WorldWideScience

Sample records for endothelial barrier function

  1. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  2. Mechanotransduction at the basis of endothelial barrier function

    Science.gov (United States)

    Gulino-Debrac, Danielle

    2013-01-01

    Destabilization of cell-cell contacts involved in the maintenance of endothelial barrier function can lead to increased endothelial permeability. This increase in endothelial permeability results in an anarchical movement of fluid, solutes and cells outside the vasculature and into the surrounding tissues, thereby contributing to various diseases such as stroke or pulmonary edema. Thus, a better understanding of the molecular mechanisms regulating endothelial cell junction integrity is required for developing new therapies for these diseases. In this review, we describe the mechanotransduction mechanism at the basis of adherens junction strengthening at endothelial cell-cell contacts. More particularly, we report on the emerging role of α-catenin and EPLIN that act as a mechanotransmitter of myosin-IIgenerated traction forces. The interplay between α-catenin, EPLIN and the myosin-II machinery initiates the junctional recruitment of vinculin and α-actinin leading to a drastic remodeling of the actin cytoskeleton and to cortical actin ring reshaping. The pathways initiated by tyrosine phosphorylation of VE-cadherin at the basis of endothelial cell–cell junction remodeling is also reported, as it may be interrelated to α-catenin/ EPLIN-mediated mechanotransduction mechanisms. We also describe the junctional mechanosensory complex composed of PECAM-1, VE-cadherin and VEGFR2 that is able to transmit signaling pathway under the onset of shear stress. This mechanosensing mechanism, involved in the earliest events promoting atherogenesis, is required for endothelial cell alignment along flow direction. PMID:24665386

  3. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  4. Statins Promote Cardiac Infarct Healing by Modulating Endothelial Barrier Function Revealed by Contrast-Enhanced Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Leenders, Geert J.; Smeets, Mirjam B.; van den Boomen, Maaike; Berben, Monique; Nabben, Miranda; van Strijp, Dianne; Strijkers, Gustav J.; Prompers, Jeanine J.; Arslan, Fatih; Nicolay, Klaas; Vandoorne, Katrien

    2018-01-01

    Objective The endothelium has a crucial role in wound healing, acting as a barrier to control transit of leukocytes. Endothelial barrier function is impaired in atherosclerosis preceding myocardial infarction (MI). Besides lowering lipids, statins modulate endothelial function. Here, we

  5. The lectin-like domain of complement receptor 3 protects endothelial barrier function from activated neutrophils.

    Science.gov (United States)

    Tsikitis, Vassiliki L; Morin, Nicole A; Harrington, Elizabeth O; Albina, Jorge E; Reichner, Jonathan S

    2004-07-15

    The adhesion of neutrophils to endothelial cells is a central event leading to diapedesis and involves the binding of the I-domain of beta(2) integrins (CD11/CD18) to endothelial ICAMs. In addition to the I-domain, the beta(2) integrin complement receptor 3 (CR3) (CD11b/CD18) contains a lectin-like domain (LLD) that can alter leukocyte functions such as chemotaxis and cytotoxicity. The present study demonstrates that, in contrast to the CR3 I-domain, Ab blockade of the CR3 LLD has no role in mediating neutrophil-induced loss of endothelial barrier function. However, activation of CR3 with the LLD agonist beta-glucan protects the barrier function of endothelial cells in the presence of activated neutrophils and reduces transendothelial migration without affecting adhesion of the neutrophils to the endothelium. The LLD site-specific mAb VIM12 obviates beta-glucan protection while activation of the LLD by VIM12 cross-linking mimics the beta-glucan response by both preserving endothelial barrier function and reducing neutrophil transendothelial migration. beta-glucan has no direct effect on endothelial cell function in the absence of activated neutrophils. These findings demonstrate that signaling through the CR3 LLD prevents neutrophil-induced loss of endothelial barrier function and reduces diapedesis. This suggests that the LLD may be a suitable target for oligosaccharide-based anti-inflammatory therapeutics.

  6. FOXF1 maintains endothelial barrier function and prevents edema after lung injury.

    Science.gov (United States)

    Cai, Yuqi; Bolte, Craig; Le, Tien; Goda, Chinmayee; Xu, Yan; Kalin, Tanya V; Kalinichenko, Vladimir V

    2016-04-19

    Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway. Copyright © 2016, American Association for the Advancement of Science.

  7. MicroRNA-147b regulates vascular endothelial barrier function by targeting ADAM15 expression.

    Directory of Open Access Journals (Sweden)

    Victor Chatterjee

    Full Text Available A disintegrin and metalloproteinase15 (ADAM15 has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS. An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3' UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression.

  8. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Ling-Yun Chu

    Full Text Available The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.

  9. Caspase-1 Activation Protects Lung Endothelial Barrier Function during Infection-Induced Stress

    Science.gov (United States)

    Alvarez, Diego F.; Housley, Nicole; Koloteva, Anna; Zhou, Chun; O’Donnell, Kristen

    2016-01-01

    Dysregulated activation of the inflammasome–caspase-1–IL-1β axis elicits damaging hyperinflammation during critical illnesses, such as pneumonia and sepsis. However, in critical illness models of Salmonella infection, burn, or shock, caspase-1 inhibition worsens outcomes. These paradoxical effects suggest that caspase-1 drives novel protective responses. Whether the protective effects of caspase-1 activation involve canonical immune cell and/or nonimmune cell responses is unknown. The objective of this study was to test the hypothesis that, in addition to its recognized proinflammatory function, caspase-1 initiates protective stress responses in nonimmune cells. In vivo, lung epithelial and endothelial barrier function and inflammation were assessed in mice infected with Pseudomonas aeruginosa in the presence or absence of a caspase-1 inhibitor. Lung endothelial barrier function was assessed ex vivo in isolated, perfused rat lungs infected with P. aeruginosa in the presence or absence of a caspase-1 inhibitor. Endothelial barrier function during P. aeruginosa infection was assessed in vitro in cultured rat wild-type pulmonary microvascular endothelial cells (PMVECs) or recombinant PMVECs engineered to decrease caspase-1 expression. We demonstrated in vivo that caspase-1 inhibition in P. aeruginosa–infected mice ameliorated hyperinflammation, but, counterintuitively, increased pulmonary edema. Ex vivo, caspase-1 inhibition increased pulmonary permeability in P. aeruginosa–infected isolated rat lungs. To uncouple caspase-1 from its canonical inflammatory role, we used cultured rat PMVECs in vitro and discovered that genetic knockdown of caspase-1 accelerated P. aeruginosa–induced barrier disruption. In conclusion, caspase-1 is a sentinel stress-response regulator that initiates proinflammatory responses and also initiates novel response(s) to protect PMVEC barrier function during pneumonia. PMID:27119735

  10. Abl family kinases regulate endothelial barrier function in vitro and in mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Chislock

    Full Text Available The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg, as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR, Kit, colony stimulating factor 1 receptor (CSF1R, and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca(2+ mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use

  11. Control of cAMP in lung endothelial cell phenotypes. Implications for control of barrier function.

    Science.gov (United States)

    Stevens, T; Creighton, J; Thompson, W J

    1999-07-01

    Pulmonary microvascular endothelial cells (PMVECs) form a more restrictive barrier to macromolecular flux than pulmonary arterial endothelial cells (PAECs); however, the mechanisms responsible for this intrinsic feature of PMVECs are unknown. Because cAMP improves endothelial barrier function, we hypothesized that differences in enzyme regulation of cAMP synthesis and/or degradation uniquely establish an elevated content in PMVECs. PMVECs possessed 20% higher basal cAMP concentrations than did PAECs; however, increased content was accompanied by 93% lower ATP-to-cAMP conversion rates. In PMVECs, responsiveness to beta-adrenergic agonist (isoproterenol) or direct adenylyl cyclase (forskolin) activation was attenuated and responsiveness to phosphodiesterase inhibition (rolipram) was increased compared with those in PAECs. Although both types of endothelial cells express calcium-inhibited adenylyl cyclase, constitutive PMVEC cAMP accumulation was not inhibited by physiological rises in cytosolic calcium, whereas PAEC cAMP accumulation was inhibited 30% by calcium. Increasing either PMVEC calcium entry by maximal activation of store-operated calcium entry or ATP-to-cAMP conversion with rolipram unmasked calcium inhibition of adenylyl cyclase. These data indicate that suppressed calcium entry and low ATP-to-cAMP conversion intrinsically influence calcium sensitivity. Adenylyl cyclase-to-cAMP phosphodiesterase ratios regulate cAMP at elevated levels compared with PAECs, which likely contribute to enhanced microvascular barrier function.

  12. Double-stranded RNA attenuates the barrier function of human pulmonary artery endothelial cells.

    Directory of Open Access Journals (Sweden)

    Zoltán Bálint

    Full Text Available Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs. The effect of natural and synthetic double-stranded RNA (dsRNA on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca(2+ homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca(2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca(2+-ATPase (SERCA which is involved in the regulation of the intracellular Ca(2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes.

  13. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx.

    Directory of Open Access Journals (Sweden)

    Anurag Singh

    Full Text Available Reactive oxygen species (ROS play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S(35 and (3H-glucosamine. GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress.

  14. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  15. Tesmilifene modifies brain endothelial functions and opens the blood-brain/blood-glioma barrier.

    Science.gov (United States)

    Walter, Fruzsina R; Veszelka, Szilvia; Pásztói, Mária; Péterfi, Zoltán A; Tóth, András; Rákhely, Gábor; Cervenak, László; Ábrahám, Csongor S; Deli, Mária A

    2015-09-01

    Tesmilifene, a tamoxifen analog with antihistamine action, has chemopotentiating properties in experimental and clinical cancer studies. In our previous works, tesmilifene increased the permeability of the blood-brain barrier (BBB) in animal and culture models. Our aim was to investigate the effects of tesmilifene on brain microvessel permeability in the rat RG2 glioma model and to reveal its mode of action in brain endothelial cells. Tesmilifene significantly increased fluorescein extravasation in the glioma. Short-term treatment with tesmilifene reduced the resistance and increased the permeability for marker molecules in a rat triple co-culture BBB model. Tesmilifene also affected the barrier integrity in brain endothelial cells co-cultured with RG2 glioblastoma cells. Tesmilifene inhibited the activity of P-glycoprotein and multidrug resistance-associated protein-1 efflux pumps and down-regulated the mRNA expression of tight junction proteins, efflux pumps, solute carriers, and metabolic enzymes important for BBB functions. Among the possible signaling pathways that regulate BBB permeability, tesmilifene activated the early nuclear translocation of NFκB. The MAPK/ERK and PI3K/Akt kinase pathways were also involved. We demonstrate for the first time that tesmilifene increases permeability marker molecule extravasation in glioma and inhibits efflux pump activity in brain endothelial cells, which may have therapeutic relevance. Tesmilifene, a chemopotentiator in experimental and clinical cancer studies increases vascular permeability in RG2 glioma in rats and permeability for marker molecules in a culture model of the blood-brain barrier. Tesmilifene inhibits the activity of efflux pumps and down-regulates the mRNA expression of tight junction proteins, transporters, and metabolic enzymes important for the blood-brain barrier functions, which may have therapeutic relevance. © 2015 International Society for Neurochemistry.

  16. Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype.

    Science.gov (United States)

    Seebach, Jochen; Donnert, Gerald; Kronstein, Romy; Werth, Sebastian; Wojciak-Stothard, Beata; Falzarano, Darryl; Mrowietz, Christof; Hell, Stefan W; Schnittler, Hans-J

    2007-08-01

    Flow-induced conversion of endothelial cells into an elongated arterial phenotype requires a coordinated regulation of cell junctions. Here we investigated the effect of acute and chronic flow on junction regulation. Using an extended experimental setup that allows analyses of endothelial barrier function under flow conditions, we found a flow-induced upregulation of the transendothelial electrical resistance within minutes. This was accompanied by an increase in actin filaments along the junctions and vascular endothelial (VE)-cadherin clustering, which was identified at nanoscale resolution by stimulated emission depletion microscopy. In addition, a transient tyrosine phosphorylation of VE-cadherin and catenins occurred within minutes following the onset of flow. VE-cadherin and actin distribution were maintained under chronic flow over 24 h and associated with the upregulation of VE-cadherin and alpha-catenin expression, thus compensating for the cell elongation-mediated increase in cell border length. Importantly, all observed effects were rac1 dependent as verified by the inhibitory effect of dominant negative N17rac1. These results show that flow-induced conversion of endothelial cells into an arterial phenotype occurs while intercellular junctions remain intact. The data place rac1 in a central multimodal regulatory position that might be important in the development of vascular diseases, such as arteriosclerosis.

  17. Endothelial calcium dynamics, connexin channels and blood-brain barrier function.

    Science.gov (United States)

    De Bock, Marijke; Wang, Nan; Decrock, Elke; Bol, Mélissa; Gadicherla, Ashish K; Culot, Maxime; Cecchelli, Romeo; Bultynck, Geert; Leybaert, Luc

    2013-09-01

    Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions.

    Science.gov (United States)

    Cichon, Christoph; Sabharwal, Harshana; Rüter, Christian; Schmidt, M Alexander

    2014-01-01

    Tightly controlled epithelial and endothelial barriers are a prerequisite for life as these barriers separate multicellular organisms from their environment and serve as first lines of defense. Barriers between neighboring epithelial cells are formed by multiple intercellular junctions including the 'apical junctional complex-AJC' with tight junctions (TJ), adherens junctions (AJ), and desmosomes. TJ consist of tetraspan transmembrane proteins like occludin, various claudins that directly control paracellular permeability, and the 'Junctional Adhesion Molecules' (JAMs). For establishing tight barriers TJ are essential but at the same time have to allow also selective permeability. For this, TJ need to be tightly regulated and controlled. This is organized by a variety of adaptor molecules, i.e., protein kinases, phosphatases and GTPases, which in turn are regulated and fine-tuned involving microRNAs (miRNAs). In this review we summarize available data on the role and targeting of miRNAs in the maintenance of epithelial and/or endothelial barriers.

  19. Aggressive Antioxidant Reductive Stress Impairs Brain Endothelial Cell Angiogenesis and Blood Brain Barrier Function.

    Science.gov (United States)

    Mentor, Shireen; Fisher, David

    2017-01-01

    Oxidative stress in the brain microvasculature is a common characteristic in models of cerebrovascular disease. Considering the effects of reactive oxygen species activity in vascular-derived insults, it is naturally prudent to hypothesize those interventions inhibiting reactive oxygen species activity, such as antioxidant supplementation, may be beneficial for cerebrovascular disease. Hyper doses of antioxidant supplements, and foods with high antioxidant concentrations, are commonly used as an ongoing remedial and 'over-the-counter' treatments for most seasonal ailments. For the first time, this study reports the adverse effects of excess antioxidants on angiogenic properties of the blood-brain barrier (BBB) which have clinical implications. A medicinal tea, known as Rooibos, commonly used in South Africa and marketed globally, for its prominent antioxidant profile, demonstrated its effects on brain endothelial cellular proliferation, toxicology, mitochondrial activity and permeability. Mouse brain endothelial cells were seeded at cell densities ranging from 103-106 cells/ml and were incubated at pre-determined time intervals of 24 to120 hours. Daily exposure of a selected concentration range of fermented Rooibos tea caused dose-related decreases in cellular proliferation, and unequivocally decreased permeability across our in vitro BBB model. Despite the negative effects on cellular proliferation, no toxicity was observed for all selected fermented Rooibos concentrations. Our data conclusively shows that the use of excess antioxidants perturbs BBB functionality and angiogenic properties, adversely implicating the homeostatic regulation of the brain microenvironment, while suppression in cellular proliferation impacts both the maintenance and repair function of brain capillaries. Our study indicates that excess antioxidants will lead to an impaired response to mechanical-induced injury and pathogenic infection of the BBB, compromising patient recovery. Copyright

  20. The Cullin-3-Rbx1-KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB.

    Science.gov (United States)

    Kovačević, Igor; Sakaue, Tomohisa; Majoleé, Jisca; Pronk, Manon C; Maekawa, Masashi; Geerts, Dirk; Fernandez-Borja, Mar; Higashiyama, Shigeki; Hordijk, Peter L

    2018-01-22

    RhoGTPases control endothelial cell (EC) migration, adhesion, and barrier formation. Whereas the relevance of RhoA for endothelial barrier function is widely accepted, the role of the RhoA homologue RhoB is poorly defined. RhoB and RhoA are 85% identical, but RhoB's subcellular localization and half-life are uniquely different. Here, we studied the role of ubiquitination for the function and stability of RhoB in primary human ECs. We show that the K63 polyubiquitination at lysine 162 and 181 of RhoB targets the protein to lysosomes. Moreover, we identified the RING E3 ligase complex Cullin-3-Rbx1-KCTD10 as key modulator of endothelial barrier integrity via its regulation of the ubiquitination, localization, and activity of RhoB. In conclusion, our data show that ubiquitination controls the subcellular localization and lysosomal degradation of RhoB and thereby regulates the stability of the endothelial barrier through control of RhoB-mediated EC contraction. © 2018 Kovačević et al.

  1. Endothelial Angiogenesis and Barrier Function in Response to Thrombin Require Ca2+ Influx through the Na+/Ca2+ Exchanger*

    Science.gov (United States)

    Andrikopoulos, Petros; Kieswich, Julius; Harwood, Steven M.; Baba, Akemichi; Matsuda, Toshio; Barbeau, Olivier; Jones, Keith; Eccles, Suzanne A.; Yaqoob, Muhammad M.

    2015-01-01

    Thrombin acts on the endothelium by activating protease-activated receptors (PARs). The endothelial thrombin-PAR system becomes deregulated during pathological conditions resulting in loss of barrier function and a pro-inflammatory and pro-angiogenic endothelial phenotype. We reported recently that the ion transporter Na+/Ca2+ exchanger (NCX) operating in the Ca2+-influx (reverse) mode promoted ERK1/2 activation and angiogenesis in vascular endothelial growth factor-stimulated primary human vascular endothelial cells. Here, we investigated whether Ca2+ influx through NCX was involved in ERK1/2 activation, angiogenesis, and endothelial barrier dysfunction in response to thrombin. Reverse-mode NCX inhibitors and RNAi-mediated NCX1 knockdown attenuated ERK1/2 phosphorylation in response to thrombin or an agonist of PAR-1, the main endothelial thrombin receptor. Conversely, promoting reverse-mode NCX by suppressing Na+-K+-ATPase activity enhanced ERK1/2 activation. Reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced primary human vascular endothelial cell angiogenesis, quantified as proliferation and tubular differentiation. Reverse-mode NCX inhibitors or NCX1 knockdown preserved barrier integrity upon thrombin stimulation in vitro. Moreover, the reverse-mode NCX inhibitor SEA0400 suppressed Evans' blue albumin extravasation to the lung and kidneys and attenuated edema formation and ERK1/2 activation in the lungs of mice challenged with a peptide activator of PAR-1. Mechanistically, thrombin-induced ERK1/2 activation required NADPH oxidase 2-mediated reactive oxygen species (ROS) production, and reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced ROS production. We propose that reverse-mode NCX is a novel mechanism contributing to thrombin-induced angiogenesis and hyperpermeability by mediating ERK1/2 activation in a ROS-dependent manner. Targeting reverse-mode NCX could be beneficial in pathological conditions involving

  2. Heat stress-induced disruption of endothelial barrier function is via PAR1 signaling and suppressed by Xuebijing injection.

    Directory of Open Access Journals (Sweden)

    Qiulin Xu

    Full Text Available Increased vascular permeability leading to acute lung injury (ALI and acute respiratory distress syndrome (ARDS is central to the pathogenesis of heatstroke. Protease-activated receptor 1 (PAR1, the receptor for thrombin, plays a key role in disruption of endothelial barrier function in response to extracellular stimuli. However, the role of PAR1 in heat stress-induced endothelial hyper-permeability is unknown. In this study, we measured PAR1 protein expression in heat-stressed human umbilical venous endothelial cells (HUVECs, investigated the influences of PAR1 on endothelial permeability, F-actin rearrangement, and moesin phosphorylation by inhibiting PAR1 with its siRNA, neutralizing antibody (anti-PAR1, specific inhibitor(RWJ56110, and Xuebijing injection (XBJ, a traditional Chinese medicine used for sepsis treatment, and evaluated the role of PAR1 in heatstroke-related ALI/ARDS in mice by suppressing PAR1 with RWJ56110, anti-PAR1and XBJ. We found that heat stress induced PAR1 protein expression 2h after heat stress in endothelial cells, caused the release of endothelial matrix metalloprotease 1, an activator of PAR1, after 60 or 120 min of heat stimulation, as well as promoted endothelial hyper-permeability and F-actin rearrangement, which were inhibited by suppressing PAR1 with RWJ56110, anti-PAR1 and siRNA. PAR1 mediated moesin phosphorylation, which caused F-actin rearrangement and disruption of endothelial barrier function. To corroborate findings from in vitro experiments, we found that RWJ56110 and the anti-PAR1 significantly decreased lung edema, pulmonary microvascular permeability, protein exudation, and leukocytes infiltrations in heatstroke mice. Additionally, XBJ was found to suppress PAR1-moesin signal pathway and confer protective effects on maintaining endothelial barrier function both in vitro and in vivo heat-stressed model, similar to those observed above with the inhibition of PAR1. These results suggest that PAR1 is a

  3. Stimulation of G protein-coupled bile acid receptor enhances vascular endothelial barrier function via activation of protein kinase A and Rac1.

    Science.gov (United States)

    Kida, Taiki; Omori, Keisuke; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2014-01-01

    Bile acids are end products of cholesterol metabolism, and they constantly exist at high concentrations in the blood. Since vascular endothelial cells express G protein-coupled bile acid receptor (GPBAR), bile acids potentially modulate endothelial function. Here, we investigated whether and how GPBAR agonism affects endothelial barrier function. In bovine aortic endothelial cells (BAECs), treatment with a GPBAR agonist, taurolithocholic acid (TLCA) increased the transendothelial electrical resistance. In addition, TLCA suppressed the thrombin-induced dextran infiltration through the endothelial monolayer. Knockdown of GPBAR abolished the inhibitory effect of TLCA on hyperpermeability. These results indicate that stimulation of GPBAR enhances endothelial barrier function. TLCA increased intracellular cAMP production in BAECs. Inhibition of protein kinase A (PKA) or Rac1 significantly attenuated the TLCA-induced endothelial barrier protection. TLCA induced cortical actin polymerization, which was attenuated by a Rac1 inhibitor. In vivo, local administration of TLCA into the mouse ear significantly inhibited vascular leakage and edema formation induced by croton oil or vascular endothelial growth factor. These results indicate that stimulation of GPBAR enhances endothelial barrier function by cAMP/PKA/Rac1-dependent cytoskeletal rearrangement.

  4. Synergism of MSC-secreted HGF and VEGF in stabilising endothelial barrier function upon lipopolysaccharide stimulation via the Rac1 pathway.

    Science.gov (United States)

    Yang, Yi; Chen, Qi-Hong; Liu, Ai-Ran; Xu, Xiu-Ping; Han, Ji-Bin; Qiu, Hai-Bo

    2015-12-16

    Mesenchymal stem cells (MSCs) stabilise endothelial barrier function in acute lung injury via paracrine hepatocyte growth factor (HGF). Vascular endothelial growth factor (VEGF), which is secreted by MSCs, is another key regulator of endothelial permeability; however, its role in adjusting permeability remains controversial. In addition, whether an interaction occurs between HGF and VEGF, which are secreted by MSCs, is not completely understood. We introduced a co-cultured model of human pulmonary microvascular endothelial cells (HPMECs) and MSC conditioned medium (CM) collected from MSCs after 24 h of hypoxic culture. The presence of VEGF and HGF in the MSC-CM was neutralised by anti-VEGF and anti-HGF antibodies, respectively. To determine the roles and mechanisms of MSC-secreted HGF and VEGF, we employed recombinant humanised HGF and recombinant humanised VEGF to co-culture with HPMECs. Additionally, we employed the RhoA inhibitor C3 transferase and the Rac1 inhibitor NSC23766 to inhibit the activities of RhoA and Rac1 in HPMECs treated with MSC-CM or VEGF/HGF with the same dosage as in the MSC-CM. Then, endothelial paracellular and transcellular permeability was detected. VE-cadherin, occludin and caveolin-1 protein expression in HPMECs was measured by western blot. Adherens junction proteins, including F-actin and VE-cadherin, were detected by immunofluorescence. MSC-CM treatment significantly decreased lipopolysaccharide-induced endothelial paracellular and transcellular permeability, which was significantly inhibited by pretreatment with HGF antibody or with both VEGF and HGF antibodies. Furthermore, MSC-CM treatment increased the expression of the endothelial intercellular adherence junction proteins VE-cadherin and occludin and decreased the expression of caveolin-1 protein. MSC-CM treatment also decreased endothelial apoptosis and induced endothelial cell proliferation; however, the effects of MSC-CM treatment were inhibited by pretreatment with HGF

  5. The barrier within: endothelial transport of hormones.

    Science.gov (United States)

    Kolka, Cathryn M; Bergman, Richard N

    2012-08-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.

  6. Aging and endothelial barrier function in culture: effects of chronic exposure to fatty acid hydroperoxides and vitamin E.

    Science.gov (United States)

    Boissonneault, G A; Hennig, B; Wang, Y; Wood, C L

    1990-10-01

    As the endothelium ages it may become more susceptible to damage by atherogenic plasma components such as toxic lipid oxidation products. Vitamin E (vit E) might prove to be anti-atherogenic by reducing oxidative injury. This study investigated the effects of age and chronic exposure to fatty acid hydroperoxides (OFA) and/or vit E on endothelial barrier function (EBF) and cell growth characteristics. Chronic exposure to 5 microM OFA for 40 passages resulted in an age-related decrease in EBF, while supplementation of OFA-treated cultures with 25 microM vit E protected against the OFA-mediated decrease in EBF, independent of cell age. Vit E treatment alone had no significant effect on EBF relative to control cultures. No changes in growth characteristics, i.e., total DNA or protein per culture, were noted, regardless of treatment, although total DNA per culture decreased with increasing culture passage. These results suggest that chronic oxidative stress decreases EBF, predisposing the artery to infiltration by blood components and subsequent atherogenesis and that vit E delays cumulative changes in EBF related to chronic OFA exposure.

  7. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities

    OpenAIRE

    Aman, Jurjan; Weijers, Ester M.; Geerten P van Nieuw Amerongen; Malik, Asrar B.; van Hinsbergh, Victor W.M.

    2016-01-01

    Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the micr...

  8. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  9. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function.

    Directory of Open Access Journals (Sweden)

    You-Hong Cheng

    Full Text Available Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012 and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68, CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM, which could be antagonized with AMD3100; ubiquitin (0.03-3μM was ineffective. In a human lung microvascular endothelial cell line (HULEC5a, CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68 was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68 to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68. Our findings

  11. Metformin induces up-regulation of blood-brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells.

    Science.gov (United States)

    Takata, Fuyuko; Dohgu, Shinya; Matsumoto, Junichi; Machida, Takashi; Kaneshima, Shuji; Matsuo, Mai; Sakaguchi, Shinya; Takeshige, Yuki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2013-04-19

    Blood-brain barrier (BBB) disruption occurs frequently in CNS diseases and injuries. Few drugs have been developed as therapeutic candidates for facilitating BBB functions. Here, we examined whether metformin up-regulates BBB functions using rat brain microvascular endothelial cells (RBECs). Metformin, concentration- and time-dependently increased transendothelial electrical resistance of RBEC monolayers, and decreased RBEC permeability to sodium fluorescein and Evans blue albumin. These effects of metformin were blocked by compound C, an inhibitor of AMP-activated protein kinase (AMPK). AMPK stimulation with an AMPK activator, AICAR, enhanced BBB functions. These findings indicate that metformin induces up-regulation of BBB functions via AMPK activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Initial contact of glioblastoma cells with existing normal brain endothelial cells strengthen the barrier function via fibroblast growth factor 2 secretion: a new in vitro blood-brain barrier model.

    Science.gov (United States)

    Toyoda, Keisuke; Tanaka, Kunihiko; Nakagawa, Shinsuke; Thuy, Dinh Ha Duy; Ujifuku, Kenta; Kamada, Kensaku; Hayashi, Kentaro; Matsuo, Takayuki; Nagata, Izumi; Niwa, Masami

    2013-05-01

    Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood-brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.

  13. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy

    NARCIS (Netherlands)

    Boels, M.G.; Koudijs, A.; Avramut, M.C.; Sol, W.; Wang, G.; Oeveren-Rietdijk, A.M. van; Zonneveld, A.J. van; Boer, H.C. de; Vlag, J. van der; Kooten, C. van; Eulberg, D.; Berg, B.M.; DHT, I.J.; Rabelink, T.J.

    2017-01-01

    Inhibition of monocyte chemotactic protein-1 (MCP-1) with the Spiegelmer emapticap pegol (NOX-E36) shows long-lasting albuminuria-reducing effects in diabetic nephropathy. MCP-1 regulates inflammatory cell recruitment and differentiation of macrophages. Because the endothelial glycocalyx is also

  14. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities.

    Science.gov (United States)

    Aman, Jurjan; Weijers, Ester M; van Nieuw Amerongen, Geerten P; Malik, Asrar B; van Hinsbergh, Victor W M

    2016-08-01

    Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the microcirculation in which the vascular leak develops. Recent studies have identified several elements of this microenvironment. Among these are composition and stiffness of the extracellular matrix, fluid shear stress, interaction of endothelial cells (ECs) with pericytes, oxygen tension, and the combination of toxic and mechanic injurious stimuli. Development of novel cell culture techniques that integrate these elements would allow in-depth analysis of EC biology that closely approaches the (patho)physiological conditions in situ. In parallel, techniques to isolate organ-specific ECs, to define EC heterogeneity in its full complexity, and to culture patient-derived ECs from inducible pluripotent stem cells or endothelial progenitor cells are likely to advance the understanding of ARDS and lead to development of therapeutics. This review 1) summarizes the advantages and pitfalls of EC cultures to study vascular leak in ARDS, 2) provides an overview of elements of the microvascular environment that can directly affect endothelial barrier function, and 3) discusses alternative methods to bridge the gap between basic research and clinical application with the intent of improving the translational value of present EC culture approaches. Copyright © 2016 the American Physiological Society.

  15. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides.

    Science.gov (United States)

    Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina

    2011-12-01

    The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione

  16. Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling

    Directory of Open Access Journals (Sweden)

    Natalia Malinovskaya

    2016-12-01

    Full Text Available Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons. Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

  17. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...... barrier integrity, factors influencing the penetration of the skin, influence of wet work, and guidance for prevention and saving the barrier. Distinguished researchers have contributed to this book, providing a comprehensive and thorough overview of the skin barrier function. Researchers in the field...

  18. Hypothermia-induced loss of endothelial barrier function is restored after dopamine pretreatment : Role of p42/p44 activation

    NARCIS (Netherlands)

    Brinkkoetter, Paul-Thomas; Beck, Grietje C.; Gottmann, Uwe; Loesel, Ralf; Schnetzke, Ulf; Rudic, Boris; Hanusch, Christine; Rafat, Neysan; Liu, Zhenzi; Weiss, Christel; Leuvinik, Henri G. D.; Ploeg, Rutger; Braun, Claude; Schnuelle, Peter; van der Woude, Fokko J.; Yard, Benito A.

    2006-01-01

    Background. Donor dopamine usage is associated with improved immediate graft function after renal transplantation. Although prolonged cold preservation results in an increased vascular permeability, the present study was conducted to examine in vitro and in vivo if dopamine Pretreatment influences

  19. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  20. Lifestyle factors and endothelial function.

    Science.gov (United States)

    Papageorgiou, Nikolaos; Tousoulis, Dimitris; Androulakis, Emmanuel; Giotakis, Aris; Siasos, Gerasimos; Latsios, George; Stefanadis, Christodoulos

    2012-01-01

    Atherosclerotic disease remains a major health problem around the world. The central role of endothelium and inflammation in all stages of the atherosclerotic process is advocated by significant data. Moreover, clinical evidence supports the prognostic potential of endothelial dysfunction for the development of ischemic events and for adverse outcome after acute coronary syndromes. Interestingly, suboptimal lifestyle choices are implicated in the development and deterioration of this endothelial dysfunction, a fact with significant impact, considering the contribution of endothelial dysfunction in atherosclerosis and its complications. Many epidemiological research studies, using a variety of strategies, provide encouraging evidence suggesting that lifestyle modifications may have significant impact regarding the improvement of endothelial function. However, little is known about how individual's genetic background interacts with environmental influences on vascular health, thereby making the interpretation of the relative importance of lifestyle interventions more complicated.

  1. The NR1 subunit of NMDA receptor regulates monocyte transmigration through the brain endothelial cell barrier

    NARCIS (Netherlands)

    Reijerkerk, A.; Kooij, G.; van der Pol, S.M.A.; Leyen, T.A.; Lakeman, K.; Van Het Hof, B; Vivien, D.; de Vries, H.E.

    2010-01-01

    Normal neuronal functioning is dependent on the blood-brain barrier. This barrier is confined to specialized brain endothelial cells lining the inner vessel wall, and tightly controlling transport of nutrients, efflux of potentially harmful molecules and entry of immune cells into the brain. Loss of

  2. Leukocytes Breach Endothelial Barriers by Insertion of Nuclear Lobes and Disassembly of Endothelial Actin Filaments

    Directory of Open Access Journals (Sweden)

    Sagi Barzilai

    2017-01-01

    Full Text Available The endothelial cytoskeleton is a barrier for leukocyte transendothelial migration (TEM. Mononuclear and polymorphonuclear leukocytes generate gaps of similar micron-scale size when squeezing through inflamed endothelial barriers in vitro and in vivo. To elucidate how leukocytes squeeze through these barriers, we co-tracked the endothelial actin filaments and leukocyte nuclei in real time. Nuclear squeezing involved either preexistent or de novo-generated lobes inserted into the leukocyte lamellipodia. Leukocyte nuclei reversibly bent the endothelial actin stress fibers. Surprisingly, formation of both paracellular gaps and transcellular pores by squeezing leukocytes did not require Rho kinase or myosin II-mediated endothelial contractility. Electron-microscopic analysis suggested that nuclear squeezing displaced without condensing the endothelial actin filaments. Blocking endothelial actin turnover abolished leukocyte nuclear squeezing, whereas increasing actin filament density did not. We propose that leukocyte nuclei must disassemble the thin endothelial actin filaments interlaced between endothelial stress fibers in order to complete TEM.

  3. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption

    Science.gov (United States)

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Haskó, György; Liaudet, Lucas; Drel, Viktor R.; Obrosova, Irina G.; Pacher, Pál

    2008-01-01

    A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-κB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-κB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis. PMID:17384130

  4. Endothelial function in vasovagal syncope.

    Science.gov (United States)

    Pietrucha, Artur Z

    2014-12-01

    Vasovagal syncope (VVS) is a common form of fainting. The pathophysiology of VVS is complex and involves changes in the autonomic and vascular tone, resulting in reflex bradycardia with marked hypotension. Paradoxical peripheral vasodilation caused by endothelial dysfunction may also play a key role in inappropriate hypotension during VVS. Endothelial hyperactivity due to up regulation of nitric oxide synthase leads to profound vasodilation, much stronger than vasodilation caused by adrenergic stimulation in response to orthostatic stress alone. Studies have reported significantly higher flow-mediated dilation and higher plasma nitric oxide concentration in people with vasovagal syndrome. Patients with VVS showed decreased vasoconstrictive agent endothelin-1 levels during orthostatic stress. Coagulation and fibrinolysis activity also play important roles in endothelial function in syncopal patients. The response of the endothelium to orthostatic stress is similar to the reaction to haemorrhagic stress and is likely to be a remnant from the evolutionary adaptation of primates.

  5. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  6. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*

    Science.gov (United States)

    Parker, William H.; Qu, Zhi-chao; May, James M.

    2015-01-01

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729

  7. Vascular endothelial growth factor blockade alters magnetic resonance imaging biomarkers of vascular function and decreases barrier permeability in a rat model of lung cancer brain metastasis.

    Science.gov (United States)

    Pishko, Gregory L; Muldoon, Leslie L; Pagel, Michael A; Schwartz, Daniel L; Neuwelt, Edward A

    2015-02-17

    Blockade of vascular endothelial growth factor (VEGF) to promote vascular normalization and inhibit angiogenesis has been proposed for the treatment of brain metastases; however, vascular normalization has not been well-characterized in this disease. We investigated the effect of treatment with bevacizumab anti-VEGF antibody on magnetic resonance imaging (MRI) biomarkers of brain tumor vascular characteristics in comparison to small molecule delivery in a rat model of human lung cancer brain metastasis. Athymic rats with A549 human lung adenocarcinoma intracerebral xenografts underwent MRI at 11.75 T before and one day after treatment with bevacizumab (n = 8) or saline control (n = 8) to evaluate tumor volume, free water content (edema), blood volume and vascular permeability (Ktrans). One day later, permeability to 14C-aminoisobutyric acid (AIB) was measured in tumor and brain to assess the penetration of a small drug-like molecule. In saline control animals, tumor volume, edema and permeability increased over the two day assessment period. Compared to controls, bevacizumab treatment slowed the rate of tumor growth (P = 0.003) and blocked the increase in edema (P = 0.033), but did not alter tumor blood volume. Bevacizumab also significantly reduced Ktrans (P = 0.033) and AIB passive permeability in tumor (P = 0.04), but not to peritumoral tissue or normal brain. Post-treatment Ktrans correlated with AIB levels in the bevacizumab-treated rats but not in the saline controls. The correlation of an MRI biomarker for decreased vascular permeability with decreased AIB concentration in tumor after antiangiogenic treatment suggests that bevacizumab partially restored the normal low permeability characteristics of the blood-brain barrier in a model of human lung cancer brain metastasis.

  8. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    Science.gov (United States)

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  9. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  10. Resveratrol: A Multifunctional Compound Improving Endothelial Function

    OpenAIRE

    Li, Huige; F?rstermann, Ulrich

    2009-01-01

    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression a...

  11. DPP-4 inhibition protects human umbilical vein endothelial cells from hypoxia-induced vascular barrier impairment

    Directory of Open Access Journals (Sweden)

    Naoko Hashimoto

    2017-09-01

    Full Text Available Dipeptidyl peptidase-4 (DPP-4 inhibitors are relatively new class of anti-diabetic drugs. Some protective effects of DPP-4 on cardiovascular disease have been described independently from glucose-lowering effect. However, the detailed mechanisms by which DPP-4 inhibitors exert on endothelial cells remain elusive. The purpose of this research was to determine the effects of DPP-4 inhibitor on endothelial barrier function. Human umbilical vein endothelial cells (HUVECs were cultured and exposed to hypoxia in the presence or absence of Diprotin A, a DPP-4 inhibitor. Immunocytochemistry of vascular endothelial (VE- cadherin showed that jagged VE-cadherin staining pattern induced by hypoxia was restored by treatment with Diprotin A. The increased level of cleaved β-catenin in response to hypoxia was significantly attenuated by Diprotin A, suggesting that DPP-4 inhibition protects endothelial adherens junctions from hypoxia. Subsequently, we found that Diprotin A inhibited hypoxia-induced translocation of NF-κB from cytoplasm to nucleus through decreasing TNF-α expression level. Furthermore, the tube formation assay showed that Diprotin A significantly restored hypoxia-induced decrease in number of tubes by HUVECs. These results suggest that DPP-4 inhibitior protects HUVECs from hypoxia-induced barrier impairment.

  12. Expression of PKA inhibitor (PKI) gene abolishes cAMP-mediated protection to endothelial barrier dysfunction.

    Science.gov (United States)

    Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D

    1999-09-01

    We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.

  13. Effects of space mission factors on the morphology and function of endothelial cells.

    Science.gov (United States)

    Kapitonova, M Yu; Kuznetsov, S L; Froemming, G R A; Muid, S; Nor-Ashikin, M N K; Otman, S; Shahir, A R M; Nawawi, H

    2013-04-01

    The structure and functions of endothelial cells after space mission were studied by electron and laser confocal microscopy, image analysis, and MTT test. The endothelial cells changed significantly (proliferative activity, size, contours, shape, distribution of mitochondria and microtubules) in comparison with controls on the Earth. These changes indicated injuries in the cytoskeleton and impairment of the barrier function of the cells, which presumably contributed to the development of endothelial dysfunction.

  14. IL-17A potentiates TNFα-induced secretion from human endothelial cells and alters barrier functions controlling neutrophils rights of passage

    DEFF Research Database (Denmark)

    Bosteen, Markus H; Tritsaris, Katerina; Hansen, Anker J

    2014-01-01

    Interleukin-17A (IL-17A) is an important pro-inflammatory cytokine that regulates leukocyte mobilization and recruitment. To better understand how IL-17A controls leukocyte trafficking across capillaries in the peripheral blood circulation, we used primary human dermal microvascular endothelial...

  15. Functional expression of a proton-coupled organic cation (H+/OC antiporter in human brain capillary endothelial cell line hCMEC/D3, a human blood–brain barrier model

    Directory of Open Access Journals (Sweden)

    Shimomura Keita

    2013-01-01

    Full Text Available Abstract Background Knowledge of the molecular basis and transport function of the human blood–brain barrier (BBB is important for not only understanding human cerebral physiology, but also development of new central nervous system (CNS-acting drugs. However, few studies have been done using human brain capillary endothelial cells, because human brain materials are difficult to obtain. The purpose of this study is to clarify the functional expression of a proton-coupled organic cation (H+/OC antiporter in human brain capillary endothelial cell line hCMEC/D3, which has been recently developed as an in vitro human BBB model. Methods Diphenhydramine, [3H]pyrilamine and oxycodone were used as cationic drugs that proved to be H+/OC antiporter substrates. The in vitro uptake experiments by hCMEC/D3 cells were carried out under several conditions. Results Diphenhydramine and [3H]pyrilamine were both transported into hCMEC/D3 cells in a time- and concentration-dependent manner with Km values of 59 μM and 19 μM, respectively. Each inhibited uptake of the other in a competitive manner, suggesting that a common mechanism is involved in their transport. The diphenhydramine uptake was significantly inhibited by amantadine and quinidine, but not tetraethylammonium and 1-methyl-4-phenylpyridinium (substrates for well-known organic cation transporters. The uptake was inhibited by metabolic inhibitors, but was insensitive to extracellular sodium and membrane potential. Further, the uptake was increased by extracellular alkalization and intracellular acidification. These transport properties are completely consistent with those of previously characterized H+/OC antiporter in rat BBB. Conclusions The present results suggest that H+/OC antiporter is functionally expressed in hCMEC/D3 cells.

  16. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  17. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    Science.gov (United States)

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS

  18. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    Science.gov (United States)

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Sustained Adenosine Exposure Causes Lung Endothelial Barrier Dysfunction via Nucleoside Transporter–Mediated Signaling

    Science.gov (United States)

    Newton, Julie; Hsiao, Vivian; Shamirian, Paul; Blackburn, Michael R.; Pedroza, Mesias

    2012-01-01

    Previous studies by our group as well as others have shown that acute adenosine exposure enhances lung vascular endothelial barrier integrity and protects against increased permeability lung edema. In contrast, there is growing evidence that sustained adenosine exposure has detrimental effects on the lungs, including lung edema. It is well established that adenosine modulates lung inflammation. However, little is known concerning the effect of sustained adenosine exposure on lung endothelial cells (ECs), which are critical to the maintenance of the alveolar–capillary barrier. We show that exogenous adenosine plus adenosine deaminase inhibitor caused sustained elevation of adenosine in lung ECs. This sustained adenosine exposure decreased EC barrier function, elevated cellular reactive oxygen species levels, and activated p38, JNK, and RhoA. Inhibition of equilibrative nucleoside transporters (ENTs) prevented sustained adenosine-induced p38 and JNK activation and EC barrier dysfunction. Inhibition of p38, JNK, or RhoA also partially attenuated sustained adenosine-induced EC barrier dysfunction. These data indicate that sustained adenosine exposure causes lung EC barrier dysfunction via ENT-dependent intracellular adenosine uptake and subsequent activation of p38, JNK, and RhoA. The antioxidant N-acetylcysteine and the NADPH inhibitor partially blunted sustained adenosine-induced JNK activation but were ineffective in attenuation of p38 activation or barrier dysfunction. p38 was activated exclusively in mitochondria, whereas JNK was activated in mitochondria and cytoplasm by sustained adenosine exposure. Our data further suggest that sustained adenosine exposure may cause mitochondrial oxidative stress, leading to activation of p38, JNK, and RhoA in mitochondria and resulting in EC barrier dysfunction. PMID:22744860

  20. Plasma from preeclamptic women increases blood-brain barrier permeability: role of vascular endothelial growth factor signaling.

    Science.gov (United States)

    Amburgey, Odül A; Chapman, Abbie C; May, Victor; Bernstein, Ira M; Cipolla, Marilyn J

    2010-11-01

    Circulating factors in preeclamptic women are thought to cause endothelial dysfunction and thereby contribute to the progression of this hypertensive condition. Despite the involvement of neurological complications in preeclampsia, there is a paucity of data regarding the effect of circulating factors on cerebrovascular function. Using a rat model of pregnancy, we investigated blood-brain barrier permeability, myogenic activity, and the influence of endothelial vasodilator mechanisms in cerebral vessels exposed intraluminally to plasma from normal pregnant or preeclamptic women. In addition, the role of vascular endothelial growth factor signaling in mediating changes in permeability in response to plasma was investigated. A 3-hour exposure to 20% normal pregnant or preeclamptic plasma increased blood-brain barrier permeability by ≈6.5- and 18.0-fold, respectively, compared with no plasma exposure (Pvascular endothelial growth factor receptor kinase activity prevented the increase in permeability in response to preeclamptic plasma but had no effect on changes in permeability of vessels exposed to normal pregnant plasma. Circulating factors in preeclamptic plasma did not affect myogenic activity or the influence of endothelium on vascular tone. These findings demonstrate that acute exposure to preeclamptic plasma has little effect on reactivity of cerebral arteries but significantly increases blood-brain barrier permeability. Prevention of increased permeability by inhibition of vascular endothelial growth factor signaling suggests that activation of this pathway may be responsible for increased blood-brain barrier permeability after exposure to preeclamptic plasma.

  1. Interleukin-34 restores blood-brain barrier integrity by upregulating tight junction proteins in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Shijie Jin

    Full Text Available Interleukin-34 (IL-34 is a newly discovered cytokine as an additional ligand for colony stimulating factor-1 receptor (CSF1R, and its functions are expected to overlap with colony stimulating factor-1/macrophage-colony stimulating factor. We have previously shown that the IL-34 is primarily produced by neurons in the central nervous system (CNS and induces proliferation and neuroprotective properties of microglia which express CSF1R. However, the functions of IL-34 in the CNS are still elucidative. Here we show that CNS capillary endothelial cells also express CSF1R. IL-34 protected blood-brain barrier integrity by restored expression levels of tight junction proteins, which were downregulated by pro-inflammatory cytokines. The novel function of IL-34 on the blood-brain barrier may give us a clue for new therapeutic strategies in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease.

  2. [Assessment of endothelial function in autoimmune diseases].

    Science.gov (United States)

    Benhamou, Y; Bellien, J; Armengol, G; Gomez, E; Richard, V; Lévesque, H; Joannidès, R

    2014-08-01

    Numerous autoimmune-inflammatory rheumatic diseases have been associated with accelerated atherosclerosis or other types of vasculopathy leading to an increase in cardiovascular disease incidence. In addition to traditional cardiovascular risk factors, endothelial dysfunction is an important early event in the pathogenesis of atherosclerosis, contributing to plaque initiation and progression. Endothelial dysfunction is characterized by a shift of the actions of the endothelium toward reduced vasodilation, a proinflammatory and a proadhesive state, and prothrombic properties. Therefore, assessment of endothelial dysfunction targets this vascular phenotype using several biological markers as indicators of endothelial dysfunction. Measurements of soluble adhesion molecules (ICAM-1, VCAM-1, E-selectin), pro-thrombotic factors (thrombomodulin, von Willebrand factor, plasminogen activator inhibitor-1) and inflammatory cytokines are most often performed. Regarding the functional assessment of the endothelium, the flow-mediated dilatation of conduit arteries is a non-invasive method widely used in pathophysiological and interventional studies. In this review, we will briefly review the most relevant information upon endothelial dysfunction mechanisms and explorations. We will summarize the similarities and differences in the biological and functional assessments of the endothelium in different autoimmune diseases. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  3. Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo

    Science.gov (United States)

    Ashina, Kohei; Tsubosaka, Yoshiki; Nakamura, Tatsuro; Omori, Keisuke; Kobayashi, Koji; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2015-01-01

    Histamine is a mediator of allergic inflammation released mainly from mast cells. Although histamine strongly increases vascular permeability, its precise mechanism under in vivo situation remains unknown. We here attempted to reveal how histamine induces vascular hyperpermeability focusing on the key regulators of vascular permeability, blood flow and endothelial barrier. Degranulation of mast cells by antigen-stimulation or histamine treatment induced vascular hyperpermeability and tissue swelling in mouse ears. These were abolished by histamine H1 receptor antagonism. Intravital imaging showed that histamine dilated vasculature, increased blood flow, while it induced hyperpermeability in venula. Whole-mount staining showed that histamine disrupted endothelial barrier formation of venula indicated by changes in vascular endothelial cadherin (VE-cadherin) localization at endothelial cell junction. Inhibition of nitric oxide synthesis (NOS) by L-NAME or vasoconstriction by phenylephrine strongly inhibited the histamine-induced blood flow increase and hyperpermeability without changing the VE-cadherin localization. In vitro, measurements of trans-endothelial electrical resistance of human dermal microvascular endothelial cells (HDMECs) showed that histamine disrupted endothelial barrier. Inhibition of protein kinase C (PKC) or Rho-associated protein kinase (ROCK), NOS attenuated the histamine-induced barrier disruption. These observations suggested that histamine increases vascular permeability mainly by nitric oxide (NO)-dependent vascular dilation and subsequent blood flow increase and maybe partially by PKC/ROCK/NO-dependent endothelial barrier disruption. PMID:26158531

  4. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  5. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization...... and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due...

  6. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    Directory of Open Access Journals (Sweden)

    Emma L. Wilkinson

    2016-10-01

    Full Text Available Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1 levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes.

  7. Endothelial RIG-I activation impairs endothelial function.

    Science.gov (United States)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-03-30

    Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5'end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Immortalized endothelial cell lines for in vitro blood-brain barrier models: A systematic review.

    Science.gov (United States)

    Rahman, Nurul Adhwa; Rasil, Alifah Nur'ain Haji Mat; Meyding-Lamade, Uta; Craemer, Eva Maria; Diah, Suwarni; Tuah, Ani Afiqah; Muharram, Siti Hanna

    2016-07-01

    Endothelial cells play the most important role in construction of the blood-brain barrier. Many studies have opted to use commercially available, easily transfected or immortalized endothelial cell lines as in vitro blood-brain barrier models. Numerous endothelial cell lines are available, but we do not currently have strong evidence for which cell lines are optimal for establishment of such models. This review aimed to investigate the application of immortalized endothelial cell lines as in vitro blood-brain barrier models. The databases used for this review were PubMed, OVID MEDLINE, ProQuest, ScienceDirect, and SpringerLink. A narrative systematic review was conducted and identified 155 studies. As a result, 36 immortalized endothelial cell lines of human, mouse, rat, porcine and bovine origins were found for the establishment of in vitro blood-brain barrier and brain endothelium models. This review provides a summary of immortalized endothelial cell lines as a guideline for future studies and improvements in the establishment of in vitro blood-brain barrier models. It is important to establish a good and reproducible model that has the potential for multiple applications, in particular a model of such a complex compartment such as the blood-brain barrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Arterial endothelial function measurement method and apparatus

    Science.gov (United States)

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  10. Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10

    Science.gov (United States)

    Obiako, Boniface; Calchary, Wendy; Xu, Ningyong; Kunstadt, Ryan; Richardson, Bianca; Nix, Jessica

    2013-01-01

    It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate cytosolic cAMP and disrupt the pulmonary microvascular endothelial barrier. The barrier-disruptive effects of cytosolic cAMP generated by exogenous soluble ACs are in contrast to the barrier-protective effects of subplasma membrane cAMP generated by transmembrane AC, which strengthens endothelial barrier integrity. Endogenous soluble AC isoform 10 (AC10 or commonly known as sAC) lacks transmembrane domains and localizes within the cytosolic compartment. AC10 is uniquely activated by bicarbonate to generate cytosolic cAMP, yet its role in regulation of endothelial barrier integrity has not been addressed. Here we demonstrate that, within the pulmonary circulation, AC10 is expressed in pulmonary microvascular endothelial cells (PMVECs) and pulmonary artery endothelial cells (PAECs), yet expression in PAECs is lower. Furthermore, pulmonary endothelial cells selectively express bicarbonate cotransporters. While extracellular bicarbonate generates a phosphodiesterase 4-sensitive cAMP pool in PMVECs, no such cAMP response is detected in PAECs. Finally, addition of extracellular bicarbonate decreases resistance across the PMVEC monolayer and increases the filtration coefficient in the isolated perfused lung above osmolality controls. Collectively, these findings suggest that PMVECs have a bicarbonate-sensitive cytosolic cAMP pool that disrupts endothelial barrier integrity. These studies could provide an alternative mechanism for the controversial effects of bicarbonate correction of acidosis of acute respiratory distress syndrome patients. PMID:23686854

  11. Functional barriers: Properties and evaluation

    NARCIS (Netherlands)

    Feigenbaum, A.; Dole, P.; Aucejo, S.; Dainelli, D.; Cruz Garcia, C. de la; Hankemeier, T.; N'Gono, Y.; Papaspyrides, C.D.; Paseiro, P.; Pastorelli, S.; Pavlidou, S.; Pennarun, P.Y.; Saillard, P.; Vidal, L.; Vitrac, O.; Voulzatis, Y.

    2005-01-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of

  12. Endothelial cell preservation at hypothermic to normothermic conditions using clinical and experimental organ preservation solutions

    NARCIS (Netherlands)

    Post, Ivo C. J. H.; de Boon, Wadim M. I.; Heger, Michal; van Wijk, Albert C. W. A.; Kroon, Jeffrey; van Buul, Jaap D.; van Gulik, Thomas M.

    2013-01-01

    Endothelial barrier function is pivotal for the outcome of organ transplantation. Since hypothermic preservation (gold standard) is associated with cold-induced endothelial damage, endothelial barrier function may benefit from organ preservation at warmer temperatures. We therefore assessed

  13. The role of shear stress in Blood-Brain Barrier endothelial physiology

    Directory of Open Access Journals (Sweden)

    Puvenna Vikram

    2011-05-01

    Full Text Available Abstract Background One of the most important and often neglected physiological stimuli contributing to the differentiation of vascular endothelial cells (ECs into a blood-brain barrier (BBB phenotype is shear stress (SS. With the use of a well established humanized dynamic in vitro BBB model and cDNA microarrays, we have profiled the effect of SS in the induction/suppression of ECs genes and related functions. Results Specifically, we found a significant upregulation of tight and adherens junctions proteins and genes. Trans-endothelial electrical resistance (TEER and permeability measurements to know substances have shown that SS promoted the formation of a tight and highly selective BBB. SS also increased the RNA level of multidrug resistance transporters, ion channels, and several p450 enzymes. The RNA level of a number of specialized carrier-mediated transport systems (e.g., glucose, monocarboxylic acid, etc. was also upregulated. RNA levels of modulatory enzymes of the glycolytic pathway (e.g., lactate dehydrogenase were downregulated by SS while those involved in the Krebs cycle (e.g., lactate and other dehydrogenases were upregulated. Measurements of glucose consumption versus lactate production showed that SS negatively modulated the glycolytic bioenergetic pathways of glucose metabolism in favor of the more efficient aerobic respiration. BBB ECs are responsive to inflammatory stimuli. Our data showed that SS increased the RNA levels of integrins and vascular adhesion molecules. SS also inhibited endothelial cell cycle via regulation of BTG family proteins encoding genes. This was paralleled by significant increase in the cytoskeletal protein content while that of membrane, cytosol, and nuclear sub-cellular fractions decreased. Furthermore, analysis of 2D gel electrophoresis (which allows identifying a large number of proteins per sample of EC proteins extracted from membrane sub-cellular endothelial fractions showed that SS increased

  14. CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei.

    Directory of Open Access Journals (Sweden)

    Ifeanyi U Anidi

    Full Text Available Severe malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT and CD36-/- mice were infected with P. berghei ANKA and monitored for changes in pulmonary endothelial barrier function employing an isolated perfused lung system. WT lungs demonstrated a >10-fold increase in two measures of paracellular fluid conductance and a decrease in the albumin reflection coefficient (σalb compared to control lungs indicating a loss of barrier function. In contrast, malaria-infected CD36-/- mice had near normal fluid conductance but a similar reduction in σalb. In WT mice, lung sequestered iRBCs demonstrated production of reactive oxygen species (ROS. To determine whether knockout of CD36 could protect against ROS-induced endothelial barrier dysfunction, mouse lung microvascular endothelial monolayers (MLMVEC from WT and CD36-/- mice were exposed to H2O2. Unlike WT monolayers, which showed dose-dependent decreases in transendothelial electrical resistance (TER from H2O2 indicating loss of barrier function, CD36-/- MLMVEC demonstrated dose-dependent increases in TER. The differences between responses in WT and CD36-/- endothelial cells correlated with important differences in the intracellular compartmentalization of the CD36-associated Fyn kinase. Malaria infection increased total lung Fyn levels in CD36-/- lungs compared to WT, but this increase was due to elevated production of the inactive form of Fyn further suggesting a dysregulation of Fyn-mediated signaling. The importance of Fyn in CD36-dependent endothelial signaling was confirmed using in vitro Fyn knockdown as well as Fyn-/- mice, which were also protected from H2O2- and malaria-induced lung endothelial leak, respectively. Our

  15. Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation.

    Science.gov (United States)

    Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D

    2014-06-01

    Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial

  16. Endothelial Regulator of Calcineurin 1 Promotes Barrier Integrity and Modulates Histamine-Induced Barrier Dysfunction in Anaphylaxis

    Directory of Open Access Journals (Sweden)

    Constanza Ballesteros-Martinez

    2017-10-01

    Full Text Available Anaphylaxis, the most serious and life-threatening allergic reaction, produces the release of inflammatory mediators by mast cells and basophils. Regulator of calcineurin 1 (Rcan1 is a negative regulator of mast-cell degranulation. The action of mediators leads to vasodilation and an increase in vascular permeability, causing great loss of intravascular volume in a short time. Nevertheless, the molecular basis remains unexplored on the vascular level. We investigated Rcan1 expression induced by histamine, platelet-activating factor (PAF, and epinephrine in primary human vein (HV-/artery (HA-derived endothelial cells (ECs and human dermal microvascular ECs (HMVEC-D. Vascular permeability was analyzed in vitro in human ECs with forced Rcan1 expression using Transwell migration assays and in vivo using Rcan1 knockout mice. Histamine, but neither PAF nor epinephrine, induced Rcan1-4 mRNA and protein expression in primary HV-ECs, HA-ECs, and HMVEC-D through histamine receptor 1 (H1R. These effects were prevented by pharmacological inhibition of calcineurin with cyclosporine A. Moreover, intravenous histamine administration increased Rcan1 expression in lung tissues of mice undergoing experimental anaphylaxis. Functional in vitro assays showed that overexpression of Rcan1 promotes barrier integrity, suggesting a role played by this molecule in vascular permeability. Consistent with these findings, in vivo models of subcutaneous and intravenous histamine-mediated fluid extravasation showed increased response in skin, aorta, and lungs of Rcan1-deficient mice compared with wild-type animals. These findings reveal that endothelial Rcan1 is synthesized in response to histamine through a calcineurin-sensitive pathway and may reduce barrier breakdown, thus contributing to the strengthening of the endothelium and resistance to anaphylaxis. These new insights underscore its potential role as a regulator of sensitivity to anaphylaxis in humans.

  17. Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Courtney Premer

    2015-05-01

    Interpretation: These findings reveal a novel mechanism whereby allogeneic, but not autologous, MSC administration results in the proliferation of functional EPCs and improvement in vascular reactivity, which in turn restores endothelial function towards normal in patients with HF. These findings have significant clinical and biological implications for the use of MSCs in HF and other disorders associated with endothelial dysfunction.

  18. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  19. Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers

    Science.gov (United States)

    Adderley, Shaquria P.; Lawrence, Curtis; Madonia, Eyong; Olubadewo, Joseph O.

    2015-01-01

    The role of the actin cytoskeleton in endothelial barrier function has been debated for nearly four decades. Our previous investigation revealed spontaneous local lamellipodia in confluent endothelial monolayers that appear to increase overlap at intercellular junctions. We tested the hypothesis that the barrier-disrupting agent histamine would reduce local lamellipodia protrusions and investigated the potential involvement of p38 mitogen-activated protein (MAP) kinase activation and actin stress fiber formation. Confluent monolayers of human umbilical vein endothelial cells (HUVEC) expressing green fluorescent protein-actin were studied using time-lapse fluorescence microscopy. The protrusion and withdrawal characteristics of local lamellipodia were assessed before and after addition of histamine. Changes in barrier function were determined using electrical cell-substrate impedance sensing. Histamine initially decreased barrier function, lamellipodia protrusion frequency, and lamellipodia protrusion distance. A longer time for lamellipodia withdrawal and reduced withdrawal distance and velocity accompanied barrier recovery. After barrier recovery, a significant number of cortical fibers migrated centrally, eventually resembling actin stress fibers. The p38 MAP kinase inhibitor SB203580 attenuated the histamine-induced decreases in barrier function and lamellipodia protrusion frequency. SB203580 also inhibited the histamine-induced decreases in withdrawal distance and velocity, and the subsequent actin fiber migration. These data suggest that histamine can reduce local lamellipodia protrusion activity through activation of p38 MAP kinase. The findings also suggest that local lamellipodia have a role in maintaining endothelial barrier integrity. Furthermore, we provide evidence that actin stress fiber formation may be a reaction to, rather than a cause of, reduced endothelial barrier integrity. PMID:25948734

  20. CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development.

    Science.gov (United States)

    Chen, Jianan; Luo, Yongting; Hui, Hui; Cai, Tanxi; Huang, Hongxin; Yang, Fuquan; Feng, Jing; Zhang, Jingjing; Yan, Xiyun

    2017-09-05

    The blood-brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte-EC interaction during BBB development, the molecular mechanisms coordinating the pericyte-EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-β to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-β1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB.

  1. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  2. Activation of endothelial toll-like receptor 3 impairs endothelial function.

    Science.gov (United States)

    Zimmer, Sebastian; Steinmetz, Martin; Asdonk, Tobias; Motz, Inga; Coch, Christoph; Hartmann, Evelyn; Barchet, Winfried; Wassmann, Sven; Hartmann, Gunther; Nickenig, Georg

    2011-05-27

    reactive oxygen species, increased apoptosis, and reduced migration. Injection of endothelial progenitor cells that had been incubated with polyinosine polycytidylic acid ex vivo hindered reendothelialization after carotid artery injury. Therefore, endothelial progenitor cell function was affected by TLR3 stimulation. Finally, apolipoprotein E-deficient/TLR3-deficient mice exhibited improved endothelial function compared with apolipoprotein E-deficient/TLR3(+/+) littermates. Immunorecognition of long double-stranded RNA by endothelial cells may be an important mechanism involved in endothelial cell activation and development of endothelial dysfunction.

  3. Membrane organization determines barrier properties of endothelial cells and short-chain sphingolipid-facilitated doxorubicin influx.

    Science.gov (United States)

    van Hell, A J; Klymchenko, A; Gueth, D M; van Blitterswijk, W J; Koning, G A; Verheij, M

    2014-09-01

    The endothelial lining and its outer lipid membrane are the first major barriers drug molecules encounter upon intravenous administration. Our previous work identified lipid analogs that counteract plasma membrane barrier function for a series of amphiphilic drugs. For example, short-chain sphingolipids (SCS), like N-octanoyl-glucosylceramide, effectively elevated doxorubicin accumulation in tumor cells, both in vitro and in vivo, and in endothelial cells, whereas other (normal) cells remained unaffected. We hypothesize here that local membrane lipid composition and the degree of lipid ordering define SCS efficacy in individual cells. To this end, we study the differential effect of SCS on bovine aortic endothelial cells (BAEC) in its confluent versus proliferative state, as a model system. While their (plasma membrane) lipidome stays remarkably unaltered when BAECs reach confluency, their lipids segregate to form apical and basolateral domains. Using probe NR12S, we reveal that lipids in the apical membrane are more condensed/liquid-ordered. SCS preferentially attenuate the barrier posed by these condensed membranes and facilitate doxorubicin influx in these particular membrane regions. We confirm these findings in MDCK cells and artificial membranes. In conclusion, SCS-facilitated drug traversal acts on condensed membrane domains, elicited by confluency in resting endothelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The endothelial border to health

    DEFF Research Database (Denmark)

    Hansen, Nina Wærling; Hansen, Anker Jon; Sams, Anette

    2017-01-01

    by hyperglycemic events because the endothelium transduces “high glucose” signaling into significant pathophysiological phenomena leading to reduced endothelial barrier function, compromised vascular tone regulation and inflammation (e.g., cytokine secretion and RAGE activation). In addition, endothelial...

  5. Volumetric and ionic regulation during the in vitro development of a corneal endothelial barrier.

    Science.gov (United States)

    Alaminos, M; González-Andrades, M; Muñoz-Avila, J I; Garzón, I; Sánchez-Quevedo, M C; Campos, A

    2008-05-01

    Corneal endothelium is responsible for generating an ion flux between the corneal stroma and the anterior chamber of the eye that is necessary for the cornea to remain transparent. However, the ion transport regulatory mechanisms that develop during the formation of the endothelial barrier are not known. In this study, we determined the influence of cell confluence on cell volume and intracellular ionic content on the corneal endothelial cells of rabbits. Our results demonstrate that non-confluent endothelial cells display a hypertrophic volume increase, with higher intracellular contents of potassium and chlorine than those of confluent cells. In contrast, when cells reach confluence and the endothelial barrier forms, cell volume decreases and the intracellular contents of potassium and chlorine decrease. Our genetic analysis showed a higher expression of CFTR and CA2 genes in non-confluent cells, and of the gene KCNC3 in confluent cells. These results suggest that the normal ionic current that keeps the corneal stroma dehydrated and transparent is regulated by cell-cell contacts and endothelial cell confluence, and could explain why the loss of corneal endothelial cells is often associated with corneal edema and even blindness.

  6. Cytoskeleton, cytoskeletal interactions, and vascular endothelial function

    Directory of Open Access Journals (Sweden)

    Wang J

    2012-12-01

    Full Text Available Jingli Wang,1 Michael E Widlansky1,21Department of Medicine, Cardiovascular Medicine Division, 2Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USAAbstract: Far from being inert, the vascular endothelium is a critical regulator of vascular function. While the endothelium participates in autocrine, paracrine, and endocrine signaling, it also transduces mechanical signals from the cell surface involving key cell structural elements. In this review, we discuss the structure of the vascular endothelium and its relationship to traditional cardiovascular risk factors and clinical cardiovascular events. Further, we review the emerging evidence that cell structural elements, including the glycocalyx, intercellular junctions, and cytoskeleton elements, help the endothelium to communicate with its environment to regulate vascular function, including vessel permeability and signal transduction via nitric oxide bioavailability. Further work is necessary to better delineate the regulatory relationships between known key regulators of vascular function and endothelial cell structural elements.Keywords: endothelium, shear stress, eNOS, cardiovascular risk factors, glycocalyx

  7. The phenotype of the human materno-fetal endothelial barrier: molecular occupancy of paracellular junctions dictate permeability and angiogenic plasticity.

    Science.gov (United States)

    Leach, Lopa

    2002-06-01

    In vitro models predict that molecular occupancy of endothelial junctions may regulate both barrier function and angiogenesis. Whether this is true in human vascular beds undergoing physiological angiogenesis has not been shown. This review presents data which demonstrate there are two distinct junctional phenotypes, 'activated' and 'stable', present in the vascular tree of the human placenta taken from two distinct highly angiogenic gestational periods (first and last trimester). Stability is conferred by the presence of occludin in tight junctions and plakoglobin in adherens junctions. Their localization may be influenced by vascular endothelial growth factor and angiopoietins 1 and 2 that have a similar temporal and site-specific differential expression. The junctional phenotypes are reversible, as shown in studies with endothelial cells isolated from placental microvessels and grown in the presence/absence of cAMP-enhancing agents. Reductions in protein levels and loss of junctional localization of adhesion molecules result in increased permeability to macromolecules, whilst up-regulation and re-targeting of these molecules inhibit cell proliferation and increase transendothelial resistance. These studies suggest junctional adhesion molecules can regulate physiological angiogenesis and vascular re-modelling. Moreover, the activated junctional phenotype of placental microvessels allows them to participate in increased growth and proliferation. This junctional immaturity appears to be at the expense of barrier function resulting in sites of maximal materno-fetal solute exchange.

  8. Lifestyle choices and endothelial function: risk and relevance.

    Science.gov (United States)

    Wang, Jingli; Widlansky, Michael E

    2009-04-01

    Cardiovascular disease remains the leading cause of death and disability in industrialized nations. The risk of cardiovascular disease is significantly reduced by lifestyle choices that promote cardiovascular health. Epidemiological data demonstrate that poor dietary choices, lack of exercise, smoking, obesity, stress, and pollution all increase cardiovascular risk. Poor habits and choices also have been shown to have adverse effects on vascular endothelial homeostasis leading to the development of endothelial dysfunction. Endothelial dysfunction includes broad regulatory changes leading to the expression of a vasoconstrictive, pro-thrombotic, and pro-inflammatory phenotype of the vascular endothelium. Interest in assessing lifestyle interventions as they relate to endothelial function has been encouraged by data demonstrating that measurements of endothelial function in easily accessible vascular beds such as the brachial artery correlate with risk for future cardiovascular events. Given the logistical difficulties and costs of performing large scale clinical trials assessing the ability of many lifestyle interventions designed to reduce cardiovascular risk, employing measures of endothelial function as a surrogate outcome for cardiovascular risk has allowed researchers to determine the biological plausibility of epidemiological data in this area with smaller studies. Newer study techniques, including genomic methodologies, now allow for better delineation of the mechanisms by which lifestyle choices affect the vascular endothelium and of the role of genetic variation in modifying these effects. This review discusses the effects of lifestyle choices on vascular endothelial function, the role and relevance of using studies that assess endothelial function in assessing cardiovascular risk, and future research directions in this area.

  9. SOCS1 prevents graft arteriosclerosis by preserving endothelial cell function.

    Science.gov (United States)

    Qin, Lingfeng; Huang, Qunhua; Zhang, Haifeng; Liu, Renjing; Tellides, George; Min, Wang; Yu, Luyang

    The aim of this study was to determine the role of suppressor of cytokine signaling 1 (SOCS1) in graft arteriosclerosis (GA). GA, the major cause of late cardiac allograft failure, is initiated by immune-mediated endothelial activation resulting in vascular inflammation and consequent neointima formation. SOCS1, a negative regulator of cytokine signaling, is highly expressed in endothelial cells (ECs) and may prevent endothelial inflammatory responses and phenotypic activation. Clinical specimens of coronary arteries with GA, with atherosclerosis, or without disease were collected for histological analysis. SOCS1 knockout or vascular endothelial SOCS1 (VESOCS1) transgenic mice were used in an aorta transplant model of GA. Mouse aortic ECs were isolated for in vitro assays. Dramatic but specific reduction of endothelial SOCS1 was observed in human GA and atherosclerosis specimens, which suggested the importance of SOCS1 in maintaining normal endothelial function. SOCS1 deletion in mice resulted in basal EC dysfunction. After transplantation, SOCS1-deficient aortic grafts augmented leukocyte recruitment and neointima formation, whereas endothelial overexpression of SOCS1 diminished arterial rejection. Induction of endothelial adhesion molecules in early stages of GA was suppressed by the VESOCS1 transgene, and this effect was confirmed in cultured aortic ECs. Moreover, VESOCS1 maintained better vascular function during GA progression. Mechanistically, endothelial SOCS1, by modulating both basal and cytokine-induced expression of the adhesion molecules platelet/endothelial cell adhesion molecule-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, restrained leukocyte adhesion and transendothelial migration during inflammatory cell infiltration. SOCS1 prevents GA progression by preserving endothelial function and attenuating cytokine-induced adhesion molecule expression in vascular endothelium. Copyright © 2014 American College of Cardiology

  10. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Directory of Open Access Journals (Sweden)

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  11. Microcapsules functionalized with neuraminidase can enter vascular endothelial cells in vitro.

    Science.gov (United States)

    Liu, Weizhi; Wang, Xiaocong; Bai, Ke; Lin, Miao; Sukhorukov, Gleb; Wang, Wen

    2014-12-06

    Microcapsules made of polyelectrolyte multilayers exhibit no or low toxicity, appropriate mechanical stability, variable controllable degradation and can incorporate remote release mechanisms triggered by various stimuli, making them well suited for targeted drug delivery to live cells. This study investigates interactions between microcapsules made of synthetic (i.e. polystyrenesulfonate sodium salt/polyallylamine hydrochloride) or natural (i.e. dextran sulfate/poly-L-arginine) polyelectrolyte and human umbilical vein endothelial cells with particular focus on the effect of the glycocalyx layer on the intake of microcapsules by endothelial cells. Neuraminidase cleaves N-acetyl neuraminic acid residues of glycoproteins and targets the sialic acid component of the glycocalyx on the cell membrane. Three-dimensional confocal images reveal that microcapsules, functionalized with neuraminidase, can be internalized by endothelial cells. Capsules without neuraminidase are blocked by the glycocalyx layer. Uptake of the microcapsules is most significant in the first 2 h. Following their internalization by endothelial cells, biodegradable DS/PArg capsules rupture by day 5; however, there is no obvious change in the shape and integrity of PSS/PAH capsules within the period of observation. Results from the study support our hypothesis that the glycocalyx functions as an endothelial barrier to cross-membrane movement of microcapsules. Neuraminidase-loaded microcapsules can enter endothelial cells by localized cleavage of glycocalyx components with minimum disruption of the glycocalyx layer and therefore have high potential to act as drug delivery vehicles to reach tissues beyond the endothelial barrier of blood vessels. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides.

    Science.gov (United States)

    Janga, Harshavardhan; Cassidy, Liam; Wang, Fanlu; Spengler, Dietmar; Oestern-Fitschen, Stefanie; Krause, Martin F; Seekamp, Andreas; Tholey, Andreas; Fuchs, Sabine

    2017-12-05

    Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar-capillary barrier (ACB) in the lung. In this study, we analyse the site-specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co-cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro-inflammatory cytokines and immune-modulatory molecules were evaluated by ELISA and semiquantitative real-time PCR. Liquid chromatography-mass spectrometry-based proteomics (LS-MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co-cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro-inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro-inflammatory cytokines such as IL-6 in OEC and in turn induced the reduction of TEER and an increase in SP-A expression in H441 monoculture, and H441/OEC co-cultures after LPS treatment from basolateral compartment. LS-MS-based proteomics revealed factors associated with LPS-mediated lung injury such as ICAM-1, VCAM-1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial-endothelial crosstalk in the ACB in ALI/ARDS. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. GENDER DIFFERENCES IN THE ENDOTHELIAL FUNCTION OF UNTREATED HYPERTENSION

    Science.gov (United States)

    Routledge, Faye S.; Hinderliter, Alan L.; Blumenthal, James A.; Sherwood, Andrew

    2012-01-01

    Vascular endothelial dysfunction is associated with increased risk for adverse cardiovascular events. However, less is known about gender differences in the endothelial function of untreated hypertensive individuals. The purpose of this study was to assess endothelial function in women and men with untreated hypertension. Ninety participants (35 women, 55 men), aged 40 to 60 years (mean age, 46.1±8.2 years), with untreated stage 1 hypertension (SBP 140–159 mmHg and/or DBP 90–99 mmHg) underwent brachial artery endothelial-dependent flow-mediated dilation and endothelial-independent glyceryl trinitrate dilation. Women had a smaller flow-mediated dilation response than men (adjusted means±SEM; 1.8%±0.6 vs. 3.9%±0.4, p=.036). adjusting for baseline arterial diameter (p=.004), age (p=.596), ethnicity (p=.496), log shear stress ratio (pgender in adjusted models. Women between the ages of 40 and 60 years with untreated stage 1 hypertension exhibited a greater impairment of endothelial function compared to their male counterparts. These findings raise the possibility that female gender may impart a greater risk of cardiovascular events in patients with untreated stage 1 hypertension potentially due to poorer endothelial function. PMID:22458744

  14. Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation.

    Science.gov (United States)

    Chow, Brian Wai; Gu, Chenghua

    2017-03-22

    Blood-central nervous system (CNS) barriers partition neural tissues from the blood, providing a homeostatic environment for proper neural function. The endothelial cells that form blood-CNS barriers have specialized tight junctions and low rates of transcytosis to limit the flux of substances between blood and CNS. However, the relative contributions of these properties to CNS barrier permeability are unknown. Here, by studying functional blood-retinal barrier (BRB) formation in mice, we found that immature vessel leakage occurs entirely through transcytosis, as specialized tight junctions are functional as early as vessel entry into the CNS. A functional barrier forms only when transcytosis is gradually suppressed during development. Mutant mice with elevated or reduced levels of transcytosis have delayed or precocious sealing of the BRB, respectively. Therefore, the temporal regulation of transcytosis governs the development of a functional BRB, and suppression of transcytosis is a principal contributor for functional barrier formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A role for VEGFR2 activation in endothelial responses caused by barrier disruptive OxPAPC concentrations.

    Directory of Open Access Journals (Sweden)

    Anna A Birukova

    Full Text Available Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC differentially modulate endothelial cell (EC barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2 is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation.EC monolayer permeability in human pulmonary artery endothelial cells (HPAEC and human aortic endothelial cells (HAEC was monitored by changes in transendothelial electrical resistance (TER across EC monolayers. Actin cytoskeleton was examined by immunostaining with Texas Red labeled phalloidin. Phosphorylation of myosin light chains (MLC and VE-Cadherin was examined by Western blot and immunofluorescence techniques. The role of VEGFR2 in OxPAPC-induced permeability and cytoskeletal arrangement were determined using siRNA-induced VEGFR2 knockdown.Low OxPAPC concentrations (5-20 µg/ml induced a barrier protective response in both HPAEC and HAEC, while high OxPAPC concentrations (50-100 µg/ml caused a rapid increase in permeability; actin stress fiber formation and increased MLC phosphorylation were observed as early as 30 min after treatment. VEGFR2 knockdown dramatically decreased the amount of MLC phosphorylation and stress fiber formation caused by high OxPAPC concentrations with modest effects on the amount of VE-cadherin phosphorylation at Y(731. We present evidence that activation of Rho is involved in the OxPAPC/VEGFR2 mechanism of EC permeability induced by high OxPAPC concentrations. Knockdown of VEGFR2 did not rescue the early drop in TER but prevented further development of OxPAPC-induced barrier dysfunction.This study shows that VEGFR2 is involved in the delayed phase of EC barrier dysfunction caused by high Ox

  16. Endothelial Function Is Associated with White Matter Microstructure and Executive Function in Older Adults

    OpenAIRE

    Nathan F. Johnson; Brian T. Gold; Brown, Christopher A.; Anggelis, Emily F.; Bailey, Alison L.; Clasey, Jody L.; Powell, David K.

    2017-01-01

    Age-related declines in endothelial function can lead to cognitive decline. However, little is known about the relationships between endothelial function and specific neurocognitive functions. This study explored the relationship between measures of endothelial function (reactive hyperemia index; RHI), white matter (WM) health (fractional anisotropy, FA, and WM hyperintensity volume, WMH), and executive function (Trail Making Test (TMT); Trail B − Trail A). Participants were 36 older adults b...

  17. In vitro models of the blood–brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use

    Science.gov (United States)

    Helms, Hans C; Abbott, N Joan; Burek, Malgorzata; Cecchelli, Romeo; Couraud, Pierre-Olivier; Deli, Maria A; Förster, Carola; Galla, Hans J; Romero, Ignacio A; Shusta, Eric V; Stebbins, Matthew J; Vandenhaute, Elodie; Weksler, Babette

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described. PMID:26868179

  18. Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions.

    Science.gov (United States)

    Ghosh, Suparna; Lakshmanan, Arun P; Hwang, Mu Ji; Kubba, Haidar; Mushannen, Ahmed; Triggle, Chris R; Ding, Hong

    2015-12-01

    The cellular mechanisms whereby metformin, the first line drug for type 2 diabetes (T2DM), mediates its antidiabetic effects remain elusive, particularly as to whether metformin has a direct protective action on the vasculature. This study was designed to determine if a brief 3-h exposure to metformin protects endothelial function against the effects of hyperglycaemia. We investigated the protective effects of metformin on endothelial-dependent vasodilatation (EDV) in thoracic aortae from T2DM db/db mice and on high glucose (HG, 40 mM) induced changes in endothelial nitric oxide synthase (eNOS) signaling in mouse microvascular endothelial cells (MMECs) in culture. Exposure of aortae from db+/? non-diabetic control mice to high glucose (HG, 40 mM) containing Krebs for 3-h significantly (Pmetformin; metformin also improved ACh-induced EDV in aortae from diabetic db/db mice. Immunoblot analysis of MMECs cultured in HG versus NG revealed a significant reduction of the ratio of phosphorylated (p-eNOS)/eNOS and p-Akt/Akt, but not the expression of total eNOS or Akt. The 3-h exposure of MMECs to metformin significantly (Pmetformin can reverse/reduce the impact of HG on endothelial function, via mechanisms linked to increased phosphorylation of eNOS and Akt. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    Directory of Open Access Journals (Sweden)

    Donatella Del Bufalo

    2004-09-01

    Full Text Available The aim of this study was to assess whether lonidamine (LND interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml. In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase-2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1-10 μg/ml, whereas 50 μg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors.

  20. Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: Neuroprotective role in maintaining blood brain barrier integrity.

    Science.gov (United States)

    Parikh, Neil U; Aalinkeel, R; Reynolds, J L; Nair, B B; Sykes, D E; Mammen, M J; Schwartz, S A; Mahajan, S D

    2015-10-22

    Methamphetamine (Meth) abuse can lead to the breakdown of the blood-brain barrier (BBB) integrity leading to compromised CNS function. The role of Galectins in the angiogenesis process in tumor-associated endothelial cells (EC) is well established; however no data are available on the expression of Galectins in normal human brain microvascular endothelial cells and their potential role in maintaining BBB integrity. We evaluated the basal gene/protein expression levels of Galectin-1, -3 and -9 in normal primary human brain microvascular endothelial cells (BMVEC) that constitute the BBB and examined whether Meth altered Galectin expression in these cells, and if Galectin-1 treatment impacted the integrity of an in-vitro BBB. Our results showed that BMVEC expressed significantly higher levels of Galectin-1 as compared to Galectin-3 and -9. Meth treatment increased Galectin-1 expression in BMVEC. Meth induced decrease in TJ proteins ZO-1, Claudin-3 and adhesion molecule ICAM-1 was reversed by Galectin-1. Our data suggests that Galectin-1 is involved in BBB remodeling and can increase levels of TJ proteins ZO-1 and Claudin-3 and adhesion molecule ICAM-1 which helps maintain BBB tightness thus playing a neuroprotective role. Galectin-1 is thus an important regulator of immune balance from neurodegeneration to neuroprotection, which makes it an important therapeutic agent/target in the treatment of drug addiction and other neurological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Particulate matter disrupts human lung endothelial barrier integrity via ROS- and p38 MAPK-dependent pathways.

    Science.gov (United States)

    Wang, Ting; Chiang, Eddie T; Moreno-Vinasco, Liliana; Lang, Gabriel D; Pendyala, Srikanth; Samet, Jonathan M; Geyh, Alison S; Breysse, Patrick N; Chillrud, Steven N; Natarajan, Viswanathan; Garcia, Joe G N

    2010-04-01

    Epidemiologic studies have linked exposure to airborne pollutant particulate matter (PM) with increased cardiopulmonary mortality and morbidity. The mechanisms of PM-mediated lung pathophysiology, however, remain unknown. We tested the hypothesis that PM, via enhanced oxidative stress, disrupts lung endothelial cell (EC) barrier integrity, thereby enhancing organ dysfunction. Using PM collected from Ft. McHenry Tunnel (Baltimore, MD), we assessed PM-mediated changes in transendothelial electrical resistance (TER) (a highly sensitive measure of barrier function), reactive oxygen species (ROS) generation, and p38 mitogen-activated protein kinase (MAPK) activation in human pulmonary artery EC. PM induced significant dose (10-100 microg/ml)- and time (0-10 h)-dependent EC barrier disruption reflected by reduced TER values. Exposure of human lung EC to PM resulted in significant ROS generation, which was directly involved in PM-mediated EC barrier dysfunction, as N-acetyl-cysteine (NAC, 5 mM) pretreatment abolished both ROS production and barrier disruption induced by PM. Furthermore, PM induced p38 MAPK activation and HSP27 phosphorylation, events that were both attenuated by NAC. In addition, PM-induced EC barrier disruption was partially prevented by the p38 MAP kinase inhibitor SB203580 (10 microM) as well as by reduced expression of either p38 MAPK beta or HSP27 (siRNA). These results demonstrate that PM induces ROS generation in human lung endothelium, resulting in oxidative stress-mediated EC barrier disruption via p38 MAPK- and HSP27-dependent pathways. These findings support a novel mechanism for PM-induced lung dysfunction and adverse cardiopulmonary outcomes.

  2. Particulate Matter Disrupts Human Lung Endothelial Barrier Integrity via ROS- and p38 MAPK–Dependent Pathways

    Science.gov (United States)

    Wang, Ting; Chiang, Eddie T.; Moreno-Vinasco, Liliana; Lang, Gabriel D.; Pendyala, Srikanth; Samet, Jonathan M.; Geyh, Alison S.; Breysse, Patrick N.; Chillrud, Steven N.; Natarajan, Viswanathan; Garcia, Joe G. N.

    2010-01-01

    Epidemiologic studies have linked exposure to airborne pollutant particulate matter (PM) with increased cardiopulmonary mortality and morbidity. The mechanisms of PM-mediated lung pathophysiology, however, remain unknown. We tested the hypothesis that PM, via enhanced oxidative stress, disrupts lung endothelial cell (EC) barrier integrity, thereby enhancing organ dysfunction. Using PM collected from Ft. McHenry Tunnel (Baltimore, MD), we assessed PM-mediated changes in transendothelial electrical resistance (TER) (a highly sensitive measure of barrier function), reactive oxygen species (ROS) generation, and p38 mitogen-activated protein kinase (MAPK) activation in human pulmonary artery EC. PM induced significant dose (10–100 μg/ml)- and time (0–10 h)-dependent EC barrier disruption reflected by reduced TER values. Exposure of human lung EC to PM resulted in significant ROS generation, which was directly involved in PM-mediated EC barrier dysfunction, as N-acetyl-cysteine (NAC, 5 mM) pretreatment abolished both ROS production and barrier disruption induced by PM. Furthermore, PM induced p38 MAPK activation and HSP27 phosphorylation, events that were both attenuated by NAC. In addition, PM-induced EC barrier disruption was partially prevented by the p38 MAP kinase inhibitor SB203580 (10 μM) as well as by reduced expression of either p38 MAPK β or HSP27 (siRNA). These results demonstrate that PM induces ROS generation in human lung endothelium, resulting in oxidative stress–mediated EC barrier disruption via p38 MAPK- and HSP27-dependent pathways. These findings support a novel mechanism for PM-induced lung dysfunction and adverse cardiopulmonary outcomes. PMID:19520919

  3. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Directory of Open Access Journals (Sweden)

    Michelle P. Papa

    2017-12-01

    Full Text Available Zika virus (ZIKV has been associated to central nervous system (CNS harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs, as an in vitro model of blood brain barrier (BBB, and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243, which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways.

  4. HABITUAL FLAVONOID INTAKE AND ENDOTHELIAL FUNCTION IN HEALTHY HUMANS

    Science.gov (United States)

    Fisher, Naomi DL; Hurwitz, Shelley; Hollenberg, Norman K

    2013-01-01

    Objective Endothelial function, as measured by non-invasive techniques, is known to vary widely within populations. Our study was designed to test the hypothesis that this variation is determined in large part by a person’s habitual dietary intake of flavonoids. Methods This was an analytical study examining the relationship between endothelial function and dietary flavonoids in 19 healthy older adults (mean age 72 years). The study took place in the inpatient Clinical Research Center of the Brigham and Women’s Hospital. Habitual flavonoid intake was assessed via a focused food frequency questionnaire. Endothelial function, measured as the reactive hyperemia response to one dose of flavonoid-rich cocoa, was recorded with a plethysmograpic device via peripheral arterial tonometry (PAT). Results Background flavonoid intake and the reactive hyperemia (RH)-PAT response were significantly correlated (r=0.7, p=0.001); subjects with higher habitual flavonoid intake showed a significantly greater RH-PAT response than did lower consumers. PAT response to cocoa was also significantly correlated with simultaneous flavanol concentration in the blood (r=0.5, p=0.03). Conclusion Individual variation in endothelial function among healthy older people, measured as PAT response to flavonoid-rich cocoa, is highly dependent upon usual daily flavonoid consumption. These data raise the possibility that the consumption of fruits and vegetables dictates basal endothelial function, likely related to their flavonoid content and influence on nitric oxide. PMID:23378455

  5. Effects of irrigation solutions on corneal endothelial function.

    Science.gov (United States)

    Yagoubi, M I; Armitage, W J; Diamond, J; Easty, D L

    1994-04-01

    Rabbit corneas were perfused in vitro with an irrigation solution for 90 minutes. This was followed by 6 hours of perfusion with tissue culture medium TC199 during which endothelial function was assessed by monitoring rates of swelling during a period of perfusion in the absence of bicarbonate ions, and subsequent rates of thinning when bicarbonate ions were restored to the perfusate. Corneal thickness (measured with an ultrasonic pachymeter) immediately following excision was 401 microns (SD 19, n = 23). During the 90 minute perfusion at 35 degrees C, corneas exposed to balanced salt solution (BSS), Hartmann's solution or 0.9% NaCl (all initially at room temperature) swelled, respectively, at 14 (SD 2.3, n = 4), 11 (SD 2.6, n = 4), and 70 (SD 4.3, n = 4) microns/h. Cold Hartmann's solution (initially at 4 degrees C) caused corneas to swell at 9 (SD 2.3, n = 4) microns/h. On the other hand, corneas perfused with BSS Plus thinned at 9 (SD 3.4, n = 4) microns/h and TC199 with Earle's salts had little effect on thickness. Rates of swelling and thinning during the following assessment perfusion showed no apparent effects of prior exposure to any of the irrigation solutions on the barrier properties or pump function of the endothelium. Despite this, the increased thickness of corneas exposed initially to BSS, cold Hartmann's solution, or 0.9% NaCl was not fully reversed, even by the end of the 6 hour assessment perfusion. In contrast, the swelling observed in corneas exposed to Hartmann's solution at room temperature was reversed and these corneas had returned to their normal thickness by the end of the assessment period. All corneas, even those exposed to 0.9% NaCl, had an intact endothelial mosaic with no evidence of damage or cell loss, although morphological differences in cell shape and the appearance of cell borders were evident compared with freshly isolated cornea.

  6. Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes

    OpenAIRE

    1994-01-01

    In contrast to the endothelial cells in large vessels where LDL receptors are downregulated, brain capillary endothelial cells in vivo express an LDL receptor. Using a cell culture model of the blood-brain barrier consisting of a coculture of brain capillary endothelial cells and astrocytes, we observed that the capacity of endothelial cells to bind LDL is enhanced threefold when cocultured with astrocytes. We next investigated the ability of astrocytes to modulate endothelial cell LDL recept...

  7. Endothelial function in male body builders taking anabolic androgenic steroids

    Directory of Open Access Journals (Sweden)

    H Hashemi

    2005-11-01

    Full Text Available Background: Adverse cardiovascular events have been reported in body builders taking anabolic steroids. Adverse effects of AAS on endothelial function can initiate atherosclerosis. This study evaluates endothelial function in body builders using AAS, compared with non-steroids using athletes as controls. Methods: We recruited 30 nonsmoking male body builders taking AAS, 14 in build up phase, 8 in work out phase, and 8 in post steroid phase, and 30 nonsmoking male athletes who denied ever using steroids. Serum lipids and fasting plasma glucose were measured to exclude dyslipidemia and diabetes. Brachial artery diameter was measured by ultrasound at rest, after cuff inflation, and after sublingual glyceriltrinitrate (GTN to determine flow mediated dilation (FMD, nitro mediated dilation (NMD and ratio of FMD to NMD (index of endothelial function. Result: Use of AAS was associated with higher body mass index (BMI and low density lipoprotein–cholesterol (LDL-C. Mean ratio of flow mediated dilatation after cuff deflation to post GTN dilatation of brachial artery (index of endothelial function in body builders taking AAS was significantly lower than control group (0.96(0.05 versus 1(0.08; p=0.03. After adjusting BMI, age and weight, no significant difference was seen in index of endothelial function between two groups (p=0 .21. Conclusion: Our study indicates that taking AAS in body builders doesn’t have direct effect on endothelial function. Future study with bigger sample size and measurement of AAS metabolites is recommended. Key words: endothelium, lipids, anabolic steroids, body builders

  8. Ponatinib reduces viability, migration, and functionality of human endothelial cells.

    Science.gov (United States)

    Gover-Proaktor, Ayala; Granot, Galit; Shapira, Saar; Raz, Oshrat; Pasvolsky, Oren; Nagler, Arnon; Lev, Dorit L; Inbal, Aida; Lubin, Ido; Raanani, Pia; Leader, Avi

    2017-06-01

    Tyrosine kinase inhibitors (TKIs) have revolutionized the prognosis of chronic myeloid leukemia. With the advent of highly efficacious therapy, the focus has shifted toward managing TKI adverse effects, such as vascular adverse events (VAEs). We used an in vitro angiogenesis model to investigate the TKI-associated VAEs. Our data show that imatinib, nilotinib, and ponatinib reduce human umbilical vein endothelial cells (HUVECs) viability. Pharmacological concentrations of ponatinib induced apoptosis, reduced migration, inhibited tube formation of HUVECs, and had a negative effect on endothelial progenitor cell (EPC) function. Furthermore, in HUVECs transfected with VEGF receptor 2 (VEGFR2), the effect of ponatinib on tube formation and on all parameters representing normal endothelial cell function was less prominent than in control cells. This is the first report regarding the pathogenesis of ponatinib-associated VAEs. The antiangiogenic effect of ponatinib, possibly mediated by VEGFR2 inhibition, as shown in our study, is another piece in the intricate puzzle of TKI-associated VAEs.

  9. Assessing vascular endothelial function using frequency and rank order statistics

    Science.gov (United States)

    Wu, Hsien-Tsai; Hsu, Po-Chun; Sun, Cheuk-Kwan; Liu, An-Bang; Lin, Zong-Lin; Tang, Chieh-Ju; Lo, Men-Tzung

    2013-08-01

    Using frequency and rank order statistics (FROS), this study analyzed the fluctuations in arterial waveform amplitudes recorded from an air pressure sensing system before and after reactive hyperemia (RH) induction by temporary blood flow occlusion to evaluate the vascular endothelial function of aged and diabetic subjects. The modified probability-weighted distance (PWD) calculated from the FROS was compared with the dilatation index (DI) to evaluate its validity and sensitivity in the assessment of vascular endothelial function. The results showed that the PWD can provide a quantitative determination of the structural changes in the arterial pressure signals associated with regulation of vascular tone and blood pressure by intact vascular endothelium after the application of occlusion stress. Our study suggests that the use of FROS is a reliable noninvasive approach to the assessment of vascular endothelial degeneration in aging and diabetes.

  10. Endothelial function state following repair of cyanotic congenital heart diseases.

    Science.gov (United States)

    Sabri, Mohammad Reza; Daryoushi, Hooman; Gharipour, Mojgan

    2015-02-01

    Repairing cyanotic congenital heart disease may be associated with preserving endothelial function. The present study aimed to evaluate vascular endothelial function in patients with repaired cyanotic congenital heart disease. In a case-control study conducted in 2012 in Isfahan, Iran, 42 consecutive patients aged types of cyanotic congenital heart disease and had undergone complete repair of their congenital heart defect were assessed in regard to their endothelial function state by measuring flow-mediated dilatation and other cardiac function indices. They were paired with 42 sex- and age-matched healthy controls. The mean flow-mediated dilatation was lower in patients with repaired cyanotic congenital heart disease than in the controls [6.14±2.78 versus 8.16±1.49 respectively (pcongenital heart disease that was repaired after 2.5 years of age (mean age at repair 9±6.1 years). Early repair of a cyanotic defect can result in the protection of vascular endothelial function and prevent the occurrence of vascular accidents at an older age.

  11. β2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier.

    Science.gov (United States)

    Gorina, Roser; Lyck, Ruth; Vestweber, Dietmar; Engelhardt, Britta

    2014-01-01

    In acute neuroinflammatory states such as meningitis, neutrophils cross the blood-brain barrier (BBB) and contribute to pathological alterations of cerebral function. The mechanisms that govern neutrophil migration across the BBB are ill defined. Using live-cell imaging, we show that LPS-stimulated BBB endothelium supports neutrophil arrest, crawling, and diapedesis under physiological flow in vitro. Investigating the interactions of neutrophils from wild-type, CD11a(-/-), CD11b(-/-), and CD18(null) mice with wild-type, junctional adhesion molecule-A(-/-), ICAM-1(null), ICAM-2(-/-), or ICAM-1(null)/ICAM-2(-/-) primary mouse brain microvascular endothelial cells, we demonstrate that neutrophil arrest, polarization, and crawling required G-protein-coupled receptor-dependent activation of β2 integrins and binding to endothelial ICAM-1. LFA-1 was the prevailing ligand for endothelial ICAM-1 in mediating neutrophil shear resistant arrest, whereas Mac-1 was dominant over LFA-1 in mediating neutrophil polarization on the BBB in vitro. Neutrophil crawling was mediated by endothelial ICAM-1 and ICAM-2 and neutrophil LFA-1 and Mac-1. In the absence of crawling, few neutrophils maintained adhesive interactions with the BBB endothelium by remaining either stationary on endothelial junctions or displaying transient adhesive interactions characterized by a fast displacement on the endothelium along the direction of flow. Diapedesis of stationary neutrophils was unchanged by the lack of endothelial ICAM-1 and ICAM-2 and occurred exclusively via the paracellular pathway. Crawling neutrophils, although preferentially crossing the BBB through the endothelial junctions, could additionally breach the BBB via the transcellular route. Thus, β2 integrin-mediated neutrophil crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed BBB.

  12. Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

    Directory of Open Access Journals (Sweden)

    Lisa Landgraf

    2015-01-01

    Full Text Available In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in comparison to spherical ones. Furthermore, a positively charged nanoparticle surface (NH2, CyA leads to the strongest reduction in cell viability, whereas neutral and negatively charged nanoparticles are highly biocompatible to endothelial cells. These findings are attributed to a rapid internalization of the NH2-functionalized nanoparticles in combination with the damage of intracellular membranes. Interestingly, the endocytotic pathway seems to be a size-dependent process whereas nanoparticles with a size of 20 nm are internalized by caveolae-mediated endocytosis and nanoparticles with a size of 40 nm are taken up by clathrin-mediated internalization and macropinocytosis. Our results can be summarized to formulate five general rules, which are further specified in the text and which determine the biocompatibility of nanoparticles on endothelial cells. Our findings will help to design new nanoparticles with optimized properties concerning biocompatibility and uptake behavior with respect to the respective intended application.

  13. Reproducibility of different methods to measure the endothelial function

    NARCIS (Netherlands)

    Tom Thomaes; Veronique Cornelissen; Peter Verhamme; Prof. Dr. Luc L.E.M.J. Vanhees; Kaatje Goetschalckx2; Steven Onkelinx

    2012-01-01

    Full text via link. This study compares the reliability and reproducibility of flow-mediated dilatation (FMD) and peripheral arterial tonometry (PAT) to assess endothelial function. Eighteen volunteers with coronary heart disease underwent simultaneous testing of FMD by means of brachial artery

  14. Weight loss improves biomarkers endothelial function and systemic ...

    African Journals Online (AJOL)

    ... while changes were not significant in group (B). Also, there were significant differences between mean levels of the investigated parameters in group (A) and group (B) after treatment. Conclusion: Weight loss ameliorates inflammatory cytokines and markers of endothelial function in obese postmenopausal Saudi women.

  15. Weight loss improves biomarkers endothelial function and systemic ...

    African Journals Online (AJOL)

    bariatric surgery decreased CRP ,IL-6 and increased the circulating level of adiponectin32-36. Reductions in pro- inflammatory cytokines concentrations after weight loss is explained by reduction in fat mass37. Concerning the markers of endothelial function, the ob- servation in this study indicated a significant reduction in.

  16. Long-Term Topical Ganciclovir and Corticosteroids Preserve Corneal Endothelial Function in Cytomegalovirus Corneal Endotheliitis.

    Science.gov (United States)

    Fan, Nai-Wen; Chung, Yu-Chien; Liu, Yao-Chung; Liu, Catherine Jui-Ling; Kuo, Yih-Shiuan; Lin, Pei-Yu

    2016-05-01

    To report the long-term outcomes of topical ganciclovir (GCV) and corticosteroids as a maintenance therapy for cytomegalovirus (CMV) corneal endotheliitis. This retrospective study included 10 eyes of 9 patients diagnosed with CMV corneal endotheliitis with a minimum 1-year follow-up at a tertiary referral hospital between 2008 and 2014. CMV corneal endotheliitis was defined by corneal edema associated with typical keratic precipitates (KPs) and a positive CMV polymerase chain reaction from aqueous humor taps. Patients receiving long-term topical 0.5% GCV and topical corticosteroids without discontinuation were included. The final corneal condition and endothelial cell density (ECD) were reported. The mean age was 45.6 ± 11.7 years. The mean follow-up duration was 48 ± 25 months. All patients exhibited typical coin-shaped and/or linear KPs. A significant resolution of corneal edema and decreased KPs were achieved within 1 month in all patients after initiating topical 0.5% GCV every 2 hours and topical corticosteroids twice a day. The dose frequency was gradually tapered to GCV 4 times and corticosteroids once or twice a day as a maintenance therapy. All 10 eyes had a clear graft or corneas at the end of this study. The mean ECD was 1630 ± 699 cells per millimeter square before treatment and 1776 ± 834 cells per millimeter square at the end of the study period. Topical 0.5% GCV and corticosteroids as a maintenance regimen without interruption effectively preserved long-term corneal endothelial function.

  17. Endothelial Barrier Protection by Local Anesthetics: Ropivacaine and Lidocaine Block Tumor Necrosis Factor-α–induced Endothelial Cell Src Activation

    Science.gov (United States)

    Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.

    2014-01-01

    Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine

  18. Atorvastatin affects negatively respiratory function of isolated endothelial mitochondria.

    Science.gov (United States)

    Broniarek, Izabela; Jarmuszkiewicz, Wieslawa

    2018-01-01

    The purpose of this research was to elucidate the direct effects of two popular blood cholesterol-lowering drugs used to treat cardiovascular diseases, atorvastatin and pravastatin, on respiratory function, membrane potential, and reactive oxygen species formation in mitochondria isolated from human umbilical vein endothelial cells (EA.hy926 cell line). Hydrophilic pravastatin did not significantly affect endothelial mitochondria function. In contrast, hydrophobic calcium-containing atorvastatin induced a loss of outer mitochondrial membrane integrity, an increase in hydrogen peroxide formation, and reductions in maximal (phosphorylating or uncoupled) respiratory rate, membrane potential and oxidative phosphorylation efficiency. The atorvastatin-induced changes indicate an impairment of mitochondrial function at the level of ATP synthesis and at the level of the respiratory chain, likely at complex I and complex III. The atorvastatin action on endothelial mitochondria was highly dependent on calcium ions and led to a disturbance in mitochondrial calcium homeostasis. Uptake of calcium ions included in atorvastatin molecule induced mitochondrial uncoupling that enhanced the inhibition of the mitochondrial respiratory chain by atorvastatin. Our results indicate that hydrophobic calcium-containing atorvastatin, widely used as anti-atherosclerotic agent, has a direct negative action on isolated endothelial mitochondria. Copyright © 2017. Published by Elsevier Inc.

  19. Smoking acutely impaired endothelial function in healthy college students.

    Science.gov (United States)

    Miyata, Seiko; Noda, Akiko; Ito, Yuki; Iizuka, Ryo; Shimokata, Kaoru

    2015-06-01

    Cigarette smoking has been clearly pointed out as a risk factor for cardiovascular disease. Endothelial dysfunction contributes to the development of cardiovascular disease. Flow-mediated dilation (FMD) has been known as one of the endothelial function markers. We investigated the acute and chronic effects of smoking on endothelial function in college-aged smokers. Eighteen smokers (mean age: 21 +/- 1 y) and 14 non-smokers (mean age: 20 +/- 1 y) were enrolled in this study. Brachial-ankle pulsed wave velocity (baPWV), systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were measured using a plethysmograph. Endothelium- dependent FMD was induced by reactive hyperaemia. High-resolution ultrasound with a 7.5-MHz linear array transducer was used to measure the diam- eter of the right brachial artery. Measurement of baPWV, SBP, DBP, HR, artery diameter, and %FMD was performed in smokers and non-smokers after 10 min bed rest, and after smoking one cigarette in the smokers. The interval between the two measurements was more than 15 minutes. There were no significant differences on baPWV, SBP, DBP, HR, baseline brachial artery diameter between smokers and non-smokers. Percent FMD after smoking was significantly lower than that at rest values in smokers (8.7 +/- 4.0 vs. 5.3 +/- 2.4, P smoking. Even the smoking of one cigarette dramatically impaired endothelial function, although habitual cigarette smoking did not decrease FMD in young healthy smokers.

  20. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  1. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation.

    Science.gov (United States)

    Wang, Ting; Wang, Lichun; Moreno-Vinasco, Liliana; Lang, Gabriel D; Siegler, Jessica H; Mathew, Biji; Usatyuk, Peter V; Samet, Jonathan M; Geyh, Alison S; Breysse, Patrick N; Natarajan, Viswanathan; Garcia, Joe G N

    2012-08-29

    Exposure to particulate matter (PM) is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC) barrier integrity and enhanced cardiopulmonary dysfunction. Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER) in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm). Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. PM exposure induced tight junction protein Zona occludens-1 (ZO-1) relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin). N-acetyl-cysteine (NAC, 5 mM) reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2), in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  2. Ceramides and barrier function in healthy skin

    DEFF Research Database (Denmark)

    Jungerstedt, J; Hellgren, Lars; Drachmann, Tue

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups ...

  3. Modeling the ischemic blood-brain barrier; the effects of oxygen-glucose deprivation (OGD) on endothelial cells in culture

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... pathways across the barrier in ischemic and postischemic brain endothelium is important for developing new medical therapies capable to exploit the barrier changes occurring during/after ischemia to permeate in the brain and treat this devastating disease. Materials and Methods - Primary cultures...

  4. Physiologically assessed hot flashes and endothelial function among midlife women.

    Science.gov (United States)

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A

    2017-08-01

    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P women in the sample (age 40-53 years), the presence of hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  5. Glyoxalase 1-knockdown in human aortic endothelial cells - effect on the proteome and endothelial function estimates.

    Science.gov (United States)

    Stratmann, Bernd; Engelbrecht, Britta; Espelage, Britta C; Klusmeier, Nadine; Tiemann, Janina; Gawlowski, Thomas; Mattern, Yvonne; Eisenacher, Martin; Meyer, Helmut E; Rabbani, Naila; Thornalley, Paul J; Tschoepe, Diethelm; Poschmann, Gereon; Stühler, Kai

    2016-11-29

    Methylglyoxal (MG), an arginine-directed glycating agent, is implicated in diabetic late complications. MG is detoxified by glyoxalase 1 (GLO1) of the cytosolic glyoxalase system. The aim was to investigate the effects of MG accumulation by GLO1-knockdown under hyperglycaemic conditions in human aortic endothelial cells (HAECs) hypothesizing that the accumulation of MG accounts for the deleterious effects on vascular function. SiRNA-mediated knockdown of GLO1 was performed and MG concentrations were determined. The impact of MG on the cell proteome and targets of MG glycation was analysed, and confirmed by Western blotting. Markers of endothelial function and apoptosis were assessed. Collagen content was assayed in cell culture supernatant. GLO1-knockdown increased MG concentration in cells and culture medium. This was associated with a differential abundance of cytoskeleton stabilisation proteins, intermediate filaments and proteins involved in posttranslational modification of collagen. An increase in fibrillar collagens 1 and 5 was detected. The extracellular concentration of endothelin-1 was increased following GLO1-knockdown, whereas the phosphorylation and amount of eNOS was not influenced by GLO1-knockdown. The expression of ICAM-1, VCAM-1 and of MCP-1 was elevated and apoptosis was increased. MG accumulation by GLO1-knockdown provoked collagen expression, endothelial inflammation and dysfunction and apoptosis which might contribute to vascular damage.

  6. Permanent isolation surface barrier: Functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Wing, N.R.

    1993-10-01

    This document presents the functional performance parameters for permanent isolation surface barriers. Permanent isolation surface barriers have been proposed for use at the Hanford Site (and elsewhere) to isolate and dispose of certain types of waste in place. Much of the waste that would be disposed of using in-place isolation techniques is located in subsurface structures, such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via transport pathways, such as water infiltration, biointrusion, wind and water erosion, human interference, and/or gaseous release.

  7. Plant-derived triterpene celastrol ameliorates oxygen glucose deprivation-induced disruption of endothelial barrier assembly via inducing tight junction proteins.

    Science.gov (United States)

    Luo, Dan; Zhao, Jia; Rong, Jianhui

    2016-12-01

    The integrity and functions of blood-brain barrier (BBB) are regulated by the expression and organization of tight junction proteins. The present study was designed to explore whether plant-derived triterpenoid celastrol could regulate tight junction integrity in murine brain endothelial bEnd3 cells. We disrupted the tight junctions between endothelial bEnd3 cells by oxygen glucose deprivation (OGD). We investigated the effects of celastrol on the permeability of endothelial monolayers by measuring transepithelial electrical resistance (TEER). To clarify the tight junction composition, we analyzed the expression of tight junction proteins by RT-PCR and Western blotting techniques. We found that celastrol recovered OGD-induced TEER loss in a concentration-dependent manner. Celastrol induced occludin, claudin-5 and zonula occludens-1 (ZO-1) in endothelial cells. As a result, celastrol effectively maintained tight junction integrity and inhibited macrophage migration through endothelial monolayers against OGD challenge. Further mechanistic studies revealed that celastrol induced the expression of occludin and ZO-1) via activating MAPKs and PI3K/Akt/mTOR pathway. We also observed that celastrol regulated claudin-5 expression through different mechanisms. The present study demonstrated that celastrol effectively protected tight junction integrity against OGD-induced damage. Thus, celastrol could be a drug candidate for the treatment of BBB dysfunction in various diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  9. Nebivolol: impact on cardiac and endothelial function and clinical utility

    Directory of Open Access Journals (Sweden)

    Toblli JE

    2012-03-01

    Full Text Available Jorge Eduardo Toblli1, Federico DiGennaro1, Jorge Fernando Giani2, Fernando Pablo Dominici21Hospital Aleman, 2Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, Facultad de Farmacia y Bioquímica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, ArgentinaAbstract: Endothelial dysfunction is a systemic pathological state of the endothelium characterized by a reduction in the bioavailability of vasodilators, essentially nitric oxide, leading to impaired endothelium-dependent vasodilation, as well as disarrangement in vascular wall metabolism and function. One of the key factors in endothelial dysfunction is overproduction of reactive oxygen species which participate in the development of hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and stroke. Because impaired endothelial activity is believed to have a major causal role in the pathophysiology of vascular disease, hypertension, and heart failure, therapeutic agents which modify this condition are of clinical interest. Nebivolol is a third-generation β-blocker with high selectivity for β1-adrenergic receptors and causes vasodilation by interaction with the endothelial L-arginine/nitric oxide pathway. This dual mechanism of action underscores several hemodynamic qualities of nebivolol, which include reductions in heart rate and blood pressure and improvements in systolic and diastolic function. Although nebivolol reduces blood pressure to a degree similar to that of conventional β-blockers and other types of antihypertensive drugs, it may have advantages in populations with difficult-to-treat hypertension, such as patients with heart failure along with other comorbidities, like diabetes and obesity, and elderly patients in whom nitric oxide-mediated endothelial dysfunction may be more pronounced. Furthermore, recent data indicate that nebivolol appears to be a cost-effective treatment for elderly patients with

  10. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers

    Directory of Open Access Journals (Sweden)

    Rajabi Taleieh

    2015-09-01

    Full Text Available In this paper we present a microfluidic system based on transparent biocompatible polymers with a porous membrane as substrate for various cell types which allows the simulation of various physiological barriers under continuous laminar flow conditions at distinct tunable shear rates. Besides live cell and fluorescence microscopy, integrated electrodes enable the investigation of the permeability and barrier function of the cell layer as well as their interaction with external manipulations using the Electric Cell-substrate Impedance Sensing (ECIS method.

  11. Dehydroepiandrosterone sulfate augments blood-brain barrier and tight junction protein expression in brain endothelial cells.

    Science.gov (United States)

    Papadopoulos, Dimitrios; Scheiner-Bobis, Georgios

    2017-08-01

    Tight junctions (TJ) between brain endothelial cells are essential for formation and maintenance of the blood-brain barrier (BBB). Although loss of BBB integrity is associated with several neuropathological disorders, treatments that augment or stabilise the BBB are scarce. Here we show that physiological concentrations of dehydroepiandrosterone sulfate (DHEAS) stimulate the expression of the TJ proteins zonula occludens-1 (ZO-1) and claudin-3 in the brain-derived endothelial cell line bEnd.3 and promote TJ formation between neighbouring cells, demonstrated by augmented transendothelial resistance across cell monolayers. Silencing androgen receptor expression by siRNA does not prevent DHEAS-induced stimulation of ZO-1 expression, indicating that conversion of DHEAS into testosterone is not required for its actions. Suppression of Gnα11 expression by siRNA prevents DHEAS actions, pointing towards a G-protein-coupled receptor as being a mediator of the DHEAS effects. These results are consistent with the idea that DHEAS, acting as a hormone in its own right, supports the integrity of the BBB. The current findings might help in developing new strategies for the prevention or treatment of neurological disorders associated with BBB defects. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluation of the EndoPAT as a Tool to Assess Endothelial Function

    OpenAIRE

    M. Moerland; A. J. Kales; L. Schrier; M. G. J. van Dongen; D. Bradnock; J. Burggraaf

    2012-01-01

    Endothelial dysfunction is a potential target for (pharmaceutical) intervention of several systemic pathological conditions. We investigated the feasibility of the EndoPAT to evaluate acute changes in endothelial function with repeated noninvasive measurements and assessed its discriminating power in different populations. Endothelial function was stable over a longer period of time in renally impaired patients (coefficient of variation 13%). Endothelial function in renally impaired and type ...

  13. Bile duct epithelial tight junctions and barrier function

    Science.gov (United States)

    Rao, R.K.; Samak, G.

    2013-01-01

    Bile ducts play a crucial role in the formation and secretion of bile as well as excretion of circulating xenobiotic substances. In addition to its secretory and excretory functions, bile duct epithelium plays an important role in the formation of a barrier to the diffusion of toxic substances from bile into the hepatic interstitial tissue. Disruption of barrier function and toxic injury to liver cells appear to be involved in the pathogenesis of a variety of liver diseases such as primary sclerosing cholangitis, primary biliary cirrhosis and cholangiocarcinoma. Although the investigations into understanding the structure and regulation of tight junctions in gut, renal and endothelial tissues have expanded rapidly, very little is known about the structure and regulation of tight junctions in the bile duct epithelium. In this article we summarize the current understanding of physiology and pathophysiology of bile duct epithelium, the structure and regulation of tight junctions in canaliculi and bile duct epithelia and different mechanisms involved in the regulation of disruption and protection of bile duct epithelial tight junctions. This article will make a case for the need of future investigations toward our understanding of molecular organization and regulation of canalicular and bile duct epithelial tight junctions. PMID:24665411

  14. Mechanisms of modulation of brain microvascular endothelial cells function by thrombin.

    Science.gov (United States)

    Brailoiu, Eugen; Shipsky, Megan M; Yan, Guang; Abood, Mary E; Brailoiu, G Cristina

    2017-02-15

    Brain microvascular endothelial cells are a critical component of the blood-brain barrier. They form a tight monolayer which is essential for maintaining the brain homeostasis. Blood-derived proteases such as thrombin may enter the brain during pathological conditions like trauma, stroke, and inflammation and further disrupts the permeability of the blood-brain barrier, via incompletely characterized mechanisms. We examined the underlying mechanisms evoked by thrombin in rat brain microvascular endothelial cells (RBMVEC). Our results indicate that thrombin, acting on protease-activated receptor 1 (PAR1) increases cytosolic Ca(2+) concentration in RBMVEC via Ca(2+) release from endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and Ca(2+) influx from extracellular space. Thrombin increases nitric oxide production; the effect is abolished by inhibition of the nitric oxide synthase or by antagonism of PAR1 receptors. In addition, thrombin increases mitochondrial and cytosolic reactive oxygen species production via PAR1-dependent mechanisms. Immunocytochemistry studies indicate that thrombin increases F-actin stress fibers, and disrupts the tight junctions. Thrombin increased the RBMVEC permeability assessed by a fluorescent flux assay. Taken together, our results indicate multiple mechanisms by which thrombin modulates the function of RBMVEC and may contribute to the blood-brain barrier dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.

    Science.gov (United States)

    Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J

    2017-11-01

    Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r  = -0.49, P = 0.003), p21 ( r  = -0.38, P = 0.03), and p16 ( r  = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function. Copyright © 2017 the American Physiological Society.

  16. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression.

    Science.gov (United States)

    Winderlich, Joshua N; Kremer, Karlea L; Koblar, Simon A

    2016-06-01

    Stem cell therapy is a promising new treatment option for stroke. Intravascular administration of stem cells is a valid approach as stem cells have been shown to transmigrate the blood-brain barrier. The mechanism that causes this effect has not yet been elucidated. We hypothesized that stem cells would mediate localized discontinuities in the blood-brain barrier, which would allow passage into the brain parenchyma. Here, we demonstrate that adult human dental pulp stem cells express a soluble factor that increases permeability across an in vitro model of the blood-brain barrier. This effect was shown to be the result of vascular endothelial growth factor-a. The effect could be amplified by exposing dental pulp stem cell to stromal-derived factor 1, which stimulates vascular endothelial growth factor-a expression. These findings support the use of dental pulp stem cell in therapy for stroke. © The Author(s) 2015.

  17. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR Results in Severe Inflammation after Adenoviral Gene Therapy.

    Directory of Open Access Journals (Sweden)

    Philipp Christian Seppelt

    Full Text Available Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs. In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1 in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR in order to reduce elastolysis.We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group. Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6 were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1 or β-galactosidase (Ad.β-Gal. As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI, and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM.IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43, but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00. Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001. As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001. However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1 (compared to untreated

  18. Heavy Alcohol Consumption is Associated with Impaired Endothelial Function.

    Science.gov (United States)

    Tanaka, Aoi; Cui, Renzhe; Kitamura, Akihiko; Liu, Keyang; Imano, Hironori; Yamagishi, Kazumasa; Kiyama, Masahiko; Okada, Takeo; Iso, Hiroyasu

    2016-09-01

    Previous studies have reported that moderate alcohol consumption is protective against cardiovascular disease, but heavy alcohol consumption increases its risk. Endothelial dysfunction is hypothesized to contribute to the development of atherosclerosis and cardiovascular disease. However, few population-based studies have examined a potential effect of alcohol consumption on endothelial function. This study included 404 men aged 30-79 years who were recruited from residents in 2 communities under the Circulatory Risk in Communities Study in 2013 and 2014. We asked the individuals about the frequency and volume of alcohol beverages and converted the data into grams of ethanol per day. Endothelial function was assessed by brachial artery flow-mediated dilation (FMD) measurements during reactive hyperemia. We performed cross-sectional analysis of alcohol consumption and %FMD by logistic regression analysis, adjusting for age, baseline brachial artery diameter, body mass index, systolic blood pressure, low-density lipoprotein cholesterol, HbA1c, smoking, antihypertensive medication use, and community. Individuals who drank ≥ 46 g/day ethanol had a lower age-adjusted mean %FMD than non-drinkers (p<0.01). Compared with non-drinkers, the age-adjusted odds ratios (ORs) (95% confidence interval) of low %FMD (<5.3%) for former, light (<23.0 g/day ethanol), moderate (23.0-45.9 g/day ethanol), and heavy (≥ 46.0 g/day ethanol) drinkers were 1.61 (0.67-3.89), 0.84 (0.43-1.66), 1.09 (0.52-2.25), and 2.99 (1.56-5.70), respectively. The corresponding multivariable-adjusted ORs were 1.76 (0.69-4.50), 0.86 (0.42-1.76), 0.98 (0.45-2.12), and 2.39 (1.15-4.95), respectively. Heavy alcohol consumption may be an independent risk factor of endothelial dysfunction in Japanese men.

  19. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

    Directory of Open Access Journals (Sweden)

    Balarini Camille M

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS and nitric oxide (NO. Sildenafil, a selective phosphodiesterase-5 (PDE5 inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/− mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage were compared to the untreated apoE−/− and the wild-type (WT mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor or apocynin (NADPH oxidase inhibitor. In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous

  20. Ghrelin improves endothelial function in patients with metabolic syndrome.

    Science.gov (United States)

    Tesauro, Manfredi; Schinzari, Francesca; Iantorno, Micaela; Rizza, Stefano; Melina, Domenico; Lauro, Davide; Cardillo, Carmine

    2005-11-08

    Metabolic syndrome importantly accelerates the atherosclerotic process, the earliest event of which is endothelial dysfunction. Ghrelin, a gastric peptide with cardiovascular actions, has been shown to inhibit proatherogenic changes in experimental models. This study therefore investigated whether ghrelin administration might beneficially affect endothelial function in metabolic syndrome. Endothelium-dependent and -independent vasodilator responses to intra-arterial infusion of increasing doses of acetylcholine and sodium nitroprusside (SNP), respectively, were assessed by strain-gauge plethysmography before and after local administration of human ghrelin (200 microg/min). During saline, the vasodilator response to acetylcholine was significantly blunted (P=0.008) in patients with metabolic syndrome (n=12, 5 female) compared with controls (n=12, 7 female), whereas the vasodilator response to SNP was not different between groups (P=0.68). In patients with metabolic syndrome, basal plasma ghrelin was significantly lower than in controls (P=0.02). In these patients, ghrelin infusion markedly increased intravascular concentrations of the peptide (Pghrelin had no effect on the vasodilator response to acetylcholine (P=0.78 versus saline) after nitric oxide inhibition by NG-monomethyl-L-arginine. These findings indicate that ghrelin reverses endothelial dysfunction in patients with metabolic syndrome by increasing nitric oxide bioactivity, thereby suggesting that decreased circulating levels of the peptide, such as those found in these patients, might play a role in the pathobiology of atherosclerosis.

  1. Glycocalyx and endothelial (dys) function: from mice to men.

    Science.gov (United States)

    van den Berg, Bernard M; Nieuwdorp, Max; Stroes, Erik S G; Vink, Hans

    2006-01-01

    Located on the luminal surface of vascular endothelial cells, the glycocalyx is composed of a negatively charged mesh of proteoglycans, glycosaminoglycans, glycoproteins and glycolipids and harbors a wide array of enzymes that contribute in regulation of leukocyte-/thrombocyte adherence, with a principal role in plasma and vessel wall homeostasis. Glycocalyx disruption is accompanied by enhanced sensitivity of the vasculature towards atherogenic stimuli which emphasizes that not only the composition of the glycocalyx is important in facilitating these properties but that the contribution of its physical dimension and barrier properties should also be considered. In addition, similarities found between micro-versus macro vascular beds suggest common structural properties throughout the entire vascular bed that might be of importance in protective strategies against vascular perturbation. Collectively, these data lend support to a potential role of the glycocalyx as a first barrier in protection against atherogenic insults. Therefore, it will be a challenge to determine whether glycocalyx volume measurement, systemically or at the individual capillary level, is a feasible surrogate marker for cardiovascular disease, and whether it may prove to be of use to assess the impact of novel interventions aimed at glycocalyx restoration on atherosclerosis progression.

  2. Ceramides and barrier function in healthy skin

    DEFF Research Database (Denmark)

    Mutanu Jungersted, Jakob; Hellgren, Lars; Høgh, Julie Kaae

    2010-01-01

    Lipids in the stratum corneum are key components in the barrier function of the skin. Changes in lipid composition related to eczematous diseases are well known, but limited data are available on variations within healthy skin. The objective of the present study was to compare ceramide subgroups...... and ceramide/cholesterol ratios in young, old, male and female healthy skin. A total of 55 participants with healthy skin was included in the study. Lipid profiles were correlated with transepidermal water loss and with information on dry skin from a questionnaire including 16 people. No statistically...

  3. The Balance Between Metalloproteinases and TIMPs: Critical Regulator of Microvascular Endothelial Cell Function in Health and Disease.

    Science.gov (United States)

    Masciantonio, Marcello G; Lee, Christopher K S; Arpino, Valerie; Mehta, Sanjay; Gill, Sean E

    2017-01-01

    Endothelial cells (EC), especially the microvascular EC (MVEC), have critical functions in health and disease. For example, healthy MVEC provide a barrier between the fluid and protein found within the blood, and the surrounding tissue. Following tissue injury or infection, the microvascular barrier is often disrupted due to activation and dysfunction of the MVEC. Multiple mechanisms promote MVEC activation and dysfunction, including stimulation by cytokines, mechanical interaction with activated leukocytes, and exposure to harmful leukocyte-derived molecules, which collectively result in a loss of MVEC barrier function. However, MVEC activation is also critical to facilitate recruitment of inflammatory cells, such as neutrophils (PMNs) and monocytes, into the injured or infected tissue. Metalloproteinases, including the matrix metalloproteinases (MMPs) and the closely related, a disintegrin and metalloproteinases (ADAMs), have been implicated in regulating both MVEC barrier function, through cleavage of adherens and tight junctions proteins between adjacent MVEC and through degradation of the extracellular matrix, as well as PMN-MVEC interaction, through shedding of cell surface PMN receptors. Moreover, the tissue inhibitors of metalloproteinases (TIMPs), which collectively inhibit most MMPs and ADAMs, are critical regulators of MVEC activation and dysfunction through their ability to inhibit metalloproteinases and thereby promote MVEC stability. However, TIMPs have been also found to modulate MVEC function through metalloproteinase-independent mechanisms, such as regulation of vascular endothelial growth factor signaling. This chapter is focused on examining the role of the metalloproteinases and TIMPs in regulation of MVEC function in both health and disease. © 2017 Elsevier Inc. All rights reserved.

  4. Microbubbles shunting via a patent foramen ovale impair endothelial function

    Directory of Open Access Journals (Sweden)

    Henry Fok

    2015-08-01

    Full Text Available Objectives Exposure to intravascular microbubbles after diving and during medical procedures alters endothelial function. The aim of this study was to investigate whether a patent foramen ovale altered forearm endothelial function by facilitating microbubbles transfer. Design Patients attended on two separate visits, at least seven days apart receiving agitated saline or no active intervention in random order. On both days, flow-mediated dilatation of the brachial artery was measured using vascular ultrasound. On the intervention visit, agitated saline was injected and the passage of microbubbles into the arterial circulation was confirmed by echocardiography. Serial flow-mediated dilatation measurements were made after agitated saline and at the same time points after no intervention. Setting St Thomas’ Hospital in London. Participants Patients with a patent foramen ovale (PFO+n = 14, 9 male, mean ± SD age 42.2 ± 10.5 years and patients without a patent foramen ovale (PFO− n = 10, 7 male, mean ± SD age 49.4 ± 18.4 years were recruited. Main outcome measures Change in brachial artery flow-mediated dilatation. Results In patent foramen ovale + patients, flow-mediated dilatation did not change significantly on the control day but after agitated saline reduced by 2.3 ± 0.3%, 20 minutes after bubble injection ( P  < 0.005 vs. corresponding change in flow-mediated dilatation during control study. There was no significant change in flow-mediated dilatation for patent foramen ovale− patients at either visit. Conclusion These results suggest that the presence of a patent foramen ovale facilitated impairment of endothelial function acutely by the transfer of microbubbles into the arterial circulation. As a patent foramen ovale is a common condition, this may be relevant to microbubbles exposure in medical procedures and in decompression illness.

  5. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  6. Sleep restriction impairs blood-brain barrier function.

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  7. Organization of Endothelial Cells, Pericytes, and Astrocytes into a 3D Microfluidic in Vitro Model of the Blood-Brain Barrier.

    Science.gov (United States)

    Wang, Jack D; Khafagy, El-Sayed; Khanafer, Khalil; Takayama, Shuichi; ElSayed, Mohamed E H

    2016-03-07

    The endothelial cells lining the capillaries supplying the brain with oxygen and nutrients form a formidable barrier known as the blood-brain barrier (BBB), which exhibits selective permeability to small drug molecules and virtually impermeable to macromolecular therapeutics. Current in vitro BBB models fail to replicate this restrictive behavior due to poor integration of the endothelial cells with supporting cells (pericytes and astrocytes) following the correct anatomical organization observed in vivo. We report the coculture of mouse brain microvascular endothelial cells (b.End3), pericytes, with/without C8-D1A astrocytes in layered microfluidic channels forming three-dimensional (3D) bi- and triculture models of the BBB. The live/dead assay indicated high viability of all cultured cells up to 21 days. Trans-endothelial electrical resistance (TEER) values confirmed the formation of intact monolayers after 3 days in culture and showed statistically higher values for the triculture model compared to the single and biculture models. Screening the permeability of [(14)C]-mannitol and [(14)C]-urea showed the ability of bi- and triculture models to discriminate between different markers based on their size. Further, permeability of [(14)C]-mannitol across the triculture model after 18 days in culture matched its reported permeability across the BBB in vivo. Mathematical calculations also showed that the radius of the tight junctions pores (R) in the triculture model is similar to the reported diameter of the BBB in vivo. Finally, both the bi- and triculture models exhibited functional expression of the P-glycoprotein efflux pump, which increased with the increase in the number of days in culture. These results collectively indicate that the triculture model is a robust in vitro model of the BBB.

  8. Surface Characteristics of Nanoparticles Determine Their Intracellular Fate in and Processing by Human Blood-Brain Barrier Endothelial Cells In Vitro

    NARCIS (Netherlands)

    Georgieva, Julia V.; Kalicharan, Dharamdajal; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette; Hoekstra, Dick; Zuhorn, Inge S.

    A polarized layer of endothelial cells that comprises the blood-brain barrier (BBB) precludes access of systemically administered medicines to brain tissue. Consequently, there is a need for drug delivery vehicles that mediate transendothelial transport of such medicines. Endothelial cells use a

  9. Endothelial Function Is Associated with White Matter Microstructure and Executive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Nathan F. Johnson

    2017-08-01

    Full Text Available Age-related declines in endothelial function can lead to cognitive decline. However, little is known about the relationships between endothelial function and specific neurocognitive functions. This study explored the relationship between measures of endothelial function (reactive hyperemia index; RHI, white matter (WM health (fractional anisotropy, FA, and WM hyperintensity volume, WMH, and executive function (Trail Making Test (TMT; Trail B − Trail A. Participants were 36 older adults between the ages of 59 and 69 (mean age = 63.89 years, SD = 2.94. WMH volume showed no relationship with RHI or executive function. However, there was a positive relationship between RHI and FA in the genu and body of the corpus callosum. In addition, higher RHI and FA were each associated with better executive task performance. Tractography was used to localize the WM tracts associated with RHI to specific portions of cortex. Results indicated that the RHI-FA relationship observed in the corpus callosum primarily involved tracts interconnecting frontal regions, including the superior frontal gyrus (SFG and frontopolar cortex, linked with executive function. These findings suggest that superior endothelial function may help to attenuate age-related declines in WM microstructure in portions of the corpus callosum that interconnect prefrontal brain regions involved in executive function.

  10. Endothelial Function Is Associated with White Matter Microstructure and Executive Function in Older Adults.

    Science.gov (United States)

    Johnson, Nathan F; Gold, Brian T; Brown, Christopher A; Anggelis, Emily F; Bailey, Alison L; Clasey, Jody L; Powell, David K

    2017-01-01

    Age-related declines in endothelial function can lead to cognitive decline. However, little is known about the relationships between endothelial function and specific neurocognitive functions. This study explored the relationship between measures of endothelial function (reactive hyperemia index; RHI), white matter (WM) health (fractional anisotropy, FA, and WM hyperintensity volume, WMH), and executive function (Trail Making Test (TMT); Trail B - Trail A). Participants were 36 older adults between the ages of 59 and 69 (mean age = 63.89 years, SD = 2.94). WMH volume showed no relationship with RHI or executive function. However, there was a positive relationship between RHI and FA in the genu and body of the corpus callosum. In addition, higher RHI and FA were each associated with better executive task performance. Tractography was used to localize the WM tracts associated with RHI to specific portions of cortex. Results indicated that the RHI-FA relationship observed in the corpus callosum primarily involved tracts interconnecting frontal regions, including the superior frontal gyrus (SFG) and frontopolar cortex, linked with executive function. These findings suggest that superior endothelial function may help to attenuate age-related declines in WM microstructure in portions of the corpus callosum that interconnect prefrontal brain regions involved in executive function.

  11. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  12. Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans

    National Research Council Canada - National Science Library

    Landmesser, Ulf; Bahlmann, Ferdinand; Mueller, Maja; Spiekermann, Stephan; Kirchhoff, Nina; Schulz, Svenja; Manes, Costantina; Fischer, Dieter; de Groot, Kirsten; Fliser, Danilo; Fauler, Günter; März, Winfried; Drexler, Helmut

    2005-01-01

    .... We therefore tested the hypothesis that similar reductions in LDL cholesterol with simvastatin and ezetimibe, a novel cholesterol absorption inhibitor, result in different effects on endothelial function...

  13. Folic acid restores endothelial function in ACTH-induced hypertension

    Directory of Open Access Journals (Sweden)

    Ibrahim Elmadbouh

    2016-06-01

    Full Text Available Hypertension is associated with increased oxidative stress and vascular endothelium dysfunction. The aim was to study the effect of folic acid (FA on hypertension, blood nitric oxide (NO, homocysteine (HCY, malondialdehyde (MDA and reduced glutathione (GSH; aortic tissue glutathione peroxidase (GPx, catalase (CAT, superoxide dismutase (SOD; and vascular endothelial function in adrenocorticotrophic hormone (ACTH-induced hypertension rats. Rats were treated with saline or FA alone (0.04 g/L/day orally, control, or subcutaneous ACTH-induced hypertension (0.2 mg/kg/day, ACTH groups. Treated FA groups were started before (Folic–ACTH, prevention and during (ACTH–Folic, reversal ACTH administrations. Systolic blood pressure (SBP, thymus/body weight ratio, blood urea, creatinine, NO, HCY, MDA and GSH; aortic endothelium-dependent vasodilator (EDD in response to acetylcholine (ACh, aortic tissue extract for CAT, GPx, and SOD activity; and histopathological changes of aorta and kidney were assessed. Saline or FA alone did not change SBP (P > 0.05. FA, in prevention study, significantly decreased SBP, increased serum NO and GSH, enhanced relaxation response (EDD% to 1 × 10−4 M ACh; increased aortic tissue GPx, CAT and SOD activity, also revealed nearly normal endothelial cell layer and moderately positive cytoplasmic staining for CD34+ expression versus ACTH-treated rats (P  0.05. FA can be used as an adjuvant therapy for prevention and treatment of ACTH-induced hypertension. The protective role of FA in ACTH-induced hypertension could be attributed via decreasing HCY, MDA (oxidative stress; increasing NO, GSH, GPx, CAT, SOD activity (antioxidants; and restoring endothelial dysfunction.

  14. Helicobacter pylori-induced inhibition of vascular endothelial cell functions: a role for VacA-dependent nitric oxide reduction.

    Science.gov (United States)

    Tobin, Nicholas P; Henehan, Gary T; Murphy, Ronan P; Atherton, John C; Guinan, Anthony F; Kerrigan, Steven W; Cox, Dermot; Cahill, Paul A; Cummins, Philip M

    2008-10-01

    Epidemiological and clinical studies provide compelling support for a causal relationship between Helicobacter pylori infection and endothelial dysfunction, leading to vascular diseases. However, clear biochemical evidence for this association is limited. In the present study, we have conducted a comprehensive investigation of endothelial injury in bovine aortic endothelial cells (BAECs) induced by H. pylori-conditioned medium (HPCM) prepared from H. pylori 60190 [vacuolating cytotoxin A (Vac(+))]. BAECs were treated with either unconditioned media, HPCM (0-25% vol/vol), or Escherichia coli-conditioned media for 24 h, and cell functions were monitored. Vac(+) HPCM significantly decreased BAEC proliferation, tube formation, and migration (by up to 44%, 65%, and 28%, respectively). Posttreatment, we also observed sporadic zonnula occludens-1 immunolocalization along the cell-cell border, and increased BAEC permeability to FD40 Dextran, indicating barrier reduction. These effects were blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid (VacA inhibitor) and were not observed with conditioned media prepared from either VacA-deleted H. pylori or E. coli. The cellular mechanism mediating these events was also considered. Vac(+) HPCM (but not Vac(-)) reduced nitric oxide (NO) by >50%, whereas S-nitroso-N-acetylpenicillamine, an NO donor, recovered all Vac(+) HPCM-dependent effects on cell functions. We further demonstrated that laminar shear stress, an endothelial NO synthase/NO stimulus in vivo, could also recover the Vac(+) HPCM-induced decreases in BAEC functions. This study shows, for the first time, a significant proatherogenic effect of H. pylori-secreted factors on a range of vascular endothelial dysfunction markers. Specifically, the VacA-dependent reduction in endothelial NO is indicated in these events. The atheroprotective impact of laminar shear stress in this context is also evident.

  15. Endothelial function in children with a history of henoch schonlein purpura

    OpenAIRE

    Butbul Aviel, Yonatan; Dafna, Lotem; Pilar, Giora; Brik, Riva

    2017-01-01

    Background Although Henoch-Schonlein purpura (HSP) is the most common form of systemic vasculitis in children, the long term effect of HSP on endothelial function is still not clear. The aim of our study was to evaluate the long term effect of HSP on endothelial function in children and adolescents. Methods This research was an observational prospective study. The study group comprised of 19 children diagnosed with HSP. The minimum interval between the diagnosis with HSP and endothelial testi...

  16. High-density lipoproteins and endothelial functions: Mechanistic insights and alterations in cardiovascular disease

    OpenAIRE

    Riwanto, Meliana; Landmesser, Ulf

    2013-01-01

    Prospective studies of cardiovascular risk-factors have shown that reduced plasma levels of HDL-cholesterol are associated with increased risk of coronary-disease. Experimental and translational studies have revealed several potential anti-atherogenic effects of HDL, including protective effects of HDL on endothelial cell functions. HDL has been suggested to protect endothelial cell functions by preventing oxidation of LDL and its adverse endothelial effects. Moreover, HDL from healthy subjec...

  17. Low-dose lithium stabilizes human endothelial barrier by decreasing MLC phosphorylation and universally augments cholinergic vasorelaxation capacity in a direct manner

    Directory of Open Access Journals (Sweden)

    Bert Bosche

    2016-12-01

    Full Text Available Lithium at plasma concentrations up to 1 mmol/L has been used in patients suffering from bipolar disorder for decades and has recently been shown to reduce the risk for ischemic stroke in these patients. The risk for stroke and thromboembolism depend not only on cerebral but also on general endothelial function and health; the entire endothelium as an organ is therefore pathophysiologically relevant. Regardless, the knowledge about the direct impact of lithium on endothelial function remains poor. We conducted an experimental study using lithium as pharmacologic pretreatment for murine, porcine and human vascular endothelium. We predominantly investigated endothelial vasorelaxation capacities in addition to human basal and dynamic (thrombin-/PAR-1 receptor agonist-impaired barrier functioning including myosin light chain phosphorylation (MLC-P. Low-dose therapeutic lithium concentrations (0.4 mmol/L significantly augment the cholinergic endothelium-dependent vasorelaxation capacities of cerebral and thoracic arteries, independently of central and autonomic nerve system influences. Similar concentrations of lithium (0.2-0.4 mmol/L significantly stabilized the dynamic thrombin-induced and PAR-1 receptor agonist-induced permeability of human endothelium, while even the basal permeability appeared to be stabilized. The lithium-attenuated dynamic permeability was mediated by a reduced endothelial MLC-P known to be followed by a lessening of endothelial cell contraction and paracellular gap formation. The well-known lithium-associated inhibition of inositol monophosphatase/glycogen synthase kinase-3-β signaling-pathways involving intracellular calcium concentrations in neurons seems to similarly occur in endothelial cells, too, but with different down-stream effects such as MLC-P reduction. This is the first study discovering low-dose lithium as a drug directly stabilizing human endothelium and ubiquitously augmenting cholinergic endothelium

  18. Functional endothelial progenitor cells from cryopreserved umbilical cord blood

    Science.gov (United States)

    Lin, Ruei-Zeng; Dreyzin, Alexandra; Aamodt, Kristie; Dudley, Andrew C.; Melero-Martin, Juan M.

    2010-01-01

    Umbilical cord blood (UCB) is recognized as an enriched source of endothelial progenitor cells (EPCs) with potential therapeutic value. Because cryopreservation is the only reliable method for long-term storage of UCB cells, the clinical application of EPCs depends on our ability to acquire them from cryopreserved samples; however, the feasibility of doing so remains unclear. In this study we demonstrate that EPCs can be isolated from cryopreserved UCB-derived mononuclear cells (MNCs). The number of outgrowth EPC colonies that emerged in culture from cryopreserved samples was similar to that obtained from fresh UCB. Furthermore, EPCs obtained from cryopreserved MNCs were phenotypically and functionally indistinguishable from freshly isolated ones, including the ability to form blood vessels in vivo. Our results eliminate the necessity of performing cell isolation procedures ahead of future clinical needs and suggest that EPCs derived from cryopreserved UCB may be suitable for EPC-related therapies. PMID:20887663

  19. Adipokine expression and endothelial function in subclinical hypothyroidism rats

    Directory of Open Access Journals (Sweden)

    Ningning Gong

    2018-02-01

    Full Text Available The purpose of our study was to observe adipokine expression and endothelial function in subclinical hypothyroidism (sHT rats and to determine whether levothyroxine (LT4 treatment affects these changes. Sixty-five male Wistar rats were randomly divided into five groups: the control group; sHT A, B and C groups and the sHT + T4 group. The sHT rats were induced by methimazole (MMI and the sHT + T4 rats were administered LT4 treatment after 8 weeks of MMI administration. Thyroid function and lipid levels were measured using radioimmunoassays and enzymatic colorimetric methods, respectively. Serum adiponectin (APN, chemerin, TNF-α, endothelin (ET-1 and nitric oxide (NO levels were measured using ELISA kits and a nitric-reductive assay. The expression of APN, chemerin and TNF-α in visceral adipose tissue (VAT was measured in experimental rats using RT-PCR and Western blotting. Hematoxylin–eosin (HE staining was used to observe changes in adipose tissue. The sHT rats had significantly higher levels of thyroid-stimulating hormone (TSH, TNF-α, chemerin, ET-1, total cholesterol (TC and low-density lipoprotein cholesterol (LDL-C and lower levels of APN and NO than those in control and sHT + T4 rats. Based on Pearson correlation analysis, the levels of chemerin, TNF-α, ET-1, LDL-C, TC and triglyceride (TG were positively correlated with TSH, but APN and NO levels were negatively correlated with TSH. These findings demonstrated that high TSH levels contribute to the changes of adipokines and endothelial dysfunction in sHT, but LT4 treatment ameliorates those changes.

  20. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  1. Effect of vitamin D on endothelial progenitor cells function.

    Science.gov (United States)

    Hammer, Yoav; Soudry, Alissa; Levi, Amos; Talmor-Barkan, Yeela; Leshem-Lev, Dorit; Singer, Joel; Kornowski, Ran; Lev, Eli I

    2017-01-01

    Endothelial progenitor cells (EPCs) are a population of bone marrow-derived cells, which have an important role in the process of endothelialization and vascular repair following injury. Impairment of EPCs, which occurs in patients with diabetes, was shown to be related to endothelial dysfunction, coronary artery disease (CAD) and adverse clinical outcomes. Recent evidence has shown that calcitriol, the active hormone of vitamin D, has a favorable impact on the endothelium and cardiovascular system. There is limited data on the effect of vitamin D on EPCs function. To examine the in vitro effects of Calcitriol on EPCs from healthy subjects and patients with diabetes. Fifty-one patients with type 2 diabetes (60±11 years, 40% women, HbA1C: 9.1±0.8%) and 23 healthy volunteers were recruited. EPCs were isolated and cultured with and without calcitriol. The capacity of the cells to form colony-forming units (CFUs), their viability (measured by MTT assay), KLF-10 levels and angiogenic markers were evaluated after 1 week of culture. In diabetic patients, EPC CFUs and cell viability were higher in EPCs exposed to calcitriol vs. EPCs not exposed to calcitriol [EPC CFUs: 1.25 (IQR 1.0-2.0) vs. 0.5 (IQR 0.5-1.9), p < 0.001; MTT:0.62 (IQR 0.44-0.93) vs. 0.52 (IQR 0.31-0.62), p = 0.001]. KLF-10 levels tended to be higher in EPCs exposed to vitamin D, with no differences in angiopoietic markers. In healthy subjects, calcitriol supplementation also resulted in higher cell viability [MTT: 0.23 (IQR 0.11-0.46) vs. 0.19 (0.09-0.39), p = 0.04], but without differences in CFU count or angiopoietic markers. In patients with diabetes mellitus, in vitro vitamin D supplementation improved EPCs capacity to form colonies and viability. Further studies regarding the mechanisms by which vitamin D exerts its effect are required.

  2. Effect of vitamin D on endothelial progenitor cells function.

    Directory of Open Access Journals (Sweden)

    Yoav Hammer

    Full Text Available Endothelial progenitor cells (EPCs are a population of bone marrow-derived cells, which have an important role in the process of endothelialization and vascular repair following injury. Impairment of EPCs, which occurs in patients with diabetes, was shown to be related to endothelial dysfunction, coronary artery disease (CAD and adverse clinical outcomes. Recent evidence has shown that calcitriol, the active hormone of vitamin D, has a favorable impact on the endothelium and cardiovascular system. There is limited data on the effect of vitamin D on EPCs function.To examine the in vitro effects of Calcitriol on EPCs from healthy subjects and patients with diabetes.Fifty-one patients with type 2 diabetes (60±11 years, 40% women, HbA1C: 9.1±0.8% and 23 healthy volunteers were recruited. EPCs were isolated and cultured with and without calcitriol. The capacity of the cells to form colony-forming units (CFUs, their viability (measured by MTT assay, KLF-10 levels and angiogenic markers were evaluated after 1 week of culture.In diabetic patients, EPC CFUs and cell viability were higher in EPCs exposed to calcitriol vs. EPCs not exposed to calcitriol [EPC CFUs: 1.25 (IQR 1.0-2.0 vs. 0.5 (IQR 0.5-1.9, p < 0.001; MTT:0.62 (IQR 0.44-0.93 vs. 0.52 (IQR 0.31-0.62, p = 0.001]. KLF-10 levels tended to be higher in EPCs exposed to vitamin D, with no differences in angiopoietic markers. In healthy subjects, calcitriol supplementation also resulted in higher cell viability [MTT: 0.23 (IQR 0.11-0.46 vs. 0.19 (0.09-0.39, p = 0.04], but without differences in CFU count or angiopoietic markers.In patients with diabetes mellitus, in vitro vitamin D supplementation improved EPCs capacity to form colonies and viability. Further studies regarding the mechanisms by which vitamin D exerts its effect are required.

  3. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Science.gov (United States)

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  4. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study

    National Research Council Canada - National Science Library

    Sola, Srikanth; Mir, Muhammad Q S; Cheema, Faiz A; Khan-Merchant, Nadya; Menon, Rekha G; Parthasarathy, Sampath; Khan, Bobby V

    2005-01-01

    .... We evaluated the ability of irbesartan, an angiotensin receptor blocker, and lipoic acid, an antioxidant, to affect endothelial function and inflammation in patients with the metabolic syndrome...

  5. EFFECT OF HIGH-INTENSITY EXERCISE ON ENDOTHELIAL FUNCTION IN PATIENTS WITH T2DM

    OpenAIRE

    Silva, Carlos Alberto da; Lopes Vasconcelos-Filho, Francisco Sérgio; Serafim, Marcus; Botura, Edson; Rocha-e-Silva, Roberta Cristina da; Pacheco, Christina; Marques, Fernando Antônio Oliveira; Melo, Sebastião Iberes Lopes

    2016-01-01

    Introduction: Diabetes mellitus is the most common metabolic disease worldwide. Endothelial dysfunction characteristic of these patients is one of the major risk factors for atherosclerosis. Early diagnosis of endothelial dysfunction is essential for the treatment especially of non-invasive manner, such as flow mediated dilation. Physical exercise is capable of generating beneficial adaptations may improve endothelial function. Objective: Identify the effect of physical exercise, using the...

  6. CD34 expression modulates tube-forming capacity and barrier properties of peripheral blood-derived endothelial colony-forming cells (ECFCs).

    Science.gov (United States)

    Tasev, Dimitar; Konijnenberg, Lara S F; Amado-Azevedo, Joana; van Wijhe, Michiel H; Koolwijk, Pieter; van Hinsbergh, Victor W M

    2016-07-01

    Endothelial colony-forming cells (ECFC) are grown from circulating CD34(+) progenitors present in adult peripheral blood, but during in vitro expansion part of the cells lose CD34. To evaluate whether the regulation of CD34 characterizes the angiogenic phenotypical features of PB-ECFCs, we investigated the properties of CD34(+) and CD34(-) ECFCs with respect to their ability to form capillary-like tubes in 3D fibrin matrices, tip-cell gene expression, and barrier integrity. Selection of CD34(+) and CD34(-) ECFCs from subcultured ECFCs was accomplished by magnetic sorting (FACS: CD34(+): 95 % pos; CD34(-): 99 % neg). Both fractions proliferated at same rate, while CD34(+) ECFCs exhibited higher tube-forming capacity and tip-cell gene expression than CD3(4-) cells. However, during cell culture CD34(-) cells re-expressed CD34. Cell-seeding density, cell-cell contact formation, and serum supplements modulated CD34 expression. CD34 expression in ECFCs was strongly suppressed by newborn calf serum. Stimulation with FGF-2, VEGF, or HGF prepared in medium supplemented with 3 % albumin did not change CD34 mRNA or surface expression. Silencing of CD34 with siRNA resulted in strengthening of cell-cell contacts and increased barrier function of ECFC monolayers as measured by ECIS. Furthermore, CD34 siRNA reduced tube formation by ECFC, but did not affect tip-cell gene expression. These findings demonstrate that CD34(+) and CD34(-) cells are different phenotypes of similar cells and that CD34 (1) can be regulated in ECFC; (2) is positively involved in capillary-like sprout formation; (3) is associated but not causally related to tip-cell gene expression; and (4) can affect endothelial barrier function.

  7. 12/15-Lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: contribution of NADPH oxidase.

    Directory of Open Access Journals (Sweden)

    Amira Othman

    Full Text Available The purpose of the current study was to evaluate the effect of 12/15-lipoxygenase (12/15-LOX metabolites on retinal endothelial cell (REC barrier function. FITC-dextran flux across the REC monolayers and electrical cell-substrate impedance sensing (ECIS were used to evaluate the effect of 12- and 15-hydroxyeicosatetreanoic acids (HETE on REC permeability and transcellular electrical resistance (TER. Effect of 12- or 15-HETE on the levels of zonula occludens protein 1 (ZO-1, reactive oxygen species (ROS, NOX2, pVEGF-R2 and pSHP1 was examined in the presence or absence of inhibitors of NADPH oxidase. In vivo studies were performed using Ins2(Akita mice treated with or without the 12/15-LOX inhibitor baicalein. Levels of HETE and inflammatory mediators were examined by LC/MS and Multiplex Immunoassay respectively. ROS generation and NOX2 expression were also measured in mice retinas. 12- and 15- HETE significantly increased permeability and reduced TER and ZO-1 expression in REC. VEGF-R2 inhibitor reduced the permeability effect of 12-HETE. Treatment of REC with HETE also increased ROS generation and expression of NOX2 and pVEGF-R2 and decreased pSHP1 expression. Treatment of diabetic mice with baicalein significantly decreased retinal HETE, ICAM-1, VCAM-1, IL-6, ROS generation, and NOX2 expression. Baicalein also reduced pVEGF-R2 while restored pSHP1 levels in diabetic retina. Our findings suggest that 12/15-LOX contributes to vascular hyperpermeability during DR via NADPH oxidase dependent mechanism which involves suppression of protein tyrosine phosphatase and activation of VEGF-R2 signal pathway.

  8. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals.

    Science.gov (United States)

    Choi, Eun-Yong; Lee, Hansongyi; Woo, Jong Shin; Jang, Hyun Hee; Hwang, Seung Joon; Kim, Hyun Soo; Kim, Woo-Sik; Kim, Young-Seol; Choue, Ryowon; Cha, Yong-Jun; Yim, Jung-Eun; Kim, Weon

    2015-09-01

    Acute or chronic intake of polyphenol-rich foods has been reported to improve endothelial function. Quercetin, found abundantly in onion, is a potent antioxidant flavonoid. The aim of this study was to investigate whether consumption of onion peel extract (OPE) improves endothelial function in healthy overweight and obese individuals. This was a randomized double-blind, placebo-controlled study. Seventy-two healthy overweight and obese participants were randomly assigned to receive a red, soft capsule of OPE (100 mg quercetin/d, 50 mg quercetin twice daily; n = 36 participants) or an identical placebo capsule (n = 36) for 12 wk. Endothelial function, defined by flow-mediated dilation (FMD), circulating endothelial progenitor cells (EPCs) by flow cytometry, and laboratory test were determined at baseline and after treatment. Baseline characteristics and laboratory findings did not significantly differ between the two groups. Compared with baseline values, the OPE group showed significantly improved FMD at 12 wk (from 12.5 ± 5.2 to 15.2 ± 6.1; P = 0.002), whereas the placebo group showed no difference. Nitroglycerin-mediated dilation did not change in either group. EPC counts (44.2 ± 25.6 versus 52.3 ± 18.6; P = 0.005) and the percentage of EPCs were significantly increased in the OPE group. When FMD was divided into quartiles, rate of patients with endothelial dysfunction defined as lowest quartile (cutoff value, 8.6%) of FMD improved from 26% to 9% by OPE. Medium-term administration of OPE an improvement in FMD and circulating EPCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  10. Endothelial Regulator of Calcineurin 1 Promotes Barrier Integrity and Modulates Histamine-Induced Barrier Dysfunction in Anaphylaxis

    DEFF Research Database (Denmark)

    Ballesteros-Martinez, Constanza; Mendez-Barbero, Nerea; Montalvo-Yuste, Alma

    2017-01-01

    in vascular permeability, causing great loss of intravascular volume in a short time. Nevertheless, the molecular basis remains unexplored on the vascular level. We investigated Rcan1 expression induced by histamine, platelet-activating factor (PAF), and epinephrine in primary human vein (HV)-/artery (HA......)-derived endothelial cells (ECs) and human dermal microvascular ECs (HMVEC-D). Vascular permeability was analyzed in vitro in human ECs with forced Rcan1 expression using Transwell migration assays and in vivo using Rcan1 knockout mice. Histamine, but neither PAF nor epinephrine, induced Rcan1-4 mRNA and protein...

  11. Endothelial progenitor cells as a new marker of endothelial function with respect to risk of cardiovascular disorders

    Directory of Open Access Journals (Sweden)

    Barbara Głowińska-Olszewska

    2011-01-01

    Full Text Available The discovery of endothelial progenitor cells (EPC, over a decade ago, has refuted the previous belief that vasculogenesis only occurs during embryogenesis. The results of several studies revealed altered number and impaired function of EPC in hyperlipidemia, hypertension, diabetes, obesity as well as in rheumatoid arthritis. The population of developmental age is characterized by higher counts of EPC compared to adults. However, among young patients with chronic disorders that affect the vascular system, the number of EPC decreases. The reduced circulating concentration of EPC has become a surrogate marker of endothelial function and has been implicated in the pathogenesis of many vascular diseases. This article aims to review the biology and pathophysiology of EPC in the conditions of cardiovascular risk factors. The potential possibilities of increasing EPC number and function as well as the use of EPC in the treatment of vascular pathology will also be discussed.

  12. Does a low-salt diet exert a protective effect on endothelial function in normal rats?

    NARCIS (Netherlands)

    Boonstra, AH; Gschwend, S; Kocks, MJA; Buikema, H; de Zeeuw, D; Navis, GJ

    Sodium restriction is often used as an adjunct in the treatment of conditions characterized by endothelial dysfunction, such as hypertension and heart or kidney disease. However, the effect of sodium restriction on endothelial function is not known. Therefore, male Wistar rats were studied after a

  13. Effects of amlodipine on endothelial function in rats with chronic heart failure after experimental myocardial infarction

    NARCIS (Netherlands)

    deVries, RJM; Anthonio, R; vanVeldhuisen, DJ; Buikema, H; vanGilst, WH

    1997-01-01

    In chronic heart failure, the role of endothelial dysfunction is not yet well established. As calcium metabolism plays an important role in the endothelium, it might be suggested that calcium channel blockers influence endothelial function. Although calcium channel blockers are generally

  14. TNAP and EHD1 are over-expressed in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties.

    Directory of Open Access Journals (Sweden)

    Barbara Deracinois

    Full Text Available Although the physiological properties of the blood-brain barrier (BBB are relatively well known, the phenotype of the component brain capillary endothelial cells (BCECs has yet to be described in detail. Likewise, the molecular mechanisms that govern the establishment and maintenance of the BBB are largely unknown. Proteomics can be used to assess quantitative changes in protein levels and identify proteins involved in the molecular pathways responsible for cellular differentiation. Using the well-established in vitro BBB model developed in our laboratory, we performed a differential nano-LC MALDI-TOF/TOF-MS study of Triton X-100-soluble protein species from bovine BCECs displaying either limited BBB functions or BBB functions re-induced by glial cells. Due to the heterogeneity of the crude extract, we increased identification yields by applying a repeatable, reproducible fractionation process based on the proteins' relative hydrophobicity. We present proteomic and biochemical evidence to show that tissue non-specific alkaline phosphatase (TNAP and Eps15 homology domain-containing protein 1(EDH1 are over-expressed by bovine BCECs after the re-induction of BBB properties. We discuss the impact of these findings on current knowledge of endothelial and BBB permeability.

  15. Vascular Endothelial Growth Factor Increases during Blood-Brain Barrier-Enhanced Permeability Caused by Phoneutria nigriventer Spider Venom

    Directory of Open Access Journals (Sweden)

    Monique C. P. Mendonça

    2014-01-01

    Full Text Available Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV causes blood-brain barrier breakdown (BBBb. The PNV-induced excitotoxicity results from disturbances on Na+, K+ and Ca2+ channels and glutamate handling. The vascular endothelial growth factor (VEGF, beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.

  16. Capsaicinoids lower plasma cholesterol and improve endothelial function in hamsters.

    Science.gov (United States)

    Liang, Yin Tong; Tian, Xiao-Yu; Chen, Jing Nan; Peng, Cheng; Ma, Ka Ying; Zuo, Yuanyuan; Jiao, Rui; Lu, Ye; Huang, Yu; Chen, Zhen-Yu

    2013-02-01

    Capsaicinoids are the active compounds in chili pepper. The present study investigated the effect of capsaicinoids on plasma lipids, functionality of aorta including atherosclerotic plaque development, cholesterol absorption biomarker, fecal sterol excretion, and gene expression of major receptors, enzymes, and transporters involved in cholesterol metabolism. Hamsters were divided into five groups and fed a high-cholesterol diet containing 0 % (CON), 0.010 % (LD), 0.015 % (MD), 0.020 % (HD), and 0.030 % (VD) capsaicinoids, respectively, for 6 weeks. Plasma lipids were measured using the enzymatic kits, and the gene expression of transporters, enzymes, and receptors involved in cholesterol absorption and metabolism was quantified using the quantitative PCR. Endothelial function was assessed by measuring the acetylcholine-induced endothelium-dependent relaxations in aorta. Capsaicinoids reduced plasma total cholesterol, non-high-density lipoprotein cholesterol, and triacylglycerols with high-density lipoprotein cholesterol being unaffected. All four experimental groups had a decrease in the atherosclerotic plaque compared with CON. Dietary capsaicinoids increased the fecal excretion of total acidic sterols possibly mediated by up-regulation of cholesterol 7α-hydroxylase and down-regulation of liver X receptor alpha. Plasma sterol analysis demonstrated that capsaicinoids decreased the ratio of plasma campesterol/cholesterol, suggesting they decreased cholesterol absorption. Capsaicinoids could improve the endothelium-dependent relaxations and reduce the endothelium-dependent contractions by inhibiting the gene expression of COX-2. However, no dose-dependent effect of capsaicinoids on these parameters was seen. Capsaicinoids were beneficial in improving lipoprotein profile and aortic function in hamsters fed a high-cholesterol diet.

  17. Assessing endothelial function and providing calibrated UFMD data using a blood pressure cuff

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Jonathan S.

    2017-08-22

    Methods and apparatus are provided for assessing endothelial function in a mammal. In certain embodiments the methods involve using a cuff to apply pressure to an artery in a subject to determine a plurality of baseline values for a parameter related to endothelial function as a function of applied pressure (P.sub.m); b) applying a stimulus to the subject; and applying external pressure P.sub.m to the artery to determine a plurality of stimulus-effected values for the parameter related to endothelial function as a function of applied pressure (P.sub.m); where the baseline values are determined from measurements made when said mammal is not substantially effected by said stimulus and differences in said baseline values and said stimulus-effected values provide a measure of endothelial function in said mammal.

  18. The Assessment of Endothelial Function – From Research into Clinical Practice

    Science.gov (United States)

    Flammer, Andreas J.; Anderson, Todd; Celermajer, David S.; Creager, Mark A.; Deanfield, John; Ganz, Peter; Hamburg, Naomi; Lüscher, Thomas F.; Shechter, Michael; Taddei, Stefano; Vita, Joseph A; Lerman, Amir

    2012-01-01

    The discovery of the endothelium as a crucial organ for the regulation of the vasculature to physiological needs and the recognition of endothelial dysfunction as a key pathological condition - which is associated with most if not all cardiovascular risk factors - led to a tremendous boost of endothelial research in the past 3 decades. Despite the possibility to measure endothelial function in the individual and its widespread use in research, its use as a clinical tool in daily medicine is not established yet. We review the most common methods to assess vascular function in humans and discuss their advantages and disadvantages. Furthermore we give an overview about clinical settings were endothelial function measurements may be valuable in individual patients. Specifically, we provide information why endothelial function is not only a risk marker for cardiovascular risk but may also provides prognostic information beyond commonly used risk scores in primary prevention, and in patients with already established coronary disease. We conclude, that non-invasive endothelial function measurements provide valuable additional information, however, to ascertain its use for daily clinical practice, future research should determine whether endothelial function can be used to guide treatment in the individual and if this translates into better outcomes. PMID:22869857

  19. Activation of RARα, RARγ, or RXRα Increases Barrier Tightness in Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells.

    Science.gov (United States)

    Stebbins, Matthew J; Lippmann, Ethan S; Faubion, Madeline G; Daneman, Richard; Palecek, Sean P; Shusta, Eric V

    2017-09-28

    The blood-brain barrier (BBB) is critical to central nervous system (CNS) health. Brain microvascular endothelial cells (BMECs) are often used as in vitro BBB models for studying BBB dysfunction and therapeutic screening applications. Human pluripotent stem cells (hPSCs) can be differentiated to cells having key BMEC barrier and transporter properties, offering a renewable, scalable source of human BMECs. hPSC-derived BMECs have previously been shown to respond to all-trans retinoic acid (RA), and the goal of this study was to identify the stages at which differentiating human induced pluripotent stem cells (iPSCs) respond to activation of RA receptors (RARs) to impart BBB phenotypes. Here the authors identified that RA application to iPSC-derived BMECs at days 6-8 of differentiation led to a substantial elevation in transendothelial electrical resistance and induction of VE-cadherin expression. Specific RAR agonists identified RARα, RARγ, and RXRα as receptors capable of inducing barrier phenotypes. Moreover, RAR/RXRα costimulation elevated VE-cadherin expression and improved barrier fidelity to levels that recapitulated the effects of RA. This study elucidates the roles of RA signaling in iPSC-derived BMEC differentiation, and identifies directed agonist approaches that can improve BMEC fidelity for drug screening studies while also distinguishing potential nuclear receptor targets to explore in BBB dysfunction and therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Contact lens-induced corneal endothelial polymegathism: functional significance and possible mechanisms.

    Science.gov (United States)

    Connor, C G; Zagrod, M E

    1986-07-01

    The corneal endothelium is principally responsible for maintenance of corneal deturgescence. Therefore, compromise of corneal endothelial functional integrity can result in corneal swelling and opacification. Contact lenses constitute a potential insult to the cornea because their wear reduces the oxygen available to that tissue. It has been reported that contact lens wear induces transient as well as permanent morphologic changes in the corneal endothelium. One of the permanent changes reported is referred to as polymegathism, which is a variation in cell size within the endothelial monolayer. Several investigators have suggested that polymegathism reflects a compromised endothelial functional status. Mechanisms proposed to explain contact lens-induced polymegathism include lactate accumulation, changes in pH, and elevation in CO2 content. We discuss these possibilities as well as speculate that these polymegathous shape changes may be a result of decreased endothelial ATP (adenosine triphosphate) levels and disturbed calcium homeostasis due to corneal endothelial hypoxia.

  1. Concepts for Functional Restoration of Barrier Islands

    Science.gov (United States)

    2009-09-01

    shrimp require tidal circulation and gradient in salinity within estuaries as a part of their juvenile growth cycle, which is promoted by the presence of...dynamically stable in that the barrier island is designed to allow morphologic evolution through time via migration and overwash, as long as the storm...island dimen- sions (width and elevation) required to maintain morphologic form and increase the potential for island recovery after a storm. For

  2. AVE3085, an enhancer of endothelial nitric oxide synthase, restores endothelial function and reduces blood pressure in spontaneously hypertensive rats

    Science.gov (United States)

    Yang, Qin; Xue, Hong-Mei; Wong, Wing-Tak; Tian, Xiao-Yu; Huang, Yu; Tsui, Stephen KW; Ng, Patrick KS; Wohlfart, Paulus; Li, Huige; Xia, Ning; Tobias, Silke; Underwood, Malcolm John; He, Guo-Wei

    2011-01-01

    BACKGROUND AND PURPOSE Nitric oxide (NO) plays an important role in endothelial function, and impaired NO production is involved in hypertension. Therefore, compounds that regulate endothelial NO synthase (eNOS) may be of therapeutic benefit. A novel, low molecular weight compound AVE3085 is a recently developed compound with the ability to enhance eNOS transcription. The present study investigated the effects of AVE3085 in endothelial dysfunction associated with hypertension. EXPERIMENTAL APPROACH Spontaneously hypertensive rats (SHRs) were treated with AVE 3085 (10 mg·kg·day−1, orally) for 4 weeks. Isometric force measurement was performed on rings of isolated aortae in organ baths. Protein expression of eNOS, phosphorylated-eNOS and nitrotyrosine in the aortae were examined by Western blotting. mRNA for eNOS in rat aortae were examined by reverse-transcriptase polymerase chain reaction (RT-PCR). KEY RESULTS AVE3085 greatly improved endothelium-dependent relaxations in the aortae of SHRs. This functional change was accompanied by up-regulated expression of eNOS protein and mRNA, enhanced eNOS phosphorylation and decreased formation of nitrotyrosine. Furthermore, AVE3085 treatment reduced the blood pressure in SHR without affecting that of hypertensive eNOS−/− mice. CONCLUSIONS AND IMPLICATIONS The eNOS-transcription enhancer AVE3085 restored impaired endothelial function in a hypertensive model. The present study provides a solid basis for the potential development of eNOS-targeting drugs to restore down-regulated eNOS, as a new strategy in hypertension. PMID:21385179

  3. Influence of ethnic background on left atrial markers of inflammation, endothelial function and tissue remodelling

    Directory of Open Access Journals (Sweden)

    Carlee D. Ruediger

    2018-01-01

    Conclusion: Caucasian and Indian populations demonstrate similar inflammatory, endothelial function or tissue remodelling profiles. This study suggests a lack of an impact of different ethnicity in these populations in terms of thrombogenic risk.

  4. Biomarkers of coagulation, fibrinolysis, endothelial function, and inflammation in arterialized venous blood

    DEFF Research Database (Denmark)

    Gram, Anne Sofie; Skov, Jane; Ploug, Thorkil

    2014-01-01

    Effects of venous blood arterialization on cardiovascular risk markers are still unknown. We evaluated biomarkers of inflammation, coagulation, fibrinolysis, and endothelial function in arterialized compared with regular venous blood. Cubital venipunctures were obtained from 10 healthy volunteers...

  5. Endothelial function in myometrial resistance arteries of normal pregnant women perfused with syncytiotrophoblast microvillous membranes

    NARCIS (Netherlands)

    van Wijk, M. J.; Boer, K.; Nisell, H.; Smarason, A. K.; van Bavel, E.; Kublickiene, K. R.

    2001-01-01

    OBJECTIVE: To investigate the effects of syncytiotrophoblast microvillous membranes (STBM) in concentrations, found in vivo in women with pre-eclampsia, on endothelial function in isolated resistance arteries. SETTING: Department of Obstetrics and Gynaecology, Huddinge University Hospital,

  6. Clopidogrel improves microvascular endothelial function in subjects with stable coronary artery disease.

    Science.gov (United States)

    Willoughby, Scott R; Luu, Lee-Jen; Cameron, James D; Nelson, Adam J; Schultz, Carlee D; Worthley, Stephen G; Worthley, Matthew I

    2014-06-01

    Clopidogrel therapy has recently been shown to reduce cardiovascular events in patients with stable vascular disease. This benefit may be due to effects not exclusively related to platelet aggregation. The aim of this study was to evaluate the effect of clopidogrel therapy on microvascular endothelial function in subjects with stable coronary artery disease (CAD). Forty subjects with stable CAD were randomised to clopidogrel therapy (75mg/day) or control. Blood and endothelial function testing occurred at baseline, one week and three months following randomisation. Microvascular endothelial function was assessed via reactive hyperaemic index (RHI). Platelet function was assessed by adenosine diphosphate (ADP)-induced whole blood aggregation and the VerifyNow™ system. Plasma markers of endothelial function (asymmetric dimethylarginine, ADMA) and oxidative stress (myeloperoxidase, MPO) were also tested. The primary endpoint was endothelial function assessment (RHI) at three months. At one week RHI increased by 20±10% in the clopidogrel group; this effect was maintained at three months (21±9% increase from baseline; Pmicrovascular endothelial function in patients with stable CAD. This effect is independent of its effects on ADP-induced platelet reactivity. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. Evaluation of a static stretching intervention on vascular endothelial function and arterial stiffness.

    Science.gov (United States)

    Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka

    2017-06-01

    Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.

  8. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro.

    Directory of Open Access Journals (Sweden)

    Roberta Paolinelli

    Full Text Available Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.

  9. Endothelial and Metabolic Function Interactions in Overweight/Obese Children.

    Science.gov (United States)

    Ciccone, Marco Matteo; Faienza, Maria Felicia; Altomare, Maria; Nacci, Carmela; Montagnani, Monica; Valente, Federica; Cortese, Francesca; Gesualdo, Michele; Zito, Annapaola; Mancarella, Rossana; Leogrande, Domenico; Viola, Domenico; Scicchitano, Pietro; Giordano, Paola

    2016-08-01

    Although the underlined mechanisms are still unknown, metabolic/coagulation alterations related to childhood obesity can induce vascular impairments. The aim of this study was to investigate the relationship between metabolic/coagulation parameters and endothelial function/vascular morphology in overweight/obese children. Thirty-five obese/overweight children (22 pre-pubertal, mean age: 9.52±3.35 years) were enrolled. Body mass index (BMI), homeostasis model assessment index (HOMAIR), metabolic and coagulation parameters, [adiponectin, fibrinogen, high molecular weight adiponectin (HMW), endothelin-1, and vonWillebrand factor antigen] ultrasound early markers of atherosclerosis [flow-mediated dilatation (FMD), common carotid intima-media thickness (C-IMT), and anteroposterior diameter of infra-renal abdominal aorta (APAO)] were assessed. APAO was related to anthropometric (age: r=0.520, p=0.001; height: r=0.679, p<0.001; weight: r=0.548, p=0.001; BMI: r=0.607, p<0.001; SBP: r=0.377, p=0.026) and metabolic (HOMAIR: r=0.357, p=0.035; HMW: r=-0.355, p=0.036) parameters. Age, height, and systolic blood pressure were positively related to increased C-IMT (r=0.352, p=0.038; r=0.356, p=0.036; r=0.346, p=0.042, respectively). FMD was not related to any clinical and biochemical characteristics of the pediatric population. Age, HOMAIR, fasting glucose levels, and HMW were independent predictors for APAO increase. Each unit decrease in HMW concentrations (1 μg/ml) induced a 0.065 mm increase in APAO. High molecular weight adiponectin is related to cardiovascular risk in overweight/obese children.

  10. Preventive Effects of a Three-month Yoga Intervention on Endothelial Function in Patients with Migraine

    OpenAIRE

    Hajar Naji-Esfahani; Mahsa Zamani; Seyed Mohamad Marandi; Vahid Shaygannejad; Shaghayegh Haghjooy Javanmard

    2014-01-01

    Background: Migraine is a neurovascular disorder and any interventions improving endothelial function may contribute to its treatment and prevention of vascular complications like ischemic stroke. Yoga has been shown to have several beneficial effects on cardiovascular systems. However, no randomized controlled studies to date have investigated its effects on endothelial function of migraineurs. Methods: A total of 42 women patients with migraine were enrolled and randomized into either a...

  11. Evaluation of the Effects of Different Energy Drinks and Coffee on Endothelial Function.

    Science.gov (United States)

    Molnar, Janos; Somberg, John C

    2015-11-01

    Endothelial function plays an important role in circulatory physiology. There has been differing reports on the effect of energy drink on endothelial function. We set out to evaluate the effect of 3 energy drinks and coffee on endothelial function. Endothelial function was evaluated in healthy volunteers using a device that uses digital peripheral arterial tonometry measuring endothelial function as the reactive hyperemia index (RHI). Six volunteers (25 ± 7 years) received energy drink in a random order at least 2 days apart. Drinks studied were 250 ml "Red Bull" containing 80 mg caffeine, 57 ml "5-hour Energy" containing 230 mg caffeine, and a can of 355 ml "NOS" energy drink containing 120 mg caffeine. Sixteen volunteers (25 ± 5 years) received a cup of 473 ml coffee containing 240 mg caffeine. Studies were performed before drink (baseline) at 1.5 and 4 hours after drink. Two of the energy drinks (Red Bull and 5-hour Energy) significantly improved endothelial function at 4 hours after drink, whereas 1 energy drink (NOS) and coffee did not change endothelial function significantly. RHI increased by 82 ± 129% (p = 0.028) and 63 ± 37% (p = 0.027) after 5-hour Energy and Red Bull, respectively. The RHI changed after NOS by 2 ± 30% (p = 1.000) and by 7 ± 30% (p = 1.000) after coffee. In conclusion, some energy drinks appear to significantly improve endothelial function. Caffeine does not appear to be the component responsible for these differences. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Evaluation of the EndoPAT as a Tool to Assess Endothelial Function

    Directory of Open Access Journals (Sweden)

    M. Moerland

    2012-01-01

    Endothelial function was stable over a longer period of time in renally impaired patients (coefficient of variation 13%. Endothelial function in renally impaired and type 2 diabetic patients was not decreased compared to healthy volunteers (2.9±1.4 and 1.8±0.3, resp., versus 1.8±0.5, P>0.05. The EndoPAT did not detect an effect of robust interventions on endothelial function in healthy volunteers (glucose load: change from baseline 0.08±0.50, 95% confidence interval −0.44 to 0.60; smoking: change from baseline 0.49±0.92, 95% confidence interval −0.47 to 1.46. This suggests that at present the EndoPAT might not be suitable to assess (changes in endothelial function in early-phase clinical pharmacology studies. Endothelial function as measured by the EndoPAT could be physiologically different from endothelial function as measured by conventional techniques. This should be investigated carefully before the EndoPAT can be considered a useful tool in drug development or clinical practice.

  13. The diagnostic value of endothelial function as a potential sensor of fatigue in health

    Directory of Open Access Journals (Sweden)

    Yoshiko Ohno

    2010-03-01

    Full Text Available Yoshiko Ohno1,2, Teruto Hashiguchi1, Ryuichi Maenosono1, Hidetoshi Yamashita3, Yukio Taira3, Kazufumi Minowa3, Yoshihito Yamashita3, Yuko Kato3, Ko-ichi Kawahara1, Ikuro Maruyama11Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima City, Kagoshima Prefecture, Japan; 2Department of Community Health Nursing/Nursing Informatics, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima City, Kagoshima Prefecture, Japan; 3Kagoshima Seikyo General Hospital, Kagoshima City, Kagoshima Prefecture, JapanPurpose: Many epidemiological research studies have shown that vital exhaustion and psychosocial factors are associated with the occurrence of cerebrocardiovascular disease (CCVD. Fatigue is thought to induce endothelial dysfunction and may be linked to the occurrence of CCVD; however, no studies have investigated this potential link. We studied to determine the effect of fatigue on endothelial function in healthy subjects with no traditional CCVD risk factors or potential confounding factors to be controlled.Subjects and methods: Peripheral arterial tonometry (PAT was used to evaluate endothelial function. The influence of the following parameters on endothelial function was analyzed in 74 office workers without traditional CCVD risk factors at health check-ups: endothelial function before and after work, subjective fatigue, lifestyle factors such as sleeping time, and psychosocial factors such as depression and social support.Results: Twenty-five subjects (33.8% had low endothelial function; reactive hyperemia (RH-PAT index <1.67, even though no abnormalities were reported in the health check-ups. There was no significant difference in endothelial function before versus after labor. Of note, endothelial function was associated with the individual’s level of subjective fatigue (t = 2.98, P = 0.008 and showed a daily fluctuation, sometimes to a pathological

  14. Glycocalyx and endothelial (dys) function: from mice to men

    NARCIS (Netherlands)

    van den Berg, Bernard M.; Nieuwdorp, Max; Stroes, Erik S. G.; Vink, Hans

    2006-01-01

    Located on the luminal surface of vascular endothelial cells, the glycocalyx is composed of a negatively charged mesh of proteoglycans, glycosaminoglycans, glycoproteins and glycolipids and harbors a wide array of enzymes that contribute in regulation of leukocyte-/thrombocyte adherence, with a

  15. Functional characterization of S100A8 and S100A9 in altering monolayer permeability of human umbilical endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liqun Wang

    Full Text Available S100A8, S100A9 and S100A8/A9 complexes have been known as important endogenous damage-associated molecular pattern (DAMP proteins. But the pathophysiological roles of S100A8, S100A9 and S100A8/A9 in cardiovascular diseases are incompletely explained. In this present study, the effects of homo S100A8, S100A9 and their hetero-complex S100A8/A9 on endothelial barrier function were tested respectively in cultured human umbilical venous endothelial cells (HUVECs. The involvement of TLR4 and RAGE were observed by using inhibitor of TLR4 and blocking antibody of RAGE. The clarification of different MAPK subtypes in S100A8/A9-induced endothelial response was implemented by using specific inhibitors. The calcium-dependency was detected in the absence of Ca2+ or in the presence of gradient-dose Ca2+. The results showed that S100A8, S100A9 and S100A8/A9 could induce F-actin and ZO-1 disorganization in HUVECs and evoked the increases of HUVEC monolayer permeability in a dose- and time-dependent manner. The effects of S100A8, S100A9 and S100A8/A9 on endothelial barrier function depended on the activation of p38 and ERK1/2 signal pathways through receptors TLR4 and RAGE. Most importantly, we revealed the preference of S100A8 on TLR4 and S100A9 on RAGE in HUVECs. The results also showed the calcium dependency in S100A8- and S100A9-evoked endothelial response, indicating that calcium dependency on formation of S100A8 or A9 dimmers might be the prerequisite for this endothelial functional alteration.

  16. Cornea stress test--evaluation of corneal endothelial function in vivo by contact lens induced stress

    Directory of Open Access Journals (Sweden)

    Saini Jagjit

    1997-01-01

    Full Text Available Reliable and valid assessment of corneal endothelial function is a critical input for diagnosing, prognosticating and monitoring progression of disorders affecting corneal endothelium. In 123 eyes, corneal endothelial function was assessed employing data from the corneal hydration recovery dynamics. Serial pachometric readings were recorded on Haag-Striet pachometer with Mishima-Hedbys modification before and after two hours of thick soft contact lens wear. Percentage Recovery Per Hour (PRPH was derived from raw data as an index of endothelial function. Assessed PRPH in pseudophakic corneal oedema and Fuchs′ endothelial dystrophy eyes (35.9 +/- 9.8% was significantly lower than normal controls (61.9 +/- 10.5%. On employing receiver operation characteristics curve analysis the tested results demonstrated high sensitivity (87% and specificity (92% for detection of low endothelial function at PRPH cut off of 47.5%. Using this PRPH cut off, 80% of Fuchs′ endothelial dystrophy and 93.3% of pseudophakic corneal oedema eyes could be demonstrated to have low endothelial function. A total of 66.7% of diabetic eyes also demonstrated PRPH of lower than 47.5%. Clear corneal grafts demonstrated PRPH values of 24.6% to 73.0%. Of 6 corneal grafts that demonstrated initial PRPH of lower than 47.5%, 4 failed within 4 to 6 months. Our data demonstrated high sensitivity and specificity of this corneal stress test. PRPH index was useful in quantifying endothelial function in clinical disorders including diabetes mellitus. The index PRPH was demonstrated to be useful in monitoring and prognosticating outcome of corneal grafts.

  17. Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species.

    Directory of Open Access Journals (Sweden)

    Amy Barton Pai

    Full Text Available Tunneled central venous catheters (TCVCs are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA, a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2. The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS. The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam((3CSK((4 induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS activation (as measured by the p-eNOS(ser1177:p-eNOS(thr495 ratio. The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.

  18. Deterioration of endothelial function of micro- and macrocirculation in patients with diabetes type 1 and 2.

    Science.gov (United States)

    Besic, Hana; Jeraj, Luka; Spirkoska, Ana; Jezovnik, Mateja K; Poredoš, Pavel

    2017-08-01

    Vascular complications are an important cause of morbidity in patients with diabetes mellitus (DM). Endothelial dysfunction is an early marker of atherosclerosis and has already been shown in macrocirculation of diabetic patients; however, data on endothelial function of microcirculation is scarce. Our aim was to evaluate endothelial function in macro- and microcirculation and their interrelationship in patients with type 1 and 2 DM. The study included 30 patients with type 1 DM, 30 patients with type 2 DM and 25 healthy controls. The endothelial function of large arteries was studied measuring flow-mediated dilation (FMD). Peripheral arterial tonometry was used for investigation of the endothelial function of microcirculation, measuring Reactive Hyperemia Index (RHI) and Augmentation Index (AI). In comparison to controls, both DM groups had decreased FMD: type 1 (4.0±5.0% vs. 10.0±7.8%, P=0.005) and type 2 (5.0±0.6% vs. 10.0±7.8%, P=0.007). However, only type 2 DM group had a lower RHI (1.71±0.44 vs. 2.05±0.54, P=0.017) in comparison to controls. Patients with type 1 and 2 DM had deteriorated functional capability of macrocirculation. However, endothelial dysfunction of microcirculation was present only in type 2 DM patients. Type 2 DM patients were also at higher risk for atherosclerosis because of the more frequent presence of risk factors.

  19. The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia

    Directory of Open Access Journals (Sweden)

    Young Ian S

    2001-06-01

    Full Text Available Abstract Background Manipulation of total homocysteine concentration with oral methionine is associated with impairment of endothelial-dependent vasodilation. This may be caused by increased oxidative stress. Vitamin C is an aqueous phase antioxidant vitamin and free radical scavenger. We hypothesised that if the impairment of endothelial function related to experimental hyperhomocysteinaemia was free radically mediated then co-administration of vitamin C should prevent this. Methods Ten healthy adults took part in this crossover study. Endothelial function was determined by measuring forearm blood flow (FBF in response to intra-arterial infusion of acetylcholine (endothelial-dependent and sodium nitroprusside (endothelial-independent. Subjects received methionine (100 mg/Kg plus placebo tablets, methionine plus vitamin C (2 g orally or placebo drink plus placebo tablets. Study drugs were administered at 9 am on each study date, a minimum of two weeks passed between each study. Homocysteine (tHcy concentration was determined at baseline and after 4 hours. Endothelial function was determined at 4 hours. Responses to the vasoactive substances are expressed as the area under the curve of change in FBF from baseline. Data are mean plus 95% Confidence Intervals. Results Following oral methionine tHcy concentration increased significantly versus placebo. At this time endothelial-dependent responses were significantly reduced compared to placebo (31.2 units [22.1-40.3] vs. 46.4 units [42.0-50.8], p Conclusions This study demonstrates that methionine increased tHcy with impairment of the endothelial-dependent vasomotor responses. Administration of vitamin C did not prevent this impairment and our results do not support the hypothesis that the endothelial impairment is mediated by adverse oxidative stress.

  20. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity.

    Science.gov (United States)

    Palus, Martin; Vancova, Marie; Sirmarova, Jana; Elsterova, Jana; Perner, Jan; Ruzek, Daniel

    2017-07-01

    Alteration of the blood-brain barrier (BBB) is a hallmark of tick-borne encephalitis (TBE), a life-threating human viral neuroinfection. However, the mechanism of BBB breakdown during TBE, as well as TBE virus (TBEV) entry into the brain is unclear. Here, primary human microvascular endothelial cells (HBMECs) were infected with TBEV to study interactions with the BBB. Although the number of infected cells was relatively low in culture (10 6 pfu/ml). Infection did not induce any significant changes in the expression of key tight junction proteins or upregulate the expression of cell adhesion molecules, and did not alter the highly organized intercellular junctions between HBMECs. In an in vitro BBB model, the virus crossed the BBB via a transcellular pathway without compromising the integrity of the cell monolayer. The results indicate that HBMECs may support TBEV entry into the brain without altering BBB integrity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Studies towards biocompatibility of PAMAM dendrimers--overall hemostasis potential and integrity of the human aortic endothelial barrier.

    Science.gov (United States)

    Markowicz-Piasecka, Magdalena; Łuczak, Emilia; Chałubiński, Maciej; Broncel, Marlena; Mikiciuk-Olasik, Elżbieta; Sikora, Joanna

    2014-10-01

    The last decade has brought many examples of utilization of dendrimers as drug delivery systems; however, their possible application is limited because of inherent toxicity associated with them. This study discusses the influence of G1-G4 PAMAM-NH2 dendrimers on the process of hemostasis and integrity of endothelial monolayer. The global assay of coagulation and fibrinolysis was investigated spectrophotometrically by means of CL-test at 405 nm. Thrombin (0.5 I U/mL) and t-PA (240 ng/mL) were used to obtain clotting and lysis curve. The activity of thrombin was determined by means of chromogenic substrate S-2238. The influence of PAMAM dendrimers on the barrier properties of human primary aortal endothelium was assessed by means of method based on the measurements of the impedance changes of the cells. Observed multidirectional impact of dendrimers, without affecting the thrombin activity, on clot formation, its stabilization and fibrinolysis could be regarded as important when trying to use them clinically. It is crucial that examined PAMAM dendrimers did not lead to spontaneous aggregation of fibrinogen. Importantly, examined polymers have concentration- and generation-dependent adverse effect towards the endothelial monolayer. of described studies provide additional insight into PAMAM dendrimers toxicity associated with systemic administration and underscore the necessity for further research. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Inhibition of Thrombin With PPACK-Nanoparticles Restores Disrupted Endothelial Barriers and Attenuates Thrombotic Risk in Experimental Atherosclerosis.

    Science.gov (United States)

    Palekar, Rohun U; Jallouk, Andrew P; Myerson, Jacob W; Pan, Hua; Wickline, Samuel A

    2016-03-01

    A role for thrombin in the pathogenesis of atherosclerosis has been suggested through clinical and experimental studies revealing a critical link between the coagulation system and inflammation. Although approved drugs for inhibition of thrombin and thrombin-related signaling have demonstrated efficacy, their clinical application to this end may be limited because of significant potential for bleeding side effects. Thus, we sought to implement a plaque-localizing nanoparticle-based approach to interdict thrombin-induced inflammation and hypercoagulability in atherosclerosis. We deployed a novel magnetic resonance spectroscopic method to quantify the severity of endothelial damage for correlation with traditional metrics of vessel procoagulant activity after dye-laser injury in fat-fed apolipoprotein E-null mice. We demonstrate that a 1-month course of treatment with antithrombin nanoparticles carrying the potent thrombin inhibitor PPACK (d-phenylalanyl-l-prolyl-l-arginyl chloromethylketone) nanoparticle (1) reduces the expression and secretion of proinflammatory and procoagulant molecules, (2) diminishes plaque procoagulant activity without the need for systemic anticoagulation, (3) rapidly restores disrupted vascular endothelial barriers, and (4) retards plaque progression in lesion-prone areas. These observations illustrate the role of thrombin as a pleiotropic atherogenic molecule under conditions of hypercholesterolemia and suggest the utility of its inhibition with locally acting antithrombin nanoparticle therapeutics as a rapid-acting anti-inflammatory strategy in atherosclerosis to reduce thrombotic risk. © 2016 American Heart Association, Inc.

  3. PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk.

    Science.gov (United States)

    Stamatovic, Svetlana M; Sladojevic, Nikola; Keep, Richard F; Andjelkovic, Anuska V

    2015-11-01

    Impairment of brain endothelial barrier integrity is critical for cerebral cavernous malformation (CCM) lesion development. The current study investigates changes in tight junction (TJ) complex organization when PDCD10 (CCM3) is mutated/depleted in human brain endothelial cells. Analysis of lesions with CCM3 mutation and brain endothelial cells transfected with CCM3 siRNA (CCM3-knockdown) showed little or no increase in TJ transmembrane and scaffolding proteins mRNA expression, but proteins levels were generally decreased. CCM3-knockdown cells had a redistribution of claudin-5 and occludin from the membrane to the cytosol with no alterations in protein turnover but with diminished protein-protein interactions with ZO-1 and ZO-1 interaction with the actin cytoskeleton. The most profound effect of CCM3 mutation/depletion was on an actin-binding protein, cortactin. CCM3 depletion caused cortactin Ser-phosphorylation, dissociation from ZO-1 and actin, redistribution to the cytosol and degradation. This affected cortical actin ring organization, TJ complex stability and consequently barrier integrity, with constant hyperpermeability to inulin. A potential link between CCM3 depletion and altered cortactin was tonic activation of MAP kinase ERK1/2. ERK1/2 inhibition increased cortactin expression and incorporation into the TJ complex and improved barrier integrity. This study highlights the potential role of CCM3 in regulating TJ complex organization and brain endothelial barrier permeability.

  4. Effects of different degrees of insulin sensitivity on endothelial function in obese patients.

    Science.gov (United States)

    Galvão, Roberto; Plavnik, Frida Liane; Ribeiro, Fernando Flexa; Ajzen, Sérgio Aron; Christofalo, Dejaldo M de J; Kohlmann, Osvaldo

    2012-01-01

    Obesity derived from intra-abdominal fat deposition tends to increase hormonal and cytokine production, thus worsening insulin sensitivity and leading to endothelial dysfunction. Hyperinsulinemia is considered an independent risk factor for ischemic heart disease and cause of endothelial dysfunction in healthy individuals. To assess the impact of different degrees of insulin resistance, measured by HOMA-IR (Homeostasis Model Assessment of Insulin Resistance), on endothelial function in obese, non-diabetic patients without prior history of cardiovascular events and different metabolic syndrome components. Forty obese individuals were submitted to anthropometric measurements, BP measurements at office and ABPM and laboratory tests, in addition to non-invasive ultrasound assessment of endothelial function. Patients were divided into 3 groups according to the level of insulin resistance: patients with HOMA-IR values from 0.590 to 1.082 were assigned to Group 1 (n=13), from 1.083 to 1.410 to Group 2 (n=14) and from 1.610 to 2.510 to Group 3 (n=13). We found a significant difference in flow-mediated dilation in group 3 compared to group 1 (9.2 ± 7.0 vs 18.0 ± 7.5 %, p=0.006). There was a negative correlation between endothelial function and insulin, HOMA-IR and triglycerides. Our data suggest that mild changes in insulin resistance levels assessed by HOMA-IR may have an impact on vasodilatatory endothelial function in uncomplicated obese individuals with different cardiovascular risk factors.

  5. You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

    Science.gov (United States)

    Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.

    2014-01-01

    Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329

  6. No relationship between low-density lipoproteins and endothelial function in hemodialysis patients.

    Science.gov (United States)

    Dalton, Brad S; Fassett, Rob G; Geraghty, Dominic P; De Ryke, Rex; Coombes, Jeff S

    2005-03-18

    Relationships between low-density lipoprotein cholesterol and endothelial function in hemodialysis patients have yet to be investigated. Furthermore, current reporting of endothelial function data using flow-mediated dilatation has recognised limitations. The aims of the study were to determine the relationship between low-density lipoproteins and endothelial function in hemodialysis patients and to investigate the validity of determining the area under the curve for data collected during the flow-mediated dilatation technique. Brachial artery responses to reactive hyperemia (endothelial-dependent) and glyceryl trinitrate (endothelial-independent) were assessed in 19 hemodialysis patients using high-resolution ultrasound. Lipid profiles and other factors known to effect brachial artery reactivity were also measured prior to the flow-mediated dilatation technique. There were no significant relationships between serum low-density lipoproteins and endothelial-dependent or -independent vasodilation using absolute change (mm), relative change (%), time to peak change (s) or area under the curve (mm x s). In hemodialysis patients with atherosclerosis, area under the curve analysis showed a significantly (p<0.05) decreased endothelial-dependent response (mean+/-S.D.: 19.2+/-17.4) compared to non-atherosclerotic patients (42.3+/-28.6). However, when analysing these data using absolute change, relative change or time to peak dilatation, there were no significant differences between the two groups. In summary, there was no relationship between low-density lipoproteins and endothelial function in hemodialysis patients. In addition, area under the curve analysis of flow-mediated vasodilatation data may be a useful method of determining the temporal vascular response during the procedure.

  7. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling.

    Science.gov (United States)

    Chakraborty, Shreeta; Ain, Rupasri

    2017-04-21

    Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression. © 2017 by The American Society for

  8. Ecscr regulates insulin sensitivity and predisposition to obesity by modulating endothelial cell functions.

    Science.gov (United States)

    Akakabe, Yoshiki; Koide, Masahiro; Kitamura, Youhei; Matsuo, Kiyonari; Ueyama, Tomomi; Matoba, Satoaki; Yamada, Hiroyuki; Miyata, Keishi; Oike, Yuichi; Ikeda, Koji

    2013-01-01

    Insulin resistance is closely associated with obesity and is one of the earliest symptoms of type-2 diabetes. Endothelial cells are involved in the pathogenesis of insulin resistance through their role in insulin delivery and adipose tissue angiogenesis. Here we show that Ecscr (endothelial cell surface expressed chemotaxis and apoptosis regulator; also known as ARIA), the transmembrane protein that regulates endothelial cell signalling, is highly expressed in white and brown adipose tissues, and regulates energy metabolism and glucose homeostasis by modulating endothelial cell functions. Ecscr-deficient mice fed a normal chow show improved glucose tolerance and enhanced insulin sensitivity. We demonstrate that Ecscr deletion enhances the insulin-mediated Akt/endothelial nitric oxide synthase activation in endothelial cells, which increases insulin delivery into the skeletal muscle. Ecscr deletion also protects mice on a high-fat diet from obesity and obesity-related metabolic disorders by enhancing adipose tissue angiogenesis. Conversely, targeted activation of Ecscr in endothelial cells impairs glucose tolerance and predisposes mice to diet-induced obesity. Our results suggest that the inactivation of Ecscr enhances insulin sensitivity and may represent a new therapeutic strategy for treating metabolic syndrome.

  9. Cerebral Endothelial Function Determined by Cerebrovascular Reactivity to L-Arginine

    Directory of Open Access Journals (Sweden)

    Janja Pretnar-Oblak

    2014-01-01

    Full Text Available Endothelium forms the inner cellular lining of blood vessels and plays an important role in many physiological functions including the control of vasomotor tone. Cerebral endothelium is probably one of the most specific types but until recently it was impossible to determine its function. In this review, the role of cerebrovascular reactivity to L-arginine (CVR-L-Arg for assessment of cerebral endothelial function is discussed. L-Arginine induces vasodilatation through enhanced production of nitric oxide (NO in the cerebral endothelium. Transcranial Doppler sonography is used for evaluation of cerebral blood flow changes. The method is noninvasive, inexpensive, and enables reproducible measurements. CVR-L-Arg has been compared to flow-mediated dilatation as a gold standard for systemic endothelial function and intima-media thickness as a marker for morphological changes. However, it seems to show specific cerebral endothelial function. So far CVR-L-Arg has been used to study cerebral endothelial function in many pathological conditions such as stroke, migraine, etc. In addition CVR-L-Arg has also proven its usefulness in order to show potential improvement after pharmacological interventions. In conclusion CVR-L-Arg is a promising noninvasive research method that could provide means for evaluation of cerebral endothelial function in physiological and pathological conditions.

  10. Etanercept improves endothelial function via pleiotropic effects in rat adjuvant-induced arthritis.

    Science.gov (United States)

    Totoson, Perle; Maguin-Gaté, Katy; Prigent-Tessier, Anne; Monnier, Alice; Verhoeven, Frank; Marie, Christine; Wendling, Daniel; Demougeot, Céline

    2016-07-01

    To determine the effect of etanercept on endothelial dysfunction and on traditional cardiovascular (CV) risk factors in the adjuvant-induced arthritis (AIA) rat model. At the first signs of arthritis, etanercept (10 mg/kg/3 days, s.c.) or saline was administered for 3 weeks in AIA rats. Body weights and arthritis scores were monitored daily. Endothelial function was studied in aortic rings relaxed with acetylcholine (Ach) with or without inhibitors of nitric oxide synthase (NOS), cyclo-oxygenase (COX-2), arginase, endothelium-derived hyperpolarizing factor and superoxide anions (O2 (-)°) production. Aortic expression of endothelial nitic oxide synthase (eNOS), Ser1177-phospho-eNOS, COX-2, arginase-2, p22(phox) and p47(phox) was evaluated by western blotting analysis. Blood pressure, heart rate and blood levels of triglycerides, cholesterol and glucose were measured. Etanercept significantly reduced arthritis score (P etanercept on inflammatory symptoms improved endothelial function in AIA. This beneficial effect on endothelial function is disconnected from its impact on CV risk factors and relates to pleiotropic effects of etanercept on endothelial pathways. These results suggest that etanercept could be a good choice for patients with rheumatoid arthritis at high risk of CV events. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. A Single Resistance Exercise Session Improves Aortic Endothelial Function in Hypertensive Rats.

    Science.gov (United States)

    Faria, Thaís de Oliveira; Angeli, Jhuli Keli; Mello, Luiz Guilherme Marchesi; Pinto, Gustavo Costa; Stefanon, Ivanita; Vassallo, Dalton Valentim; Lizardo, Juliana Hott de Fúcio

    2017-03-01

    Physical exercise is an important tool for the improvement of endothelial function. To assess the effects of acute dynamic resistance exercise on the endothelial function of spontaneously hypertensive rats (SHR). Ten minutes after exercise, the aorta was removed to evaluate the expression of endothelial nitric oxide synthase (eNOS), phosphorylated endothelial nitric oxide synthase (p-eNOS1177) and inducible nitric oxide synthase (iNOS) and to generate concentration-response curves to acetylcholine (ACh) and to phenylephrine (PHE). The PHE protocol was also performed with damaged endothelium and before and after NG-nitro-L-arginine methyl ester (L-NAME) and indomethacin administration. The maximal response (Emax) and the sensitivity (EC50) to these drugs were evaluated. ACh-induced relaxation increased in the aortic rings of exercised (Ex) rats (Emax= -80 ± 4.6%, p controls (Ct) (Emax = -50 ± 6.8%). The Emax to PHE was decreased following exercise conditions (95 ± 7.9%, p control conditions (120 ± 4.2%). This response was abolished after L-NAME administration or endothelial damage. In the presence of indomethacin, the aortic rings' reactivity to PHE was decreased in both groups (EC50= Ex -5.9 ± 0.14 vs. Ct -6.6 ± 0.33 log µM, p session improves endothelial function in hypertensive rats. This response seems to be mediated by increased NO production through eNOS activation.

  12. Endothelial function in pre-pubertal children at risk of developing cardiomyopathy: a new frontier

    Directory of Open Access Journals (Sweden)

    Aline Cristina Tavares

    2012-01-01

    Full Text Available Although it is known that obesity, diabetes, and Kawasaki's disease play important roles in systemic inflammation and in the development of both endothelial dysfunction and cardiomyopathy, there is a lack of data regarding the endothelial function of pre-pubertal children suffering from cardiomyopathy. In this study, we performed a systematic review of the literature on pre-pubertal children at risk of developing cardiomyopathy to assess the endothelial function of pre-pubertal children at risk of developing cardiomyopathy. We searched the published literature indexed in PubMed, Bireme and SciELO using the keywords 'endothelial', 'children', 'pediatric' and 'infant' and then compiled a systematic review. The end points were age, the pubertal stage, sex differences, the method used for the endothelial evaluation and the endothelial values themselves. No studies on children with cardiomyopathy were found. Only 11 papers were selected for our complete analysis, where these included reports on the flow-mediated percentage dilatation, the values of which were 9.80±1.80, 5.90±1.29, 4.50±0.70, and 7.10±1.27 for healthy, obese, diabetic and pre-pubertal children with Kawasaki's disease, respectively. There was no significant difference in the dilatation, independent of the endothelium, either among the groups or between the genders for both of the measurements in children; similar results have been found in adolescents and adults. The endothelial function in cardiomyopathic children remains unclear because of the lack of data; nevertheless, the known dysfunctions in children with obesity, type 1 diabetes and Kawasaki's disease may influence the severity of the cardiovascular symptoms, the prognosis, and the mortality rate. The results of this study encourage future research into the consequences of endothelial dysfunction in pre-pubertal children.

  13. Salmon-derived thrombin inhibits development of chronic pain through an endothelial barrier protective mechanism dependent on APC.

    Science.gov (United States)

    Smith, Jenell R; Galie, Peter A; Slochower, David R; Weisshaar, Christine L; Janmey, Paul A; Winkelstein, Beth A

    2016-02-01

    Many neurological disorders are initiated by blood-brain barrier breakdown, which potentiates spinal neuroinflammation and neurodegeneration. Peripheral neuropathic injuries are known to disrupt the blood-spinal cord barrier (BSCB) and to potentiate inflammation. But, it is not known whether BSCB breakdown facilitates pain development. In this study, a neural compression model in the rat was used to evaluate relationships among BSCB permeability, inflammation and pain-related behaviors. BSCB permeability increases transiently only after injury that induces mechanical hyperalgesia, which correlates with serum concentrations of pro-inflammatory cytokines, IL-7, IL-12, IL-1α and TNF-α. Mammalian thrombin dually regulates vascular permeability through PAR1 and activated protein C (APC). Since thrombin protects vascular integrity through APC, directing its affinity towards protein C, while still promoting coagulation, might be an ideal treatment for BSCB-disrupting disorders. Salmon thrombin, which prevents the development of mechanical allodynia, also prevents BSCB breakdown after neural injury and actively inhibits TNF-α-induced endothelial permeability in vitro, which is not evident the case for human thrombin. Salmon thrombin's production of APC faster than human thrombin is confirmed using a fluorogenic assay and APC is shown to inhibit BSCB breakdown and pain-related behaviors similar to salmon thrombin. Together, these studies highlight the impact of BSCB on pain and establish salmon thrombin as an effective blocker of BSCB, and resulting nociception, through its preferential affinity for protein C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Clopidogrel Improves Skin Microcirculatory Endothelial Function in Persons With Heightened Platelet Aggregation.

    Science.gov (United States)

    Salimi, Shabnam; Lewis, Joshua P; Yerges-Armstrong, Laura M; Mitchell, Braxton D; Saeed, Faisal; O'Connell, Jeffry R; Perry, James A; Ryan, Kathleen A; Shuldiner, Alan R; Parsa, Afshin

    2016-10-31

    Platelet activation can lead to enhanced oxidative stress, inflammatory response, and endothelial dysfunction. To quantify the effects of platelet inhibition on endothelial function, we assessed platelet activity of healthy persons before and after clopidogrel administration and evaluated its effects on endothelial function. We hypothesized that clopidogrel, by attenuating platelet activity, would result in enhanced endothelial function. Microcirculatory endothelial function was quantified by laser Doppler flowmetry (LDF) mediated by thermal hyperemia (TH) and postocclusive reactive hyperemia, respectively, in 287 and 241 relatively healthy and homogenous Old Order Amish persons. LDF and platelet aggregation measures were obtained at baseline and after 7 days of clopidogrel administration. Our primary outcome was percentage change in post- versus preclopidogrel LDF measures. Preclopidogrel TH-LDF and platelet aggregation were higher in women than in men (PClopidogrel administration was associated with ≈2-fold higher percentage change in TH-LDF in participants with high versus low baseline platelet aggregation (39.4±10.1% versus 17.4±5.6%, P=0.03). Clopidogrel also increased absolute TH-LDF measures in persons with high platelet aggregation (1757±766 to 2154±1055, P=0.03), with a more prominent effect in women (1909±846 to 2518±1048, P=0.001). There was no evidence that clopidogrel influenced postocclusive reactive hyperemia LDF measures. The administration of clopidogrel in healthy persons with high baseline platelet aggregation results in improved TH-induced microcirculatory endothelial function. These data suggest that clopidogrel may have a beneficial effect on microcirculatory endothelial function, presumably through antiplatelet activity, and may confer additional vascular benefits. URL: https://www.clinicaltrials.gov. Unique identifier: NCT00799396. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. The flux-flux correlation function for anharmonic barriers

    NARCIS (Netherlands)

    Goussev, Arseni; Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2010-01-01

    The flux-flux correlation function formalism is a standard and widely used approach for the computation of reaction rates. In this paper we introduce a method to compute the classical and quantum flux-flux correlation functions for anharmonic barriers essentially analytically through the use of the

  16. Hyperglycemia Increases Muscle Blood Flow and Alters Endothelial Function in Adolescents with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Amanda S. Dye

    2012-01-01

    Full Text Available Alterations of blood flow and endothelial function precede development of complications in type 1 diabetes. The effects of hyperglycemia on vascular function in early type 1 diabetes are poorly understood. To investigate the effect of hyperglycemia on forearm vascular resistance (FVR and endothelial function in adolescents with type 1 diabetes, FVR was measured before and after 5 minutes of upper arm arterial occlusion using venous occlusion plethysmography in (1 fasted state, (2 euglycemic state (~90 mg/dL; using 40 mU/m2/min insulin infusion, and (3 hyperglycemic state (~200 mg/dL in 11 adolescents with type 1 diabetes. Endothelial function was assessed by the change in FVR following occlusion. Seven subjects returned for a repeat study with hyperglycemia replaced by euglycemia. Preocclusion FVR decreased from euglycemia to hyperglycemia (P=0.003. Postocclusion fall in FVR during hyperglycemia was less than during euglycemia (P=0.002. These findings were not reproduced when hyperglycemia was replaced with a second euglycemia. These results demonstrate that acute hyperglycemia causes vasodilation and alters endothelial function in adolescents with type 1 diabetes. In addition they have implications for future studies of endothelial function in type 1 diabetes and provide insight into the etiology of macrovascular and microvascular complications of type 1 diabetes.

  17. A simplified approach to assessing penile endothelial function in young individuals at risk of erectile dysfunction.

    Science.gov (United States)

    Wu, Hsien-Tsai; Lee, Chun-Ho; Chen, Chin-Jung; Tsai, I-Ting; Sun, Cheuk-Kwan

    2012-01-01

    Erectile dysfunction (ED) reflects a risk for systemic cardiovascular diseases by virtue of a common etiology of vascular endothelial dysfunction, which is increasingly reported to affect young adults. On the basis of physiological phenomenon of reactive hyperemia (RH), systemic and penile endothelial functions in healthy young adults were compared with the use of digital data on arterial waveforms before and after RH induction. Between July 2009 and March 2011, 32 young adult volunteers with normal erectile functions were recruited. Questionnaires on medical histories and sexual functions and blood samples for testosterone and biochemical analyses were obtained. Dilatation index (DI) and penile arterial waveform amplitude (PAWA) ratios for assessing systemic and penile endothelial function were acquired with an air pressure sensing system on the arm and a penile arterial waveform analyzing system on the penis, respectively. A total cholesterol/high-density lipoprotein (TC/HDL) ratio greater than 4.1 was used to define high risk for ED. Remarkable positive correlation was noted between DI and PAWA ratio (r = .640, P 4.1; P < .05). Our results demonstrated that penile endothelial function can be assessed by evaluating systemic endothelial function in young healthy adults for early identification of risk for ED.

  18. How hormones influence composition and physiological function of the brain-blood barrier.

    Science.gov (United States)

    Hampl, R; Bičíková, M; Sosvorová, L

    2015-01-01

    Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.

  19. Endothelial function and the regulation of muscle protein anabolism in older adults.

    Science.gov (United States)

    Timmerman, K L; Volpi, E

    2013-12-01

    Sarcopenia, the loss of skeletal muscle mass and function with aging, is a major contributor to frailty and morbidity in older adults. Recent evidence has emerged suggesting that endothelial dysfunction and insulin resistance of muscle protein metabolism may significantly contribute to the development of sarcopenia. In this article we review: 1) recent studies and theories on the regulation of skeletal muscle protein balance in older adults; 2) the link between insulin resistance of muscle protein synthesis and endothelial dysfunction in aging; 3) mechanisms for impaired endothelial responsiveness in aging; and 4) potential treatments that may restore the endothelial responsiveness and muscle protein anabolic sensitivity in older adults. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Arterial Injury and Endothelial Repair: Rapid Recovery of Function after Mechanical Injury in Healthy Volunteers

    Directory of Open Access Journals (Sweden)

    Lindsey Tilling

    2014-01-01

    Full Text Available Objective. Previous studies suggest a protracted course of recovery after mechanical endothelial injury; confounders may include degree of injury and concomitant endothelial dysfunction. We sought to define the time course of endothelial function recovery using flow-mediated dilation (FMD, after ischaemia-reperfusion (IR and mechanical injury in patients and healthy volunteers. The contribution of circulating CD133+/CD34+/VEGFR2+ “endothelial progenitor” (EPC or repair cells to endothelial repair was also examined. Methods. 28 healthy volunteers aged 18–35 years underwent transient forearm ischaemia induced by cuff inflation around the proximal biceps and radial artery mechanical injury induced by inserting a wire through a cannula. A more severe mechanical injury was induced using an arterial sheath and catheter inserted into the radial artery of 18 patients undergoing angiography. Results. IR and mechanical injury produced immediate impairment of FMD (from 6.5 ± 1.2% to 2.9 ± 2.2% and from 7.4 ± 2.3% to 1.5 ± 1.6% for IR and injury, resp., each P<0.001 but recovered within 6 hours and 2 days, respectively. FMD took up to 4 months to recover in patients. Circulating EPC did not change significantly during the injury/recovery period in all subjects. Conclusions. Recovery of endothelial function after IR and mechanical injury is rapid and not associated with a change in circulating EPC.

  1. Regulation of the Intestinal Barrier Function by Host Defense Peptides.

    Science.gov (United States)

    Robinson, Kelsy; Deng, Zhuo; Hou, Yongqing; Zhang, Guolong

    2015-01-01

    Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity.

  2. Regulation of the intestinal barrier function by host defense peptides

    Directory of Open Access Journals (Sweden)

    Kelsy eRobinson

    2015-11-01

    Full Text Available Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of tight junction proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and tight junction proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and tight junction protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity.

  3. Surfactants have multi-fold effects on skin barrier function.

    Science.gov (United States)

    Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine

    2015-01-01

    The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.

  4. Effects of Plant Sterol and Stanol Consumption on Blood Pressure and Endothelial Function.

    Science.gov (United States)

    Yue, Sum Yu Pansy; Rideout, Todd C; Harding, Scott V

    2015-01-01

    The cholesterol lowering effects of plant sterols and stanols are a well-established complementary means by which to reduce blood cholesterol concentrations. The average reduction in LDL cholesterol concentrations is approximately -10% following a 28-day supplementation protocol. There is very little known regarding what, if any, effect plant sterols and stanols have on other cardiometabolic risk factors such as blood pressure and endothelial function. Here we review the available literature on this topic and attempt to draw conclusions regarding any benefit or risk for blood pressure and endothelial function linked to plant sterol and stanol supplementation. Generally there has been very little work focusing on changes in blood pressure or endothelial function following plant sterol or stanol intervention, but these factors have been measured in some cases as secondary outcomes. Overall, there is little evidence to support either positive or negative effects of plant sterol or stanol supplementation of blood pressure and the data surrounding endothelial function is quite inconclusive. This area of research would benefit from well controlled mechanistic studies in animals and primary interventions in humans which focus on ambulatory blood pressure, central blood pressure and endothelial function.

  5. Detrimental effects of energy drink consumption on platelet and endothelial function.

    Science.gov (United States)

    Worthley, Matthew I; Prabhu, Anisha; De Sciscio, Paolo; Schultz, Carlee; Sanders, Prashanthan; Willoughby, Scott R

    2010-02-01

    Energy drink consumption has been anecdotally linked with sudden cardiac death and, more recently, myocardial infarction. As myocardial infarction is strongly associated with both platelet and endothelial dysfunction, we tested the hypothesis that energy drink consumption alters platelet and endothelial function. Fifty healthy volunteers (34 male, aged 22+/-2 years) participated in the study. Platelet aggregation and endothelial function were tested before, and 1 hour after, the consumption of 250 mL (1 can) of a sugar-free energy drink. Platelet function was assessed by adenosine diphosphate-induced (1 micromol/L) optical aggregometry in platelet-rich plasma. Endothelial function was assessed via changes in peripheral arterial tonometry and expressed as the reactive hyperemia index (RHI). Compared with baseline values, there was a significant increase in platelet aggregation following energy drink consumption, while no change was observed with control (13.7+/-3.7% vs 0.3+/-0.8% aggregation, respectively, P consumption (-0.33+/-0.13 vs 0.07+/-0.12 RHI [control], P consumption, compared with control (P consumption. Energy drink consumption acutely increases platelet aggregation and decreases endothelial function in healthy young adults. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function.

    Science.gov (United States)

    Al-Tahami, Belqes Abdullah Mohammad; Ismail, Ab Aziz Al-Safi; Bee, Yvonne Tee Get; Awang, Siti Azima; Salha Wan Abdul Rani, Wan Rimei; Sanip, Zulkefli; Rasool, Aida Hanum Ghulam

    2015-01-01

    Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR). 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations. 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group. 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.

  7. Endothelial Function in Healthy Young Individuals Is Associated with Dietary Consumption of Saturated Fat.

    Science.gov (United States)

    Lambert, Elisabeth A; Phillips, Sarah; Belski, Regina; Tursunalieva, Ainura; Eikelis, Nina; Sari, Carolina I; Dixon, John B; Straznicky, Nora; Grima, Mariee; Head, Geoffrey A; Schlaich, Markus; Lambert, Gavin W

    2017-01-01

    Background: A diet rich in fat, in particular saturated fat (SF), may be linked to cardiovascular disease development, possibly due to a detrimental effect of fat on endothelial function (EF). Objective: We aimed to determine whether the habitual SF intake [as a ratio to total fat (the sum of saturated, polyunsaturated, and monounsaturated fat)] might influence endothelial function in young, overweight but otherwise healthy adults. Design: Sixty-nine young adults (49 males, mean age: 23 ± 1 years, mean BMI: 29.1 ± 0.8 kg/m2) were classified into three tertiles according to their habitual SF intake consumption (low SF: 43.7% of total fat). Endothelial function was assessed using digital amplitude tonometry. Results: The three groups of individuals were comparable for total energy intake and calories from: fat, protein, and carbohydrates. There was no difference in anthropometric and hemodynamic variables among the groups. Those in the high SF group presented with impaired endothelial function [reactive hyperemia index (RHI): high SF: 1.60 ± 0.08 compared to 2.23 ± 0.16 in the medium SF and 2.12 ± 0.14 in the low SF group, P fat was an independent predictor of the RHI (P fat was strongly associated with impaired endothelial function in young overweight adults, potentially contributing to increased risk of developing cardiovascular disease.

  8. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat.

    Science.gov (United States)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge; Ostrowski, Sisse Rye; Johansson, Pär Ingemar

    2018-01-01

    Traumatic brain injury causes a disruption of the vascular endothelial glycocalyx layer that is associated with an overactivation of the sympathoadrenal system. We hypothesized that early and unselective beta-blockade with propranolol alone or in combination with the alfa2-agonist clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal motor function. We found no difference in brain water content (mean ± SD) between propranolol (80.8 ± 0.3%; 95% confidence interval [CI], 80.7-81.0) and vehicle (81.1 ± 0.6%; 95% CI, 80.8-81.4) (p = 0.668) or between propranolol/clonidine (80.8 ± 0.3%; 95% CI, 80.7-81.0) and vehicle (p = 0.555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. This study does not provide any support for unselective beta-blockade with propranolol or the combination of propranolol and the alfa2-agonist clonidine on brain water content. The novel finding of an increase in plasma concentrations of epinephrine and syndecan-1 after propranolol treatment in traumatic brain injury is of unclear significance and should be investigated further.

  9. Smoking Counteracts the Favorable Effect of Exercise Training on Endothelial Function in Patients with Type 2 Diabetes

    OpenAIRE

    Sato, Shinji; Nakayama, Noriko; Otsuki, Shingo; Tanaka, Shiro; Nakamura, Hajime; Koshiyama, Hiroyuki; Nohara, Ryuji

    2013-01-01

    Background Exercise training can improve endothelial function in patients with diabetes. We hypothesized that the favorable effect of exercise training on endothelial function in patients with diabetes is counteracted by cigarette smoking. Purpose: To assess whether there is a difference in the effect of exercise on endothelial function in smokers and non-smokers with type 2 diabetes. Methods: We performed a 3-month controlled trial in 27 never-smoking and 17 smoking individuals with type 2 d...

  10. Automated quantification reveals hyperglycemia inhibits endothelial angiogenic function.

    Directory of Open Access Journals (Sweden)

    Anthony R Prisco

    Full Text Available Diabetes Mellitus (DM has reached epidemic levels globally. A contributing factor to the development of DM is high blood glucose (hyperglycemia. One complication associated with DM is a decreased angiogenesis. The Matrigel tube formation assay (TFA is the most widely utilized in vitro assay designed to assess angiogenic factors and conditions. In spite of the widespread use of Matrigel TFAs, quantification is labor-intensive and subjective, often limiting experiential design and interpretation of results. This study describes the development and validation of an open source software tool for high throughput, morphometric analysis of TFA images and the validation of an in vitro hyperglycemic model of DM.Endothelial cells mimic angiogenesis when placed onto a Matrigel coated surface by forming tube-like structures. The goal of this study was to develop an open-source software algorithm requiring minimal user input (Pipeline v1.3 to automatically quantify tubular metrics from TFA images. Using Pipeline, the ability of endothelial cells to form tubes was assessed after culture in normal or high glucose for 1 or 2 weeks. A significant decrease in the total tube length and number of branch points was found when comparing groups treated with high glucose for 2 weeks versus normal glucose or 1 week of high glucose.Using Pipeline, it was determined that hyperglycemia inhibits formation of endothelial tubes in vitro. Analysis using Pipeline was more accurate and significantly faster than manual analysis. The Pipeline algorithm was shown to have additional applications, such as detection of retinal vasculature.

  11. Evaluation of endothelial function by peripheral arterial tonometry and relation with the nitric oxide pathway

    DEFF Research Database (Denmark)

    Hedetoft, Morten; Olsen, Niels Vidiendal

    2014-01-01

    by flow-mediated dilation in the brachial artery, but the two methods are not interchangeable. We have reviewed the recent literature in an effort to evaluate peripheral arterial tonometry as a method to assess the function of the endothelium and additionally suggest directions for future research......Endothelial dysfunction is an important component in the development of cardiovascular diseases. Endothelial function may be evaluated by peripheral arterial tonometry (PAT) which measures the vasodilator function in the microvasculature of the fingertip during reactive hyperaemia. The reactive...

  12. Percutaneous Mitral Valve Repair in Mitral Regurgitation Reduces Cell-Free Hemoglobin and Improves Endothelial Function.

    Directory of Open Access Journals (Sweden)

    Christos Rammos

    Full Text Available Endothelial dysfunction is predictive for cardiovascular events and may be caused by decreased bioavailability of nitric oxide (NO. NO is scavenged by cell-free hemoglobin with reduction of bioavailable NO up to 70% subsequently deteriorating vascular function. While patients with mitral regurgitation (MR suffer from an impaired prognosis, mechanisms relating to coexistent vascular dysfunctions have not been described yet. Therapy of MR using a percutaneous mitral valve repair (PMVR approach has been shown to lead to significant clinical benefits. We here sought to investigate the role of endothelial function in MR and the potential impact of PMVR.Twenty-seven patients with moderate-to-severe MR treated with the MitraClip® device were enrolled in an open-label single-center observational study. Patients underwent clinical assessment, conventional echocardiography, and determination of endothelial function by measuring flow-mediated dilation (FMD of the brachial artery using high-resolution ultrasound at baseline and at 3-month follow-up. Patients with MR demonstrated decompartmentalized hemoglobin and reduced endothelial function (cell-free plasma hemoglobin in heme 28.9±3.8 μM, FMD 3.9±0.9%. Three months post-procedure, PMVR improved ejection fraction (from 41±3% to 46±3%, p = 0.03 and NYHA functional class (from 3.0±0.1 to 1.9±1.7, p<0.001. PMVR was associated with a decrease in cell free plasma hemoglobin (22.3±2.4 μM, p = 0.02 and improved endothelial functions (FMD 4.8±1.0%, p<0.0001.We demonstrate here that plasma from patients with MR contains significant amounts of cell-free hemoglobin, which is accompanied by endothelial dysfunction. PMVR therapy is associated with an improved hemoglobin decompartmentalization and vascular function.

  13. Peripheral Endothelial Function After Arterial Switch Operation for D-looped Transposition of the Great Arteries.

    Science.gov (United States)

    Sun, Heather Y; Stauffer, Katie Jo; Nourse, Susan E; Vu, Chau; Selamet Tierney, Elif Seda

    2017-06-01

    Coronary artery re-implantation during arterial switch operation in patients with D-looped transposition of the great arteries (D-TGA) can alter coronary arterial flow and increase shear stress, leading to local endothelial dysfunction, although prior studies have conflicting results. Endothelial pulse amplitude testing can predict coronary endothelial dysfunction by peripheral arterial testing. This study tested if, compared to healthy controls, patients with D-TGA after arterial switch operation had peripheral endothelial dysfunction. Patient inclusion criteria were (1) D-TGA after neonatal arterial switch operation; (2) age 9-29 years; (3) absence of known cardiovascular risk factors such as hypertension, diabetes, hypercholesterolemia, vascular disease, recurrent vasovagal syncope, and coronary artery disease; and (4) ability to comply with overnight fasting. Exclusion criteria included (1) body mass index ≥85th percentile, (2) use of medications affecting vascular tone, or (3) acute illness. We assessed endothelial function by endothelial pulse amplitude testing and compared the results to our previously published data in healthy controls (n = 57). We tested 20 D-TGA patients (16.4 ± 4.8 years old) who have undergone arterial switch operation at a median age of 5 days (0-61 days). Endothelial pulse amplitude testing indices were similar between patients with D-TGA and controls (1.78 ± 0.61 vs. 1.73 ± 0.54, p = 0.73).In our study population of children and young adults, there was no evidence of peripheral endothelial dysfunction in patients with D-TGA who have undergone arterial switch operation. Our results support the theory that coronary arterial wall thickening and abnormal vasodilation reported in these patients is a localized phenomenon and not reflective of overall atherosclerotic burden.

  14. Morphological heterogeneity with normal expression but altered function of G proteins in porcine cultured regenerated coronary endothelial cells

    Science.gov (United States)

    Borg-Capra, Catherine; Fournet-Bourguignon, Marie-Pierre; Janiak, Philip; Villeneuve, Nicole; Bidouard, Jean-Pierre; Vilaine, Jean-Paul; Vanhoutte, Paul M

    1997-01-01

    Experiments were designed to investigate whether the pertussis toxin-dependent endothelial dysfunction following balloon injury is due to a reduced expression or an insufficient function of G-proteins. Endothelium-dependent responses of porcine coronary arteries were examined in vitro by use of conventional organ chambers. Morphological analysis was performed by isolating and culturing the endothelial cells from these arteries. The expression of Gi-proteins in regenerated endothelial cells was measured by Western blots and immunolabelling. The function of G-proteins was assessed by measuring the GTPase activity of cultured endothelial cells. Eight days following denudation, endothelial regrowth was confirmed by histological examination and by demonstrating the presence of endothelium-dependent relaxations to bradykinin and 5-hydroxytryptamine (5-HT). In primary culture, the regenerated endothelial cells displayed a ‘cobblestone' pattern as seen with native endothelial cells. Twenty eight days after denudation, the endothelium-dependent relaxations induced by 5-HT were impaired, but those to bradykinin were maintained. However, the latter were reduced when endothelium-dependent hyperpolarization was prevented. Twenty eight days after denudation, multinucleated giant cells were present in the regenerated but not in the native cultured endothelial cell populations. These regenerated endothelial cells incorporated less tritiated thymidine than native endothelial cells. The intensities of the bands on the immunoblot of the regenerated endothelial cells, when several antibodies against Giα1/α2/α3 were used, were the same as those obtained in native endothelial cells. The immunolabelling with the same antibodies was similar between the giant cells and the regenerated endothelial cells of normal size. The hydrolysis of GTP was lower in regenerated than in native endothelial cell membranes. In conclusion, endothelium-dependent relaxations mediated by Gi-proteins are

  15. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J

    2014-01-01

    includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced...

  16. Typical diffusion behaviour in packaging polymers - Application to functional barriers

    NARCIS (Netherlands)

    Dole, P.; Feigenbaum, A.E.; Cruz, C. de la; Pastorelli, S.; Paseiro, P.; Hankemeier, T.; Voulzatis, Y.; Aucejo, S.; Saillard, P.; Papaspyrides, C.

    2006-01-01

    When plastics are collected for recycling, possibly contaminated articles might be recycled into food packaging, and thus the contaminants might subsequently migrate into the food. Multilayer functional barriers may be used to delay and to reduce such migration. The contribution of the work reported

  17. Endothelial function predicts progression of carotid intima-media thickness

    DEFF Research Database (Denmark)

    Halcox, J.P.; Donald, A.E.; Ellins, E.

    2009-01-01

    investigated endothelial dysfunction, risk factors, and progression of carotid intima-media thickness (cIMT) in late-middle-aged individuals at low to intermediate cardiovascular risk in a prospective study between 1997 and 2005. METHODS AND RESULTS: Brachial artery flow-mediated dilatation and cIMT were...... measured in 213 nonsmoking British civil servants recruited from a prospective cohort (Whitehall II study). Participants (age, 45 to 66 years) were free of clinical cardiovascular disease and diabetes mellitus. Risk factors and Framingham Risk Score were determined at baseline. cIMT was repeated 6.......2+/-0.4 years later. At baseline, age, blood pressure, low-density lipoprotein cholesterol, and Framingham Risk Score correlated with cIMT. However, only flow-mediated dilatation, not risk factors or Framingham Risk Score, was associated with average annual progression of cIMT. This relationship remained...

  18. Hibiscus sabdariffa extract lowers blood pressure and improves endothelial function.

    Science.gov (United States)

    Joven, Jorge; March, Isabel; Espinel, Eugenia; Fernández-Arroyo, Salvador; Rodríguez-Gallego, Esther; Aragonès, Gerard; Beltrán-Debón, Raúl; Alonso-Villaverde, Carlos; Rios, Lidia; Martin-Paredero, Vicente; Menendez, Javier A; Micol, Vicente; Segura-Carretero, Antonio; Camps, Jordi

    2014-06-01

    Polyphenols from Hibiscus sabdariffa calices were administered to patients with metabolic syndrome (125 mg/kg/day for 4 wk, n = 31) and spontaneously hypertensive rats (125 or 60 mg/kg in a single dose or daily for 1 wk, n = 8 for each experimental group). The H. sabdariffa extract improved metabolism, displayed potent anti-inflammatory and antioxidant activities, and significantly reduced blood pressure in both humans and rats. Diuresis and inhibition of the angiotensin I-converting enzyme were found to be less important mechanisms than those related to the antioxidant, anti-inflammatory, and endothelium-dependent effects to explain the beneficial actions. Notably, polyphenols induced a favorable endothelial response that should be considered in the management of metabolic cardiovascular risks. © 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Expression and deposition of basement membrane proteins by brain capillary endothelial cells in a primary murine model of the blood-brain barrier

    DEFF Research Database (Denmark)

    Thomsen, Maj Schneider; Birkelund, Svend; Larsen, Annette Burkhart

    2016-01-01

    The blood-brain barrier (BBB) represents the interface between the blood and the brain parenchyma and consists of endothelial cells which are tightly sealed together by tight junction proteins. The endothelial cells are in addition supported by pericytes, which are embedded in the vascular basement...... membrane, and astrocyte endfeet. To study the interaction of the different cells of the BBB, construction of in vitro BBB models is valuable. However, the modulation and contribution of the cells of the BBB to the synthesis of basement membrane proteins in vitro is not fully elaborated. Thus, the aim...... of the present study was to create four different in vitro constructs of the murine BBB to characterise if the expression and secretion of basement membrane proteins by the murine brain capillary endothelial cells (mBCECs) was affected by co-culturing with pericytes, mixed glial cells, or both. Primary m...

  20. Inflammation Modulates RLIP76/RALBP1 Electrophile-Glutathione Conjugate Transporter and Housekeeping Genes in Human Blood-Brain Barrier Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bennani-Baiti

    Full Text Available Endothelial cells are often present at inflammation sites. This is the case of endothelial cells of the blood-brain barrier (BBB of patients afflicted with neurodegenerative disorders such as Alzheimer's, Parkinson's, or multiple sclerosis, as well as in cases of bacterial meningitis, trauma, or tumor-associated ischemia. Inflammation is a known modulator of gene expression through the activation of transcription factors, mostly NF-κB. RLIP76 (a.k.a. RALBP1, an ATP-dependent transporter of electrophile-glutathione conjugates, modulates BBB permeability through the regulation of tight junction function, cell adhesion, and exocytosis. Genes and pathways regulated by RLIP76 are transcriptional targets of tumor necrosis factor alpha (TNF-α pro-inflammatory molecule, suggesting that RLIP76 may also be an inflammation target. To assess the effects of TNF-α on RLIP76, we faced the problem of choosing reference genes impervious to TNF-α. Since such genes were not known in human BBB endothelial cells, we subjected these to TNF-α, and measured by quantitative RT-PCR the expression of housekeeping genes commonly used as reference genes. We find most to be modulated, and analysis of several inflammation datasets as well as a metaanalysis of more than 5000 human tissue samples encompassing more than 300 cell types and diseases show that no single housekeeping gene may be used as a reference gene. Using three different algorithms, however, we uncovered a reference geneset impervious to TNF-α, and show for the first time that RLIP76 expression is induced by TNF-α and follows the induction kinetics of inflammation markers, suggesting that inflammation can influence RLIP76 expression at the BBB. We also show that MRP1 (a.k.a. ABCC1, another electrophile-glutathione transporter, is not modulated in the same cells and conditions, indicating that RLIP76 regulation by TNF-α is not a general property of glutathione transporters. The reference geneset

  1. The Functional Requirements and Design Basis for Information Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, James L.

    2012-05-01

    This report summarizes the results of the Information Barrier Working Group workshop held at Sandia National Laboratory in Albuquerque, NM, February 2-4, 1999. This workshop was convened to establish the functional requirements associated with warhead radiation signature information barriers, to identify the major design elements of any such system or approach, and to identify a design basis for each of these major elements. Such information forms the general design basis to be used in designing, fabricating, and evaluating the complete integrated systems developed for specific purposes.

  2. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    Directory of Open Access Journals (Sweden)

    Duban-Deweer Sophie

    2010-11-01

    Full Text Available Abstract Background Brain capillary endothelial cells (BCECs form the physiological basis of the blood-brain barrier (BBB. The barrier function is (at least in part due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein. Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

  3. Propranolol treatment lowers blood pressure, reduces vascular inflammatory markers and improves endothelial function in obese mice.

    Science.gov (United States)

    da Silva Franco, Nathalia; Lubaczeuski, Camila; Guizoni, Daniele M; Victorio, Jamaira A; Santos-Silva, Junia C; Brum, Patricia C; Carneiro, Everardo M; Davel, Ana P

    2017-08-01

    Obesity-associated hypertension is accompanied by a number of cardiovascular risk factors including vascular insulin resistance (IR) and higher sympathetic nervous activity. Therefore, autonomic blockade was demonstrated to reverse hypertension, endothelial dysfunction and IR in obese individuals. We hypothesized that β-AR blockade with propranolol would restore endothelial function and vascular insulin signaling in obesity, associated with an anti-inflammatory effect. Body weight, systolic blood pressure (SBP), plasma biochemical parameters and aortic endothelial function were analyzed in mice fed standard diet (control group) or a high fat diet (HFD) that were treated with vehicle (water) or propranolol (10mg/kg/day) for 8weeks. Propranolol treatment did not modify obesogenic effect of HFD feeding. However, propranolol was effective in preventing the rise in SBP, the hyperinsulinemia and the impaired endothelium-dependent relaxation to acetylcholine and to insulin in obese mice. Protective effect of propranolol administration in endothelial function was associated with increased nitric oxide (NO) production and phosphorylation of Akt (Ser473) and eNOS (Ser1177), but with reduced phospho-IRS-1(Ser307) and phospho-ERK1/2 (Thr202/Tyr204). In addition, β-blocker propranolol prevented the NF-kB nuclear translocation and the increase in phospho-IκB-α (Ser32) and in interleukin(IL)-6 expression in aorta of obese mice, without significant changes in either aortic reactive oxygen species production or in circulating IL-6 and TNF-α levels. In β2-AR knockout mice, despite increasing body weight and visceral fat, HFD did not increase SBP and showed a partial improvement of endothelial function, revealing a role of β2-AR in cardiovascular effects of obesity. In conclusion, our results suggest that β-AR blockade with propranolol is effective to prevent the endothelial dysfunction, vascular IR and pro-inflammatory state displayed in HFD-induced obesity, independent of

  4. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function.

    Science.gov (United States)

    Tsai, Tzu-Hsien; Chai, Han-Tan; Sun, Cheuk-Kwan; Yen, Chia-Hung; Leu, Steve; Chen, Yung-Lung; Chung, Sheng-Ying; Ko, Sheung-Fat; Chang, Hsueh-Wen; Wu, Chiung-Jen; Yip, Hon-Kan

    2012-07-02

    This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs) and left ventricular ejection fraction (LVEF). High fat diet (45 Kcal% fat) was given to 8-week-old C57BL/6 J mice (n = 8) for 20 weeks to induce obesity (group 1). Another age-matched group (n = 8) were fed with control diet for 20 weeks as controls (group 2). The animals were sacrificed at the end of 20 weeks after obesity induction. By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all pObesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling.

  5. Biotin and biocytin uptake into cultured primary calf brain microvessel endothelial cells of the blood-brain barrier.

    Science.gov (United States)

    Baur, B; Baumgartner, E R

    2000-03-10

    The uptake of biotin and the closely related biocytin was characterized in primary cultures of calf brain microvessel endothelial (CBME) cells. Biotin uptake was found to be Na(+)-gradient dependent and independent of changes in the membrane potential. Concentration dependence revealed a single saturation mechanism with a K(m) of 47 microM and a V(max) of 101 pmol/min/mg. Inhibition studies demonstrated dependence on metabolic energy and the necessity for a free carboxyl group for transport activity. The anticonvulsants primidone and carbamazepine had no inhibitory effect. Biotin uptake into CBME cells is a secondary active, electroneutral, saturable and specific process. Biocytin which accumulates in biotinidase deficiency, a human congenital disorder, did not inhibit biotin uptake and was not transported into these cells. The presence of human serum with normal biotinidase activity significantly reduced biotin uptake by about 50%. Further, added biocytin was hydrolyzed to biotin, which accumulated intracellularly but to a lesser extent than added free biotin. Biotin uptake after addition of plasma of biotinidase-deficient patients was not different from that in the presence of normal serum. These results indicate that the absence of biotinidase activity in serum does not reduce blood-brain barrier transport of biotin.

  6. Long-term effects of bariatric surgery on peripheral endothelial function and coronary microvascular function.

    Science.gov (United States)

    Tarzia, Pierpaolo; Lanza, Gaetano A; Sestito, Alfonso; Villano, Angelo; Russo, Giulio; Figliozzi, Stefano; Lamendola, Priscilla; De Vita, Antonio; Crea, Filippo

    We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up. We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up. Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery. Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; pfunction and on coronary microvascular dilator function. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  7. Barrier function of the coelomic epithelium in the developing pancreas.

    Science.gov (United States)

    Guo, Ping; Preuett, Barry; Krishna, Prasadan; Xiao, Xiangwei; Shiota, Chiyo; Wiersch, John; Gaffar, Iliana; Tulachan, Sidhartha; El-Gohary, Yousef; Song, Zewen; Gittes, George

    2014-11-01

    Tight spatial regulation of extracellular morphogen signaling within the close confines of a developing embryo is critical for proper organogenesis. Given the complexity of extracellular signaling in developing organs, together with the proximity of adjacent organs that use disparate signaling pathways, we postulated that a physical barrier to signaling may exist between organs in the embryo. Here we describe a previously unrecognized role for the embryonic coelomic epithelium in providing a physical barrier to contain morphogenic signaling in the developing mouse pancreas. This layer of cells appears to function both to contain key factors required for pancreatic epithelial differentiation, and to prevent fusion of adjacent organs during critical developmental windows. During early foregut development, this barrier appears to play a role in preventing splenic anlage-derived activin signaling from inducing intestinalization of the pancreas-specified epithelium. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Macroporous silicon chips for laterally resolved, multi-parametric analysis of epithelial barrier function.

    Science.gov (United States)

    Michaelis, Stefanie; Rommel, Christina E; Endell, Jan; Göring, Petra; Wehrspohn, Ralf; Steinem, Claudia; Janshoff, Andreas; Galla, Hans-Joachim; Wegener, Joachim

    2012-07-07

    This study describes a novel assay to visualize the macromolecular permeability of epithelial and endothelial cell layers with subcellular lateral resolution. Defects within the cell layer and details about the permeation route of the migrating solute are revealed. The assay is based on silicon chips with densely packed, highly ordered, dead-ended pores of μm-diameters on one side. The cells under study are grown on the porous side of the chip such that the pores in the growth surface serve as an array of femtolitre-sized cuvettes in which the permeating probe accumulates at the site of permeation. The pattern of pore filling reveals the permeability characteristics of the cell layer with a lateral resolution in the μm range. Coating of the chip surface with a thin layer of gold allows for impedance analysis of the adherent cells in order to measure their tightness for inorganic ions at the same time. The new assay provides an unprecedented look on epithelial and endothelial barrier function.

  9. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  10. A Single Resistance Exercise Session Improves Aortic Endothelial Function in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Thaís de Oliveira Faria

    Full Text Available Abstract Background: Physical exercise is an important tool for the improvement of endothelial function. Objective: To assess the effects of acute dynamic resistance exercise on the endothelial function of spontaneously hypertensive rats (SHR. Methods: Ten minutes after exercise, the aorta was removed to evaluate the expression of endothelial nitric oxide synthase (eNOS, phosphorylated endothelial nitric oxide synthase (p-eNOS1177 and inducible nitric oxide synthase (iNOS and to generate concentration-response curves to acetylcholine (ACh and to phenylephrine (PHE. The PHE protocol was also performed with damaged endothelium and before and after NG-nitro-L-arginine methyl ester (L-NAME and indomethacin administration. The maximal response (Emax and the sensitivity (EC50 to these drugs were evaluated. Results: ACh-induced relaxation increased in the aortic rings of exercised (Ex rats (Emax= -80 ± 4.6%, p < 0.05 when compared to those of controls (Ct (Emax = -50 ± 6.8%. The Emax to PHE was decreased following exercise conditions (95 ± 7.9%, p < 0.05 when compared to control conditions (120 ± 4.2%. This response was abolished after L-NAME administration or endothelial damage. In the presence of indomethacin, the aortic rings' reactivity to PHE was decreased in both groups (EC50= Ex -5.9 ± 0.14 vs. Ct -6.6 ± 0.33 log µM, p < 0.05 / Emax = Ex 9.5 ± 2.9 vs. Ct 17 ± 6.2%, p < 0.05. Exercise did not alter the expression of eNOS and iNOS, but increased the level of p-eNOS. Conclusion: A single resistance exercise session improves endothelial function in hypertensive rats. This response seems to be mediated by increased NO production through eNOS activation.

  11. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats.

    Science.gov (United States)

    Friques, Andreia G F; Arpini, Clarisse M; Kalil, Ieda C; Gava, Agata L; Leal, Marcos A; Porto, Marcella L; Nogueira, Breno V; Dias, Ananda T; Andrade, Tadeu U; Pereira, Thiago Melo C; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2015-12-30

    The beverage obtained by fermentation of milk with kefir grains, a complex matrix containing acid bacteria and yeasts, has been shown to have beneficial effects in various diseases. However, its effects on hypertension and endothelial dysfunction are not yet clear. In this study, we evaluated the effects of kefir on endothelial cells and vascular responsiveness in spontaneously hypertensive rats (SHR). SHR were treated with kefir (0.3 mL/100 g body weight) for 7, 15, 30 and 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Vascular endothelial function was evaluated in aortic rings through the relaxation response to acetylcholine (ACh). The balance between reactive oxygen species (ROS) and nitric oxide (NO) synthase was evaluated through specific blockers in the ACh-induced responses and through flow cytometry in vascular tissue. Significant effects of kefir were observed only after treatment for 60 days. The high blood pressure and tachycardia exhibited by the SHR were attenuated by approximately 15 % in the SHR-kefir group. The impaired ACh-induced relaxation of the aortic rings observed in the SHR (37 ± 4 %, compared to the Wistar rats: 74 ± 5 %), was significantly attenuated in the SHR group chronically treated with kefir (52 ± 4 %). The difference in the area under the curve between before and after the NADPH oxidase blockade or NO synthase blockade of aortic rings from SHR were of approximately +90 and -60 %, respectively, when compared with Wistar rats. In the aortic rings from the SHR-kefir group, these values were reduced to +50 and -40 %, respectively. Flow cytometric analysis of aortic endothelial cells revealed increased ROS production and decreased NO bioavailability in the SHR, which were significantly attenuated by the treatment with kefir. Scanning electronic microscopy showed vascular endothelial surface injury in SHR, which was partially protected following administration of kefir for 60 days. In addition, the

  12. Cerebral Endothelial Function Determined by Cerebrovascular Reactivity to L-Arginine

    OpenAIRE

    Pretnar-Oblak, Janja

    2014-01-01

    Endothelium forms the inner cellular lining of blood vessels and plays an important role in many physiological functions including the control of vasomotor tone. Cerebral endothelium is probably one of the most specific types but until recently it was impossible to determine its function. In this review, the role of cerebrovascular reactivity to L-arginine (CVR-L-Arg) for assessment of cerebral endothelial function is discussed. L-Arginine induces vasodilatation through enhanced production of...

  13. Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells.

    Science.gov (United States)

    Kaneko, Yosuke; Tachikawa, Masanori; Akaogi, Ryo; Fujimoto, Kazuhisa; Ishibashi, Megumi; Uchida, Yasuo; Couraud, Pierre-Olivier; Ohtsuki, Sumio; Hosoya, Ken-ichi; Terasaki, Tetsuya

    2015-04-01

    Dysregulation of blood-brain barrier (BBB) transport function is thought to exacerbate neuronal damage in acute ischemic stroke. The purpose of this study was to clarify the characteristics of pannexin (Px) and/or connexin (Cx) hemichannel(s)-mediated transport of organic anions and cations in human BBB endothelial cell line hCMEC/D3 and to identify inhibitors of hemichannel opening in hCMEC/D3 cells in the absence of extracellular Ca(2+), a condition mimicking acute ischemic stroke. In the absence of extracellular Ca(2+), the cells showed increased uptake and efflux transport of organic ionic fluorescent dyes. Classic hemichannel inhibitors markedly inhibited the enhanced uptake and efflux. Quantitative targeted absolute proteomics confirmed Px1 and Cx43 protein expression in plasma membrane of hCMEC/D3 cells. Knockdown of Px1 and Cx43 with the small interfering RNAs significantly inhibited the enhanced uptake and efflux of organic anionic and cationic fluorescent dyes. Clinically used cilnidipine and progesterone, which have neuroprotective effects in animal ischemia models, were identified as inhibitors of hemichannel opening. These findings suggest that altered transport dynamics at the human BBB in the absence of extracellular Ca(2+) is at least partly attributable to opening of Px1 and Cx43 hemichannels. Therefore, we speculate that Px1 and Cx43 may be potential drug targets to ameliorate BBB transport dysregulation during acute ischemia. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Sesame oil consumption exerts a beneficial effect on endothelial function in hypertensive men.

    Science.gov (United States)

    Karatzi, Kalliopi; Stamatelopoulos, Kimon; Lykka, Maritta; Mantzouratou, Pigi; Skalidi, Sofia; Zakopoulos, Nikolaos; Papamichael, Christos; Sidossis, Labros S

    2013-04-01

    The aim of the study was to investigate the effects of sesame oil on endothelial function and to detect the underlying mechanisms, both in the postprandial state and after long-term consumption. We enrolled 30 hypertensive men in a two-phase study. In the first phase, 26 volunteers consumed 35 g of either sesame oil or control oil. Endothelial function, inflammatory activation and nitric oxide syntase (NOS) inhibition was assessed after a 12-hour fast and 2 hours after consumption of an oil-containing standardized meal. In the second phase, 30 volunteers consumed 35 g of sesame oil or control oil daily for 2 months and the above-mentioned parameters were assessed at baseline, 15, 30 and 60 days. Endothelial function was estimated by endothelium-dependent FMD (flow-mediated dilatation) of the brachial artery. Flow-mediated dilatation (FMD) improved significantly both after acute (p = 0.001) and long-term sesame oil consumption (p = 0.015, p = 0.005 and p = 0.011 for 15, 30 and 60 days respectively). Intracellular adhesion molecule (ICAM) levels decreased significantly after only 60 days of daily sesame oil intake (p = 0.014). By contrast, no changes were observed in the control group in either phase of the study. This is the first study to show that sesame oil consumption exerts a beneficial effect on endothelial function and this effect is sustained with long-term daily use.

  15. Vascular endothelial cell function and cardiovascular risk factors in patients with chronic renal failure

    DEFF Research Database (Denmark)

    Haaber, A B; Eidemak, I; Jensen, T

    1995-01-01

    Cardiovascular risk factors and markers of endothelial cell function were studied in nondiabetic patients with mild to moderate chronic renal failure. The transcapillary escape rate of albumin and the plasma concentrations of von Willebrand factor, fibrinogen, and plasma lipids were measured in 29...

  16. Evaluation of exenatide versus insulin glargine for the impact on endothelial functions and cardiovascular risk markers.

    Science.gov (United States)

    Gurkan, Eren; Tarkun, Ilhan; Sahin, Tayfun; Cetinarslan, Berrin; Canturk, Zeynep

    2014-12-01

    To demonstrate the efficacy of exenatide versus insulin glargine on endothelial functions and cardiovascular risk markers. Thirty-four insulin and incretin-naive patients with type 2 diabetes mellitus (body mass index 25-45 kg/m(2)) who received metformin for at least two months were randomized to exenatide or insulin glargine treatment arms and followed-up for 26 weeks. Measurements of endothelial functions were done by ultrasonography, cardiovascular risk markers by serum enzyme-linked immunosorbent assay, and total body fat mass by bioimpedance. Levels of high sensitivity-C-reactive protein and endothelin-1 decreased (27.5% and 18.75%, respectively) in the exenatide arm. However, in the insulin glargine arm, fibrinogen, monocyte chemoattractant protein-1, leptin and endothelin-1 levels (13.4, 30.2, 47.5, and 80%, respectively) increased. Post-treatment flow mediated dilatation and endothelium independent vascular responses were significantly higher in both arms (p=0.0001, p=0.0001). Positive correlation was observed between the changes in body weight and endothelium-independent vasodilatation, leptin, plasminogen activator inhibitor type 1 and endothelin-1 in both arms (r=0.376, r=0.507, r=0.490, r=0.362, respectively). Insulin glargine improved endothelial functions, without leading to positive changes in cardiovascular risk markers. Exenatide treatment of 26 weeks resulted in reduced body weight and improvement in certain cardiovascular risk markers and endothelial functions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The Effects of Heart-Lung Bypass on Endothelial Function of Patients with Open Heart Surgery

    Directory of Open Access Journals (Sweden)

    Mohammad Borzouee

    2015-06-01

    Full Text Available Background: Endothelium is an essential organ for maintaining an adequate vascular tone and preventing the pathological process of atherosclerosis. Heart-lung machine is a mechanical support for maintenance of blood circulation during open heart surgery. It has been shown that flow of blood through this circuit can induce complement activation, endotoxines production, and release of many inflammatory mediators. Objectives: Cardiopulmonary Bypass (CPB has some detrimental effects on endothelial function. Flow Mediated Dilation (FMD is also a noninvasive method for evaluation of endothelial function. Patients and Methods: This study was conducted on 22 patients who were admitted in cardiac surgery ward for open heart operation and met the inclusion criteria of the study. Brachial artery FMD was measured the day before and 2 days after CPB. Results: The mean duration of CPB was 62.95 minutes. The mean percent of FMD changes was measured and compared before and after CPB (4.29 and 0.03 vs. 1.38 and 1.99, < 0.001. The results showed a significant relationship between CPB and bronchial endothelial function. Conclusions: This study revealed the influence of CPB on endothelial function. Yet, more studies are necessary to confirm this important issue, and decline in use of CPB is appreciated.

  18. Endothelial function of young healthy males following whole body resistance training.

    NARCIS (Netherlands)

    Rakobowchuk, M.; McGowan, C.L.; Groot, P.C.E. de; Hartman, J.W.; Phillips, S.M.; MacDonald, M.J.

    2005-01-01

    Given the increasing emphasis on performance of resistance exercise as an essential component of health, we evaluated, using a prospective longitudinal design, the potential for resistance training to affect arterial endothelial function. Twenty-eight men (23 +/- 3.9 yr old; mean +/- SE) engaged in

  19. Small and Intermediate Calcium-Activated Potassium Channel Openers Improve Rat Endothelial and Erectile Function

    Science.gov (United States)

    Comerma-Steffensen, Simon G.; Carvacho, Ingrid; Hedegaard, Elise R.; Simonsen, Ulf

    2017-01-01

    Modulation of endothelial calcium-activated potassium (KCa) channels has been proposed as an approach to restore endothelial function. The present study investigated whether novel openers of KCa channels with small (KCa2.x) and intermediate (KCa3.1) conductance, NS309 and NS4591, improve endothelium-dependent relaxation and erectile function. Rat corpus cavernosum (CC) strips were mounted for isometric tension recording and processed for immunoblotting. Mean arterial pressure (MAP), intracavernosal pressure (ICP), and electrocardiographic (ECG) measurements were conducted in anesthetized rats. Immunoblotting revealed the presence of KCa2.3 and large KCa conductance (KCa1.1) channels in the corpus cavernosum. NS309 and NS4591 increased current in CC endothelial cells in whole cell patch clamp experiments. Relaxation induced by NS309 (cavernous nerve stimulation with NS309 were unchanged, whereas NS4591 significantly improved erectile function. Administration of NS309 and NS4591 caused small changes in the electrocardiogram, but neither arrhythmic events nor prolongation of the QTc interval were observed. The present study suggests that openers of KCa2.x and KCa3.1 channels improve endothelial and erectile function. The effects of NS309 and NS4591 on heart rate and ECG are small, but will require additional safety studies before evaluating whether activation of KCa2.3 channels has a potential for treatment of erectile dysfunction. PMID:28993731

  20. Endothelial dilatory function predicts individual susceptibility to renal damage in the 5/6 nephrectomized rat

    NARCIS (Netherlands)

    Gschwend, S; Buikema, H; Navis, G; Henning, RH; De Zeeuw, D; Van Dokkum, RPE

    2002-01-01

    In experimental animal models of renal disease the degree of renal damage varies between individuals. This could be caused by variation in the noxious event or by differences in individual susceptibility. Intact endothelial function is assumed to provide a defense mechanism against progressive renal

  1. Omega-3 fatty acids plus rosuvastatin improves endothelial function in South Asians with dyslipidemia

    Directory of Open Access Journals (Sweden)

    Catalin Mindrescu

    2008-12-01

    Full Text Available Catalin Mindrescu1,2,3, Rakesh P Gupta1,3, Eileen V Hermance1, Mary C DeVoe1, Vikas R Soma1, John T Coppola1,2, Cezar S Staniloae1,21Comprehensive Cardiovascular Center, Saint Vincent’s Hospital Manhattan, New York, NY, USA; 2New York Medical College, Valhalla, NY, USA; 3Rakesh P Gupta and Catalin Mindrescu contributed equally to this article.Background: The present study was undertaken to investigate the effect of statins plus omega-3 polyunsaturated fatty acids (PUFAs on endothelial function and lipid profile in South Asians with dyslipidemia and endothelial dysfunction, a population at high risk for premature coronary artery disease.Methods: Thirty subjects were randomized to rosuvastatin 10 mg and omega-3-PUFAs 4 g or rosuvastatin 10 mg. After 4 weeks, omega-3-PUFAs were removed from the first group and added to subjects in the second group. All subjects underwent baseline, 4-, and 8-week assessment of endothelial function and lipid profile.Results: Compared to baseline, omega-3-PUFAs plus rosuvastatin improved endothelial-dependent vasodilation (EDV: −1.42% to 11.36%, p = 0.001, and endothelial-independent vasodilation (EIV: 3.4% to 17.37%, p = 0.002. These effects were lost when omega-3-PUFAs were removed (EDV: 11.36% to 0.59%, p = 0.003. In the second group, rosuvastatin alone failed to improve both EDV and EIV compared to baseline. However, adding omega-3-PUFAs to rosuvastatin, significantly improved EDV (−0.66% to 14.73%, p = 0.001 and EIV (11.02% to 24.5%, p = 0.001. Addition of omega-3-PUFAs further improved the lipid profile (triglycerides 139 to 91 mg/dl, p = 0.006, low-density lipoprotein cholesterol 116 to 88 mg/dl, p = 0.014.Conclusions: Combined therapy with omega-3-PUFAs and rosuvastatin improves endothelial function in South Asian subjects with dyslipidemia and endothelial dysfunction.Keywords: omega-3 fatty acids, endothelial function, South Asians, dyslipidemia, rosuvastatin

  2. Quinapril treatment increases insulin-stimulated endothelial function and adiponectin gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hermann, Thomas S; Li, Weijie; Dominguez, Helena

    2005-01-01

    OBJECTIVE: Angiotensin-converting enzyme inhibitors reduce cardiovascular mortality and improve endothelial function in type 2 diabetic patients. We hypothesized that 2 months of quinapril treatment would improve insulin-stimulated endothelial function and glucose uptake in type 2 diabetic subjects...... and simultaneously increase the expression of genes that are pertinent for endothelial function and metabolism. METHODS: Twenty-four type 2 diabetic subjects were randomized to receive 2 months of quinapril 20 mg daily or no treatment in an open parallel study. Endothelium-dependent and -independent vasodilation...... occlusion plethysmography. Gene expression was measured by real-time PCR. RESULTS: Quinapril treatment increased insulin-stimulated endothelial function in the type 2 diabetic subjects (P = 0.005), whereas forearm glucose uptake was unchanged. Endothelial function was also increased by quinapril (P = 0...

  3. Modulation of p-glycoprotein transport function at the blood-brain barrier.

    Science.gov (United States)

    Bauer, Björn; Hartz, Anika M S; Fricker, Gert; Miller, David S

    2005-02-01

    The central nervous system (CNS) effects of many therapeutic drugs are blunted because of restricted entry into the brain. The basis for this poor permeability is the brain capillary endothelium, which comprises the blood-brain barrier. This tissue exhibits very low paracellular (tight-junctional) permeability and expresses potent, multispecific, drug export pumps. Together, these combine to limit use of pharmacotherapy to treat CNS disorders such as brain cancer and bacterial or viral infections. Of all the xenobiotic efflux pumps highly expressed in brain capillary endothelial cells, p-glycoprotein handles the largest fraction of commonly prescribed drugs and thus is an obvious target for manipulation. Here we review recent studies focused on understanding the mechanisms by which p-glycoprotein activity in the blood-brain barrier can be modulated. These include (i) direct inhibition by specific competitors, (ii) functional modulation, and (iii) transcriptional modulation. Each has the potential to specifically reduce p-glycoprotein function and thus selectively increase brain permeability of p-glycoprotein substrates.

  4. Biphasic function of focal adhesion kinase in endothelial tube formation induced by fibril-forming collagens.

    Science.gov (United States)

    Nakamura, Junko; Shigematsu, Satoshi; Yamauchi, Keishi; Takeda, Teiji; Yamazaki, Masanori; Kakizawa, Tomoko; Hashizume, Kiyoshi

    2008-10-03

    Migration and tube formation of endothelial cells are important in angiogenesis and require a coordinated response to the extra-cellular matrix (ECM) and growth factor. Since focal adhesion kinase (FAK) integrates signals from both ECM and growth factor, we investigated its role in angiogenesis. Type I and II collagens are fibril-forming collagens and stimulate human umbilical vein endothelial cells (HUVECs) to form tube structure. Although knockdown of FAK restrained cell motility and resulted in inhibition of tube formation, FAK degradation and tube formation occurred simultaneously after incubation with fibril-forming collagens. The compensation for the FAK degradation by a calpain inhibitor or transient over-expression of FAK resulted in disturbance of tube formation. These phenomena are specific to fibril-forming collagens and mediated via alpha2beta1 integrin. In conclusion, our data indicate that FAK is functioning in cell migration, but fibril-forming collagen-induced FAK degradation is necessary for endothelial tube formation.

  5. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells.

    Science.gov (United States)

    Cardoso, Filipa L; Kittel, Agnes; Veszelka, Szilvia; Palmela, Inês; Tóth, Andrea; Brites, Dora; Deli, Mária A; Brito, Maria A

    2012-01-01

    Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS) is known to alter the integrity of the blood-brain barrier (BBB), little is known on the effects of unconjugated bilirubin (UCB) and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC). Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period.

  6. Morphological heterogeneity with normal expression but altered function of G proteins in porcine cultured regenerated coronary endothelial cells

    OpenAIRE

    Borg-Capra, Catherine; Fournet-Bourguignon, Marie-Pierre; Janiak, Philip; Villeneuve, Nicole; Bidouard, Jean-Pierre; Vilaine, Jean-Paul; Vanhoutte, Paul M

    1997-01-01

    Experiments were designed to investigate whether the pertussis toxin-dependent endothelial dysfunction following balloon injury is due to a reduced expression or an insufficient function of G-proteins.Endothelium-dependent responses of porcine coronary arteries were examined in vitro by use of conventional organ chambers. Morphological analysis was performed by isolating and culturing the endothelial cells from these arteries. The expression of Gi-proteins in regenerated endothelial cells was...

  7. Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity.

    Science.gov (United States)

    Hughes-Large, Jennifer M; Pang, Dominic K T; Robson, Debra L; Chan, Pak; Toma, Jelena; Borradaile, Nica M

    2014-12-01

    Niacin (nicotinic acid) as a monotherapy can reduce vascular disease risk, but its mechanism of action remains controversial, and may not be dependent on systemic lipid modifying effects. Niacin has recently been shown to improve endothelial function and vascular regeneration, independent of correcting dyslipidemia, in rodent models of vascular injury and metabolic disease. As a potential biosynthetic precursor for NAD(+), niacin could elicit these vascular benefits through NAD(+)-dependent, sirtuin (SIRT) mediated responses. Alternatively, niacin may act through its receptor, GPR109A, to promote endothelial function, though endothelial cells are not known to express this receptor. We hypothesized that niacin directly improves endothelial cell function during exposure to lipotoxic conditions and sought to determine the potential mechanism(s) involved. Angiogenic function in excess palmitate was assessed by tube formation following treatment of human microvascular endothelial cells (HMVEC) with either a relatively low concentration of niacin (10 μM), or nicotinamide mononucleotide (NMN) (1 μM), a direct NAD(+) precursor. Although both niacin and NMN improved HMVEC tube formation during palmitate overload, only NMN increased cellular NAD(+) and SIRT1 activity. We further observed that HMVEC express GRP109A. Activation of this receptor with either acifran or MK-1903 recapitulated niacin-induced improvements in HMVEC tube formation, while GPR109A siRNA diminished the effect of niacin. Niacin, at a low concentration, improves HMVEC angiogenic function under lipotoxic conditions, likely independent of NAD(+) biosynthesis and SIRT1 activation, but rather through niacin receptor activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Daily egg consumption in hyperlipidemic adults--effects on endothelial function and cardiovascular risk.

    Science.gov (United States)

    Njike, Valentine; Faridi, Zubaida; Dutta, Suparna; Gonzalez-Simon, Anjelica L; Katz, David L

    2010-07-02

    Limiting consumption of eggs, which are high in cholesterol, is generally recommended to reduce risk of cardiovascular disease. However, recent evidence suggests that dietary cholesterol has limited influence on serum cholesterol or cardiac risk. To assess the effects of egg consumption on endothelial function and serum lipids in hyperlipidemic adults. Randomized, placebo-controlled crossover trial of 40 hyperlipidemic adults (24 women, 16 men; average age = 59.9 +/- 9.6 years; weight = 76.3 +/- 21.8 kilograms; total cholesterol = 244 +/- 24 mg/dL). In the acute phase, participants were randomly assigned to one of the two sequences of a single dose of three medium hardboiled eggs and a sausage/cheese breakfast sandwich. In the sustained phase, participants were then randomly assigned to one of the two sequences of two medium hardboiled eggs and 1/2 cup of egg substitute daily for six weeks. Each treatment assignment was separated by a four-week washout period. Outcome measures of interest were endothelial function measured as flow mediated dilatation (FMD) and lipid panel. Single dose egg consumption had no effects on endothelial function as compared to sausage/cheese (0.4 +/- 1.9 vs. 0.4 +/- 2.4%; p = 0.99). Daily consumption of egg substitute for 6 weeks significantly improved endothelial function as compared to egg (1.0 +/- 1.2% vs. -0.1 +/- 1.5%; p cholesterol (-18 +/- 18 vs. -5 +/- 21 mg/dL; p < 0.01) and LDL (-14 +/- 20 vs. -2 +/- 19 mg/dL; p = 0.01). Study results (positive or negative) are expressed in terms of change relative to baseline. Egg consumption was found to be non-detrimental to endothelial function and serum lipids in hyperlipidemic adults, while egg substitute consumption was beneficial.

  9. Daily egg consumption in hyperlipidemic adults - Effects on endothelial function and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Gonzalez-Simon Anjelica L

    2010-07-01

    Full Text Available Abstract Background Limiting consumption of eggs, which are high in cholesterol, is generally recommended to reduce risk of cardiovascular disease. However, recent evidence suggests that dietary cholesterol has limited influence on serum cholesterol or cardiac risk. Objective To assess the effects of egg consumption on endothelial function and serum lipids in hyperlipidemic adults. Methods Randomized, placebo-controlled crossover trial of 40 hyperlipidemic adults (24 women, 16 men; average age = 59.9 ± 9.6 years; weight = 76.3 ± 21.8 kilograms; total cholesterol = 244 ± 24 mg/dL. In the acute phase, participants were randomly assigned to one of the two sequences of a single dose of three medium hardboiled eggs and a sausage/cheese breakfast sandwich. In the sustained phase, participants were then randomly assigned to one of the two sequences of two medium hardboiled eggs and 1/2 cup of egg substitute daily for six weeks. Each treatment assignment was separated by a four-week washout period. Outcome measures of interest were endothelial function measured as flow mediated dilatation (FMD and lipid panel. Results Single dose egg consumption had no effects on endothelial function as compared to sausage/cheese (0.4 ± 1.9 vs. 0.4 ± 2.4%; p = 0.99. Daily consumption of egg substitute for 6 weeks significantly improved endothelial function as compared to egg (1.0 ± 1.2% vs. -0.1 ± 1.5%; p p p = 0.01. Study results (positive or negative are expressed in terms of change relative to baseline. Conclusions Egg consumption was found to be non-detrimental to endothelial function and serum lipids in hyperlipidemic adults, while egg substitute consumption was beneficial.

  10. Small and Intermediate Calcium-Activated Potassium Channel Openers Improve Rat Endothelial and Erectile Function

    Directory of Open Access Journals (Sweden)

    Simon G. Comerma-Steffensen

    2017-09-01

    Full Text Available Modulation of endothelial calcium-activated potassium (KCa channels has been proposed as an approach to restore endothelial function. The present study investigated whether novel openers of KCa channels with small (KCa2.x and intermediate (KCa3.1 conductance, NS309 and NS4591, improve endothelium-dependent relaxation and erectile function. Rat corpus cavernosum (CC strips were mounted for isometric tension recording and processed for immunoblotting. Mean arterial pressure (MAP, intracavernosal pressure (ICP, and electrocardiographic (ECG measurements were conducted in anesthetized rats. Immunoblotting revealed the presence of KCa2.3 and large KCa conductance (KCa1.1 channels in the corpus cavernosum. NS309 and NS4591 increased current in CC endothelial cells in whole cell patch clamp experiments. Relaxation induced by NS309 (<1 μM was inhibited by endothelial cell removal and high extracellular potassium. An inhibitor of nitric oxide (NO synthase, and blockers of KCa2.x and KCa1.1 channels, apamin and iberiotoxin also inhibited NS309 relaxation. Incubation with NS309 (0.5 μM markedly enhanced acetylcholine relaxation. Basal erectile function (ICP/MAP increased during administration of NS309. Increases in ICP/MAP after cavernous nerve stimulation with NS309 were unchanged, whereas NS4591 significantly improved erectile function. Administration of NS309 and NS4591 caused small changes in the electrocardiogram, but neither arrhythmic events nor prolongation of the QTc interval were observed. The present study suggests that openers of KCa2.x and KCa3.1 channels improve endothelial and erectile function. The effects of NS309 and NS4591 on heart rate and ECG are small, but will require additional safety studies before evaluating whether activation of KCa2.3 channels has a potential for treatment of erectile dysfunction.

  11. [The altered endothelial function in patients with arterial hypertension and different forms of atrial fibrillation].

    Science.gov (United States)

    Podzolkov, V I; Tarzimanova, A I; Mokhammadi, L N

    2014-01-01

    The role of endothelial function in the development of cardiovascular diseases has recently attracted attention of many researchers due to increasingly more data suggesting the relationship between endothelial dysfunction (ED) and disturbed cardiac rhythms including atrial fibrillation (AF). ED is known to precede lesions in target organs related to arterial hypertension (AH) which makes the study of endothelial function as an early marker of vascular lesions in AH and AF a topical issue. To study changes of endothelial function in patients with AH and AF. Group 1 included 84 patients with AH (inclusion criteria: essential AH and confirmed paroxysm of AF), group 2 contained 20 patients with AH and permanent AF, control group was comprised of 30 AH patients without AF. The vasomotor function of endothelium was evaluated from reactive hyperemia determined by the ultrasonic method, blood samples for biochemical analysis and determination of Willebrand factor (WF) were taken during fasting. Patients of group 2 showed significant changes of endothelium-dependent vasodilation of the brachial artery. Its diameter within 60 sec after decompression increased by 5.8 +/- 0.9% and 12.3 +/- 1.2% in groups 1 and 3 respectively (p < 0.05). In group 2, collagen-binding activity of WF increased significantly to 1500 +/-140 U/100 ml compared with 1060 +/- 120 and 840 +/- 110 in groups 2 and 3 (p < 0.05). Patients with AH and persistent AF had altered endothelial function in the form of significant decrease of endothelium-dependent vasodilation of the brachial artery and increase of collagen-binding activity of WF.

  12. Effects of cigarette smoke on endothelial function of pulmonary arteries in the guinea pig

    Directory of Open Access Journals (Sweden)

    Martínez Anna

    2009-08-01

    Full Text Available Abstract Background Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by altering the structure and function of pulmonary vessels at early disease stages. The objectives of this study were to evaluate the effects of long-term exposure to cigarette smoke on endothelial function and smooth muscle-cell proliferation in pulmonary arteries of guinea pigs. Methods 19 male Hartley guinea pigs were exposed to the smoke of 7 cigarettes/day, 5 days/week, for 3 and 6 months. 17 control guinea pigs were sham-exposed for the same periods. Endothelial function was evaluated in rings of pulmonary artery and aorta as the relaxation induced by ADP. The proliferation of smooth muscle cells and their phenotype in small pulmonary vessels were evaluated by immunohistochemical expression of α-actin and desmin. Vessel wall thickness, arteriolar muscularization and emphysema were assessed morphometrically. The expression of endothelial nitric oxide synthase (eNOS was evaluated by Real Time-PCR. Results Exposure to cigarette smoke reduced endothelium-dependent vasodilatation in pulmonary arteries (ANOVA p Conclusion In the guinea pig, exposure to cigarette smoke induces selective endothelial dysfunction in pulmonary arteries, smooth muscle cell proliferation in small pulmonary vessels and reduced lung expression of eNOS. These changes appear after 3 months of exposure and precede the development of pulmonary emphysema.

  13. HIV infection, antiretroviral therapy, and measures of endothelial function, inflammation, metabolism, and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Andrew Dysangco

    Full Text Available HIV-infected patients have an increased risk of cardiovascular disease (CVD. Impaired endothelial function is an early risk factor for CVD in the general population. It is presumed that HIV infection is associated with impaired endothelial function, but results have been inconsistent.Our objectives were to determine the relationships between HIV infection, virologic suppression with antiretroviral therapy (ART, in vivo measures of conduit artery and microvascular endothelial function, and circulating biomarkers of pathways associated with CVD.We performed a cross-sectional analysis of three prospectively enrolled groups from a single center: 28 were HIV-infected and virologically-suppressed on a regimen of FTC/TDF/EFV (HIV+ART+, 44 were HIV-infected but not on ART (HIV+ART-, and 39 were HIV-uninfected healthy volunteers (HIV- matched to the HIV+ART- group for age, sex, smoking status, and height. None had diabetes, uncontrolled hypertension, known CVD, or other pro-inflammatory condition. Flow mediated dilation (FMD, nitroglycerin-mediated dilation (NTGMD, reactive hyperemia velocity time integral (RHVTI, and FMD/RHVTI of the brachial artery were measured, as well as circulating biomarkers of systemic inflammation, metabolism, oxidative stress, and endothelial activation.No significant differences were found amongst the three groups in FMD (P = 0.46, NTGMD (P = 0.42, RHVTI (P = 0.17, and FMD/RHVTI (P = 0.22 in unadjusted comparisons. Adjusted ANOVA models which included brachial artery diameter, demographics, and conventional CVD risk factors did not appreciably change these findings. In pairwise comparisons, the HIV+ART- group had significantly higher soluble tumor necrosis factor receptor II, soluble CD163, β-2 microglobulin, interferon-γ- induced protein-10, tissue inhibitor of metalloproteinase-1, and vascular cell adhesion molecule-1 compared to the other two groups (all p<0.05. Correlates of endothelial function differed between study

  14. Effect of exercise training on endothelial function in heart failure patients: A systematic review meta-analysis.

    Science.gov (United States)

    Pearson, M J; Smart, N A

    2017-03-15

    Endothelial dysfunction contributes to the development and progression of cardiovascular disease and heart failure (HF) and is associated with an increased risk of mortality. Flow-mediated dilation (FMD) is widely utilised to assess endothelial function and is improved with exercise training in heart failure patients. The aim of this meta-analysis is to quantify the effect of exercise training in patients with heart failure. A large number of studies now exist that have examined endothelial function in patients with heart failure. We sought to add to the current literature by quantifying the effect of exercise training on endothelial function. We conducted database searches (PubMed, EMBASE, PROQUEST and Cochrane Trials Register to June 2016) for exercise based rehabilitation trials in heart failure, using search terms exercise training, endothelial function, flow-mediated dilation (FMD) and endothelial progenitor cells (EPCs). The 16 included studies provided a total of 529 participants, 293 in an intervention and 236 in controls groups. FMD was improved with exercise training in exercise vs. control, SMD of 1.08 (95%CI 0.70 to 1.46, ptraining improved endothelial function, assessed via FMD, and endothelial progenitor cells in heart failure patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Urinary Leukotriene E4 Is Associated with Renal Function but Not with Endothelial Function in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Arnar Rafnsson

    2013-01-01

    Full Text Available Leukotrienes are inflammatory and vasoactive mediators implicated in endothelium-dependent relaxations and atherosclerosis. Urinary leukotriene E4 (U-LTE4 is a validated disease marker of asthma and increases also in diabetes and acute coronary syndromes. The aim of the present study was to evaluate the association of U-LTE4 and CRP with endothelial function. Urine samples were obtained from 30 subjects (80% males; median age 65 with type 2 diabetes of at least two years duration and a median glomerular filtration rate (eGFR of 71 (14–129 mL/min. Reactive hyperemia index (RHI was used as a measure of microvascular endothelial function, whereas macrovascular endothelial function was determined be means of flow-mediated dilatation of the brachial artery (FMD. Decreased renal function was associated with lower concentrations of U-LTE4. In addition, U-LTE4 was correlated with serum creatinine (R=−0.572; P=0.001 and eGFR (R=0.517; P=0.0036. A stepwise multiple linear regression analysis identified eGFR as an independent predictor of U-LTE4 concentrations. In conclusion, the present results did not establish an association of U-LTE4 with endothelial dysfunction. However, eGFR was an independent predictor of U-LTE4, but not CRP, in this cohort, suggesting that GFR should be considered in biomarker studies of U-LTE4.

  16. Effect on Intermittent Hypoxia on Plasma Exosomal Micro RNA Signature and Endothelial Function in Healthy Adults.

    Science.gov (United States)

    Khalyfa, Abdelnaby; Zhang, Chunling; Khalyfa, Ahamed A; Foster, Glen E; Beaudin, Andrew E; Andrade, Jorge; Hanly, Patrick J; Poulin, Marc J; Gozal, David

    2016-12-01

    Intermittent hypoxia (IH) is associated with increased risk of cardiovascular disease. Exosomes are secreted by most cell types and released in biological fluids, including plasma, and play a role in modifying the functional phenotype of target cells. Using an experimental human model of IH, we investigated potential exosome-derived biomarkers of IH-induced vascular dysfunction. Ten male volunteers were exposed to room air (D0), IH (6 h/day) for 4 days (D4) and allowed to recover for 4 days (D8). Circulating plasma exosomes were isolated and incubated with human endothelial monolayer cultures for impedance measurements and RNA extracted and processed with messenger RNA (mRNA) arrays to identify gene targets. In addition, immunofluorescent assessments of endothelial nitric oxide synthase (eNOS) mRNA expression, ICAM-1 cellular distribution were conducted. Plasma exosomal micro RNAs (miRNAs) were profiled. D4 exosomes, primarily from endothelial sources, disrupted impedance levels compared to D0 and D8. ICAM-1 expression was markedly upregulated in endothelial cells exposed to D4 exosomes along with significant reductions in eNOS expression. Microarray approaches identified a restricted and further validated signature of exosomal miRNAs in D4 exosomes, and mRNA arrays revealed putative endothelial gene target pathways. In humans, intermittent hypoxia alters exosome cargo in the circulation which promotes increased permeability and dysfunction of endothelial cells in vitro. A select number of circulating exosomal miRNAs may play important roles in the cardiovascular dysfunction associated with OSA by targeting specific effector pathways.

  17. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  18. Intestinal barrier function and the brain-gut axis.

    Science.gov (United States)

    Alonso, Carmen; Vicario, María; Pigrau, Marc; Lobo, Beatriz; Santos, Javier

    2014-01-01

    The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.

  19. Oxidative Stress in Hypertensive Patients Induces an Increased Contractility in Vein Grafts Independent of Endothelial Function

    Directory of Open Access Journals (Sweden)

    Claudio Joo Turoni

    2011-01-01

    Full Text Available Objective. To evaluate the impact of oxidative stress on vascular reactivity to vasoconstrictors and on nitric oxide (NO bioavailability in saphenous vein (SV graft with endothelial dysfunction from hypertensive patients (HT. Methods. Endothelial function, vascular reactivity, oxidative state, nitrites and NO release were studied in isolated SV rings from HT and normotensive patients (NT. Only rings with endothelial dysfunction were used. Results. HT rings presented a hyperreactivity to vasoconstrictors that was reverted by diphenylene iodonium (DPI. In NT, no effect of DPI was obtained, but Nω-nitro-L-arginine methyl ester (L-NAME increased the contractile response. NO was present in SV rings without endothelial function. Nitrites were higher in NT than in HT (1066.1 ± 86.3 pmol/mg; n=11 versus 487.8 ± 51.6; n=23; P<0.01 and inhibited by nNOS inhibitor. L-arginine reversed this effect. Antioxidant agents increased nitrites and NO contents only in HT. The anti-nNOS-stained area by immunohistochemistry was higher in NT than HT. HT showed an elevation of oxidative state. Conclusions. Extraendothelial NO counter-regulates contractility in SV. However, this action could be altered in hypertensive situations by an increased oxidative stress or a decreased ability of nNOS to produce NO. Further studies should be performed to evaluate the implication of these results in graft patency rates.

  20. Effect of coffee on endothelial function in healthy subjects: the role of caffeine.

    Science.gov (United States)

    Papamichael, Chris M; Aznaouridis, Konstantinos A; Karatzis, Emmanouil N; Karatzi, Kalliopi N; Stamatelopoulos, Kimon S; Vamvakou, Georgia; Lekakis, John P; Mavrikakis, Myron E

    2005-07-01

    Coffee is one of the most widely used pharmacologically active beverages. The present study was designed to evaluate the acute effect of coffee ingestion on endothelial function in healthy individuals, and the potential role of caffeine. We studied 17 healthy young adults (28.9+/-3.0 years old; nine men), who were regular non-heavy coffee drinkers. The endothelial performance was estimated by endothelium-dependent FMD (flow-mediated dilatation) of the brachial artery before and 30, 60, 90 and 120 min after ingestion of a cup of caffeinated coffee (80 mg of caffeine) or the corresponding decaffeinated beverage (coffee respectively; P = NS (not significant)]. Caffeinated coffee led to a decline of FMD (7.78, 2.86, 2.12, 4.44 and 4.57% at baseline, 30, 60, 90 and 120 min respectively; P effect was focused at 30 (P = 0.004) and 60 min (P effect on FMD was found with the decaffeinated coffee session (7.07, 6.24, 5.21, 7.41 and 5.20%; P = NS). The composite effect of the type of coffee consumed over time on FMD was significantly different (P = 0.021). In conclusion, coffee exerts an acute unfavourable effect on the endothelial function in healthy adults, lasting for at least 1 h after intake. This effect might be attributed to caffeine, given that decaffeinated coffee was not associated with any change in the endothelial performance.

  1. Evaluation of endothelial function by VOP and inflammatory biomarkers in patients with arterial hypertension.

    Science.gov (United States)

    Junqueira, Camillo L C; Magalhães, Maria Eliane C; Brandão, Andréa Araújo; Ferreira, Esmeralci; Junqueira, Adriana S M; Neto, José Firmino N; Souza, Maria das Graças C; Bottino, Daniel Alexandre; Bouskela, Eliete

    2018-02-01

    Hypertension is associated with microcirculatory impairment. Our objectives were to evaluate endothelial function and inflammatory biomarkers in patients with resistant (RH) and mild to moderate (MMH) arterial hypertension in comparison to normotensives (control group-CG). Three groups, 25 patients each, have been investigated, by anamnesis, venous occlusion plethysmography (VOP) and serum determination of adhesion molecules (VCAM, ICAM), adiponectin, endothelin and C-reactive protein (CRP). Patients not using statins and with or without blood pressure control were also analyzed. RH group showed smaller percentage increase of maximum forearm blood flow (FBF) (endothelial-dependent vasodilatation) than controls (p < 0.05), but no significant difference could be detected between MMH and CG groups on maximum FBF and minimum vascular resistance post-ischemia. RH and MMH groups showed higher resistance averages compared to controls (p < 0.05). Uncontrolled BP in hypertensive patients showed worse results for blood flow and resistance. Endothelial-independent vasodilatation was not affected. Endothelin levels were higher in RH and MMH groups (p < 0.05) not using statins. CRP was significantly higher only in RH compared to CG (p < 0.05). In conclusion patients with severe hypertension and lack of blood pressure control showed greater impairment of endothelial function with higher CRP and endothelin levels.

  2. TNFα-Damaged-HUVECs Microparticles Modify Endothelial Progenitor Cell Functional Activity

    Science.gov (United States)

    Luna, Carlos; Carmona, Andrés; Alique, Matilde; Carracedo, Julia; Ramirez, Rafael

    2015-01-01

    Endothelial progenitor cells (EPCs) have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs). EMPs are membranous structures with a size between 100 and 1000 nm that act as molecular information transporter in biological systems and are known as an important elements in develop different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNFalpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs), contribution to repair a physically damaged endothelium (wound healing), binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis). All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs), the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs) are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies. PMID:26733886

  3. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    Science.gov (United States)

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Preeclampsia Downregulates MicroRNAs in Fetal Endothelial Cells: Roles of miR-29a/c-3p in Endothelial Function.

    Science.gov (United States)

    Zhou, Chi; Zou, Qing-Yun; Li, Hua; Wang, Rui-Fang; Liu, Ai-Xia; Magness, Ronald R; Zheng, Jing

    2017-09-01

    Preeclampsia is a leading cause of fetal and maternal morbidity and mortality during pregnancy. Although the etiology of preeclampsia is unknown, preeclampsia offspring have increased risks of developing cardiovascular disorders in adulthood, implicating that preeclampsia programs fetal vasculature in utero. We hypothesize that preeclampsia alters expression profiles of endothelial microRNAs (miRNAs) in fetal endothelial cells and disturbs the vascular endothelial growth factor A (VEGFA)- and fibroblast growth factor 2 (FGF2)-induced endothelial function. Unpassaged (P0) human umbilical vein endothelial cells (HUVECs) were isolated immediately after cesarean-section delivery from normotensive (NT) and preeclamptic (PE) pregnancies. Differentially expressed miRNAs between P0-HUVECs from NT and PE pregnancies were identified using a miRNA polymerase chain reaction (PCR) array and confirmed using reverse transcription quantitative PCR. To determine the function of these differentially expressed miRNAs, miRNAs of interest were knocked down in NT-HUVECs following by cell functional assays. Sixteen miRNAs, including miR-29a/c-3p, were downregulated in P0-HUVECs from the PE group compared with the NT group. Bioinformatics analysis predicted the PI3K-v-akt murine thymoma viral oncogene homolog 1 (AKT) signaling pathway was dysregulated in P0-HUVECs from the PE group, which was associated with the miR-29a/c-3p downregulation. We further demonstrated that miR-29a/c-3p knockdown inhibited the VEGFA- and FGF2-induced endothelial migration as well as FGF2-induced AKT1 phosphorylation in HUVECs. However, miR-29a/c-3p knockdown did not alter the extracellular signal-regulated kinase 1/2 phosphorylation, cell proliferation, and endothelial monolayer integrity in response to VEGFA and FGF2 in HUVECs. Preeclampsia-downregulated miR-29a/c-3p may impair fetal endothelial function by disturbing the FGF2-activated PI3K-AKT signaling pathway, hence inhibiting endothelial cell migration.

  5. The effects of Ramadan fasting on endothelial function in patients with cardiovascular diseases.

    Science.gov (United States)

    Yousefi, B; Faghfoori, Z; Samadi, N; Karami, H; Ahmadi, Y; Badalzadeh, R; Shafiei-Irannejad, V; Majidinia, M; Ghavimi, H; Jabbarpour, M

    2014-07-01

    Endothelial dysfunction, which can be manifested by loss of nitric oxide bioavailability, is an increasingly recognized cause of cardiovascular diseases. Previous studies showed that diets affect endothelial function and modify cardiovascular risks. This study aimed to assess the effects of Ramadan fasting, as a diet intervention, on endothelial function. The study population consisted of 21 male patients (mean age: 52±9 years) with cardiovascular risks (coronary artery disease, cerebrovascular or peripheral arterial diseases). The biochemical variables in serum of patients were measured 2 days before and after Ramadan fasting. The levels of asymmetric dimethylarginine (ADMA) and vascular endothelial growth factor (VEGF) were evaluated using the enzyme-linked immunosorbent assay. Nitric oxide (NO) and Malondialdehyde (MDA) levels were measured by the Griess and thiobarbituric acid reaction substances assay, respectively. NO levels in patients after Ramadan fasting were significantly higher compared with the baseline value (85.1±11.54 vs 75.8±10.7 μmol/l) (PRamadan levels of ADMA decreased significantly in comparison with pre-Ramadan levels (802.6±60.9 vs 837.6±51.0 nmol/l) (PRamadan fasting, but these changes were not statistically significant (228.1±27.1 vs 222.7±22.9 pg/ml and 3.2±0.7 vs 3.6±1.1 μmol/l, respectively). Ramadan fasting may have beneficial effects on endothelial function and can modulate cardiovascular risks. Further studies are needed to confirm the clinical significance of Ramadan fasting on cardiovascular health.

  6. Assessment of endothelial function by flow-mediated dilation in diabetic patients: Effects of physical exercise

    Directory of Open Access Journals (Sweden)

    Aline P Jarrete

    2016-03-01

    Full Text Available Abstract The endothelium is now recognized as an endocrine organ that acts to maintain vascular homeostasis regulating the vascular tone and structure. The endothelial cells synthetize a variety of mediators among them, the main agent is the nitric oxide (NO, a potent vasodilator. NO exerts its protective role preventing leukocyte adhesion and migration, expression of adhesion molecules, platelet aggregation, cell proliferation, and promoting the relaxation of smooth muscle cells. On the other hand, endothelial dysfunction present in many chronic diseases such as atherosclerosis, coronary artery disease, peripheral artery disease, hypertension and diabetes mellitus, is characterized by reduced NO bioavailability. Thus, a few decades ago, measurement of endothelial function has emerged as valuable tool that provides insights in the pathophysiological mechanisms, opportunity to identify early disease and cardiovascular risk, preventing future events or avoiding the progression of the disease. Diabetic patients, particularly, have been a target to apply this technique, mainly because this condition has been related with an impairment of endothelium-dependent dilation and it is believed that the endothelium dysfunction is the basis of diabetes complications such as coronary artery disease and accelerated atherosclerosis. In addition, cardiovascular complications represent the leading cause of morbidity and death in diabetes mellitus. Besides pharmacological therapy, lifestyle modifications have been recommended by specific organizations as a strategy to improve the endothelial function or even prevent the development of diabetes. The aim of this mini eview is to give an update about the importance of endothelium, most common non-invasive technique to evaluate its function, and to summarize some mechanisms involved in endothelial dysfunction and the beneficial effects of exercise in diabetes mellitus.

  7. Post-Exercise Ankle-Brachial Pressure Index Demonstrates Altered Endothelial Function in the Elderly

    Directory of Open Access Journals (Sweden)

    Shinji Sato

    2011-01-01

    Full Text Available Background The ankle-brachial pressure index (ABI, the ratio of the systolic blood pressure of the ankle to the systolic brachial pressure, is commonly measured at rest, but ABI values post-exercise enhance the sensitivity of the test and can be used to identify atherosclerotic vascular damage. However, it has not been established whether or not enhanced post-exercise ABI is also associated with endothelial dysfunction. We hypothesized that a decrease in post-exercise ABI is related to impaired endothelial function. Purpose To investigate alterations in post-exercise ABI values and endothelial dysfunction in the elderly. Methods The study population comprised 35 men and women aged 51–77 years (mean age: 66 years. Patients with peripheral arterial disease or a history of heart failure were excluded. The ABI was estimated at rest and immediately after exercise. The exercise protocol comprised 2.5 min of active pedal flexion exercises at a speed of 60 times/min. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD in the brachial artery using ultrasound imaging. Results No correlation was found between FMD and the ABI at rest. However, a weak correlation was found between FMD and post-exercise ABI (r = 0.46, P = 0.06. A strong correlation was observed between FMD and a decrease in post-exercise ABI compared to baseline readings (r = –0.52, P = 0.01. Multiple linear regression analysis was used to generate a prediction equation for FMD using the percentage decrease in post-exercise ABI. Significant correlations were observed between the ultrasound imaging-measured FMD and the predicted FMD (R 2 = 0.27, P = 0.001. Conclusions Post-exercise ABI appears to be a simple surrogate marker for endothelial function in the elderly, although larger studies are required for validation.

  8. EFFECT OF HIGH-INTENSITY EXERCISE ON ENDOTHELIAL FUNCTION IN PATIENTS WITH T2DM

    Directory of Open Access Journals (Sweden)

    Carlos Alberto da Silva

    2016-04-01

    Full Text Available Introduction: Diabetes mellitus is the most common metabolic disease worldwide. Endothelial dysfunction characteristic of these patients is one of the major risk factors for atherosclerosis. Early diagnosis of endothelial dysfunction is essential for the treatment especially of non-invasive manner, such as flow mediated dilation. Physical exercise is capable of generating beneficial adaptations may improve endothelial function. Objective: Identify the effect of physical exercise, using the clinical technique of ultrasound in the assessment of the endothelial function of patients with metabolic syndrome or type 2 diabetes mellitus. Methods: Thirty-one patients with type 2 diabetes mellitus or metabolic syndrome were studied, with a mean age (± SD of 58±6 years, randomized into three groups. The training was performed for 50 minutes, four times a week. Before and after six weeks of training, subjects performed the endurance test and a study of the endothelial function of the brachial artery by high-resolution ultrasound. Results: After hyperemia, the percentage of arterial diameter was significantly higher for the high-intensity group (HI before = 2.52±2.85mm and after = 31.81±12.21mm; LI before = 3.23±3.52mm and after = 20.61±7.76mm; controls before = 3.56±2.33mm and after = 2.43±2.14mm; p<0.05. Conclusions: The high-intensity aerobic training improved the vasodilatation response-dependent endothelium, recorded by ultrasound, in patients with metabolic syndrome and type 2 diabetes.

  9. Metformin Improves Endothelial Function and Reduces Blood Pressure in Diabetic Spontaneously Hypertensive Rats Independent from Glycemia Control : Comparison to Vildagliptin

    NARCIS (Netherlands)

    Hamidi Shishavan, Mahdi; Henning, Robert H; van Buiten, Azuwerus; Goris, Maaike; Deelman, Leo E; Buikema, Hendrik

    2017-01-01

    Metformin confers vascular benefits beyond glycemia control, possibly via pleiotropic effects on endothelial function. In type-1-diabetes-mellitus (T1DM-)patients metformin improved flow-mediated dilation but also increased prostaglandin(PG)-F-2 alpha, a known endothelial-contracting factor. To

  10. Gene variations of nitric oxide synthase regulate the effects of a saturated fat rich meal on endothelial function

    Science.gov (United States)

    Objective: Endothelial nitric oxide synthase gene variations have been linked to a higher risk for cardiovascular diseases by unknown mechanisms. Our aim was to determine if two SNPs located in NOS3 (E298D and i19342) interfere with microvascular endothelial function (MEF) and/or oxidative stress du...

  11. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno

    2014-10-01

    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  12. Folic acid: a marker of endothelial function in type 2 diabetes?

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    2005-04-01

    Full Text Available Arduino A Mangoni1, Roy A Sherwood2, Belinda Asonganyi2, Emma L Ouldred3, Stephen Thomas4, Stephen HD Jackson31Department of Clinical Pharmacology, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia; 2Clinical Biochemistry, King’s College Hospital, London, UK; 3Department of Health Care of the Elderly, Guy’s, King’s, and St Thomas’ School of Medicine, King’s College, London, UK; 4Department of Diabetic Medicine, King’s College Hospital, London, UKObjectives: Endothelial dysfunction is a common feature of type 2 diabetes. Recent studies suggest that the B-vitamin folic acid exerts direct beneficial effects on endothelial function, beyond the well known homocysteine lowering effects. Therefore, folic acid might represent a novel “biomarker” of endothelial function. We sought to determine whether plasma levels of folic acid determine endothelial-dependent vasodilation in patients with type 2 diabetes.Methods: Forearm arterial blood flow (FABF was measured at baseline and during intrabrachial infusion of the endothelial-dependent vasodilator acetylcholine (15 µg/min and the endothelial-independent vasodilator sodium nitroprusside (2 µg/min in 26 type 2 diabetic patients (age 56.5 ± 0.9 years, means ± SEM with no history of cardiovascular disease.Results: FABF ratio (ie, the ratio between the infused and control forearm FABF significantly increased during acetylcholine (1.10 ± 0.04 vs 1.52 ± 0.07, p < 0.001 and sodium nitroprusside (1.12 ± 0.11 vs 1.62 ± 0.06, p < 0.001 infusions. After correcting for age, gender, diabetes duration, smoking, hypertension, body mass index, microalbuminuria, glycated hemoglobin, low-density lipoprotein cholesterol, and homocysteine, multiple regression analysis showed that plasma folic acid concentration was the only independent determinant (p = 0.037, R2 = 0.22 of acetylcholine-mediated, but not sodium nitroprusside-mediated, vasodilatation

  13. Lipids and skin barrier function - a clinical perspective

    DEFF Research Database (Denmark)

    Jungersted, J.M.; Hellgren, Lars; Jemec, G.B.E.

    2008-01-01

    The stratum corneum (SC) protects us from dehydration and external dangers. Much is known about the morphology of the SC and penetration of drugs through it, but the data are mainly derived from in vitro and animal experiments. In contrast, only a few studies have the human SC lipids as their focus...... and in particular, the role of barrier function in the pathogenesis of skin disease and its subsequent treatment protocols. The 3 major lipids in the SC of importance are ceramides, free fatty acids, and cholesterol. Human studies comparing levels of the major SC lipids in patients with atopic dermatitis...... and healthy controls have suggested a possible role for ceramide 1 and to some extent ceramide 3 in the pathogenesis of the disease. Therapies used in diseases involving barrier disruption have been sparely investigated from a lipid perspective. It has been suggested that ultraviolet light as a treatment...

  14. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function

    Science.gov (United States)

    Betteridge, Kai B.; Arkill, Kenton P.; Neal, Christopher R.; Harper, Steven J.; Foster, Rebecca R.; Satchell, Simon C.; Bates, David O.

    2017-01-01

    Key points We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability.Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel.The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth.Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin. Abstract The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real‐time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17–3.02 μm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 μm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same

  15. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease

    Directory of Open Access Journals (Sweden)

    Y. Liang

    2015-06-01

    Full Text Available Remote ischemic preconditioning (RIPre can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG surgery were assigned randomly to a RIPre group (n=20 or coronary heart disease (CHD group (n=20. Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD, CD34+ monocyte count, and endothelial nitric oxide synthase (eNOS expression. Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, P<0.05 and significantly reduced troponin after CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05. RIPre activated STAT-3 and increased CD34+ endothelial progenitor cell counts found in arteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells.

  16. Synthetic heparan sulfate oligosaccharides inhibit endothelial cell functions essential for angiogenesis.

    Directory of Open Access Journals (Sweden)

    Claire L Cole

    2010-07-01

    Full Text Available Heparan sulfate (HS is an important regulator of the assembly and activity of various angiogenic signalling complexes. However, the significance of precisely defined HS structures in regulating cytokine-dependent angiogenic cellular functions and signalling through receptors regulating angiogenic responses remains unclear. Understanding such structure-activity relationships is important for the rational design of HS fragments that inhibit HS-dependent angiogenic signalling complexes.We synthesized a series of HS oligosaccharides ranging from 7 to 12 saccharide residues that contained a repeating disaccharide unit consisting of iduronate 2-O-sulfate linked to glucosamine with or without N-sulfate. The ability of oligosaccharides to compete with HS for FGF2 and VEGF165 binding significantly increased with oligosaccharide length and sulfation. Correspondingly, the inhibitory potential of oligosaccharides against FGF2- and VEGF165-induced endothelial cell responses was greater in longer oligosaccharide species that were comprised of disaccharides bearing both 2-O- and N-sulfation (2SNS. FGF2- and VEGF165-induced endothelial cell migration were inhibited by longer 2SNS oligosaccharide species with 2SNS dodecasaccharide activity being comparable to that of receptor tyrosine kinase inhibitors targeting FGFR or VEGFR-2. Moreover, the 2SNS dodecasaccharide ablated FGF2- or VEGF165-induced phosphorylation of FAK and assembly of F-actin in peripheral lamellipodia-like structures. In contrast, FGF2-induced endothelial cell proliferation was only moderately inhibited by longer 2SNS oligosaccharides. Inhibition of FGF2- and VEGF165-dependent endothelial tube formation strongly correlated with oligosaccharide length and sulfation with 10-mer and 12-mer 2SNS oligosaccharides being the most potent species. FGF2- and VEGF165-induced activation of MAPK pathway was inhibited by biologically active oligosaccharides correlating with the specific phosphorylation

  17. Is there any association of anxiety-depressive symptoms with vascular endothelial function or systemic inflammation?

    Directory of Open Access Journals (Sweden)

    Gholam Reza Kheirabadi

    2013-01-01

    Full Text Available Background: Studies have shown the association of mood disorders and endothelial dysfunction, and increased risk of cardiovascular disease; however, mediatory mechanisms are not entirely clarified in this regard. We investigated the relationship between depression/anxiety symptoms with systemic inflammation and endothelial function. Materials and Methods: This cross-sectional study was performed in 2011 on employees of an oil company located in the Isfahan city (central Iran. Participants were selected with clustered random sampling. Anxiety and depression were evaluated by Hospital Anxiety Depression Scale (HADS. Systemic inflammatory status was evaluated by measuring sensitive C-reactive protein (high sensitive-CRP. To evaluate the endothelial function flow-mediated dilation (FMD was measured. Results: During the study period, 254 participants (mean age = 51.4 ΁ 6.1 years were evaluated. No significant relationship was found between high sensitive-CRP or FMD and any of the variables of anxiety or depression. In multivariate analysis, by controlling the possible confounding factors, no association was found between anxiety score, depression, or the overall score of HADS with high sensitive-CRP or FMD. After the separate analysis of patients with and without diabetes, depression score was correlated inversely with FMD among patients with diabetes (r = 0.525, P = 0.021. Conclusion: According to the results, in the studied population, there was no relationship between anxiety/depression with systemic inflammation or endothelial dysfunction, while in individuals with diabetes, depression was associated with endothelial dysfunction. In this regard more cohort studies are recommended.

  18. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Y.; Li, Y.P.; He, F.; Liu, X.Q.; Zhang, J.Y. [Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2015-04-28

    Remote ischemic preconditioning (RIPre) can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG) surgery were assigned randomly to a RIPre group (n=20) or coronary heart disease (CHD) group (n=20). Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD), CD34{sup +} monocyte count, and endothelial nitric oxide synthase (eNOS expression). Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, P<0.05) and significantly reduced troponin after CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05). RIPre activated STAT-3 and increased CD34{sup +} endothelial progenitor cell counts found in arteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells.

  19. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function

    Directory of Open Access Journals (Sweden)

    Tsai Tzu-Hsien

    2012-07-01

    Full Text Available Abstract Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs and left ventricular ejection fraction (LVEF. Methods High fat diet (45 Kcal% fat was given to 8-week-old C57BL/6 J mice (n = 8 for 20 weeks to induce obesity (group 1. Another age-matched group (n = 8 were fed with control diet for 20 weeks as controls (group 2. The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling.

  20. Crossing the entropy barrier of dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

  1. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro.

    Science.gov (United States)

    Kasper, Jennifer Y; Hermanns, Maria Iris; Cavelius, Christian; Kraegeloh, Annette; Jung, Thomas; Danzebrink, Rolf; Unger, Ronald E; Kirkpatrick, Charles James

    The microvascular endothelium of the gut barrier plays a crucial role during inflammation in inflammatory bowel disease. We have modified a commonly used intestinal cell model based on the Caco-2 cells by adding microvascular endothelial cells (ISO-HAS-1). Transwell filters were used with intestinal barrier-forming Caco-2 cells on top and the ISO-HAS-1 on the bottom of the filter. The goal was to determine whether this coculture mimics the in vivo situation more closely, and whether the model is suitable to evaluate interactions of, for example, prospective nanosized drug vehicles or contrast agents with this coculture in a physiological and inflamed state as it would occur in inflammatory bowel disease. We monitored the inflammatory responsiveness of the cells (release of IL-8, soluble intercellular adhesion molecule 1, and soluble E-selectin) after exposure to inflammatory stimuli (lipopolysaccharide, TNF-α, INF-γ, IL1-β) and a nanoparticle (Ba/Gd: coprecipitated BaSO4 and Gd(OH)3), generally used as contrast agents. The barrier integrity of the coculture was evaluated via the determination of transepithelial electrical resistance and the apparent permeability coefficient (Papp) of NaFITC. The behavior of the coculture Caco-1/ISO-HAS-1 was compared to the respective monocultures Caco-2 and ISO-HAS-1. Based on transepithelial electrical resistance, the epithelial barrier integrity of the coculture remained stable during incubation with all stimuli, whereas the Papp decreased after exposure to the cytokine mixture (TNF-α, INF-γ, IL1-β, and Ba/Gd). Both the endothelial and epithelial monocultures showed a high inflammatory response in both the upper and lower transwell-compartments. However, in the coculture, inflammatory mediators were only detected on the epithelial side and not on the endothelial side. Thus in the coculture, based on the Papp, the epithelial barrier appears to prevent a potential inflammatory overreaction in the underlying endothelial cells

  2. Effects of breed, gender, exercise and white-coat effect on markers of endothelial function in dogs

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Holte, A.V.; Mogensen, T.

    2007-01-01

    This study examines how systemic biomarkers of endothelial function and nitric oxide metabolism are affected by exercise in dogs. Furthermore, breed variation and white-coat effect have been tested by sampling three different dog breeds both in their home and in a clinical setting. Short-term exe......This study examines how systemic biomarkers of endothelial function and nitric oxide metabolism are affected by exercise in dogs. Furthermore, breed variation and white-coat effect have been tested by sampling three different dog breeds both in their home and in a clinical setting. Short....... These findings should be considered in future studies concerning endothelial function in dogs....

  3. Effect of shift work on endothelial function in young cardiology trainees.

    Science.gov (United States)

    Tarzia, Pierpaolo; Milo, Maria; Di Franco, Antonino; Di Monaco, Antonio; Cosenza, Alessandro; Laurito, Marianna; Lanza, Gaetano Antonio; Crea, Filippo

    2012-10-01

    Long-term shift work (SW) is associated with an increase in cardiovascular disease (CVD). Previous studies have shown that prolonged SW is associated with endothelial dysfunction, suggesting that this abnormality may contribute to the SW-related increase in cardiovascular risk. The immediate effect of SW on endothelial function in healthy subjects, however, is unknown. We studied endothelial function and endothelium-independent function in 20 healthy specialty trainees in cardiology at our Institute, without any cardiovascular risk factor (27.3 ± 1.9 years, nine males), at two different times: (1) after a working night (WN), and (2) after a restful night (RN). The two test sessions were performed in a random sequence. Endothelial function was assessed by measuring brachial artery dilation during post-ischaemic forearm hyperaemia (flow-mediated dilation, FMD). Endothelium-independent function in response to 25 µg of sublingual glyceryl trinitrate (nitrate-mediated dilation, NMD) was also assessed. FMD was 8.02 ± 1.4% and 8.56 ± 1.7% after WN and RN, respectively (p = 0.025), whereas NMD was 10.5 ± 2.1% and 10.4 ± 2.0% after WN and RN, respectively (p = 0.48). The difference in FMD between WN and RN was not influenced by the numbers of hours slept during WN (4 hours) and by the duration of involvement of specialty trainees in nocturnal work (12 months). Our study shows that in healthy medical residents, without any cardiovascular risk factor, FMD is slightly impaired after WN compared to RN. Disruption of physiological circadian neuro-humoral rhythm is likely to be responsible for this adverse vascular effect.

  4. Exocytosis of peptide functionalized gold nanoparticles in endothelial cells

    Science.gov (United States)

    Bartczak, Dorota; Nitti, Simone; Millar, Timothy M.; Kanaras, Antonios G.

    2012-07-01

    We present the exocytosis profile of two types of peptide-coated nanoparticles, which have similar charge and size but different functionality. While one kind of particles appears to progressively exocytose, the other one has a more complex profile, suggesting that some of the particles are re-uptaken by the cells. Both types of particles retain their colloidal stability after exocytosis.We present the exocytosis profile of two types of peptide-coated nanoparticles, which have similar charge and size but different functionality. While one kind of particles appears to progressively exocytose, the other one has a more complex profile, suggesting that some of the particles are re-uptaken by the cells. Both types of particles retain their colloidal stability after exocytosis. Electronic supplementary information (ESI) available: ICP-AES DLS and zeta potential measurements. See DOI: 10.1039/c2nr31064c

  5. Number and function of circulating endothelial progenitor cells in patients with primary Budd-Chiari syndrome.

    Science.gov (United States)

    Huang, Rui; Zhang, Qingqiao; Huang, Qianxin; Zu, Maoheng; Xu, Hao; Zeng, Lingyu

    2017-03-01

    Primary Budd-Chiari syndrome (BCS) is associated with vascular endothelial injury. Circulating endothelial progenitor cells (EPCs) provide an endogenous mechanism to repair endothelial injury. This study investigated the levels and functionality of EPCs in patients with primary BCS. EPCs (CD34+/CD133+/KDR+) were quantified in 82 patients with primary BCS (inferior vena cava type: n=19; hepatic vein type: n=22; and mixed type: n=41), 10 cirrhosis controls (CC group) and 10 age-matched healthy controls (HC group), using flow cytometry. EPCs proliferation was detected by MTT assay, adhesion by adhesion activity assay, and migration capacity by Transwell assay. EPCs levels were significantly lower in the BCS group (0.020±0.005%) than in the CC and HC groups (0.260±0.201%, 0.038±0.007%; PRMF), each PRMF, each P<0.001) than in the HC group. EPCs functionality did not significantly differ between the BCS and CC groups. The numbers and functions of EPCs did not significantly differ among patients with inferior vena cava type, hepatic vein type and mixed type of BCS. Patients with primary BCS had lower EPCs levels, with less proliferation, adhesion and migration activities. These findings suggest that lower levels of less functional EPCs may be associated with venous occlusion in primary BCS patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Retrograde flow and shear rate acutely impair endothelial function in humans.

    Science.gov (United States)

    Thijssen, Dick H J; Dawson, Ellen A; Tinken, Toni M; Cable, N Timothy; Green, Daniel J

    2009-06-01

    Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24+/-3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in "dose"-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo.

  7. Barrier function test: Laboratory evaluation of the protective function of some barrier creams against cashewnut shell oil

    Directory of Open Access Journals (Sweden)

    Pasricha J

    1991-01-01

    Full Text Available A barrier function test has been designed to screen the protective capacity of a cream against the cauterizing effect of cashew nut shell oil (CNSO on the skin. The test consists of applying the barrier cream on a 5 cm circular area of skin on the back of a human volunteer and then at its centre applying a 1 cm sq Whatman no. 3 paper disc soaked in the CNSO for 15 minutes and looking for the evidence of cauterization reaction after 48 hours. Of the various creams containing a variety of paraffins, bees wax, polyethylene glycols, methyl cellulose gel, and petrolatum, only polyethylene glycol (PEG cream was found to afford adequate protection against cashew nut shell oil. Addition of 10% zinc oxide or 10% kaolin to the PEG cream did not seem to afford any additional protection. Castor oil already being used by the workers was found to be inferior to the PEG cream.

  8. Assessment of endothelial function by brachial artery flow mediated dilatation in microvascular disease

    Directory of Open Access Journals (Sweden)

    Naidu Otikunta

    2011-12-01

    Full Text Available Abstract Background Cardiac syndrome X is an important therapeutic and diagnostic challenge to physician. Study of Csx patients may help to understand the pathophysiology of coronary microcirculation and to gain an insight on the management of these group patients. Methods We measured the flow mediated dilation of the brachial artery both endothelium dependent and independent vasodilatation by high resolution ultrasound in 30 cardiac syndrome X patients and matched with 30 healthy control subjects. Results Significantly decreased flow mediated dilatation was observed in patients when compared to control (9.42 ± 7.20 vs 21.11 ± 9.16 p 11.11(p Conclusions The study suggests impairment of endothelial function in cardiac syndrome X patients. Increased Systolic blood pressure and body mass index may increase the risk of impairment of endothelial function in this group of patients.

  9. Monomeric CXCL12 outperforms its dimeric and wild type variants in the promotion of human endothelial progenitor cells' function.

    Science.gov (United States)

    Chang, Shuang; Li, Yaning; Yuan, Fang; Qu, Meijie; Song, Yaying; Zhang, Zhijun; Yang, Guo-Yuan; Wang, Yongting

    2017-06-24

    CXCL12 overexpression improves neurobehavioral recovery during post-ischemic stroke through multiple mechanisms including promoting endothelial progenitor cells function in animal models. It has been proposed that the monomer and dimer forms possess differential chemotactic and regulatory function. The aim of present study is to explore whether a monomeric or dimeric CXCL12 plays a different role in the endothelial progenitor cells proliferation, migration, and tube-formation in vitro. In this study, we transferred monomeric, dimeric and wild type CXCL12 gene into endothelial progenitor cells via lentiviral vectors. We investigated endothelial progenitor cells function following the interaction of CXCL12/CXCR4 or CXCL12/CXCR7 and downstream signaling pathways. Our results showed that the monomeric CXCL12 transfected endothelial progenitor cells had enhanced ability in cell proliferation, migration, and tube-formation compared to that in dimeric or wild type controls (p function of migration, but not proliferation or tube-formation, was significantly reduced in the monomeric CXCL12 transfected endothelial progenitor cells when the cells were pre-treated with either CXCR4 inhibitor AMD3100 or siCXCR7 (p function was partially regulated by CXCL12/CXCR4 and CXCL12/CXCR7 signal pathways. Our study demonstrated that monomeric CXCL12 was the fundamental form, which played important roles in endothelial progenitor cells' proliferation, migration, and tube-formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of improved glycaemic control on endothelial function in patients with type 2 diabetes.

    Science.gov (United States)

    Bagg, W; Whalley, G A; Gamble, G; Drury, P L; Sharpe, N; Braatvedt, G D

    2001-08-01

    Patients with type 2 diabetes have abnormal endothelial function but it is not certain whether improvements in glycaemic control will improve endothelial function. To examine the effects of short-term improved glycaemic control on endothelial function in patients with inadequately regulated type 2 diabetes mellitus. Forty-three patients with type 2 diabetes and glycosylated haemoglobin (HbA1c) > 8.9% were randomized to either improved glycaemic control (IC) n = 21 or usual glycaemic control (UC) n = 22 for 20 weeks. Using high-resolution B-mode ultrasound, brachial artery flow-mediated dilatation (FMD) and glyceryl trinitrate-mediated dilatation (GTN-D) were measured at baseline and 20 weeks later. After 20 weeks, HbA1c was significantly lower in IC versus UC (IC 8.02 +/- 0.25% versus UC 10.23 +/- 0.23%, P < 0.0001) but changes in FMD and GTN-D were not different between the groups (FMD at baseline and week 20 IC 5.1 +/- 0.56% versus 4.9 +/- 0.56% and UC 4.2 +/- 0.51% versus 3.1 +/- 0.51%; P = 0.23: GTN-D IC 12.8 +/- 1.34% versus 10.4 +/- 1.32% and UC 13.7 +/- 1.2% versus 12.7 +/- 1.23%; P = 0.39). In the IC group weight increased by 3.2 +/- 0.8 kg after 20 weeks compared to 0.02 +/- 0.70 kg in UC (P = 0.003). Blood pressure and serum lipid concentrations did not change in either group. Short-term reduction of HbA1c levels did not appear to affect endothelial function in patients with type 2 diabetes and previously poorly regulated glycaemic control.

  11. Renin-Angiotensin System Blockade Associated with Statin Improves Endothelial Function in Diabetics

    Directory of Open Access Journals (Sweden)

    Ronaldo Altenburg Gismondi

    2015-01-01

    Full Text Available AbstractBackground:Studies suggest that statins have pleiotropic effects, such as reduction in blood pressure, and improvement in endothelial function and vascular stiffness.Objective:To analyze if prior statin use influences the effect of renin-angiotensin-aldosterone system inhibitors on blood pressure, endothelial function, and vascular stiffness.Methods:Patients with diabetes and hypertension with office systolic blood pressure ≥ 130 mmHg and/or diastolic blood pressure ≥ 80 mmHg had their antihypertensive medications replaced by amlodipine during 6 weeks. They were then randomized to either benazepril or losartan for 12 additional weeks while continuing on amlodipine. Blood pressure (assessed with ambulatory blood pressure monitoring, endothelial function (brachial artery flow-mediated dilation, and vascular stiffness (pulse wave velocity were evaluated before and after the combined treatment. In this study, a post hoc analysis was performed to compare patients who were or were not on statins (SU and NSU groups, respectively.Results:The SU group presented a greater reduction in the 24-hour systolic blood pressure (from 134 to 122 mmHg, p = 0.007, and in the brachial artery flow-mediated dilation (from 6.5 to 10.9%, p = 0.003 when compared with the NSU group (from 137 to 128 mmHg, p = 0.362, and from 7.5 to 8.3%, p = 0.820. There was no statistically significant difference in pulse wave velocity (SU group: from 9.95 to 9.90 m/s, p = 0.650; NSU group: from 10.65 to 11.05 m/s, p = 0.586.Conclusion:Combined use of statins, amlodipine, and renin-angiotensin-aldosterone system inhibitors improves the antihypertensive response and endothelial function in patients with hypertension and diabetes.

  12. Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin.

    Science.gov (United States)

    Pang, Vincent; Bates, David O; Leach, Lopa

    2017-12-01

    The human placenta nourishes and protects the developing foetus whilst influencing maternal physiology for fetal advantage. It expresses several members of the vascular endothelial growth factor (VEGF) family including the pro-angiogenic/pro-permeability VEGF-A 165 a isoform, the anti-angiogenic VEGF-A 165 b, placental growth factor (PIGF) and their receptors, VEGFR1 and VEGFR2. Alterations in the ratio of these factors during gestation and in complicated pregnancies have been reported; however, the impact of this on feto-placental endothelial barrier integrity is unknown. The present study investigated the interplay of these factors on junctional occupancy of VE-cadherin and macromolecular leakage in human endothelial monolayers and the perfused placental microvascular bed. Whilst VEGF-A 165 a (50 ng/ml) increased endothelial monolayer albumin permeability ( P 0.05) or PlGF ( P >0.05) did not. Moreover, VEGF-A 165 b (100 ng/ml; P 0.05) inhibited VEGF-A 165 a-induced permeability when added singly. PlGF abolished the VEGF-A 165 b-induced reduction in VEGF-A 165 a-mediated permeability ( P >0.05); PlGF was found to compete with VEGF-A 165 b for binding to Flt-1 at equimolar affinity. Junctional occupancy of VE-cadherin matched alterations in permeability. In the perfused microvascular bed, VEGF-A 165 b did not induce microvascular leakage but inhibited and reversed VEGF-A 165 a-induced loss of junctional VE-cadherin and tracer leakage. These results indicate that the anti-angiogenic VEGF-A 165 b isoform does not increase permeability in human placental microvessels or HUVEC primary cells and can interrupt VEGF-A 165 a-induced permeability. Moreover, the interplay of these isoforms with PIGF (and s-flt1) suggests that the ratio of these three factors may be important in determining the placental and endothelial barrier in normal and complicated pregnancies. © 2017 The Author(s).

  13. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    Science.gov (United States)

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  14. Effect of fruit and vegetable concentrates on endothelial function in metabolic syndrome: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ma Yingying

    2011-06-01

    Full Text Available Abstract Background and Objective Dehydrated fruit and vegetable concentrates provide an accessible form of phytonutrient supplementation that may offer cardioprotective effects. This study assessed the effects of two blends of encapsulated juice powder concentrates (with and without added berry powders on endothelial function in persons with metabolic syndrome, a risk factor for type 2 diabetes and cardiovascular disease. Methods Randomized, double blind, placebo controlled crossover clinical trial with three treatment arms. 64 adults with metabolic syndrome were enrolled and received 8-week sequences of each blend of the concentrates and placebo. The primary outcome measure was change in endothelial function (assessed as flow-mediated dilatation of the brachial artery 2 hr after consuming a 75 g glucose load, after 8-weeks of daily consumption (sustained or 2 hr after consumption of a single dose (acute. Secondary outcome measures included plasma glucose, serum insulin, serum lipids, and body weight. Results No significant between-group differences in endothelial function with daily treatment for 8 weeks were seen. No other significant treatment effects were discerned in glucose, insulin, lipids, and weight. Conclusion Encapsulated fruit and vegetable juice powder concentrates did not alter insulin or glucose measures in this sample of adults with metabolic syndrome. Trial Registration clinicaltrials.gov NCT01224743

  15. Bradykinin or acetylcholine as vasodilators to test endothelial venous function in healthy subjects

    Directory of Open Access Journals (Sweden)

    Eneida R. Rabelo

    2008-01-01

    Full Text Available INTRODUCTION: The evaluation of endothelial function has been performed in the arterial bed, but recently evaluation within the venous system has also been explored. Endothelial function studies employ different drugs that act as endothelium-dependent vasodilatory response inductors. OBJECTIVES: The aim of this study is to compare the endothelium-dependent venous vasodilator response mediated by either acetylcholine or bradykinin in healthy volunteers. METHODS AND RESULTS: Changes in vein diameter after phenylephrine-induced venoconstriction were measured to compare venodilation induced by acetylcholine or bradykinin (linear variable differential transformer dorsal hand vein technique. We studied 23 healthy volunteers; 31% were male, and the subject had a mean age of 33 ± 8 years and a mean body mass index of 23 ± 2 kg/m². The maximum endothelium-dependent venodilation was similar for both drugs (p = 0.13, as well as the mean responses for each dose of both drugs (r = 0.96. The maximum responses to acetylcholine and bradykinin also had good agreement. CONCLUSION: There were no differences between acetylcholine and bradykinin as venodilators in this endothelial venous function investigation.

  16. Relationship between heart rate variability and endothelial function in healthy subjects.

    Science.gov (United States)

    Pinter, Alexandra; Horvath, Tamas; Sarkozi, Adrienn; Kollai, Mark

    2012-08-16

    In various diseased states reduced cardiac vagal activity is accompanied by impaired endothelial function. Evidence from animal studies indicates interaction between the two systems, but such data from human studies is limited. The aim of this study was to test the hypothesis that cardiac vagal activity and endothelial function are related in healthy individuals. 46 young males were studied. From 10 minute long ECG recordings mean RR-interval and time and frequency domain vagal heart rate variability indices (RMSSD; pNN50 and HF, respectively) were determined. Heart rate variability indices were used to define cardiac vagal activity. Endothelial function was assessed by measuring brachial artery flow mediated dilation. Hyperemic, diastolic shear rate was used to normalize flow mediated dilation. All three vagal heart rate variability indices correlated significantly and positively with flow mediated dilation across subjects, with r values within the range of 0.43-0.52, pheart rate variability indices remained significantly associated with normalized flow mediated dilation. RR-interval was related to most heart rate variability indices, but was not related to flow mediated dilation. Our data demonstrate that vagal heart rate variability indices are related to flow mediated dilation across healthy male subjects. The results cannot serve as evidence of a causal relationship, but are of interest and render for further investigation into underlying mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Vitamin D Receptor Activation Mitigates the Impact of Uremia on Endothelial Function in the 5/6 Nephrectomized Rats

    Directory of Open Access Journals (Sweden)

    J. Ruth Wu-Wong

    2010-01-01

    Full Text Available Endothelial dysfunction increases cardiovascular disease risk in chronic kidney disease (CKD. This study investigates whether VDR activation affects endothelial function in CKD. The 5/6 nephrectomized (NX rats with experimental chronic renal insufficiency were treated with or without paricalcitol, a VDR activator. Thoracic aortic rings were precontracted with phenylephrine and then treated with acetylcholine or sodium nitroprusside. Uremia significantly affected aortic relaxation (−50.0±7.4% in NX rats versus −96.2±5.3% in SHAM at 30 μM acetylcholine. The endothelial-dependent relaxation was improved to –58.2±6.0%, –77.5±7.3%, and –90.5±4.0% in NX rats treated with paricalcitol at 0.021, 0.042, and 0.083 μg/kg for two weeks, respectively, while paricalcitol at 0.042 μg/kg did not affect blood pressure and heart rate. Parathyroid hormone (PTH suppression alone did not improve endothelial function since cinacalcet suppressed PTH without affecting endothelial-dependent vasorelaxation. N-omega-nitro-L-arginine methyl ester completely abolished the effect of paricalcitol on improving endothelial function. These results demonstrate that VDR activation improves endothelial function in CKD.

  18. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow.

    Directory of Open Access Journals (Sweden)

    Junjie Yang

    Full Text Available BACKGROUND: Endothelial progenitor cells (EPCs were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. METHODOLOGY/PRINCIPAL FINDINGS: CD34(+ cells, c-Kit(+/Sca-1(+/Lin(- (KSL cells, c-Kit(+/Lin(- (KL cells and Sca-1(+/Lin(- (SL cells were isolated from mouse bone marrow mononuclear cells (BMMNCs using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34(+ cells showed the lowest EPC colony forming activity, CD34(+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34(+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34(+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34(+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. CONCLUSION: These findings suggest that mouse CD34(+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.

  19. Effect of paricalcitol on endothelial function and inflammation in type 2 diabetes and chronic kidney disease.

    Science.gov (United States)

    Thethi, Tina K; Bajwa, Muhammad A; Ghanim, Husam; Jo, Chanhee; Weir, Monica; Goldfine, Allison B; Umpierrez, Guillermo; Desouza, Cyrus; Dandona, Paresh; Fang-Hollingsworth, Ying; Raghavan, Vasudevan; Fonseca, Vivian A

    2015-04-01

    Patients with type 2 diabetes (T2DM) and chronic kidney disease (CKD) have impaired endothelial function. Vitamin D and its analogs may play a role in regulation of endothelial function and inflammation. We studied effects of paricalcitol compared to placebo on endothelial function and markers of inflammation and oxidative stress in patients with T2DM and CKD. A double blind, randomized, placebo-controlled trial was conducted in 60 patients with T2DM and stage 3 or 4 CKD. Paricalcitol 1 mcg or placebo was administered orally once daily for three months. Brachial artery flow mediated dilatation (FMD), nitroglycerine mediated dilation (NMD), and plasma concentrations of inflammatory cytokines, tumor necrosis factor -α and interleukin-6, highly-sensitive C-reactive protein; endothelial surface proteins, intercellular adhesion molecule -1 and monocyte chemo attractant protein-1, and plasma glucose, insulin, free fatty acids, and urinary isoprostane were measured at baseline and end of three months. 27 patients in the paricalcitol group and 28 patients in the control group completed the study, though analysis of FMD at both time points was possible in 23 patients in each group. There was no significant difference in the change in FMD, NMD or the biomarkers examined after paricalcitol or placebo treatment. Treatment with paricalcitol at this dose and duration did not affect brachial artery FMD or biomarkers of inflammation and oxidative stress. The lack of significance may be due to the fact that the study patients had advanced CKD and that effects of paricalcitol are not additive to the effects of glycemic, lipid and anti-hypertensive therapies. Published by Elsevier Inc.

  20. The Relationship between Magnesium and Endothelial Function in End-Stage Renal Disease Patients on Hemodialysis

    Science.gov (United States)

    Lee, Shina; Ryu, Jung-Hwa; Kim, Seung-Jung; Ryu, Dong-Ryeol; Kang, Duk-Hee

    2016-01-01

    Purpose Chronic kidney disease (CKD) patients tend to have higher serum magnesium values than healthy population due to their positive balance of magnesium in kidney. Recent studies found that magnesium level is positively correlated with endothelial function. Therefore, this study was conducted to define the relationship between magnesium level and endothelial dysfunction in end stage renal disease (ESRD) patients on hemodialysis (HD). Materials and Methods A total of 27 patients were included in this cross-sectional study. Iontophoresis with laser-Doppler flowmetry, flow mediated dilation (FMD), and carotid intima-media thickness were measured. Patients' average serum magnesium levels were measured over previous three months, including the examination month. Pearson's correlation coefficient analysis and multivariate regression model were used to define the association between magnesium and endothelial function. Results In the univariate analysis, higher magnesium levels were associated with better endothelium-dependent vasodilation (EDV) of the FMD in ESRD patients on HD (r=0.516, p=0.007). When the participants were divided into two groups according to the median magnesium level (3.47 mg/dL), there was a significant difference in EDV of FMD (less than 3.47 mg/dL, 2.8±1.7%; more than 3.47 mg/dL, 5.1±2.0%, p=0.004). In multivariate analysis, magnesium and albumin were identified as independent factors for FMD (β=1.794, p=0.030 for serum magnesium; β=3.642, p=0.012 for albumin). Conclusion This study demonstrated that higher serum magnesium level may be associated with better endothelial function in ESRD patients on HD. In the future, a large, prospective study is needed to elucidate optimal range of serum magnesium levels in ESRD on HD patients. PMID:27593873

  1. Assessment of Post-Occlusive Reactive Hyperaemia in the Evaluation of Endothelial Function in Patients with Lower Extremity Artery Disease

    Directory of Open Access Journals (Sweden)

    Carasca Cosmin

    2017-09-01

    Full Text Available Background: The aim was to assess endothelial function with photoplethysmography (PPG, by post-occlusive reactive hyperaemia (PORH combined with alprostadil challenge test in patients with peripheral artery disease (PAD.

  2. New Trends in Quantitative Assessment of the Corneal Barrier Function

    Directory of Open Access Journals (Sweden)

    Anton Guimerà

    2014-05-01

    Full Text Available The cornea is a very particular tissue due to its transparency and its barrier function as it has to resist against the daily insults of the external environment. In addition, maintenance of this barrier function is of crucial importance to ensure a correct corneal homeostasis. Here, the corneal epithelial permeability has been assessed in vivo by means of non-invasive tetrapolar impedance measurements, taking advantage of the huge impact of the ion fluxes in the passive electrical properties of living tissues. This has been possible by using a flexible sensor based in SU-8 photoresist. In this work, a further analysis focused on the validation of the presented sensor is performed by monitoring the healing process of corneas that were previously wounded. The obtained impedance measurements have been compared with the damaged area observed in corneal fluorescein staining images. The successful results confirm the feasibility of this novel method, as it represents a more sensitive in vivo and non-invasive test to assess low alterations of the epithelial permeability. Then, it could be used as an excellent complement to the fluorescein staining image evaluation.

  3. Endothelial Function in Adolescents with a History of Premature Coronary Artery Disease in One Parent

    Directory of Open Access Journals (Sweden)

    M Hashemi

    2006-01-01

    Full Text Available Background: In young adults, a family history of premature coronary artery disease (CAD, as well as genetic and environmental factors are independent risk factors for coronary artery disease. Methods: Endothelial function was studied in 30 children (21 boys and 9 girls with mean age of 14.9 +/- 2.3 years old of patients with documented CAD (men 45 and women 50 years old. Chidren did not have any history of diabetes mellitus, dyslipidemia, hypertension, and smoking (active/passive. Using vascular ultrasound, we measured resting Basal Brachial artery Diameter (BBD and Endothelium-Dependent Dilatation (EDD in response to increased flow and sublingual glyceryltrinitrate (GTN, an Endothelium-Independent Dilation (EID. These parameters were also measured in 30 control subjects with normal parents (18 boys and 12 girls with mean age of 14.2 +/- 2/5years old and results were compared with each other. Results: Adolescents in CAD group had abnormal Endothelial Dependent Dilatation or EDD/BBD (8.5 +/- 3.4% vs 11.8 +/- 4.5% in control subjects; P= 0.003.Endothelial Independent Dilatation (EID/BBD in the positive fimily history group was significantly more than control subjects (18.5 +/- 6.7% vs 11.9 +/- 5.2%; P <0.001. EDD/EID or the index of endothelial function was significantly lower in the positive family history group (0.92 +/- 0.05 vs 1+/- 0.03; P<0.001. There was no difference in EDD/EID index between those with history of premature CAD in mother (7 cases and those with history of premature CAD in father (23 cases (0.92 +/- 0.04 vs 0.91+/- 0.05. Conclusion: Normal adolescents without any cardiovascular risk factors but a history of premature coronary artery disease in one parent may have endothelial dysfunction, and there is no difference whether the CAD is in mother or father. Keywords: Endothelial dependent dilation, family history, CAD risk factors, premature coronary artery disease

  4. Endothelial Function and Sleep: Associations of Flow-Mediated Dilation With Perceived Sleep Quality and Rapid Eye Movement (REM) Sleep

    OpenAIRE

    Cooper, DC; Ziegler, MG; Milic, MS; Ancoli-Israel, S; Mills, PJ; Loredo, JS; Von Känel, R; Dimsdale, JE

    2013-01-01

    Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh ...

  5. Maspin impairs the function of endothelial cells: an implying pathway of preeclampsia.

    Science.gov (United States)

    Zhang, Ying; Liu, Hao; Shi, Xinwei; Qiao, Fuyuan; Zeng, Wanjiang; Feng, Ling; Deng, Dongrui; Liu, Haiyi; Wu, Yuanyuan

    2017-09-29

    Widespread endothelial injury contributes to the occurrence of preeclampsia. Maspin, first identified as a tumor suppressor, plays a critical role in cell invasion and angiogenesis. Our previous studies found that the expression of maspin was increased in preeclampsic placenta. In this research, we studied the function of human umbilical vein endothelial cells (HUVECs) to explore the role and possible mechanism of maspin gene in the pathogenesis of preeclampsia. HUVECs were treated with different concentration of recombinant human maspin protein (r-maspin) during normoxia and hypoxia, we detected the proliferation, apoptosis, migration and tube formation of HUVECs. We also assessed nitride oxide (NO) synthesis and the expression of matrix metalloproteinase 2 (MMP2) to further explore the underlying molecular mechanism. There was only slight maspin expression at mRNA level in HUVECs. Treated HUVECs with r-maspin, the proliferation of HUVECs was significantly promoted both under normoxia and hypoxia. The tubes formed by HUVECs were significantly inhibited and NO synthesis was significantly reduced by r-maspin. Meantime, r-maspin also inhibited MMP2 expression and activity in HUVECs. However, there was no significant change in the migration and apoptosis of HUVECs. Maspin may be an important participant for mediating endothelial function and ultimately leads to the occurence of preeclamsia.

  6. Late effects of renal transplantation on endothelial functions and cardiac morphology.

    Science.gov (United States)

    Ozkurt, S; Sahin, G; Degirmenci, N A; Temiz, G; Musmul, A; Tek, M; Birdane, A; Tekin, N; Akyuz, F; Yalcin, A U

    2011-09-01

    Endothelial dysfunction is common in patients undergoing hemodialysis (HD), and cardiovascular morbidity and mortality are higher in these patients. In this study, we evaluated the late posttransplantation effects of cyclosporine and tacrolimus on endothelial function, inflammation, and cardiac architecture. The study included 12 patients undergoing hemodialysis (group 1); 22 renal transplant recipients, of which 13 were receiving cyclosporine therapy (group 2) and 9 were receiving tacrolimus therapy (group 3); and 12 healthy control individuals (group 4). Kidney recipients were included if the transplantation procedure had been performed at least 1 year before the study. Asymmetric dimethylarginine, C-reactive protein, carotid intima-media thickness, left ventricular posterior wall thickness, interventricular septal thickness, left ventricular muscle mass index, flow-mediated dilation, and nitroglycerine-induced dilation of the brachial artery were evaluated. Serum asymmetric dimethylarginine, C-reactive protein, carotid intima-media thickness, left ventricular posterior wall thickness, interventricular septal thickness, and left ventricular muscle mass index values were significantly higher in patients undergoing HD than in the other 3 groups (P cardiac architecture as in the healthy population. This result may explain the reduction in cardiovascular morbidity and mortality after transplantation in patients undergoing HD. Tacrolimus and cyclosporine have similar effects on endothelial function. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  7. Involvement of connexin 43 in ATP release from endothelial cells during reoxygenation : Role of PKA signaling pathway

    OpenAIRE

    Khawaja, Kiran

    2011-01-01

    Reperfusion-injury impairs endothelial barrier function and may lead to edema formation, impeding recovery of the reperfused heart. Recently is has been shown that ATP, spontaneously released from endothelial cells (EC) during reperfusion protects the endothelial barrier against reperfusion-injury. The aim of the present study was to identify the mechanism of this spontanous ATP release during reoxygenation in endothelia cells. The central hypothesis is that EC release ATP via a connexin-medi...

  8. Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Deng Xiaolu

    2011-04-01

    Full Text Available Abstract Background Tumor necrosis factor-α (TNF-α, a proinflammatory cytokine, is capable of activating the small GTPase RhoA, which in turn contributes to endothelial barrier dysfunction. However, the underlying signaling mechanisms remained undefined. Therefore, we aimed to determine the role of protein kinase C (PKC isozymes in the mechanism of RhoA activation and in signaling TNF-α-induced mouse brain microvascular endothelial cell (BMEC barrier dysfunction. Methods Bend.3 cells, an immortalized mouse brain endothelial cell line, were exposed to TNF-α (10 ng/mL. RhoA activity was assessed by pull down assay. PKC-α activity was measured using enzyme assasy. BMEC barrier function was measured by transendothelial electrical resistance (TER. p115RhoGEF phosphorylation was detected by autoradiography followed by western blotting. F-actin organization was observed by rhodamine-phalloidin staining. Both pharmacological inhibitors and knockdown approaches were employed to investigate the role of PKC and p115RhoGEF in TNF-α-induced RhoA activation and BMEC permeability. Results We observed that TNF-α induces a rapid phosphorylation of p115RhoGEF, activation of PKC and RhoA in BMECs. Inhibition of conventional PKC by Gö6976 mitigated the TNF-α-induced p115RhoGEF phosphorylation and RhoA activation. Subsequently, we found that these events are regulated by PKC-α rather than PKC-β by using shRNA. In addition, P115-shRNA and n19RhoA (dominant negative mutant of RhoA transfections had no effect on mediating TNF-α-induced PKC-α activation. These data suggest that PKC-α but not PKC-β acts as an upstream regulator of p115RhoGEF phosphorylation and RhoA activation in response to TNF-α. Moreover, depletion of PKC-α, of p115RhoGEF, and inhibition of RhoA activation also prevented TNF-α-induced stress fiber formation and a decrease in TER. Conclusions Taken together, our results show that PKC-α phosphorylation of p115RhoGEF mediates TNF

  9. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease

    DEFF Research Database (Denmark)

    Kolmos, Mia; Krawcyk, Rikke Steen; Kruuse, Christina

    2016-01-01

    was to gather current knowledge on the effects of high-intensity training versus moderate-intensity continuous exercise on endothelial function in cardiovascular and cerebrovascular patients. METHODS: A systematic review was performed in PubMed database, Embase and Cochrane libraries and on PEDro using...... the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies were restricted to cardiovascular and cerebrovascular patients, and healthy subjects as general reference. Interventions comprised of high-intensity training alone, high-intensity training compared to moderate-intensity......: A total of 20 studies were included in the review. Although there was great heterogenecity in design, population and exercise protocols, all studies found high-intensity training to be safe. High-intensity training was equal to moderate-intensity continuous exercise through improvement in endothelial...

  10. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    ), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective......BACKGROUND: Traumatic brain injury causes a disruption of the vascular endothelial glycocalyx layer that is associated with an overactivation of the sympathoadrenal system. We hypothesized that early and unselective beta-blockade with propranolol alone or in combination with the alfa2-agonist...

  11. Low Molecular Weight Heparin Improves Endothelial Function in Pregnant Women at High Risk of Preeclampsia.

    Science.gov (United States)

    McLaughlin, Kelsey; Baczyk, Dora; Potts, Audrey; Hladunewich, Michelle; Parker, John D; Kingdom, John C P

    2017-01-01

    Low molecular weight heparin (LMWH) has been investigated for the prevention of severe preeclampsia, although the mechanisms of action are unknown. The objective of this study was to investigate the cardiovascular effects of LMWH in pregnant women at high risk of preeclampsia. Pregnant women at high risk of preeclampsia (n=25) and low-risk pregnant controls (n=20) at 22 to 26 weeks' gestation underwent baseline cardiovascular assessments. High-risk women were then randomized to LMWH or saline placebo (30 mg IV bolus and 1 mg/kg subcutaneous dose). Cardiovascular function was assessed 1 and 3 hours post randomization. The in vitro endothelial effects of patient serum and exogenous LMWH on human umbilical venous endothelial cells were determined. High-risk women demonstrated a reduced cardiac output, high resistance hemodynamic profile with impaired radial artery flow-mediated dilation compared with controls. LMWH increased flow-mediated dilation in high-risk women 3 hours after randomization compared with baseline and increased plasma levels of placental growth factor, soluble fms-like tyrosine kinase-1, and myeloperoxidase. Serum from high-risk women impaired endothelial cell angiogenesis and increased PlGF-1 and PlGF-2 transcription compared with serum from low-risk controls. Coexposure of high-risk serum with LMWH improved the in vitro angiogenic response such that it was equivalent to that of low-risk serum and promoted placental growth factor secretion. LMWH improves maternal endothelial function in pregnant women at high risk of developing preeclampsia, possibly mediated through increased placental growth factor bioavailability. © 2016 American Heart Association, Inc.

  12. Acute effects of different types of oil consumption on endothelial function, oxidative stress status and vascular inflammation in healthy volunteers.

    Science.gov (United States)

    Tousoulis, Dimitris; Papageorgiou, Nikolaos; Antoniades, Charalambos; Giolis, Anastasios; Bouras, George; Gounari, Panagiota; Stefanadi, Elli; Miliou, Antigoni; Psaltopoulou, Theodora; Stefanadis, Christodoulos

    2010-01-01

    Consumption of different types of oil may have different effects on cardiovascular risk. The exact role of maize oil, cod liver oil, soya oil and extra virgin olive oil on endothelial function, oxidative stress and inflammation is unknown. We evaluated the effect of acute consumption of these types of oil on endothelial function, oxidative stress and inflammation in healthy adults. Thirty-seven healthy volunteers were randomised to receive an oral amount of each type of oil or water. Endothelial function was evaluated by gauge-strain plethysmography at baseline and 1, 2 and 3 h after consumption. Oxidative stress status was determined by total lipid peroxides (PEROX), while inflammatory process was estimated by measuring the soluble form of vascular adhesion molecule 1. Serum levels of the two previous markers were measured at baseline and 3 h after oil consumption. Reactive hyperaemia (RH) was significantly decreased after maize oil consumption compared with controls (P consumption of cod liver oil and soya oil induced a significant improvement of RH after 1 h, compared with controls (P consumption on endothelium-independent dilatation, total lipid PEROX and vascular adhesion molecule 1 serum levels. Consumption of maize oil leads to impaired endothelial function, while soya oil and cod liver oil slightly improve endothelial function. However, all types of oils did not affect inflammatory process and systemic oxidative stress, suggesting that their effect on endothelial function may not be mediated by free radicals bioavailability.

  13. Effect of vitamin D deficiency and replacement on endothelial functions in Behçet's disease.

    Science.gov (United States)

    Can, M; Gunes, M; Haliloglu, O A; Haklar, G; Inanç, N; Yavuz, D G; Direskeneli, H

    2012-01-01

    Endothelial dysfunction is previously demonstrated in Behçet's disease (BD) and vitamin D is implicated to affect endothelial functions. We aimed to evaluate the status of serum 25(OH)Vit D3 levels and its association with disease activity, endothelial function and carotis intima media thickness (CIMT) in patients with BD. Thirty-six BD (F/M: 22/14, mean age: 39.6 years) patients and 51 healthy controls (F/M: 28/23, mean age: 34.5 years) were studied. Rheumatoid arthritis (RA) (n=33) patients (F/M: 26/7, mean age: 50.82 years) were also enrolled, as a disease control group. Endothelial function was evaluated by brachial artery flow mediated dilatation (FMD) and CIMT with B-Mode ultrasound. The vitamin D-deficient BD patients received 1000 IU Vitamin D3 daily for 3 months. Less than 50 nmol/L levels of 25(OH) Vit D3 were present in 61.1% (n=22) of BD and 35.3% (n=18) of HC (serum 25(OH)Vit D3 levels: BD: 44.5 (9-112) vs HC: 56 (14-125) nmol/lt, p=0.01). CIMT and FMD were also significantly different between BD and HC [0.56 (0.35-9.26) vs. 0.39 (0-0.52) and 5.20 (0.56-30.58) vs. 9.04 (-6.9-34.17), p=0.001 and p=0.02, respectively]. However, no correlation was observed between 25(OH)VitD3 levels and CIMT or FMD (r=0.6, p=0.7 and r=0.03, p=0.8, respectively) at baseline. CIMT measurements improved after replacement therapy (0.56 vs. 0.49, p=0.02), FMD measurements also improved, but not reaching statistical significance (5.2 vs. 8.28, p=0.06). A high presence of vitamin D deficiency was observed in BD patients from Turkey and replacement of vitamin D had favourable effects on endothelial function.

  14. Can fish oil supplementation improve endothelial function in asymptomatic offspring of patients with peripheral arterial disease?

    Directory of Open Access Journals (Sweden)

    Spark JI

    2013-07-01

    Full Text Available J Ian Spark,1 Christopher L Delaney,1 Richard B Allan,1 Melissa HL Ho,2 Michelle D Miller21Department of Vascular Surgery, Flinders Medical Centre and Flinders University, 2Department of Nutrition and Dietetics, Flinders University, Bedford Park, Adelaide, South Australia, AustraliaBackground: Peripheral arterial disease affects 10%–25% of adults aged .55 years, and while a multitude of risk factors exist, one key influence is genetics. Rather than awaiting the onset of debilitating symptoms, interventions that target high-risk individuals and prevent or delay the onset of symptoms would have widespread impact. The aim of this study is to implement a 12-week fish oil intervention (10 mL/day containing approximately 1.5 g of eicosapentaenoic acid and 1 g of docosahexaenoic acid, with the intention of improving endothelial function, inflammation, and lipid status in a high-risk population, ie, those with impaired endothelial function and a parent with symptomatic peripheral arterial disease.Methods: This is a parallel-group, double-blind, randomized controlled trial involving administration of fish oil containing either about 1.5 g of docosahexaenoic acid and 1 g of docosahexaenoic acid (intervention or about 0.15 g of eicosapentaenoic acid and about 0.1 g of docosahexaenoic acid for 12 consecutive weeks (control. The participants are 100 offspring of adults with diagnosed peripheral arterial disease who themselves have an ankle-brachial pressure index ≥0.9 but impaired endothelial function according to peripheral arterial tonometry. Measures performed at baseline and at 6 and 12 weeks include flow-mediated dilatation, C-reactive protein, absolute neutrophil and lymphocyte counts, tumor necrosis factor-α, interleukin-1ß, and interleukin-6 levels, thromboxane and prostacyclin, lipid status, and homocysteine, nitrite, and nitrate levels. Participants will be phoned fortnightly to monitor adherence and side effects, while participants will

  15. The Role of Vitamin D in Blood Pressure, Endothelial and Renal Function in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Suzanne C. Ho

    2013-07-01

    Full Text Available Background: Vitamin D is a pro-hormone that plays an essential role in the vasculature and in kidney function. Aims: To review the extra-skeletal effects of vitamin D on blood pressure, endothelial and renal function with emphasis on recent findings in postmenopausal women. Methods: Included in this review was a PubMed database search for English language articles through March 2013. This review discussed the physiology and definition of vitamin D deficiency, the recent evidence for the role vitamin D in blood pressure, vascular and renal function. Results: Experimental and epidemiological data suggest that vitamin D plays an important role in the vasculature and in kidney function. Low vitamin D concentrations appear to significantly associate with hypertension, endothelial and renal dysfunction. However, the results of clinical trials have generally been mixed. Studies specifically conducted among postmenopausal women are limited and findings are still inconsistent. Conclusions: Definitive studies are warranted to elucidate the effects of vitamin D supplementation on vascular and renal function and a more detailed work is needed to outline the route, duration and optimal dose of supplementation. It is premature to recommend vitamin D as a therapeutic option in the improvement of vascular and renal function at the current stage.

  16. Endothelial cells derived from the blood-brain barrier and islets of Langerhans differ in their response to the effects of bilirubin on oxidative stress under hyperglycemic conditions

    Directory of Open Access Journals (Sweden)

    Jaime eKapitulnik

    2012-07-01

    Full Text Available Unconjugated bilirubin (UCB is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS. High glucose levels (hyperglycemia generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB. In the current study we show that UCB (1-40 M induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langherans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM glucose levels. While UCB (0.1-40 M did not alter ROS production in cells exposed to normal glucose, relatively low ('physiological' UCB concentrations (0.1-5 M attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20-40 M increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions.

  17. Blood-aqueous Barrier Function in a Patient With Choroideremia

    Directory of Open Access Journals (Sweden)

    Muh-Shy Chen

    2010-02-01

    Full Text Available The purpose was to determine whether there was a breakdown of the blood-aqueous barrier in a patient with choroideremia. A 27-year-old man with typical choroideremia underwent standardized ophthalmo-logical evaluation, including quantitative measurement of aqueous flare intensity, by a laser flare-cell meter. The results showed areas of atrophy of the choriocapillaries and retinal pigment epithelium in the mid-periphery and posterior pole, although not in the macula. Fluorescein angiography showed areas of loss of the choriocapillaries and retinal pigment epithelium. The fovea was spared with a surrounding zone of hy-perfluorescence. Electroretinography showed a subnormal photopic amplitude and extinguished scotopic response. Electrooculography revealed that the light peak/dark trough ratio was reduced. Goldmann perimetry showed constricted peripheral fields. Laser photometry showed an increase in the aqueous flare intensity in both eyes, as compared with normal subjects. We conclude that the function of the blood-aqueous barrier might be affected in patients with choroideremia.

  18. Glucocorticoids improve endothelial function in rheumatoid arthritis: a study in rats with adjuvant-induced arthritis.

    Science.gov (United States)

    Verhoeven, F; Totoson, P; Maguin-Gaté, K; Prigent-Tessier, A; Marie, C; Wendling, D; Moretto, J; Prati, C; Demougeot, C

    2017-05-01

    To determine the effect of glucocorticoids (GCs) on endothelial dysfunction (ED) and on traditional cardiovascular (CV) risk factors in the adjuvant-induced arthritis (AIA) rat model. At the first signs of AIA, a high dose (HD) [10 mg/kg/day, intraperitoneally (i.p.), GC-HD] or low dose (LD) (1 mg/kg/day, i.p., GC-LD) of prednisolone was administered for 3 weeks. Endothelial function was studied in aortic rings relaxed with acetylcholine (Ach) with or without inhibitors of nitric oxide synthase (NOS), cyclooxygenase 2 (COX-2), arginase, endothelium derived hyperpolarizing factor (EDHF) and superoxide anions ( O2-°) production. Aortic expression of endothelial NOS (eNOS), Ser1177-phospho-eNOS, COX-2, arginase-2, p22(phox) and p47(phox) was evaluated by Western blotting analysis. Arthritis scores, blood pressure, heart rate and blood levels of cytokines, triglycerides, cholesterol and glucose were measured. GC-HD but not GC-LD reduced arthritis score significantly and improved Ach-induced relaxation (P < 0·05). The positive effect of GC-HD resulted from increased NOS activity and EDHF production and decreased COX-2/arginase activities and O2-° production. These functional effects relied upon increased phospho-eNOS expression and decreased COX-2, arginase-2 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression. Despite the lack of effect of GC-LD on ED, it increased NOS and EDHF and down-regulated O2-° pathways but did not change arginase and COX-2 pathways. GC-HD increased triglycerides levels and blood pressure significantly (P < 0·05). Both doses of GCs decreased to the same extent as plasma interleukin (IL)-1β and tumour necrosis factor (TNF)-α levels (P < 0·05). Our data demonstrated that subchronic treatment with prednisolone improved endothelial function in AIA via pleiotropic effects on endothelial pathways. These effects occurred independently of the deleterious cardiometabolic effects and the impact of prednisolone on

  19. Microvesicles Derived from Inflammation-Challenged Endothelial Cells Modulate Vascular Smooth Muscle Cell Functions.

    Science.gov (United States)

    Pan, Qunwen; Liu, Hua; Zheng, Chunyan; Zhao, Yuhui; Liao, Xiaorong; Wang, Yan; Chen, Yanfang; Zhao, Bin; Lazartigues, Eric; Yang, Yi; Ma, Xiaotang

    2016-01-01

    Purpose: Microvesicles (MV) can modulate the function of recipient cells by transferring their contents. Our previous study highlighted that MV released from tumor necrosis factor-α (TNF-α) plus serum deprivation (SD)-stimulated endothelial progenitor cells, induce detrimental effects on endothelial cells. In this study, we investigated the potential effects of endothelial MV (EMV) on proliferation, migration, and apoptosis of human brain vascular smooth cells (HBVSMC). Methods: EMV were prepared from human brain microvascular endothelial cells (HBMEC) cultured in a TNF-α plus SD medium. RNase-EMV were made by treating EMV with RNase A for RNA depletion. The proliferation, apoptosis and migration abilities of HBVSMC were determined after co-culture with EMV or RNase-EMV. The Mek1/2 inhibitor, PD0325901, was used for pathway analysis. Western blot was used for analyzing the proteins of Mek1/2, Erk1/2, phosphorylation Erk1/2, activated caspase-3 and Bcl-2. The level of miR-146a-5p was measured by qRT-PCR. Results: (1) EMV significantly promoted the proliferation and migration of HBVSMC. The effects were accompanied by an increase in Mek1/2 and p-Erk1/2, which could be abolished by PD0325901; (2) EMV decreased the apoptotic rate of HBVSMC by approximately 35%, which was accompanied by cleaved caspase-3 down-regulation and Bcl-2 up-regulation; (3) EMV increased miR-146a-5p level in HBVSMC by about 2-folds; (4) RNase-treated EMV were less effective than EMV on HBVSMC activities and miR-146a-5p expression. Conclusion: EMV generated under inflammation challenge can modulate HBVSMC function and fate via their carried RNA. This is associated with activation of theMek1/2/Erk1/2 pathway and caspase-3/Bcl-2 regulation, during which miR-146a-5p may play an important role. The data suggest that EMV derived from inflammation-challenged endothelial cells are detrimental to HBVSMC homeostatic functions, highlighting potential novel therapeutic targets for vascular diseases.

  20. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  1. In vitro effects of waterpipe smoke condensate on endothelial cell function: a potential risk factor for vascular disease.

    Science.gov (United States)

    Rammah, Mayyasa; Dandachi, Farah; Salman, Rola; Shihadeh, Alan; El-Sabban, Marwan

    2013-05-23

    Despite its increasing popularity, little is known about the health effects of waterpipe smoking (WPS), particularly on the cardiovascular system. To investigate the role of WPS as a risk factor for vascular disease, we evaluated its effect on endothelial cell function, which is an early event in vascular disease pathogenesis. We assessed the changes in cell viability, ROS generation, inflammatory and vasodilatory markers and in vitro angiogenesis of human aortic endothelial cells in response to waterpipe smoke condensate exposure. Mainstream waterpipe smoke condensate (WSC) was generated using a standard laboratory machine protocol. Compared to control, WSC induced cell cycle arrest, apoptosis, and oxidative stress in human primary endothelial cells. In addition, we assayed for impaired endothelium-dependent vasodilation and induced inflammation by studying the effect of WPS on the content and activity of AMPK, eNOS proteins and NF-κB p65 ser536 phosphorylation, respectively. WSC inhibited AMPK/eNOS phosphorylation and induced phosphorylation of p65. Moreover, we evaluated endothelial cells repair mechanism related properties that include migration/invasion and in vitro tube formation upon treatment with WSC. WSC reduced the motility and inhibited angiogenic potential of HAEC cells. WPS induced endothelial cell dysfunction as evident by exerting oxidative stress, inflammation, and impaired endothelial vasodilatory function and repair mechanisms. All together these data provide evidence for the potential contribution of WPS to endothelial dysfunction and thus to vascular disease. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Netrin-1 Promotes Inflammation Resolution to Achieve Endothelialization of Small-Diameter Tissue Engineering Blood Vessels by Improving Endothelial Progenitor Cells Function In Situ.

    Science.gov (United States)

    Li, Yanzhao; Wan, Simin; Liu, Ge; Cai, Wang; Huo, Da; Li, Gang; Yang, Mingcan; Wang, Yuxin; Guan, Ge; Ding, Ning; Liu, Feila; Zeng, Wen; Zhu, Chuhong

    2017-12-01

    The transplant of small-diameter tissue engineering blood vessels (small-diameter TEBVs) (vascular replacement therapy often fails because of early onset thrombosis and long-standing chronic inflammation. The specific inflammation state involved in small-diameter TEBVs transplants remains unclear, and whether promoting inflammation resolution would be useful for small-diameter TEBVs therapy need study. The neural protuberant orientation factor 1 (Netrin-1) is found present in endothelial cells of natural blood vessels and has anti-inflammatory effects. This work generates netrin-1-modified small-diameter TEBVs by using layer-by-layer self-assembly to resolve the inflammation. The results show that netrin-1 reprograms macrophages (MΦ) to assume an anti-inflammatory phenotype and promotes the infiltration and subsequent efflux of MΦ from inflamed sites over time, which improves the local microenvironment and the function of early homing endothelial progenitor cells (EPCs). Small-diameter TEBVs modified by netrin-1 achieve endothelialization after 30 d and retain patency at 14 months. These findings suggest that promoting the resolution of inflammation in time is necessary to induce endothelialization of small-diameter TEBVs and prevent early thrombosis and problems associated with chronic inflammation. Furthermore, this work finds that the MΦ-derived exosomes can target and regulate EPCs, which may serve as a useful treatment for other inflammatory diseases.

  3. Microvesicles of women with gestational hypertension and preeclampsia affect human trophoblast fate and endothelial function.

    Science.gov (United States)

    Shomer, Einat; Katzenell, Sarah; Zipori, Yaniv; Sammour, Rami N; Isermann, Berend; Brenner, Benjamin; Aharon, Anat

    2013-11-01

    Microvesicles shedding from cell membrane affect inflammation, apoptosis, and angiogenesis. We hypothesize that microvesicles of women with gestational vascular complications reflect pathophysiological state of the patients and affect their endothelial and trophoblast cell function. Microvesicles of healthy pregnant women, women with gestational hypertension, mild, or severe preeclampsia/toxemia, were characterized, and their effects on early-stage or term trophoblasts and endothelial cells were evaluated using apoptosis, migration, and tube formation assays. Patient subgroups differed significantly only in proteinuria levels, therefore their microvesicles were assessed as 1 group, demonstrating higher levels of inflammatory and angiogenic proteins compared with those of healthy pregnant women. In endothelial cells, microvesicles of healthy pregnant women reduced caspase 3/7 activity, increased migration, and induced tube formation. These processes were suppressed by microvesicles of women with gestational vascular complications. In early-stage trophoblasts, microvesicles of healthy pregnant women decreased apoptosis compared with untreated cells (6±5% versus 13.8±5.8%; Papoptosis compared with cells exposed to microvesicles of healthy pregnant women (15.1±3.3% versus 6.5±2.1%; P<0.001) and inhibited early-stage trophoblasts migration (21.4±18.5 versus 39.7±10.1 mm2; P<0.001). In conclusion, microvesicle content and effects on endothelial and trophoblast cells vary according to the physiological/pathological state of a pregnant woman. Microvesicles seem to play a pivotal role in the course of pregnancy, which could potentially result in gestational vascular complications.

  4. Impaired endothelial function in patients with cryptogenic stroke and patent foramen ovale is not affected by closure.

    Science.gov (United States)

    Lantz, Maria; Kostulas, Konstantinos; Settergren, Magnus; Sjöstrand, Christina

    2017-06-01

    Patent foramen ovale (PFO) is associated with cryptogenic stroke (CS) and migraine with aura (MA). Endothelial dysfunction (ED) is a risk factor for development of cardiovascular disease, but might also be involved in migraine pathophysiology. Short-term worsening of migraine has been described after closure of PFO. We evaluated endothelial function in patients with CS and PFO, before and after closure of PFO, and in patients with migraine, whether changes in endothelial function was related to a change in migraine frequency. Patients with CS and PFO were included; 20 with planned closure of PFO and seven controls on medical treatment only. Endothelial function was assessed by peripheral arterial tonometry (EndoPat R ) and biomarkers of endothelial activation. Patients were followed longitudinally at baseline, day 1, 1 month, and 6 months. A headache diary was used to assess migraine frequency. Mean age of the cohort was 45.4 years, and migraine prevalence was 50% whereof 84.6% had MA. Median EndoPat R index (RHI) at baseline was 1.60 (IQR 1.41-2.00). There was no change in RHI over time, either in closure patients (P = 0.66), nor in controls (P = 0.31), and there was no change in biomarkers of endothelial activation. Three migraine patients experienced worsening of migraine frequency directly after closure. Endothelial function did not change after closure of PFO. Although patients were lacking cardiovascular risk factors, a high proportion had impaired endothelial function. Whether ED can have predictive value, identifying PFO at higher risk for recurrent stroke warrants further investigations. © 2017, Wiley Periodicals, Inc.

  5. Functional Food Market Development in Serbia: Motivations and Barriers

    Directory of Open Access Journals (Sweden)

    Žaklina Stojanović

    2013-11-01

    Full Text Available The aim of this paper is to present main findings obtained from the empirical analysis of the functional food market in Serbia. The analysis is based on the in-depth interviews with relevant processors and retailers present on the market. The following set of topics are considered: (1 motivations (driving forces and barriers to offer products with nutrition and health (N&H claim and (2 perception of consumer demand toward N&H claimed products. Differences between Serbia and other Western Balkan Countries (WBC are explored by using nonparametric techniques based on the independent samples. Results support overall conclusion that this market segment in Serbia is underdeveloped and rather producer than consumer driven compared to more developed WBC markets.

  6. Successive deep dives impair endothelial function and enhance oxidative stress in man.

    Science.gov (United States)

    Obad, Ante; Marinovic, Jasna; Ljubkovic, Marko; Breskovic, Toni; Modun, Darko; Boban, Mladen; Dujic, Zeljko

    2010-11-01

    The aim of this study was to assess the effects of successive deep dives on endothelial function of large conduit arteries and plasma pro-oxidant and antioxidant activity. Seven experienced divers performed six dives in six consecutive days using a compressed mixture of oxygen, helium and nitrogen (trimix) with diving depths ranging from 55 to 80 m. Before and after first, third and sixth dive, venous gas emboli formation and brachial artery function (flow-mediated dilation, FMD) was assessed by ultrasound. In addition, plasma antioxidant capacity (AOC) was measured by ferric reducing antioxidant power, and the level of oxidative stress was assessed by thiobarbituric acid-reactive substances (TBARS) method. Although the FMD was reduced to a similar extent after each dive, the comparison of predive FMD showed a reduction from 8.6% recorded before the first dive to 6.3% before the third (P = 0.03) and 5.7% before the sixth dive (P = 0.003). A gradual shift in baseline was also detected with TBARS assay, with malondialdehyde values increasing from 0.10 ± 0.02 μmol l⁻¹ before the first dive to 0.16 ± 0.03 before the sixth (P = 0.005). Predive plasma AOC values also showed a decreasing trend from 0.67 ± 0.20 mmol l⁻¹ trolox equivalents (first day) to 0.56 ± 0.12 (sixth day), although statistical significance was not reached (P = 0.08). This is the first documentation of acute endothelial dysfunction in the large conduit arteries occurring after successive deep trimix dives. Both endothelial function and plasma pro-oxidant and antioxidant activity did not return to baseline during the course of repetitive dives, indicating possible cumulative and longer lasting detrimental effects. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  7. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads

    2017-01-01

    Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular...... by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement, to asses the protein amount and phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2...... %) and to 12 watts of active exercise (by 9 ± 1 %), indicating impaired vascular function. Reduced flow response to passive and active exercise was paralleled by a significant upregulation of Platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho...

  8. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function.

    Science.gov (United States)

    Gudiño-Cabrera, Graciela; Ureña-Guerrero, Monica E; Rivera-Cervantes, Martha C; Feria-Velasco, Alfredo I; Beas-Zárate, Carlos

    2014-11-01

    It is likely that monosodium glutamate (MSG) is the excitotoxin that has been most commonly employed to characterize the process of excitotoxicity and to improve understanding of the ways that this process is related to several pathological conditions of the central nervous system. Excitotoxicity triggered by neonatal MSG treatment produces a significant pathophysiological impact on adulthood, which could be due to modifications in the blood-brain barrier (BBB) permeability and vice versa. This mini-review analyzes this topic through brief descriptions about excitotoxicity, BBB structure and function, role of the BBB in the regulation of Glu extracellular levels, conditions that promote breakdown of the BBB, and modifications induced by neonatal MSG treatment that could alter the behavior of the BBB. In conclusion, additional studies to better characterize the effects of neonatal MSG treatment on excitatory amino acids transporters, ionic exchangers, and efflux transporters, as well as the role of the signaling pathways mediated by erythropoietin and vascular endothelial growth factor in the cellular elements of the BBB, should be performed to identify the mechanisms underlying the increase in neurovascular permeability associated with excitotoxicity observed in several diseases and studied using neonatal MSG treatment. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  9. Blood-brain barrier permeability imaging using perfusion computed tomography

    Directory of Open Access Journals (Sweden)

    Avsenik Jernej

    2015-06-01

    Full Text Available Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with pathologies such as acute stroke, tumors, inflammatory and neurodegenerative diseases.

  10. Supervised physical exercise improves endothelial function in patients with systemic lupus erythematosus.

    Science.gov (United States)

    dos Reis-Neto, Edgard Torres; da Silva, Aline Evelyn; Monteiro, Carlos Manoel de Castro; de Camargo, Luciano Monteiro; Sato, Emilia Inoue

    2013-12-01

    The objective of this study was to evaluate the effect of supervised physical exercise on endothelial function, ergospirometric test variables and disease activity in SLE patients. We conducted a prospective study in which women with SLE who were available to perform physical exercise were allocated to the exercise group (EG) to practise supervised physical exercise for 1 h three times per week for 16 weeks. Those who were not available for this activity were allocated to the control group (CG). Intervention consisted of walking at a heart rate corresponding to the ventilatory 1 threshold obtained from ergospirometry and monitored by a frequency meter. At baseline (T0) and after 16 weeks (T16), patients were assessed for endothelial function by brachial artery (flow-mediated dilation), ergospirometry and disease activity (SLEDAI). Statistical analysis was performed through normality tests, Student's t-test and non-parametric tests for data with non-normal distribution. P exercise tolerance [12.3 (2.4) vs 13.4 (2.6) min, P = 0.027], maximum speed [7.7 (1.0) vs 8.3 (1.2) km/h, P = 0.027] and threshold speed [5.6 (0.7) vs 6.1 (0.9) km/h, P = 0.005] in the EG without a difference in the CG. There was no difference in the SLEDAI score in both groups. Physical exercise is a useful strategy to improve endothelial function and aerobic capacity without worsening disease activity in SLE patients. TRIAL REGISTRATION; ClinicalTrials.gov (http://www.clinicaltrials.gov), NCT01712529.

  11. The effect of exercise intensity on endothelial function in physically inactive lean and obese adults.

    Directory of Open Access Journals (Sweden)

    Rachel Hallmark

    Full Text Available To examine the effects of exercise intensity on acute changes in endothelial function in lean and obese adults.Sixteen lean (BMI 30, age 26 ± 6 yr physically inactive adults were studied during 3 randomized admissions [control (C, no exercise, moderate-intensity exercise (M, @ lactate threshold (LT and high-intensity exercise (H, midway between LT and VO2peak (30 min]. Endothelial function was assessed by flow-mediated dilation (FMD at baseline and 1, 2, and 4 h post-exercise.RM ANCOVA revealed significant main effects for group, time, and group x condition interaction (p<0.05. A diurnal increase in FMD was observed in lean but not obese subjects. Lean subjects exhibited greater increases in FMD than obese subjects (p = 0.0005. In the obese group a trend was observed for increases in FMD at 2- and 4-hr after M (p = 0.08. For lean subjects, FMD was significantly elevated at all time points after H. The increase in FMD after H in lean subjects (3.2 ± 0.5% was greater than after both C (1.7 ± 0.4%, p = 0.015 and M (1.4 ± 0.4%, p = 0.002. FMD responses of lean and obese subjects significantly differed after C and H, but not after M.In lean young adults, high-intensity exercise acutely enhances endothelial function, while moderate-intensity exercise has no significant effect above that seen in the absence of exercise. The FMD response of obese adults is blunted compared to lean adults. Diurnal variation should be considered when examining the effects of acute exercise on FMD.

  12. [Research of sapindus saponins on endothelial function in spontaneously hypertensive rats].

    Science.gov (United States)

    Chen, Ming; Chen, Zhi-Wu; Long, Zi-Jiang; Gao, Hua-Wu; Bian, Hai; Wang, Ya-Juan; Wang, Liang

    2012-11-01

    To investigate the regulation on endothelial function of sapindus saponins in spontaneously hypertensive rats by studying the reactivity on different vasoconstrictor and dilator, and the content of the active substances. Forty 16-week-old spontaneously hypertensive rats were randomly divided into five groups, one with placebo as model group, one with captopril tablets (27 mg x kg(-1)) as positive control, one with low-dose sapindus saponins (27 mg x kg(-1)), one with medium-dose (54 mg x kg(-1)), one with high-dose (108 mg x kg(-1)). And another eight healthy Wistar-Kyoto strain (WKY) rats were used as the normal group. The animals were treated for eight weeks, and the indicators to be detected were as follows: (1) the response of thoracic aorta on different vasoconstrictors Ang II (1 x 10(-9) -1 x 10(-5) mol x L(-1)), PE (1 x 10(-8) 1 x 10(-4) mol x L(-1)), KCl (20 -120 mmol x L(-1)); (2) the endothelium-dependent or non-endothelium-dependent vasodilation response of thoracic aorta on Ach (1 x 10-(10)-1 x 10(-5) mol x L(-1)) or SNP (1 x 10(-8)-1 x 10(-3) mol x (L(-1); (3) the content of NO, 6-KPG1alpha, ET-1 and TXB2 in serum was determined by Elisa. In SHR model group, the response of thoracic aorta on Ang II, PE and KCl was increased, the endothelium-dependent vasodilation on Ach was reduced, but the effects on SNP was not obvious, the content of ET-1 and TXB2 was increased, and the content of NO and 6-KPG1alpha was reduced, Vs the normal control group, there were significant differences (P sapindus saponins protected the endothelial function in SHR, the mechanisms were relevant to the protection of endothelial function.

  13. Acute dark chocolate and cocoa ingestion and endothelial function: a randomized controlled crossover trial.

    Science.gov (United States)

    Faridi, Zubaida; Njike, Valentine Yanchou; Dutta, Suparna; Ali, Ather; Katz, David L

    2008-07-01

    Studies suggest cardioprotective benefits of dark chocolate containing cocoa. This study examines the acute effects of solid dark chocolate and liquid cocoa intake on endothelial function and blood pressure in overweight adults. Randomized, placebo-controlled, single-blind crossover trial of 45 healthy adults [mean age: 53 y; mean body mass index (in kg/m(2)): 30]. In phase 1, subjects were randomly assigned to consume a solid dark chocolate bar (containing 22 g cocoa powder) or a cocoa-free placebo bar (containing 0 g cocoa powder). In phase 2, subjects were randomly assigned to consume sugar-free cocoa (containing 22 g cocoa powder), sugared cocoa (containing 22 g cocoa powder), or a placebo (containing 0 g cocoa powder). Solid dark chocolate and liquid cocoa ingestion improved endothelial function (measured as flow-mediated dilatation) compared with placebo (dark chocolate: 4.3 +/- 3.4% compared with -1.8 +/- 3.3%; P cocoa: 5.7 +/- 2.6% and 2.0 +/- 1.8% compared with -1.5 +/- 2.8%; P cocoa compared with placebo (dark chocolate: systolic, -3.2 +/- 5.8 mm Hg compared with 2.7 +/- 6.6 mm Hg; P cocoa: systolic, -2.1 +/- 7.0 mm Hg compared with 3.2 +/- 5.6 mm Hg; P cocoa (5.7 +/- 2.6% compared with 2.0 +/- 1.8%; P cocoa improved endothelial function and lowered blood pressure in overweight adults. Sugar content may attenuate these effects, and sugar-free preparations may augment them.

  14. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Canfield, Scott G; Stebbins, Matthew J; Morales, Bethsymarie Soto; Asai, Shusaku W; Vatine, Gad D; Svendsen, Clive N; Palecek, Sean P; Shusta, Eric V

    2017-03-01

    The blood-brain barrier (BBB) is critical in maintaining a physical and metabolic barrier between the blood and the brain. The BBB consists of brain microvascular endothelial cells (BMECs) that line the brain vasculature and combine with astrocytes, neurons and pericytes to form the neurovascular unit. We hypothesized that astrocytes and neurons generated from human-induced pluripotent stem cells (iPSCs) could induce BBB phenotypes in iPSC-derived BMECs, creating a robust multicellular human BBB model. To this end, iPSCs were used to form neural progenitor-like EZ-spheres, which were in turn differentiated to neurons and astrocytes, enabling facile neural cell generation. The iPSC-derived astrocytes and neurons induced barrier tightening in primary rat BMECs indicating their BBB inductive capacity. When co-cultured with human iPSC-derived BMECs, the iPSC-derived neurons and astrocytes significantly elevated trans-endothelial electrical resistance, reduced passive permeability, and improved tight junction continuity in the BMEC cell population, while p-glycoprotein efflux transporter activity was unchanged. A physiologically relevant neural cell mixture of one neuron: three astrocytes yielded optimal BMEC induction properties. Finally, an isogenic multicellular BBB model was successfully demonstrated employing BMECs, astrocytes, and neurons from the same donor iPSC source. It is anticipated that such an isogenic facsimile of the human BBB could have applications in furthering understanding the cellular interplay of the neurovascular unit in both healthy and diseased humans. Read the Editorial Highlight for this article on page 843. © 2016 International Society for Neurochemistry.

  15. Preventive Effects of a Three-month Yoga Intervention on Endothelial Function in Patients with Migraine.

    Science.gov (United States)

    Naji-Esfahani, Hajar; Zamani, Mahsa; Marandi, Seyed Mohamad; Shaygannejad, Vahid; Javanmard, Shaghayegh Haghjooy

    2014-04-01

    Migraine is a neurovascular disorder and any interventions improving endothelial function may contribute to its treatment and prevention of vascular complications like ischemic stroke. Yoga has been shown to have several beneficial effects on cardiovascular systems. However, no randomized controlled studies to date have investigated its effects on endothelial function of migraineurs. A total of 42 women patients with migraine were enrolled and randomized into either a Yoga exercise group or a control group. The control group received only medication for 12 weeks and the Yoga group was placed in yoga training program in addition to the same medical treatment. Blood test was given from all patients in order to measure plasma levels intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) after yoga training program. Totally 32 patients were participated in the final analyses (yoga: n = 18, control: n = 14). By analyzing data between yoga and control groups after the treatment period, there was a significant decreased in plasma level of VCAM in yoga group compare with the control group (15.29 ± 2.1 ng/ml vs. 21.70 ± 3.0 ng/ml, P 0.05). It seems that yoga exercises, as a complementary treatment beside pharmacological treatments, can be potentially an effective way of improving vascular functions in migraineurs.

  16. Influence of Adjuvant Therapy in Cancer Survivors on Endothelial Function and Skeletal Muscle Deoxygenation.

    Science.gov (United States)

    Ederer, Austin K; Didier, Kaylin D; Reiter, Landon K; Brown, Michael; Hardy, Rachel; Caldwell, Jacob; Black, Christopher D; Larson, Rebecca D; Ade, Carl J

    2016-01-01

    The cardiotoxic effects of adjuvant cancer treatments (i.e., chemotherapy and radiation treatment) have been well documented, but the effects on peripheral cardiovascular function are still unclear. We hypothesized that cancer survivors i) would have decreased resting endothelial function; and ii) altered muscle deoxygenation response during moderate intensity cycling exercise compared to cancer-free controls. A total of 8 cancer survivors (~70 months post-treatment) and 9 healthy controls completed a brachial artery FMD test, an index of endothelial-dependent dilation, followed by an incremental exercise test up to the ventilatory threshold (VT) on a cycle ergometer during which pulmonary V̇O2 and changes in near-infrared spectroscopy (NIRS)-derived microvascular tissue oxygenation (TOI), total hemoglobin concentration ([Hb]total), and muscle deoxygenation ([HHb] ≈ fractional O2 extraction) were measured. There were no significant differences in age, height, weight, and resting blood pressure between cancer survivors and control participants. Brachial artery FMD was similar between groups (P = 0.98). During exercise at the VT, TOI was similar between groups, but [Hb]total and [HHb] were significantly decreased in cancer survivors compared to controls (P muscle microvascular function was observed during moderate intensity cycling exercise. These data suggest that adjuvant cancer therapies have an effect on the integrated relationship between O2 extraction, V̇O2 and O2 delivery during exercise.

  17. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  18. Food derived bioactive peptides and intestinal barrier function.

    Science.gov (United States)

    Martínez-Augustin, Olga; Rivero-Gutiérrez, Belén; Mascaraque, Cristina; Sánchez de Medina, Fermín

    2014-12-09

    A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  19. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice

    Science.gov (United States)

    Miranda-Angulo, Ana L.; Byerly, Mardi S.; Mesa, Janny; Wang, Hong; Blackshaw, Seth

    2013-01-01

    The wall of the ventral third ventricle is composed of two distinct cell populations: tanycytes and ependymal cells. Tanycytes regulate many aspects of hypothalamic physiology, but little is known about the transcriptional network that regulates their development and function. We observed that the retina and anterior neural fold homeobox transcription factor (Rax) is selectively expressed in hypothalamic tanycytes, and showed a complementary pattern of expression to markers of hypothalamic ependymal cells, such as Rarres2 (retinoic acid receptor responder). To determine whether Rax controls tanycyte differentiation and function, we generated Rax haploinsufficient mice and examined their cellular and molecular phenotype in adulthood. These mice appeared grossly normal, but careful examination revealed a thinning of the third ventricular wall and reduction of both tanycyte and ependymal markers. These experiments show that Rax is required for hypothalamic tanycyte and ependymal cell differentiation. Rax haploinsufficiency also resulted in the ectopic presence of ependymal cells in the α2 tanycytic zone, where few ependymal cells are normally found, suggesting that Rax is selectively required for α2 tanycyte differentiation. These changes in the ventricular wall were associated with reduced diffusion of Evans Blue tracer from the ventricle to the hypothalamic parenchyma, with no apparent repercussion on the gross anatomical or behavioral phenotype of these mice. In conclusion, we have provided evidence that Rax is required for the normal differentiation and patterning of hypothalamic tanycytes and ependymal cells, as well as for maintenance of the cerebrospinal fluid-hypothalamus barrier. PMID:23939786

  20. Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function.

    Science.gov (United States)

    Mannaerts, Dominique; Faes, Ellen; Goovaerts, Inge; Stoop, Tibor; Cornette, Jerome; Gyselaers, Wilfried; Spaanderman, Marc; Van Craenenbroeck, Emeline M; Jacquemyn, Yves

    2017-11-01

    Endothelial function and arterial stiffness are known to be altered in preeclamptic pregnancies. Previous studies have shown conflicting results regarding the best technique for assessing vascular function in pregnancy. In this study, we made a comprehensive evaluation of in vivo vascular function [including flow-mediated dilatation (FMD), peripheral arterial tonometry (PAT), and arterial stiffness] in preeclamptic patients and compared them with normal pregnancies. In addition, we assessed the relation between vascular function and systemic inflammation. Fourteen patients with preeclampsia (PE) and 14 healthy pregnant controls were included. Endothelial function was determined by FMD and PAT and arterial stiffness by carotid-femoral pulse-wave velocity and augmentation index. Systemic inflammation was assessed using mean platelet volume (MPV) and neutrophil-lymphocyte ratio (NLR). The reactive hyperemia index, assessed using PAT, is decreased at the third trimester compared with the first trimester in a normal, uncomplicated pregnancy (P = 0.001). Arterial stiffness is significantly higher in PE versus normal pregnancy (P function, obtained by FMD, is deteriorated in PE versus normal pregnancy (P = 0.015), whereas endothelial function assessment by PAT is improved in PE versus normal pregnancy (P = 0.001). Systemic inflammation (MPV and NLR) increases during normal pregnancy. FMD and PAT are disturbed in PE. Endothelial function, assessed by FMD and PAT, shows distinct results. This may indicate that measurements with FMD and PAT reflect different aspects of endothelial function and that PAT should not be used as a substitute for FMD as a measure of endothelial function in pregnancy. Copyright © 2017 the American Physiological Society.

  1. Is there any association of personality traits with vascular endothelial function or systemic inflammation?

    Directory of Open Access Journals (Sweden)

    Reza Bagherian Sararoudi

    2014-01-01

    Full Text Available Background: Evidences showed association of some personality traits with increased risk of cardiovascular diseases, but mediated mechanisms are not entirely described. In this study, we investigated the association of different personality traits with systemic inflammation and endothelial function as probable mediators. Methods: This cross-sectional study was conducted in 2011 on 40-60 years old employees of an industrial company located in Isfahan city (central Iran. Participants were selected through simple random sampling. Personality types were evaluated using the neuroticism-extroversion-openness personality inventory and systemic inflammatory status was determined with high sensitive C-reactive protein (hs-CRP level. To evaluate endothelial function flow mediated dilation (FMD were measured. The obtained data were analyzed with univariate correlation and multiple linear regression tests. Results: A total of 254 cases with mean age of 51.4 ± 6.1 years were evaluated. There was no significant relationship between hs-CRP level and FMD with the personality traits in univariate analysis. In multivariate analysis, no association was found between the scores of personality traits and FMD with controlling the factors such as age, body mass index dyslipidemia, hypertension and diabetes. Only there was an inverse association between conscientiousness score and hs-CRP (β = −0.241, P = 0.013. Conclusions: In our population who were the employees of an industrial company, no relationship was found between specific personality trait and endothelial dysfunction. However, we found that the personality trait of responsibility (conscientiousness is negatively associated with inflammation. Further multi-center studies and also cohort studies are recommended in this regard.

  2. The evaluation of endothelial function and structure in hirsute patients in reproductive age.

    Science.gov (United States)

    Atasayan, Kemal; Yoldemir, Tevfik; Ramoglu, Sedef; Yavuz, Dilek Gogas

    2016-11-01

    To evaluate the endothelial function and structure in patients with hirsutism in reproductive age. The study was conducted on 69 consecutive women admitted with complaints of hirsutism and 63 voluntary healthy women, as controls. A total of 132 subjects who applied to the Gynecology and Infertility Outpatient Clinics were included. Participants with modified Ferriman Gallway (mFG) score over 8 were considered to be hirsute. The demographic, metabolic, hormonal characteristics, risk factors of cardiovascular disease, CIMT (carotis intima media thickness) and FMD (flow-mediated dilatation) were compared between hirsute women and those in the control group. A prospective case-control study was performed. There was no statistically significant difference in CIMT (0,50±0,08 vs 0,52±0,08, p=0.38) and FMD (10,80±6,83 vs 9,57±6,52, p=0.34) values between the study and control groups, respectively. There was no statistically significant correleation between CIMT and FMD values with age, body mass index (BMI), waist circumference, hip circumference, waist/hip ratio, CRP (C-reactive protein), total cholesterol, LDL (low density lipoprotein), HDL (high density lipoprotein), total testosteron, FAI (free androjen index), androstenedion, SHBG (sex hormone binding globuline), DHEA-S, hirsutism score, sistolic blood pressure, diastolic blood pressure, HOMA-IR (homeostatic model of assesment insuline resistance) value. The effect of the presence of hirsutism on either CIMT and FMD values, among young patients was not significant. Since endothelial dysfunction might became evident after a long period of physio-pathological process, our findings obtained from younger patients may not really show the impact of hirsutism on endothelial function in short term. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Moderate alcohol consumption is associated with better endothelial function: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Di Tullio Marco R

    2009-02-01

    Full Text Available Abstract Background Moderate alcohol consumption is protective against coronary artery disease. Endothelial dysfunction contributes to atherosclerosis and the pathogenesis of cardiovascular disease. The effects of alcohol consumption on endothelial function may be relevant to these cardiovascular outcomes, but very few studies have examined the effect of alcohol consumption on endothelial function assessed by flow-mediated dilation (FMD of the brachial artery in humans. Methods In the population-based Northern Manhattan Study (NOMAS, we performed a cross-sectional analysis of lifetime alcohol intake and brachial artery FMD during reactive hyperemia using high-resolution B-mode ultrasound images among 884 stroke-free participants (mean age 66.8 years, women 56.6%, Hispanic 67.4%, black 17.4%, and white 15.2%. Results The mean brachial FMD was 5.7% and the median was 5.5%. Compared to non-drinkers, those who drank >1 drink/month to 2 drinks/day were more likely to have FMD above the median FMD (5.5% (unadjusted OR 1.7, 95% CI 1.2–2.4, p = 0.005. In multivariate analysis, the relationship between moderate alcohol consumption and FMD remained significant after adjusting for multiple traditional cardiovascular risk factors, including sex, race-ethnicity, body mass index, diabetes mellitus, coronary artery disease, Framingham risk score, medication use (adjusted OR 1.8, 95%CI 1.1–3.0, p = 0.03. No beneficial effect on FMD was seen for those who drank more than 2 drinks/day. Conclusion In conclusion, consumption of up to 2 alcoholic beverages per day was independently associated with better FMD compared to no alcohol consumption in this multiethnic population. This effect on FMD may represent an important mechanism in explaining the protective effect of alcohol intake on cardiovascular disease.

  4. One Minute of Marijuana Secondhand Smoke Exposure Substantially Impairs Vascular Endothelial Function.

    Science.gov (United States)

    Wang, Xiaoyin; Derakhshandeh, Ronak; Liu, Jiangtao; Narayan, Shilpa; Nabavizadeh, Pooneh; Le, Stephenie; Danforth, Olivia M; Pinnamaneni, Kranthi; Rodriguez, Hilda J; Luu, Emmy; Sievers, Richard E; Schick, Suzaynn F; Glantz, Stanton A; Springer, Matthew L

    2016-07-27

    Despite public awareness that tobacco secondhand smoke (SHS) is harmful, many people still assume that marijuana SHS is benign. Debates about whether smoke-free laws should include marijuana are becoming increasingly widespread as marijuana is legalized and the cannabis industry grows. Lack of evidence for marijuana SHS causing acute cardiovascular harm is frequently mistaken for evidence that it is harmless, despite chemical and physical similarity between marijuana and tobacco smoke. We investigated whether brief exposure to marijuana SHS causes acute vascular endothelial dysfunction. We measured endothelial function as femoral artery flow-mediated dilation (FMD) in rats before and after exposure to marijuana SHS at levels similar to real-world tobacco SHS conditions. One minute of exposure to marijuana SHS impaired FMD to a comparable extent as impairment from equal concentrations of tobacco SHS, but recovery was considerably slower for marijuana. Exposure to marijuana SHS directly caused cannabinoid-independent vasodilation that subsided within 25 minutes, whereas FMD remained impaired for at least 90 minutes. Impairment occurred even when marijuana lacked cannabinoids and rolling paper was omitted. Endothelium-independent vasodilation by nitroglycerin administration was not impaired. FMD was not impaired by exposure to chamber air. One minute of exposure to marijuana SHS substantially impairs endothelial function in rats for at least 90 minutes, considerably longer than comparable impairment by tobacco SHS. Impairment of FMD does not require cannabinoids, nicotine, or rolling paper smoke. Our findings in rats suggest that SHS can exert similar adverse cardiovascular effects regardless of whether it is from tobacco or marijuana. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. Acetylcholine versus cold pressor testing for evaluation of coronary endothelial function.

    Directory of Open Access Journals (Sweden)

    Ahmed AlBadri

    Full Text Available Assessment of coronary endothelial function with intracoronary acetylcholine (IC-Ach provides diagnostic and prognostic data in patients with suspected coronary microvascular dysfunction (CMD, but is often not feasible due in part to the time and expertise needed for pharmacologic mixing. Cold pressor testing (CPT is a simple and safe stimulus useful for either invasive or non-invasive endothelial function testing and myocardial perfusion imaging but has not been specifically evaluated among symptomatic women with signs of ischemic heart disease (IHD who have no obstructive coronary artery disease (CAD.163 women with signs and symptoms of IHD and no obstructive CAD from the NHLBI- Women's Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction (WISE-CVD study underwent coronary reactivity testing with a Doppler flow wire (FloWire® Volcano, San Diego, CA in the proximal left anterior descending artery. Coronary artery diameter and coronary blood flow (CBF assessed by core lab using QCA before and after IC-Ach (18.2 μg/ml infused over 3 minutes and during CPT.Mean age was 55 ± 12 years. Rate pressure product (RPP in response to IC-Ach did not change (baseline to peak, P = 0.26, but increased during CPT (363±1457; P = 0.0028. CBF in response to CPT was poorly correlated to IC-Ach CBF. Change in coronary artery diameter after IC-Ach correlated with change after CPT (r = 0.59, P<0.001. The correlation coefficient was stronger in subjects with coronary dilation to IC-Ach (r = 0.628, P<0.001 versus those without dilation (r = 0.353, P = 0.002, suggesting that other factors may be important to this relationship when endothelium is abnormal.In women with no obstructive CAD and suspected CMD, coronary diameter changes with IC-Ach and CPT are moderately-well correlated suggesting that CPT testing may be of some use, particularly among patients with normal endothelial function, however, not an alternative to IC-Ach for diagnosis of coronary

  6. Κ-opioid receptor stimulation improves endothelial function in hypoxic pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Qi Wu

    Full Text Available The present study was designed to investigate the effect of κ-opioid receptor stimulation with U50,488H on endothelial function and underlying mechanism in rats with hypoxic pulmonary hypertension (HPH. Chronic hypoxia-induced HPH was simulated by exposing the rats to 10% oxygen for 2 wk. After hypoxia, mean pulmonary arterial pressure (mPAP, right ventricular pressure (RVP and right ventricular hypertrophy index (RVHI were measured. Relaxation of pulmonary artery in response to acetylcholine (ACh was determined. Expression and activity of endothelial nitric oxide (NO synthase (eNOS and inducible NO synthase (iNOS with NO production, total antioxidant capacity (T-AOC, gp91(phox expression and nitrotyrosine content were measured. The effect of U50,488H administration during chronic hypoxia was investigated. Administration of U50,488H significantly decreased mPAP and right ventricular hypertrophy as evidenced by reduction in RVP and RVHI. These effects were mediated by κ-opioid receptor. In the meantime, treatment with U50,488H significantly improved endothelial function as evidenced by enhanced relaxation in response to ACh. Moreover, U50,488H resulted in a significant increase in eNOS phosphorylation, NO content in serum, and T-AOC in pulmonary artery of HPH rats. In addition, the activity of eNOS was enhanced, but the activity of iNOS was attenuated in the pulmonary artery of chronic hypoxic rats treated with U50,488H. On the other hand, U50,488H markedly blunted HPH-induced elevation of gp91(phox expression and nitrotyrosine content in pulmonary artery, and these effects were blocked by nor-BNI, a selective κ-opioid receptor antagonist. These data suggest that κ-opioid receptor stimulation with U50,488H improves endothelial function in rats with HPH. The mechanism of action might be attributed to the preservation of eNOS activity, enhancement of eNOS phosphorylation, downregulation of iNOS activity and its antioxidative/nitrative effect.

  7. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: A systematic review.

    Science.gov (United States)

    Kolmos, Mia; Krawcyk, Rikke Steen; Kruuse, Christina

    2016-01-01

    Exercise improves endothelial dysfunction, the key manifestation of cardiovascular and cerebrovascular disease, and is recommended in both cardiovascular and cerebrovascular rehabilitation. Disagreement remains, however, on the role of intensity of exercise. The purpose of this review was to gather current knowledge on the effects of high-intensity training versus moderate-intensity continuous exercise on endothelial function in cardiovascular and cerebrovascular patients. A systematic review was performed in PubMed database, Embase and Cochrane libraries and on PEDro using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies were restricted to cardiovascular and cerebrovascular patients, and healthy subjects as general reference. Interventions comprised of high-intensity training alone, high-intensity training compared to moderate-intensity continuous exercise, or no training, with endothelial function as outcome measure. Endothelial function was measured either physiologically by flow-mediated dilatation and/or by systemic biomarkers. Data were analyzed descriptively due to non-comparability for a meta-analysis to be performed. A total of 20 studies were included in the review. Although there was great heterogenecity in design, population and exercise protocols, all studies found high-intensity training to be safe. High-intensity training was equal to moderate-intensity continuous exercise through improvement in endothelial function in 15 of the 20 selected studies, as measured by flow-mediated dilatation, nitric oxide bioavailability and circulating biomarkers. Only a few studies examined high-intensity training in cerebrovascular patients, none with endothelial function as outcome. High-intensity training is promising as a time-efficient exercise strategy in cardiovascular rehabilitation, but data on endothelial effects in cerebrovascular rehabilitation are warranted. Agreement on a more uniform exercise protocol is

  8. The research on endothelial function in women and men at risk for cardiovascular disease (REWARD study: methodology

    Directory of Open Access Journals (Sweden)

    Lavoie Kim L

    2011-08-01

    Full Text Available Abstract Background Endothelial function has been shown to be a highly sensitive marker for the overall cardiovascular risk of an individual. Furthermore, there is evidence of important sex differences in endothelial function that may underlie the differential presentation of cardiovascular disease (CVD in women relative to men. As such, measuring endothelial function may have sex-specific prognostic value for the prediction of CVD events, thus improving risk stratification for the overall prediction of CVD in both men and women. The primary objective of this study is to assess the clinical utility of the forearm hyperaemic reactivity (FHR test (a proxy measure of endothelial function for the prediction of CVD events in men vs. women using a novel, noninvasive nuclear medicine -based approach. It is hypothesised that: 1 endothelial dysfunction will be a significant predictor of 5-year CVD events independent of baseline stress test results, clinical, demographic, and psychological variables in both men and women; and 2 endothelial dysfunction will be a better predictor of 5-year CVD events in women compared to men. Methods/Design A total of 1972 patients (812 men and 1160 women undergoing a dipyridamole stress testing were recruited. Medical history, CVD risk factors, health behaviours, psychological status, and gender identity were assessed via structured interview or self-report questionnaires at baseline. In addition, FHR was assessed, as well as levels of sex hormones via blood draw. Patients will be followed for 5 years to assess major CVD events (cardiac mortality, non-fatal MI, revascularization procedures, and cerebrovascular events. Discussion This is the first study to determine the extent and nature of any sex differences in the ability of endothelial function to predict CVD events. We believe the results of this study will provide data that will better inform the choice of diagnostic tests in men and women and bring the quality of

  9. KLF2 and KLF4 control endothelial identity and vascular integrity.

    Science.gov (United States)

    Sangwung, Panjamaporn; Zhou, Guangjin; Nayak, Lalitha; Chan, E Ricky; Kumar, Sandeep; Kang, Dong-Won; Zhang, Rongli; Liao, Xudong; Lu, Yuan; Sugi, Keiki; Fujioka, Hisashi; Shi, Hong; Lapping, Stephanie D; Ghosh, Chandra C; Higgins, Sarah J; Parikh, Samir M; Jo, Hanjoong; Jain, Mukesh K

    2017-02-23

    Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal.

  10. [Relationship between the metabolic syndrome, endothelial function and intima-media thickness in asymptomatic middle-aged individuals].

    Science.gov (United States)

    Gustiene, Olivija; Slapikas, Rimvydas; Marcinkeviciene, Jolanta; Petrauskiene, Irena; Milasauskiene, Zemyna; Griskeviciūte, Rasa; Plepyte, Julija; Zaliūnas, Remigijus

    2005-01-01

    To evaluate the relation between cardiovascular risk factors, metabolic syndrome, endothelial function and carotid intima-media thickness in asymptomatic middle-aged individuals. A total of 180 subjects (86 men and 94 women, mean age 38.8+/-0.3 years) have been investigated. Anthropometric, blood pressure measurements have been performed and lipid as well as high sensitivity C-reactive protein blood levels have been tested. The endothelial function was assessed by measuring the vasodilatation of the brachial artery. The carotid intima-media thickness was measured with high resolution B-mode ultrasound imaging. Metabolic syndrome was diagnosed using International Diabetes Federation definition criteria (2005). The metabolic syndrome has been diagnosed in 48 (26.7%) individuals: 28 (32.6%) males and 20 (21.3%) females. Significantly reduced endothelial function has been established in asymptomatic men when compared to women. However, statistically significant decrease (4.84%) in endothelial function in metabolic individuals was detected only among males. In the metabolic patients intima-media of common carotid artery, carotid bulb and internal carotid artery was thicker than in those without metabolic syndrome (0.006, 0.007 and 0.007 cm, respectively) (alpha=0.000, beta=0.01). Endothelial dysfunction and intima-media thickening correlated with increased blood pressure, abdominal circumference and body mass index as well as with elevated blood triglyceride and glucose levels. Intima-media thickness was greater in individuals with impaired endothelial function in all carotid segments tested. No relationship has been observed between total or low-density lipoprotein cholesterol concentrations and endothelial function, intima-media thickening or high sensitivity C-reactive protein levels. These observations suggest that the metabolic syndrome and/or its components may influence the different initial mechanisms of atherosclerosis--disorder of endothelial function and

  11. The effects of allopurinol on metabolic acidosis and endothelial functions in chronic kidney disease patients.

    Science.gov (United States)

    Bayram, Dilara; Tuğrul Sezer, M; İnal, Salih; Altuntaş, Atila; Kıdır, Veysel; Orhan, Hikmet

    2015-06-01

    Hyperuricemia and metabolic acidosis have emerged as important risk factors for progression of kidney disease. In this study, we aimed to investigate the effects of allopurinol on metabolic acidosis and endothelial functions in hyperuricemic stage 2-4 chronic kidney disease (CKD) patients. Thirty patients with stage 2-4 CKD and serum uric acid levels over 5.5 mg/dl were included in the study group. They were prescribed 300 mg/day per oral allopurinol treatment for three months. Age- and gender-matched CKD patients (n = 30) with similar clinical characteristics were taken as the control group and were not given allopurinol treatment. Endothelial functions were measured via flow-mediated dilatation (∆FMD %) over the forearm. pH and HCO3 levels in venous blood, Cr clearance and proteinuria levels were calculated in all patients at baseline and in the third month. Serum uric acid levels significantly decreased in the study group from 7.9 ± 1.6 to 6.4 ± 1.7 (p acidosis and slowing down the progression of CKD.

  12. Plasma norepinephrine is an independent predictor of vascular endothelial function with aging in healthy women.

    Science.gov (United States)

    Kaplon, Rachelle E; Walker, Ashley E; Seals, Douglas R

    2011-11-01

    We tested the hypothesis that reductions in vascular endothelial function (endothelium-dependent dilation, EDD) with age are related to increases in sympathetic activity. Among 314 healthy men and women, age was inversely related to brachial artery flow-mediated dilation (FMD) (r = -0.30, P women (n = 127, r = -0.37, P women (r = -0.16, P = 0.06). Consistent with this, brachial FMD remained significantly related to PNE when controlling for age (r = -0.24, P women. Indeed, PNE was the strongest independent correlate of brachial FMD in women after controlling for conventional cardiovascular disease risk factors (r = -0.22, P = 0.01). This relation persisted in a subset of women (n = 113) after further accounting for the effects of plasma oxidized low-density lipoprotein (P independent dilation was not related to age in either men or women (P > 0.05). These results provide the first evidence that EDD is inversely related to sympathetic activity, as assessed by PNE, among healthy adults varying in age. In particular, our findings suggest that sympathetic nervous system activity may be a key factor involved in the modulation of vascular endothelial function with aging in women.

  13. First report on the association of drinking water hardness and endothelial function in children and adolescents.

    Science.gov (United States)

    Poursafa, Parinaz; Kelishadi, Roya; Amin, Mohammad Mehdi; Hashemi, Mohammad; Amin, Maryam

    2014-08-29

    This study aims to investigate the relationship of water hardness and its calcium and magnesium content with endothelial function in a population-based sample of healthy children and adolescents. This case-control study was conducted in 2012 among 90 individuals living in two areas with moderate and high water hardness in Isfahan County, Iran. The flow-mediated dilatation (FMD) of the brachial artery and the serum levels of soluble adhesion molecules (sICAM-1, sVCAM-1) were measured as surrogate markers of endothelial function, and high-sensitivity C-reactive protein (hs-CRP), as a marker of inflammation. Data of 89 participants (51% boys, mean age 14.75 (2.9) years) were complete. Those participants living in the area with high water hardness had higher FMD, hs-CRP, and soluble adhesion molecules (sICAM-1, sVCAM-1) than their counterparts living in the area with moderate water hardness. Multiple linear regression analysis showed that after adjustment for confounding factors of age, gender, body mass index, healthy eating index and physical activity level, total water hardness, as well as water content of calcium and magnesium, had a significant positive relationship with FMD. The corresponding associations were inverse and significant with soluble adhesion molecules (p water hardness, as well as its calcium and magnesium content, may have a protective role against early stages of atherosclerosis in children and adolescents.

  14. Kidney function, endothelial activation and atherosclerosis in black and white Africans with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Patrick H Dessein

    Full Text Available To determine whether kidney function independently relates to endothelial activation and ultrasound determined carotid atherosclerosis in black and white Africans with rheumatoid arthritis (RA.We calculated the Jelliffe, 5 Cockcroft-Gault equations, Salazar-Corcoran, Modification of Diet in Renal Disease (MDRD and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI estimated glomerular filtration rate (EGFR equations in 233 (112 black RA patients.The CKD-EPI eGFR was 0.1 for comparisons of AUC (SE for the other 8 equations. Based on optimal eGFR cutoff values with sensitivities and specificities ranging from 42 to 60% and 70 to 91% respectively, as determined in ROC curve analysis, a low eGFR increased the odds ratio for plaque 2.2 to 4.0 fold.Reduced kidney function is independently associated with atherosclerosis and endothelial activation in black and white Africans with RA, respectively. CKD is highly prevalent in black Africans with RA. Apart from the MDRD, eGFR equations are useful in predicting carotid plaque presence, a coronary heart disease equivalent, amongst black African RA patients.

  15. Comparison of two treadmill training programs on walking ability and endothelial function in intermittent claudication.

    Science.gov (United States)

    Mika, Piotr; Konik, Anita; Januszek, Rafal; Petriczek, Tomasz; Mika, Anna; Nowobilski, Roman; Nizankowski, Rafal; Szczeklik, Andrzej

    2013-09-30

    In this randomized trial we compared two treadmill trainings, based on exercises performed to moderate claudication pain vs pain-free training, with respect to their effects on walking ability and endothelial function. A total of sixty patients with stable intermittent claudication were randomized to the pain-free treadmill training (repetitive intervals to onset of claudication pain) or moderate treadmill training (repetitive intervals to moderate claudication pain). In both groups exercises were performed 3 times a week for 3 months. Changes in flow mediated dilatation (FMD) and treadmill walking performance as well as plasma levels of C-reactive protein (hs-CRP) and fibrinogen were assessed before and after the program. Fifty-two patients completed the training program. Post-training maximal walking time was prolonged by 100% (ptraining group as compared to the pain-free training group, respectively. FMD increased by 56% (ptraining group and by 36% (ptraining group. No significant changes in the levels of hs-CRP and fibrinogen were seen after treadmill program in either group. Both pain-free treadmill training and the moderate treadmill training have similar efficacy on walking ability in patients with claudication. The improvement of post-training FMD indicates systemic effect of both treadmill programs on endothelial function. Both programs appear to be safe therapeutic modes, since none of them escalates the inflammation. Pain-free treadmill training seems useful and effective therapeutic option for patients with claudication. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. The effects of sex steroids on plasma levels of marker proteins of endothelial cell functioning.

    Science.gov (United States)

    van Kesteren, P J; Kooistra, T; Lansink, M; van Kamp, G J; Asscheman, H; Gooren, L J; Emeis, J J; Vischer, U M; Stehouwer, C D

    1998-05-01

    We studied thirteen male-to-female (M-->F) and ten female-to-male (F-->M) transsexuals who, for four months, received cross-sex treatment with, respectively, ethinylestradiol and cyproterone acetate, and with testosterone esters. We assessed the effects of treatment on plasma levels of tissue-type plasminogen activator (tPA), von Willebrand factor (vWF), vWF-propeptide (vWF:AgII) and big-endothelin-1 (big-ET-1), four proteins that are markers of endothelial cell functioning. We also measured urokinase-type PA (uPA) and plasminogen activator inhibitor-type 1 (PAI-1), which may not be endothelium-derived but share major clearance pathways with tPA. In M-->F transsexuals, mean plasma levels of tPA (minus 4.4 ng/ml), big-ET-1 (minus 0.8 pg/ml), uPA (minus 0.5 ng/ml) and PAI-1 (minus 26 ng/ml) decreased (all Ps M transsexuals, levels of big-ET-1 increased (plus 0.4 pg/ml; P = 0.02), while tPA, uPA and PAI-1 did not change (all Ps >0.25). In this group vWF decreased (minus 14%; P = 0.06), but vWF:AgII did not change (P = 0.38). Estrogens and androgens have clear effects on plasma levels of endothelial marker proteins. The mechanisms behind these effects are complex and appear to involve both altered secretion (big-ET-1) and processing and/or clearance (vWF and possibly tPA). Therefore, effects of hormones on the levels of endothelial marker proteins do not necessarily reflect changes in endothelial cell functioning, at least with regard to changes in vWF level associated with the oral administration of high doses of ethinylestradiol and cyproterone acetate to healthy men and the parenteral administration of testosterone to healthy women.

  17. Endothelial Function as a Possible Significant Determinant of Cardiac Function during Exercise in Patients with Structural Heart Disease

    Directory of Open Access Journals (Sweden)

    Bonpei Takase

    2009-01-01

    Full Text Available This study was investigated the role that endothelial function and systemic vascular resistance (SVR play in determining cardiac function reserve during exercise by a new ambulatory radionuclide monitoring system (VEST in patients with heart disease. The study population consisted of 32 patients. The patients had cardiopulmonary stress testing using the treadmill Ramp protocol and the VEST. The anaerobic threshold (AT was autodetermined using the V-slope method. The SVR was calculated by determining the mean blood pressure/cardiac output. Flow-mediated vasodilation (FMD was measured in the brachial artery to evaluate endotheilial function. FMD and the percent change f'rom rest to AT in SVR correlated with those from rest to AT in ejection fraction and peak ejection ratio by VEST, respectively. Our findings suggest that FMD in the brachial artery and the SVR determined by VEST in patients with heart disease can possibly reflect cardiac function reserve during aerobic exercise.

  18. Resveratrol Treatment Normalizes the Endothelial Function and Blood Pressure in Ovariectomized Rats.

    Science.gov (United States)

    Fabricio, Victor; Oishi, Jorge Camargo; Biffe, Bruna Gabriele; Ruffoni, Leandro Dias Gonçalves; Silva, Karina Ana da; Nonaka, Keico Okino; Rodrigues, Gerson Jhonatan

    2017-02-01

    Despite knowing that resveratrol has effects on blood vessels, blood pressure and that phytostrogens can also improve the endothelium-dependent relaxation/vasodilation, there are no reports of reveratrol's direct effect on the endothelial function and blood pressure of animals with estrogen deficit (mimicking post-menopausal increased blood pressure). To verify the effect of two different periods of preventive treatment with resveratrol on blood pressure and endothelial function in ovariectomized young adult rats. 3-month old female Wistar rats were used and distributed in 6 groups: intact groups with 60 or 90 days, ovariectomized groups with 60 or 90 days, and ovariectomized treated with resveratrol (10 mg/kg of body weight per day) for 60 or 90 days. The number of days in each group corresponds to the duration of the experimental period. Vascular reactivity study was performed in abdominal aortic rings, systolic blood pressure was measured and serum nitric oxide (NO) concentration was quantified. Ovariectomy induced blood pressure increase 60 and 90 days after surgery, whereas the endothelial function decreased only 90 days after surgery, with no difference in NO concentration among the groups. Only longer treatment (90 days) with resveratrol was able to improve the endothelial function and normalize blood pressure. Our results suggest that 90 days of treatment with resveratrol is able to improve the endothelial function and decrease blood pressure in ovariectomized rats. Apesar de se saber que o resveratrol apresenta efeitos sobre a pressão arterial e os vasos sanguíneos, e que os fitoestrógenos podem melhorar o relaxamento/vasodilatação dependente do endotélio, não há relatos do efeito direto do resveratrol sobre a pressão arterial e a função endotelial em animais com deficiência de estrógeno (mimetizando a pressão arterial aumentada pós-menopausa). Verificar o efeito de dois diferentes períodos de tratamento preventivo com resveratrol sobre a

  19. Vascular endothelial function is improved by oral glycine treatment in aged rats.

    Science.gov (United States)

    Gómez-Zamudio, Jaime H; García-Macedo, Rebeca; Lázaro-Suárez, Martha; Ibarra-Barajas, Maximiliano; Kumate, Jesús; Cruz, Miguel

    2015-06-01

    Glycine has been used to reduce oxidative stress and proinflammatory mediators in some metabolic disorders; however, its effect on the vasculature has been poorly studied. The aim of this work was to explore the effect of glycine on endothelial dysfunction in aged rats. Aortic rings with intact or denuded endothelium were obtained from untreated or glycine-treated male Sprague-Dawley rats at 5 and 15 months of age. Concentration-response curves to phenylephrine (PHE) were obtained from aortic rings incubated with N(G)-nitro-l-arginine methyl ester (l-NAME), superoxide dismutase (SOD), indomethacin, SC-560, and NS-398. Aortic mRNA expression of endothelial nitric oxide synthase (eNOS), NADPH oxidase 4 (NOX-4), cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2), tumour necrosis factor (TNF)-α, and interleukin-1 β was measured by real time RT-PCR. The endothelial modulation of the contraction by PHE was decreased in aortic rings from aged rats. Glycine treatment improved this modulator effect and increased relaxation to acetylcholine. Glycine augmented the sensitivity for PHE in the presence of l-NAME and SOD. It also reduced the contraction by incubation with indomethacin, SC-560, and NS-398. Glycine increased the mRNA expression of eNOS and decreased the expression of COX-2 and TNF-α. Glycine improved the endothelium function in aged rats possibly by enhancing eNOS expression and reducing the role of superoxide anion and contractile prostanoids that increase the nitric oxide bioavailability.

  20. Angiogenesis, inflammation and endothelial function in postmenopausal women screened for the metabolic syndrome.

    Science.gov (United States)

    Chedraui, Peter; Escobar, Gustavo S; Pérez-López, Faustino R; Palla, Giulia; Montt-Guevara, Magdalena; Cecchi, Elena; Genazzani, Andrea R; Simoncini, Tommaso

    2014-04-01

    Prevalence of the metabolic syndrome (METS) increases after the menopause; nevertheless, concomitant vascular, inflammatory and endothelial changes have not been completely elucidated. To measure serum markers of angiogenesis, inflammation and endothelial function in postmenopausal women screened for the METS. Serum of 100 postmenopausal women was analyzed for angiopoietin-2, interleukin-8 (IL-8), soluble FAS ligand (sFASL), interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α), soluble CD40 ligand (sCD40L), plasminogen activator inhibitor-1 (PAI-1), and urokinase-type plasminogen activator (uPA). Comparisons were made in accordance to the presence or not of the METS and each of its components. Modified Adult Treatment Panel III criteria were used to define the METS. Women with the METS (n=57) had similar age and time since menopause as compared to those without the syndrome (n=43). In general, women with the METS displayed a trend for higher levels of the analyzed markers. Nevertheless, only IL-6 levels were found to be significantly higher and uPA levels significantly lower among METS women as compared to those without the syndrome. When analyte levels were compared as to presenting or not each of the diagnostic features of the METS, it was found that IL-6 levels were higher among women with abdominal obesity, low HDL-C and high triglyceride levels. Women with low HDL-C and high triglyceride levels presented significantly lower uPA levels and those with high glucose and low HDL-C displayed significantly higher sCD40L levels. Postmenopausal women with the METS in this sample displayed higher IL-6 (inflammation) and lower uPA levels (endothelial dysfunction). These were mainly related to metabolic and lipid abnormalities. More research is warranted in this regard. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Circulating Brain Microvascular Endothelial Cells (cBMECs) as Potential Biomarkers of the Blood–Brain Barrier Disorders Caused by Microbial and Non-Microbial Factors

    Science.gov (United States)

    Wu, Chun-Hua; Cao, Hong; Zhang, Aimin; Jong, Ambrose

    2013-01-01

    Despite aggressive research, central nervous system (CNS) disorders, including blood-brain barrier (BBB) injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH) and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs), which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker)/S100B+ (brain marker) circulating BMECs (cBMECs) and CD133+[progenitor cell (PC) marker]/CD146+ endothelial PCs (EPCs), along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1) (a new BBB marker) as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury. PMID:23637989

  2. Circulating brain microvascular endothelial cells (cBMECs) as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors.

    Science.gov (United States)

    Huang, Sheng-He; Wang, Lin; Chi, Feng; Wu, Chun-Hua; Cao, Hong; Zhang, Aimin; Jong, Ambrose

    2013-01-01

    Despite aggressive research, central nervous system (CNS) disorders, including blood-brain barrier (BBB) injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH) and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs), which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker)/S100B+ (brain marker) circulating BMECs (cBMECs) and CD133+[progenitor cell (PC) marker]/CD146+ endothelial PCs (EPCs), along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1) (a new BBB marker) as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.

  3. Circulating brain microvascular endothelial cells (cBMECs as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors.

    Directory of Open Access Journals (Sweden)

    Sheng-He Huang

    Full Text Available Despite aggressive research, central nervous system (CNS disorders, including blood-brain barrier (BBB injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs, which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker/S100B+ (brain marker circulating BMECs (cBMECs and CD133+[progenitor cell (PC marker]/CD146+ endothelial PCs (EPCs, along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1 (a new BBB marker as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.

  4. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease

    Energy Technology Data Exchange (ETDEWEB)

    Cicala, Silvana; Paladini, Rodolfo; Leva, Francesco de [Santobono-Pausilipon Children Medical Hospital, Division of Cardiology, Department of Paediatrics, Naples (Italy); Pellegrino, Teresa; Caprio, Maria Grazia [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Storto, Giovanni [IRCCS, CROB, Rionero in Vulture (Italy); Mainolfi, Ciro; Cuocolo, Alberto [Federico II University, Department of Biomorphological and Functional Sciences, Naples (Italy); National Council of Research, Institute of Biostructures and Bioimages, Naples (Italy)

    2010-12-15

    The feasibility of coronary function estimation by single photon emission computed tomography (SPECT) has been recently demonstrated. The aim of this study was to apply SPECT imaging in patients with previous Kawasaki disease (KD) to assess the coronary functional status at long-term follow-up of the acute phase of the disease. Sixteen children with a history of KD underwent {sup 99m}Tc-sestamibi imaging at rest and during the cold pressor test (CPT). Myocardial blood flow (MBF) was estimated by measuring first transit counts in the pulmonary artery and myocardial counts from SPECT images. Coronary endothelial function was expressed as the ratio of the CPT to rest MBF. Six KD patients without coronary artery lesions served as controls and ten with coronary artery aneurysms during the acute phase of the disease were separated into two groups: group 1 (n = 4) with regressed and group 2 (n = 6) with persistent aneurysm at follow-up. The estimated coronary endothelial function was higher in controls compared to patients with coronary artery aneurysms (2.5 {+-} 0.3 vs 1.7 {+-} 0.7, p < 0.05). A significant difference in coronary endothelial function among groups was found (F = 5.21, p < 0.02). Coronary endothelial function was higher in patients of group 1 than in those of group 2 (1.9 {+-} 0.6 vs 1.4 {+-} 0.7, p < 0.02). SPECT may be applied as a noninvasive method for assessing coronary vascular function in children with a history of KD, demonstrating an impaired response to the CPT, an endothelial-dependent vasodilator stimulus. These findings reinforce the concept that coronary endothelial dysfunction may represent a long-term sequela of KD. (orig.)

  5. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures

    OpenAIRE

    Schweitzer, Kelly S.; Chen, Steven X.; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Matthew J Justice; Hubbard, Walter C.; Kim, Elena S.; Lai, Xianyin; Wang, Mu; Kranz, William D.; Carroll, Clinton J.; Ray, Bruce D.; Bittman, Robert; Goodpaster, John

    2015-01-01

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1–20 mM nicotine) o...

  6. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype.

    Science.gov (United States)

    Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.

  7. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier.

    Science.gov (United States)

    Verma, Saguna; Lo, Yeung; Chapagain, Moti; Lum, Stephanie; Kumar, Mukesh; Gurjav, Ulziijargal; Luo, Haiyan; Nakatsuka, Austin; Nerurkar, Vivek R

    2009-03-15

    Neurological complications such as inflammation, failure of the blood-brain barrier (BBB), and neuronal death contribute to the mortality and morbidity associated with WNV-induced meningitis. Compromised BBB indicates the ability of the virus to gain entry into the CNS via the BBB, however, the underlying mechanisms, and the specific cell types associated with WNV-CNS trafficking are not well understood. Brain microvascular endothelial cells, the main component of the BBB, represent a barrier to virus dissemination into the CNS and could play key role in WNV spread via hematogenous route. To investigate WNV entry into the CNS, we infected primary human brain microvascular endothelial (HBMVE) cells with the neurovirulent strain of WNV (NY99) and examined WNV replication kinetics together with the changes in the expressions of key tight junction proteins (TJP) and cell adhesion molecules (CAM). WNV infection of HBMVE cells was productive as analyzed by plaque assay and qRT-PCR, and did not induce cytopathic effect. Increased mRNA and protein expressions of TJP (claudin-1) and CAM (vascular cell adhesion molecule and E-selectin) were observed at days 2 and 3 after infection, respectively, which coincided with the peak in WNV replication. Further, using an in vitro BBB model comprised of HBMVE cells, we demonstrate that cell-free WNV can cross the BBB, without compromising the BBB integrity. These data suggest that infection of HBMVE cells can facilitate entry of cell-free virus into the CNS without disturbing the BBB, and increased CAM may assist in the trafficking of WNV-infected immune cells into the CNS, via 'Trojan horse' mechanism, thereby contributing to WNV dissemination in the CNS and associated pathology.

  8. Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Wang, Xiaoqing; Yu, Xiaowen; Xie, Chong; Tan, Zijian; Tian, Qi; Zhu, Desheng; Liu, Mingyuan; Guan, Yangtai

    2016-05-01

    Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function.

  9. Endothelial progenitor cells derived from the peripheral blood of halfpipe- snowboarding athletes display specific functional properties.

    Science.gov (United States)

    Zhao, Y H; Kan, J C; Wang, Y F; Guan, W J; Zhu, Z Q

    2016-12-19

    In this study, we compared the functional properties of endothelial progenitor cells (EPCs) derived from halfpipe-snowboarding athletes who train under hyperoxic conditions with those derived from normal subjects who lived under normoxic conditions. Peripheral blood-derived EPCs were isolated from both halfpipe-snowboarding athletes and normal humans. Cellular growth dynamics, lipoprotein transport, and gene expression of cultured EPCs were compared between the two groups of cells. Results indicate that cytoactivity of EPCs from athletes was higher than that of EPCs from control subjects. This study suggests that function of EPCs from snowboarding athletes may be better than that of EPCs from normal humans, which demonstrates the benefits of training under hyperoxic conditions.

  10. Effect of interleukin-6 inhibition on coronary microvascular and endothelial function in myocardial infarction.

    Science.gov (United States)

    Holte, Espen; Kleveland, Ola; Ueland, Thor; Kunszt, Gabor; Bratlie, Marte; Broch, Kaspar; Michelsen, Annika E; Bendz, Bjørn; Amundsen, Brage H; Aakhus, Svend; Damås, Jan Kristian; Gullestad, Lars; Aukrust, Pål; Wiseth, Rune

    2017-10-01

    Interleukin-6 (IL-6) is a driver of inflammation and associated endothelial cell activation in acute coronary syndromes. We evaluated the effect of the IL-6 receptor antagonist tocilizumab on coronary microvascular function and endothelial dysfunction measured by coronary flow reserve (CFR) and markers of endothelial cell activation in patients with non-ST-elevation myocardial infarction (NSTEMI). This substudy was part of a two-centre, double-blind, randomised, placebo-controlled trial evaluating the effect of a single dose of tocilizumab in NSTEMI. Markers of endothelial cell activation (vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule-1 and von Willebrand factor) were assessed in 117 patients. In 42 of these patients, 20 assigned to placebo and 22 to tocilizumab, we measured CFR. Blood samples were obtained at seven consecutive time points between day 1 and 3. CFR was measured by transthoracic echocardiography during hospitalisation and after 6 months. Tocilizumab did not affect CFR during hospitalisation (tocilizumab: 3.4±0.8 vs placebo: 3.3±1.2, p=0.80). CFR improved significantly in both groups at 6 months. Patients in the tocilizumab group had significantly higher area under the curve for VCAM-1 (median 622 vs 609 ng/mL/hour, tocilizumab and placebo respectively, p=0.003). There were inverse correlations between VCAM-1 and CFR in the placebo (hospitalisation: r=-0.74, p<0.01, 6 months: r=-0.59, p<0.01), but not in the tocilizumab group (hospitalisation: r=0.20, p=0.37, 6 months r=-0.28, p=0.20). Tocilizumab did not affect CFR during hospitalisation or after 6 months. Tocilizumab increased VCAM-1 levels during hospitalisation, but this was not associated with reduced CFR in these patients. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function.

    Science.gov (United States)

    Kemi, Ole J; Haram, Per M; Loennechen, Jan P; Osnes, Jan-Bjørn; Skomedal, Tor; Wisløff, Ulrik; Ellingsen, Øyvind

    2005-07-01

    Current guidelines are controversial regarding exercise intensity in cardiovascular prevention and rehabilitation. Although high-intensity training induces larger increases in fitness and maximal oxygen uptake (VO(2max)), moderate intensity is often recommended as equally effective. Controlled preclinical studies and randomized clinical trials are required to determine whether regular exercise at moderate versus high intensity is more beneficial. We therefore assessed relative effectiveness of 10-week HIGH versus moderate (MOD) exercise intensity on integrative and cellular functions. Sprague-Dawley rats performed treadmill running intervals at either 85%-90% (HIGH) or 65%-70% (MOD) of VO2max 1 h per day, 5 days per week. Weekly VO2max-testing adjusted exercise intensity. HIGH and MOD increased VO2max by 71% and 28%, respectively. This was paralleled by intensity-dependent cardiomyocyte hypertrophy, 14% and 5% in HIGH and MOD, respectively. Cardiomyocyte function (fractional shortening) increased by 45% and 23%, contraction rate decreased by 43% and 39%, and relaxation rate decreased by 20% and 10%, in HIGH and MOD, respectively. Ca2+ transient time-courses paralleled contraction/relaxation, whereas Ca2+ sensitivity increased 40% and 30% in HIGH and MOD, respectively. Carotid artery endothelial function improved similarly with both intensities. EC50 for acetylcholine-induced relaxation decreased 4.3-fold in HIGH (p hypertrophy, contractility and vasorelaxation also correlated significantly with VO2max. The present study demonstrates that cardiovascular adaptations to training are intensity-dependent. A close correlation between VO2max, cardiomyocyte dimensions and contractile capacity suggests significantly higher benefit with high intensity, whereas endothelial function appears equivalent at moderate levels. Thus, exercise intensity emerges as an important variable in future preclinical and clinical investigations.

  12. Effects of disturbed flow on endothelial cell function: Pathogenic implications of modified leukocyte recruitment.

    Science.gov (United States)

    Matharu, Nick M; Rainger, G Ed; Vohra, Rajiv; Nash, Gerard B

    2006-01-01

    Numerous studies have shown that intracellular signalling, transcription factor activation and gene expression in endothelial cells are modulated by the magnitude and patterns of shear stress to which they are exposed. Although these responses suggest that the haemodynamic environment will consequently modulate the ability of the endothelial cells to support leukocyte recruitment as part of an inflammatory response, direct evidence is quite sparse. It seems that disturbances of flow (such as local spatial or temporal variation or sudden cessation) are likely to be pathogenic co-factors, combined with mediators such as cytokines, oxidised lipids or hypoxia, in conditions such as atherosclerosis, post-surgical intimal hyperplasia and ischaemia/reperfusion injury. In fact there have been few experimental investigations of these scenarios that include measurement of leukocyte adhesion and migration. We recently demonstrated that the level of steady shear to which EC are exposed has a powerful effect on their ability to support cytokine-induced leukocyte adhesion and migration. However, more combined studies of flow and agonist-mediated responses, with functional readouts, appear necessary if we are to develop a better understanding of the mechanisms pre-disposing to vascular inflammatory responses and pathology.

  13. MRI assessment of coronary microvascular endothelial nitric oxide synthase function using myocardial T1 mapping.

    Science.gov (United States)

    Cui, Sophia X; Epstein, Frederick H

    2017-08-07

    Endothelial nitric oxide synthase (eNOS) plays a central role in regulating vascular tone, blood flow, and microvascular permeability. Endothelial dysfunction, including eNOS dysfunction, is an early biomarker of vascular disease. This study aimed to show that myocardial T1 mapping during nitric oxide synthase (NOS) inhibition could assess coronary microvascular eNOS function. Wild-type mice, eNOS-/- mice, and wild-type mice fed a high-fat diet underwent T1 mapping at baseline and for 20 min after injection of NG -nitro-L-arginine methyl ester (LNAME), a NOS inhibitor. First-pass perfusion MRI was performed in wild-type mice at baseline and 5 min after LNAME injection. T1 mapping detected an increase in myocardial T1 5 min after an injection of 4 mg/kg LNAME compared with baseline in control mice (T1  = 1515 ± 30 ms with LNAME versus T1  = 1402 ± 30 ms at baseline, P coronary microvascular eNOS dysfunction in high-fat-diet mice. T1 mapping during NOS inhibition may be useful in preclinical studies aiming to investigate mechanisms underlying and therapies for coronary microvascular eNOS dysfunction. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell.

    Science.gov (United States)

    Zhong, Si; Luo, Rifang; Wang, Xin; Tang, Linlin; Wu, Jian; Wang, Jin; Huang, Runbo; Sun, Hong; Huang, Nan

    2014-04-01

    Previous investigations have demonstrated that TiO2 nanotubes (NTs) with particular structure cues could control the behavior of different types of cells, including endothelial cells (ECs) and smooth muscle cells (SMCs). Besides, polydopamine (PDA) modified surfaces were reported to be beneficial to increase the proliferation and viability of ECs and meanwhile could inhibit the proliferation of SMCs. The TiO2 nanotubes (NTs) were functionalized with polydopamine (PDA) (PDA/NTs) to study the synergetic effect of both nanotopography (NTs) and chemical cues (PDA) of TiO2 nanotubes on the regulation of cellular behavior of ECs and SMCs. The PDA-modified TiO2 nanotubes were subjected to field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) analysis. In vitro cell culture tests confirmed that, comparing with flat titanium (Ti) and TiO2 nanotubes, PDA/NTs surface synergistically promoted ECs attachment, proliferation, migration and release of nitric oxide (NO). Meanwhile, the PDA/NTs performed well in reducing SMCs adhesion and proliferation. This novel approach might provide a new platform to investigate the synergistic effect of local chemistry and topography, as well as the applications for the development of titanium-based implants for enhanced endothelialization. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Insulin Downregulates the Transcriptional Coregulator CITED2, an Inhibitor of Proangiogenic Function in Endothelial Cells

    DEFF Research Database (Denmark)

    Wang, Xuanchun; Lockhart, Samuel M; Rathjen, Thomas

    2016-01-01

    In patients with atherosclerotic complications of diabetes, impaired neovascularization of ischemic tissue in the myocardium and lower limb limits the ability of these tissues to compensate for poor perfusion. We identified 10 novel insulin-regulated genes, among them Adm, Cited2 and Ctgf, which ...... activity in vivo We conclude that vascular insulin resistance in type 2 diabetes contributes to the upregulation of CITED2 which impairs HIF signaling and endothelial pro-angiogenic function.......In patients with atherosclerotic complications of diabetes, impaired neovascularization of ischemic tissue in the myocardium and lower limb limits the ability of these tissues to compensate for poor perfusion. We identified 10 novel insulin-regulated genes, among them Adm, Cited2 and Ctgf, which...... were downregulated in endothelial cells by insulin through FoxO1. CITED2, which was downregulated by insulin by up to 54%, is an important negative regulator of hypoxia-inducible factor (HIF) and impaired HIF signaling is a key mechanism underlying the impairment of angiogenesis in diabetes. Consistent...

  16. Mutant LRP6 Impairs Endothelial Cell Functions Associated with Familial Normolipidemic Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2016-07-01

    Full Text Available Mutations in the genes low-density lipoprotein (LDL receptor-related protein-6 (LRP6 and myocyte enhancer factor 2A (MEF2A were reported in families with coronary artery disease (CAD. We intend to determine the mutational spectrum of these genes among hyperlipidemic and normolipidemic CAD families. Forty probands with early-onset CAD were recruited from 19 hyperlipidemic and 21 normolipidemic Chinese families. We sequenced all exons and intron-exon boundaries of LRP6 and MEF2A, and found a novel heterozygous variant in LRP6 from a proband with normolipidemic CAD. This variant led to a substitution of histidine to tyrosine (Y418H in an evolutionarily conserved domain YWTD in exon 6 and was not found in 1025 unrelated healthy individuals. Co-segregated with CAD in the affected family, LRP6Y418H significantly debilitated the Wnt3a-associated signaling pathway, suppressed endothelial cell proliferation and migration, and decreased anti-apoptotic ability. However, it exhibited no influences on low-density lipoprotein cholesterol uptake. Thus, mutation Y418H in LRP6 likely contributes to normolipidemic familial CAD via impairing endothelial cell functions and weakening the Wnt3a signaling pathway.

  17. No evidence of impaired endothelial function or altered inflammatory state in patients with familial hypercholesterolemia treated with statins.

    Science.gov (United States)

    Hovland, Anders; Aagnes, Inger; Brekke, Ole-Lars; Flage, John Helge; Lappegård, Knut Tore

    2010-01-01

    Familial hypercholesterolemia (FH) is associated with an increased risk of premature atherosclerosis. Central in this aspect is enhanced inflammation and endothelial dysfunction. We sought to examine inflammatory cytokines and endothelial dysfunction in patients with FH treated with statins (n = 14) compared with healthy control patients (n = 11). Endothelial function was evaluated by the use of the Endo-PAT® system which measured mean reactive hyperemia index. Fasting blood samples were drawn, and 27 biomarkers in addition to standard laboratory tests were analyzed. There were no statistically significant differences between the FH group and the control group regarding age, weight, blood pressure, or body mass index. Endothelial function given as RHI was 1.58 and 1.93 (P = NS) in the control and FH groups, respectively. There were no differences between the groups in tumor necrosis factor-alpha, interleukin (IL-1) beta, IL-1 receptor antagonist, IL-6, IL-10, monocyte chemoattractant protein 1, high-sensitivity C-reactive protein, or any of the other inflammatory markers tested. Furthermore, no significant differences between the groups in high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoprotein A, apolipoprotein B, lipoprotein (a), homocysteine, HbA(₁c), platelets, and fibrinogen were found. Endothelial function assessed by reactive hyperemia index-peripheral arterial tonometry or inflammatory state assessed by soluble inflammatory biomarkers were not different in FH patients on statins compared with healthy control patients. Copyright © 2010 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  18. Restoration of erectile function with intracavernous injections of endothelial progenitor cells after bilateral cavernous nerve injury in rats.

    Science.gov (United States)

    Liao, C H; Wu, Y N; Lin, Y H; Syu Huang, R F; Liu, S P; Chiang, H S

    2015-09-01

    Endothelial progenitor cells (EPCs) are bone marrow-derived endothelial cells capable of circulating, proliferating, and differentiating into mature endothelial cells. Circulating EPCs can be directly recruited to some extent at sites of injury, and their administration could accelerate repair or endothelialization of the damaged tissue. We investigated the effects of intracavernous injections of EPCs into the corpora cavernosa of rats with erectile dysfunction (ED) caused by bilateral cavernous nerve (CN) injury. Overall, 24 male Sprague-Dawley rats were randomized into three groups: sham surgery, vehicle-only, or EPC treatment. Rats in the EPC treatment and vehicle-only groups were subjected to bilateral CN injury before injection of EPCs or vehicle, respectively, into the corpora cavernosa. Four weeks after surgery, erectile function was assessed by measuring maximum intracavernosal pressure (ICP), change in ICP, area under the ICP curve, and ratio of change in ICP and mean arterial pressure (MAP; ΔICP/MAP). Penile tissue was histomorphometrically analyzed for the expression of neural nitric oxide synthase (nNOS), neurofilament-1 (NF-1), von Willebrand factor (vWF), endothelial NOS (eNOS), and smooth muscle cell content. Maximum ICP and all other functional parameters of erectile function were significantly reduced in the vehicle-only group vs. the sham and EPC treatment groups (all p corpus cavernosum. These findings elucidate the therapeutic potential of EPCs for treating ED in humans. © 2015 American Society of Andrology and European Academy of Andrology.

  19. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  20. Epac1 and PDZ-GEF cooperate in Rap1 mediated endothelial junction control

    NARCIS (Netherlands)

    Pannekoek, W.J.; van Dijk, J.; Chan, O.Y.; Huveneers, S.; Linnemann, J.R.; Spanjaard, E.; Brouwer, P.E.M.; van der Meer, A.J.; Zwartkruis, F.J.; Rehmann, H.; de Rooij, J.; Bos, J.

    2011-01-01

    Epac1 and its effector Rap1 are important mediators of cAMP induced tightening of endothelial junctions and consequential increased barrier function. We have investigated the involvement of Rap1 signalling in basal, unstimulated, barrier function of a confluent monolayer of HUVEC using real time

  1. MODERN INSIGHTS INTO THE ROLE OF HEMORHEOLOGICAL DEVIATIONS AND FUNCTIONAL STATUS OF THE ENDOTHELIAL TISSUE IN THE PATHOGENESIS OF ACUTE INFLAMMATORY LUNG AND BRONCHIAL DISEASES AMONG CHILDREN

    Directory of Open Access Journals (Sweden)

    A.V. Mozhaev

    2007-01-01

    Full Text Available Disorders of the endothelial tissue and hemorheology function build up one of the pathogenic bases to form the acute inflammatory abnormality of the respiratory tract among children. The overview highlights the information on the role and disorders of the erythrocyte clumping and plasticity, blood viscosity and function of the endothelial tissue as a response to the acute respiratory infections among children.Key words: endothelial dysfunction, hemorheology, hemorheological deviations, acute respiratory infections, acute bronchopulmonary diseases, children.

  2. Anesthetic Propofol Overdose Causes Vascular Hyperpermeability by Reducing Endothelial Glycocalyx and ATP Production

    Science.gov (United States)

    Lin, Ming-Chung; Lin, Chiou-Feng; Li, Chien-Feng; Sun, Ding-Ping; Wang, Li-Yun; Hsing, Chung-Hsi

    2015-01-01

    Prolonged treatment with a large dose of propofol may cause diffuse cellular cytotoxicity; however, the detailed underlying mechanism remains unclear, particularly in vascular endothelial cells. Previous studies showed that a propofol overdose induces endothelial injury and vascular barrier dysfunction. Regarding the important role of endothelial glycocalyx on the maintenance of vascular barrier integrity, we therefore hypothesized that a propofol overdose-induced endothelial barrier dysfunction is caused by impaired endothelial glycocalyx. In vivo, we intraperitoneally injected ICR mice with overdosed propofol, and the results showed that a propofol overdose significantly induced systemic vascular hyperpermeability and reduced the expression of endothelial glycocalyx, syndecan-1, syndecan-4, perlecan mRNA and heparan sulfate (HS) in the vessels of multiple organs. In vitro, a propofol overdose reduced the expression of syndecan-1, syndecan-4, perlecan, glypican-1 mRNA and HS and induced significant decreases in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio and ATP concentrations in human microvascular endothelial cells (HMEC-1). Oligomycin treatment also induced significant decreases in the NAD+/NADH ratio, in ATP concentrations and in syndecan-4, perlecan and glypican-1 mRNA expression in HMEC-1 cells. These results demonstrate that a propofol overdose induces a partially ATP-dependent reduction of endothelial glycocalyx expression and consequently leads to vascular hyperpermeability due to the loss of endothelial barrier functions. PMID:26023717

  3. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified. The aim of this study was to examine the effect of UV...

  4. Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hypercholesterolemic postmenopausal women.

    Science.gov (United States)

    Wang-Polagruto, Janice F; Villablanca, Amparo C; Polagruto, John A; Lee, Luke; Holt, Roberta R; Schrader, Heather R; Ensunsa, Jodi L; Steinberg, Francene M; Schmitz, Harold H; Keen, Carl L

    2006-01-01

    Endothelial dysfunction characterizes many disease states including subclinical atherosclerosis. The consumption of flavanol-rich cocoa and cocoa-based products has been shown to improve endothelial function in both compromised and otherwise normal, healthy individuals when administered either acutely or over a period of several days, or weeks. Women experience increased risk for cardiovascular disease after menopause, which can be associated with endothelial dysfunction. Whether a flavanol-rich cocoa-based product can improve endothelial function in hypercholesterolemic postmenopausal women is not known. The purpose of the present study was to determine whether chronic dietary administration of flavanol-rich cocoa improves endothelial function and markers of cardiovascular health in hypercholesterolemic postmenopausal women. Thirty-two postmenopausal hypercholesterolemic women were randomly assigned to consume a high-flavanol cocoa beverage (high cocoa flavanols (CF)--446 mg of total flavanols), or a low-flavanol cocoa beverage (low CF--43 mg of total flavanols) for 6 weeks in a double-blind study (n=16 per group). Endothelial function was determined by brachial artery-reactive hyperemia. Plasma was analyzed for lipids (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol), hormones (follicle-stimulating hormone), total nitrate/nitrite, activation of cellular adhesion markers (vascular cell adhesion molecule 1, intercellular adhesion molecule 1, E-Selectin, P-Selectin), and platelet function and reactivity. Changes in these plasma markers were then correlated to brachial reactivity. Brachial artery hyperemic blood flow increased significantly by 76% (Pflavanol-rich cocoa consumption in hypercholesterolemic postmenopausal women. In addition, our results suggest that reductions in plasma soluble vascular cell adhesion molecule-1 after chronic consumption of a flavanol-rich cocoa may be mechanistically linked to improved

  5. Bacteria and endothelial cells: a toxic relationship.

    Science.gov (United States)

    Lubkin, Ashira; Torres, Victor J

    2017-02-01

    Pathogenic bacteria use the bloodstream as a highway for getting around the body, and thus have to find ways to enter and exit through the endothelium. Many bacteria approach this problem by producing toxins that can breach the endothelial barrier through diverse creative mechanisms, including directly killing endothelial cells (ECs), weakening the cytoskeleton within ECs, and breaking the junctions between ECs. Toxins can also modulate the immune response by influencing endothelial biology, and can modulate endothelial function by influencing the response of leukocytes. Understanding these interactions, in both the in vitro and in vivo contexts, is of critical importance for designing new therapies for sepsis and other severe bacterial diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Circulating endothelial microparticles involved in lung function decline in a rat exposed in cigarette smoke maybe from apoptotic pulmonary capillary endothelial cells.

    Science.gov (United States)

    Liu, Hua; Ding, Liang; Zhang, Yanju; Ni, Songshi

    2014-06-01

    Plasma levels of endothelial microparticles (EMPs), small membrane vesicles, shed from activated or apoptotic endothelial cells are elevated in patients with COPD and in smokers with normal lung function. Whether plasma EMPs levels are elevated in a rat exposed in cigarette smoke, whether the elevated EMPs derived from pulmonary endothelial cell apoptosis, and the relationship between EMP and lung function are obscure. All 60 wister rats were divided into six groups, three groups of ten rats were exposed to cigarette smoke of ten non-filter cigarettes per day, 5 days a week, using a standard smoking machine (Beijing BeiLanBo Company, China) for a period of 2, 4 and 6 months (n=10, respectively). Age-matched three control groups were sham-smoked. Pulmonary function parameters, including the ratio of forced expiratory volume in 0.3 second over forced vital capacity (FEV0.3/FVC) and dynamic compliance (Cdyn), were tested at the end of each period (2, 4, 6 months). Blood samples were collected and platelet-free plasma was isolated. Then CD42b-/CD31+ EMPs were analysed by flow cytometry. In parallel, lungs were removed and Colocalization with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), Hoeschts and CD31 was performed to evaluate pulmonary capillaries-specific apoptosis and identify the origins of the EMPs. At 2, 4 and 6 months, in comparison with control groups, rats in cigarette smoke exposed groups had a significant increase in CD42b-/CD31+ EMPs (Pfunction indicated that FEV0.3/FVC (Pfunction in the rats exposed cigarette smoke. The increased EMPs may derive from pulmonary capillaries-specific apoptosis.

  7. Maternal endothelial function and vascular stiffness after HELLP syndrome: a case-control study.

    Science.gov (United States)

    Orabona, R; Sciatti, E; Vizzardi, E; Bonadei, I; Prefumo, F; Valcamonico, A; Metra, M; Frusca, T

    2017-11-01

    To assess endothelial function and arterial stiffness in women with a previous pregnancy complicated by pre-eclampsia (PE) with hemolysis, elevated liver enzymes and low platelet count (HELLP) syndrome, and to compare these findings to those in women with previous PE but no HELLP and to those in controls with previous uncomplicated pregnancy, in order to investigate the influence of HELLP syndrome on subsequent cardiovascular impairment. In this prospective single-center case-control study, we performed peripheral arterial tonometry (PAT) (using the EndoPAT method) and pulse-wave velocity (PWV) assessment in 109 women who had had a singleton pregnancy complicated by PE with (n = 49) or without (n = 60) HELLP syndrome, as well as in 60 controls with previous uncomplicated pregnancy, between 6 months and 4 years after delivery. The following EndoPAT and PWV indices were compared between groups: reactive hyperemia index (RHI), as an indication of endothelial function, and peripheral and aortic heart-rate-corrected augmentation indices (AIx) standardized for a heart rate of 75 bpm (AIx@75) and carotid-femoral pulse-wave velocity (cfPWV), as indications of arterial stiffness. PAT and arterial stiffness indices were significantly different between PE cases, with or without previous HELLP, and controls, except for carotid-femoral PWV. There were no significant differences among PE groups: women who had experienced HELLP and those with a history of PE without HELLP showed similar rates of RHI ≤ 1.67 (28.6% vs 18.3%, P = 0.254) and RHI ≤ 2.00 (61.2% vs 41.7%, P = 0.055), peripheral AIx@75 ≥ 17% (38.8% vs 30.0%, P = 0.417), aortic AIx@75 ≥ 35% (29.2% vs 20.0%, P = 0.461) and cfPWV × 0.8 > 9.6 m/s, which occurred in only three women, all in the group without previous HELLP (0% vs 5.0%, P = 0.251). On multivariate regression analysis, HELLP syndrome, intrauterine growth restriction (IUGR) and early-onset PE

  8. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability.

    Science.gov (United States)

    Wang, Liqun; Wu, Jie; Guo, Xiaohua; Huang, Xuliang; Huang, Qiaobing

    2017-03-30

    Endothelial functional dysregulation and barrier disruption contribute to the initiation and development of sepsis. The receptor for advanced glycation end products (RAGE) has been demonstrated to be involved in the pathogenesis of sepsis. The present study aimed to investigate the role of RAGE in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in endothelial cells and the consequent endothelial hyperpermeability. LPS-induced upregulation of RAGE protein expression in human umbilical vein endothelial cells (HUVECs) was detected by western blotting. Activation of NF-κB was revealed using western blotting and immunofluorescent staining. LPS-elicited endothelial hyperpermeability was explored by transendothelial electrical resistance (TER) assay and endothelial monolayer permeability assay. The blocking antibody specific to RAGE was used to confirm the role of RAGE in LPS-mediated NF-κB activation and endothelial barrier disruption. We found that LPS upregulated the protein expression of RAGE in a dose- and time-dependent manner in HUVECs. Moreover, LPS triggered a significant phosphorylation and degradation of IκBα, as well as NF-κB p65 nuclear translocation. Moreover, we observed a significant increase in endothelial permeability after LPS treatment. However, the RAGE blocking antibody attenuated LPS-evoked NF-κB activation and endothelial hyperpermeability. Our results suggest that RAGE plays an important role in LPS-induced NF-κB activation and endothelial barrier dysfunction.

  9. Effect of high intensity exercise on peak oxygen uptake and endothelial function in long-term heart transplant recipients

    DEFF Research Database (Denmark)

    Hermann, T S; Dall, C H; Christensen, S B

    2011-01-01

    ) ) and endothelial function in heart transplant (HT) recipients. Twenty-seven long-term HT recipients were randomized to either 8-weeks high intensity aerobic exercise or no training. Flow mediated dilation of the brachial artery (FMD) was measured by ultrasound and VO(2 peak) by the analysis of expired air. Blood......Coronary allograft vasculopathy is a well-known long-term complication after cardiac transplantation. Endothelial dysfunction is involved and may be prevented by aerobic exercise. The purpose of this study was to examine whether high intensity aerobic exercise improves peak oxygen uptake (VO(2 peak......). High intensity aerobic exercise reduces systolic blood pressure and improves endothelial function in HT recipients....

  10. Silk biomaterials functionalized with recombinant domain V of human perlecan modulate endothelial cell and platelet interactions for vascular applications.

    Science.gov (United States)

    Rnjak-Kovacina, Jelena; Tang, Fengying; Whitelock, John M; Lord, Megan S

    2016-12-01

    Modulation of endothelial cell and platelet interactions is an essential feature of vascular materials. Silk biomaterials were functionalized with recombinantly expressed domain V of human perlecan, an essential vascular proteoglycan involved in vasculogenesis, angiogenesis and wound healing, using passive adsorption or covalent cross-linking via carbodiimide chemistry. The orientation of domain V on the surface of silk biomaterials was modulated by the immobilization technique and glycosaminoglycan chains played an essential role in the proteoglycan presentation on the material surface. Covalent immobilization supported improved integrin binding site presentation to endothelial cells compared to passive adsorption in the presence of glycosaminoglycan chains, but removal of glycosaminoglycan chains resulted in reduced integrin site availability and thus cell binding. Silk biomaterials covalently functionalized with domain V supported endothelial cell adhesion, spreading and proliferation and were anti-adhesive for platelets, making them promising surfaces for the development of the next-generation vascular grafts. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease

    DEFF Research Database (Denmark)

    Nyström, Thomas; Gutniak, Mark K; Zhang, Qimin

    2004-01-01

    (I)) in two groups: 1) 12 type 2 diabetes patients with stable coronary artery disease and 2) 10 healthy subjects with normal endothelial function and S(I). Subjects underwent infusion of recombinant GLP-1 or saline in a random crossover study. Endothelial function was measured by postischemic FMD of brachial...... artery, using ultrasonography. S(I) [in (10(-4) dl.kg(-1).min(-1))/(muU/ml)] was measured by hyperinsulinemic isoglycemic clamp technique. In type 2 diabetic subjects, GLP-1 infusion significantly increased relative changes in brachial artery diameter from baseline FMD(%) (3.1 +/- 0.6 vs. 6.6 +/- 1.0%, P...... FMD(%) (11.9 +/- 0.9 vs. 10.3 +/- 1.0%, P = NS) nor S(I) (14.8 +/- 1.8 vs. 11.6 +/- 2.0, P = NS). We conclude that GLP-1 improves endothelial dysfunction...

  12. Bixa orellana leaf extract suppresses histamine-induced endothelial hyperpermeability via the PLC-NO-cGMP signaling cascade

    National Research Council Canada - National Science Library

    Yong, Yoke Keong; Chiong, Hoe Siong; Somchit, Muhd Nazrul; Ahmad, Zuraini

    2015-01-01

    .... Previous studies have shown that aqueous extract of Bixa orellana leaves (AEBO) exhibits antihistamine activity in vivo, yet the mechanism of its action on endothelial barrier function remains unclear...

  13. Endothelial function and other biomarkers of cardiovascular risk in frequent consumers of street food.

    Science.gov (United States)

    Buscemi, Silvio; Maniaci, Vincenza; Barile, Anna M; Rosafio, Giuseppe; Mattina, Alessandro; Canino, Baldassare; Verga, Salvatore; Rini, Giovam Battista

    2012-12-01

    Street food (SF) is defined as out-of-home food consumption, and generally consists of energy dense meals rich in saturated fats, and poor in fibers, vitamins and anti-oxidants. Though SF consumption may have unfavorable metabolic and cardiovascular effects, its possible association with endothelial function has not been considered. Participants were recruited among those who took part in a previous study of ours, done in Palermo, Italy, which investigated the association between consumption of SF and health in 1002 people. In that study, a score of SF consumption was obtained by categorizing each of ten foods consumed less than or more than once a month (0 = never consumed, 1 = once a month or less, 2 = more than once a month; thus, the sum of single scores could range from 0 to 20). Based on the interquartile values of SF score distribution, in the present study we included low SF consumers, defined on the basis of the first interquartile SF score range (range: 0-1), and high SF consumers, who were those in the forth interquartile range of the SF score (range: 7-20). The group of low SF consumers had 12 participants (median value of SF score: 1; range: 0-1), that of high SF consumers had 13 (median value of SF score: 11; range: 10-16). The brachial artery flow-mediated dilatation (FMD), a measure of endothelial function, and other cardiovascular biomarkers were investigated. High SF consumers had higher BMI (P = 0.026), larger waist circumference (P = 0.041), higher levels of cholesterol (P = 0.013) and uric acid serum concentrations (P = 0.002) compared with low SF consumers. The high SF consumers had a significantly lower FMD (5.4 ± 2.1 versus 8.8 ± 2.8%; ANCOVA with BMI and waist circumpherence as covariates: P = 0.025) than the high consumers. Other cardiovascular biomarkers did not significantly differ between the two groups. This study suggests that high SF consumption in Palermo may be associated with endothelial dysfunction in

  14. Lipoproteins as modulators of atherothrombosis: From endothelial function to primary and secondary coagulation.

    Science.gov (United States)

    Ouweneel, Amber B; Van Eck, Miranda

    2016-07-01

    Atherothrombosis is a complication of atherosclerosis that causes acute cardiovascular events such as myocardial infarction and stroke. Circulating lipid levels are highly correlated with atherosclerotic plaque development. In addition, experimental evidence suggests that lipids also directly influence thrombosis and influence the risk and the outcome of acute cardiovascular events. Plasma lipoproteins influence three aspects important to atherothrombosis: endothelial function, platelet aggregation (primary coagulation) and secondary coagulation. Overall, VLDL, LDL and oxLDL promote thrombus formation, whereas HDL shows antithrombotic actions. In this review we will address the current knowledge about modulation of atherothrombosis by lipoproteins, summarizing findings from in vitro and in vivo animal studies, as well as from observational and interventional studies in humans. We will conclude with future perspectives for lipid modulation in the prevention of atherothrombosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Ingestion of broccoli sprouts does not improve endothelial function in humans with hypertension

    DEFF Research Database (Denmark)

    Christiansen, Buris; Bellostas Muguerza, Natalia; Petersen, Atheline Major

    2010-01-01

    antioxidative potential, for a 4 week period or to continue their ordinary diet and act as controls. Blood pressure, endothelial function measured by flow mediated dilation (FMD) and blood samples were obtained from the participants every other week and the content of glucosinolates was measured before...... and after the study. Measurements were blinded to treatment allocation. RESULTS: In the interventional group overall FMD increased from 4% to 5.8% in the interventional group whereas in the control group FMD was stable (4% at baseline and 3.9% at the end of the study). The change in FMD...... in the interventional group was mainly due to a marked change in FMD in two participants while the other participants did not have marked changes in FMD. The observed differences were not statistically significant. Likewise significant changes in blood pressure or blood samples were not detected between or within...

  16. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway.

    Directory of Open Access Journals (Sweden)

    Liya Huang

    Full Text Available Acidic fibroblast growth factor (FGF1 has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs. The Forkhead homeobox type O transcription factors (FOXOs, a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a or a GFP control (Ad-GFP. FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future.

  17. Coffee polyphenol consumption improves postprandial hyperglycemia associated with impaired vascular endothelial function in healthy male adults.

    Science.gov (United States)

    Jokura, Hiroko; Watanabe, Isamu; Umeda, Mika; Hase, Tadashi; Shimotoyodome, Akira

    2015-10-01

    Epidemiological studies indicate that habitual coffee consumption lowers the risk of diabetes and cardiovascular diseases. Postprandial hyperglycemia is a direct and independent risk factor for cardiovascular diseases. We previously demonstrated that coffee polyphenol ingestion increased secretion of Glucagon-like peptide 1 (GLP-1), which has been shown to exhibit anti-diabetic and cardiovascular effects. We hypothesized coffee polyphenol consumption may improve postprandial hyperglycemia and vascular endothelial function by increasing GLP-1 release and/or reducing oxidative stress. To examine this hypothesis, we conducted a randomized, acute, crossover, intervention study in healthy male adults, measuring blood parameters and flow-mediated dilation (FMD) after ingestion of a meal with or without coffee polyphenol extract (CPE). Nineteen subjects consumed a test meal with either a placebo- or CPE-containing beverage. Blood biomarkers and FMD were measured at fasting and up to 180 minutes postprandially. The CPE beverage led to a significantly lower peak postprandial increase in blood glucose and diacron-reactive oxygen metabolite, and significantly higher postprandial FMD than the placebo beverage. Postprandial blood GLP-1 increase tended to be higher after ingestion of the CPE beverage, compared with placebo. Subclass analysis revealed that the CPE beverage significantly improved postprandial blood GLP-1 response and reduced blood glucose increase in the subjects with a lower insulinogenic index. Correlation analysis showed postprandial FMD was negatively associated with blood glucose increase after ingestion of the CPE beverage. In conclusion, these results suggest that coffee polyphenol consumption improves postprandial hyperglycemia and vascular endothelial function, which is associated with increased GLP-1 secretion and decreased oxidative stress in healthy humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Endothelial Nitric Oxide Synthase Keeps Erection Regulatory Function Balance in the Penis

    Science.gov (United States)

    Bivalacqua, Trinity J.; Liu, Tongyun; Musicki, Biljana; Champion, Hunter C.; Burnett, Arthur L.

    2007-01-01

    Objectives: We sought to evaluate the regulatory influence of endothelial nitric oxide (NO) on the basal functional states of the NO and RhoA/Rho-kinase signaling pathways in the penis employing endothelial NO synthase (eNOS) mutant mice and eNOS gene transfer technology. Methods: Four groups of mice were utilized: 1) wild type (WT), 2) eNOS gene deleted (eNOS −/−), 3) eNOS and neuronal NOS gene deleted (dNOS −/−), and 4) eNOS −/− mutant mice transfected intracavernosally with eNOS. Cyclic guanosine monophosphate (cGMP) concentration, protein kinase G (PKG) activity, activated RhoA, and Rho-kinase activity were determined in penes of WT and both mutant mouse groups. Constitutive NOS and PKG activities, RhoA, Rho-kinase-α and-β isoforms, and phosphorylated myosin light chain phosphatase target subunit (p-MYPT-1) expressions as well as Rho-kinase activity were determined in penes of eNOS−/− mice after eNOS gene transfer. Results: When compared with results in the WT penis, eNOS−/− and dNOS−/− mutant mouse penes had significant reductions in NOS activity, cGMP concentration, PKG activity, Rho-kinase activity and p-MYPT-1 expression (ppenis as a regulator of the basal signaling functions of the NO and RhoA/Rho-kinase erection mediatory pathways. These data offer new insight into the homeostasis of erection regulatory biology. PMID:17113219

  19. Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension.

    Science.gov (United States)

    Perros, Frédéric; Ranchoux, Benoît; Izikki, Mohamed; Bentebbal, Sana; Happé, Chris; Antigny, Fabrice; Jourdon, Philippe; Dorfmüller, Peter; Lecerf, Florence; Fadel, Elie; Simonneau, Gerald; Humbert, Marc; Bogaard, Harm Jan; Eddahibi, Saadia

    2015-02-24

    Endothelial cell (EC) dysfunction plays a central role in the pathogenesis of pulmonary arterial hypertension (PAH), promoting vasoconstriction, smooth muscle proliferation, and inflammation. This study sought to test the hypothesis that nebivolol, a β1-antagonist and β2,3-agonist, may improve PAH and reverse the PAH-related phenotype of pulmonary ECs (P-EC). We compared the effects of nebivolol with metoprolol, a first-generation β1-selective β-blocker, on human cultured PAH and control P-EC proliferation, vasoactive and proinflammatory factor production, and crosstalk with PA smooth muscle cells. We assessed the effects of both β-blockers in precontracted PA rings. We also compared the effects of both β-blockers in experimental PAH. PAH P-ECs overexpressed the proinflammatory mediators interleukin-6 and monocyte chemoattractant protein-1, fibroblast growth factor-2, and the potent vasoconstrictive agent endothelin-1 as compared with control cells. This pathological phenotype was corrected by nebivolol but not metoprolol in a dose-dependent fashion. We confirmed that PAH P-EC proliferate more than control cells and stimulate more PA smooth muscle cell mitosis, a growth abnormality that was normalized by nebivolol but not by metoprolol. Nebivolol but not metoprolol induced endothelium-dependent and nitric oxide-dependent relaxation of PA. Nebivolol was more potent than metoprolol in improving cardiac function, pulmonary vascular remodeling, and inflammation of rats with monocrotaline-induced pulmonary hypertension. Nebivolol could be a promising option for the management of PAH, improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function. Until clinical studies are undertaken, however, routine use of β-blockers in PAH cannot be recommended. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome.

    Science.gov (United States)

    Jeong, Han Saem; Hong, Soon Jun; Lee, Tae-Bum; Kwon, Ji-Wung; Jeong, Jong Tae; Joo, Hyung Joon; Park, Jae Hyoung; Ahn, Chul-Min; Yu, Cheol Woong; Lim, Do-Sun

    2014-10-01

    Black raspberry (Rubus occidentalis) has been known for its anti-inflammatory and anti-oxidant effects. However, short-term effects of black raspberry on lipid profiles and vascular endothelial function have not been investigated in patients with metabolic syndrome. Patients with metabolic syndrome (n = 77) were prospectively randomized into a group with black raspberry (n = 39, 750 mg/day) and a placebo group (n = 38) during a 12-week follow-up. Lipid profiles, brachial artery flow-mediated dilatation (baFMD), and inflammatory cytokines such as IL-6, TNF-α, C-reactive protein, adiponectin, sICAM-1, and sVCAM-1 were measured at the baseline and at the 12-week follow-up. Decreases from the baseline in the total cholesterol level (-22.8 ± 30.4 mg/dL vs. -1.9 ± 31.8 mg/dL, p raspberry than in the placebo group. Increases in baFMD at the 12-week follow-up were significantly greater in the group with black raspberry than in the placebo group (0.33 ± 0.44 mm vs. 0.10 ± 0.35 mm, p raspberry. The use of black raspberry significantly decreased serum total cholesterol level and inflammatory cytokines, thereby improving vascular endothelial function in patients with metabolic syndrome during the 12-week follow-up. Copyright © 2014 John Wiley & Sons, Ltd.

  1. β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.

    Science.gov (United States)

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Gentile, Carmine; Fry, Natasha A; Hamilton, Elisha J; Hawkins, Clare L; Figtree, Gemma A

    2016-02-19

    Perturbed balance between NO and O2 (•-). (ie, NO/redox imbalance) is central in the pathobiology of diabetes-induced vascular dysfunction. We examined whether stimulation of β3 adrenergic receptors (β3 ARs), coupled to endothelial nitric oxide synthase (eNOS) activation, would re-establish NO/redox balance, relieve oxidative inhibition of the membrane proteins eNOS and Na(+)-K(+) (NK) pump, and improve vascular function in a new animal model of hyperglycemia. We established hyperglycemia in male White New Zealand rabbits by infusion of S961, a competitive high-affinity peptide inhibitor of the insulin receptor. Hyperglycemia impaired endothelium-dependent vasorelaxation by "uncoupling" of eNOS via glutathionylation (eNOS-GSS) that was dependent on NADPH oxidase activity. Accordingly, NO levels were lower while O2 (•-) levels were higher in hyperglycemic rabbits. Infusion of the β3 AR agonist CL316243 (CL) decreased eNOS-GSS, reduced O2 (•-), restored NO levels, and improved endothelium-dependent relaxation. CL decreased hyperglycemia-induced NADPH oxidase activation as suggested by co-immunoprecipitation experiments, and it increased eNOS co-immunoprecipitation with glutaredoxin-1, which may reflect promotion of eNOS de-glutathionylation by CL. Moreover, CL reversed hyperglycemia-induced glutathionylation of the β1 NK pump subunit that causes NK pump inhibition, and improved K(+)-induced vasorelaxation that reflects enhancement in NK pump activity. Lastly, eNOS-GSS was higher in vessels of diabetic patients and was reduced by CL, suggesting potential significance of the experimental findings in human diabetes. β3 AR activation restored NO/redox balance and improved endothelial function in hyperglycemia. β3 AR agonists may confer protection against diabetes-induced vascular dysfunction. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  2. Bubble formation and endothelial function before and after 3 months of dive training.

    Science.gov (United States)

    Pontier, Jean-Michel; Guerrero, François; Castagna, Olivier

    2009-01-01

    It has been suggested that repeated compression-decompression cycles reduce diver susceptibility to decompression sickness (DCS). This study examined whether intensive scuba dive training would reduce bubble formation and modulate endothelial function as shown by skin circulation. There were 22 military divers who were studied before and after a 90-d program of physical training and open-sea air diving (mean 67 dives total). Skin blood flow in the forearm was measured at rest (baseline), during post-occlusive hyperemia (endothelium-dependent vasodilatation), and with local heating to 42 degrees C (maximal vasodilatation). Subjects were also examined by pulsed Doppler for venous bubbles 30, 60, and 90 min after surfacing from a hyperbaric exposure to 400 kPa (30 msw) for 30 min in a dry chamber. None of the divers experienced DCS during the training period. There was no change in weight, body mass index, maximal oxygen uptake, or endothelial function. Bubble grades by the Kisman Integrated Severity Score were significantly decreased immediately after the diving training period (3.6 +/- 9.2 vs. 16.4 +/- 14.3) and increased 3 mo after this period (10.3 +/- 13.9 vs. 3.6 +/- 9.2). The results highlight that repeated scuba dives and regular physical exercise activity reduce bubble formation and probably have a protective effect against DCS risk. Although this phenomenon has been observed for decades, the mechanism remains complex and the results cannot elucidate the effects of physical exercise and NO production. Bubble formation could activate the stress response which could be the basis for diving acclimatization.

  3. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria.

    Science.gov (United States)

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Weinberg, J Brice; Granger, Donald L; Price, Ric N; Anstey, Nicholas M

    2014-11-15

    Endothelial nitric oxide (NO) bioavailability, microvascular function, and host oxygen consumption have not been assessed in pediatric malaria. We measured NO-dependent endothelial function by using peripheral artery tonometry to determine the reactive hyperemia index (RHI), and microvascular function and oxygen consumption (VO2) using near infrared resonance spectroscopy in 13 Indonesian children with severe falciparum malaria and 15 with moderately severe falciparum malaria. Compared with 19 controls, children with severe malaria and those with moderately severe malaria had lower RHIs (P = .03); 12% and 8% lower microvascular function, respectively (P = .03); and 29% and 25% higher VO2, respectively. RHIs correlated with microvascular function in all children with malaria (P function and increased oxygen consumption, likely contributing to the pathogenesis of the disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Increased Rho-kinase expression and activity and pulmonary endothelial dysfunction in smokers with normal lung function.

    Science.gov (United States)

    Duong-Quy, S; Dao, P; Hua-Huy, T; Guilluy, C; Pacaud, P; Dinh-Xuan, A T

    2011-02-01

    Endothelial dysfunction is one of the main consequences of the toxic effects of cigarette smoke on the vascular system. Increasing evidence suggests that the small G-protein RhoA and its downstream effectors, the Rho-kinases (ROCKs), are involved in systemic endothelial dysfunction induced by cigarette smoke. This study aimed to evaluate the role of the RhoA/ROCKs pathway in pulmonary artery endothelial function in current smokers with normal lung function. Lung tissues were obtained from nonsmokers and smokers who underwent lobectomy for lung carcinoma. Arterial relaxation in response to acetylcholine (ACh) was assessed in isolated pulmonary arterial rings. Protein expressions and activities of endothelial nitric oxide synthase (eNOS), ROCKs and the myosin phosphatase subunit 1 (MYPT-1) were sought. Relaxation in response to ACh was significantly lower in smokers as compared with nonsmokers (n = 8 in each group), consistent with reduced eNOS activity in the former compared with the latter. eNOS protein expression remained, however, the same in both groups. Expression of ROCKs, guanosine triphosphate-RhoA and phosphorylated MYPT-1 were significantly increased in smokers compared with controls. Pulmonary endothelial dysfunction is present in smokers whose lung function has not yet been impaired. Reduced activity of eNOS accounts at least in part for this endothelial dysfunction. Increased expression and activity of ROCKs accounts for another part through direct or indirect inhibition of the Rho-A/ROCKs pathway on nitric oxide synthesis and sustained pulmonary vasoconstriction through inhibition of myosin phosphatase.

  5. Trafficking of adeno-associated virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells.

    Science.gov (United States)

    Merkel, Steven F; Andrews, Allison M; Lutton, Evan M; Mu, Dakai; Hudry, Eloise; Hyman, Bradley T; Maguire, Casey A; Ramirez, Servio H

    2017-01-01

    Developing therapies for central nervous system (CNS) diseases is exceedingly difficult because of the blood-brain barrier (BBB). Notably, emerging technologies may provide promising new options for the treatment of CNS disorders. Adeno-associated virus serotype 9 (AAV9) has been shown to transduce cells in the CNS following intravascular administration in rodents, cats, pigs, and non-human primates. These results suggest that AAV9 is capable of crossing the BBB. However, mechanisms that govern AAV9 transendothelial trafficking at the BBB remain unknown. Furthermore, possibilities that AAV9 may transduce brain endothelial cells or affect BBB integrity still require investigation. Using primary human brain microvascular endothelial cells as a model of the human BBB, we performed transduction and transendothelial trafficking assays comparing AAV9 to AAV2, a serotype that does not cross the BBB or transduce endothelial cells effectively in vivo. Results of our in vitro studies indicate that AAV9 penetrates brain microvascular endothelial cells barriers more effectively than AAV2, but has reduced transduction efficiency. In addition, our data suggest that (i) AAV9 penetrates endothelial barriers through an active, cell-mediated process, and (ii) AAV9 fails to disrupt indicators of BBB integrity such as transendothelial electrical resistance, tight junction protein expression/localization, and inflammatory activation status. Overall, this report shows how human brain endothelial cells configured in BBB models can be utilized for evaluating transendothelial movement and transduction kinetics of various AAV capsids. Importantly, the use of a human in vitro BBB model can provide import insight into the possible effects that candidate AVV gene therapy vectors may have on the status of BBB integrity. Read the Editorial Highlight for this article on page 192. © 2016 International Society for Neurochemistry.

  6. Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function

    OpenAIRE

    Mannaerts, Dominique; Faes, Ellen; Goovaerts, Inge; Stoop, Tibor; Cornette, Jerome; Gyselaers, Wilfried; Spaanderman, Marc; Craenenbroeck, van, Emeline M.; Jacquemyn, Yves

    2017-01-01

    Abstract: Endothelial function and arterial stiffness are known to be altered in preeclamptic pregnancies. Previous studies have shown conflicting results regarding the best technique for assessing vascular function in pregnancy. In this study, we made a comprehensive evaluation of in vivo vascular function [including flow-mediated dilatation (FMD), peripheral arterial tonometry (PAT), and arterial stiffness] in preeclamptic patients and compared them with normal pregnancies. In addition, we ...

  7. Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans.

    NARCIS (Netherlands)

    Jones, H.; Hopkins, N.; Bailey, T.G.; Green, D.J.; Cable, N.T.; Thijssen, D.H.J.

    2014-01-01

    BACKGROUND: Ischemic preconditioning (IPC) protects tissue against ischemia-induced injury inside and outside ischemic areas. The purpose was to examine the hypothesis that daily IPC leads to improvement in endothelial function and skin microcirculation not only in the arm exposed to IPC but also in

  8. Effect of adjuvant argatroban therapy on neurological function, endothelial injury and inflammation state in patient with acute cerebral infarction

    Directory of Open Access Journals (Sweden)

    Nan Che

    2016-08-01

    Full Text Available Objective: To analyze the effect of adjuvant argatroban therapy on neurological function, endothelial injury and inflammation state in patient with acute cerebral infarction. Methods: A total of 118 patients with acute cerebral infarction were divided into observation group and control group according to the random number table, control group received conventional treatment, observation group received argatroban + conventional treatment, and then differences in TCD cerebral blood flow, serum neurological function, endothelial injury and inflammatory marker levels were compared between two groups after treatment. Results: TCD MCA and ACA values of observation group after treatment were higher than those of control group (P<0.05; serum neurological function indexes copeptin, NT-proBNP, PAO and S-100B levels of observation group after treatment were lower than those of control group, endothelial injury index ET-1 level was lower than that of control group, NO and CGRP levels were higher than those of control group, and inflammatory markers hs-CRP, TNF-毩, IL-6, MMP-9 and Lp-PLA2 levels were lower than those of control group (P<0.05. Conclusions: Adjuvant argatroban therapy can optimize the overall condition in patients with acute cerebral infarction, and plays a positive role in improving the neurological function, reducing endothelial injury and inflammation state, etc.

  9. The effect of chronic heart failure and type 2 diabetes on insulin-stimulated endothelial function is similar and additive

    DEFF Research Database (Denmark)

    Falskov, Britt; Hermann, Thomas Steffen; Rask-Madsen, Christian

    2011-01-01

    plethysmography. Insulin-stimulated endothelial function was assessed after intra-arterial infusion of insulin followed by co-infusion with serotonin in three different dosages. Forearm glucose uptake was measured during the insulin infusion. RESULTS: Patients with systolic heart failure had impaired insulin...

  10. Metoprolol compared to carvedilol deteriorates insulin-stimulated endothelial function in patients with type 2 diabetes - a randomized study

    DEFF Research Database (Denmark)

    Kveiborg, Britt; Hermann, Thomas S; Major-Pedersen, Atheline

    2010-01-01

    -stimulated endothelial function in patients with type 2 diabetes. METHOD: 24 patients with type 2 diabetes were randomized to receive either 200 mg metoprolol succinate or 50 mg carvedilol daily. Endothelium-dependent vasodilation was assessed by using venous occlusion plethysmography with increasing doses of intra...

  11. Acute effects of hyperinsulinemia and hyperglycemia on vascular inflammatory biomarkers and endothelial function in overweight and obese humans

    Science.gov (United States)

    Perkins, Jennifer M.; Joy, Nino G.; Tate, Donna B.

    2015-01-01

    We investigated the separate and combined effects of hyperglycemia and hyperinsulinemia on markers of endothelial function, proinflammatory and proatherothrombotic responses in overweight/obese nondiabetic humans. Twenty-two individuals (13 F/9 M, BMI 30.1 ± 4.1 kg/m2) were studied during four randomized, single-blind protocols. The pancreatic clamp technique was combined with 4-h glucose clamps consisting of either 1) euinsulinemia-euglycemia, 2) euinsulinemia-hyperglycemia, 3) hyperinsulinemia-hyperglycemia, or 4) hyperinsulinemia-euglycemia. Insulin levels were higher (998 ± 66 vs. 194 ± 22 pmol/l) during hyperinsulinemia compared with euinsulinemia. Glucose levels were 11.1 mmol/l during hyperinsulinemia compared with 5.1 ± 0.1 mmol/l during euglycemia. VCAM, ICAM, P-selectin, E-selectin, IL-6, adiponectin, and PAI-1 responses were all increased (P hyperglycemia compared with other protocols. Hyperinsulinemia in the presence of hyperglycemia prevented the increase in proinflammatory and proatherothrombotic markers while also normalizing vascular endothelial function. We conclude that 4 h of moderate hyperglycemia can result in increases of proinflammatory markers (ICAM, VCAM, IL-6, E-selectin), platelet activation (P-selectin), reduced fibrinolytic balance (increased PAI-1), and disordered endothelial function in a group of obese and overweight individuals. Hyperinsulinemia prevents the actions of moderate hyperglycemia to reduce endothelial function and increase proinflammatory and proatherothrombotic markers. PMID:26015434

  12. A new approach to improve the specificity of flow-mediated dilation for indicating endothelial function in cardiovascular research

    NARCIS (Netherlands)

    Atkinson, G.; Batterham, A.M.; Thijssen, D.H.J.; Green, D.J.

    2013-01-01

    Flow-mediated dilation (FMD) is a noninvasive indicator of endothelial function and is routinely expressed as the percentage change in arterial diameter (FMD%) from a resting baseline (Dbase) to a postischemic peak (Dpeak). This expression is equivalent to the ratio of Dpeak/Dbase and is, therefore,

  13. The Influence of Endothelial Function and Myocardial Ischemia on Peak Oxygen Consumption in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Simon L. Bacon

    2012-01-01

    Full Text Available Impaired endothelial function has been shown to limit exercise in coronary artery disease (CAD patients and has been implicated in myocardial ischemia. However, the association of endothelial function and ischemia on peak exercise oxygen consumption (VO2 has not been previously reported. A total of 116 CAD patients underwent standard exercise stress testing, during which VO2 was measured. On a separate day, endothelial-dependent and -independent function were assessed by ultrasound using flow-mediated arterial vasodilation (FMD and sublingual glyceryl trinitrate administration (GTNMD of the brachial artery. Patients with exercise-induced myocardial ischemia had lower FMD than nonischemic patients (3.64±0.57 versus 4.98±0.36, P=.050, but there was no difference in GTNMD (14.11±0.99 versus 15.47±0.63, P=.249. Analyses revealed that both FMD (P=.006 and GTNMD (P=.019 were related to peak VO2. However, neither the presence of ischemia (P=.860 nor the interaction of ischemia with FMD (P=.382 and GTNMD (P=.151 was related to peak VO2. These data suggest that poor endothelial function, potentially via impaired NO production and smooth muscle dysfunction, may be an important determinant of exercise capacity in patients with CAD, independent of myocardial ischemia.

  14. Endothelial Function Increases after a 16-Week Diet and Exercise Intervention in Overweight and Obese Young Women

    Directory of Open Access Journals (Sweden)

    Lisa M. Cotie

    2014-01-01

    Full Text Available Weight loss improves endothelial function in overweight individuals. The effects of weight loss through combined aerobic and resistance training and caloric restriction on in vivo vascular measures and blood markers associated with the regulation of endothelial function have not been comprehensively examined. Therefore, we investigated brachial artery endothelial function and potential regulatory blood markers in twenty overweight women (30.3 ± 2.0 years who participated in 16 weeks of aerobic (5 d/wk and resistance training (2 d/wk (combined: ≥250 kcal/d and caloric restriction (−500 kcal/d versus requirement. Resting brachial artery flow mediated dilation (FMD and circulating endothelin-1 (ET-1 and interleukin-6 (IL-6 were assessed at baseline and following the intervention. Relative and absolute FMD increased (before: 4.0 ± 0.5% versus after: 6.9 ± 0.6%, P0.05, and ET-1: before: 0.55 ± 0.05 pg/mL versus after: 0.59 ± 0.09 pg/mL, P>0.05. 16 weeks of combined aerobic/resistance training and diet-induced weight loss improved endothelial function in overweight and obese young women, but this increase was not associated with changes in blood markers of vasoconstriction or inflammation.

  15. The effect of rowing on endothelial function and insulin action in healthy controls and in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Olsen, D B; Scheede-Bergdahl, C; Reving, D

    2011-01-01

    Patients with type 2 diabetes (T2DM) have an increased risk for cardiovascular disease. We examined the effects of 8 weeks of home-based rowing training (heart rate corresponding to 65-70% of VO(2 peak) ) on endothelial function and glucose clearance (local and systemic effects) in male subjects...

  16. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    Science.gov (United States)

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  17. A systematic review protocol examining the effect of vitamin D supplementation on endothelial function.

    Science.gov (United States)

    Alyami, A; Soares, M J; Sherriff, J L; Zhao, Y; Hallett, J; Coombes, F

    2015-06-12

    Vitamin D has potential benefits for extraskeletal health. These could include an anti-inflammatory effect as well as a reduction in endothelial dysfunction. We aim to provide quality evidence for the hypothesis that supplementation with vitamin D will improve endothelial function (EF), possibly through the abrogation of systemic inflammati