace Research Group (BAARG), School of Built Environment and Engineering, University of Bolton (United Kingdom)

    2010-07-15

    This paper evaluates the quasi-static performance of lightweight aluminum ''egg-box'' panels which have an improved architecture specifically designed to increase the energy absorption capability. In its entirety, the egg-box panel structure investigated herein is made up of arrays of positive and negative frusta. To understand the collapse mechanism and the factors influencing the energy absorption thereof, compressive tests were conducted under similar test conditions on two single frusta, one constrained in situ and the other separated from the egg-box panel exposing the free-free edges. Their load-displacement histories show characteristics that are similar, with a rise in load to a point where they plateau at a steady state load for the entire collapse time. But the energy absorbed by the in situ constrained frustum is 80% greater than that separated from the egg-box panel with free-free edges. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    Science.gov (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  5. Effects of boundary layer refraction and fuselage scattering on fuselage surface noise from advanced turboprop propellers

    Science.gov (United States)

    Mcaninch, G. L.; Rawls, J. W., Jr.

    1984-01-01

    An acoustic disturbance's propagation through a boundary layer is discussed with a view to the analysis of the acoustic field generated by a propfan rotor incident to the fuselage of an aircraft. Applying the parallel flow assumption, the resulting partial differential equations are reduced to an ordinary acoustic pressure differential equation by means of the Fourier transform. The methods used for the solution of this equation include those of Frobenius and of analytic continuation; both yield exact solutions in series form. Two models of the aircraft fuselage-boundary layer system are considered, in the first of which the fuselage is replaced by a flat plate and the acoustic field is assumed to be two-dimensional, while in the second the fuselage is a cylinder in a fully three-dimensional acoustic field. It is shown that the boundary layer correction improves theory-data comparisons over simple application of a pressure-doubling rule at the fuselage.

  6. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration.

    Science.gov (United States)

    Konow, Nicolai; Roberts, Thomas J

    2015-04-07

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    Science.gov (United States)

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  8. Laboratory testing of a long expansion rock bolt support for energy-absorbing applications

    Directory of Open Access Journals (Sweden)

    Skrzypkowski Krzysztof

    2018-01-01

    Full Text Available The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Polska Miedź S.A. mines. In the underground mines of the Legnica-Głogów Copper District (LGOM the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.

  9. Laboratory testing of a long expansion rock bolt support for energy-absorbing applications

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-01-01

    The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Polska Miedź S.A. mines. In the underground mines of the Legnica-Głogów Copper District (LGOM) the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.

  10. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams.

    Science.gov (United States)

    Seuntjens, J P; Ross, C K; Shortt, K R; Rogers, D W

    2000-12-01

    Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are

  11. Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt

    Science.gov (United States)

    Kailiang, Zhu; Jianqiao, Fu

    2017-11-01

    The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.

  12. Designing a point-absorber wave energy converter for the Mediterranean Sea

    International Nuclear Information System (INIS)

    Archetti, Renata; Moreno Miquel, Adria; Antonini, Alessandro; Passoni, Giuseppe; Bozzi, Silvia; Gruosso, Giambattista; Scarpa, Francesca; Bizzozero, Federica; Giassi, Marianna

    2015-01-01

    This work aims to assess the potential for wave energy production in the Italian seas by the deployment of arrays of heaving point absorbers, specifically optimized for mild climates. We model a single-body WEC, consisting of a cylindrical heaving buoy, attached to a linear electric generator placed on the seabed. The model includes both hydrodynamic and electromechanical forces. The results show that the best buoy-generator configuration at the selected sites (Alghero and Mazara del Vallo) is given by a 6 to 10 kW device and with a buoy with diameter between 4 and 5 m. This device can be brought to resonance, increasing the performances, by adding a submerged sphere. These results are encouraging and enlarge the perspective on wave energy production in the Italian seas. [it

  13. Vibration Suppression of Electronic Box by a Dual Function Piezoelectric Energy Harvester-Tuned Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Sajid Rafique

    2014-04-01

    Full Text Available Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber. It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of 'electromechanical' TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel "electromechanical" TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry

  14. Vibration suppression of electronic box by a dual function piezoelectric energy harvester-tuned vibration absorber

    International Nuclear Information System (INIS)

    Rafique, S.; Shah, S.

    2014-01-01

    Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber). It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of electromechanical TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel electromechanical TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry. (author)

  15. Clinical dosimetry with plastic scintillators - Almost energy independent, direct absorbed dose reading with high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Quast, U; Fluehs, D [Department of Radiotherapy, Essen (Germany). Div. of Clinical Radiation Physics; Fluehs, D; Kolanoski, H [Dortmund Univ. (Germany). Inst. fuer Physik

    1996-08-01

    Clinical dosimetry is still far behind the goal to measure any spatial or temporal distribution of absorbed dose fast and precise without disturbing the physical situation by the dosimetry procedure. NE 102A plastic scintillators overcome this border. These tissue substituting dosemeter probes open a wide range of new clinical applications of dosimetry. This versatile new dosimetry system enables fast measurement of the absorbed dose to water in water also in regions with a steep dose gradient, close to interfaces, or in partly shielded regions. It allows direct reading dosimetry in the energy range of all clinically used external photon and electron beams, or around all branchytherapy sources. Thin detector arrays permit fast and high resolution measurements in quality assurance, such as in-vivo dosimetry or even afterloading dose monitoring. A main field of application is the dosimetric treatment planning, the individual optimization of brachytherapy applicators. Thus, plastic scintillator dosemeters cover optimally all difficult fields of clinical dosimetry. An overview about its characteristics and applications is given here. 20 refs, 1 fig.

  16. Dynamics and control of the GyroPTO wave energy point absorber under sea waves

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.; Basu, Biswajit

    2017-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber has the operational principle somewhat similar to the so-called gyroscopic hand wrist exerciser. Inside the float of GyroPTO, there is a mechanical system made up of a spinning flywheel with its spin axis in rolling contact...... to a ring. At certain conditions, the ring starts to rotate at a frequency equal to the excitation angular frequency. In this synchronized state, the generator is running at almost constant speed and the generated power becomes constant. In this paper, theoretical modeling of the GyroPTO device is carried...... out based on analytical rigid body dynamics, and a 3-DOF nonlinear model is established. Simulation results show that synchronization of the device is maintained under harmonic sea wave, but is lost easily under non-harmonic sea waves.To overcome this problem, a magnetic coupling mechanism is added...

  17. LOCAL COLLISION SIMULATION OF AN SC WALL USING ENERGY ABSORBING STEEL

    Directory of Open Access Journals (Sweden)

    CHUL-HUN CHUNG

    2013-08-01

    Full Text Available This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact.

  18. Local Collision Simulation of an SC Wall Using Energy Absorbing Steel

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chulhun; Choi, Hyun; Park, Jaegyun [Dankook Univ., Yongin (Korea, Republic of)

    2013-08-15

    This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact.

  19. Crash Test of an MD-500 Helicopter with a Deployable Energy Absorber Concept

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Kellas, Sotiris

    2010-01-01

    On December 2, 2009, a full scale crash test was successfully conducted of a MD-500 helicopter at the NASA Langley Research Center Landing and Impact Research Facility . The purpose of this test was to evaluate a novel composite honeycomb deployable energy absorbing (DEA) concept for attenuation of structural and crew loads during helicopter crashes under realistic crash conditions. The DEA concept is an alternative to external airbags, and absorbs impact energy through crushing. In the test, the helicopter impacted the concrete surface with 11.83 m/s (38.8 ft/s) horizontal, 7.80 m/s (25.6 ft/s) vertical and 0.15 m/s (0.5 ft/s) lateral velocities; corresponding to a resultant velocity of 14.2 m/s (46.5 ft/s). The airframe and skid gear were instrumented with accelerometers and strain gages to determine structural integrity and load attenuation, while the skin of the airframe was covered with targets for use by photogrammetry to record gross vehicle motion before, during, and after the impact. Along with the collection of airframe data, one Hybrid III 50th percentile anthropomorphic test device (ATD), two Hybrid II 50th percentile ATDs and a specialized human surrogate torso model (HSTM) occupant were seated in the airframe and instrumented for the collection of occupant loads. Resultant occupant data showed that by using the DEA, the loads on the Hybrid II and Hybrid III ATDs were in the Low Risk regime for the injury criteria, while structural data showed the airframe retained its structural integrity post crash. Preliminary results show that the DEA is a viable concept for the attenuation of impact loads.

  20. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    Science.gov (United States)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1999-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (1) Lead handling / exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (2) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (3) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; (4) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  1. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter

    International Nuclear Information System (INIS)

    Montoya Andrade, Dan-El; Villa Jaén, Antonio de la; García Santana, Agustín

    2014-01-01

    Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power

  2. Performance of a Tethered Point Wave-Energy Absorber in Regular and Irregular Waves

    KAUST Repository

    Bachynski, Erin E.; Young, Yin Lu; Yeung, Ronald W.

    2010-01-01

    The importance of the mooring system on the dynamic response of a point-absorber type ocean-wave energy converter (WEC) is investigated using a frequency-domain approach. In order to ensure the safety of WECs, careful consideration of the response and resonance frequencies in all motions must be evaluated, including the effects of the mooring system. In this study, a WEC floater with a closed, flat bottom is modeled as a rigid vertical cylinder tethered by elastic mooring lines. The WEC hydrodynamic added mass and damping are obtained using established potential-flow methods, with additional damping provided by the energy-extraction system. The results show that the response of the WEC, and the corresponding power takeoff, varies with the diameter-to-draft (D=T) ratio, mooring system stiffness, and mass distribution. For a given wave climate in Northern California, near San Francisco, the heave energy extraction is found to be best for a shallow WEC with a soft mooring system, compared to other systems that were examined. This result assumes a physical limit (cap) on the motion which is related to the significant wave height to draft ratio. Shallow draft designs, however, may experience excessive pitch motions and relatively larger viscous damping. In order to mitigate the pitch response, the pitch radius of gyration should be small and the center of mass should be low. Copyright © 2010 by ASME.

  3. Active noise control in fuselage design

    NARCIS (Netherlands)

    Krakers, L.A.; Tooren, M.J.L. van; Beukers, A.; Berkhof, A.P.; Goeje, M.P. de

    2003-01-01

    To achieve comfortable noise levels inside the passenger cabin, sound damping measures have to be taken to improve the sound insulation properties of the bare airframe. Usually the sound insulation requirements of a passenger cabin are met after the mechanical design of the fuselage structure is

  4. 14 CFR 25.783 - Fuselage doors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuselage doors. 25.783 Section 25.783 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... operated manually; (ii) The powered latch actuators, if installed; and (iii) The relative motion between...

  5. Nearshore Tests of the Tidal Compensation System for Point-Absorbing Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci

    2015-04-01

    Full Text Available The power production of the linear generator wave energy converter developed at Uppsala University is affected by variations of mean sea level. The reason is that these variations change the distance between the point absorber located on the surface and the linear generator located on the seabed. This shifts the average position of the translator with respect to the center of the stator, thereby reducing the generator output power. A device mounted on the point absorber that compensates for tides of small range by regulating the length of the connection line between the buoy at the surface and the linear generator has been constructed and tested. This paper describes the electro-mechanical, measurement, communication and control systems installed on the buoy and shows the results obtained before its connection to the generator. The adjustment of the line was achieved through a linear actuator, which shortens the line during low tides and vice versa. The motor that drives the mechanical device was activated remotely via SMS. The measurement system that was mounted on the buoy consisted of current and voltage sensors, accelerometers, strain gauges and inductive and laser sensors. The data collected were transferred via Internet to a Dropbox server. As described within the paper, after the calibration of the sensors, the buoy was assembled and tested in the waters of Lysekil harbor, a few kilometers from the Uppsala University research site. Moreover, the performance of the sensors, the motion of the mechanical device, the power consumption, the current control strategy and the communication system are discussed.

  6. Absorbed dose calibration factors for parallel-plate chambers in high energy photon beams

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.; Thomas, R.A.S.

    2002-01-01

    An investigation was carried out into the performance of parallel-plate chambers in 60 Co and MV photon beams. The aim was to derive calibration factors, investigate chamber-to-chamber variability and provide much-needed information on the use of parallel-plate chambers in high-energy X-ray beams. A set of NE2561/NE2611 reference chambers, calibrated against the primary standard graphite calorimeter is used for the dissemination of absorbed dose to water. The parallel-plate chambers were calibrated by comparison with the NPL reference chambers in a water phantom. Two types of parallel-plate chamber were investigated - the NACP -02 and Roos and measurements were made at 60 C0 and 6 linac photon energies (6-19 MV). Calibration factors were derived together with polarity corrections. The standard uncertainty in the calibration of a chamber in terms of absorbed dose to water is estimated to be ±0.75%. The results of the polarity measurements were somewhat confusing. One would expect the correction to be small and previous measurements in electron beams have indicated that there is little variation between chambers of these types. However, some chambers gave unexpectedly large polarity corrections, up to 0.8%. By contrast the measured polarity correction for a NE2611 chamber was less than 0.13% at all energies. The reason for these large polarity corrections is not clear, but experimental error and linac variations have been ruled out. By combining the calibration data for the different chambers it was possible to obtain experimental k Q factors for the two chamber types. It would appear from the data that the variations between chambers of the same type are random and one can therefore define a generic curve for each chamber type. These are presented in Figure 1, together with equivalent data for two cylindrical chamber types - NE2561/NE2611 and NE2571. As can be seen, there is a clear difference between the curves for the cylindrical chambers and those for the

  7. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  8. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  9. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    International Nuclear Information System (INIS)

    Ahmad, S.; Bhaduri, P.P.; Jahan, H.; Senger, A.; Adak, R.; Samanta, S.; Prakash, A.; Dey, K.; Lebedev, A.; Kryshen, E.; Chattopadhyay, S.; Senger, P.; Bhattacharjee, B.; Ghosh, S.K.; Raha, S.; Irfan, M.; Ahmad, N.; Farooq, M.; Singh, B.

    2015-01-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  10. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    International Nuclear Information System (INIS)

    Bankvall, G.; Hakansson, H.A.

    1982-01-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted

  11. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  12. Specific absorbed fractions of energy at various ages from internal photon sources: 7, Adult male

    International Nuclear Information System (INIS)

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. In this volume PHI-values are tabulated for an adult male (70-kg Reference Man). These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with other methods at photon energies below 200 keV. 12 refs., 2 tabs

  13. Analysis of absorbed energy and efficiency of a solar flat plate collector

    Directory of Open Access Journals (Sweden)

    Anderson Miguel Lenz

    2017-07-01

    Full Text Available The highest percentage in home electricity demands in Brazil lies with the water heating systems, where the electric shower has a great contribution in consumption. The use of solar thermal panels is an alternative to minimize the strain on the electrical system by heating water. Current study evaluates a water heating system built with materials commonly used in home constructions. The tested collector is a 1 m² flat plate. Experiments were conducted at the State University of Western Paraná (UNIOESTE, campus Cascavel, Paraná State, Brazil. Temperature data were collected by PT100 sensors and solar radiation was measured with a pyranometer, coupled to a CR-1000 datalogger, with readings and collection every 5 minutes for 1 year. Data collection and analysis showed that the system presented monthly efficiency ranging between 33.7 and 53.54%, and energy absorbed between 30.79 and 75.29 kWh m-².month. Results show the system is a good option for use in residential or rural water heating due to decrease in the electric bill.

  14. Study of gelatin as an effective energy absorbing layer for laser bioprinting.

    Science.gov (United States)

    Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Chrisey, Douglas B; Huang, Yong

    2017-06-09

    Laser-induced forward transfer printing, also commonly known as laser printing, has been widely implemented for three-dimensional bioprinting due to its unique orifice-free nature during printing. However, the printing quality has the potential to be further improved for various laser bioprinting applications. The objectives of this study are to investigate the feasibility of using gelatin as an energy absorbing layer (EAL) material for laser bioprinting and its effects on the quality of printed constructs, bioink printability, and post-printing cell viability and process-induced DNA damage. The gelatin EAL is applied between the quartz support and the coating of build material, which is to be printed. Printing quality can be improved by EAL-assisted laser printing when using various alginate solutions (1%, 2%, and 4%) and cell-laden bioinks (2% alginate and 5 × 10 6 cells ml -1 in cell culture medium). The required laser fluence is also reduced due to a higher absorption coefficient of gelatin gel, in particular when to achieve the best printing type/quality. The post-printing cell viability is improved by ∼10% and DNA double-strand breaks are reduced by ∼50%. For all the build materials investigated, the gelatin EAL helps reduce the droplet size and average jet velocity.

  15. CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves

    Directory of Open Access Journals (Sweden)

    Brecht Devolder

    2018-03-01

    Full Text Available In this paper we use the Computational Fluid Dynamics (CFD toolbox OpenFOAM to perform numerical simulations of multiple floating point absorber wave energy converters (WECs arranged in a geometrical array configuration inside a numerical wave tank (NWT. The two-phase Navier-Stokes fluid solver is coupled with a motion solver to simulate the hydrodynamic flow field around the WECs and the wave-induced rigid body heave motion of each WEC within the array. In this study, the numerical simulations of a single WEC unit are extended to multiple WECs and the complexity of modelling individual floating objects close to each other in an array layout is tackled. The NWT is validated for fluid-structure interaction (FSI simulations by using experimental measurements for an array of two, five and up to nine heaving WECs subjected to regular waves. The validation is achieved by using mathematical models to include frictional forces observed during the experimental tests. For all the simulations presented, a good agreement is found between the numerical and the experimental results for the WECs’ heave motions, the surge forces on the WECs and the perturbed wave field around the WECs. As a result, our coupled CFD–motion solver proves to be a suitable and accurate toolbox for the study of fluid-structure interaction problems of WEC arrays.

  16. Specific absorbed fractions of energy at various ages from internal photon sources: 1, Methods

    International Nuclear Information System (INIS)

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. This volume outlines various methods used to compute the PHI-values and describes how the ''best'' estimates recommended by us are chosen. These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods that Spiers and co-workers developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with the methods at photon energies below 200 keV. 41 refs., 25 figs., 23 tabs

  17. Experimental validation of a magnetorheological energy absorber design optimized for shock and impact loads

    International Nuclear Information System (INIS)

    Singh, Harinder J; Hu, Wei; Wereley, Norman M; Glass, William

    2014-01-01

    A linear stroke adaptive magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m s −1 . The performance of the MREA was characterized using dynamic range, which is defined as the ratio of maximum on-state MREA force to the off-state MREA force. Design optimization techniques were employed in order to maximize the dynamic range at high impact velocities such that MREA maintained good control authority. Geometrical parameters of the MREA were optimized by evaluating MREA performance on the basis of a Bingham-plastic analysis incorporating minor losses (BPM analysis). Computational fluid dynamics and magnetic FE analysis were conducted to verify the performance of passive and controllable MREA force, respectively. Subsequently, high-speed drop testing (0–4.5 m s −1 at 0 A) was conducted for quantitative comparison with the numerical simulations. Refinements to the nonlinear BPM analysis were carried out to improve prediction of MREA performance. (paper)

  18. Experimental validation of a magnetorheological energy absorber design optimized for shock and impact loads

    Science.gov (United States)

    Singh, Harinder J.; Hu, Wei; Wereley, Norman M.; Glass, William

    2014-12-01

    A linear stroke adaptive magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m s-1. The performance of the MREA was characterized using dynamic range, which is defined as the ratio of maximum on-state MREA force to the off-state MREA force. Design optimization techniques were employed in order to maximize the dynamic range at high impact velocities such that MREA maintained good control authority. Geometrical parameters of the MREA were optimized by evaluating MREA performance on the basis of a Bingham-plastic analysis incorporating minor losses (BPM analysis). Computational fluid dynamics and magnetic FE analysis were conducted to verify the performance of passive and controllable MREA force, respectively. Subsequently, high-speed drop testing (0-4.5 m s-1 at 0 A) was conducted for quantitative comparison with the numerical simulations. Refinements to the nonlinear BPM analysis were carried out to improve prediction of MREA performance.

  19. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  20. Feasibility Study for Using a Linear Transverse Flux Machine as part of the Structure of Point Absorber Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Ilana Pereira da Costa Cunha

    2017-10-01

    Full Text Available This is a feasibility study for the generation of wave energy by means of a transverse flux machine connected to a device for converting wave energy known as Point Absorber. The article contains literature review on the topic and analysis of data obtained by means of a prototype built in the laboratory. Based on the results, the study concludes that this use is feasible.

  1. Composite fuselage crown panel manufacturing technology

    Science.gov (United States)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  2. Advanced Technology Composite Fuselage - Materials and Processes

    Science.gov (United States)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  3. A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Wereley, Norman M.; Choi, Young-Tai; Wang, Dai-Hua

    2012-04-01

    For semi-active shock and vibration mitigation systems using magnetorheological energy absorbers (MREAs), the minimization of the field-off damper force of the MREA at high speed is of particular significance because the damper force due to the viscous damping at high speed becomes too excessive and thus the controllable dynamic force range that is defined by the ratio of the field-on damper force to the field-off damper force is significantly reduced. In this paper, a bi-annular-gap MREA with an inner-set permanent magnet is proposed to decrease the field-off damper force at high speed while keeping appropriate dynamic force range for improving shock and vibration mitigation performance. In the bi-annular-gap MREA, two concentric annular gaps are configured in parallel so as to decrease the baseline damper force and both magnetic activation methods using the electromagnetic coil winding and the permanent magnet are used to keep holding appropriate magnetic intensity in these two concentric annular gaps in the consideration of failure of the electric power supply. An initial field-on damper force is produced by the magnetic field bias generated from the inner-set permanent magnet. The initial damper force of the MREA can be increased (or decreased) through applying positive (or negative) current to the electromagnetic coil winding inside the bi-annular-gap MREA. After establishing the analytical damper force model of the bi-annular-gap MREA using a Bingham-plastic nonlinear fluid model, the principle and magnetic properties of the MREA are analytically validated and analyzed via electromagnetic finite element analysis (FEA). The performance of the bi-annular-gap MREA is also theoretically compared with that of a traditional single-annular- gap MREA with the constraints of an identical volume by the performance matrix, such as the damper force, dynamic force range, and Bingham number with respect to different excitation velocities.

  4. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2016-01-01

    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  5. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T, E-mail: thorsten.schneider@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany)

    2011-06-07

    The application of more and more low-energy photon radiation in brachytherapy-either in the form of low-dose-rate radioactive seeds such as Pd-103 or I-125 or in the form of miniature x-ray tubes-has induced greater interest in determining the absorbed dose to water in water in this energy range. As it seems to be hardly feasible to measure the absorbed dose with calorimetric methods in this low energy range, ionometric methods are the preferred choice. However, the determination of the absorbed dose to water in water by ionometric methods is difficult in this energy range. With decreasing energy, the relative uncertainty of the photon cross sections increases and as the mass energy transfer coefficients show a steep gradient, the spectra of the radiation field must be known precisely. In this work two ionometric methods to determine the absorbed dose to water are evaluated with respect to their sensitivity to the uncertainties of the spectra and of the atomic database. The first is the measurement of the air kerma free in air and the application of an MC-based conversion factor to the absorbed dose to water. The second is the determination of the absorbed dose to water by means of an extrapolation chamber as an integral part of a phantom. In the complementing MC-calculations, two assortments of spectra each of which is based on a separate unfolding procedure were used as well as two kinds of databases: the standard PEGS and the recently implemented NIST database of EGSnrc. Experimental results were obtained by using a parallel-plate graphite extrapolation chamber and a free-air chamber. In the case when the water kerma in a phantom is determined from the measurements of air kerma free in air, differences in the order of 10% were found, according to which the database or the kind of spectrum is used. In contrast to this, for the second method, the differences found were about 0.5%.

  6. Factors affecting sound energy absorbance in acute otitis media model of chinchilla.

    Science.gov (United States)

    Guan, Xiying; Seale, Thomas W; Gan, Rong Z

    2017-07-01

    Acute otitis media (AOM) is a rapid-onset infection of the middle ear which results in middle ear pressure (MEP), middle ear effusion (MEE), and structural changes in middle ear tissues. Previous studies from our laboratory have identified that MEP, MEE, and middle ear structural changes are three factors affecting tympanic membrane (TM) mobility and hearing levels (Guan et al., 2014, 2013). Sound energy reflectance or absorbance (EA) is a diagnostic tool increasingly used in clinical settings for the identification of middle ear diseases. However, it is unclear whether EA can differentiate these three factors in an AOM ear. Here we report wideband EA measurements in the AOM model of chinchilla at three experimental stages: unopened, pressure released, and effusion removed. These correspond to the combined and individual effects of the three factors on sound energy transmission. AOM was produced by transbullar injection of Haemophilus influenzae in two treatment groups: 4 days (4D) and 8 days (8D) post inoculation. These time points represent the relatively early and later phase of AOM. In each group of chinchillas, EA at 250-8000 Hz was measured using a wideband tympanometer at three experimental stages. Results show that the effects of MEP, MEE, and tissue structural changes over the frequency range varied with the disease time course. MEP was the primary contributor to reduction of EA in 4D AOM ears and had a smaller effect in 8D ears. MEE reduced the EA at 6-8 kHz in 4D ears and 2-8 kHz in 8D ears and was responsible for the EA peak in both 4D and 8D ears. The residual EA loss due to structural changes was observed over the frequency range in 8D ears and only at high frequencies in 4D ears. The EA measurements were also compared with the published TM mobility loss in chinchilla AOM ears. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spectroscopic ellipsometry on metallic gratings and the energy density in absorbing media

    International Nuclear Information System (INIS)

    Bergmair, M.

    2011-01-01

    compared. Deviations in the structure are identified and it is shown that RCWA and SE are a powerful combination to analyze nanostructures. Further the surface plasmonic excitation frequencies for metallic structures are identified in the SE spectra and calculated with a simple theoretical model. It is shown that one can distinguish vertical and horizontal surface plasmons. The characterization of metallic gratings is essential e.g. for solar cells to enhance absorption of incoming photons or for sensing features due to the field enhancement of surface plasmons. The second part of this thesis focuses on the calculation of the energy density in absorbing systems which is necessary to derive the energy velocity. In physics, this problem was only solved for transparent media, i.e. the absorption of the material was neglected. As all metamaterials described before exhibit a strong dispersion which is always connected to a non-zero absorption this approximation does not hold especially in the operating frequency regions of nano structures. Therefore in the beginning simple approximations as monochromatic plane waves exciting a material with an arbitrary response are presented. The obtained results are generalized for bi- and multichromatic fields and the results are compared with the ones from textbooks and literature. Finally the expression for the energy density and the loss is explicitly derived for a material with a retarded response and a material whose polarizability is described by a damped harmonic oscillator. By these calculations it is shown that the energy density depends on the kind of excitation and material properties. It is possible to determine the expressions analytically for several cases. Further the energy balance can be evaluated numerically even for metamaterials whose response function consists of numerical data. (author) [de

  8. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    International Nuclear Information System (INIS)

    Hohlfeld, K.

    1996-01-01

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  9. Development of a Continuum Damage Mechanics Material Model of a Graphite-Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.

    2017-01-01

    This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.

  10. Absorbed dose determination in high energy photon beams using new IAEA TRS - 398 Code of Practice

    International Nuclear Information System (INIS)

    Suriyapee, S.; Srimanoroath, S.; Jumpangern, C.

    2002-01-01

    The absorbed dose calibration of 6 and 10 MV X-ray beams from Varian Clinac 1800 at King Chulalongkorn Memorial Hospital Bangkok, Thailand were performed using cylindrical chamber 0.6 cc NE2571 Serial No. 1633 with graphite wall and Delrin build up cap and lonex Dosemaster NE 2590 Serial No. 223. The absorbed dose determination followed the IAEA code of practice TRS-277. The new IAEA code of practice TRS-398 have been studied to compare the result with the IAEA TRS-277

  11. Measurement of absorbed dose for high energy electron using CaSO4: Tm-PTFE TLD

    International Nuclear Information System (INIS)

    Park, Myeong Hwan; Kim, Do Sung

    2000-01-01

    In this study, the highly sensitive CaSO 4 : Tm-PTFE TLDs has been fabricated for the purpose of measurement of high energy electron. CaSO 4 : Tm phosphor powder was mixed with polytetrafluoroethylene(PTFE) powder and moulded in a disk type(diameter 8.5mm, thickness 90mg/cm 2 ) by cold pressing. The absorbed dose distribution and ranges for high energy electron were measured by using the CaSO 4 : Tm-PTFE TLDs. The ranges determined were R 100 =3D14.5mm, R 50 =3D24.1mm and R p =3D31.8mm, respectively and the beam flatness, the variation of relative dose in 80% of the field size, was 4.5%. The fabricated CaSO 4 : Tm-PTFE TLDs may be utilized in radiation dosimetry for personal, absorbed dose and environmental monitoring.=20

  12. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.

    Science.gov (United States)

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min

    2017-05-31

    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.

  13. Experiments with Point Absorber Type Wave Energy Converters in a Large-Scale Wave Basin

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    climate at an installation site, as well as on the overall power absorption of the WEC array. Experiments have been performed in the Shallow Water Wave Basin of DHI (Denmark) to study such "WEC array effects". Large arrays of up to 25 heaving point absorber type WECs have been tested for a range...

  14. Fuselage panel noise attenuation by piezoelectric switching control

    International Nuclear Information System (INIS)

    Makihara, Kanjuro; Onoda, Junjiro; Minesugi, Kenji; Miyakawa, Takeya

    2010-01-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments

  15. Methodology for calibration of ionization chambers for X-ray of low energy in absorbed dose to water

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Vivolo, V.; Potiens, M.P.A.

    2015-01-01

    The beams of low energy X-ray (10 to 150 kV) are used in several places in the world to treat a wide variety of surface disorders, and between these malignancies. As in Brazil, at this moment, there is no calibration laboratory providing the control service or calibration of parallel plate ionization chambers, the aim of this project was to establish a methodology for calibration of this kind of ionization chambers at low energy X-ray beams in terms of absorbed dose to water using simulators in the LCI. (author)

  16. Influence of the electron energy and number of beams on the absorbed dose distributions in radiotherapy of deep seated targets.

    Science.gov (United States)

    Garnica-Garza, H M

    2014-12-01

    With the advent of compact laser-based electron accelerators, there has been some renewed interest on the use of such charged particles for radiotherapy purposes. Traditionally, electrons have been used for the treatment of fairly superficial lesions located at depths of no more than 4cm inside the patient, but lately it has been proposed that by using very high energy electrons, i.e. those with an energy in the order of 200-250MeV it should be possible to safely reach deeper targets. In this paper, we used a realistic patient model coupled with detailed Monte Carlo simulations of the electron transport in such a patient model to examine the characteristics of the resultant absorbed dose distributions as a function of both the electron beam energy as well as the number of beams for a particular type of treatment, namely, a prostate radiotherapy treatment. Each treatment is modeled as consisting of nine, five or three beam ports isocentrically distributed around the patient. An optimization algorithm is then applied to obtain the beam weights in each treatment plan. It is shown that for this particularly challenging case, both excellent target coverage and critical structure sparing can be obtained for energies in the order of 150MeV and for as few as three treatment ports, while significantly reducing the total energy absorbed by the patient with respect to a conventional megavoltage x-ray treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion.

    Science.gov (United States)

    Li, Pengfei; Liu, Baoan; Ni, Yizhou; Liew, Kaiyang Kevin; Sze, Jeff; Chen, Shuo; Shen, Sheng

    2015-08-19

    An omnidirectional nanophotonic solar selective absorber is fabricated on a large scale using a template-stripping method. The nanopyramid nickel structure achieves an average absorptance of 95% at a wavelength range below 1.3 μm and a low emittance less than 10% at wavelength >2.5 μm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Energy and Exergy Analysis of Dual Channel Solar Air Collector with Different Absorber Plates Geometry

    Directory of Open Access Journals (Sweden)

    Najim A. Jassim

    2018-04-01

    Full Text Available Flat-plate collector considers most common types of collectors, for ease of manufacturing and low price compared with other collectors. The main aim of the present work is to increase the efficiency of the collector, which can be achieved by improving the heat transfer and minimize heat loss experimentally. Five types of solar air collectors have been tested, which conventional channel with a smooth absorber plate (model I, dual channel with a smooth absorber plate (model II, dual channel with perforating “V” corrugated absorber plate (model III, dual channel with internal attached wire mesh (model Ⅳ, and dual channel with absorber sheet of transparent honeycomb, (model Ⅴ. The dual channel collector used for increasing heat transfer area and heat removal factor to improve thermal performance. The outdoor test was conducted during the period December (2016 to February (2017 at different mass flow rates 0.0217 kg/s, 0.0271 kg/s and 0.0325 kg/s. The experiments were carried out from 8:30 AM to 3:00 PM for clear days. Experimental results show that the average thermal efficiency was (72.2 % for model (III, (40.2 % for model (I, (51.6 % for model (II, (65.1 % for model (Ⅳ and (59.7 % for model (Ⅴ. At the last part of the study, the exergy analyses were derived for both collectors. The results of this part showed that the conventional channel model (I is having largest irreversibility, and the dual channel collector model (III is having a greatest exergetic efficiency.

  19. The Silting-Up Prevention in the Geothermal Absorbent Openings of Geothermal Energy Plant Pyrzyce

    Directory of Open Access Journals (Sweden)

    Noga Bogdan

    2014-06-01

    Full Text Available The paper presents precipitation results from cold thermal water deposits that are the main cause of clogging in absorbent geothermal wells and borehole areas. As a result of physical and chemical analysis, laboratory tests and observation of the operation of a geothermal installation, a new method was developed to prevent the precipitation of sludge from cooled thermal water. The method being a modification of soft acidising was tentatively named as a super soft acidising method

  20. Determination of Atomic Number Exponent for Elemental Absorber at Am-241 Energy in X-Ray Attenuation Experiments

    International Nuclear Information System (INIS)

    Najim, L.A.; Shamoon, S.K.; Atalah, S.T.

    2012-01-01

    In X-ray absorption experiment, the dependence of the photoelectric absorption cross-section varied with atomic number Z.In this paper, the dependence on Z of the cross-section or coefficient of photoelectric absorption is first evaluated from published data for (20) elements ranging from Al-Sn, and then the cross-section for Fe is obtained experimentally by measuring the X-ray intensity with and without the Fe absorber and compared with the theoretical value, the variation of the photoelectric absorption coefficient (μ/ρ m ) showed less dependence on Z for the two tested of Z regions.This is because of the inclusion of mass density (ρ m ) of the absorber in the coefficient.The values of m obtained in the present work increases linearly with energy for both ranges of elements

  1. A closed-form formulation for the build-up factor and absorbed energy for photons and electrons in the Compton energy range in Cartesian geometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Volnei; Vilhena, Marco Tullio, E-mail: borges@ufrgs.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Fernandes, Julio Cesar Lombaldo, E-mail: julio.lombaldo@ufrgs.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada. Programa de Pos Graduacao em Matematica Aplicada

    2011-07-01

    In this work, we report on a closed-form formulation for the build-up factor and absorbed energy, in one and two dimensional Cartesian geometry for photons and electrons, in the Compton energy range. For the one-dimensional case we use the LTS{sub N} method, assuming the Klein-Nishina scattering kernel for the determination of the angular radiation intensity for photons. We apply the two-dimensional LTS{sub N} nodal solution for the averaged angular radiation evaluation for the two-dimensional case, using the Klein-Nishina kernel for photons and the Compton kernel for electrons. From the angular radiation intensity we construct a closed-form solution for the build-up factor and evaluate the absorbed energy. We present numerical simulations and comparisons against results from the literature. (author)

  2. A closed-form formulation for the build-up factor and absorbed energy for photons and electrons in the Compton energy range in Cartesian geometry

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tullio; Fernandes, Julio Cesar Lombaldo

    2011-01-01

    In this work, we report on a closed-form formulation for the build-up factor and absorbed energy, in one and two dimensional Cartesian geometry for photons and electrons, in the Compton energy range. For the one-dimensional case we use the LTS N method, assuming the Klein-Nishina scattering kernel for the determination of the angular radiation intensity for photons. We apply the two-dimensional LTS N nodal solution for the averaged angular radiation evaluation for the two-dimensional case, using the Klein-Nishina kernel for photons and the Compton kernel for electrons. From the angular radiation intensity we construct a closed-form solution for the build-up factor and evaluate the absorbed energy. We present numerical simulations and comparisons against results from the literature. (author)

  3. Seasonal Evolution and Interannual Variability of the Local Solar Energy Absorbed by the Arctic Sea Ice-Ocean System

    Science.gov (United States)

    Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schwieger, Axel

    2007-01-01

    The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m(sup -2). There was considerable interannual variability, with a range of 826 to 1044 MJ m(sup -2). The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.

  4. Influence of Striking Edge Radius (2 mm versus 8 mm) on Instrumented Charpy Data and Absorbed Energies

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.

    2008-08-15

    The most commonly used test standards for performing Charpy impact tests (ISO 148 and ASTM E 23) envisage the use of strikers having different radii of the striking edge, i.e. 2 mm (ISO) and 8 mm (ASTM). The effect of striker geometry on Charpy results was extensively studied in the past in terms of absorbed energy measured by the machine encoder, but few investigations are available on the influence of striker configuration on the results of instrumented Charpy tests (characteristic forces, displacements and integrated energy). In this paper, these effects are investigated based on the analysis of published results from three interlaboratory studies and some unpublished Charpy data obtained at SCK-CEN. The instrumented variables which are the most sensitive to the radius of the striking edge are the maximum force and its corresponding displacement, with 8mm-strikers providing systematically higher values. Absorbed energies, obtained both from the instrumented trace and from the pendulum encoder, are almost insensitive to the type of striker up to 200 J. For higher energy levels, the values obtained from 8mm strikers become progressively larger. Data scatter is generally higher for 2mm-strikers.

  5. Organometal Halide Perovskite Solar Absorbers and Ferroelectric Nanocomposites for Harvesting Solar Energy

    Science.gov (United States)

    Hettiarachchi, Chaminda Lakmal

    Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid and methylamine) are quite expensive. This work describes a novel, single-step, simple, and cost-effective solution approach to prepare CH3NH3PbI3-xClx thin films by the direct reaction of the commercially available CH3NH 3Cl (or MACl) and PbI2. A detailed analysis of the structural and optical properties of CH3NH3PbI3-xCl x thin films deposited by aerosol assisted chemical vapor deposition is presented. Optimum growth conditions have been identified. It is shown that the deposited thin films are highly crystalline with intense optical absorbance. Charge carrier separation of these thin films can be enhanced by establishing a local internal electric field that can reduce electron-hole recombination resulting in increased photo current. The intrinsic ferroelectricity in nanoparticles of Barium Titanate (BaTiO3 -BTO) embedded in the solar absorber can generate such an internal field. A hybrid structure of CH3NH 3PbI3-xClx perovskite and ferroelectric BTO nanocomposite FTO/TiO2/CH3NH3PbI3-xClx : BTO/P3HT/Cu as a new type of photovoltaic device is investigated. Aerosol assisted chemical vapor deposition process that is scalable to large-scale manufacturing was used for the growth of the multilayer structure. TiO 2 and P3HT with additives were used as ETL and HTL respectively. The growth process of the solar absorber layer includes the

  6. Absorbed doses and energy imparted from radiographic examination of velopharyngeal function during speech

    International Nuclear Information System (INIS)

    Isberg, A.; Julin, P.; Kraepelien, T.; Henrikson, C.O.

    1989-01-01

    Absorbed doses of radiation were measured by thermoluminescent dosimeters (TLDs) using a skull phantom during simulated cinefluorographic and videofluorographic examination of velopharyngeal function in frontal and lateral projections. Dosages to the thyroid gland, the parotid gland, the pituitary gland, and ocular lens were measured. Radiation dosage was found to be approximately 10 times less for videofluoroscopy when compared with that of cinefluoroscopy. In addition, precautionary measures were found to reduce further the exposure of radiation-sensitive tissues. Head fixation and shielding resulted in dose reduction for both video- and cinefluoroscopy. Pulsing exposure for cinefluoroscopy also reduced the dosage

  7. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  8. Design of steel energy-absorbing restrainers and their incorporation into nuclear power plants for enhanced safety. Progress report

    International Nuclear Information System (INIS)

    1980-03-01

    This program for the development of steel energy-absorbing restrainers originated as a five year multi-institutional, interdisciplinary program. The resources of the University of California, Berkeley (UCB), the Earthquake Engineering Research Center, Richmond (EERC), Massachusetts Institute of Technology (MIT), and Battelle Pacific Northwestern Laboratories (BPNL) are utilized as well as advisors from industry, the utilities and the US Nuclear Regulatory Commission. The present progress report involves the areas of experimental testing on the shaking table at the EERC, restrainer device design and testing, structural analyses and materials testing

  9. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications

    Science.gov (United States)

    Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2017-06-01

    We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.

  10. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schmehl, Russell H. [Tulane Univ., New Orleans, LA (United States)

    2016-03-02

    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods were used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.

  11. Predicting the biological effects of mobile phone radiation absorbed energy linked to the MRI-obtained structure.

    Science.gov (United States)

    Krstić, Dejan; Zigar, Darko; Petković, Dejan; Sokolović, Dušan; Dinđić, Boris; Cvetković, Nenad; Jovanović, Jovica; Dinđić, Nataša

    2013-01-01

    The nature of an electromagnetic field is not the same outside and inside a biological subject. Numerical bioelectromagnetic simulation methods for penetrating electromagnetic fields facilitate the calculation of field components in biological entities. Calculating energy absorbed from known sources, such as mobile phones when placed near the head, is a prerequisite for studying the biological influence of an electromagnetic field. Such research requires approximate anatomical models which are used to calculate the field components and absorbed energy. In order to explore the biological effects in organs and tissues, it is necessary to establish a relationship between an analogous anatomical model and the real structure. We propose a new approach in exploring biological effects through combining two different techniques: 1) numerical electromagnetic simulation, which is used to calculate the field components in a similar anatomical model and 2) Magnetic Resonance Imaging (MRI), which is used to accurately locate sites with increased absorption. By overlapping images obtained by both methods, we can precisely locate the spots with maximum absorption effects. This way, we can detect the site where the most pronounced biological effects are to be expected. This novel approach successfully overcomes the standard limitations of working with analogous anatomical models.

  12. Evaluation of absorbents for an absorption heat pump using natural organic working fluids (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Hisajima, Daisuke; Sakiyama, Ryoko; Nishiguchi, Akira [Hitachi Ltd., Tsuchiura (Japan). Mechanical Engineering Research Lab.

    1999-07-01

    The present situation of electric power supply and energy consumption in Japan has made it necessary to develop a new absorption air conditioning system which has low electric energy consumption, uses natural organic refrigerants, and can work as a heat pump in winter. Estimating vapor and liquid equilibrium of new pairs of working fluids is prerequisite to developing the new absorption heat pump system. In this phase of the work, methods for estimating vapor and liquid equilibrium that take into account intermolecular force were investigated. Experimental and calculated data on natural organic materials mixtures were considered to find optimum candidates, and then a procedure for evaluation was chosen. Several candidate absorbents were selected that used isobutane and dimethyl ether as refrigerants. (orig.)

  13. Dependency of non-homogeneity energy dispersion on absorbance line-shape of luminescent polymers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Castanheira da, E-mail: mar_castanheira@yahoo.com.br [Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, CP 500, 69915-900 Rio Branco, AC (Brazil); Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil); Santos Silva, H.; Silva, R.A.; Marletta, Alexandre [Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil)

    2013-01-16

    In this paper, we study the importance of the non-homogeneity energy dispersion on absorption line-shape of luminescent polymers. The optical transition probability was calculated based on the molecular exciton model, Franck–Condon states, Gaussian distribution of non-entangled chains with conjugate degree n, semi-empirical parameterization of energy gap, electric dipole moment, and electron-vibrational mode coupling. Based on the approach of the energy gap functional dependence 1/n, the inclusion of the non-homogeneity energy dispersion 1/n{sup 2} is essential to obtain good experimental data agreement, mainly, where the absorption spectra display peaks width of about 65 meV. For unresolved absorption spectra, such as those observed for a large number of conjugated polymers processed via spin-coating technique, for example, the non-homogeneity energy dispersion parameterization is not significant. Results were supported by the application of the model for poly (p-phenylene vinylene) films.

  14. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    Science.gov (United States)

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  15. Al-Li alloy 1441 for fuselage applications

    Energy Technology Data Exchange (ETDEWEB)

    Bird, R.K.; Dicus, D.L. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Fridlyander, J.N.; Sandler, V.S.

    2000-07-01

    A cooperative investigation was conducted to evaluate Al-Cu-Mg-Li alloy 1441 for long service life fuselage applications. Alloy 1441 is currently being used for fuselage applications on the Russian Be- 103 amphibious aircraft, and is expected to be used for fuselage skin on a new Tupolev business class aircraft. Alloy 1441 is cold-rollable and has several attributes that make it attractive for fuselage skin applications. These attributes include lower density and higher specific modulus with similar strength as compared to conventional Al-Cu-Mg alloys. Cold-rolled 1441 Al-Li sheet specimens were tested at NASA Langley research center (LaRC) and at the All-Russia Institute of Aviation Materials (VIAM) in Russia to evaluate tensile properties, fracture toughness, impact resistance, fatigue life and fatigue crack growth rate. In addition, fuselage panels were fabricated by Tupolev Design Bureau (TDB) using 1441 skins and Al-Zn-Mg-Cu alloy stiffeners. The panels were subjected to cyclic pressurization fatigue tests at TDB and at LaRC to simulate fuselage pressurization/depressurization during aircraft service. This paper discusses the results from this investigation. (orig.)

  16. Towards a determination of the absorbed dose to water in water for low-energy photon-emitting brachytherapy seeds

    International Nuclear Information System (INIS)

    Schneider, T.; Lange, B.; Selbach, H.J.

    2007-01-01

    An accurate determination of the dose produced by brachytherapy seeds emitting low-energy photons is an important component of the radiotherapeutic process. As yet, the output of these seeds has usually been specified in terms of the air kerma rate. The desired quantity in radiation therapy is, however, the absorbed dose to water inside a water phantom, for which primary standards are not available. For this reason, developments are under way in the Physikalisch - Technische Bundesanstalt to establish a primary standard to determine the absorbed dose to water within a phantom. As a fundamental step towards this aim, a method will be introduced in this publication to determine the water kerma inside a graphite phantom housing an extrapolation chamber. Experimental results will be presented and compared with water kerma values obtained from air kerma measurements in free air and applying a conversion factor to water kerma for the conditions of the experiment. First estimates indicate that the relative uncertainty is of the order of 1% (k 1). (authors)

  17. Absorbed dose in AgBr in direct film for photon energies (<150 keV): relation to optical density. Theoretical calculation and experimental evaluation

    International Nuclear Information System (INIS)

    Helmrot, E.; Alm Carlsson, G.

    1996-01-01

    Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING's theory. They were also found to be proportional to the collision kerma in silver bromide (K c,AgBr ) indicating proportionality between K c,AgBr and the mean absorbed dose in silver bromide. While GREENING's theory shows that the quotient of the mean absorbed dose in silver bromide and K c,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between K c,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( c,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving K c,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care. (orig./HP)

  18. Modeling of a Point Absorber for Energy Conversion in Italian Seas

    Directory of Open Access Journals (Sweden)

    Renata Archetti

    2013-06-01

    Full Text Available In the present paper, we investigate the feasibility of wave electricity production in Italian seas by the deployment of the Seabased wave energy converter (WEC. A numerical model of the coupled buoy-generator system is presented, which simulates the behavior of the wave energy converter under regular waves of different wave heights and periods. The hydrodynamic forces, including excitation force, radiation impedance and hydrostatic force, are calculated by linear potential wave theory, and an analytical model is used for the linear generator. Two buoys of different radii are considered to explore the effect of buoy dimension on energy conversion and device efficiency. The power output is maximized by adding a submerged object to the floating buoy, in order to bring the system into resonance with the typical wave frequencies of the sites. The simulation results show a very good agreement with the published data on the Seabased WEC. The model is used to estimate energy production at eight Italian offshore locations. The results indicate that the degree of utilization of the device is higher than 20% at the two most energetic Italian sites (Alghero and Mazara del Vallo and that it can be considerably increased if the floating body is connected to a submerged object, thanks to the resonant behavior of the WEC. In this case, the degree of utilization of the device would be higher than 40% at most of the study sites, with the highest value at Mazara del Vallo. The work enlarges the perspective, to be confirmed by experimental tests and more accurate numerical modeling, on clean electric power production from ocean waves in the Italian seas.

  19. A METHOD OF DETERMINING THE ABILITY OF THE ARRESTER TO ABSORB ENERGY WITHOUT BREAKING THE HEAT BALANCE

    Directory of Open Access Journals (Sweden)

    S.Yu. Shevchenko

    2015-08-01

    Full Text Available Purpose.The aim of this study is to obtain a method for determining the capacity surge arrester nonlinear absorb energy without breaking the heat balance in modes of long-term application of operating voltage, which allows for analysis of their work in terms of violations as electricity. Methodology. For values of the energy passing through the arrester must be able to determine the current value for the voltage value in the area of leakage current-voltage characteristics. We have carried out calculations of the energy passing everywhere arrester for certain periods of time based on the current-voltage characteristics obtained experimentally. Analysis of the experimental current-voltage characteristics of resistors and literature led to the important conclusion that the dielectric properties of the ceramic varistor affect the value of active power losses in the arrester only when the active component of the leakage current is very small. This is confirmed by the characteristics of different classes of varistor voltage. This property of varistors and surge arresters shows the need to consider how the dielectric and conductive properties of the varistor ceramics in the analysis of work in the area of the arrester leakage current-voltage characteristic. These results demonstrate the need to clarify the mathematical model and the method for determining the energy dissipates in the area of the arrester leakage current CVC with their account. Results. The study, an improved mathematical model for calculating energy affects surge arrester during its working life. The study obtained the method, of evaluation capacity surge arrester, maintains heat balance throughout working life. Based on experimentally obtained current-voltage characteristic of the varistors is defined voltage at which surge arrester starts conducting active current. This allowed to receive specified mathematical model for calculating energy affects surge arrester and develop a method

  20. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  1. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten

    2014-01-01

    to extract energy. Constrains are enforced on the control force to prevent large structural stresses in the floater at specific hot spots with the risk of inducing fatigue damage, or because the demanded control force cannot be supplied by the actuator system due to saturation. Further, constraints...... are enforced on the motion of the floater to prevent it from hitting the bottom of the sea or to make unacceptable jumps out of the water. The applied control law, which is of the feedback type with feedback from the displacement, velocity, and acceleration of the floater, contains two unprovided gain...

  2. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.

    2014-01-01

    the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...

  3. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 3: Data from crew module testing

    Science.gov (United States)

    Shane, S. J.

    1985-01-01

    Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.

  4. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  5. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Science.gov (United States)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  6. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  7. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2010-12-01

    Full Text Available Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC are based on energy recovery linacs (ERLs with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC temperatures in a prototype research and development (R&D five-cell niobium superconducting rf (SRF cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  8. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E.C.; Kewisch, J.; Litvinenko, V.N.; Xu, W.

    2010-01-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R and D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R and D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  9. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Science.gov (United States)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E. C.; Kewisch, J.; Litvinenko, V. N.; Xu, Wencan

    2010-12-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R&D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  10. Effect of FRP on the Energy Absorbed by Steel Shear Walls with Openings

    Directory of Open Access Journals (Sweden)

    Mojtaba Ghasemzadeh

    2015-06-01

    Full Text Available It’s for more than three decades that Steel Shear Walls are being used as lateral load resisting system. Definitely,the actual behavior of steel shear walls can be assessed using experimental results. However, solve many of phenomenon like this one should be done using mathematical and theoretical methods due to their special characteristics such as high expenses, lack of laboratory facilities and time limitations. In this study, the behavior of steel plate shear walls with openings in a one-story frame were evaluated and compared in various conditions. For this purpose, different values ​​for the opening in shear wall was considered and exposed to lateral displacement in ABAQUS as a comprehensive finite element software. Then, the impact of FRP arrangement on shear wall was evaluated to represent the structural behavior under various conditions. Result shows that, use of FRP sheets as parallel layers on both sides of shear wall has the best response on energy absorption, so that performance of the model was better than shear wall fully covered with FRP.

  11. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyan, Rajesh [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); Oulad Elhmaidi, Zakaria [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); Sekkat, Zouheir [Optics & Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat (Morocco); Abd-lefdil, Mohammed [University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada)

    2017-02-28

    Highlights: • High quality CZTS thin films grown by means of PLD technique without resorting to any post sulfurization process. • Effect of thermal annealing treatments (in the 200–500 °C range) on the structural, morphological and optoelectronic properties of PLD-CZTS films. • Experimental determination of key optoelectronic parameters (i.e.; E{sub g}, VBM, ϕ, I{sub p}, and χ) enabling the reconstruction of energy band electronic structure of the PLD-CZTS films. • Investigation on the energy band alignments of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials. - Abstract: We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (T{sub a}), but their crystallinity is much improved for T{sub a} ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with T{sub a} (from ∼14 nm at RT to 70 nm at T{sub a} = 500 °C with a value around 40 nm for T{sub a} = 300–400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV–vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at T{sub a} = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS

  12. Conductive graphene as passive saturable absorber with high instantaneous peak power and pulse energy in Q-switched regime

    Science.gov (United States)

    Zuikafly, Siti Nur Fatin; Khalifa, Ali; Ahmad, Fauzan; Shafie, Suhaidi; Harun, SulaimanWadi

    2018-06-01

    The Q-switched pulse regime is demonstrated by integrating conductive graphene as passive saturable absorber producing relatively high instantaneous peak power and pulse energy. The fabricated conductive graphene is investigated using Raman spectroscopy. The single wavelength Q-switching operates at 1558.28 nm at maximum input pump power of 151.47 mW. As the pump power is increased from threshold power of 51.6 mW to 151.47 mW, the pulse train repetition rate increases proportionally from 47.94 kHz to 67.8 kHz while the pulse width is reduced from 9.58 μs to 6.02 μs. The generated stable pulse produced maximum peak power and pulse energy of 32 mW and 206 nJ, respectively. The first beat node of the measured signal-to-noise ratio is about 62 dB indicating high pulse stability.

  13. Riveted Lap Joints in Aircraft Fuselage Design, Analysis and Properties

    CERN Document Server

    Skorupa, Andrzej

    2012-01-01

    Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various formal protocols for creating and maintaining airworthiness, including damage tolerance considerations. In most transport aircraft, fatigue occurs in lap joints, sometimes leading to circumstances that threaten safety in critical ways. The problem of fatigue of lap joints has been considerably enlarged by the goal of extending aircraft lifetimes. Fatigue of riveted lap joints between aluminium alloy sheets, typical of the pressurized aircraft fuselage, is the major topic of the present book. The richly illustrated and well-structured chapters treat subjects such as: structural design solutions and loading conditions for fuselage skin joints; relevance of laboratory test results for simple lap joint specimens to rive...

  14. Helicopter fuselage drag - combined computational fluid dynamics and experimental studies

    Science.gov (United States)

    Batrakov, A.; Kusyumov, A.; Mikhailov, S.; Pakhov, V.; Sungatullin, A.; Valeev, M.; Zherekhov, V.; Barakos, G.

    2015-06-01

    In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage configurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some flow separation at the rear of the fuselages. Once confidence on the CFD method was established, further modifications were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes.

  15. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 2: Data from seat testing

    Science.gov (United States)

    Shane, S. J.

    1985-01-01

    The unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft is reviewed. A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is presented. An energy absorbing test seat is designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions is conducted at a sled test facility. Comparative tests with operational F-111 crewseats are also conducted. After successful dynamic testing of the seat, more testing is conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests are conducted. The vertical drop tests are used to obtain comparative data between the energy absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series. Volume 2 presents the data obtained during the seat test series, while Volume 3 presents the data from the crew module test series.

  16. Specific absorbed fractions of energy at various ages from internal photon sources: 3, Five-year-old

    International Nuclear Information System (INIS)

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. In this volume PHI-values are tabulated for a five-year-old or 19-kg person. These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with other methods at photon energies below 200 keV. 12 refs., 2 tabs

  17. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates

    International Nuclear Information System (INIS)

    Akpinar, Ebru Kavak; Kocyigit, Fatih

    2010-01-01

    This study experimentally investigates performance analysis of a new flat-plate solar air heater (SAH) with several obstacles (Type I, Type II, Type III) and without obstacles (Type IV). Experiments were performed for two air mass flow rates of 0.0074 and 0.0052 kg/s. The first and second laws of efficiencies were determined for SAHs and comparisons were made among them. The values of first law efficiency varied between 20% and 82%. The values of second law efficiency changed from 8.32% to 44.00%. The highest efficiency were determined for the SAH with Type II absorbent plate in flow channel duct for all operating conditions, whereas the lowest values were obtained for the SAH without obstacles (Type IV). The results showed that the efficiency of the solar air collectors depends significantly on the solar radiation, surface geometry of the collectors and extension of the air flow line. The largest irreversibility was occurring at the SAH without obstacles (Type IV) collector in which collector efficiency is smallest. At the end of this study, the energy and exergy relationships are delivered for different SAHs.

  18. Cellular Energy Absorbing TRIP-Steel/Mg-PSZ Composite: Honeycomb Structures Fabricated by a New Extrusion Powder Technology

    Directory of Open Access Journals (Sweden)

    Ulrich Martin

    2010-01-01

    Full Text Available Lightweight linear cellular composite materials on basis of austenite stainless TRIP- (TRansformation Induced Plasticity- steel as matrix with reinforcements of MgO partially stabilized zirconia (Mg-PSZ are described. Two-dimensional cellular materials for structural applications are conventionally produced by sheet expansion or corrugation processes. The presented composites are fabricated by a modified ceramic extrusion powder technology. Characterization of the microstructure in as-received and deformed conditions was carried out by optical and scanning electron microscopy. Magnetic balance measurements and electron backscatter diffraction (EBSD were used to identify the deformation-induced martensite evolution in the cell wall material. The honeycomb composite samples exhibit an increased strain hardening up to a certain engineering compressive strain and an extraordinary high specific energy absorption per unit mass and unit volume, respectively. Based on improved property-to-weight ratio such linear cellular structures will be of interest as crash absorbers or stiffened core materials for aerospace, railway, or automotive applications.

  19. LAYOUT of the PASSENGER twin-fuselage AIRPLANE FOR LOCAL LINES

    Directory of Open Access Journals (Sweden)

    V. G. Gusev

    2015-01-01

    Full Text Available The article shows the peculiarities and disadvantages of the classical single-fuselage configuration aircraft for local lines. It also provides an overview of the twin-fuselage configuration aircraft. A version of the twin-fuselage passenger aircraft is offered and the ground of its advantages is given.

  20. Electron absorbed fractions of energy and S-values in an adult human skeleton based on {mu}CT images of trabecular bone

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R; Cassola, V F; Khoury, H J; De O Lira, C A B [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Professor Luiz Freire, 1000, CEP 50740-540, Recife (Brazil); Richardson, R B [Radiation Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Vieira, J W [Federal Institute of Education, Science and Technology of Pernambuco, Recife (Brazil); Brown, K Robson, E-mail: rkramer@uol.com.br [Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol (United Kingdom)

    2011-03-21

    When the human body is exposed to ionizing radiation, among the soft tissues at risk are the active marrow (AM) and the bone endosteum (BE) located in tiny, irregular cavities of trabecular bone. Determination of absorbed fractions (AFs) of energy or absorbed dose in the AM and the BE represent one of the major challenges of dosimetry. Recently, at the Department of Nuclear Energy at the Federal University of Pernambuco, a skeletal dosimetry method based on {mu}CT images of trabecular bone introduced into the spongiosa voxels of human phantoms has been developed and applied mainly to external exposure to photons. This study uses the same method to calculate AFs of energy and S-values (absorbed dose per unit activity) for electron-emitting radionuclides known to concentrate in skeletal tissues. The modelling of the skeletal tissue regions follows ICRP110, which defines the BE as a 50 {mu}m thick sub-region of marrow next to the bone surfaces. The paper presents mono-energetic AFs for the AM and the BE for eight different skeletal regions for electron source energies between 1 keV and 10 MeV. The S-values are given for the beta emitters {sup 14}C, {sup 59}Fe, {sup 131}I, {sup 89}Sr, {sup 32}P and {sup 90}Y. Comparisons with results from other investigations showed good agreement provided that differences between methodologies and trabecular bone volume fractions were properly taken into account. Additionally, a comparison was made between specific AFs of energy in the BE calculated for the actual 50 {mu}m endosteum and the previously recommended 10 {mu}m endosteum. The increase in endosteum thickness leads to a decrease of the endosteum absorbed dose by up to 3.7 fold when bone is the source region, while absorbed dose increases by {approx}20% when the beta emitters are in marrow.

  1. Parametric fuselage design : Integration of mechanics and acoustic & thermal insulation

    NARCIS (Netherlands)

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design

  2. Navier-Stokes Calculations of Helicopter Fuselage Flowfield and Loads

    DEFF Research Database (Denmark)

    M, Costes; Filippone, Antonino; N, Kroll

    1999-01-01

    This paper describes the theoretically basedactivities conducted during the first year of theBrite/Euram Helifuse Porgramme. These activitiesmainly consisted of the numerical prediction ofhelicopter fuselage flowfields with existing Navier-Stokes solvers on a number of pre-selectedcases, taken out...

  3. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  4. Drop test and crash simulation of a civil airplane fuselage section

    Directory of Open Access Journals (Sweden)

    Liu Xiaochuan

    2015-04-01

    Full Text Available Crashworthiness of a civil airplane fuselage section was studied in this paper. Firstly, the failure criterion of a rivet was studied by test, showing that the ultimate tension and shear failure loads were obviously affected by the loading speed. The relations between the loading speed and the average ultimate shear, tension loads were expressed by two logarithmic functions. Then, a vertical drop test of a civil airplane fuselage section was conducted with an actual impact velocity of 6.85 m/s, meanwhile the deformation of cabin frame and the accelerations at typical locations were measured. The finite element model of a main fuselage structure was developed and validated by modal test, and the error between the calculated frequencies and the test ones of the first four modes were less than 5%. Numerical simulation of the drop test was performed by using the LS-DYNA code and the simulation results show a good agreement with that of drop test. Deforming mode of the analysis was the same as the drop test; the maximum average rigid acceleration in test was 8.81g while the calculated one was 9.17g, with an error of 4.1%; average maximum test deformation at four points on the front cabin floor was 420 mm, while the calculated one was 406 mm, with an error of 3.2%; the peak value of the calculated acceleration at a typical location was 14.72g, which is lower than the test result by 5.46%; the calculated rebound velocity result was greater than the test result 17.8% and energy absorption duration was longer than the test result by 5.73%.

  5. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  6. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    Science.gov (United States)

    1994-01-01

    RepoW Techniques for Prwurized Aircraft AXWdOg 4.9 Summary and Conclusions The basics of adhesive bonded repairs for aluminum aircraft fuselages have... of cruise altitude and bending stresses in the plate at the tip of one-sided reinforcements (chapter 5). The expanded Rose model was transformed into a...DEPARTMEN1 OF THE AIR FORCE AGENCY REPORT NUMBER AFIT/CI 2950 P STREET WRIGHT-PATTERSON AFB OH 45433-7765 11. SUPPLEMENTARY NOTES Usa. DISTRUISUIOII

  7. Cabin fuselage structural design with engine installation and control system

    Science.gov (United States)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  8. Pemodelan dan Analisa Reduksi Respon Getaran Translasi pada Sistem Utama dan Energi Listrik yang Dihasilkan oleh Mekanisme Dynamic Vibration Absorber Metode Cantilever Piezoelectric (CPVA

    Directory of Open Access Journals (Sweden)

    Wahyu Rachma Efendy

    2017-03-01

    Full Text Available Getaran banyak terjadi pada mesin-mesin di industri. Salah satu solusi untuk mereduksi getaran berlebih adalah dengan menambahkan Dynamic Vibration Absorber (DVA. Prinsip kerja dari Dynamic Vibration Absorber adalah penambahan massa absorber dan pegas pada sistem utama. DVA akan mereduksi getaran sistem utama dengan menghasilkan getaran yang arahnya berlawanan dengan arah getar dari sistem utama. Berdasarkan penelitian yang dilakukan oleh Pachpute [1], penggunaan DVA telah terbukti dapat mereduksi getaran dari sistem utama yang dioperasikan di frekuensi natural secara signifikan. Dalam penelitian Tugas Akhir ini telah dirancang sebuah mekanisme alat vibration absorber dan energy harvesting metode Cantilever Piezoelectric Vibration Absorber (CPVA. Sistem utama yang digunakan dalam penelitian ini adalah plat datar yang ditopang oleh empat pegas. Plat tersebut akan menerima gaya eksitasi dari pegas dibawahnya yang dihubungkan dengan massa eksentris pada motor DC. Koefisien pegas yang digunakan untuk menumpu plat datar memiliki nilai yang sama, yaitu sebesar 300 N/m. Sehingga eksitasi yang terjadi pada plat datar hanya ke arah translasi. Pada penelitian ini, dilakukan analisa dengan variasi amplitudo massa eksentris sebesar 0.025 m, 0.030 m, dan 0.035 m. Kecepatan putaran motor sebesar 20.61 rad/s (frekuensi natural, 22.05 rad/s (frekuensi panen, dan 25 rad/s (frekuensi lembah. Sedangkan variasi jumlah cantilever piezoelectric yang digunakan adalah 2600, 2800, dan 3000 buah. Dari simulasi yang telah dilakukan, daya bangkitan dan nilai persentase reduksi terbesar dari CPVA terjadi ketika sistem dioperasikan di frekuensi naturalnya, yaitu sebesar 3.52E-7 watt dan 20.36%. Selain itu, dari simulasi juga didapatkan karakteristik CPVA dengan memvariasikan jumlah piezoelectric, didapatkan rentang jumlah piezoelectric optimum adalah 1400 hingga 2400 buah. Pada rentang tersebut, daya bangkitan dan persentase reduksi perpindahan massa utama terbesar yang

  9. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons; Desenvolvimento de uma metodologia para estimativa da dose absorvida e do poder de freamento para eletrons de conversao de baixa energia

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internalcontamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy {sup 109} Cd conversion electrons, working with a 4 {pi} proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin {sup 109} Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  10. Finite Element Analysis of Composite Aircraft Fuselage Frame

    Science.gov (United States)

    Dandekar, Aditya Milind

    Composites have been introduced in aircraft industries, for their stronger, stiffer, and lighter properties than their metal-alloys counterparts. The general purpose of an aircraft is to transport commercial or military payload. Aircraft frames primarily maintains the shape of fuselage and prevent instability of the structure. Fuselage is similar as wing in construction which consist of longitudinal elements (longerons and stringers), transverse elements (frames and bulkheads) and its external skin. The fuselage is subjected to forces such as the wing reactions, landing gear reaction, empennage reaction, inertia forces subjected due to size and weight, internal pressure forces due to high altitude. Frames also ensure fail-safe design against skin crack propagation due to hoops stress. Ideal fuselage frames cross section is often circular ring shape with a frame cap of Z section. They are mainly made up of light alloy commonly used is aluminium alloys such as Al-2024, Al-7010, Al-7050, Al-7175. Aluminium alloys have good strength to density ratios in compression and bending of thin plate. A high strength to weight ratio of composite materials can result in a lighter aircraft structure or better safety factor. This research focuses on analysis of fuselage frame under dynamic load condition with change in material. Composites like carbon fibre reinforced plastics [CFRP] and glass fibre reinforced plastics [GFRP] are compared with traditional aluminium alloy Al-7075. The frame is subjected to impact test by dropping it at a velocity of 30 ft. / secs from a height of 86 inch from its centre of gravity. These parameters are considered in event of failure of landing gear, and an aircraft is subject to belly landing or gear-up landing. The shear flow is calculated due to impact force which acts in radial direction. The frame is analysed under static structural and explicit dynamic load conditions. Geometry is created in ANSYS Design Modeler. Analysis setup is created using

  11. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Directory of Open Access Journals (Sweden)

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  12. GEANT 4.8.2, 9.2 and 9.4 simulations versus experimental proton energy loss in thick absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Evseev, Ivan; Schelin, Hugo R.; Ahmann, Francielle; Milhoretto, Edney; Paschuk, Sergei A., E-mail: evseev@utfpr.edu.b, E-mail: schelin@utfpr.edu.b, E-mail: sergei@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Yevseyeva, Olga; Assis, Joaquim T. de; Ievsieieva, Ievgeniia, E-mail: yevseveva@iprj.uerj.b, E-mail: joaquim@iprj.uerj.b [Instituto Politecnico do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Dept. de Modelagem Computacional; Hormaza, Joel M., E-mail: jmesa@ibb.unesp.b [Universidade Estadual Paulista (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Diaz, Katherin S. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, Havana (Cuba); Lopes, Ricardo T. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LIN/COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear

    2011-07-01

    Monte Carlo simulations are a powerful tool to estimate the proton energy loss and straggling in medical applications. The physics of proton interaction with matter for thick absorbers (like a human body) has a well-established theory for the so-called Bethe-Bloch domain, and the basic principles of Monte Carlo simulation for such processes are well known since the middle of the past century. However, in spite of GEANT4 has been validated against proton stopping powers from the NIST PSTAR, the evolution of the code leads to some result instability within the various code releases. In this work, we present the recent results for the comparison of our GEANT4 simulations against experimental proton energy loss for some thick absorbers. All the simulations were performed using the GEANT4 Hadrontherapy Advanced Example. The GEANT4 versions 4.8.2, 4.9.2, and 4.9.4 were tested with different simulation parameters, such as varied cut values. In addition to the Standard model, some other models for the electromagnetic processes from the GEANT4 Low Energy Extension Pack were tested as well. Experimental data were taken from for polyethylene, and from for aluminum and gold absorbers. The theoretical predictions for the spectra were calculated using the self-consistent Gaussian solution of the Boltzmann kinetic equation in the Fokker-Plank form. In order to compare the GEANT4 simulations with other popular codes, the same spectra were simulated by TRIM/SRIM2011 and MCNPX2.4.0. The simultaneous comparison of the results obtained for different materials at various initial proton energies were done using the reduced calibration curve approach. (author)

  13. Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency

    Science.gov (United States)

    Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.

    2016-01-01

    Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.

  14. An inverse method for the design of energy absorbers in the frontend of passenger cars; Eine inverse Methode zur Auslegung von Energieabsorbern im Frontend von Personenkraftwagen

    Energy Technology Data Exchange (ETDEWEB)

    Goetze, Dirk

    2011-07-01

    Mobility is one of the key factors of our society. The consequences for the environment and mankind can be seen every day. For example in 2009, about 35,500 people involved in traffic accidents in Europe died. The ambitious objective of the European Union, the reduction of the total number of road casualties in 2010, to 27,000 which is half of the road casualties in 2001, was not obtained. The enormous number of fatalities shows, that road safety will be an important issue in the future. Upcoming initiatives of the European Union will focus on accidents outside the city limits where about 60% of all road fatalities occur but also on vulnerable road users (such as children, pedestrians, cyclists and the elderly). The automotive industry has to assure that the vehicle structures are able to reduce the severity of injuries not only for vehicle occupants but also for the other people who are involved in an accident. This can be reached with active and passive safety systems. In this work an alternative design process for passive safety structures is introduced, which is based on the vehicle requirements. The so-called inverse design method is demonstrated for the design of energy absorbers in frontend systems used for pedestrian protection. It is based on a multi-stage optimization process. Compared to the classic design process, where the crash-pulse is usually based on vehicle stiffness and the deformation length, the inverse method focuses on the structural design based on a desired crash-pulse. Using virtual absorbers, which are not limited by any material behavior or geometry, legform to bumper testes can be simulated. Thus, the desired legform deceleration can be generated. The data obtained is used for the second step of the inverse design method, the generation of a ''real'' absorber. For the design of the ''real'' absorber small drop-tower simulations are sufficient. A parameterized finite element model is used. Both the

  15. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  16. Heavy Class Helicopter Fuselage Model Drag Reduction by Active Flow Control Systems

    Science.gov (United States)

    De Gregorio, F.

    2017-08-01

    A comprehensive experimental investigation of helicopter blunt fuselage drag reduction using active flow control is being carried out within the European Clean Sky program. The objective is to demonstrate the capability of several active flow technologies to decrease fuselage drag by alleviating the flow separation occurring in the rear area of some helicopters. The work is performed on a simplified blunt fuselage at model-scale. Two different flow control actuators are considered for evaluation: steady blowing, unsteady blowing (or pulsed jets). Laboratory tests of each individual actuator are first performed to assess their performance and properties. The fuselage model is then equipped with these actuators distributed in 3 slots located on the ramp bottom edge. This paper addresses the promising results obtained during the wind-tunnel campaign, since significant drag reductions are achieved for a wide range of fuselage angles of attack and yaw angles without detriment of the other aerodynamic characteristics.

  17. A Coupled Helicopter Rotor/Fuselage Dynamics Model Using Finite Element Multi-body

    Directory of Open Access Journals (Sweden)

    Cheng Qi-you

    2016-01-01

    Full Text Available To develop a coupled rotor/flexible fuselage model for vibration reduction studies, the equation of coupled rotor-fuselage is set up based on the theory of multi-body dynamics, and the dynamic analysis model is established with the software MSC.ADMAS and MSC.NASTRAN. The frequencies and vibration acceleration responses of the system are calculated with the model of coupled rotor-fuselage, and the results are compared with those of uncoupled modeling method. Analysis results showed that compared with uncoupled model, the dynamic characteristic obtained by the model of coupled rotor-fuselage are some different. The intrinsic frequency of rotor is increased with the increase of rotational velocities. The results also show that the flying speed has obvious influence on the vibration acceleration responses of the fuselage. The vibration acceleration response in the vertical direction is much higher at the low speed and high speed flight conditions.

  18. Calculus of the fluence and the absorbed dose by the different head tissues before photons of distinct energies

    International Nuclear Information System (INIS)

    Azorin V, C.; Rivera M, T.; Vega C, H. R.; Azorin N, J.

    2009-10-01

    Two models were used, in the first one the head was built with the scalp that includes the skin and the adipose tissue, the skull, the brain and the tumor, it is modeled as a sphere of 1 cm of radius that be places in the center of the head pattern. The spherical models of the scalp, the skull and the brain were built respectively with spheres of 8.5, 8 and 7 cm of radius. The tumor was irradiated with an unidirectional beam of photons, the calculated cases were photons of 6 0Co and monoenergetic photons beams of 6, 8, 10 and 15 MeV. For each case be calculated the total photons fluence to 5, 10 and 15 cm in air and to 20.5 cm that is the interface between the air and head. This calculus included values of photons fluence halfway the scalp, halfway the skull, halfway the brain and in the tumor center. Also is calculated the total absorbed dose by the scalp, the skull, the brain and the tumor. (author)

  19. SU-F-207-07: Dual-Energy Computed Tomography Detection Limit of Various Radiopaque Contrast Agents That Can Be Infused Within Absorbable Inferior Vena Cava Filters

    Energy Technology Data Exchange (ETDEWEB)

    Melancon, A; Jacobsen, M; Salatan, F; Jones, A; Cody, D; Nute, J; Melancon, M [U.T.M.D Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Absorbable IVC filters are shown to be safe and efficacious in preventing pulmonary embolism. These absorbable filters disappear from the body after their required duration, alleviating costly removal procedures and downstream complications. Monitoring the positioning and integrity of absorbable devices using dual-energy computed tomography (DECT) would improve treatment efficacy. The purpose of this study is to determine the limit of detection and the energy dependence of DECT for various contrast agents that may be infused within the IVC filters including gold nanoparticles (AuNP) having diameters of 2 and 4 nm. Methods: All imaging studies were performed on a GE Discovery CT750 system in Gemstone Spectral Imaging (GSI) mode. Plastic vials containing the contrast agent solutions of water and blood were placed in a water bath, and images were acquired with the GSI-5 preset. The images were reformatted into the coronal plane and 5mm diameter ROIs were placed within each solution on a GE Advantage Workstation. Monoenergetic reconstructions were generated from 40 – 140 keV. Results: Mass attenuation (contrast per unit density) for AuNPs was greater than iron, but less than barium and iodine. Contrast was 10.2 (± 3.6) HU for 4 nm AuNP at 0.72 mg/ml and 12.1 (± 4.2) for 2 nm AuNP at 0.31 mg/ml at 70 keV suggesting reasonable chance of visualization at these concentrations for 70 keV reconstruction. The contrast as a function of CT energy is similar in both water and blood. Iodine is most dependent, followed closely by barium and iron, and trailed by a large margin by the AuNP. This was unexpected given Au’s large atomic number and the predominance of photoelectric effect at low energy. Conclusion: Infusion of IVC filters with AuNP is feasible. Discrimination of AuNP-infused IVC filters from surrounding anatomy warrants further investigation.

  20. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...

  1. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  2. TO THE DEVELOPMENT OF AERODYNAMIC SHAPE OF MEDIUM SIZED PERSPECTIVE HELICOPTER FUSELAGE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This paper presents the initial stage of work out of the helicopter body aerodynamic configuration. The main pur- pose of this work is to design the model of the fuselage and to minimize its drag.The analysis of experimental data obtained in TsAGI and other research centers was made at the first stage of the work. All features of flow around parts of the fuselage obtained from experimental data were taken into account. The de- pendencies of the fuselage component drag, such as the bow, fairings exhaust pipes of helicopter, sponsons, and tail sectionof the fuselage, on their form are described in this article.At the second stage the fuselage geometry was created in program SolidWorks. All the features of the flow around various fuselage components derived from the experimental data were considered in designing.The third stage is calculating of fuselage model aerodynamic characteristics. The calculations were made in the program ANSYS CFX (TsAGI License №501024. Boundary conditions were chosen so as to correspond to normal at- mospheric conditions at 1,000 meters with velocity of flight is V = 85 m/s. The output of the hot jet from engines is takinginto account in computation. The purpose of this calculation is to find the optimal angle of the engine exhaust pipe whenthe hot spray does not intersect with the tail and stabilizer and creates the maximum of propulsive force. The volume of the grid in computational domain is approximately 13 million cells.Data analysis has shown that the fuselage has a 20% less drag at cruising flight (аf = -4 ° compared to the original model. The hot jets do not intersect with the tail and stabilizers at cruising flight so the fuselage is protected from overheating.

  3. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  4. Implementation of an algorithm for absorbed dose calculation in high energy photon beams at off axis points

    International Nuclear Information System (INIS)

    Matos, M.F.; Alvarez, G.D.; Sanz, D.E.

    2008-01-01

    Full text: A semiempirical algorithm for absorbed dose calculation at off-axis points in irregular beams was implemented. It is well known that semiempirical methods are very useful because of their easy implementation and its helpfulness in dose calculation in the clinic. These methods can be used as independent tools for dosimetric calculation in many applications of quality assurance. However, the applicability of such methods has some limitations, even in homogeneous media, specially at off axis points, near beam fringes or outside the beam. Only methods derived from tissue-air-ratio (TAR) or scatter-maximum-ratio (SMR) have been devised for those situations, many years ago. Despite there have been improvements for these manual methods, like the Sc-Sp ones, no attempt has been made to extend their usage at off axis points. In this work, a semiempirical formalism was introduced, based on the works of Venselaar et al. (1999) and Sanz et al. (2004), aimed to the Sc-Sp separation. This new formalism relies on the separation of primary and secondary components of the beam although in a relative way. The data required by the algorithm are reduced to a minimal, allowing for experimental easy. According to modern recommendations, reference measurements in water phantom are performed at 10 cm depth, keeping away electron contamination. Air measurements are done using a mini phantom instead of the old equilibrium caps. Finally, the calculation at off-axis points are done using data measured on the central beam axis; but correcting the results with the introduction of a measured function which depends on the location of the off axis point. The measurements for testing the algorithm were performed in our Siemens MXE linear accelerator. The algorithm was used to determine specific dose profiles for a great number of different beam configurations, and the results were compared with direct measurements to validate the accuracy of the algorithm. Additionally, the results were

  5. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    Science.gov (United States)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  6. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors

    International Nuclear Information System (INIS)

    Mazurier, J.

    1999-01-01

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  7. Embedding of $^{163}$Ho and $^{166m}$ Ho in the energy absorbers of low temperature metallic magnetic calorimeters

    CERN Multimedia

    The calorimetric measurement of the $^{163}$Ho electron capture spectrum is a promising tool to investigate the electron neutrino mass. A suitable method to embed the source in the detectors is the ion-implantation. This process has already been used to embed $^{163}$Ho ions in micro-fabricated low temperature metallic magnetic prototypes. The $^{163}$Ho electron capture spectrum obtained with these first prototypes is presently the most precise with an energy resolution of $\\Delta$$\\textit{E}$$_{FWHM}$ = 7.6 eV. In order to test the performance of the new generation of low temperature metallic magnetic calorimeters, we propose to perform a $^{163}$Ho ion-implantation on the new chip having two arrays consisting of 32 pixels each. An activity of about 1 Bq per pixel is required. With this new detector array we will be able to achieve a better energy resolution and to acquire a higher statistics which allows for studying the $^{163}$Ho spectral shape. We propose also to perform an ion-implantation of $^{166m}$...

  8. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    Science.gov (United States)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  9. Detailed design of a lattice composite fuselage structure by a mixed optimization method

    Science.gov (United States)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.

    2016-10-01

    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  10. Gamma-ray energy absorption in absorbing homogeneous medium. Applications to Oceanography and Geophysics (Gamma-ray spectroscopy from 500 to 1500 keV)

    International Nuclear Information System (INIS)

    Lapicque, G.

    1980-01-01

    The aim of this study is to establish a general algebrical approach for the calculation, without any program, of the full energy peak efficiency of a detecting probe designed to measure the gamma activity of a radio-element in a (semi) infinite homogeneous absorbing medium such as the Sea. The radio-active source may be punctual or, most often, constitute an integral part of the medium. The proposed theory is valid for any purely absorptive process of particles moving along straight trajectories, diffusion effects being allowed for separately. The formulation assumes a spherical detector and calculations are made for models having the same volume as two standard phosphors (10 cm x8 cm and 5 cm x 4.5 cm) in the energy band 0.5 to 1.5 MeV. The parameters are the detector radius and, at energy E 0 , the absorption coefficients in the various media for gamma rays together with the 'peak/total' ratio in the detector. The fact that this latter factor, which varies with each trajectory, cannot be obtained with accuracy, constitutes the main limitation of the formulation. The comparison with experimental results obtained with a 10 cm x 8 cm phosphor at the C.F.R. (Centre des Faibles Radioactivites, Gif-sur-Yvette) and with various data indicates an error of about +-5% for a point source at contact and -30% for a homogeneously distributed source in an infinite medium. This latter value may be interpreted as a superiority of the spherical shape over the cylinder (used in practice), for detectors operating in infinite media. Calculations are made without allowing for the Compton effect, which is found to give an approximate correction of +5% in water for a band width of 10 keV in the MeV region. Finally, the shape of the detecting probe around the detector is shown to be indifferent in the assumption of a constant peak/total ratio [fr

  11. Fuselage mounted anti-collision lights utilizing high power LEDs

    Science.gov (United States)

    Lundberg, John; Machi, Nicolo; Mangum, Scott; Singer, Jeffrey

    2005-09-01

    As LEDs continue to improve in efficacy and total light output, they are increasingly finding their way in to new applications in the aviation industry as well as adjacent markets. One function that is particularly challenging and may reap substantial benefits from this new technology is the fuselage mounted anti-collision light. Anti-collision lights provide conspicuity for the aircraft by periodically emitting bright flashes of light. The color, light distribution and intensity levels for these lights are all closely regulated through Federal Aviation Regulation (FAR) documents. These lighting requirements, along with thermal, environmental and aerodynamic requirements, drive the overall design. In this paper, we will discuss the existing technologies used in anti-collision lights and the advantages and challenges associated with an LED solution. Particular attention will be given to the optical, thermal, electrical and aerodynamic aspects associated with an LED approach. A specific case study will be presented along with some of the challenges that have arisen during the design process. These challenges include the addition of an integrated covert anti-collision lighting.

  12. Electrochromic absorbance changes in relation to electron transport and energy coupling in thylakoid membranes : [Electrochrome absorptie veranderingen in relatie tot elektronentransport en energiekoppeling in thylakoid membranen

    NARCIS (Netherlands)

    Ooms, J.J.J.

    1990-01-01

    This thesis deals mainly with the analysis and interpretation of the flash-induced electrochromic absorbance changes in isolated chloroplasts of spinach and pea plants. The amplitude and kinetics of the flash-induced absorbance changes at 518 nm (P515) are discussed in relation to the

  13. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  14. Adaptive inertial shock-absorber

    International Nuclear Information System (INIS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  15. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    Science.gov (United States)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  16. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  17. Use of national metrological references of dose absorbed in water and application of the IAEA TRS nr 398 dosimetry protocol to high energy photon beams. BNM-LNHB-LCIE-SFPM working group

    International Nuclear Information System (INIS)

    Chauvenet, B.; Delaunay, F.; Dolo, J.M.; Le Roy, G.; Bridier, A.; Francois, P.; Sabattier, R.

    2003-01-01

    Metrological references of dose absorbed in water for high energy photon beams used in radiotherapy have been elaborated during the past years by national calibration laboratories, and these new references are the basis of recent dosimetry protocols. However, the passage from metrological references of air kerma to dose absorbed in water, as well as the practical application of new calibration opportunities for dosemeters in high energy X ray beams requires a specific attention to maintain the consistency of dose measurement references over the hospital site. In this respect, this guide aims at the application of these metrological references. It proposes recommendations for the application of metrological references in terms of dose absorbed in water on the hospital site with reference to their determination conditions and to the implementation of the new IAEA dosimetry protocol (TRS nr 398). Thus, this guide proposes an overview of metrological references in French calibration laboratories, presents calibration methods (air kerma in a cobalt 60 gamma photon beam, dose absorbed in water) and a comparison with the IAEA TRS 277 dosimetry protocol. It addresses various practical aspects, and discusses uncertainties

  18. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    Science.gov (United States)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  19. COMPUTING EXPERIMENT FOR ASSESSMENT OF AERODYNAMIC CHARACTERISTICS OF SEPARATE ELEMENTS IN THE STRUCTURE OF THE FUSELAGE OF A HELICOPTER

    Directory of Open Access Journals (Sweden)

    V. A. Ivchin

    2015-01-01

    Full Text Available The present publication describes the calculation of helicopter fuselage aerodynamic characteristics and its separate elements, by computing experiment. On the basis of program commercial package CFX ANSYS the technique has been mastered and longitudinal and lateral characteristics of the helicopter fuselage on the various flight modes are calculated.

  20. Stability theory and transition prediction applied to a general aviation fuselage

    Science.gov (United States)

    Spall, R. E.; Wie, Y.-S.

    1993-01-01

    The linear stability of a fully three-dimensional boundary layer formed over a general aviation fuselage was investigated. The location of the onset of transition was estimated using the N-factor method. The results were compared with existing experimental data and indicate N-factors of approximately 8.5 on the side of the fuselage and 3.0 near the top. Considerable crossflow existed along the side of the body, which significantly affected the unstable modes present in the boundary layer. Fair agreement was found between the predicted frequency range of linear instability modes and available experimental data concerning the spectral content of the boundary layer.

  1. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, M.G.; Watson, E.E.; Cristy, M.; Ryman, J.C.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Davis, J.L. [Tennessee Univ., Chattanooga, TN (United States); Marshall, D. [Florida Univ., Gainesville, FL (United States). Dept. of Nuclear Engineering; Gehlen, M.K. [San Diego State Univ., CA (United States)

    1995-05-08

    Mathematical phantoms representing the adult female at three, six, and nine months of gestation are described. They are modifications of the 15-year-old male/adult female phantom (15-AF phantom) of Cristy and Eckerman (1987). The model of uterine contents includes the fetus, fetal skeleton, and placenta. The model is suitable for dose calculations for the fetus as a whole; individual organs within the fetus (other than the skeleton) are not modeled. A new model for the nonpregnant adult female is also described, comprising (1) the 15-AF phantom; (2) an adjustment to specific absorbed fractions for organ self-dose from photons to better match Reference Woman masses; and (3) computation of specific absorbed fractions with Reference Woman masses from ICRP Publication 23 for both penetrating and nonpenetrating radiations. Specific absorbed fractions for photons emitted from various source regions are tabulated for the new non;pregnant adult female model and the three pregnancy models.

  2. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  3. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  4. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  5. Fuselage Burnthrough Protection for Increased Postcrash Occupant Survivability: Safety Benefit Analysis Based on Past Accidents

    National Research Council Canada - National Science Library

    Cherry, Ray

    1999-01-01

    .... The methodology gives a reasonable assessment of the tolerance on the predicted levels. Fire hardening of fuselages will provide benefits in terms of enhanced occupant survival and may be found to be cost beneficial if low-cost solutions can be found...

  6. Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2014-01-01

    Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology

  7. Design, Analysis, Fabrication and Testing of Grid-Stiffened for Fuselage Applications

    NARCIS (Netherlands)

    Shroff, S.

    2014-01-01

    The application of composites in aircraft structures has grown significantly in the past decade, and an increase in this growth in application has recently been achieved in fuselage designs for large civil aircraft such as the Boeing B787 and the Airbus A350. In conventional design philosophies,

  8. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; Aanhold, van J.E.; Meulen, van der O.R.; Sagimon, M.

    2010-01-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and

  9. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; Aanhold, J.E. van; Meulen, O.R. van der; Sagimon, M.

    2010-01-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and

  10. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    Science.gov (United States)

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  11. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  12. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  13. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    International Nuclear Information System (INIS)

    Delaunay, F.; Gouriou, J.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.; Kapsch, R.P.; Illemann, J.; Krauss, A.

    2012-01-01

    During the Euramet project JRP7 'External Beam Cancer Therapy', PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm * 10 cm and 3 cm * 3 cm while LNE-LNHB used graphite calorimeters in 6MV and 12MV beams for field sizes of 10 cm * 10 cm, 4 cm * 4 cm and 2 cm * 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60 Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60 Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% ( 60 Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm * 10 cm down to 2 cm * 2 cm and for beams of 6 MV to 10 MV. (authors)

  14. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  15. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Mandal, Jyotirmoy; Wang, Derek; Overvig, Adam C; Shi, Norman N; Paley, Daniel; Zangiabadi, Amirali; Cheng, Qian; Barmak, Katayun; Yu, Nanfang; Yang, Yuan

    2017-11-01

    A galvanic-displacement-reaction-based, room-temperature "dip-and-dry" technique is demonstrated for fabricating selectively solar-absorbing plasmonic-nanoparticle-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs' spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°), and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200 °C. Along with the performance of the PNFs, the simplicity, inexpensiveness, and environmental friendliness of the "dip-and-dry" technique makes it an appealing alternative to current methods for fabricating selective solar absorbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrodynamics of triangular-grid arrays of floating point-absorber wave energy converters with inter-body and bottom slack-mooring connections

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, Pedro C.; Falcao, Antonio F. de O.; Gato, Luiz M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Justino, Paulo A.P. [Laboratorio Nacional de Energia e Geologia, 1649-038 Lisboa (Portugal)

    2009-07-01

    It may be convenient that dense arrays of floating point absorbers are spread-moored to the sea bottom through only some of their elements (possibly located in the periphery), while the other array elements are prevented from drifting and colliding with each other by connections to adjacent elements. An array of identical floating point absorbers located at the grid points of an equilateral triangular grid is considered in the paper. A spread set of slack-mooring lines connect the peripheric floaters to the bottom. A weight is located at the centre of each triangle whose function is o pull the three floaters towards each other and keep the inter-body moorings lines under tension. The whole system - buoys, moorings and power take-off systems - is assumed linear, so that a frequency domain analysis may be employed. Hydrodynamic interference between the oscillating bodies is neglected. Equations are presented for a set of three identical point absorbers. This is then extended to more complex equilateral iriangular grid arrays. Results from numerical simulations, with regular and irregular waves, are presented for the motions and power absorption of hemispherical converters in arrays of three and seven elements and different mooring and power take-off parameters, and wave incidence angles. Comparisons are given with the unmoored and independently-moored buoy situations.

  17. Phase Space Exchange in Thick Wedge Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-01-01

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  18. A Wedge Absorber Experiment at MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  19. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  20. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1983-01-01

    A neutron-absorber body for use in burnable poison rods in a nuclear reactor. The body is composed of a matrix of Al 2 O 3 containing B 4 C, the neutron absorber. Areas of high density polycrystalline Al 2 O 3 particles are predominantly encircled by pores in some of which there are B 4 C particles. This body is produced by initially spray drying a slurry of A1 2 O 3 powder to which a binder has been added. The powder of agglomerated spheres of the A1 2 O 3 with the binder are dry mixed with B 4 C powder. The mixed powder is formed into a green body by isostatic pressure and the green body is sintered. The sintered body is processed to form the neutron-absorber body. In this case the B 4 C particles are separate from the spheres resulting from the spray drying instead of being embedded in the sphere

  1. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  2. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  3. Evaluation as a function of age of the effective energy absorbed in any gram (ε/m) of organs except the gastrointestinal tract by the principal radionuclides which are most likely to contaminate food and the environment

    International Nuclear Information System (INIS)

    Garnier, A.

    1965-01-01

    In order to evaluate internal radiation doses it is necessary to know the effective energy dissipated in any gram of the organ of reference, which depends, for any radionuclide, on the physical energy (E) absorbed in the body organ, on the relative biological effectiveness (RBE), on the relative damage factor (n) and on the mass of the organ (m). This effective energy may be evaluated as a function of the size and of the mass of the organs, from birth to adult age. This work is done for the principal radionuclides which are most likely to contaminate the food and the environment, it concerns 44 nuclides from 3 H to 242 Cm. (author) [fr

  4. Capability of State-of-the-Art Navier-Stokes Solvers for the Prediction of Helicopter Fuselage Aerodynamics

    DEFF Research Database (Denmark)

    N., Kroll; P., Renzoni; M., Amato

    1998-01-01

    The purpose of this paper is to describe the influence of different Navier-Stokes solvers and grids on the prediction of the global coefficients for a simplified geometry of a helicopter fuselage.......The purpose of this paper is to describe the influence of different Navier-Stokes solvers and grids on the prediction of the global coefficients for a simplified geometry of a helicopter fuselage....

  5. Performance of an absorbing concentrating solar collectors

    International Nuclear Information System (INIS)

    Imadojemu, H.

    1990-01-01

    This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive

  6. Vertical drop test of a transport fuselage center section including the wheel wells

    Science.gov (United States)

    Williams, M. S.; Hayduk, R. J.

    1983-01-01

    A Boeing 707 fuselage section was drop tested to measure structural, seat, and anthropomorphic dummy response to vertical crash loads. The specimen had nominally zero pitch, roll and yaw at impact with a sink speed of 20 ft/sec. Results from this drop test and other drop tests of different transport sections will be used to prepare for a full-scale crash test of a B-720.

  7. Slender body theory programmed for bodies with arbitrary cross section. [including fuselages

    Science.gov (United States)

    Werner, J.; Krenkel, A. R.

    1978-01-01

    A computer program developed for determining the subsonic pressure, force, and moment coefficients for a fuselage-type body using slender body theory is described. The program is suitable for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures developed which are capable of treating cross sections with corners or regions of large curvature are outlined.

  8. Low Absorbance Measurements

    Science.gov (United States)

    Harris, T. D.; Williams, A. M.

    1983-10-01

    The application of low absorption measurements to dilute solute determination requires specific instrumental characteristics. The use of laser intracavity absorption and thermal lens calorimetry to measure concentration is shown. The specific operating parameters that determine sensitivity are delineated along with the limits different measurement strategies impose. Finally areas of improvement in components that would result in improve sensitivity, accuracy, and reliability are discussed. During the past decade, a large number of methods have been developed for measuring the light absorbed by transparent materials. These include measurements on gases, liquids, and solids. The activity has been prompted by a variety of applications and a similar variety of disciplines. In Table 1 some representative examples of these methods is shown along with their published detection limits.1 It is clear that extraordinarily small absorbances can be measured. Most of the methods can be conveniently divided into two groups. These groups are those that measure the transmission of the sample and those that measure the light absorbed by the sample. The light absorbed methods are calorimetric in character. The advantages and disadvantages of each method varies depending on the principal application for which they were developed. The most prevalent motivation has been to characterize the bulk optical properties of transparent materials. Two examples are the development of extremely transparent glasses for use as fiber optic materials and the development of substrates for high power laser operation.

  9. Hybrid Wing-Body Pressurized Fuselage and Bulkhead, Design and Optimization

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2013-01-01

    The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.

  10. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  11. Application of Carbon Fibre Truss Technology to the Fuselage Structure of the SKYLON Spaceplane

    Science.gov (United States)

    Varvill, R.; Bond, A.

    A reusable SSTO spaceplane employing dual mode airbreathing/rocket engines, such as SKYLON, has a voluminous fuselage in order to accommodate the considerable quantities of hydrogen fuel needed for the ascent. The loading intensity which this fuselage has to withstand is relatively low due to the modest in-flight inertial accelerations coupled with the very low density of liquid hydrogen. Also the requirement to accommo- date considerable temperature differentials between the internal cryogenic tankage and the aerodynamically heated outer skin of the vehicle imposes an additional design constraint that results in an optimum fuselage structural concept very different to conventional aircraft or rocket practice. Several different structural con- cepts exist for the primary loadbearing structure. This paper explores the design possibilities of the various types and explains why an independent near ambient temperature CFRP truss structure was selected for the SKYLON vehicle. The construction of such a truss structure, at a scale not witnessed since the days of the airship, poses a number of manufacturing and design difficulties. In particular the construction of the nodes and their attachment to the struts is considered to be a key issue. This paper describes the current design status of the overall truss geometry, strut construction and manufacturing route, and the final method of assembly. The results of a preliminary strut and node test programme are presented which give confidence that the design targets will eventually be met.

  12. An Airplane Design having a Wing with Fuselage Attached to Each Tip

    Science.gov (United States)

    Spearman, Leroy M.

    2001-01-01

    This paper describes the conceptual design of an airplane having a low aspect ratio wing with fuselages that are attached to each wing tip. The concept is proposed for a high-capacity transport as an alternate to progressively increasing the size of a conventional transport design having a single fuselage with cantilevered wing panels attached to the sides and tail surfaces attached at the rear. Progressively increasing the size of conventional single body designs may lead to problems in some area's such as manufacturing, ground-handling and aerodynamic behavior. A limited review will be presented of some past work related to means of relieving some size constraints through the use of multiple bodies. Recent low-speed wind-tunnel tests have been made of models representative of the inboard-wing concept. These models have a low aspect ratio wing with a fuselage attached to each tip. Results from these tests, which included force measurements, surface pressure measurements, and wake surveys, will be presented herein.

  13. Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant

    International Nuclear Information System (INIS)

    Acuña, A.; Velázquez, N.; Cerezo, J.

    2013-01-01

    A diffusion absorption cooling system is analyzed to determine the appropriate fluid for the unit, based on the coefficient of performance (COP) and operating conditions, by comparing lithium nitrate (LiNO 3 ), sodium thiocyanate (NaSCN) and water (H 2 O) as absorbent substances and by using ammonia (NH 3 ) as the refrigerant. The presence of crystallization in the system is analyzed as a function of the generator and absorber temperatures. Additionally, the effects on the efficiency of the system from adding the inert gas helium (He) or hydrogen (H 2 ) are studied. A mathematical model is developed and compared to experimental studies reported in the literature. At an evaporator temperature of −15 °C, a generator temperature of 120 °C and absorber and condenser temperatures of 40 °C, the results show that the best performance is achieved by the NH 3 –LiNO 3 –He mixture, with a COP of 0.48. This mixture performs 27–46% more efficient than the NH 3 –NaSCN mixture. The NH 3 –H 2 O mixture is 52–69% less efficient than the NH 3 –LiNO 3 mixture. However, when the evaporator runs at 7.5 °C, the NH 3 –H 2 O–He mixture achieves a more efficient COP than does the NH 3 –LiNO 3 –He mixture, and the NH 3 –NaSCN–He and NH 3 –LiNO 3 –He mixtures achieve the same COP when the evaporator is at 10 °C. At temperatures below 7.5 °C, the NH 3 –NaSCN–He mixture achieves a higher COP than does the NH 3 –H 2 O–He mixture. The NH 3 –LiNO 3 mixture shows crystallization at higher temperatures in the generator than does the NH 3 –NaSCN mixture. Moreover, at the same evaporator temperature, the NH 3 –LiNO 3 mixture works at activation temperatures lower than does the NH 3 –NaSCN mixture. -- Highlights: ► We studied a diffusion absorption cooling system with different working mixtures. ► The NH 3 –LiNO 3 mixture showed more efficiency than NH 3 –H 2 O mixture and NH 3 –NaSCN mixture. ► The generator and absorber temperature

  14. LINEAR MODEL FOR NON ISOSCELES ABSORBERS.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.

    2003-05-12

    Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order.

  15. Experimental measures of the energy rate absorbed in the aluminium and the comparison with the calculation using factors of dose and carrier of electrons by means of MCNP code

    International Nuclear Information System (INIS)

    Federico, Claudio A.; Vieira, Wilson J.; Rigolon, Leda S.Y.; Geraldo, Luiz P.

    2000-01-01

    In this paper are presented the results of a Monte Carlo calculation for the energy deposition rate in aluminum plates, when a collimated beam of gamma-rays produced by thermal neutrons capture in nickel target passes through them. The absorbed dose rate as a function of the aluminum thickness crossed by the gamma beam has been measured by using CaSO e :Dy thermoluminescent dosimeters. The capture gamma ray beam was extracted from a tangential beam tube of the IPEN's IEA-R1 2MW research reactor. The absorbed dose calculation was performed employing the Monte Carlo N-particle transport code (MCNP) and two methods of calculation: the simulated gamma ray flux multiplied by a dose conversion factor, and the simulated electron flux multiplied by the collision linear energy loss. The calculation results obtained by the electron transport have shown a good agreement with the experimental measurements. For deeper layers (more than 10 mm aluminum thickness), the calculation using the gamma ray flux multiplied by dose conversion factors, as well the calculation employing the electron transport, exhibit the same decreasing trade observed in experimental data, differing by a normalization factor of approximately 1.4. However, for layers nearer the material surface, the calculation using photon flux produces an overestimation of that using the electron transport as well as of the experimental results. (author)

  16. Finite Element Simulations of Two Vertical Drop Tests of F-28 Fuselage Sections

    Science.gov (United States)

    Jackson, Karen E.; Littell, Justin D.; Annett, Martin S.; Haskin, Ian M.

    2018-01-01

    In March 2017, a vertical drop test of a forward fuselage section of a Fokker F-28 MK4000 aircraft was conducted as part of a joint NASA/FAA project to investigate the performance of transport aircraft under realistic crash conditions. In June 2017, a vertical drop test was conducted of a wing-box fuselage section of the same aircraft. Both sections were configured with two rows of aircraft seats, in a triple-double configuration. A total of ten Anthropomorphic Test Devices (ATDs) were secured in seats using standard lap belt restraints. The forward fuselage section was also configured with luggage in the cargo hold. Both sections were outfitted with two hat racks, each with added ballast mass. The drop tests were performed at the Landing and Impact Research facility located at NASA Langley Research Center in Hampton, Virginia. The measured impact velocity for the forward fuselage section was 346.8-in/s onto soil. The wing-box section was dropped with a downward facing pitch angle onto a sloping soil surface in order to create an induced forward acceleration in the airframe. The vertical impact velocity of the wing-box section was 349.2-in/s. A second objective of this project was to assess the capabilities of finite element simulations to predict the test responses. Finite element models of both fuselage sections were developed for execution in LS-DYNA(Registered Trademark), a commercial explicit nonlinear transient dynamic code. The models contained accurate representations of the airframe structure, the hat racks and hat rack masses, the floor and seat tracks, the luggage in the cargo hold for the forward section, and the detailed under-floor structure in the wing-box section. Initially, concentrated masses were used to represent the inertial properties of the seats, restraints, and ATD occupants. However, later simulations were performed that included finite element representations of the seats, restraints, and ATD occupants. These models were developed to more

  17. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  18. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  19. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  20. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  1. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    Science.gov (United States)

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  3. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  4. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  5. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  7. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baharin, R; Hobson, P R; Smith, D R, E-mail: ruzalina.baharin@brunel.ac.u [Centre for Sensors and Instrumentation, School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2010-09-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  8. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    International Nuclear Information System (INIS)

    Baharin, R; Hobson, P R; Smith, D R

    2010-01-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  9. Optimization of Perfect Absorbers with Multilayer Structures

    Science.gov (United States)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  10. Device for absorbing seismic effects on buildings

    International Nuclear Information System (INIS)

    Xercavins, Pierre; Pompei, Michel.

    1979-01-01

    Device for absorbing seismic effects. The construction or structure to be protected rests on its foundations through at least one footing formed of a stack of metal plates interlinked by layers of adhesive material, over at least a part of their extent, this material being an elastomer that can distort, characterized in that at least part of the area of some metal plates works in association with components which are able to absorb at least some of the energy resulting from friction during the relative movements of the metal plates against the distortion of the elastomer [fr

  11. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  12. Performance evaluation of CFRP-rubber shock absorbers

    Science.gov (United States)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  13. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  14. Performance of Closely Spaced Point Absorbers with Constrained Floater Motion

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.

    2009-01-01

    The performance of a wave energy converter array of twelve heaving point absorbers has been assessed numerically in a frequency domain model. Each point absorber is assumed to have its own linear power take-off. The impact of slamming, stroke and force restrictions on the power absorption...

  15. Air box shock absorber for a nuclear reactor

    International Nuclear Information System (INIS)

    Pradhan, A.V.; George, J.A.

    1977-01-01

    Disclosed is an air box type shock absorber primarily for use in an ice condenser compartment of a nuclear reactor. The shock absorber includes a back plate member and sheet metal top, bottom, and front members. The front member is prefolded, and controlled clearances are provided among the members for predetermined escape of air under impact and compression. Prefolded internal sheet metal stiffeners also absorb a portion of the kinetic energy imparted to the shock absorber, and limit rebound. An external restraining rod guided by restraining straps insures that the sheet metal front member compresses inward upon impact. 6 claims, 11 figures

  16. The Australian Commonwealth standard of measurement for absorbed radiation dose

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  17. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Heterogeneous neutron absorbers development

    International Nuclear Information System (INIS)

    Boccaccini, Aldo; Agueda, Horacio; Russo, Diego; Perez, Edmundo

    1987-01-01

    The use of solid burnable absorber materials in power light water reactors has increased in the last years, specially due to improvements attained in costs of generated electricity. The present work summarizes the basic studies made on an alumina-gadolinia system, where alumina is the inert matrix and gadolinia acts as burnable poison, and describes the fabrication method of pellets with that material. High density compacts were obtained in the range of concentrations used by cold pressing and sintering at 1600 deg C in inert (Ar) atmosphere. Finally, the results of the irradiation experiences made at RA-6 reactor, located at the Bariloche Atomic Center, are given where variations on negative reactivity caused by introduction of burnable poison rods were measured. The results obtained from these experiences are in good agreement with those coming from calculation codes. (Author)

  19. Use of near infrared correlation spectroscopy for quantitation of surface iron, absorbed water and stored electronic energy in a suite of Mars soil analog materials

    Science.gov (United States)

    Coyne, Lelia M.; Banin, Amos; Carle, Glenn; Orenberg, James; Scattergood, Thomas

    1989-01-01

    A number of questions concerning the surface mineralogy and the history of water on Mars remain unresolved using the Viking analyses and Earth-based telescopic data. Identification and quantitation of iron-bearing clays on Mars would elucidate these outstanding issues. Near infrared correlation analysis, a method typically applied to qualitative and quantitative analysis of individual constituents of multicomponent mixtures, is adapted here to selection of distinctive features of a small, highly homologous series of Fe/Ca-exchanged montmorillonites and several kalinites. Independently determined measures of surface iron, relative humidity and stored electronic energy were used as constituent data for linear regression of the constituent vs. reflectance data throughout the spectral region 0.68 to 2.5 micrometers. High correlations were found in appropriate regions for all three constituents, though that with stored energy is still considered tenuous. Quantitation was improved using 1st and 2nd derivative spectra. High resolution data over a broad spectral range would be required to quantitatively identify iron-bearing clays by remotely sensed reflectance.

  20. Vibroacoustic Tailoring of a Rod-Stiffened Composite Fuselage Panel with Multidisciplinary Considerations

    Science.gov (United States)

    Allen, Albert R.; Przekop, Adam

    2015-01-01

    An efficient multi-objective design tailoring procedure seeking to improve the vibroacoustic performance of a fuselage panel while maintaining or reducing weight is presented. The structure considered is the pultruded rod stitched efficient unitized structure, a highly integrated composite structure concept designed for a noncylindrical, next-generation flight vehicle fuselage. Modifications to a baseline design are evaluated within a six-parameter design space including spacing, flange width, and web height for both frame and stringer substructure components. The change in sound power radiation attributed to a design change is predicted using finite-element models sized and meshed for analyses in the 500 Hz, 1 kHz, and 2 kHz octave bands. Three design studies are carried out in parallel while considering a diffuse acoustic field excitation and two types of turbulent boundary-layer excitation. Kriging surrogate models are used to reduce the computational costs of resolving the vibroacoustic and weight objective Pareto fronts. The resulting Pareto optimal designs are then evaluated under a static pressurization ultimate load to assess structural strength and stability. Results suggest that choosing alternative configurations within the considered design space can reduce weight and improve vibroacoustic performance without compromising strength and stability of the structure under the static load condition considered, but the tradeoffs are significantly influenced by the spatial characteristics of the assumed excitation field.

  1. A study of the structural-acoustic response and interior noise levels of fuselage structures

    Science.gov (United States)

    Koval, L. R.

    1978-01-01

    Models of both flat and curved fuselage panels were tested for their sound transmission characteristics. The effect of external air flow on transmission loss was simulated in a subsonic wind-tunnel. By numerically evaluating the known equations for field-incidence transmission loss of single-walled panels in a computer program, a comparison of the theory with the test results was made. As a further extension to aircraft fuselage simulation, equations for the field-incidence transmission loss of a double-walled panel were derived. Flow is shown to provide a small increase in transmission loss for a flat panel. Curvature is shown to increase transmission loss for low frequencies, while also providing a sharp decrease in transmission loss at the ring frequency of the cylindrical panel. The field-incidence transmission loss of a double-walled panel was found to be approximately twice that for a single-walled panel, with the addition of dips in the transmission loss at the air gap resonances and at the critical frequency of the internal panel.

  2. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1990-01-01

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium

  3. Reflection measurements of microwave absorbers

    Science.gov (United States)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  4. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  5. Report on achievements in fiscal 1998. Project of research and development of regional consortium (Development of energy saving type manufacturing process of smart material having electromagnetic wave absorbing function utilizing microwave-hydrothermal process); 1999 nendo micro ha - suinetsuho wo riyoshita denjiyha kyushu kino wo yusuru smart zairyo no sho energy gata seizo process no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The present research is aimed at developing an energy saving manufacturing process of a smart material having electromagnetic wave absorbing function in conventionally undeveloped bands as high as 30 MHz to 60 GHz. The process is composed of design, synthesis and forming of hybrid electromagnetic wave absorbing materials in which such magnetically permeable substance and conductive substance as ferrite is covered on fabrics having large dielectric loss through controlling the particle diameters and membrane thickness by using the microwave-hydrothermal process. The following researches have been performed: (1) development of smart material design and hybrid process technology, (2) evaluation on the electromagnetic wave absorbing function, (3) development of a manufacturing process for a smart forming material, and (4) development of a process for processing fabric material surface utilizing ocean resources. In Item (1), electromagnetic wave shielding function of 30 dB or higher was found provided in 200 MHz to 2 GHz bands. Calcium silicate and ferrite were manufactured by using the microwave-hydrothermal process, and calcium silicate was formed with energy being saved by using the hydrothermal curing process. In Item (2), TR17301A made by the Advanced Corporation was used to structure a system to evaluate the field in the vicinity of electric field and magnetic field. In Item (3), a ferrite forming material manufacturing process was developed. In Item (4), an attempt was carried out on forming ferrite by using reactions of nickel salt and iron salt. (NEDO)

  6. Tritons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2010-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to tritons ( 3 H + ) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Coefficients were calculated using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and calculation of gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 3%. The greatest difference, 43%, occurred at 30 MeV. Published by Oxford Univ. Press on behalf of the US Government 2010. (authors)

  7. Helions at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2010-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent, for isotropic exposure of an adult male and an adult female to helions ( 3 He 2+ ) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Calculations were performed using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP), and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 2%. The greatest difference, 62%, occurred at 100 MeV. Published by Oxford Univ. Press on behalf of the U.S. Government 2010. (authors)

  8. Deuterons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2011-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons ( 2 H + ) in the energy range 10 MeV -1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)

  9. Neutron absorbing element

    International Nuclear Information System (INIS)

    Kasai, Shigeo.

    1991-01-01

    The present invention concerns a neutron absorbing element of a neutron shielding member used for an LMFBR type reactor. The inside of a fuel can sealed at both of the upper and the lower ends thereof with plugs is partitioned into an upper and a lower chambers by an intermediate plug. A discharging hole is disposed at the upper end plug, which is in communication with the outside. A communication tube is disposed at the intermediate end plug and it is in communication with the lower chamber containing B 4 C pellets. A cylindrical support member having three porous plugs connected in series is disposed at the lower surface of the discharging hole provided at the upper end plug. Further, the end of the discharging hole is sealed with high temperature solder and He atmosphere is present at the inside of the fuel can. With such a constitution, the supporting differential pressure of the porous plugs can be made greater while discharging He gases generated from B 4 C to the outside. Further, the porous plugs can be surely wetted by coolants. Accordingly, it is possible to increase life time and shorten the size. (I.N.)

  10. DEVELOPMENT AND VALIDATION OF NUMERICAL METHOD FOR STRENGTH ANALYSIS OF LATTICE COMPOSITE FUSELAGE STRUCTURES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Lattice composite fuselage structures are developed as an alternative to conventional composite structures based on laminated skin and stiffeners. Structure layout of lattice structures allows to realize advantages of current composite materials to a maximal extent, at the same time minimizing their main shortcomings, that allows to provide higher weight efficiency for these structures in comparison with conventional analogues.Development and creation of lattice composite structures requires development of novel methods of strength anal- ysis, as conventional methods, as a rule, are aiming to strength analysis of thin-walled elements and do not allow to get confident estimation of local strength of high-loaded unidirectional composite ribs.In the present work the method of operative strength analysis of lattice composite structure is presented, based onspecialized FE-models of unidirectional composite ribs and their intersections. In the frames of the method, every rib is modeled by a caisson structure, consisting of arbitrary number of flanges and webs, modeled by membrane finite elements. Parameters of flanges and webs are calculated automatically from the condition of stiffness characteristics equality of real rib and the model. This method allows to perform local strength analysis of high-loaded ribs of lattice structure without use of here-dimensional finite elements, that allows to shorten time of calculations and sufficiently simplify the procedure of analysis of results of calculations.For validation of the suggested method, the results of experimental investigations of full-scale prototype of shell of lattice composite fuselage section have been used. The prototype of the lattice section was manufactured in CRISM and tested in TsAGI within the frames of a number of Russian and International scientific projects. The results of validation have shown that the suggested method allows to provide high operability of strength analysis, keeping

  11. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer- and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    Science.gov (United States)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1999-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  12. Removing fuelling transient using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, S.; Chan, P.K.; Bonin, H.W., E-mail: Stephane.Paquette@rmc.ca [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, Ontario (Canada); Pant, A. [Cameco Fuel Manufacturing, Port Hope, Ontario (Canada)

    2012-07-01

    Preliminary criticality and burnup calculation results indicate that by employing a small amount of neutron absorber the fuelling transient, currently occurring in a CANDU 37-element fuel bundle, can be significantly reduced. A parametric study using the Los Alamos National Laboratories' MCNP 5 code and Atomic Energy of Canada Limited's WIMS-AECL 3.1 is presented in this paper. (author)

  13. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  14. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  15. Shock absorber system for nuclear reactor ice condenser compartment

    International Nuclear Information System (INIS)

    Meier, J.F.; Rudd, G.E.; Pradhan, A.V.; George, J.A.; Lippincott, H.W.; Sutherland, J.D.

    1979-01-01

    A shock absorber system was designed to absorb the energy imparted to doors in a nuclear reactor ice condenser compartment as they swing rapidly to an open position. Each shock absorber which is installed on a wall adjacent to each door is large and must absorb up to about 40,000 foot pounds of energy. The basic shock absorber component comprises foam enclosed in a synthetic fabric bag having a volume about twice the foam volume. A stainless steel knitted mesh bag of the same volume as the fabric bag, contains the fabric bag and its enclosed foam. To protect the foam and bags during construction activities at the reactor site and from the shearing action of the doors, a protective sheet metal cover is installed over the shock absorber ends and the surface to be contacted by the moving door. With the above shock absorber mounted on a wall behind each door, as the door is forcibly opened by steam pressure and air resulting from a pipe break in the reactor compartment, it swings at a high velocity into contact with the shock absorber, crushes the foam and forces it into the fabric bag excess material thus containing the foam fragmented particles, and minimizes build-up of pressure in the bag as a result of the applied compressive force

  16. Helicopter Fuselage Active Flow Control in the Presence of a Rotor

    Science.gov (United States)

    Martin, Preston B; Overmeyer, Austin D.; Tanner, Philip E.; Wilson, Jacob S.; Jenkins, Luther N.

    2014-01-01

    This work extends previous investigations of active flow control for helicopter fuselage drag and download reduction to include the effects of the rotor. The development of the new wind tunnel model equipped with fluidic oscillators is explained in terms of the previous test results. Large drag reductions greater than 20% in some cases were measured during powered testing without increasing, and in some cases decreasing download in forward flight. As confirmed by Particle Image Velocimetry (PIV), the optimum actuator configuration that provided a decrease in both drag and download appeared to create a virtual (fluidic) boat-tail fairing instead of attaching flow to the ramp surface. This idea of a fluidic fairing shifts the focus of 3D separation control behind bluff bodies from controlling/reattaching surface boundary layers to interacting with the wake flow.

  17. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion

    Science.gov (United States)

    Welstead, Jason R.; Felder, James L.

    2016-01-01

    A single-aisle commercial transport concept with a turboelectric propulsion system architecture was developed assuming entry into service in 2035 and compared to a similar technology conventional configuration. The turboelectric architecture consisted of two underwing turbofans with generators extracting power from the fan shaft and sending it to a rear fuselage, axisymmetric, boundary layer ingesting fan. Results indicate that the turbo- electric concept has an economic mission fuel burn reduction of 7%, and a design mission fuel burn reduction of 12% compared to the conventional configuration. An exploration of the design space was performed to better understand how the turboelectric architecture changes the design space, and system sensitivities were run to determine the sensitivity of thrust specific fuel consumption at top of climb and propulsion system weight to the motor power, fan pressure ratio, and electrical transmission efficiency of the aft boundary layer ingesting fan.

  18. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  19. High temperature solar energy absorbing surfaces

    Science.gov (United States)

    Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.

    A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.

  20. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  1. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  2. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  3. Heaving buoys, point absorbers and arrays.

    Science.gov (United States)

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  4. Carbon Nanomaterials for Optical Absorber Applications

    Directory of Open Access Journals (Sweden)

    Anupama KAUL

    2011-12-01

    Full Text Available Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs, synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to the benchmark, a diffuse metal black - Au-black - from wavelength l ~ 350 nm – 2500 nm. The reflectance of the MWCNT arrays was measured to be as low as 0.02 % at 2 mm in the infra-red (IR. Growth conditions were optimized for the realization of high-areal density arrays of MWCNTs using a plasma-based chemical vapor deposition (CVD process. Such high efficiency absorbers are particularly attractive for radiometry, as well as energy harnessing applications. Optical modeling calculations were conducted that enabled a determination of the extinction coefficient in the films.

  5. Potential of HfN, ZrN, and TiH as hot carrier absorber and Al2O3/Ge quantum well/Al2O3 and Al2O3/PbS quantum dots/Al2O3 as energy selective contacts

    Science.gov (United States)

    Shrestha, Santosh; Chung, Simon; Liao, Yuanxun; Wang, Pei; Cao, Wenkai; Wen, Xiaoming; Gupta, Neeti; Conibeer, Gavin

    2017-08-01

    The hot carrier (HC) solar cell is one of the most promising advanced photovoltaic concepts. It aims to minimise two major losses in single junction solar cells due to sub-band gap loss and thermalisation of above band gap photons by using a small bandgap absorber, and, importantly, collecting the photo-generated carriers before they thermalise. In this paper we will present recent development of the two critical components of the HC solar cell, i.e., the absorber and energy selective contacts (ESCs). For absorber, fabrication and carrier cooling rates in potential bulk materials — hafnium nitride, zirconium nitride, and titanium hydride are presented. Results of ESCs employing double barrier resonant tunneling structures Al2O3/Ge quantum well (QW)/Al2O3 and Al2O3/PbS quantum dots (QDs)/Al2O3 are also presented. These results are expected to guide further development of practical HC solar cell devices.

  6. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

    DEFF Research Database (Denmark)

    Ding, Fei; Dai, Jin; Chen, Yiting

    2016-01-01

    Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally...... demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor...

  7. The effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss. [acoustic propagation through aircraft fuselage

    Science.gov (United States)

    Koval, L. R.

    1975-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. These effects are incorporated into the classical equations for the TL of single panels, and the resulting double integral for field-incidence TL is numerically evaluated for a specific set of parameters.

  8. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    Housman, J.J.

    1976-01-01

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  9. Structural FEM analysis of the strut-to-fuselage joint of a two-seat composite aircraft

    International Nuclear Information System (INIS)

    Vargas-Rojas, Erik; Camarena-Arellano, Diego; Hernández-Moreno, Hilario

    2014-01-01

    An analysis of a strut-to-fuselage joint is realized in order to evaluate the zones with a high probability of failure by means of a safety factor. The whole section is analyzed using the Finite Element Method (FEM) so as to estimate static resistance behavior, therefore it is necessary a numerical mock-up of the section, the mechanical properties of the Carbon-Epoxy (C-Ep) material, and to evaluate the applied loads. Results of the analysis show that the zones with higher probability of failure are found around the wing strut and the fuselage joint, with a safety factor lower than expected in comparison with the average safety factor used on aircrafts built mostly with metals

  10. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.

    1995-03-01

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  11. The dynamics analysis of a ferrofluid shock absorber

    International Nuclear Information System (INIS)

    Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong

    2016-01-01

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology. - Highlights: • We study a ferrofluid shock absorber. • The mechanical model of the flow of the ferrofluid has been built. • The theoretical model of the energy dissipation processes is developed. • The magnetic restoring force between the body and the magnets has been measured.

  12. The dynamics analysis of a ferrofluid shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jie; Chang, Jianjun [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li, Decai, E-mail: dcli@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Yang, Xiaolong [School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006 (China)

    2016-03-15

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology. - Highlights: • We study a ferrofluid shock absorber. • The mechanical model of the flow of the ferrofluid has been built. • The theoretical model of the energy dissipation processes is developed. • The magnetic restoring force between the body and the magnets has been measured.

  13. The vibro-acoustic response and analysis of a full-scale aircraft fuselage section for interior noise reduction.

    Science.gov (United States)

    Herdic, Peter C; Houston, Brian H; Marcus, Martin H; Williams, Earl G; Baz, Amr M

    2005-06-01

    The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.

  14. The digestive system of 1-week-old Jersey calves is well suited to digest, absorb, and incorporate protein and energy into tissue growth even when calves are fed a high plane of milk replacer.

    Science.gov (United States)

    Liang, Yu; Carroll, Jeffery A; Ballou, Michael A

    2016-03-01

    The objectives of the current study were to determine the apparent digestibilities of nitrogen, organic matter, ash, and energy as well as investigate the nitrogen retention of calves fed different planes of milk replacer nutrition during the first week of life. Twelve Jersey calves were blocked by body weight at birth and randomly assigned to either a high plane of nutrition (HPN) or low plane of nutrition (LPN) treatment. The HPN calves were offered 19.2g of dry matter/kg of body weight of a 28% all-milk crude protein and 20% fat milk replacer. The LPN calves were fed 11.6g of dry matter/kg of body weight of a 20% all-milk crude protein and 20% fat milk replacer. All calves were given 3 L of pooled colostrum within 1h of birth after which they were assigned to treatments; no starter was offered during the study. Calves were given 1 d to adapt to their treatments and environment, so calves were 30 to 36 h old at the start of data collection. The study was divided into two 72-h periods. Total collection of feces occurred over each 72 h period, and total urine was collected for the last 24h of each period. Peripheral blood samples were collected at the beginning and end of each period and analyzed for plasma glucose and urea nitrogen concentrations. Data are reported as HPN vs. LPN, respectively. Fecal scores were greater for HPN calves during both periods; however, no difference was found in the dry matter percentage of feces (30.9 vs. 31.9 ± 0.06). No differences were found between treatments in either digestible or metabolizable energy efficiencies, which averaged 93.3 and 83.7%, respectively. A treatment × period interaction was found on the percentage of intake nitrogen retained, in which calves fed the HPN had a greater percentage of intake nitrogen retained during period 1 (87.9 vs. 78.4 ± 1.79%), but was not different from calves fed the LPN during period 2 (85.4 vs. 84.9 ± 1.79%). From these data therefore, we conclude that healthy neonatal calves have

  15. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  16. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    Science.gov (United States)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  17. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    Science.gov (United States)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  18. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure . Part II; Severe Damage

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.

  19. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage

    Directory of Open Access Journals (Sweden)

    Shi Wei

    2015-08-01

    Full Text Available An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage. The tests were carried out in a wind tunnel at Reynolds number of 1.87 × 105 under the conditions of high angles of attack and zero angle of sideslip. The results show that leeward vortices flow becomes asymmetric vortices flow when angle of attack increases over 20°. The asymmetric vortices flow is asymmetry of two forebody vortices owing to the increase of angle of attack but not asymmetry of vortex breakdown which appears when angle of attack is above 35°. Asymmetric vortices flow is sensitive to tip perturbation and is non-deterministic due to randomly distributed natural minute geometrical irregularities on the nose tip within machining tolerance. Deterministic asymmetric vortices flow can be obtained by attaching artificial tip perturbation which can trigger asymmetric vortices flow and decide asymmetric vortices flow pattern. Triggered by artificial tip perturbation, the vortex on the same side with perturbation is in a higher position, and the other vortex on the opposite side is in a lower position. Vortex suction on the lower vortex side is larger, which corresponds to a side force pointing to the lower vortex side.

  20. Fuselage Versus Subcomponent Panel Response Correlation Based on ABAQUS Explicit Progressive Damage Analysis Tools

    Science.gov (United States)

    Gould, Kevin E.; Satyanarayana, Arunkumar; Bogert, Philip B.

    2016-01-01

    Analysis performed in this study substantiates the need for high fidelity vehicle level progressive damage analyses (PDA) structural models for use in the verification and validation of proposed sub-scale structural models and to support required full-scale vehicle level testing. PDA results are presented that capture and correlate the responses of sub-scale 3-stringer and 7-stringer panel models and an idealized 8-ft diameter fuselage model, which provides a vehicle level environment for the 7-stringer sub-scale panel model. Two unique skin-stringer attachment assumptions are considered and correlated in the models analyzed: the TIE constraint interface versus the cohesive element (COH3D8) interface. Evaluating different interfaces allows for assessing a range of predicted damage modes, including delamination and crack propagation responses. Damage models considered in this study are the ABAQUS built-in Hashin procedure and the COmplete STress Reduction (COSTR) damage procedure implemented through a VUMAT user subroutine using the ABAQUS/Explicit code.

  1. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    Science.gov (United States)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2016-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. LS-DYNA® was used to predict the thickness of the composite shield required to prevent blade penetration. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test LS-DYNA predictions. This paper documents the analysis conducted to predict the required thickness of a composite shield, the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  2. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    Science.gov (United States)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  3. Performansi Purifikasi Biogas Dengan KOH Based Absorbent

    Directory of Open Access Journals (Sweden)

    Dadang Hermawan

    2016-10-01

    Full Text Available The absorpstion of CO2 is aimed to increase the methane gas fraction in biogas. Enhancing methane fraction hopefully will increase the total energy of the biogas it self. The purification process of biogas minimizing another elements maintains combustion, especially minimizing H2O, CO2, and H2S. The purification using KOH as the absorbent to decrease the CO2. The result shown that the content of CO2 decreased into 27% from 35.5%, the average content of CH4 increased from 18% to 48.5%. Increasing KOH composition decreases bubble generator diameter and mass flow.

  4. Performansi Purifikasi Biogas Dengan KOH Based Absorbent

    OpenAIRE

    Hermawan, Dadang; Hamidi, Nurkholis; Sasongko, Mega Nur

    2016-01-01

    The absorpstion of CO2 is aimed to increase the methane gas fraction in biogas. Enhancing methane fraction hopefully will increase the total energy of the biogas it self. The purification process of biogas minimizing another elements maintains combustion, especially minimizing H2O, CO2, and H2S. The purification using KOH as the absorbent to decrease the CO2. The result shown that the content of CO2 decreased into 27% from 35.5%, the average content of CH4 increased from 18% to 48.5%. Increas...

  5. Impedance matched thin metamaterials make metals absorbing.

    Science.gov (United States)

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin ( 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  6. Erbium concentration dependent absorbance in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  7. ASCA observations of the composite warm absorber in NGC 3516

    OpenAIRE

    ESPEY, BRIAN RUSSELL

    1996-01-01

    PUBLISHED We obtained X-ray spectra of the Seyfert 1 galaxy NGC 3516 in 1995 March using the Japanese X-ray satellite, ASCA. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low-energy absorbing column is significantly less than previously seen. Prominent O VII and O VIII absorption edges are visible, but, consistent with the much lower total a...

  8. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.

    1986-01-01

    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  9. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    Science.gov (United States)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the

  10. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 5. Survey on the R and D of technologies for hydrogen transport and storage by hydrogen absorbing alloys (V. Development of the distributed transport/storage use hydrogen absorbing alloys); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 5. Suiso yuso chozo gijutsu no kaihatsu (V. bunsan yuso chozoyo suiso kyuzo gokin no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the FY 1998 results of the development of hydrogen distributed transport/storage use absorbing alloys in the WE-NET project. Study was made of improvement of hydrogen desorption characteristics by substituting Ca for part of Mg of Mg-Ni alloys and substituting Cr for part of Ni. It is necessary to shift the state of atomic bond by H atom and metal atom in alloys from the ionic bond to the metallic bond, and to change from the amorphous state to the BCC type crystal structure. It was found out that it was possible to do it by improving the composition and heat treatment. The addition of Cu to LaMg{sub 2} alloys shifts the bond with hydrogen to the bond with metal. Easy hydrogen desorption and large absorbing capacity can be expected. It was found out that LaMg{sub 2}Cu{sub 2} synthesized by the reaction sintering method has reversible hydrogen absorbing desorption characteristics. The absorbing amount is 2.4 wt%, the desorption amount 1.2 wt%, and the desorption temperature 190 degrees C. Those are still far from WE-NET targeted values, but a clue to the search was obtained. It was found out that by applying doping technology by Ti, etc. to NaAlH{sub 4}, characteristics can be expected of the desorption amount, 4.5 wt%, of the hydrogen desorption starting temperature from 100 degrees C to 200 degrees C. (NEDO)

  11. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors; Adaptation du code Monte Carlo penelope pour la metrologie de la dose absorbee: caracterisation des faisceaux de photons X de haute energie et calcul de facteurs de correction de dosimetres de reference

    Energy Technology Data Exchange (ETDEWEB)

    Mazurier, J

    1999-05-28

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  12. Digital Alloy Absorber for Photodetectors

    Science.gov (United States)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  13. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  14. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  15. Absorbed fractions for alpha particles in ellipsoidal volumes

    International Nuclear Information System (INIS)

    Amato, Ernesto; Baldari, Sergio; Italiano, Antonio

    2013-01-01

    Internal dosimetry of alpha particles is gaining attention due to the increasing applications in cancer treatment and also for the assessment of environmental contamination from radionuclides. We developed a Monte Carlo simulation in GEANT4 in order to calculate the absorbed fractions for monoenergetic alpha particles in the energy interval between 0.1 and 10 MeV, uniformly distributed in ellipsoids made of soft tissue. For each volume, we simulated a spherical shape, three oblate and three prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a ‘generalized radius’ was found; and the dependence of the fit parameters on the alpha energy is discussed and fitted by parametric functions. With the proposed formulation, the absorbed fraction for alpha particles in the energy range explored can be calculated for volumes and for ellipsoidal shapes of practical interest. This method can be applied to the evaluation of absorbed fraction from alpha-emitting radionuclides. The contribution to the deposited energy coming from electron and photon emissions can be accounted for exploiting the specific formulations previously introduced. As an example of application, the dosimetry of 213 Bi and its decay chain in ellipsoids is reported. (paper)

  16. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  17. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  18. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    Science.gov (United States)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered

  19. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  20. Pregnant woman mode for absorbed fraction calculations

    International Nuclear Information System (INIS)

    Cloutier, R.J.; Snyder, W.S.; Watson, E.E.

    1977-01-01

    The most radiation-sensitive segment of our population is the developing fetus. Until recently, methods available for calculating the dose to the fetus were inadequate because a model for the pregnant woman was not available. Instead, the Snyder and Fisher model of Reference Man, which includes a uterus, was frequently used to calculate absorbed fractions when the source was in various organs of the body and the nongravid uterus was the target. These values would be representative of the dose to the embryo during the early stages of pregnancy. Unfortunately, Reference Man is considerable larger than Reference Woman. The authors recently reported on the design of a Reference Woman phantom that has dimensions quite similar to the ICRP Reference Woman. This phantom was suitable for calculating the dose to the embryo during early stages of pregnancy (0 to 3 mo.), but was not suitable for the later stages of pregnancy because of the changing shape of the mother and the displacement of several abdominal organs brought about by the growth of the uterus and fetus. The models of Reference Woman that were subsequently developed for each month of pregnancy are described. The models take into account the growth of the uterus and fetus and the repositioning of the various abdominal organs. These models have been used to calculate absorbed fractions for the fetus as a target and the gastrointestinal tract as a source of radiation for twelve photon energies ranging from 10 keV to 4 MeV

  1. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon

  2. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  3. Progress in absorber R and D for muon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.M. E-mail: kaplan@fnal.gov; Black, E.L.; Boghosian, M.; Cassel, K.W.; Johnson, R.P.; Geer, S.; Johnstone, C.J.; Popovic, M.; Ishimoto, S.; Yoshimura, K.; Bandura, L.; Cummings, M.A.; Dyshkant, A.; Hedin, D.; Kubik, D.; Darve, C.; Kuno, Y.; Errede, D.; Haney, M.; Majewski, S.; Reep, M.; Summers, D

    2003-05-01

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  4. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equa...

  5. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  6. Corundum-based transparent infrared absorbers

    KAUST Repository

    Schwingenschlögl, Udo

    2009-10-01

    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  7. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  8. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  9. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  10. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  11. Muon Intensity Increase by Wedge Absorbers for Low-E Muon Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. V. [Fermilab; Stratakis, D. [Fermilab; Bradley, J. [Fermilab

    2017-09-01

    Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.

  12. Integration of regenerative shock absorber into vehicle electric system

    Science.gov (United States)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  13. Oxalate: Effect on calcium absorbability

    International Nuclear Information System (INIS)

    Heaney, R.P.; Weaver, C.M.

    1989-01-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species

  14. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  15. Common aspects and differences in the behaviour of classical configuration versus canard configuration aircraft in the presence of vertical gusts, assuming the hypothesis of an elastic fuselage

    Directory of Open Access Journals (Sweden)

    Octavian PREOTU

    2011-06-01

    Full Text Available The paper analyzes, in parallel, common aspects and differences in the behavior of classical configuration versus canard configuration aircraft in the presence of vertical gusts, assuming the hypothesis of an elastic fuselage. The effects of the main constructional dimensions of the horizontal empennage on lift cancelling and horizontal empennage control are being analyzed

  16. 78 FR 66317 - Special Conditions: Learjet Inc. Model LJ-200-1A10; Airplane Fuselage Post-Crash Fire Survivability

    Science.gov (United States)

    2013-11-05

    ... Existing regulations do not adequately ensure that composite structure offers passengers the same... feature associated with advanced composite materials in the construction of its fuselage and wings. The... Directorate, Aircraft Certification Service, 1601 Lind Avenue SW., Renton, Washington, 98057-3356; telephone...

  17. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    Science.gov (United States)

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  18. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  19. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  20. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  1. Effects of cavity resonances on sound transmission into a thin cylindrical shell. [noise reduction in aircraft fuselage

    Science.gov (United States)

    Koval, L. R.

    1978-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the effects of internal cavity resonances on sound transmission into a thin cylindrical shell. The 'noise reduction' of the cylinder is defined and computed, with and without including the effects of internal cavity resonances. As would be expected, the noise reduction in the absence of cavity resonances follows the same qualitative pattern as does transmission loss. Numerical results show that cavity resonances lead to wide fluctuations and a general decrease of noise reduction, especially at cavity resonances. Modest internal absorption is shown to greatly reduce the effect of cavity resonances. The effects of external airflow, internal cabin pressurization, and different acoustical properties inside and outside the cylinder are also included and briefly examined.

  2. On the Optimization of Point Absorber Buoys

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2014-05-01

    Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.

  3. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  4. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  5. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  6. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  7. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Acher, H.

    1985-01-01

    The invention concerns a further addition to the invention of DE 33 42 830 A1. The free contact of the hollow piston with the nut due to hydraulic pressure is replaced by a hydraulic or spring attachment. The pressure system required to produce the hydraulic pressure is therefore omitted, and the electrical power required for driving the pump or the mass flow is also omitted. The absorber rod slotted along its longitudinal axis is replaced by an absorber rod, in the longitudinal axis of which a hollow piston is connected together with the absorber rod. This makes the absorber rod more stable, and assembly is simplified. (orig./HP) [de

  8. Gaseous carbon dioxide absorbing column

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    The absorbing column of the present invention comprises a cyclone to which CO 2 gas and Ca(OH) 2 are blown to form CaCO 3 , a water supply means connected to an upper portion of the cyclone for forming a thin water membrane on the inner wall thereof, and a water processing means connected to a lower portion of the cyclone for draining water incorporating CaCO 3 . If a mixed fluid of CO 2 gas and Ca(OH) 2 is blown in a state where a flowing water membrane is formed on the inner wall of the cyclone, formation of CaCO 3 is promoted also in the inside of the cyclone in addition to the formation of CaCO 3 in the course of blowing. Then, formed CaCO 3 is discharged from the lower portion of the cyclone together with downwardly flowing water. With such procedures, solid contents such as CaCO 3 separated at the inner circumferential wall are sent into the thin water membrane, adsorbed and captured, and the solid contents are successively washed out, so that a phenomenon that the solid contents deposit and grow on the inner wall of the cyclone can be prevented effectively. (T.M.)

  9. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  10. Some comments on the concept of absorbed dose

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1998-12-01

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity dε divided by dm, where dε is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted ε. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  11. Some comments on the concept of absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-12-15

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity d{epsilon} divided by dm, where d{epsilon} is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted {epsilon}. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  12. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  13. Absorbed power distribution in the whole-body system of a tractor operator

    Directory of Open Access Journals (Sweden)

    Jacek Kromulski

    2016-06-01

    The concept of absorbed power as a measurement for evaluation of WBV exposure opens a new area for research. The important character of absorbed power is that it has physical significance and therefore can be measured as well as computed analytically. The absorbed power relates to dissipation of energy attributed to relative motions of the visco-elastic tissues, muscles and skeletal system, which under prolonged exposures could lead to physical damage in the musculoskeletal system. A structural model of the human operator allows determination of the dynamic characteristics of the model, and study of the energy flow between the elements of the model.

  14. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    Science.gov (United States)

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An innovative MRE absorber with double natural frequencies for wide frequency bandwidth vibration absorption

    International Nuclear Information System (INIS)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Alici, Gursel; Deng, Huaxia; Du, Haiping; Yan, Tianhong

    2016-01-01

    A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy. (paper)

  16. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  17. Absorber element for fast breeder reactor

    International Nuclear Information System (INIS)

    Verset, L.

    1987-01-01

    This absorber element is characterized by a new head which avoids an accident disconnection of the mobil absorber. This head is made by a superior piece which can take shore up an adjusting ring on an adjusting bearing on the inferior piece. The intermediate piece is catched at the superior piece by a link of chain [fr

  18. Analysis of absorbing times of quantum walks

    International Nuclear Information System (INIS)

    Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi

    2003-01-01

    Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time

  19. Absorber transmissivities in 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ballet, O.

    1985-01-01

    Some useful relations are derived for the polarization dependent optical index of 57 Fe Moessbauer absorbers. Real rotation matrices are extensively used and, besides wave-direction dependence, their properties simplify also the treatment of texture and f-anisotropy. The derivation of absorber transmissivities from the optical index is discussed with a special emphasis on line overlapping. (Auth.)

  20. Perturb and Observe Control for an Embedded Point Pivoted Absorber

    Directory of Open Access Journals (Sweden)

    Gianluca Brando

    2016-11-01

    Full Text Available Marine energy sources represent an attractive and inexhaustible reservoir able to contribute to the fulfillment of the world energy demand in accordance with climate/energy regulatory frameworks. Wave energy converter (WEC integration into the main grid requires both the maximization of the harvested energy and the proper management of the generation variability. The present paper focuses on both these mentioned issues. More specifically, it presents an embedded point pivoted absorber (PPA and its related control strategy aimed at maximizing the harvested energy. Experimental and numerical investigations have been carried out in a wave/towing tank facility in order to derive the design characteristics of the full-scale model and demonstrate the validity and effectiveness of the proposed control strategy.

  1. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  2. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  3. Nanostructured light-absorbing crystalline CuIn{sub (1–x)}Ga{sub x}Se{sub 2} thin films grown through high flux, low energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Allen J.; Hebert, Damon; Rockett, Angus A. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Shah, Amish B. [Center for Microanalysis of Materials, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Ave, Urbana, Illinois 61801 (United States); Bettge, Martin [Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60438 (United States)

    2013-10-21

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn{sub 1−x}Ga{sub x}Se{sub 2} thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620–740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600–670 °C) and high rf power (80–400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by (112){sub T} facets. At 80–400 W rf power and 640–740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong (112){sub T} texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0–50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of (112){sub T} planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

  4. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 06: Investigation of an absorbed dose to water formalism for a miniature low-energy x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Peter; Seuntjens, Jan [McGill University, Cedars Cancer Centre (Canada)

    2016-08-15

    Purpose: We present a formalism for calculating the absorbed dose to water from a miniature x-ray source (The INTRABEAM system, Carl Zeiss), using a parallel-plate ionization chamber calibrated in terms of air-kerma. Monte Carlo calculations were performed to derive a chamber conversion factor (C{sub Q}) from reference air-kerma to dose to water for the INTRABEAM. C{sub Q} was investigated as a function of depth in water, and compared with the manufacturer’s reported value. The effect of chamber air cavity dimension tolerance was also investigated. Methods: Air-kerma (A{sub k}) from a reference beam was calculated using the EGSnrc user code cavity. Using egs-chamber, a model of a PTW 34013 parallel-plate ionization chamber was created according to manufacturer specifications. The dose to the chamber air cavity (D{sub gas}) was simulated both in-air (with reference beam) and in-water (with INTRABEAM source). Dose to a small water voxel (D{sub w}) was also calculated. C{sub Q} was derived from these quantities. Results: C{sub Q} was found to vary by up to 15% (1.30 vs 1.11) between chamber dimension extremes. The agreement between chamber C{sub Q} was found to improve with increasing depth in water. However, in all cases investigated, C{sub Q} was larger than the manufacturer reported value of 1.054. Conclusions: Our results show that cavity dimension tolerance has a significant effect on C{sub Q}, with differences as large as 15%. In all cases considered, C{sub Q} was found to be larger than the reported value of 1.054. This suggests that the recommended calculation underestimates the dose to water.

  5. Thoron exhalation rate monitor with absorber

    International Nuclear Information System (INIS)

    Xiao Detao; Zhao Guizhi

    2003-01-01

    A measurement method of thoron exhalation rate is developed based on the characteristic of thorium C' which emits a α particle with higher energy than those of α particles released from radon and radon progenies. The principles of discriminating radon and realizing thoron exhalation rate measurement on the material surface with absorber, the passive and integrated thoron exhalation rate monitor studied, and its calibration coefficient determination method are introduced. The effectiveness of mitigating thoron exhalation rate of wall surface by depressurization inside wall and thoron exhalation rates on some materials surfaces were measured by using the studied monitors. The calibration coefficient of the studied monitor is R=0.246 cm -2 ·(kBq·m -3 ·h) -1 . The lower limit of detection is LLD=18.4 mBq·m -2 ·s -1 when the sampling period is 7 days and the standard deviation of background track densities of the adopted CR-39 SSNTD is s T =1.6 cm -2

  6. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  7. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  8. Radioactive iodine absorbing properties of tetrathiafulvalene

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomiyasu; Nakamura, Asao (Ajinomoto Co. Inc., Kawasaki, Kanagawa (Japan). Central Research Labs.); Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake

    1989-05-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and /sup 125/I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author).

  9. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  10. Radioactive iodine absorbing properties of tetrathiafulvalene

    International Nuclear Information System (INIS)

    Ito, Tomiyasu; Nakamura, Asao; Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake.

    1989-01-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and 125 I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author)

  11. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  12. Investigation of a Shock Absorber for Safeguard of Fuel Assemblies Failure

    International Nuclear Information System (INIS)

    Karalevicius, Renatas; Dundulis, Gintautas; Rimkevicius, Sigitas; Uspuras, Eugenijus

    2006-01-01

    The Ignalina NPP has two reactors. The Unit 1 was shut down, therefore the special equipment was designed for transportation of the fuel from Unit 1 to Unit 2. The fuel-loaded basket can drop during transportation. The special shock absorber was designed in order to avoid failure of fuel assemblies during transportation. In case of drop of fuel loaded basket, the failure of fuel assemblies can occur. This shock absorber was studied by scaled experiments at Lithuanian Energy Institute. Static and dynamic investigations of shock absorber are presented in this paper, including dependency of axial force versus axial compression. The finite element codes BRIGADE/Plus and ABAQUS/Explicit were used for analysis. Static simulation was used to optimize the dimensions of shock absorber. Dynamic analysis shows that shock absorber is capable to withstand the dynamic load for successful force suppression function in case of an accident. (authors)

  13. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  14. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  15. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  16. Integration of a neutral absorber for the LHC point 8

    CERN Document Server

    Santamaria, A; Alemany, R; Burkhardt, H; Cerutti, F

    2014-01-01

    The LHCb detector will be upgraded during the second long shutdown (LS2) of the LHC machine, in order to increase its statistical precision significantly. The upgraded LHCb foresees a peak luminosity of LHL = 1-21033cm-2s-11, with a pileup of ~5. This represents ten times more luminosity and five times more pile up than in the present LHC. With these conditions, the pp-collisions and beam losses will produce a non-negligeable beam-induced energy deposition in the interaction region. More precisely, studies [1] have shown that the energy deposition will especially increase on the D2 recombination dipole, which could bring them close to their safety thresholds. To avoid this, the placement of a minimal neutral absorber has been proposed. This absorber will have the same role as the TAN in the high luminosity Interaction Regions (IR) 1 and 5. This study shows the possible dimensions and location of this absorber, and how it would reduce both the peak power density and total heat load.

  17. Absorbed dose determination in photon fields using the tandem method

    International Nuclear Information System (INIS)

    Marques Pachas, J.F.

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with 90 Sr- 90 Y, calibrated with the energy of 60 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than 5%. The reason of the answers of the CaF 2 : Dy and LiF: Mg, Ti, according to the energy of the radiation, allows us to establish the effective energy of photons and the absorbed dose, with a margin of error of less than 10% and 20% respectively

  18. Beam test of ferrite absorber in TRISTAN MR

    International Nuclear Information System (INIS)

    Tajima, T.; Asano, K.; Furuya, T.; Ishi, Y.; Kijima, Y.; Mitsunobu, S.; Sennyu, K.; Takahashi, T.

    1996-06-01

    A study on the effect of beams on the ferrite absorber was performed using TRISTAN MR. The tested absorber consists of a 300 mm-diam. copper pipe with 4 mm-thick ferrite inner layer, which was fabricated with Hot Isostatic Press (HIP) technique. No spark, damage, or degradation were observed up to the highest available single bunch current of 4.4 mA, i.e. 2.8x10 11 electrons per bunch, which is 8.5 times higher than that of KEKB low energy ring. The loss factor showed significant increase with bunch shortening, e.g. 2.6 V/pC at 4 mm was about 40% higher than the value predicted by the calculation assuming Gaussian bunch and no incoming power from outside of the chamber. (author)

  19. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal is to build and test a rigid Lithium Chloride Absorber Radiator (LCAR) coupon based on honeycomb geometry that would be applicable for EVA and...

  20. Full-flow absorbers. Every centimetre counts

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-07-01

    New absorbers with a maximised area for heat exchange with the thermal medium are significantly more efficient than the presently typical designs. Both the industry and researchers are working to revive an old idea. (orig.)

  1. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  2. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  3. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  4. Actual behaviour of a ball vibration absorber

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš

    2002-01-01

    Roč. 90, č. 8 (2002), s. 987-1005 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum absorber Subject RIV: JM - Building Engineering Impact factor: 0.513, year: 2002 http://www.sciencedirect.com/science/article/pii/S0167610502002155#

  5. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  6. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  7. Thin absorbers for large-area soft X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: rocks@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Brekosky, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sivananthan, S. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Zhao, J. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2006-04-15

    The X-ray Quantum Calorimeter (XQC) sounding rocket experiment utilizes a microcalorimeter array for observing the diffuse soft X-ray background. Observations of such low surface-brightness targets require a large-area detector. We will be using an array of large absorbers. Good absorbers must rapidly and completely thermalize photons, have small heat capacity for high stopping efficiency and have good lateral thermal transport. For observing the soft X-ray background (energies <1 keV), the volume and heat capacity of absorber material can be kept to a minimum by making the absorbers only as thick as needed for high quantum efficiency at these low energies. These thin, large-area absorbers are not self-supporting and have poor lateral heat transport. Depositing the absorber material on a Si substrate provides support and improves lateral thermal conduction. We present heat capacity results for thin HgTe and thin Bi, each on Si substrates. We also describe the HgTe absorber fabrication.

  8. A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers

    International Nuclear Information System (INIS)

    Wang Yonggang; Wen Xiaoming; Tang Jau; Chen, Hou Ren; Hsieh, Wen Feng

    2011-01-01

    We demonstrated that graphene oxide material could be used as a highly efficient saturable absorber for the Q-switched Nd:GdVO 4 laser. A novel and low-cost graphene oxide (GO) absorber was fabricated by a vertical evaporation technique and high viscosity of polyvinyl alcohol (PVA) aqueous solution. A piece of GO/PVA absorber, a piece of round quartz, and an output coupler mirror were combined to be a sandwich structure passive component. Using such a structure, 104 ns pulses and 1.22 W average output power were obtained with the maximum pulse energy at 2 µJ and a slope efficiency of 17%.

  9. Validity of the concept of absorbed dose as a physical quantity

    International Nuclear Information System (INIS)

    Tada, Jun-Ichiro; Katoh, Kazuaki.

    1995-01-01

    The concept of the 'absorbed dose' of ionizing radiation is scrutinized from physical point of view. It is shown that the concept and definition of the quantity in the ICRU system is disqualified as a physical quantity and the absorbed dose can not always be a 'measure of cause' in describing causality relation between radiation and effects on matter. The current absorbed dose depends even on the energy that have already been brought out from the matter, contrary to the intention of introducing the quantity. Trials to remove these difficulties are made. However, it is also shown there still exists an essential problem that cannot be solved by improving the formulation. (author)

  10. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  11. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  12. Calibration of film dosimeters by means of absorbed dose calorimeters

    International Nuclear Information System (INIS)

    Nikolaev, S.M.; Vanyushkin, B.M.; Kon'kov, N.G.

    1980-01-01

    Methods of graduating film dosimeters by means of calorimeters of absorbed doses, are considered. Graduating of film dosimeters at the energies of accelerated electrons from 4 to 10 MeV can be carried out by means of quasiadiabatic calorimeter of local absorption, the absorber thickness of which should not exceed 5-10% of Rsub(e) value, where Rsub(e) - free electron path of the given energy. In this case film is located inside the calorimeter. For graduating films with thickness not less than (0.1-0.2)Rsub(e) it is suggested to use calorimeter of full absorption; then the graduated dosimeters are located in front of the calorimeter. Graduation of films at small energies of electrons is exercised by means of a package of films, approximately Rsub(e) thick. A design of quasiadiabatic calorimeter, intended for graduating dosimeters within the energy range of electron beam from 4 to 10 MeV, is considered. The quasiadiabatic calorimeter is a thin graphite tablet with heater and thermocouple, surrounded by foam plastic thermostating case. Electricity quantity, accumulated during the radiation field pass, is measured in the case of using the quasiadiabatic calorimeter for film graduating. The results of graduating film dosimeters, obtained using film package with Rsub(e) thickness, are presented. The obtained results coincide within 5% limits with the data known beforehand [ru

  13. Formulation of heat absorbing glasses

    Directory of Open Access Journals (Sweden)

    Álvarez-Casariego, Pedro

    1996-06-01

    Full Text Available In the thermal exchanges between buildings and environment, glazing is an element of major importance, for it largely influences the so-called Solar Heat Gain and Thermal Losses. These parameters can be modified by applying different type of coatings onto glass surface or by adding colorant compounds during glass melting. The latter is a cheaper way to control the Solar Heat Gain. The knowledge of the laws governing the interaction between colorant compounds and solar radiation, allows us to define glass formulations achieving specific aesthetic requirements and solar energy absorption. In this paper two examples of application of the modelling of glass colorants spectral absorptance are presented. First is addressed to obtaining a glass with high luminous transmittance and low solar energy transmittance, and the other one to obtaining a glass with neutral colour appearance and minimized solar energy transmittance. Calculation formulas are defined together with photometric properties so-obtained. These type of glasses are particularly suitable to be used as building and automotive glazing, for they retain the mechanical characteristics and possibilities of transformation of standard glass.

    En los intercambios de energía entre un edificio y el medio exterior, el vidrio es el elemento de mayor importancia, por su influencia en la Ganancia de Calor Solar y en las Pérdidas Térmicas. Estos parámetros pueden ser modificados mediante el depósito de capas sobre el vidrio o mediante la adición de compuestos absorbentes de la radiación solar. Esta última vía es la más económica para controlar la Ganancia de Calor Solar. El conocimiento de las leyes que gobiernan la interacción de los diversos colorantes con la radiación solar, permite definir formulaciones de vidrios con características especificas de tipo estético y de absorción energética. En este trabajo se presentan dos ejemplos de aplicación de esta modelización de las

  14. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  15. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose

    International Nuclear Information System (INIS)

    Delfin, A.; Paredes, L.C.; Zambrano, F.; Guzman-Rincon, J.; Urena-Nunez, F.

    2001-01-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster

  16. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

    Science.gov (United States)

    Williams, M. D.

    1984-01-01

    The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

  17. Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

    OpenAIRE

    S. P. Sharma; Som Nath Saha

    2017-01-01

    This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heate...

  18. Method of absorbance correction in a spectroscopic heating value sensor

    Science.gov (United States)

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  19. Radiation energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Bei Tse; Rabl, A

    1977-02-10

    The invention deals with a concentrating solar collector. Collectors of this kind often have considerable natural convection losses which are due, among other facts, to the location of the energy absorber at the outlet with the heated surface of the absorber facing the inlet opening of the collector. According to the invention, the collector is designed in such manner that the absorber is located inside a space in such a way that the radiation emitted by the absorber is reflected back to the absorber with the aid of mirror surfaces. Various designs are described.

  20. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  1. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy field. Second year report. Development of the energy saving manufacturing process of smart materials having electromagnetic wave absorbing function using the microwave-hydrothermal method; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki contortium energy bun'ya. Micro ha - suinetsuho wo riyoshita denjiha kyushu kino wo yusuru smart zairyo no sho energy gata seizo process no kaihatsu (dai 2 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of electromagnetic wave absorbing materials (board) which dispersed carbon fiber as conducting material and ferrite as magnetic material to matrices such as resin and cement. With the multi-layer structure as a basis, the material has wave absorbing ability in the area of 300MHz-60GHz band. The material is presumed to be applied to wall construction use materials and bodies of electronic equipment since it prevents the radio wave reflection caused by structures such as bridges. Ferrite was synthesized by microwave-hydrothermal method (500kPa, 2.54GHz). Further, carbon fiber was covered with ferrite for improvement of absorption characteristics. Studies were made in the following 5 fields: 1) design of smart materials and development of hybrid process technology; 2) study on the evaluation of wave absorbing function; 3) R and D of the manufacturing process of smart forming materials; 4) development of the fiber surface processing process using ocean resource; 5) comprehensive investigational study. In 1), study was conducted on relations among electromagnetic shielding characteristics of the ferrite-covering carbon fiber, fiber length and fiber content. (NEDO)

  2. Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

    Directory of Open Access Journals (Sweden)

    Grzegorz Mikułowski

    2016-01-01

    Full Text Available Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA, which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.

  3. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  4. Identifying the perfect absorption of metamaterial absorbers

    Science.gov (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  5. Research and development in second term of hydrogen utilizing international clean energy system technology (WE-NET) in fiscal 1999. Task 2. Hydrogen absorbing alloys for discrete hydrogen transportation and storage; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Developmental researches have been performed on hydrogen absorbing alloys intended to be applied to stationary and moving objects. This paper summarizes the achievements in fiscal 1999. As a method for evaluating effective hydrogen absorption amount, proposals were made on definition and measuring method for effective hydrogen absorption amount assuming hydrogen absorption at 20 degrees C, and 10 and 30 atmospheric pressures, and hydrogen discharge at 100 degrees C and one atmospheric pressure. In the research of an Mg-Ni based alloy, the Mg based alloy having the Laves composition, treated by mechanical grinding was found to discharge hydrogen of 0.2 to 0.35% by mass at 423K. This discharge temperature is the lowest among the Mg based alloys having been developed to date. In the research of the V based hydrogen absorbing alloy, the V-Ti-Cr-Mn alloy was developed successfully that discharges hydrogen of 2.64% by mass when hydrogen absorbed at 273 K and 3.3 MPa is discharged at 373 K and 0.01 MPa. Furthermore, development has been made on the V-Ti-Cr-Mn-Ni alloy that shows high effective hydrogen absorption amount without being treated by heat. This alloy has as high effective hydrogen absorption amount as 2.47% by mass under the above described conditions. (NEDO)

  6. Optimization of X-ray Absorbers for TES Microcalorimeters

    Science.gov (United States)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  7. Benchmark solution of contemporary PWR integral fuel burnable absorbers

    International Nuclear Information System (INIS)

    Stucker, D.L.; Hone, M.J.; Holland, R.A.

    1993-01-01

    This paper presents a closely controlled benchmark solution of the two major contemporary pressurized water reactor integral burnable absorber designs: zirconium diboride (ZrB 2 ) and gadolinia (Gd 2 O 3 ). The comparison is accomplished using self-generating equilibrium cycles with equal energy, equal discharge burnup, and equal safety constraints. The reference plant for this evaluation is a 3411-MW(thermal) Westinghouse four-loop nuclear steam supply system operating with an inlet temperature of 285.9 degrees C, a core coolant mass now rate of 16877.3 kg/s, and coolant pressure of 15.5 MPa. The reactor consists of 193 VANTAGE 5H fuel assemblies that are discharged at a region average burnup of 48.4 GWd/tonne U. Each fuel assembly contains a natural uranium axial blanket 15.24 cm long at the top and the bottom of the fuel rod. The burnable absorber rods are symmetrically radially dispersed within the fuel assembly such that intrabundle power peaking is minimized. The burnable absorber material for both ZrB 2 and Gd 2 O 3 is axially zoned to the central 304.8 cm of the absorber-bearing fuel rods. The fuel management was constrained such that the thermal and safety limitations of F δH q -5 /degrees C were simultaneously achieved. The maximum long-term operating soluble boron concentration was also limited to 446 effective full-power days (EFPDs) including 14 EFPDs of power coastdown were assumed

  8. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  9. Preparation and characterization of carbon/nickel oxide nanocomposite coatings for solar absorber applications

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-04-01

    Full Text Available Nanocomposite materials have wide range of applications in solar energy conversion. In this work, C/NiO nanocomposite solar energy absorbing surfaces were prepared using sol-gel synthesis and deposited on aluminium substrates using a spin coater...

  10. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  11. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  12. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  13. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  14. Quantum walk with one variable absorbing boundary

    International Nuclear Information System (INIS)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.

  15. A wideband absorber for television studios

    Science.gov (United States)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  16. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  17. Tungsten based anisotropic metamaterial as an ultra-broadband absorber

    DEFF Research Database (Denmark)

    Lin, Yinyue; Cui, Yanxia; Ding, Fei

    2017-01-01

    : We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 μm to 9 μm with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow...... of the nano-cones and the interaction between neighboring nano-cones is quite weak. Our proposal has some potential applications in the areas of solar energy harvesting and thermal emitters....

  18. Solar Biogas Digester with Built-In Reverse Absorber Heater

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-01-01

    Full Text Available In this work the design, fabrication and investigation of a solar biogas digester with built-in RAH (Reverse Absorber Heater is presented. The maximum temperature (50 o C inside of the methane tank was taken as a main parameter at the design of the digester. Using energy balance equation for the case of a static mass of fluid being heated; the parameters of thermal insulation of the methane tank were counted. The biogas digester is consisting of methane tank with built-in solar RAH to utilize solar energy for the heating of the slurry prepared from the different organic wastes (dung, sewage, food wastes etc. The methane tank was filled up to 70% of volume by organic wastes of the GIK Institute sewage, firstly, and secondly, by sewage and cow dung as well. During three months (October-December, 2009 and two months (February-March, 2010 the digester was investigated. The solar irradiance incident to the absorber, slurry's temperature and ambient temperature were measured. It was found that using sewage only and sewage with cow dung the retention times was 4 weeks and two weeks respectively and biogas quantity produced was 0.4 and 8.0 m 3 respectively. In addition, biogas upgradation scheme for removal of carbon dioxide, hydrogen sulphide and water vapor from biogas and conversion of biogas energy conversion into electric power is also discussed.

  19. Serendipitous discovery of warm absorbers in the Seyfert 2 galaxy IRAS 18325-5926

    International Nuclear Information System (INIS)

    Zhang Shuinai; Gu Qiusheng; Peng Zhixin; Ji Li

    2011-01-01

    Warm absorption is a common phenomenon in Seyfert 1s and quasars, but is rare in Seyfert 2s. We report the detection of warm absorbers with high energy resolution in the Seyfert 2 galaxy IRAS 18325-5926 for the first time with Chandra HETGS spectra. An intrinsic absorbing line system with an outflow velocity ∼ 400 km s -1 was found, which is contributed by two warm absorbers with FWHM of 570 km s -1 and 1360 km s -1 , respectively. The two absorbers were adjacent, and moving transversely across our line of sight. We constrained the distance between the center and the absorbers to be a small value, suggesting that the absorbers may originate from the highly ionized accretion disk wind ejected five years ago. The perspective of this type 2 Seyfert provides the best situation in which to investigate the vertical part of the funnel-like outflows. Another weak absorbing line system with zero redshift was also detected, which could be due to Galactic absorption with very high temperature or an intrinsic outflow with a very high velocity ∼ 6000 km s -1 . (research papers)

  20. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  1. Method for manufacture of neutron absorbing articles

    International Nuclear Information System (INIS)

    Owens, D.

    1980-01-01

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form

  2. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented....... Utilizing photo-excited free carriers in silicon padsplaced in the capacitive gaps of split ring resonators, a dynamically modu-lated perfect absorber is designed and fabricated to operate in reflection.Large modulation depth (38% and 91%) in two absorption bands (with 97%and 92% peak absorption...

  3. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by press......In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...

  4. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  5. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  6. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  7. Errors in measuring absorbed radiation and computing crop radiation use efficiency

    International Nuclear Information System (INIS)

    Gallo, K.P.; Daughtry, C.S.T.; Wiegand, C.L.

    1993-01-01

    Radiation use efficiency (RUE) is often a crucial component of crop growth models that relate dry matter production to energy received by the crop. RUE is a ratio that has units g J -1 , if defined as phytomass per unit of energy received, and units J J -1 , if defined as the energy content of phytomass per unit of energy received. Both the numerator and denominator in computation of RUE can vary with experimental assumptions and methodologies. The objectives of this study were to examine the effect that different methods of measuring the numerator and denominator have on the RUE of corn (Zea mays L.) and to illustrate this variation with experimental data. Computational methods examined included (i) direct measurements of the fraction of photosynthetically active radiation absorbed (f A ), (ii) estimates of f A derived from leaf area index (LAI), and (iii) estimates of f A derived from spectral vegetation indices. Direct measurements of absorbed PAR from planting to physiological maturity of corn were consistently greater than the indirect estimates based on green LAI or the spectral vegetation indices. Consequently, the RUE calculated using directly measured absorbed PAR was lower than the RUE calculated using the indirect measures of absorbed PAR. For crops that contain senesced vegetation, green LAI and the spectral vegetation indices provide appropriate estimates of the fraction of PAR absorbed by a crop canopy and, thus, accurate estimates of crop radiation use efficiency

  8. Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution.

  9. Measurements of a prototype synchrotron radiation pumped absorber for future light sources

    International Nuclear Information System (INIS)

    Chou, T.S.; Foerster, C.L.; Halama, H.; Lanni, C.

    1988-01-01

    In the new generation of advanced synchrotron light sources, the conventional concept of distributed pumping is no longer suitable for removing the gas load caused by photon stimulated desorption (PSD). A new concept using a combination of photon absorber and pumping station has been designed, constructed, and installed in the U1OB beam line at the VUV ring of the National Synchrotron Light Source. The system consists of an electrically insulated water cooled copper block, a titanium sublimation pump, calibrated BA gauges, a calibrated RGA, and a known conductance. A photon beam 10 milliradian wide and 3.26 milliradian high, having critical energy of 500 eV, is directed on the absorber. PSD yield is studied as a function of total beam dose and absorber surface preparation. The results from this experiment, pump characteristics, design of an absorber pump for future light sources, and the pressure improvement factors will be presented. 5 refs., 7 figs., 1 tab

  10. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  11. The Cooling of a Liquid Absorber using a Small Cooler

    International Nuclear Information System (INIS)

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-01-01

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed

  12. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  13. Shock absorbing structure for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1981-01-01

    A hydraulic apparatus is described that absorbs shocks that may be applied to fuel assemblies. Spring pads mounted on the upper end fittings of the fuel assemblies have plungers that move within hollow guide posts attached to the upper grids of the fuel assemblies. (L.L.)

  14. Absorbance and fluorescence studies on porphyrin Nanostructures ...

    African Journals Online (AJOL)

    The aim of this work was to study some photophysical properties of PNR for application as light harvester in dye sensitized solar cells. These properties included absorbance, fluorescence, and fluorescence quantum yield and lifetime. The results of Transmission Electron Microscope (TEM) images showed the formation of ...

  15. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  16. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N

    2012-03-01

    Full Text Available High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel...

  17. Strain absorbent modules for cavity filling

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Strain absorbent modules made from weldmesh panels and helical steel binders can be used, together with timber packing, to support the roof and sides of cavities instead of softwood and hardwood nogs. A description of these modules and a series of load tests and underground trials carried out on the modules is given.

  18. Measuring the absorbed radioactivity during a flight

    International Nuclear Information System (INIS)

    2002-01-01

    This paper presents the new system SIEVERT developed by the General Direction of the Civil Aviation (DGAC) to measure the radiations doses absorbed from cosmic radiation. The system is available on the Internet site: www.sievert-system.org. (A.L.B.)

  19. Electromagnetic and microwave absorbing properties of hollow ...

    Indian Academy of Sciences (India)

    bandwidth below −10 dB and minimum RL decrease with increasing thickness of HCNSs/paraffin composites. Keywords. Nanomaterials; nanospheres; CVD; electric; magnetic; microwave absorption properties. 1. Introduction. In recent years, microwave absorbing materials have attracted considerable attention because it ...

  20. Coupler for nuclear reactor absorber rods

    International Nuclear Information System (INIS)

    Kerz, K.

    1984-01-01

    A coupler is described for absorber rods being suspended during operation of nuclear reactors which includes plurality of actuating elements being movable for individually and jointly releasing the coupler, the movement of each of the actuating elements for releasing the coupler being independently controllable

  1. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  2. On the use of co-ordinate stretching in the numeral computation of high frequency scattering. [of jet engine noise by fuselage

    Science.gov (United States)

    Bayliss, A.

    1978-01-01

    The scattering of the sound of a jet engine by an airplane fuselage is modeled by solving the axially symmetric Helmholtz equation exterior to a long thin ellipsoid. The integral equation method based on the single layer potential formulation is used. A family of coordinate systems on the body is introduced and an algorithm is presented to determine the optimal coordinate system. Numerical results verify that the optimal choice enables the solution to be computed with a grid that is coarse relative to the wavelength.

  3. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  4. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  5. performance Analysis of Different Energy Absorbing Plates on Solar Stills

    OpenAIRE

    H.N. Panchal; P.K. Shah

    2011-01-01

    Solar distillation mimics nature’s hydrologic water cycle by purify water through evaporation as well as condensation. It is one of the most basic purification systems available today to get high quality of drinking water and can remove non-volatile contamination from almost any water source. Solar still is a one kind of solar distillation system in which brackish or impure water converted into drinkable water. Here, three solar stills have developed by locally available materials. The first ...

  6. Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration

    Science.gov (United States)

    2016-08-01

    is no pressing need for MREA refinement. However, should an increase in MREA yield force be desired, the project team explored 2 simple refinements...team developed a servo motor controller and data acquisition program using dSPACE real-time system. From the preliminary test, the preloaded Terfenol...Technology; 1940. b Oberg E, editor. Machinery’s handbook: eighteenth edition. Norwalk (CT): Industrial Press ; 1968. c Quayle JP, editor. Kempe’s

  7. Apparatus and method for the measurement of neutron moderating or absorbing properties of objects

    International Nuclear Information System (INIS)

    Untermyer, S.I.

    1981-01-01

    An apparatus and method for measuring the neutron moderating or absorbing properties of objects or materials is disclosed in which a fast neutron source cooperates with a neutron absorbing material which reduces the energy of the fast neutrons by inelastic scattering so that they can be readily thermalized by a moderator. A thermal neutron detector is disposed adjacent the material and serves to detect thermal neutrons emitted by a moderator placed to receive and thermalize the reduced energy neutrons. A material whose absorption is to be measured is placed between a moderator and the detector

  8. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  9. Experimental observation of pulse delay and speed-up in cascaded quantum well gain and absorber media

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Poel, Mike van der; Yvind, Kresten

    2008-01-01

    Slow-down and speed-up of 180 fs pulses in semiconductor waveguides beyond the existing models is obseved. Cascaded gain and absorbing sections is shown to provide significant temporal pulse shifting at near constant output pulse energy.......Slow-down and speed-up of 180 fs pulses in semiconductor waveguides beyond the existing models is obseved. Cascaded gain and absorbing sections is shown to provide significant temporal pulse shifting at near constant output pulse energy....

  10. Short pulse absorption dynamics in a p-i-n InGaAsP MQW waveguide saturable absorber

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Öhman, Filip; Mørk, Jesper

    2002-01-01

    The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized.......The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized....

  11. Test of the electronic structure of Fe(100) by absorbed current spectroscopy

    International Nuclear Information System (INIS)

    Kisker, E.; Kirby, R.E.; Garwin, E.L.; King, F.K.

    1984-10-01

    The absorbed electron current for a clean Fe(100) surface as a function of energy rises step-like at the vacuum-energy cutoff with an absorption close to 1. The smooth decrease of absorbed current at higher electron energy due to secondary electron emission is superimposed by a considerable amount of fine structure, the amplitude of which decreases with increasing energy. These features are found in good agreement with the results of a calculation of the elastic part of the electron reflection coefficient. Further, they are compared with the ferromagnetic electronic bulk bandstructure calculated above the vacuum energy. From the comparison with the experimental data, the energy dependence of the real and imaginary parts of the inner potential is determined

  12. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 11. Distributed transportation of hydrogen/hydrogen absorbing alloy for hydrogen storage; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Studies were conducted to find out hydrogen absorbing alloys with an effective hydrogen absorption rate of 3 mass % or more, hydrogen discharge temperature of 100 degrees C or lower, hydrogen absorbing capacity after 5,000 cycles not less than 90% of the initial capacity, applicable to stationary and mobile systems. The V-based alloy that achieved an effective hydrogen absorption rate of 2.6 mass % in the preceding fiscal year was subjected to studies relating to safety and durability. Since V is costly, efforts were exerted to develop TiCrMo alloys to replace the V-based alloy. In the search for novel high-performance alloys, endeavors centered on novel ternary alloys, novel alloys based on Mg and Ti, and novel intermetallic compounds of the Mg-4 family. In the study of guidelines for developing next-generation high-performance alloys, methods for creating hydrides with an H/M (hydrogen/metal) ratio far higher than 2 were discussed. Mentioned as techniques to produce such hydrides were the utilization of the hole regulated lattice, novel alloys based on the ultrahigh pressure hydride phase, new substances making use of the cooperative phenomenon in the coexistent multiple-phase structure, and the like. (NEDO)

  13. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  14. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  15. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  16. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao, E-mail: tsong241@gmail.com; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523 (United States); Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-06-21

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔE{sub C} ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se{sub 2} (CIGS) cells. The basic principle is that positive ΔE{sub C}, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔE{sub C} ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a “cliff” (ΔE{sub C} < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔE{sub C} of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔE{sub C}. These

  17. Energy analysis of vehicle-to-cable barrier impacts.

    Science.gov (United States)

    2013-06-01

    An accident reconstruction technique was developed for estimating the energy absorbed during an impact with a cable barrier system as well as the initial impact velocity. The kinetic energy absorbed during a cable barrier system impact is comprised o...

  18. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed oxy...

  19. Design and development of radiation absorber for sighting beam line

    International Nuclear Information System (INIS)

    Sridhar, R.; Shukla, S.K.

    2005-01-01

    During the commissioning of Indus-2 , it is necessary to view the synchrotron radiation that will be emanating from the dipole exit ports. The 10 0 beam line from dipole 11 was earmarked for sighting beam line. The synchrotron radiation power density would be around 340 watts on the photon absorber inside the radiation absorber module, at the specified beam power of Indus-2. The beam striking on this photon absorber produces x-rays and Bremsstrahlung radiation. These are to be stopped and absorbed by radiation absorber. The photon absorber and the radiation absorber are integrated in a single vacuum chamber and actuated by a pneumatic cylinder connected using a bellow. Radiation absorber was needed to isolate the diagnostic components and to protect them from radiation a well as heat when they were not in use. The paper describes the design, calculation and development of the dynamic photon cum radiation absorber. The ultimate vacuum performance is also described. (author)

  20. Self Absorbed Fraction for Electrons and Beta Particles in Small Spherical Volumes

    International Nuclear Information System (INIS)

    Grosev, D.

    2003-01-01

    Absorbed fraction and target organ mass are important parameters of internal dosimetry calculations that define the geometry of the system. Standard MIRD (Medical Internal Radiation Dosimetry) formalism assumes that the absorbed fraction for non-penetrating radiations (e.g., electrons, beta particles) is 1. This may not be correct in cases where dimensions of organs/tissues are comparable with the ranges of electrons/beta particles. Such is the case for example in radiodine ablation of thyroid remnant tissue. In this work the self-absorbed fraction (source and target volumes are the same) for monoenergetic electrons and beta particles is calculated for small spherical volumes of various sizes and unit density. Absorbed fraction can be expressed as an integral of the product of two quantities: (a) Scaled beta dose point kernel (mean absorbed dose rate per activity of the point source in infinite homogenous medium), F β ; (b) special geometrical reduction factor (GRF). F β is calculated using EGS4 Monte Carlo (MC) code for transport of electrons and photons. MC source code calculates the deposition of energy inside concentric spherical shells around the isotropic point source of electrons/beta particles in infinite medium (water). Shell thickness was δr=0.02·X 90 , where X 90 represents the radius of the sphere inside which 90% of the source energy is absorbed. Number of concentric spherical shells was 100, 10000 electron histories were started in each program run, and 10 runs were repeated for statistical reason. Numerical integration of the product of F β , calculated by MC program, and GRF for sphere was done using Simpson method. Absorbed fractions were calculated for spheres with mass from 0.01-20 g (r = 0.13 - 1.68 cm). Results are given for monoenergetic electrons with kinetic energy T=0.2, 0.4, 1.0 MeV, and for three beta emitters 1 31I , 3 2P , 9 0Y . For quantitative dosimetric protocols in radioiodine ablation therapy, results for 1 31I are of

  1. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    Science.gov (United States)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  2. Fault Detection for Automotive Shock Absorber

    Science.gov (United States)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  3. Use of Wedge Absorbers in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Mohayai, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Snopok, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Rogers, C. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

  4. Development of an innovative solar absorber

    Science.gov (United States)

    Goodchild, Gavin

    Solar thermal systems have great potential to replace or reduce the dependence of conventional fossil fuel based heating technologies required for space and water heating. Specifically solar domestic hot water systems can contribute 50-75% of the annual thermal load. To date residential users have been slow to purchase and install systems, primarily due to the large monetary investment required to purchase and install a system. Recent innovations in materials design and manufacturing techniques, offer opportunities for the development of absorber plate designs that have the potential to reduce cost, increase efficiency and reduce payback periods. Consequently, this design study was conducted in conjunction with industrial partners to develop an improved absorber based on roll bond manufacturing that can be produced at reduced cost with comparable or greater thermal efficiency.

  5. Effect of the bio-absorbent on the microwave absorption property of the flaky CIPs/rubber absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Xu, Yonggang, E-mail: xuyonggang221@163.com; Cai, Jun; Yuan, Liming; Zhang, Deyuan

    2015-09-01

    Microwave absorbing composites filled with flaky carbonyl iron particles (CIPs) and the bio-absorbent were prepared by using a two-roll mixer and a vulcanizing machine. The electromagnetic (EM) parameters were measured by a vector network analyzer and the reflection loss (RL) was measured by the arch method in the frequency range of 1–4 GHz. The uniform dispersion of the absorbents was verified by comparing the calculated RL with the measured one. The results confirm that as the bio-absorbent was added, the permittivity was increased due to the volume content of absorbents, and the permeability was enlarged owing to the volume content of CIPs and interactions between the two absorbents. The composite filled with bio-absorbents achieved an excellent absorption property at a thickness of 1 mm (minimum RL reaches −7.8 dB), and as the RL was less than −10 dB the absorption band was widest (2.1–3.8 GHz) at a thickness of 2 mm. Therefore, the bio-absorbent is a promising additive candidate on fabricating microwave absorbing composites with a thinner thickness and wider absorption band. - Graphical abstract: Morphology of composites filled with flaky CIPs and the bio-absorbent. The enhancement of bio-absorbent on the electromagnetic absorption property of composites filled with flaky carbonyl iron particles (CIPs) is attributed to the interaction of the two absorbents. The volume content of the FCMPs with the larger shape CIPs play an important role in this effects, the composites filled with irons and bio-absorbents can achieve wider-band and thinner-thickness absorbing materials. - Highlights: • Absorbers filled with bio-absorbents and CIPs was fabricated. • Bio-absorbents enhanced the permittivity and permeability of the composites. • The absorbent interactions play a key role in the enhancement mechanism. • Bio-absorbents enhanced the composite RL in 1–4 GHz.

  6. Energy

    International Nuclear Information System (INIS)

    1975-10-01

    On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)

  7. Energy

    OpenAIRE

    Torriti, Jacopo

    2016-01-01

    The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....

  8. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)

  9. Visual indicator of absorbed radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Generalova, V V; Krasovitskii, B M; Vainshtok, B A; Gurskii, M N

    1968-10-15

    A visual indicator of the absorbed doses of ionizing radiation is proposed. The indicator has a polymer base with the addition of a dye. A distinctive feature of the indicator consists of the use of polystyrene as its polymer base with the addition of halogen-containing hydrocarbon and the light-proof dye. Such combination of the radiation-resistant polymer of polystyrene and the light-proof dyestuff makes the proposed indicator highly stable.

  10. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  11. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S., E-mail: psvasekar@yahoo.co [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States); Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States)

    2010-01-31

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of {approx} 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 {mu}m CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 {mu}m absorber prepared under similar conditions as that of a 2.7 {mu}m thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10{sup -10} mA/cm{sup 2} to 1.78 x 10{sup -8} mA/cm{sup 2}. This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  12. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    International Nuclear Information System (INIS)

    Vasekar, Parag S.; Jahagirdar, Anant H.; Dhere, Neelkanth G.

    2010-01-01

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of ∼ 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 μm CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 μm absorber prepared under similar conditions as that of a 2.7 μm thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10 -10 mA/cm 2 to 1.78 x 10 -8 mA/cm 2 . This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  13. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    Science.gov (United States)

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  14. Development of optical tools for the characterization of selective solar absorber at elevated temperature

    Science.gov (United States)

    Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier

    2016-05-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.

  15. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  16. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  17. Neutron absorbers, and the production method

    International Nuclear Information System (INIS)

    Kayano, Hideo; Yajima, Seishi; Oono, Hironori.

    1979-01-01

    Purpose: To integrally sinter a metal powder and a metal network material thereby to obtain a material having a high neutron absorbing function, an excellent corrosion resistance and an excellent oxidation resistance. Method: An element having a high neutron absorbing function, such as Gd, or a compound thereof and a powder of a metal having excellent corrosion resistance, oxidation resistance and ductility, such as Fe, Cr or the like are uniformly mixed with each other. In a case where a substance having a neutron absorbing function is a hydroxide an organic complex or the like, it is formed into a gel-like substance and mixed uniformly with the metal powder, the gel-like substance being pasted, and covered on the surface of the metal powder and dried. Then, the mixture or the dry coated material is extended and the metal network material having excellent corrosion resistance, oxidation resistance and ductility is covered or interposed or between at least one layer of upper, intermediate or lower layers of said laminated material, and thereafter is subjected to cold or hot rolling, and then sintered and furthermore rolled, if necessary, the thus treated material being burned in vacuum or a non-oxidizing atmosphere. (Kamimura, M.)

  18. Q-Switched Operation with Carbon-Based Saturable Absorbers in a Nd:YLF Laser

    Directory of Open Access Journals (Sweden)

    Rosa Weigand

    2015-09-01

    Full Text Available We have numerically studied the influence of the absorption modulation depth of carbon-based saturable absorbers (graphene and carbon nanotubes (CNTs on the Q-switched regime of a diode-pumped Nd:YLF laser. A short-length cavity was used with an end mirror on which CNTs or mono- or bi-layer graphene were deposited, forming a saturable absorber mirror (SAM. Using a standard model, the generated energy per pulse was calculated, as well as the pulse duration and repetition rate. The results show that absorbers with higher modulation depths, i.e., graphene, deliver higher energy pulses at lower repetition rates. However, the pulse duration did not have a monotonic behavior and reaches a minimum for a given low value of the modulation depth typical of CNTs.

  19. Design and testing of a shock absorber for a type 1 container

    International Nuclear Information System (INIS)

    Sappok, M.; Beine, B.; Rittscher, D.

    1993-01-01

    A shock-absorber will be required for a rad. waste 'Konrad' type 1 container made of ductile cast iron whenever it will be used as a type B container according to the IAEA-Regulations for the Safe Transport of Radioactive materials. The shock-absorber has to protect the type B container during shipping such as to withstand the accident scenarios that are covered by the IAEA-Regulation tests without substantial loss of its shielding and tightness functions. The designation as type 1 container originates from German regulations for the intermediate storage site Gorleben and the final depository Konrad-mine. These regulations call for the limits on outside dimensions of 1700 mm in length, 1600 mm in width and 1450 mm in height as well as for a limit of 20 Mg on total weight without shock-absorber. The relatively simple design method for the shock-absorber has been validated by the test results. It can be extended to other materials and designs for shock-absorbers if reliable force-displacement-diagrams are available for the structural elements from which the absorbed energy and the displacements can be calculated by integration. In order to account for the dynamic effects, the better approximation of the true duration of the impact would be helpful. The present limit of 0.5 R p0,2 on the nominal stresses should be discussed because the large number of tests on containers made of ductile cast iron that have been performed up to now have shown a substantial level of conservatism on this respect. The sharply tapered pipes on edge Kl of the shock-absorbers should be replaced by pipe bends. This will result in smaller accelerations and in an even higher level of protection of the container than effected by the tested shock-absorber

  20. Effect of pyrophyllite filler treatment toward water absorbance rate of SAPC and its application test

    International Nuclear Information System (INIS)

    Jadigia Ginting

    2015-01-01

    An optimization treatment to pyrophyllite filler has been done to synthesis super absorbent polymers composite (SAPC) with copolymerization of acrylic. Pyrophyllite is one of a silicate mineral with chemical formula Al 2 Si 4 O 10 (OH) 2 having a reactive functional group -OH that easily making a bonding and therefore it is suitable for water absorbance materials. The pyrophyllite were studied as its weight composition and its powder-size in the SAPC preparation. To obtain the fine-size, the filler pyrophyllite were milled with high energy mechanical milling (HEMM) into divers hours of milling. The syntheses were carried out by using the settle method from Chemicals Engineering group of ITB Bandung. The samples of SAPC-prflt were then characterized with fourier-transform infra red spectroscopy (FTIR), Xray diffraction (XRD) and scanning electron microscopy(SEM). Effect of filler treatment toward water absorbance rate is the SAPC-prflt with 0.5 gr filler having the highest gradient absorbance 1,610; SAPC prflt which milled for 9 hours has gradient absorbance 1,526; SAPC-prflt after hot water test at 40°C has gradient absorbence 2,241 and SAPC-prflt as pampers test has the gradient absorbance 1,607. XRD data analysis showed a broad peak 2 θ at scale 5 w which correspond to the micrographs picture of the sample which has 0.5 gr filler pyrophyllite and sample after milled for 9 hours, that proposed increase the sample strength and stability which induce the increasing of its water absorbance.