WorldWideScience

Sample records for endogenous protein complexes

  1. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels

    DEFF Research Database (Denmark)

    Domanski, Michal; Molloy, Kelly; Jiang, Hua

    2012-01-01

    An efficient and reliable procedure for the capture of affinity-tagged proteins and associated complexes from human cell lines is reported. Through multiple optimizations, high yield and low background affinity-purifications are achieved from modest quantities of human cells expressing endogenous...

  2. Dissociation and purification of the endogenous membrane-bound Vo complex from Pichia pastoris.

    Science.gov (United States)

    Li, Sumei; Hong, Tao; Wang, Kun; Lu, Yinghong; Zhou, Min

    2017-10-01

    Most proteins occur and function in complexes rather than as isolated entities in membranes. In most cases macromolecules with multiple subunits are purified from endogenous sources. In this study, an endogenous membrane-protein complex was obtained from Pichia pastoris, which can be grown at high densities to significantly improve the membrane protein yield. We successfully isolated the membrane-bound Vo complex of V-ATPase from P. pastoris using a fusion FLAG tag attached to the C-terminus of subunit a to generate the vph-tag strain, which was used for dissociation and purification. After FLAG affinity and size exclusion chromatography purification, the production quantity and purity of the membrane-bound Vo complex was 20 μg l -1 and >98%, respectively. The subunits of the endogenous membrane-bound Vo complex observed in P. pastoris were similar to those obtained from S. cerevisiae, as demonstrated by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Therefore, successful dissociation and purification of the membrane-bound Vo complex at a high purity and sufficient quantity was achieved via a rapid and simple procedure that can be used to obtain the endogenous membrane-protein complexes from P. pastoris. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Strategies for the photo-control of endogenous protein activity.

    Science.gov (United States)

    Brechun, Katherine E; Arndt, Katja M; Woolley, G Andrew

    2017-08-01

    Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fanconi anemia proteins and endogenous stresses

    Energy Technology Data Exchange (ETDEWEB)

    Pang Qishen [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH (United States); Andreassen, Paul R., E-mail: Paul.Andreassen@cchmc.org [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2009-07-31

    Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

  5. Fanconi anemia proteins and endogenous stresses

    International Nuclear Information System (INIS)

    Pang Qishen; Andreassen, Paul R.

    2009-01-01

    Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

  6. R7-binding protein targets the G protein β5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Hua

    2007-09-01

    Full Text Available Abstract Background Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, composed of Gα, Gβ, and Gγ subunits, are positioned at the inner face of the plasma membrane and relay signals from activated G protein-coupled cell surface receptors to various signaling pathways. Gβ5 is the most structurally divergent Gβ isoform and forms tight heterodimers with regulator of G protein signalling (RGS proteins of the R7 subfamily (R7-RGS. The subcellular localization of Gβ 5/R7-RGS protein complexes is regulated by the palmitoylation status of the associated R7-binding protein (R7BP, a recently discovered SNARE-like protein. We investigate here whether R7BP controls the targeting of Gβ5/R7-RGS complexes to lipid rafts, cholesterol-rich membrane microdomains where conventional heterotrimeric G proteins and some effector proteins are concentrated in neurons and brain. Results We show that endogenous Gβ5/R7-RGS/R7BP protein complexes are present in native neuron-like PC12 cells and that a fraction is targeted to low-density, detergent-resistant membrane lipid rafts. The buoyant density of endogenous raft-associated Gβ5/R7-RGS protein complexes in PC12 cells was similar to that of lipid rafts containing the palmitoylated marker proteins PSD-95 and LAT, but distinct from that of the membrane microdomain where flotillin was localized. Overexpression of wild-type R7BP, but not its palmitoylation-deficient mutant, greatly enriched the fraction of endogenous Gβ5/R7-RGS protein complexes in the lipid rafts. In HEK-293 cells the palmitoylation status of R7BP also regulated the lipid raft targeting of co-expressed Gβ5/R7-RGS/R7BP proteins. A fraction of endogenous Gβ5/R7-RGS/R7BP complexes was also present in lipid rafts in mouse brain. Conclusion A fraction of Gβ5/R7-RGS/R7BP protein complexes is targeted to low-density, detergent-resistant membrane lipid rafts in PC12 cells and brain. In cultured cells, the palmitoylation status of

  7. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study

    Science.gov (United States)

    Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416

  8. Gastrointestinal endogenous proteins as a source of bioactive peptides--an in silico study.

    Science.gov (United States)

    Dave, Lakshmi A; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein.

  9. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    Science.gov (United States)

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional

  10. [Dinitrosyl iron complexes are endogenous signaling agents in animal and human cells and tissues (a hypothesis)].

    Science.gov (United States)

    Vanin, A F

    2004-01-01

    The hypothesis was advanced that dinitrosyl iron complexes generated in animal and human cells and tissues producing nitric oxide can function as endogenous universal regulators of biochemical and physiological processes. This function is realized by the ability of dinitrosyl iron complexes to act as donors of free nitric oxide molecules interacting with the heme groups of proteins, nitrosonium ions, or Fe+(NO+)2 interacting with the thiol groups of proteins. The effect of dinitrosyl iron complexes on the activity of some enzymes and the expression of the genome at the translation and transcription levels was considered.

  11. Investigation of the connection between the quality of protein, protein level and endogenous N excretion

    International Nuclear Information System (INIS)

    Koehler, R.; Gebhardt, G.

    1979-01-01

    The influence of various protein qualities as well as of different levels of protein on the amount of endogenous N excretion, metabolic fecal nitrogen (MFN) and endogenous urinary N (EUN) was determined in growing albino rats. The test rations were labelled with admixtures of 15 N-DL-methionine and 15 N-DL-lysine, respectively, or contained feed protein enriched with 15 N. EUN and MFN and their sum (the N maintenance requirement) showed the influence of the respective protein source and its dependence on the protein level. The endogenous N excretions showed an opposite tendency to the N balance; for high-quality protein feedstuffs with a high N balance (e.g. dried eggs) they are lower than for protein sources of inferior quality, with a low N-balance only (e.g. wheat gluten). Presumably this interaction of retention and maintenance is due to the complementary effect of exogenous and endogenous amino acids in the N and amino acid pool, respectively. Provided that the N dose and the live weight of the animals are comparable, the N balance appears to be more suitable as parameter for the description of the protein quality and the calculation of the protein utilisation than N retention, as the sum of N balance and the values of MFN and EUN (depending on the feedstuffs and the N level). (author)

  12. Tissue-specific tagging of endogenous loci in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kate Koles

    2016-01-01

    Full Text Available Fluorescent protein tags have revolutionized cell and developmental biology, and in combination with binary expression systems they enable diverse tissue-specific studies of protein function. However these binary expression systems often do not recapitulate endogenous protein expression levels, localization, binding partners and/or developmental windows of gene expression. To address these limitations, we have developed a method called T-STEP (tissue-specific tagging of endogenous proteins that allows endogenous loci to be tagged in a tissue specific manner. T-STEP uses a combination of efficient CRISPR/Cas9-enhanced gene targeting and tissue-specific recombinase-mediated tag swapping to temporally and spatially label endogenous proteins. We have employed this method to GFP tag OCRL (a phosphoinositide-5-phosphatase in the endocytic pathway and Vps35 (a Parkinson's disease-implicated component of the endosomal retromer complex in diverse Drosophila tissues including neurons, glia, muscles and hemocytes. Selective tagging of endogenous proteins allows, for the first time, cell type-specific live imaging and proteomics in complex tissues.

  13. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    Science.gov (United States)

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  15. Therapeutic targeting strategies using endogenous cells and proteins.

    Science.gov (United States)

    Parayath, Neha N; Amiji, Mansoor M

    2017-07-28

    Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Endogenous RGS14 is a cytoplasmic-nuclear shuttling protein that localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus

    Science.gov (United States)

    Hepler, John R.

    2017-01-01

    Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and H-Ras/MAPkinase signaling pathways to regulate synaptic plasticity important for hippocampal learning and memory. However, to date, little is known about the subcellular distribution and roles of endogenous RGS14 in a neuronal cell line. Most of what is known about RGS14 cellular behavior is based on studies of tagged, recombinant RGS14 ectopically overexpressed in unnatural host cells. Here, we report for the first time a comprehensive assessment of the subcellular distribution and dynamic localization of endogenous RGS14 in rat B35 neuroblastoma cells. Using confocal imaging and 3D-structured illumination microscopy, we find that endogenous RGS14 localizes to subcellular compartments not previously recognized in studies of recombinant RGS14. RGS14 localization was observed most notably at juxtanuclear membranes encircling the nucleus, at nuclear pore complexes (NPC) on both sides of the nuclear envelope and within intranuclear membrane channels, and within both chromatin-poor and chromatin-rich regions of the nucleus in a cell cycle-dependent manner. In addition, a subset of nuclear RGS14 localized adjacent to active RNA polymerase II. Endogenous RGS14 was absent from the plasma membrane in resting cells; however, the protein could be trafficked to the plasma membrane from juxtanuclear membranes in endosomes derived from ER/Golgi, following constitutive activation of endogenous RGS14 G protein binding partners using AlF4¯. Finally, our findings show that endogenous RGS14 behaves as a cytoplasmic-nuclear shuttling protein confirming what has been shown previously for recombinant RGS14. Taken together, the findings highlight possible cellular roles for RGS14 not previously recognized that are distinct from the regulation of conventional GPCR-G protein signaling, in particular undefined roles for RGS14 in the nucleus. PMID:28934222

  17. Patterning protein complexes on DNA nanostructures using a GFP nanobody.

    Science.gov (United States)

    Sommese, R F; Hariadi, R F; Kim, K; Liu, M; Tyska, M J; Sivaramakrishnan, S

    2016-11-01

    DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies. © 2016 The Protein Society.

  18. Gut luminal endogenous protein: implications for the determination of ileal amino acid digestibility in humans.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M

    2012-08-01

    The true ileal digestibility assay provides the most informative measure of digestibility to assess bioavailability of amino acids in foods for humans. To determine 'true' estimates of ileal amino acid digestibility, requires that endogenous amino acids present in digesta at the terminal ileum be quantified. The amounts of endogenous amino acids in ileal digesta can be determined after feeding an animal or human a protein-free diet (traditional approach) or by various methods after giving a protein-containing diet. When the protein-free method has been applied with adult human subjects an overall mean value (three separate studies) for endogenous ileal nitrogen flow of 800 mg N/d has been reported. This value is considerably lower than a comparable value obtained after feeding protein of 1852 mg N/d (mean of four separate studies), and thus endogenous ileal N and amino acids should be measured under conditions of protein alimentation. There is some confusion concerning the terminology used to define digestibility, with the term "true" digestibility having different adopted meanings. Here, true amino acid digestibility is defined as apparent amino acid digestibility corrected for the basal amino acid losses determined after giving either a protein-free or a protein-containing diet. Basal losses should be determined at a defined dry-matter and protein intake. The protein-free diet approach to determining endogenous amino acids is considered unphysiological and basal losses refer to ileal endogenous amino acid flows associated with digesta dry-matter flow, and not including "specific" effects of dietary factors such as non starch polysaccharides and anti nutritional factors. Arguments are advanced that the enzyme hydrolysed protein/ultra filtration method may be suitable for routine application with a cannulated pig model, to obtain physiologically-valid basal estimates of ileal endogenous amino acids to allow calculation of true ileal amino acid digestibility in the

  19. Structural characterization of the fusion core in syncytin, envelope protein of human endogenous retrovirus family W

    International Nuclear Information System (INIS)

    Gong Rui; Peng Xiaoxue; Kang Shuli; Feng Huixing; Huang Jianying; Zhang Wentao; Lin Donghai; Tien Po; Xiao Gengfu

    2005-01-01

    Syncytin is a captive retroviral envelope protein, possibly involved in the formation of the placental syncytiotrophoblast layer generated by trophoblast cell fusion at the maternal-fetal interface. We found that syncytin and type I viral envelope proteins shared similar structural profiling, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR). We expressed the predicted regions of NHR (41 aa) and CHR (34 aa) in syncytin as a native single chain (named 2-helix protein) to characterize it. 2-helix protein exists as a trimer and is highly α-helix, thermo-stable, and denatured by low pH. NHR and CHR could form a protease-resistant complex. The complex structure built by the molecular docking demonstrated that NHR and CHR associated in an antiparallel manner. Overall, the 2-helix protein could form a thermo-stable coiled coil trimer. The fusion core structure of syncytin was first demonstrated in endogenous retrovirus. These results support the explanation how syncytin mediates cytotrophoblast cell fusion involved in placental morphogenesis

  20. Effect of endogenous proteins and lipids on starch digestibility in rice flour.

    Science.gov (United States)

    Ye, Jiangping; Hu, Xiuting; Luo, Shunjing; McClements, David Julian; Liang, Lu; Liu, Chengmei

    2018-04-01

    The composition and structure of the food matrix can have a major impact on the digestion. The aim of this work was to investigate the effects of endogenous proteins and lipids on starch digestibility in rice flour, with an emphasis on establishing the underlying physicochemical mechanisms involved. Native long-grain indica rice flour and rice flour with the lipids and/or proteins removed were subjected to a simulated digestion in vitro. A significant increase in starch digestibility was observed after removal of proteins, lipids, or both. The starch digestibility of the rice flour without lipids was slightly lower than that without proteins, even though the proteins content was about 10-fold higher than the lipids content. Microstructural analysis suggested that the proteins and lipids were normally attached to the surfaces of the starch granules in the native rice flour, thus inhibiting their contact with digestive enzymes. Moreover, the proteins and lipids restricted the swelling of the starch granules, which may have decreased their digestion by reducing their surface areas. In addition, amylose-lipid complex was detected in the rice flour, which is also known to slow down starch digestion. These results have important implications for the design of foods with improved nutritional profiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.

    Science.gov (United States)

    Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta

    2018-05-17

    Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.

  2. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues

    OpenAIRE

    Sarah A. Hibbert; Rachel E.B. Watson; Neil K. Gibbs; Patrick Costello; Clair Baldock; Anthony S. Weiss; Christopher E.M. Griffiths; Michael J. Sherratt

    2015-01-01

    Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (contain...

  3. CRISPR-Cas9 mediated genetic engineering for the purification of the endogenous integrator complex from mammalian cells.

    Science.gov (United States)

    Baillat, David; Russell, William K; Wagner, Eric J

    2016-12-01

    The Integrator Complex (INT) is a large multi-subunit protein complex, containing at least 14 subunits and a host of associated factors. These protein components have been established through pulldowns of overexpressed epitope tagged subunits or by using antibodies raised against specific subunits. Here, we utilize CRISPR/Cas9 gene editing technology to introduce N-terminal FLAG epitope tags into the endogenous genes that encode Integrator subunit 4 and 11 within HEK293T cells. We provide specific details regarding design, approaches for facile screening, and our observed frequency of successful recombination. Finally, using silver staining, Western blotting and LC-MS/MS we compare the components of INT of purifications from CRISPR derived lines to 293T cells overexpressing FLAG-INTS11 to define a highly resolved constituency of mammalian INT. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Endogenous phosphorylation of basic protein in myelin of varying degrees of compaction

    International Nuclear Information System (INIS)

    Schulz, P.; Moscarello, M.A.; Cruz, T.F.

    1988-01-01

    Fractions containing myelin of varying degrees of compaction were prepared from human white matter. Protein kinase activity in these fractions was measured by using both endogenous and exogenous myelin basic protein (MBP) as substrates. In both cases, less compact myelin fractions possessed higher levels of protein kinase activity than the compact myelin fraction. In addition, the specific activity of phosphorylated basic protein was greater in the loosely compacted fractions than in compact multilamellar myelin. When basic protein in compact myelin or the myelin fractions was phosphorylated by the endogenous kinase, approximately 70% of the [ 32 P]phosphate was incorporated at a single site, identified as Ser-102. The remaining 30% was found in three other minor sites. Electron microscopy of less compact myelin showed it was composed of fewer lamellae which correlated with a relative decrease in the proportion of cationic charge isomers (microheteromers) when MBP was subjected to gel electrophoresis at alkaline pH. The shift in charge microheterogeneity of basic protein to the less cationic isomers in the less compact myelin fractions correlated with an increase in protein kinase activity and a greater specific activity of phosphorylated basic protein

  5. Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.

    Science.gov (United States)

    Kampschmidt, R F; Upchurch, H F; Worthington, M L

    1983-07-01

    It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen.

  6. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  7. Dynamic equilibrium of endogenous selenium nanoparticles in selenite-exposed cancer cells: a deep insight into the interaction between endogenous SeNPs and proteins.

    Science.gov (United States)

    Bao, Peng; Chen, Song-Can; Xiao, Ke-Qing

    2015-12-01

    Elemental selenium (Se) was recently found to exist as endogenous nanoparticles (i.e., SeNPs) in selenite-exposed cancer cells. By sequestrating critical intracellular proteins, SeNPs appear capable of giving rise to multiple cytotoxicity mechanisms including inhibition of glycolysis, glycolysis-dependent mitochondrial dysfunction, microtubule depolymerization and inhibition of autophagy. In this work, we reveal a dynamic equilibrium of endogenous SeNP assembly and disassembly in selenite-exposed H157 cells. Endogenous SeNPs are observed both in the cytoplasm and in organelles. There is an increase in endogenous SeNPs between 24 h and 36 h, and a decrease between 36 h and 72 h according to transmission electron microscopy results and UV-Vis measurements. These observations imply that elemental Se in SeNPs could be oxidized back into selenite by scavenging superoxide radicals and ultimately re-reduced into selenide; then the assembly and disassembly of SeNPs proceed simultaneously with the sequestration and release of SeNP high-affinity proteins. There is also a possibility that the reduction of elemental Se to selenide pathway may lie in selenite-exposed cancer cells, which results in the assembly and disassembly of endogenous SeNPs. Genome-wide expression analysis results show that endogenous SeNPs significantly altered the expression of 504 genes, compared to the control. The endogenous SeNPs induced mitochondrial impairment and decreasing of the annexin A2 level can lead to inhibition of cancer cell invasion and migration. This dynamic flux of endogenous SeNPs amplifies their cytotoxic potential in cancer cells, thus provide a starting point to design more efficient intracellular self-assembling systems for overcoming multidrug resistance.

  8. Endogenous contributions to egg protein formation in lesser scaup Aythya affinis

    Science.gov (United States)

    Cutting, Kyle A.; Hobson, Keith A.; Rotella, Jay J.; Warren, Jeffrey M.; Wainwright-de la Cruz, Susan E.; Takekawa, John Y.

    2011-01-01

    Lesser scaup Aythya affinis populations have declined throughout the North American continent for the last three decades. It has been hypothesized that the loss and degradation of staging habitats has resulted in reduced female body condition on the breeding grounds and a concomitant decline in productivity. We explored the importance of body (endogenous) reserves obtained prior to arrival on the breeding ground in egg protein formation in southwestern Montana during 2006–2008 using stable-carbon (δ13C) and nitrogen (δ15N) isotope analyses of scaup egg components, female tissue, and local prey items. From arrival on the breeding grounds through the egg-laying period, δ15N values of scaup red blood cells decreased while δ13C values became less variable; a pattern consistent with endogenous tissues equilibrating with local (freshwater) dietary sources. In 2006 and 2008, isotopic values for egg albumen and yolk protein indicated that most (>90%) protein used to produce these components was obtained on the breeding grounds. However, in 2007, a year with an exceptionally warm and dry spring, endogenous reserves contributed on average 41% of yolk and 29% of albumen. Results from this study suggest that female scaup can meet the protein needs of egg production largely from local dietary food sources. This highlights the importance of providing high-quality breeding habitats for scaup. Whether this pattern holds in areas with similar breeding season lengths but longer migration routes, such as those found in the western boreal forest, should be investigated.

  9. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Science.gov (United States)

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  10. Endogenous protein and enzyme fragments induce immunoglobulin E-independent activation of mast cells via a G protein-coupled receptor, MRGPRX2.

    Science.gov (United States)

    Tatemoto, K; Nozaki, Y; Tsuda, R; Kaneko, S; Tomura, K; Furuno, M; Ogasawara, H; Edamura, K; Takagi, H; Iwamura, H; Noguchi, M; Naito, T

    2018-05-01

    Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through 2 main pathways, immunoglobulin E-dependent and E-independent activation. In the latter pathway, mast cells are activated by a diverse range of basic molecules (collectively known as basic secretagogues) through Mas-related G protein-coupled receptors (MRGPRs). In addition to the known basic secretagogues, here, we discovered several endogenous protein and enzyme fragments (such as chaperonin-10 fragment) that act as bioactive peptides and induce immunoglobulin E-independent mast cell activation via MRGPRX2 (previously known as MrgX2), leading to the degranulation of mast cells. We discuss the possibility that MRGPRX2 responds various as-yet-unidentified endogenous ligands that have specific characteristics, and propose that MRGPRX2 plays an important role in regulating inflammatory responses to endogenous harmful stimuli, such as protein breakdown products released from damaged or dying cells. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  11. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 (China); State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Zhang, Huaidong [CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Gong, Rui, E-mail: gongr@wh.iov.cn [CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 (China); State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China)

    2015-05-08

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.

  12. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  13. Endogenous protein "barcode" for data validation and normalization in quantitative MS analysis.

    Science.gov (United States)

    Lee, Wooram; Lazar, Iulia M

    2014-07-01

    Quantitative proteomic experiments with mass spectrometry detection are typically conducted by using stable isotope labeling and label-free quantitation approaches. Proteins with housekeeping functions and stable expression level such actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase are frequently used as endogenous controls. Recent studies have shown that the expression level of such common housekeeping proteins is, in fact, dependent on various factors such as cell type, cell cycle, or disease status and can change in response to a biochemical stimulation. The interference of such phenomena can, therefore, substantially compromise their use for data validation, alter the interpretation of results, and lead to erroneous conclusions. In this work, we advance the concept of a protein "barcode" for data normalization and validation in quantitative proteomic experiments. The barcode comprises a novel set of proteins that was generated from cell cycle experiments performed with MCF7, an estrogen receptor positive breast cancer cell line, and MCF10A, a nontumorigenic immortalized breast cell line. The protein set was selected from a list of ~3700 proteins identified in different cellular subfractions and cell cycle stages of MCF7/MCF10A cells, based on the stability of spectral count data generated with an LTQ ion trap mass spectrometer. A total of 11 proteins qualified as endogenous standards for the nuclear and 62 for the cytoplasmic barcode, respectively. The validation of the protein sets was performed with a complementary SKBR3/Her2+ cell line.

  14. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu–Gli protein complexes

    OpenAIRE

    Tukachinsky, Hanna; Lopez, Lyle V.; Salic, Adrian

    2010-01-01

    In vertebrates, Hedgehog (Hh) signaling initiated in primary cilia activates the membrane protein Smoothened (Smo) and leads to activation of Gli proteins, the transcriptional effectors of the pathway. In the absence of signaling, Gli proteins are inhibited by the cytoplasmic protein Suppressor of Fused (SuFu). It is unclear how Hh activates Gli and whether it directly regulates SuFu. We find that Hh stimulation quickly recruits endogenous SuFu–Gli complexes to cilia, suggesting a model in wh...

  15. CRISPR/Cas9-Mediated Fluorescent Tagging of Endogenous Proteins in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Sharma, Arun; Toepfer, Christopher N; Ward, Tarsha; Wasson, Lauren; Agarwal, Radhika; Conner, David A; Hu, Johnny H; Seidman, Christine E

    2018-01-24

    Human induced pluripotent stem cells (hiPSCs) can be used to mass produce surrogates of human tissues, enabling new advances in drug screening, disease modeling, and cell therapy. Recent developments in clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing technology use homology-directed repair (HDR) to efficiently generate custom hiPSC lines harboring a variety of genomic insertions and deletions. Thus, hiPSCs that encode an endogenous protein fused to a fluorescent reporter protein can be rapidly created by employing CRISPR/Cas9 genome editing, enhancing HDR efficiency and optimizing homology arm length. These fluorescently tagged hiPSCs can be used to visualize protein function and dynamics in real time as cells proliferate and differentiate. Given that nearly any intracellular protein can be fluorescently tagged, this system serves as a powerful tool to facilitate new discoveries across many biological disciplines. In this unit, we present protocols for the design, generation, and monoclonal expansion of genetically customized hiPSCs encoding fluorescently tagged endogenous proteins. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  16. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain*

    Science.gov (United States)

    Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Peter M.

    2010-01-01

    The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were

  17. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA.

    Science.gov (United States)

    Harata, N Charles

    2014-01-01

    An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. We evaluated the literature regarding the subcellular localization of torsinA. Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. As patients' cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins.

  18. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein.

    Directory of Open Access Journals (Sweden)

    Christian Much

    2016-06-01

    Full Text Available Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.

  19. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein.

    Science.gov (United States)

    Much, Christian; Auchynnikava, Tania; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O'Carroll, Dónal

    2016-06-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.

  20. Acylation of cellular proteins with endogenously synthesized fatty acids

    International Nuclear Information System (INIS)

    Towler, D.; Glaser, L.

    1986-01-01

    A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [ 3 H]acetate, a general precursor of all fatty acids, using BC 3 H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [ 3 H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage

  1. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    Science.gov (United States)

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Production of endogenous pyrogen.

    Science.gov (United States)

    Dinarello, C A

    1979-01-01

    The production and release of endogenous pyrogen by the host is the first step in the pathogenesis of fever. Endogenous pyrogen is a low-molecular-weight protein released from phagocytic leukocytes in response to several substances of diverse nature. Some of these agents stimulate production of endogenous pyrogen because they are toxic; others act as antigens and interact with either antibody or sensitized lymphocytes in order to induce its production. Some tumors of macrophage origin produce the molecule spontaneously. Whatever the mechanism involved, endogenous pyrogen is synthesized following transcription of new DNA and translation of mRNA into new protein. Once synthesis is completed, the molecule is released without significant intracellular storage. Recent evidence suggests that following release, molecular aggregates form which are biologically active. In its monomer form, endogenous pyrogen is a potent fever-producing substance and mediates fever by its action on the thermoregulatory center.

  3. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA

    Directory of Open Access Journals (Sweden)

    N. Charles Harata

    2014-09-01

    Full Text Available Background: An in‐frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE‐torsinA results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown.Methods: We evaluated the literature regarding the subcellular localization of torsinA.Results: Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild‐type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A into host cells and overexpress the protein therein. In both neurons and non‐neuronal cells, exogenous wild‐type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE‐torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate.Discussion: As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non‐overexpressed vs. exogenously introduced (overexpressed proteins.

  4. The first sequenced carnivore genome shows complex host-endogenous retrovirus relationships.

    Directory of Open Access Journals (Sweden)

    Álvaro Martínez Barrio

    Full Text Available Host-retrovirus interactions influence the genomic landscape and have contributed substantially to mammalian genome evolution. To gain further insights, we analyzed a female boxer (Canis familiaris genome for complexity and integration pattern of canine endogenous retroviruses (CfERV. Intriguingly, the first such in-depth analysis of a carnivore species identified 407 CfERV proviruses that represent only 0.15% of the dog genome. In comparison, the same detection criteria identified about six times more HERV proviruses in the human genome that has been estimated to contain a total of 8% retroviral DNA including solitary LTRs. These observed differences in man and dog are likely due to different mechanisms to purge, restrict and protect their genomes against retroviruses. A novel group of gammaretrovirus-like CfERV with high similarity to HERV-Fc1 was found to have potential for active retrotransposition and possibly lateral transmissions between dog and human as a result of close interactions during at least 10.000 years. The CfERV integration landscape showed a non-uniform intra- and inter-chromosomal distribution. Like in other species, different densities of ERVs were observed. Some chromosomal regions were essentially devoid of CfERVs whereas other regions had large numbers of integrations in agreement with distinct selective pressures at different loci. Most CfERVs were integrated in antisense orientation within 100 kb from annotated protein-coding genes. This integration pattern provides evidence for selection against CfERVs in sense orientation relative to chromosomal genes. In conclusion, this ERV analysis of the first carnivorous species supports the notion that different mammals interact distinctively with endogenous retroviruses and suggests that retroviral lateral transmissions between dog and human may have occurred.

  5. Anti-protein C antibodies are associated with resistance to endogenous protein C activation and a severe thrombotic phenotype in antiphospholipid syndrome.

    Science.gov (United States)

    Arachchillage, D R J; Efthymiou, M; Mackie, I J; Lawrie, A S; Machin, S J; Cohen, H

    2014-11-01

    Antiphospholipid antibodies may interfere with the anticoagulant activity of activated protein C (APC) to induce acquired APC resistance (APCr). To investigate the frequency and characteristics of APCr by using recombinant human APC (rhAPC) and endogenous protein C activation in antiphospholipid syndrome (APS). APCr was assessed in APS and non-APS venous thromboembolism (VTE) patients on warfarin and normal controls with rhAPC or Protac by thrombin generation. IgG anti-protein C and anti-protein S antibodies and avidity were assessed by ELISA. APS patients showed greater resistance to both rhAPC and Protac than non-APS patients and normal controls (median normalized endogenous thrombin potential inhibition): APS patients with rhAPC, 81.3% (95% confidence interval [CI] 75.2-88.3%; non-APS patients with rhAPC, 97.7% (95% CI 93.6-101.8%; APS patients with Protac, 66.0% (95% CI 59.5-72.6%); and non-APS patients with Protac, 80.7 (95% CI 74.2-87.2%). APS patients also had a higher frequency and higher levels of anti-protein C antibodies, with 60% (15/25) high-avidity antibodies. High-avidity anti-protein C antibodies were associated with greater APCr and with a severe thrombotic phenotype (defined as the development of recurrent VTE while patients were receiving therapeutic anticoagulation or both venous and arterial thrombosis). Twelve of 15 (80%) patients with high-avidity anti-protein C antibodies were classified as APS category I. Thrombotic APS patients showed greater APCr to both rhAPC and activation of endogenous protein C by Protac. High-avidity anti-protein C antibodies, associated with greater APCr, may provide a marker for a severe thrombotic phenotype in APS. However, in patients with category I APS, it remains to be established whether anti-protein C or anti-β2 -glycoprotein I antibodies are responsible for APCr. © 2014 International Society on Thrombosis and Haemostasis.

  6. Quantification of endogenous and exogenous protein expressions of Na,K-ATPase with super-resolution PALM/STORM imaging.

    Science.gov (United States)

    Bernhem, Kristoffer; Blom, Hans; Brismar, Hjalmar

    2018-01-01

    Transient transfection of fluorescent fusion proteins is a key enabling technology in fluorescent microscopy to spatio-temporally map cellular protein distributions. Transient transfection of proteins may however bypass normal regulation of expression, leading to overexpression artefacts like misallocations and excess amounts. In this study we investigate the use of STORM and PALM microscopy to quantitatively monitor endogenous and exogenous protein expression. Through incorporation of an N-terminal hemagglutinin epitope to a mMaple3 fused Na,K-ATPase (α1 isoform), we analyze the spatial and quantitative changes of plasma membrane Na,K-ATPase localization during competitive transient expression. Quantification of plasma membrane protein density revealed a time dependent increase of Na,K-ATPase, but no increase in size of protein clusters. Results show that after 41h transfection, the total plasma membrane density of Na,K-ATPase increased by 63% while the endogenous contribution was reduced by 16%.

  7. Novel Endogenous, Insulin-Stimulated Akt2 Protein Interaction Partners in L6 Myoblasts.

    Directory of Open Access Journals (Sweden)

    Michael Caruso

    Full Text Available Insulin resistance and Type 2 diabetes are marked by an aberrant response in the insulin signaling network. The phosphoinositide-dependent serine/threonine kinase, Akt2, plays a key role in insulin signaling and glucose uptake, most notably within skeletal muscle. Protein-protein interaction regulates the functional consequence of Akt2 and in turn, Akt2's role in glucose uptake. However, only few insulin-responsive Akt2 interaction partners have been identified in skeletal muscle cells. In the present work, rat L6 myoblasts, a widely used insulin sensitive skeletal muscle cell line, were used to examine endogenous, insulin-stimulated Akt2 protein interaction partners. Akt2 co-immunoprecipitation was coupled with 1D-SDS-PAGE and fractions were analyzed by HPLC-ESI-MS/MS to reveal Akt2 protein-protein interactions. The pull-down assay displayed specificity for the Akt2 isoform; Akt1 and Akt3 unique peptides were not detected. A total of 49 were detected with a significantly increased (47 or decreased (2 association with Akt2 following insulin administration (n = 4; p<0.05. Multiple pathways were identified for the novel Akt2 interaction partners, such as the EIF2 and ubiquitination pathways. These data suggest that multiple new endogenous proteins may associate with Akt2 under basal as well as insulin-stimulated conditions, providing further insight into the insulin signaling network. Data are available via ProteomeXchange with identifier PXD002557.

  8. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes.

    Science.gov (United States)

    Tukachinsky, Hanna; Lopez, Lyle V; Salic, Adrian

    2010-10-18

    In vertebrates, Hedgehog (Hh) signaling initiated in primary cilia activates the membrane protein Smoothened (Smo) and leads to activation of Gli proteins, the transcriptional effectors of the pathway. In the absence of signaling, Gli proteins are inhibited by the cytoplasmic protein Suppressor of Fused (SuFu). It is unclear how Hh activates Gli and whether it directly regulates SuFu. We find that Hh stimulation quickly recruits endogenous SuFu-Gli complexes to cilia, suggesting a model in which Smo activates Gli by relieving inhibition by SuFu. In support of this model, we find that Hh causes rapid dissociation of the SuFu-Gli complex, thus allowing Gli to enter the nucleus and activate transcription. Activation of protein kinase A (PKA), an inhibitor of Hh signaling, blocks ciliary localization of SuFu-Gli complexes, which in turn prevents their dissociation by signaling. Our results support a simple mechanism in which Hh signals at vertebrate cilia cause dissociation of inactive SuFu-Gli complexes, a process inhibited by PKA.

  9. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu–Gli protein complexes

    Science.gov (United States)

    Tukachinsky, Hanna; Lopez, Lyle V.

    2010-01-01

    In vertebrates, Hedgehog (Hh) signaling initiated in primary cilia activates the membrane protein Smoothened (Smo) and leads to activation of Gli proteins, the transcriptional effectors of the pathway. In the absence of signaling, Gli proteins are inhibited by the cytoplasmic protein Suppressor of Fused (SuFu). It is unclear how Hh activates Gli and whether it directly regulates SuFu. We find that Hh stimulation quickly recruits endogenous SuFu–Gli complexes to cilia, suggesting a model in which Smo activates Gli by relieving inhibition by SuFu. In support of this model, we find that Hh causes rapid dissociation of the SuFu–Gli complex, thus allowing Gli to enter the nucleus and activate transcription. Activation of protein kinase A (PKA), an inhibitor of Hh signaling, blocks ciliary localization of SuFu–Gli complexes, which in turn prevents their dissociation by signaling. Our results support a simple mechanism in which Hh signals at vertebrate cilia cause dissociation of inactive SuFu–Gli complexes, a process inhibited by PKA. PMID:20956384

  10. A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA

    Science.gov (United States)

    Waisfisz, Quinten; de Winter, Johan P.; Kruyt, Frank A. E.; de Groot, Jan; van der Weel, Laura; Dijkmans, Lonneke M.; Zhi, Yu; Arwert, Fré; Scheper, Rik J.; Youssoufian, Hagop; Hoatlin, Maureen E.; Joenje, Hans

    1999-01-01

    Fanconi anemia (FA) is a recessively inherited disease characterized at the cellular level by spontaneous chromosomal instability and specific hypersensitivity to cross-linking agents. FA is genetically heterogeneous, comprising at least eight complementation groups (A-H). We report that the protein encoded by the gene mutated in complementation group G (FANCG) localizes to the cytoplasm and nucleus of the cell and assembles in a molecular complex with the FANCA protein, both in vivo and in vitro. Endogenous FANCA/FANCG complex was detected in both non-FA cells and in FA cells from groups D and E. By contrast, no complex was detected in specific cell lines belonging to groups A and G, whereas reduced levels were found in cells from groups B, C, F, and H. Wild-type levels of FANCA/FANCG complex were restored upon correction of the cellular phenotype by transfection or cell fusion experiments, suggesting that this complex is of functional significance in the FA pathway. These results indicate that the cellular FA phenotype can be connected to three biochemical subtypes based on the levels of FANCA/FANCG complex. Disruption of the complex may provide an experimental strategy for chemosensitization of neoplastic cells. PMID:10468606

  11. Endogenous Natural Complement Inhibitor Regulates Cardiac Development

    DEFF Research Database (Denmark)

    Mortensen, Simon A; Skov, Louise L; Kjaer-Sorensen, Kasper

    2017-01-01

    mechanisms during fetal development and adult homeostasis. In this article, we describe the function of an endogenous complement inhibitor, mannan-binding lectin (MBL)-associated protein (MAp)44, in regulating the composition of a serine protease-pattern recognition receptor complex, MBL-associated serine...... of MAp44 caused impaired cardiogenesis, lowered heart rate, and decreased cardiac output. These defects were associated with aberrant neural crest cell behavior. We found that MAp44 competed with MASP-3 for pattern recognition molecule interaction, and knockdown of endogenous MAp44 expression could...... be rescued by overexpression of wild-type MAp44. Our observations provide evidence that immune molecules are centrally involved in the orchestration of cardiac tissue development....

  12. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl

    Directory of Open Access Journals (Sweden)

    MOHAMED A. BAKHETA

    2014-05-01

    Full Text Available Bakheta MA, Hussein MM. 2014. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl. Nusantara Bioscience 6: 39-44. Pot experiments were carried out during two growth seasons 2010 / 2011 under greenhouse conditions of the National Research Centre, Dokki, Cairo, Egypt to investigate the response of barley plants (Hordium vulgare L grown under salinity stress (2500 or 5000 ppm to spraying with solutions of uniconazole at 150 or 200 ppm. The obtained results showed that irrigation with saline solutions caused increases in the amounts of abscisic acid (ABA, crude protein, total soluble-protein and proline contents. The results showed that spraying barley plants grown under saline solutions with uniconazole increased endogenous hormone contents of ABA, cytokinins, crude protein, total soluble protein and proline but caused decreases in the amounts of endogenous indole acetic acid (IAA and gibberellic acid (GA3. High protection of abscisic acid in treating plants with uniconazole and under salt stress (interaction effect increases proline, proteins and soluble protein which has been proposed to act as compatible solutes that adjust the osmotic potential in the cytoplasm. Thus, these biochemical characters can be used as a metabolic marker in relation to salinity stress.

  13. Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L.

    Science.gov (United States)

    Jang, Soo-Won; Kim, Yoonha; Khan, Abdul Latif; Na, Chae-In; Lee, In-Jung

    2018-01-04

    Silicon (Si) has been known to regulate plant growth; however, the underlying mechanisms of short-term exogenous Si application on the regulation of calcium (Ca) and nitrogen (N), endogenous phytohormones, and expression of essential proteins have been little understood. Exogenous Si application significantly increased Si content as compared to the control. Among Si treatments, 1.0 mM Si application showed increased phosphorus content as compared to other Si treatments (0.5, 2.0, and 4.0 mM). However, Ca accumulation was significantly reduced (1.8- to 2.0-fold) at the third-leaf stage in the control, whereas all Si treatments exhibited a dose-dependent increase in Ca as determined by radioisotope 45 Ca analysis. Similarly, the radioisotope 15 N for nitrogen localization and uptake showed a varying but reduced response (ranging from 1.03-10.8%) to different Si concentrations as compared to 15 N application alone. Physiologically active endogenous gibberellin (GA 1 ) was also significantly higher with exogenous Si (1.0 mM) as compared to GA 20 and the control plants. A similar response was noted for endogenous jasmonic and salicylic acid synthesis in rice plants with Si application. Proteomic analysis revealed the activation of several essential proteins, such as Fe-S precursor protein, putative thioredoxin, Ser/Thr phosphatase, glucose-6-phosphate isomerase (G6P), and importin alpha-1b (Imp3), with Si application. Among the most-expressed proteins, confirmatory gene expression analysis for G6P and Imp3 showed a similar response to those of the Si treatments. In conclusion, the current results suggest that short-term exogenous Si can significantly regulate rice plant physiology by influencing Ca, N, endogenous phytohormones, and proteins, and that 1.0 mM Si application is more beneficial to plants than higher concentrations.

  14. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  15. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Directory of Open Access Journals (Sweden)

    Tin Nguyen

    Full Text Available MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  16. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Science.gov (United States)

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  17. Effect of dietary nutrients on ileal endogenous losses of threonine, cysteine, methionine, lysine, leucine and protein in broiler chicks.

    Science.gov (United States)

    Cerrate, S; Vignale, S K; Ekmay, R; England, J; Coon, C

    2018-04-01

    An isotope dose technique was utilized (i) to determine endogenous amino acid (AA) and protein losses and (ii) to propose adjusted values for AA requirements. The endogenous flow rate was calculated from the pool of enrichment in plasma AA, assuming similitude to enrichment of endogenous AA. In experiment 1, chicks were orally administered D4-lysine at 2% of estimated lysine intake from 16 to 24 days to find the isotopic steady state of the atom percent excess (APE) of lysine for plasma and jejunal and ileal digesta. The APE of D4-lysine in plasma, jejunal digesta and ileal digesta reached the isotopic steady state at 5.5, 3.4 and 2.0 days, respectively, by using the broken-line model. It was assumed that the isotopic steady state at 5 days identified for D4-lysine is also representative for the 15N-labeled AA. In experiment 2, chicks were fed diets from 1 to 21 days with increasing levels of fat (6%, 8%, 12%, 13% extract ether), protein (26%, 28.5%, 31% CP) or fiber (14%, 16%, 18% NDF) by adding poultry fat, soybean meal, blended animal protein or barley. Chicks were orally administered 15N-threonine, 15N-cysteine, 15N-methionine, 15N-lysine and 15N-leucine at 2% of estimated daily intake for 5 days from 17 to 21 days of age. Dietary nutrients influenced endogenous losses (EL), where dietary fat stimulated EL of lysine (P=0.06), leucine and protein (P=0.07); dietary protein enhanced EL of leucine and protein; and finally the dietary fiber increased EL of leucine. Dietary nutrients also affected apparent ileal digestibility (AID). Dietary fat increased AID of cysteine but decreased AID of lysine. Dietary protein reduced AID of protein, threonine, lysine and leucine, and similarly dietary fiber decreased AID of protein, threonine, methionine, lysine and leucine. In contrast, dietary fat or protein did not affect real ileal digestibility (RID) of protein and AA except threonine and leucine. The dietary fiber reduced the RID of protein, threonine and leucine. This

  18. A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum.

    Science.gov (United States)

    Phillips, Jonathan E; Gomer, Richard H

    2012-07-03

    Chemorepellants may play multiple roles in physiological and pathological processes. However, few endogenous chemorepellants have been identified, and how they function is unclear. We found that the autocrine signal AprA, which is produced by growing Dictyostelium discoideum cells and inhibits their proliferation, also functions as a chemorepellant. Wild-type cells at the edge of a colony show directed movement outward from the colony, whereas cells lacking AprA do not. Cells show directed movement away from a source of recombinant AprA and dialyzed conditioned media from wild-type cells, but not dialyzed conditioned media from aprA(-) cells. The secreted protein CfaD, the G protein Gα8, and the kinase QkgA are necessary for the chemorepellant activity of AprA as well as its proliferation-inhibiting activity, whereas the putative transcription factor BzpN is dispensable for the chemorepellant activity of AprA but necessary for inhibition of proliferation. Phospholipase C and PI3 kinases 1 and 2, which are necessary for the activity of at least one other chemorepellant in Dictyostelium, are not necessary for recombinant AprA chemorepellant activity. Starved cells are not repelled by recombinant AprA, suggesting that aggregation-phase cells are not sensitive to the chemorepellant effect. Cell tracking indicates that AprA affects the directional bias of cell movement, but not cell velocity or the persistence of cell movement. Together, our data indicate that the endogenous signal AprA acts as an autocrine chemorepellant for Dictyostelium cells.

  19. Infectious Entry Pathway Mediated by the Human Endogenous Retrovirus K Envelope Protein.

    Science.gov (United States)

    Robinson, Lindsey R; Whelan, Sean P J

    2016-01-20

    Endogenous retroviruses (ERVs), the majority of which exist as degraded remnants of ancient viruses, comprise approximately 8% of the human genome. The youngest human ERVs (HERVs) belong to the HERV-K(HML-2) subgroup and were endogenized within the past 1 million years. The viral envelope protein (ENV) facilitates the earliest events of endogenization (cellular attachment and entry), and here, we characterize the requirements for HERV-K ENV to mediate infectious cell entry. Cell-cell fusion assays indicate that a minimum of two events are required for fusion, proteolytic processing by furin-like proteases and exposure to acidic pH. We generated an infectious autonomously replicating recombinant vesicular stomatitis virus (VSV) in which the glycoprotein was replaced by HERV-K ENV. HERV-K ENV imparts an endocytic entry pathway that requires dynamin-mediated membrane scission and endosomal acidification but is distinct from clathrin-dependent or macropinocytic uptake pathways. The lack of impediments to the replication of the VSV core in eukaryotic cells allowed us to broadly survey the HERV-K ENV-dictated tropism. Unlike extant betaretroviral envelopes, which impart a narrow species tropism, we found that HERV-K ENV mediates broad tropism encompassing cells from multiple mammalian and nonmammalian species. We conclude that HERV-K ENV dictates an evolutionarily conserved entry pathway and that the restriction of HERV-K to primate genomes reflects downstream stages of the viral replication cycle. Approximately 8% of the human genome is of retroviral origin. While many of those viral genomes have become inactivated, some copies of the most recently endogenized human retrovirus, HERV-K, can encode individual functional proteins. Here, we characterize the envelope protein (ENV) of the virus to define how it mediates infection of cells. We demonstrate that HERV-K ENV undergoes a proteolytic processing step and triggers membrane fusion in response to acidic pH--a strategy

  20. High-resolution crystal structure of Streptococcus pyogenes β-NAD+ glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface

    International Nuclear Information System (INIS)

    Yoon, Ji Young; An, Doo Ri; Yoon, Hye-Jin; Kim, Hyoun Sook; Lee, Sang Jae; Im, Ha Na; Jang, Jun Young; Suh, Se Won

    2013-01-01

    The crystal structure of the complex between the C-terminal domain of Streptococcus pyogenes β-NAD + glycohydrolase and an endogenous inhibitor for SPN was determined at 1.70 Å. It reveals that the interface between the two proteins is highly rich in water molecules. One of the virulence factors produced by Streptococcus pyogenes is β-NAD + glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38–451) and the full-length IFS (residues 1–161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPN ct –IFS complex, which consists of the SPN C-terminal domain (SPN ct ; residues 193–451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPN ct and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope

  1. Endogenous antipyretics.

    Science.gov (United States)

    Roth, Joachim

    2006-09-01

    The febrile increase of body temperature is regarded as a component of the complex host response to infection or inflammation that accompanies the activation of the immune system. Late phases of fever appear mediated by pro-inflammatory cytokines called endogenous pyrogens. The rise of body temperature is beneficial because it accelerates several components of the activated immune system. To prevent an excessive and dangerous rise of body temperature the febrile response is controlled, limited in strength and duration, and sometimes even prevented by the actions of endogenous antipyretic substances liberated systemically or within the brain during fever. In most cases the antipyretic effects are achieved by an inhibitory influence on the formation or action of endogenous pyrogens, or by effects on neuronal thermoregulatory circuits that are activated during fever. Endogenous antipyretic substances include steroid hormones, neuropeptides, cytokines and other molecules. It is the purpose of this review to consider the current state in the research on endogenous antipyretic systems.

  2. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  3. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  4. The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells

    International Nuclear Information System (INIS)

    Rinaldi, Anne-Sophie; Freund, Guillaume; Desplancq, Dominique; Sibler, Annie-Paule; Baltzinger, Mireille; Rochel, Natacha; Mély, Yves; Didier, Pascal; Weiss, Etienne

    2013-01-01

    Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and the ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM–FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells. Highlights: ► Endogenous GK in living cells was targeted with pairs of fluorescently-tagged scFvs. ► Tri-molecular complexes containing two scFvs and one molecule GK were formed. ► GK was detected using fluorescence lifetime-based FRET imaging. ► GK is monomeric and homogeneously distributed in several cancer cell lines. ► This technique may have many applications in live-cell imaging of endogenous proteins

  5. The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Anne-Sophie; Freund, Guillaume; Desplancq, Dominique; Sibler, Annie-Paule; Baltzinger, Mireille [Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch (France); Rochel, Natacha [Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/INSERM/Université de Strasbourg, rue Laurent Fries, 67404 Illkirch (France); Mély, Yves; Didier, Pascal [Faculté de Pharmacie, UMR 7213, CNRS/Université de Strasbourg, route du Rhin, 67401 Illkirch (France); Weiss, Etienne, E-mail: eweiss@unistra.fr [Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch (France)

    2013-04-01

    Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and the ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM–FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells. Highlights: ► Endogenous GK in living cells was targeted with pairs of fluorescently-tagged scFvs. ► Tri-molecular complexes containing two scFvs and one molecule GK were formed. ► GK was detected using fluorescence lifetime-based FRET imaging. ► GK is monomeric and homogeneously distributed in several cancer cell lines. ► This technique may have many applications in live-cell imaging of endogenous proteins.

  6. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    Science.gov (United States)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  7. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues

    Directory of Open Access Journals (Sweden)

    Sarah A. Hibbert

    2015-08-01

    Full Text Available Excessive ultraviolet radiation (UVR exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths here we hypothesised that UV chromophore (Cys, Trp and Tyr content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm2 of solar UVR (95% UVA, 5% UVB. We show that: i purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR-induced aggregation and/or decomposition and ii exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR

  8. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues.

    Science.gov (United States)

    Hibbert, Sarah A; Watson, Rachel E B; Gibbs, Neil K; Costello, Patrick; Baldock, Clair; Weiss, Anthony S; Griffiths, Christopher E M; Sherratt, Michael J

    2015-08-01

    Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm(2)) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure

  9. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  10. 3D complex: a structural classification of protein complexes.

    Directory of Open Access Journals (Sweden)

    Emmanuel D Levy

    2006-11-01

    Full Text Available Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.

  11. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep

    Science.gov (United States)

    Lee, Chang H.; Rodeo, Scott A.; Fortier, Lisa Ann; Lu, Chuanyong; Erisken, Cevat

    2015-01-01

    Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor–β3 (TGFβ3) from a three-dimensional (3D)–printed biomaterial, enabling functional knee recovery. Sequentially applied CTGF and TGFβ3 were necessary and sufficient to propel mesenchymal stem/progenitor cells, as a heterogeneous population or as single-cell progenies, into fibrochondrocytes that concurrently synthesized procollagens I and IIα. When released from microchannels of 3D–printed, human meniscus scaffolds, CTGF and TGFβ3 induced endogenous stem/progenitor cells to differentiate and synthesize zone-specific type I and II collagens. We then replaced sheep meniscus with anatomically correct, 3D–printed scaffolds that incorporated spatially delivered CTGF and TGFβ3. Endogenous cells regenerated the meniscus with zone-specific matrix phenotypes: primarily type I collagen in the outer zone, and type II collagen in the inner zone, reminiscent of the native meniscus. Spatiotemporally delivered CTGF and TGFβ3 also restored inhomogeneous mechanical properties in the regenerated sheep meniscus. Survival and directed differentiation of endogenous cells in a tissue defect may have implications in the regeneration of complex (heterogeneous) tissues and organs. PMID:25504882

  12. High-resolution crystal structure of Streptococcus pyogenes β-NAD{sup +} glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Young; An, Doo Ri; Yoon, Hye-Jin [Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Hyoun Sook [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Sang Jae [Seoul National University, Seoul 151-742 (Korea, Republic of); Im, Ha Na; Jang, Jun Young [Seoul National University, Seoul 151-747 (Korea, Republic of); Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-747 (Korea, Republic of)

    2013-11-01

    The crystal structure of the complex between the C-terminal domain of Streptococcus pyogenes β-NAD{sup +} glycohydrolase and an endogenous inhibitor for SPN was determined at 1.70 Å. It reveals that the interface between the two proteins is highly rich in water molecules. One of the virulence factors produced by Streptococcus pyogenes is β-NAD{sup +} glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38–451) and the full-length IFS (residues 1–161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPN{sub ct}–IFS complex, which consists of the SPN C-terminal domain (SPN{sub ct}; residues 193–451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPN{sub ct} and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.

  13. Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription*

    Science.gov (United States)

    E, Guangqi; Cao, Ying; Bhattacharya, Santanu; Dutta, Shamit; Wang, Enfeng; Mukhopadhyay, Debabrata

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is one of the most important factors controlling angiogenesis. Although the functions of exogenous VEGF-A have been widely studied, the roles of endogenous VEGF-A remain unclear. Here we focused on the mechanistic functions of endogenous VEGF-A in endothelial cells. We found that it is complexed with VEGF receptor 2 (VEGFR-2) and maintains a basal expression level for VEGFR-2 and its downstream signaling activation. Endogenous VEGF-A also controls expression of key endothelial specific genes including VEGFR-2, Tie-2, and vascular endothelial cadherin. Of importance, endogenous VEGF-A differs from exogenous VEGF-A by regulating VEGFR-2 transcription through mediation of FoxC2 binding to the FOX:ETS motif, and the complex formed by endogenous VEGF-A with VEGFR-2 is localized within the EEA1 (early endosome antigen 1) endosomal compartment. Taken together, our results emphasize the importance of endogenous VEGF-A in endothelial cells by regulating key vascular proteins and maintaining the endothelial homeostasis. PMID:22167188

  14. Novel endogenous angiogenesis inhibitors and their therapeutic potential.

    Science.gov (United States)

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-10-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.

  15. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element

    Directory of Open Access Journals (Sweden)

    Dudley Jaquelin P

    2009-02-01

    Full Text Available Abstract Background Mouse mammary tumor virus (MMTV encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV, human T-cell leukemia virus (HTLV, and human endogenous retrovirus type K (HERV-K. In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE. Results MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export. Conclusion These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.

  16. Fanconi anemia protein, FANCA, associates with BRG1, a component of the human SWI/SNF complex.

    Science.gov (United States)

    Otsuki, T; Furukawa, Y; Ikeda, K; Endo, H; Yamashita, T; Shinohara, A; Iwamatsu, A; Ozawa, K; Liu, J M

    2001-11-01

    Fanconi anemia (FA) is a genetic disorder that predisposes to hematopoietic failure, birth defects and cancer. We identified an interaction between the FA protein, FANCA and brm-related gene 1 (BRG1) product. BRG1 is a subunit of the SWI/SNF complex, which remodels chromatin structure through a DNA-dependent ATPase activity. FANCA was demonstrated to associate with the endogenous SWI/SNF complex. We also found a significant increase in the molecular chaperone, glucose-regulated protein 94 (GRP94) among BRG1-associated factors isolated from a FANCA-mutant cell line, which was not seen in either a normal control cell line or the mutant line complemented by wild-type FANCA. Despite this specific difference, FANCA did not appear to be absolutely required for in vitro chromatin remodeling. Finally, we demonstrated co-localization in the nucleus between transfected FANCA and BRG1. The physiological action of FANCA on the SWI/SNF complex remains to be clarified, but our work suggests that FANCA may recruit the SWI/SNF complex to target genes, thereby enabling coupled nuclear functions such as transcription and DNA repair.

  17. FOLATE CYCLE GENE POLYMORPHISM AND ENDOGENOUS PEPTIDES IN CHILDREN WITH COW’S MILK PROTEIN ALLERGY

    Directory of Open Access Journals (Sweden)

    T. A. Shumatova

    2016-01-01

    Full Text Available Folate cycle gene polymorphisms and the levels of endogenous antimicrobial peptides and proteins in the blood and coprofiltrates were studied in 45 children aged 3 to 12 months with cow’s milk protein allergy. The polymorphic variants of the MTHFR, MTRR, and MTR genes were shown to be considered as a risk factor for the development of allergy. There was a significant increase in the levels of zonulin, β-defensin 2, transthyretin, and eosinophil cationic protein in the coprofiltrates and in those of eotaxin, fatty acidbinding proteins, and membrane permeability-increasing protein in the serum (p<0.05. The finding can improve the diagnosis of the disease for a predictive purpose for the evaluation of the efficiency of performed therapy.

  18. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    Science.gov (United States)

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to

  19. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  20. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  1. Dinitrosyl iron complexes with thiol-containing ligands as a "working form" of endogenous nitric oxide.

    Science.gov (United States)

    Vanin, Anatoly F

    2016-04-01

    The material presented herein is an overview of the results obtained by our research team during the many years' study of biological activities and occurrence of dinitrosyl iron complexes (DNIC) with thiol-containing ligands in human and animal organisms. With regard to their dose dependence and vast diversity of biological activities, DNIC are similar to the system of endogenous NO, one of the most universal regulators of biological processes. The role of biologically active components in DNIC is played by their iron-dinitrosyl fragments, [Fe(NO)2], endowed with the ability to generate neutral NO molecules and nitrosonium ions (NO(+)). Their release is effected by heme-and thiol-containing proteins, which fulfill the function of biological targets and acceptors of NO and NO(+). Beneficial regulatory effects of DNIC on physiological and metabolic processes are numerous and diverse and include, among other things, lowering of arterial pressure and accelerated healing of skin wounds. In the course of fast decomposition of their Fe(NO)2 fragments (e.g., in the presence of iron chelators), DNIC produce adverse (cytotoxic) effects, which can best be exemplified by their ability to suppress the development of experimental endometriosis in animals. In animal tissues, DNIC with thiol-containing ligands are predominantly represented by the binuclear form, which, contrary to mononuclear DNIC detectable by the 2.03 signal, is EPR-silent. The ample body of evidence on biological activities and occurrence of DNIC gained so far clearly demonstrates that in human and animal organisms DNIC with thiol-containing ligands represent a "working form" of the system of endogenous NO responsible for its accumulation and stabilization in animal tissues as well as its further transfer to its biological targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Rapid and reversible epigenome editing by endogenous chromatin regulators.

    Science.gov (United States)

    Braun, Simon M G; Kirkland, Jacob G; Chory, Emma J; Husmann, Dylan; Calarco, Joseph P; Crabtree, Gerald R

    2017-09-15

    Understanding the causal link between epigenetic marks and gene regulation remains a central question in chromatin biology. To edit the epigenome we developed the FIRE-Cas9 system for rapid and reversible recruitment of endogenous chromatin regulators to specific genomic loci. We enhanced the dCas9-MS2 anchor for genome targeting with Fkbp/Frb dimerizing fusion proteins to allow chemical-induced proximity of a desired chromatin regulator. We find that mSWI/SNF (BAF) complex recruitment is sufficient to oppose Polycomb within minutes, leading to activation of bivalent gene transcription in mouse embryonic stem cells. Furthermore, Hp1/Suv39h1 heterochromatin complex recruitment to active promoters deposits H3K9me3 domains, resulting in gene silencing that can be reversed upon washout of the chemical dimerizer. This inducible recruitment strategy provides precise kinetic information to model epigenetic memory and plasticity. It is broadly applicable to mechanistic studies of chromatin in mammalian cells and is particularly suited to the analysis of endogenous multi-subunit chromatin regulator complexes.Understanding the link between epigenetic marks and gene regulation requires the development of new tools to directly manipulate chromatin. Here the authors demonstrate a Cas9-based system to recruit chromatin remodelers to loci of interest, allowing rapid, reversible manipulation of epigenetic states.

  3. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  4. Hamster endogenous retrovirus (HaER) - distinct properties of structural proteins and DNA polymerase

    International Nuclear Information System (INIS)

    Goldschmied-Reouven, A.; Yaniv, A.

    1983-01-01

    The structural proteins as well as some features of the RNA-dependent DNA polymerase of the hamster endogenous retrovirus (HaER) were examined. The polypeptide pattern of this virus is substantially different from that of other known retroviruses in containing major polypeptides with molecular weights of 68000, 59000, 27000, 24000 daltons. Double antibody competitive radioimmunoassays showed that the HaER particles do not share any detectable antigenic relatedness with the murine viruses' p30, but manifest a considerable relatedness with the feline leukemia virus p27 and a slight cross-reactivity with the rat virus major protein. The RNA-dependent DNA polymerase of HaER virus has a molecular size of approximately 73000 daltons and in contrast to other mammalian retroviruses shows no significant preference for Mn 2+ over Mg 2+ . Apart from the lack of antigenic relatedness between the HaER virus proteins and the p30 protein of murine viruses, there is also no antigenic relatedness between HaER and murine viruses insofar as their DNA polymerase is concerned. (Author)

  5. Proteomics investigation of endogenous S-nitrosylation in Arabidopsis

    International Nuclear Information System (INIS)

    Fares, Abasse; Rossignol, Michel; Peltier, Jean-Benoît

    2011-01-01

    Highlights: ► Identification and quantification of nitrosothiols. ► A first dataset of endogenously nitrosylated cysteines in Arabidopsis cells. ► Nitrosothiols display apolar motifs not located in close vicinity of cysteines. ► Salt stress alters the endogenous nitrosylation of specific cysteines in Arabidopsis. -- Abstract: S-Nitrosylation emerges as an important protein modification in many processes. However, most data were obtained at the protein level after addition of a NO donor, particularly in plants where information about the cysteines nitrosylated in these proteins is scarce. An adapted work-flow, combining the classical biotin switch method and labeling with isotope-coded affinity tags (ICAT), is proposed. Without addition of NO donor, a total of 53 endogenous nitrosocysteines was identified in Arabidopsis cells, in proteins belonging to all cell territories, including membranes, and covering a large panel of functions. This first repertoire of nitrosothiols in plants enabled also preliminary structural description. Three apolar motifs, not located in close vicinity of cysteines and accounting for half the dataset, were detected and are proposed to complement nitrosylation prediction algorithms, poorly trained with plant data to date. Analysis of changes induced by a brief salt stress showed that NaCl modified the nitrosylation level of a small proportion of endogenously nitrosylated proteins and did not concern all nitrosothiols in these proteins. The possible role of some NO targets in the response to salt stress was discussed.

  6. Expression and function of endogenous retroviruses in the placenta.

    Science.gov (United States)

    Denner, Joachim

    2016-01-01

    Although the expression of endogenous retroviruses in the placenta of numerous species was observed a long time ago, their physiological function during gestation was demonstrated only very recently. Expression of retroviral envelope proteins, also called syncytins, in the placenta allows generation of the multinuclear syncytiotrophoblast as an outer cellular layer of the placenta by fusion of the trophoblast cells. This fusion process is crucial for the development of the placenta and for successful pregnancy. It is still unclear whether the immunosuppressive properties of the transmembrane envelope protein of the endogenous retroviruses expressed in the placenta contribute to immunosuppression to prevent the rejection of the semiallotransplant embryo. The presence of placenta cells expressing retroviral envelope proteins surrounded by immune cells deep in the maternal tissue supports an immunosuppressive function. It is important to emphasize that during evolution different species utilized ('enslaved') different endogenous retroviruses and that two or more endogenous retroviruses are involved in placentogenesis in each species. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  7. Protein Prenylation Constitutes an Endogenous Brake on Axonal Growth

    Directory of Open Access Journals (Sweden)

    Hai Li

    2016-07-01

    Full Text Available Suboptimal axonal regeneration contributes to the consequences of nervous system trauma and neurodegenerative disease, but the intrinsic mechanisms that regulate axon growth remain unclear. We screened 50,400 small molecules for their ability to promote axon outgrowth on inhibitory substrata. The most potent hits were the statins, which stimulated growth of all mouse- and human-patient-derived neurons tested, both in vitro and in vivo, as did combined inhibition of the protein prenylation enzymes farnesyltransferase (PFT and geranylgeranyl transferase I (PGGT-1. Compensatory sprouting of motor axons may delay clinical onset of amyotrophic lateral sclerosis (ALS. Accordingly, elevated levels of PGGT1B, which would be predicted to reduce sprouting, were found in motor neurons of early- versus late-onset ALS patients postmortem. The mevalonate-prenylation pathway therefore constitutes an endogenous brake on axonal growth, and its inhibition provides a potential therapeutic approach to accelerate neuronal regeneration in humans.

  8. Dissociation kinetics of open-chain and macrocyclic gadolinium(III)-aminopolycarboxylate complexes related to magnetic resonance imaging: catalytic effect of endogenous ligands.

    Science.gov (United States)

    Baranyai, Zsolt; Pálinkás, Zoltán; Uggeri, Fulvio; Maiocchi, Alessandro; Aime, Silvio; Brücher, Ernő

    2012-12-14

    The kinetics of the metal exchange reactions between open-chain Gd(DTPA)(2-) and Gd(DTPA-BMA), macrocyclic Gd(DOTA)(-) and Gd(HP-DO3A) complexes, and Cu(2+)  ions were investigated in the presence of endogenous citrate, phosphate, carbonate and histidinate ligands in the pH range 6-8 in NaCl (0.15 M) at 25 °C. The rates of the exchange reactions of Gd(DTPA)(2-) and Gd(DTPA-BMA) are independent of the Cu(2+) concentration in the presence of citrate and the reactions occur via the dissociation of Gd(3+)  complexes catalyzed by the citrate ions. The HCO(3)(-)/CO(3)(2-) and H(2)PO(4)(-) ions also catalyze the dissociation of complexes. The rates of the dissociation of Gd(DTPA-BMA), catalyzed by the endogenous ligands, are about two orders of magnitude higher than those of the Gd(DTPA)(2-). In fact near to physiological conditions the bicarbonate and carbonate ions show the largest catalytic effect, that significantly increase the dissociation rate of Gd(DTPA-BMA) and make the higher pH values (when the carbonate ion concentration is higher) a risk-factor for the dissociation of complexes in body fluids. The exchange reactions of Gd(DOTA)(-) and Gd(HP-DO3A) with Cu(2+) occur through the proton assisted dissociation of complexes in the pH range 3.5-5 and the endogenous ligands do not affect the dissociation rates of complexes. More insights into the interaction scheme between Gd(DTPA-BMA) and Gd(DTPA)(2-) and endogenous ligands have been obtained by acquiring the (13)C NMR spectra of the corresponding diamagnetic Y(III)-complexes, indicating the increase of the rates of the intramolecular rearrangements in the presence of carbonate and citrate ions. The herein reported results may have implications in the understanding of the etiology of nephrogenic systemic fibrosis, a rare disease that has been associated to the administration of Gd-containing agents to patients with impaired renal function. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling

    Directory of Open Access Journals (Sweden)

    Junwen Zheng

    2015-01-01

    Full Text Available Respiratory syncytial virus (RSV infection upregulates genes of the suppressor of cytokine signaling (SOCS family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS protein expression plasmids (pNS1, pNS2, and pNS1/2 and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN- α signaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-α and NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling.

  10. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    Science.gov (United States)

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop. © 2012 John Wiley & Sons A/S.

  11. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    Science.gov (United States)

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  13. Identification and analysis of multi-protein complexes in placenta.

    Directory of Open Access Journals (Sweden)

    Fuqiang Wang

    Full Text Available Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE and Liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.

  14. SwePep, a database designed for endogenous peptides and mass spectrometry.

    Science.gov (United States)

    Fälth, Maria; Sköld, Karl; Norrman, Mathias; Svensson, Marcus; Fenyö, David; Andren, Per E

    2006-06-01

    A new database, SwePep, specifically designed for endogenous peptides, has been constructed to significantly speed up the identification process from complex tissue samples utilizing mass spectrometry. In the identification process the experimental peptide masses are compared with the peptide masses stored in the database both with and without possible post-translational modifications. This intermediate identification step is fast and singles out peptides that are potential endogenous peptides and can later be confirmed with tandem mass spectrometry data. Successful applications of this methodology are presented. The SwePep database is a relational database developed using MySql and Java. The database contains 4180 annotated endogenous peptides from different tissues originating from 394 different species as well as 50 novel peptides from brain tissue identified in our laboratory. Information about the peptides, including mass, isoelectric point, sequence, and precursor protein, is also stored in the database. This new approach holds great potential for removing the bottleneck that occurs during the identification process in the field of peptidomics. The SwePep database is available to the public.

  15. Development of a keratinocyte-based screening model for antipsoriatic drugs using green fluorescent protein under the control of an endogenous promoter.

    Science.gov (United States)

    Pol, Arno; van Ruissen, Fred; Schalkwijk, Joost

    2002-08-01

    Inflamed epidermis (psoriasis, wound healing, ultraviolet-irradiated skin) harbors keratinocytes that are hyperproliferative and display an abnormal differentiation program. A distinct feature of this so-called regenerative maturation pathway is the expression of proteins such as the cytokeratins CK6, CK16, and CK17 and the antiinflammatory protein SKALP/elafin. These proteins are absent in normal skin but highly induced in lesional psoriatic skin. Expression of these genes can be used as a surrogate marker for psoriasis in drug-screening procedures of large compound libraries. The aim of this study was to develop a keratinocyte cell line that contained a reporter gene under the control of a psoriasis-associated endogenous promoter and demonstrate its use in an assay suitable for screening. We generated a stably transfected keratinocyte cell line that expresses enhanced green fluorescent protein (EGFP), under the control of a 0.8-kb fragment derived from the promoter of the SKALP/elafin gene, which confers high levels of tissue-specific expression at the mRNA level. Induction of the SKALP promoter by tumor necrosis factor-alpha resulted in increased expression levels of the secreted SKALP-EGFP fusion protein as assessed by direct readout of fluorescence and fluorescence polarization in 96-well cell culture plates. The fold stimulation of the reporter gene was comparable to that of the endogenous SKALP gene as assessed by enzyme-linked immunosorbent assay. Although the dynamic range of the screening system is limited, the small standard deviation yields a Z factor of 0.49. This indicates that the assay is suitable as a high-throughput screen, and provides proof of the concept that a secreted EGFP fusion protein under the control of a physiologically relevant endogenous promoter can be used as a fluorescence-based high-throughput screen for differentiation-modifying or antiinflammatory compounds that act via the keratinocyte.

  16. Protein kinase A governs oxidative phosphorylation kinetics and oxidant emitting potential at complex I

    Directory of Open Access Journals (Sweden)

    Daniel Stephen Lark

    2015-11-01

    Full Text Available The mitochondrial electron transport system (ETS is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC/cyclic AMP (cAMP/Protein kinase A (PKA axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduces complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowers both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS.

  17. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection.

    Science.gov (United States)

    Wondrak, Georg T; Jacobson, Myron K; Jacobson, Elaine L

    2006-02-01

    Endogenous chromophores in human skin serve as photosensitizers involved in skin photocarcinogenesis and photoaging. Absorption of solar photons, particularly in the UVA region, induces the formation of photoexcited states of skin photosensitizers with subsequent generation of reactive oxygen species (ROS), organic free radicals and other toxic photoproducts that mediate skin photooxidative stress. The complexity of endogenous skin photosensitizers with regard to molecular structure, pathways of formation, mechanisms of action, and the diversity of relevant skin targets has hampered progress in this area of photobiology and most likely contributed to an underestimation of the importance of endogenous sensitizers in skin photodamage. Recently, UVA-fluorophores in extracellular matrix proteins formed posttranslationally as a consequence of enzymatic maturation or spontaneous chemical damage during chronological and actinic aging have been identified as an abundant source of light-driven ROS formation in skin upstream of photooxidative cellular stress. Importantly, sensitized skin cell photodamage by this bystander mechanism occurs after photoexcitation of sensitizers contained in skin structural proteins without direct cellular photon absorption thereby enhancing the potency and range of phototoxic UVA action in deeper layers of skin. The causative role of photoexcited states in skin photodamage suggests that direct molecular antagonism of photosensitization reactions using physical quenchers of photoexcited states offers a novel chemopreventive opportunity for skin photoprotection.

  18. Dentin and dental pulp regeneration by the patient's endogenous cells.

    Science.gov (United States)

    Kim, Sahng G; Zheng, Ying; Zhou, Jian; Chen, Mo; Embree, Mildred C; Song, Karen; Jiang, Nan; Mao, Jeremy J

    2013-03-01

    The goal of regenerative endodontics is to restore the functions of the dental pulp-dentin complex. Two approaches are being applied toward dental pulp-dentin regeneration: cell transplantation and cell homing. The majority of previous approaches are based on cell transplantation by delivering ex vivo cultivated cells toward dental pulp or dentin regeneration. Many hurdles limit the clinical translation of cell transplantation such as the difficulty of acquiring and isolating viable cells, uncertainty of what cells or what fractions of cells to use, excessive cost of cell manipulation and transportation, and the risk of immune rejection, pathogen transmission, and tumorigenesis in associated with ex vivo cell manipulation. In contrast, cell homing relies on induced chemotaxis of endogenous cells and therefore circumvents many of the difficulties that are associated with cell transplantation. An array of proteins, peptides, and chemical compounds that are yet to be identified may orchestrate endogenous cells to regenerate dental pulp-dentin complex. Both cell transplantation and cell homing are scientifically valid approaches; however, cell homing offers a number of advantages that are compatible with the development of clinical therapies for dental pulp-dentin regeneration.

  19. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells.

    Science.gov (United States)

    Prasetyo, R Heru; Hestianah, Eka Pramyrtha

    2017-06-01

    This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v) honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1) expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Honey can improve the liver tissue based on: (1) Mobilization of endogenous stem cells (CD34 and CD45); (2) Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3) regeneration histologically of liver tissue.

  20. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  1. Sorting of a HaloTag protein that has only a signal peptide sequence into exocrine secretory granules without protein aggregation.

    Science.gov (United States)

    Fujita-Yoshigaki, Junko; Matsuki-Fukushima, Miwako; Yokoyama, Megumi; Katsumata-Kato, Osamu

    2013-11-15

    The mechanism involved in the sorting and accumulation of secretory cargo proteins, such as amylase, into secretory granules of exocrine cells remains to be solved. To clarify that sorting mechanism, we expressed a reporter protein HaloTag fused with partial sequences of salivary amylase protein in primary cultured parotid acinar cells. We found that a HaloTag protein fused with only the signal peptide sequence (Met(1)-Ala(25)) of amylase, termed SS25H, colocalized well with endogenous amylase, which was confirmed by immunofluorescence microscopy. Percoll-density gradient centrifugation of secretory granule fractions shows that the distributions of amylase and SS25H were similar. These results suggest that SS25H is transported to secretory granules and is not discriminated from endogenous amylase by the machinery that functions to remove proteins other than granule cargo from immature granules. Another reporter protein, DsRed2, that has the same signal peptide sequence also colocalized with amylase, suggesting that the sorting to secretory granules is not dependent on a characteristic of the HaloTag protein. Whereas Blue Native PAGE demonstrates that endogenous amylase forms a high-molecular-weight complex, SS25H does not participate in the complex and does not form self-aggregates. Nevertheless, SS25H was released from cells by the addition of a β-adrenergic agonist, isoproterenol, which also induces amylase secretion. These results indicate that addition of the signal peptide sequence, which is necessary for the translocation in the endoplasmic reticulum, is sufficient for the transportation and storage of cargo proteins in secretory granules of exocrine cells.

  2. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Effects of the dietary ratio of ruminal degraded to undegraded protein and feed intake on intestinal flows of endogenous nitrogen and amino acids in goats.

    Science.gov (United States)

    Zhou, Chuanshe; Chen, Liang; Tan, Zhiliang; Tang, Shaoxun; Han, Xuefeng; Wang, Min; Kang, Jinhe; Yan, Qiongxian

    2015-01-01

    This study was conducted to evaluate the effects of the dietary ratio of ruminal degraded protein (RDP) to ruminal undegraded protein (RUP) and the dry matter intake (DMI) on the intestinal flows of endogenous nitrogen (N) and amino acids (AA) in goats. The experiment was designed as a 4×4 Latin square using four ruminally, duodenally and ileally cannulated goats. The treatments were arranged in a 2×2 factorial design; two ratios of RDP to RUP (65:35 and 45:55, RDP1 and RDP2, respectively) and two levels at 95% and 75% of voluntary feed intake (DMI1 and DMI2, respectively) were fed to the goats. There were no significant differences in the N intake, duodenal flow of total N, undegraded feed N, microbial N, endogenous N or ileal flow of endogenous N, but the duodenal and ileal flow of endogenous N numerically decreased by approximately 22% and 9%, respectively, when the feed intake changed from DMI1 (0.63 kg/d) to DMI2 (0.50 kg/d). The dietary ratio of RDP to RUP had significant effects (pRUP ratio and DMI decreased, and the flow of endogenous AA at the ileum also decreased when the DMI decreased but increased with decreasing RDP to RUP ratios.

  4. Detecting protein complexes based on a combination of topological and biological properties in protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    2018-06-01

    Full Text Available Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors. Keywords: Protein complex, Connectivity, Semantic similarity, Contribution

  5. Dynamics in electron transfer protein complexes

    OpenAIRE

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...

  6. Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock.

    Science.gov (United States)

    Hernández-Vásquez, Magda Nohemí; Adame-García, Sendi Rafael; Hamoud, Noumeira; Chidiac, Rony; Reyes-Cruz, Guadalupe; Gratton, Jean Philippe; Côté, Jean-François; Vázquez-Prado, José

    2017-07-21

    Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gβγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses. © 2017 by The American Society for

  7. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  8. Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum.

    Science.gov (United States)

    Yeoman, Jeffrey A; Hanssen, Eric; Maier, Alexander G; Klonis, Nectarios; Maco, Bohumil; Baum, Jake; Turnbull, Lynne; Whitchurch, Cynthia B; Dixon, Matthew W A; Tilley, Leann

    2011-04-01

    The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.

  9. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2017-06-01

    Full Text Available Aim: This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Materials and Methods: Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1 expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. Results: There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Conclusion: Honey can improve the liver tissue based on: (1 Mobilization of endogenous stem cells (CD34 and CD45; (2 Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3 regeneration histologically of liver tissue.

  10. Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins.

    Science.gov (United States)

    Bence, Melinda; Jankovics, Ferenc; Lukácsovich, Tamás; Erdélyi, Miklós

    2017-04-01

    Inducible protein degradation techniques have considerable advantages over classical genetic approaches, which generate loss-of-function phenotypes at the gene or mRNA level. The plant-derived auxin-inducible degradation system (AID) is a promising technique which enables the degradation of target proteins tagged with the AID motif in nonplant cells. Here, we present a detailed characterization of this method employed during the adult oogenesis of Drosophila. Furthermore, with the help of CRISPR/Cas9-based genome editing, we improve the utility of the AID system in the conditional elimination of endogenously expressed proteins. We demonstrate that the AID system induces efficient and reversible protein depletion of maternally provided proteins both in the ovary and the early embryo. Moreover, the AID system provides a fine spatiotemporal control of protein degradation and allows for the generation of different levels of protein knockdown in a well-regulated manner. These features of the AID system enable the unraveling of the discrete phenotypes of genes with highly complex functions. We utilized this system to generate a conditional loss-of-function allele which allows for the specific degradation of the Vasa protein without affecting its alternative splice variant (solo) and the vasa intronic gene (vig). With the help of this special allele, we demonstrate that dramatic decrease of Vasa protein in the vitellarium does not influence the completion of oogenesis as well as the establishment of proper anteroposterior and dorsoventral polarity in the developing oocyte. Our study suggests that both the localization and the translation of gurken mRNA in the vitellarium is independent from Vasa. © 2017 Federation of European Biochemical Societies.

  11. Evolution of endogenous analgesia

    NARCIS (Netherlands)

    Niesters, Marieke

    2014-01-01

    Endogenous pain modulation is a complex phenomenon involved in the perception of pain. It consists of top-down inhibitory and facilitatory pathways that originate at higher sites within the central nervous system and converge at dorsal horn neurons in the spinal cord, to modulate incoming afferent

  12. Purification of Arp2/3 complex from Saccharomyces cerevisiae

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary Much of cellular control over actin dynamics comes through regulation of actin filament initiation. At the molecular level, this is accomplished through a collection of cellular protein machines, called actin nucleation factors, which position actin monomers to initiate a new actin filament. The Arp2/3 complex is a principal actin nucleation factor used throughout the eukaryotic family tree. The budding yeast Saccharomyces cerevisiae has proven to be not only an excellent genetic platform for the study of the Arp2/3 complex, but also an excellent source for the purification of endogenous Arp2/3 complex. Here we describe a protocol for the preparation of endogenous Arp2/3 complex from wild type Saccharomyces cerevisiae. This protocol produces material suitable for biochemical study, and yields milligram quantities of purified Arp2/3 complex. PMID:23868593

  13. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  14. Construction of ontology augmented networks for protein complex prediction.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  15. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    International Nuclear Information System (INIS)

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S.

    2005-01-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V M ) of 3.3 Å 3 Da −1 , corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin

  16. Endogenous Losses of Nitrogen and Protein Requirement for ...

    African Journals Online (AJOL)

    Four fistulated and four intact West African dwarf wether sheep, maintained on hay and concentrate supplements were used for a study of metabolic faecal nitrogen (MEN) and endogenous urinary nitrogen (EUN). The composition of the faecal losses was examined. The values obtained enabled calculation of nitrogen ...

  17. DNA-protein complexes induced by chromate and other carcinogens

    International Nuclear Information System (INIS)

    Costa, M.

    1991-01-01

    DNA-protein complexes induced in intact Chinese hamster ovary cells by chromate have been isolated, analyzed, and compared with those induced by cis-platinum, ultraviolet light, and formaldehyde. Actin has been identified as one of the major proteins complexed to DNA by chromate based upon its molecular weight, isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric points, and these complexes can be disrupted by chelating agents and sulfhydryl reducing agents, suggesting that the metal itself is participating in binding rather than having a catalytic or indirect role (i.e., oxygen radicals). In contrast, formaldehyde complexed histones to the DNA, and these complexes were not disrupted by chelating or reducing agents. An antiserum raised to chromate-induced DNA-protein complexes reacted primarily with 97,000 kDa protein that did not silver stain. Slot blots, as well as Western blots, were used to detect formation of p97 DNA crosslinks. This protein was complexed to the DNA by all four agents studied

  18. Rapamycin-binding FKBP25 associates with diverse proteins that form large intracellular entities

    International Nuclear Information System (INIS)

    Galat, Andrzej; Thai, Robert

    2014-01-01

    Highlights: • The hFKBP25 interacts with diverse components of macromolecular entities. • We show that the endogenous human FKBP25 is bound to polyribosomes. • The endogenous hFKBP25 co-immunoprecipitated with nucleosomal proteins. • FKBP25 could induce conformational switch in macromolecular complexes. - Abstract: In this paper, we show some evidence that a member of the FK506-binding proteins, FKBP25 is associated to diverse components that are part of several different intracellular large-molecular mass entities. The FKBP25 is a high-affinity rapamycin-binding immunophilin, which has nuclear translocation signals present in its PPIase domain but it was detected both in the cytoplasm compartment and in the nuclear proteome. Analyses of antiFKBP25-immunoprecipitated proteins have revealed that the endogenous FKBP25 is associated to the core histones of the nucleosome, and with several proteins forming spliceosomal complexes and ribosomal subunits. Using polyclonal antiFKBP25 we have detected FKBP25 associated with polyribosomes. Added RNAs or 0.5 M NaCl release FKBP25 that was associated with the polyribosomes indicating that the immunophilin has an intrinsic capacity to form complexes with polyribonucleotides via its charged surface patches. Rapamycin or FK506 treatments of the polyribosomes isolated from porcine brain, HeLa and K568 cells caused a residual release of the endogenous FKBP25, which suggests that the immunophilin also binds to some proteins via its PPIase cavity. Our proteomics study indicates that the nuclear pool of the FKBP25 targets various nuclear proteins that are crucial for packaging of DNA, chromatin remodeling and pre-mRNA splicing whereas the cytosolic pool of this immunophilin is bound to some components of the ribosome

  19. Rapamycin-binding FKBP25 associates with diverse proteins that form large intracellular entities

    Energy Technology Data Exchange (ETDEWEB)

    Galat, Andrzej, E-mail: galat@dsvidf.cea.fr; Thai, Robert

    2014-08-08

    Highlights: • The hFKBP25 interacts with diverse components of macromolecular entities. • We show that the endogenous human FKBP25 is bound to polyribosomes. • The endogenous hFKBP25 co-immunoprecipitated with nucleosomal proteins. • FKBP25 could induce conformational switch in macromolecular complexes. - Abstract: In this paper, we show some evidence that a member of the FK506-binding proteins, FKBP25 is associated to diverse components that are part of several different intracellular large-molecular mass entities. The FKBP25 is a high-affinity rapamycin-binding immunophilin, which has nuclear translocation signals present in its PPIase domain but it was detected both in the cytoplasm compartment and in the nuclear proteome. Analyses of antiFKBP25-immunoprecipitated proteins have revealed that the endogenous FKBP25 is associated to the core histones of the nucleosome, and with several proteins forming spliceosomal complexes and ribosomal subunits. Using polyclonal antiFKBP25 we have detected FKBP25 associated with polyribosomes. Added RNAs or 0.5 M NaCl release FKBP25 that was associated with the polyribosomes indicating that the immunophilin has an intrinsic capacity to form complexes with polyribonucleotides via its charged surface patches. Rapamycin or FK506 treatments of the polyribosomes isolated from porcine brain, HeLa and K568 cells caused a residual release of the endogenous FKBP25, which suggests that the immunophilin also binds to some proteins via its PPIase cavity. Our proteomics study indicates that the nuclear pool of the FKBP25 targets various nuclear proteins that are crucial for packaging of DNA, chromatin remodeling and pre-mRNA splicing whereas the cytosolic pool of this immunophilin is bound to some components of the ribosome.

  20. Comparison of the endogenous ileal and faecal amino acid excretion in the dog (Canis familiaris) and the rat (Rattus rattus) determined under protein-free feeding and peptide alimentation.

    Science.gov (United States)

    Hendriks, W H; Sritharan, K; Hodgkinson, S M

    2002-10-01

    The aim of the study was to determine and compare the endogenous ileal excretions of nitrogen and amino acids under protein-free and peptide alimentation by the dog and rat. Two diets were prepared, one that was devoid of protein and the other containing 23% enzyme hydrolysed casein. Chromic oxide was included in the diets as an indigestible marker. A total of 10 mixed breed dogs were fed hourly either a protein-free or enzymatically hydrolysed casein diet for a total of 10 days. A faecal sample was obtained from each dog on day 9 while digesta was obtained from the terminal 20 cm of the ileum directly after euthanasia on day 10. A total of 12 8-week-old Sprague-Dawley rats received the same diets as the dogs. A faecal sample from each rat was obtained on day 7 while ileal digesta samples were obtained on day 8. The endogenous ileal excretions of most amino acids were greater in the dogs and rats that received the enzymatically hydrolysed casein diet compared with those receiving the protein free diet. Whereas the pattern of endogenous amino acid excretion was similar in the rats and dogs, the dogs excreted a significantly greater amount of nitrogen (1.91 vs. 2.27 and 1.63 vs. 4.12 g/kg dry matter intake for the protein-free and peptide alimentation method, respectively) and all amino acids except for glycine, isoleucine and leucine. Endogenous ileal amino acid excretions are higher in dogs compared to omnivorous animals such as rats and pigs but similar to the carnivorous cat.

  1. Protein complex prediction via dense subgraphs and false positive analysis.

    Directory of Open Access Journals (Sweden)

    Cecilia Hernandez

    Full Text Available Many proteins work together with others in groups called complexes in order to achieve a specific function. Discovering protein complexes is important for understanding biological processes and predict protein functions in living organisms. Large-scale and throughput techniques have made possible to compile protein-protein interaction networks (PPI networks, which have been used in several computational approaches for detecting protein complexes. Those predictions might guide future biologic experimental research. Some approaches are topology-based, where highly connected proteins are predicted to be complexes; some propose different clustering algorithms using partitioning, overlaps among clusters for networks modeled with unweighted or weighted graphs; and others use density of clusters and information based on protein functionality. However, some schemes still require much processing time or the quality of their results can be improved. Furthermore, most of the results obtained with computational tools are not accompanied by an analysis of false positives. We propose an effective and efficient mining algorithm for discovering highly connected subgraphs, which is our base for defining protein complexes. Our representation is based on transforming the PPI network into a directed acyclic graph that reduces the number of represented edges and the search space for discovering subgraphs. Our approach considers weighted and unweighted PPI networks. We compare our best alternative using PPI networks from Saccharomyces cerevisiae (yeast and Homo sapiens (human with state-of-the-art approaches in terms of clustering, biological metrics and execution times, as well as three gold standards for yeast and two for human. Furthermore, we analyze false positive predicted complexes searching the PDBe (Protein Data Bank in Europe database in order to identify matching protein complexes that have been purified and structurally characterized. Our analysis shows

  2. Effects of ionizing radiations on DNA-protein complexes; Effets des radiations ionisantes sur des complexes ADN-proteine

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, N

    2005-11-15

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  3. Dried Blood Spot Proteomics: Surface Extraction of Endogenous Proteins Coupled with Automated Sample Preparation and Mass Spectrometry Analysis

    Science.gov (United States)

    Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.

    2013-08-01

    Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.

  4. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    Science.gov (United States)

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation

  5. Simulating evolution of protein complexes through gene duplication and co-option.

    Science.gov (United States)

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives.

    Science.gov (United States)

    Zhang, Hua; Lu, Haiyan; Chingin, Konstantin; Chen, Huanwen

    2015-07-21

    Ionization of proteins and noncovalent protein complexes with minimal disturbance to their native structure presents a great challenge for biological mass spectrometry (MS). In living organisms, the native structure of intracellular proteins is commonly stabilized by solute amino acids (AAs) accumulated in cells at very high concentrations. Inspired by nature, we hypothesized that AAs could also pose a stabilizing effect on the native structure of proteins and noncovalent protein complexes during ionization. To test this hypothesis, here we explored MS response for various protein complexes upon the addition of free AAs at mM concentrations into the electrospray ionization (ESI) solution. Thermal activation of ESI droplets in the MS inlet capillary was employed as a model destabilizing factor during ionization. Our results indicate that certain AAs, in particular proline (Pro), pose considerable positive effect on the stability of noncovalent protein complexes in ESI-MS without affecting the signal intensity of protein ions and original protein-ligand equilibrium, even when added at the 20 mM concentration. The data suggest that the degree of protein stabilization is primarily determined by the osmolytic and ampholytic characteristics of AA solutes. The highest stability and visibility of noncovalent protein complexes in ESI-MS are achieved using AA additives with neutral isoelectric point, moderate proton affinity, and unfavorable interaction with the native protein state. Overall, our results indicate that the simple addition of free amino acids into the working solution can notably improve the stability and accuracy of protein analysis by native ESI-MS.

  7. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  8. Endogeneity in Strategy-Performance Analysis

    DEFF Research Database (Denmark)

    Rocha, Vera; Van Praag, Mirjam; B. Folta, Timothy

    2018-01-01

    , such as employees, strategic partners, customers, or investors, whose choices and preferences also affect the final decision. We discuss how endogeneity can plague the measurement of the performance effects of these two-sided strategic decisions—which are more complex, but more realistic, than prior representations...

  9. Characterization of known protein complexes using k-connectivity and other topological measures

    Science.gov (United States)

    Gallagher, Suzanne R; Goldberg, Debra S

    2015-01-01

    Many protein complexes are densely packed, so proteins within complexes often interact with several other proteins in the complex. Steric constraints prevent most proteins from simultaneously binding more than a handful of other proteins, regardless of the number of proteins in the complex. Because of this, as complex size increases, several measures of the complex decrease within protein-protein interaction networks. However, k-connectivity, the number of vertices or edges that need to be removed in order to disconnect a graph, may be consistently high for protein complexes. The property of k-connectivity has been little used previously in the investigation of protein-protein interactions. To understand the discriminative power of k-connectivity and other topological measures for identifying unknown protein complexes, we characterized these properties in known Saccharomyces cerevisiae protein complexes in networks generated both from highly accurate X-ray crystallography experiments which give an accurate model of each complex, and also as the complexes appear in high-throughput yeast 2-hybrid studies in which new complexes may be discovered. We also computed these properties for appropriate random subgraphs.We found that clustering coefficient, mutual clustering coefficient, and k-connectivity are better indicators of known protein complexes than edge density, degree, or betweenness. This suggests new directions for future protein complex-finding algorithms. PMID:26913183

  10. Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces

    Directory of Open Access Journals (Sweden)

    Gorin Andrey A

    2008-05-01

    Full Text Available Abstract Background Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB. Results We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1 comprehensively collecting all protein-protein interfaces; (2 clustering similar protein-protein interfaces together; (3 estimating the probability that each cluster is relevant based on a diverse set of properties; and (4 combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS website (see Availability and requirements section. Conclusion Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method.

  11. Excitatory Modulation of the preBötzinger Complex Inspiratory Rhythm Generating Network by Endogenous Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Glauber S. F. da Silva

    2017-06-01

    Full Text Available Hydrogen Sulfide (H2S is one of three gasotransmitters that modulate excitability in the CNS. Global application of H2S donors or inhibitors of H2S synthesis to the respiratory network has suggested that inspiratory rhythm is modulated by exogenous and endogenous H2S. However, effects have been variable, which may reflect that the RTN/pFRG (retrotrapezoid nucleus, parafacial respiratory group and the preBötzinger Complex (preBötC, critical for inspiratory rhythm generation are differentially modulated by exogenous H2S. Importantly, site-specific modulation of respiratory nuclei by H2S means that targeted, rather than global, manipulation of respiratory nuclei is required to understand the role of H2S signaling in respiratory control. Thus, our aim was to test whether endogenous H2S, which is produced by cystathionine-β-synthase (CBS in the CNS, acts specifically within the preBötC to modulate inspiratory activity under basal (in vitro/in vivo and hypoxic conditions (in vivo. Inhibition of endogenous H2S production by bath application of the CBS inhibitor, aminooxyacetic acid (AOAA, 0.1–1.0 mM to rhythmic brainstem spinal cord (BSSC and medullary slice preparations from newborn rats, or local application of AOAA into the preBötC (slices only caused a dose-dependent decrease in burst frequency. Unilateral injection of AOAA into the preBötC of anesthetized, paralyzed adult rats decreased basal inspiratory burst frequency, amplitude and ventilatory output. AOAA in vivo did not affect the initial hypoxia-induced (10% O2, 5 min increase in ventilatory output, but enhanced the secondary hypoxic respiratory depression. These data suggest that the preBötC inspiratory network receives tonic excitatory modulation from the CBS-H2S system, and that endogenous H2S attenuates the secondary hypoxic respiratory depression.

  12. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  13. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential.

    Science.gov (United States)

    Flores, Omar; Kennedy, Edward M; Skalsky, Rebecca L; Cullen, Bryan R

    2014-04-01

    It has previously been assumed that the generally high stability of microRNAs (miRNAs) reflects their tight association with Argonaute (Ago) proteins, essential components of the RNA-induced silencing complex (RISC). However, recent data have suggested that the majority of mature miRNAs are not, in fact, Ago associated. Here, we demonstrate that endogenous human miRNAs vary widely, by >100-fold, in their level of RISC association and show that the level of Ago binding is a better indicator of inhibitory potential than is the total level of miRNA expression. While miRNAs of closely similar sequence showed comparable levels of RISC association in the same cell line, these varied between different cell types. Moreover, the level of RISC association could be modulated by overexpression of complementary target mRNAs. Together, these data indicate that the level of RISC association of a given endogenous miRNA is regulated by the available RNA targetome and predicts miRNA function.

  14. [The endogenous opioid system and drug addiction].

    Science.gov (United States)

    Maldonado, R

    2010-01-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  15. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    Science.gov (United States)

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  16. Improved understanding of protein complex offers insight into DNA

    Science.gov (United States)

    Summer Science Writing Internship Improved understanding of protein complex offers insight into DNA clearer understanding of the origin recognition complex (ORC) - a protein complex that directs DNA replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication

  17. Dynamics in electron transfer protein complexes

    NARCIS (Netherlands)

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize

  18. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness

    International Nuclear Information System (INIS)

    Stewart-Hutchinson, P.J.; Hale, Christopher M.; Wirtz, Denis; Hodzic, Didier

    2008-01-01

    The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affect cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins

  19. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    OpenAIRE

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show ...

  20. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    International Nuclear Information System (INIS)

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.

    1987-01-01

    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for [ 3 H]diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with [ 3 H]flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines

  1. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    OpenAIRE

    Zhang, Jianbo; Sturla, Shana; Lacroix, Christophe; Schwab, Clarissa

    2018-01-01

    ABSTRACT Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrole...

  2. Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist.

    Science.gov (United States)

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L; Litherland, Sally A; Haskell-Luevano, Carrie

    2010-06-08

    The melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic biomarker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and nonobese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [alpha-, beta-, and gamma(2)-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-dPhe-Arg-Trp-NH(2) (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219 V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F, and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface

  3. Protein complex finding and ranking: An application to Alzheimer's

    Indian Academy of Sciences (India)

    Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexesfrom raw protein–protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeastand a few other model organisms. Such protein complex identification methods, ...

  4. Reconstitution of a physical complex between the N-formyl chemotactic peptide receptor and G protein. Inhibition by pertussis toxin-catalyzed ADP ribosylation.

    Science.gov (United States)

    Bommakanti, R K; Bokoch, G M; Tolley, J O; Schreiber, R E; Siemsen, D W; Klotz, K N; Jesaitis, A J

    1992-04-15

    Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent sedimentation coefficients of approximately 4 and 7 S. The 7 S form can be converted to the 4 S form by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with an EC50 of approximately 20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. O., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP gamma S-treated neutrophil plasma membranes, was incubated with purified (greater than 95%) Gi protein from bovine brain (containing both Gi alpha 1 and Gi alpha 2) or with neutrophil G protein (Gn), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC50 of 7 S complex formation induced by the two G proteins was 70 +/- 25 and 170 +/- 40 nM for Gn and Gi, respectively. No complexation was measurable when bovine transducin (Gt) was used up to 30 times the EC50 for Gn. The EC50 for Gi was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 microM GTP gamma S to the reconstituted 7 S complex caused a complete revision of the receptor to the 4 S form, and anti-Gi peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gi prevented formation of the 7 S form even at 20 times the concentration of unribosylated Gi normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a physical complex containing N-formyl chemotactic peptide receptor and G protein.

  5. Linking structural features of protein complexes and biological function.

    Science.gov (United States)

    Sowmya, Gopichandran; Breen, Edmond J; Ranganathan, Shoba

    2015-09-01

    Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions. © 2015 The Protein Society.

  6. Endogenous Versus Exogenous Shocks in Complex Networks: An Empirical Test Using Book Sale Rankings

    Science.gov (United States)

    Sornette, D.; Deschâtres, F.; Gilbert, T.; Ageon, Y.

    2004-11-01

    We study the precursory and recovery signatures accompanying shocks in complex networks, that we test on a unique database of the Amazon.com ranking of book sales. We find clear distinguishing signatures classifying two types of sales peaks. Exogenous peaks occur abruptly and are followed by a power law relaxation, while endogenous peaks occur after a progressively accelerating power law growth followed by an approximately symmetrical power law relaxation which is slower than for exogenous peaks. These results are rationalized quantitatively by a simple model of epidemic propagation of interactions with long memory within a network of acquaintances. The observed relaxation of sales implies that the sales dynamics is dominated by cascades rather than by the direct effects of news or advertisements, indicating that the social network is close to critical.

  7. CAG Expansions Are Genetically Stable and Form Nontoxic Aggregates in Cells Lacking Endogenous Polyglutamine Proteins

    Directory of Open Access Journals (Sweden)

    Ashley A. Zurawel

    2016-09-01

    Full Text Available Proteins containing polyglutamine (polyQ regions are found in almost all eukaryotes, albeit with various frequencies. In humans, proteins such as huntingtin (Htt with abnormally expanded polyQ regions cause neurodegenerative diseases such as Huntington’s disease (HD. To study how the presence of endogenous polyQ aggregation modulates polyQ aggregation and toxicity, we expressed polyQ expanded Htt fragments (polyQ Htt in Schizosaccharomyces pombe. In stark contrast to other unicellular fungi, such as Saccharomyces cerevisiae, S. pombe is uniquely devoid of proteins with more than 10 Q repeats. We found that polyQ Htt forms aggregates within S. pombe cells only with exceedingly long polyQ expansions. Surprisingly, despite the presence of polyQ Htt aggregates in both the cytoplasm and nucleus, no significant growth defect was observed in S. pombe cells. Further, PCR analysis showed that the repetitive polyQ-encoding DNA region remained constant following transformation and after multiple divisions in S. pombe, in contrast to the genetic instability of polyQ DNA sequences in other organisms. These results demonstrate that cells with a low content of polyQ or other aggregation-prone proteins can show a striking resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the evolutionary emergence and exclusion of polyQ expansion proteins in different organisms.

  8. GSK3 beta forms a tetrameric complex with endogenous PS1-CTF/NTF and beta-catenin. Effects of the D257/D385A and FAD-linked mutations.

    Science.gov (United States)

    Tesco, G; Tanzi, R E

    2000-01-01

    We have previously shown that the endogenous C-terminal fragment of presenilin 1 co-immunoprecipitates with endogenous beta-catenin. Since PS1 has been suggested to be involved in beta-catenin stabilization, we further investigated whether GSK3 beta, responsible for beta-catenin phosphorylation and degradation, is part of the PS1/beta-catenin complex. In naïve H4 and CHO cells, PS1 co-immunoprecipitated with both endogenous beta-catenin and GSK3 beta. In addition, GSK3 beta endogenously binds to the PS1-CTF/NTF complex and beta-catenin in naïve CHO cells. GSK3 beta also co-immunoprecipitated with PS1 full length in CHO cell lines overexpressing PS1 wild type. Given that it has been recently shown that PS1 mutations of aspartate 257 or 385 result in prevention of PS1 endoproteolysis and inhibition of gamma-secretase activity, we also tested whether PS1 endoproteolysis is required for beta-catenin/GSK3 beta/PS1 binding and whether PS1 FAD-linked mutations affect GSK3 beta recruitment in the PS1/beta-catenin complex. GSK3 beta was detected in PS1 immunoprecipitates from H4 cell lines overexpressing PS1 wild type, delta E10, A286E, L246V and in CHO cell lines overexpressing aspartate or M146L mutations. The latter data show that the absence of PS1 endoproteolysis (D257A/D385A and delta E10) or the presence of PS1-FAD mutations does not interfere with beta-catenin/GSK3 beta/PS1 complex formation.

  9. Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations

    Directory of Open Access Journals (Sweden)

    Guimarães Katia S

    2006-04-01

    Full Text Available Abstract Background Most cellular processes are carried out by multi-protein complexes, groups of proteins that bind together to perform a specific task. Some proteins form stable complexes, while other proteins form transient associations and are part of several complexes at different stages of a cellular process. A better understanding of this higher-order organization of proteins into overlapping complexes is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Results We propose a new method for identifying and representing overlapping protein complexes (or larger units called functional groups within a protein interaction network. We develop a graph-theoretical framework that enables automatic construction of such representation. We illustrate the effectiveness of our method by applying it to TNFα/NF-κB and pheromone signaling pathways. Conclusion The proposed representation helps in understanding the transitions between functional groups and allows for tracking a protein's path through a cascade of functional groups. Therefore, depending on the nature of the network, our representation is capable of elucidating temporal relations between functional groups. Our results show that the proposed method opens a new avenue for the analysis of protein interaction networks.

  10. Lipofection indirectly increases expression of endogenous major histocompatibility complex class I molecules on tumor cells.

    Science.gov (United States)

    Fox, B A; Drury, M; Hu, H M; Cao, Z; Huntzicker, E G; Qie, W; Urba, W J

    1998-01-01

    Direct intratumoral injection of a lipid/DNA complex encoding an allogeneic major histocompatibility complex (MHC) class I molecule leads to regression of both an immunogenic murine tumor and also melanoma lesions in some patients. We have sought to understand the mechanism(s) for this augmentation of antitumor activity. While optimizing parameters for in vitro gene transfer into the D5 subclone of B16BL6, it was noted that lipofected tumors not only expressed the new alloantigen but also exhibited increased expression of endogenous MHC class I, both H-2 Kb and H-2 Db. This increase in expression was not restricted to the small percentage of cells that expressed the transfected gene, but appeared to affect the majority of cells in culture. Class I expression was not increased by lipopolysaccharide, DNA alone, lipid, or lipid/lipopolysaccharide mixtures. Enhanced class I expression required a DNA/lipid complex and was greatest when parameters optimized for gene transfer of the alloantigen were used. All DNA plasmids tested had this effect, including one plasmid whose DNA was not transcribed because it lacked an expression cassette. Because of the critical role that MHC class I antigens play in immune recognition, we propose that lipid complex-mediated gene transfer may provide immunological advantages beyond those that are attributable to expression of the specific gene transferred.

  11. Characterising antimicrobial protein-membrane complexes

    International Nuclear Information System (INIS)

    Xun, Gloria; Dingley, Andrew; Tremouilhac, Pierre

    2009-01-01

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13 C /15 N -enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  12. Recording information on protein complexes in an information management system.

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Measurement of endogenous allergens in genetically modified soybeans--short communication.

    Science.gov (United States)

    Ladics, Gregory S; Budziszewski, Gregory J; Herman, Rod A; Herouet-Guicheney, Corinne; Joshi, Saurabh; Lipscomb, Elizabeth A; McClain, Scott; Ward, Jason M

    2014-10-01

    The measurement of endogenous allergens is required by the European Commission (EC) as part of the compositional analysis for GM products from host plants that are common causes of food allergy, such as soybean (EC Implementing Regulation No. 503/2013). In each case, the EC Implementing Regulation indicates that analysis be conducted on identified allergens as specified in the Organization of Economic Cooperation and Development (OECD) consensus documents on compositional considerations for new plant varieties. This communication discusses the methods available to measure endogenous allergens as well as the endogenous soybean allergens that should be analyzed. It is suggested herein that in conjunction with the 2012 OECD consensus document on soybean, any list of soybean allergens should be based on clinically relevant data among publicly available allergen databases and peer-reviewed scientific publications, and the ability to measure the identified allergen. Based on a detailed analysis of the scientific literature, the following key points are recommended: (1) the acceptance of serum-free, quantitative analytical method data as an alternative to traditional IgE reactivity qualitative or semi-quantitative data for evaluation of endogenous soybean allergen content; (2) eight of the 15 potential allergens listed in the OECD soybean consensus document (Gly m 3, Gly m 4, Gly m Bd28K, Gly m Bd30K, Gly m 5, Gly m 6, Gly m 8, and Kunitz trypsin inhibitor) have both appropriate supporting clinical data and sufficient sequence information to be evaluated in comparative endogenous soybean allergen studies; and (3) the remaining seven proteins (Gly m 1, Gly m 2, unknown 50kDa protein, unknown 39kDa protein, P-22-25, lipoxygenase and lectin) lack sufficient data for clear classification as confirmed allergens and/or available sequence information and should not be currently included in the measurement of endogenous soybean allergens in the compositional analysis for the EU

  14. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    Science.gov (United States)

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  15. Development of a lectin binding assay to differentiate between recombinant and endogenous proteins in pharmacokinetic studies of protein-biopharmaceuticals.

    Science.gov (United States)

    Weber, Alfred; Minibeck, Eva; Scheiflinger, Friedrich; Turecek, Peter L

    2015-04-10

    Human glycoproteins, expressed in hamster cell lines, show similar glycosylation patterns to naturally occurring human molecules except for a minute difference in the linkage of terminal sialic acid: both cell types lack α2,6-galactosyl-sialyltransferase, abundantly expressed in human hepatocytes and responsible for the α2,6-sialylation of circulating glycoproteins. This minute difference, which is currently not known to have any physiological relevance, was the basis for the selective measurement of recombinant glycoproteins in the presence of their endogenous counterparts. The assay is based on using the lectin Sambucus nigra agglutinin (SNA), selectively binding to α2,6-sialylated N-glycans. Using von Willebrand factor (VWF), factor IX (FIX), and factor VIIa (FVIIa), it was demonstrated that (i) the plasma-derived proteins, but not the corresponding recombinant proteins, specifically bind to SNA and (ii) this binding can be used to deplete the plasma-derived proteins. The feasibility of this approach was confirmed in spike-recovery studies for all three recombinant coagulation proteins in human plasma and for recombinant VWF (rVWF) in macaque plasma. Analysis of plasma samples from macaques after administration of recombinant and a plasma-derived VWF demonstrated the suitability and robustness of this approach. Data showed that rVWF could be selectively measured without changing the ELISAs and furthermore revealed the limitations of baseline adjustment using a single measurement of the predose concentration only. The SNA gel-based depletion procedure can easily be integrated in existing procedures as a specific sample pre-treatment step. While ELISA-based methods were used to measure the recombinant coagulation proteins in the supernatants obtained by depletion, this procedure is applicable for all biochemical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs.

    Science.gov (United States)

    Gallina, Anna M; Bork, Peer; Bordo, Domenico

    2014-02-01

    The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein-ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug-like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co-occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Pharmacological Characterization of 30 Human Melanocortin-4 Receptor Polymorphisms with the Endogenous Proopiomelanocortin Derived Agonists, Synthetic Agonists, and the Endogenous Agouti-Related Protein (AGRP) Antagonist

    Science.gov (United States)

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L.; Litherland, Sally A.; Haskell-Luevano, Carrie

    2010-01-01

    The melanocortin-4 receptor (MC4R) is a G-protein coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic bio marker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and non-obese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [α-, β, γ2-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface expression by flow

  18. Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor.

    Science.gov (United States)

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2015-08-01

    Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein-coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Principles of assembly reveal a periodic table of protein complexes.

    Science.gov (United States)

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  20. Formation of protein-birnessite complex: XRD, FTIR, and AFM analysis.

    Science.gov (United States)

    Naidja, A; Liu, C; Huang, P M

    2002-07-01

    Limited information is available on formation chemistry of enzyme-Mn oxide complexes. Adsorption isotherm of protein molecules (tyrosinase) on birnessite (delta-MnO(2)) at pH 6.0 and room temperature (23 degrees C) was of H type, indicating a very high affinity of the enzyme protein molecules to the birnessite mineral surfaces. After thorough washing of the protein-mineral complex with deionized-distilled water, up to 89% of adsorbed protein molecules remained bound to the mineral surfaces. When a high amount of the protein was immobilized, the X-ray diffractogram shows a significant decrease in the intensity of characteristic d-spacings of birnessite. No shift to higher values of the d-spacings of protein-birnessite complex was observed, indicating that the enzyme molecules were not intercalated in the mineral structure but immobilized at the external surfaces and the edges of the mineral oxide. By comparison to the free enzyme, infrared absorption spectra of the protein-birnessite complexes show a shift by up to 11 cm(-1) to lower frequencies in the absorption bands characteristic of amide I and II modes of the polypeptides chains. The mineral surfaces exerted some strain on the protein structure, resulting in an alteration of the protein molecular conformation after binding to the mineral colloid surfaces. In the free state, the globular protein molecules had a spheroid shape with an average cross-sectional diameter of 70+/-6 nm. The unfolding and flattening of the protein molecules after immobilization is clearly shown in atomic force micrographs. Compared to the tyrosinase-birnessite complex, similar FTIR spectra and atomic force micrographs were observed for the pure protein, bovine serum albumin (BSA), after immobilization on birnessite. The information obtained in this study is of fundamental significance for understanding birnessite as an adsorbent of biopolymers and the catalytic role of the enzyme-birnessite complex.

  1. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    Science.gov (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-12-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  2. Supervised maximum-likelihood weighting of composite protein networks for complex prediction

    Directory of Open Access Journals (Sweden)

    Yong Chern Han

    2012-12-01

    Full Text Available Abstract Background Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI data, many algorithms have been proposed to discover protein complexes from PPI networks. However, such approaches are hindered by the high rate of noise in high-throughput PPI data, including spurious and missing interactions. Furthermore, many transient interactions are detected between proteins that are not from the same complex, while not all proteins from the same complex may actually interact. As a result, predicted complexes often do not match true complexes well, and many true complexes go undetected. Results We address these challenges by integrating PPI data with other heterogeneous data sources to construct a composite protein network, and using a supervised maximum-likelihood approach to weight each edge based on its posterior probability of belonging to a complex. We then use six different clustering algorithms, and an aggregative clustering strategy, to discover complexes in the weighted network. We test our method on Saccharomyces cerevisiae and Homo sapiens, and show that complex discovery is improved: compared to previously proposed supervised and unsupervised weighting approaches, our method recalls more known complexes, achieves higher precision at all recall levels, and generates novel complexes of greater functional similarity. Furthermore, our maximum-likelihood approach allows learned parameters to be used to visualize and evaluate the evidence of novel predictions, aiding human judgment of their credibility. Conclusions Our approach integrates multiple data sources with supervised learning to create a weighted composite protein network, and uses six clustering algorithms with an aggregative clustering strategy to

  3. Evidence for the robustness of protein complexes to inter-species hybridization.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Leducq

    Full Text Available Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein-protein interactions (PPIs among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii that diverged 5-20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC, which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.

  4. [Exploration of the Essence of "Endogenous Turbidity" in Chinese Medicine].

    Science.gov (United States)

    Fan, Xin-rong; Tang, Nong; Ji, Yun-xi; Zhang, Yao-zhong; Jiang, Li; Huang, Gui-hua; Xie, Sheng; Li, Liu-mei; Song, Chun-hui; Ling, Jiang-hong

    2015-08-01

    The essence of endogenous turbidity in Chinese medicine (CM) is different from cream, fat, phlegm, retention, damp, toxicity, and stasis. Along with the development of modern scientific technologies and biology, researches on the essence of endogenous turbidity should keep pace with the time. Its material bases should be defined and new connotation endowed at the microscopic level. The essence of turbidity lies in abnormal functions of zang-fu organs. Sugar, fat, protein, and other nutrient substances cannot be properly decomposed, but into semi-finished products or intermediate metabolites. They are inactive and cannot participate in normal material syntheses and decomposition. They cannot be transformed to energy metabolism, but also cannot be synthesized as executive functioning of active proteins. If they cannot be degraded by autophagy-lysosome or ubiquitin-prosome into glucose, fatty acids, amino acids, and other basic nutrients to be used again, they will accumulate inside the human body and become endogenous turbidity. Therefore, endogenous turbidity is different from final metabolites such as urea, carbon dioxide, etc., which can transform vital qi. How to improve the function of zang-fu organs, enhance its degradation by autophagy-lysosome or ubiquitin-prosome is of great significance in normal operating of zang-fu organs and preventing the emergence and progress of related diseases.

  5. Association of CAD, a multifunctional protein involved in pyrimidine synthesis, with mLST8, a component of the mTOR complexes

    Science.gov (United States)

    2013-01-01

    Background mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. Results CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. Conclusion The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8. PMID:23594158

  6. Glacial cycles:exogenous orbital changes vs. endogenous climate dynamics

    OpenAIRE

    Kaufmann, R. K.; Juselius, Katarina

    2010-01-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduc...

  7. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes

    Science.gov (United States)

    Trinkle-Mulcahy, Laura; Boulon, Séverine; Lam, Yun Wah; Urcia, Roby; Boisvert, François-Michel; Vandermoere, Franck; Morrice, Nick A.; Swift, Sam; Rothbauer, Ulrich; Leonhardt, Heinrich; Lamond, Angus

    2008-01-01

    The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments. PMID:18936248

  8. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Wu

    Full Text Available The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans. Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion, produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA complex on a solid support. Mass spectrometric (MS analysis of the captured proteins is then used for their identification and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system, comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1 promoter region and FoxO1, a member of the forkhead rhabdomyosarcoma (FoxO subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.

  9. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    Science.gov (United States)

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  10. SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex.

    Science.gov (United States)

    Soulez, M; Saurin, A J; Freemont, P S; Knight, J C

    1999-04-29

    Chromosome translocation t(X;18)(p11.2;q11.2) is unique to synovial sarcomas and results in an 'in frame' fusion of the SYT gene with the SSX1 or closely-related SSX2 gene. Wild-type SYT and SSX proteins, and the SYT-SSX chimaeric proteins, can modulate transcription in gene reporter assays. To help elucidate the role of these proteins in cell function and neoplasia we have performed immunolabelling experiments to determine their subcellular localization in three cell types. Transient expression of epitope-tagged proteins produced distinctive nuclear staining patterns. The punctate staining of SYT and SYT-SSX proteins showed some similarities. We immunolabelled a series of endogenous nuclear antigens and excluded the SYT and SYT-SSX focal staining from association with these domains (e.g. sites of active transcription, snRNPs). In further experiments we immunolabelled the Polycomb group (PcG) proteins RING1 or BMI-1 and showed that SSX and SYT-SSX proteins, but not SYT, co-localized with these markers. Consistent with this we show that SSX and SYT-SSX associate with chromatin, and also associate with condensed chromatin at metaphase. Noteably, SSX produced a dense signal over the surface of metaphase chromosomes whereas SYT-SSX produced discrete focal staining. Our data indicate that SSX and SYT-SSX proteins are recruited to nuclear domains occupied by PcG complexes, and this provides us with a new insight into the possible function of wild-type SSX and the mechanism by which the aberrant SYT-SSX protein might disrupt fundamental mechanisms controlling cell division and cell fate.

  11. Protein Complex Production from the Drug Discovery Standpoint.

    Science.gov (United States)

    Moarefi, Ismail

    2016-01-01

    Small molecule drug discovery critically depends on the availability of meaningful in vitro assays to guide medicinal chemistry programs that are aimed at optimizing drug potency and selectivity. As it becomes increasingly evident, most disease relevant drug targets do not act as a single protein. In the body, they are instead generally found in complex with protein cofactors that are highly relevant for their correct function and regulation. This review highlights selected examples of the increasing trend to use biologically relevant protein complexes for rational drug discovery to reduce costly late phase attritions due to lack of efficacy or toxicity.

  12. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly

    Science.gov (United States)

    Wells, Jonathan N.; Bergendahl, L. Therese; Marsh, Joseph A.

    2016-01-01

    Summary The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization. PMID:26804901

  13. UO{sub 2}{sup 2+}/protein complexation sites screening

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, P.; Pible, O

    2004-07-01

    Uranium(VI) is likely to make strong coordination with some proteins in the plasma and in targeted cells. In the frame of a nuclear toxicology program, a biochemical strategy has been developed to identify these targets in complex biological media. The present work focuses on an approach based on the screening of 3D protein structures in order to identify proteins able to bind UO{sub 2}{sup 2+} and the corresponding complexation sites in these proteins. Our preliminary results show that indeed a few proteins display a high affinity to uranyl salt. The site of interaction may be mapped using molecular modeling, providing coherent results with the biochemical data. (authors)

  14. Effects of ionizing radiations on DNA-protein complexes

    International Nuclear Information System (INIS)

    Gillard, N.

    2005-11-01

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  15. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.

    Science.gov (United States)

    Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E

    2018-03-20

    Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Carotenoid-protein complexes and their stability towards oxygen and radiation

    International Nuclear Information System (INIS)

    Ramakrishnan, T.V.; Francis, F.J.

    1980-01-01

    Carotenoid-protein complexes isolated from fresh mangoes were found to be more stable to oxygen and radiation when dissolved in water as compared with β-carotene in petroleum ether. Part of the pigment could be released from the complex by gamma irradiation. Observations on the stability of the carotenoid (98% β-carotene) in the complex indicated that the pigment is either associated with the lipid prosthetic group of the protein or loosely attached to the protein by weak hydrophobic bonds. (author)

  17. Extracellular and intracellular steroid binding proteins

    International Nuclear Information System (INIS)

    Wagner, R.K.

    1978-01-01

    Steroid hormone binding proteins can be measured, after the removal of endogenous steroids, as specific complexes with radio-labelled hormones. In this study all the requirements for a quantitative determination of steroid hormone binding proteins are defined. For different methods, agargel electrophoresis, density gradient centrifugation, equilibrium dialysis and polyacrylamide electrophoresis have been evaluated. Agar electrophoresis at low temperature was found to be the simplest and most useful procedure. With this method the dissociation rates of high affinity complexes can be assessed and absolute binding protein concentrations can be determined. The dissociation rates of the oestradiol-oestrogen receptor complex and the R-5020-progestin receptor complex are low (1-2% per h run time.) In contrast, that of complexes between androgen receptor and dihydrotestosterone (17β-hydroxy-5α-androstan-3-one (DHT), progestin receptor and progesterone, corticosteroid binding globulin (CBG) and cortisol or progesterone and sex hormone binding globulin (SHBG) and DHT were hign (16-27% per h run time). Target tissue extracts (cytosols) contain, besides soluble tissue proteins, large amounts of plasma proteins. The extent of this plasma contamination can be determined by measuring the albumin concentration in cytosols by immunodiffusion. In cytosols of 4 different human target tissues the albumin content varied from 20-30% corresponding to an even higher whole plasma concentration. Steroid binding plasma proteins, such as CBG and SHBG are constituents of this containment. (author)

  18. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    Science.gov (United States)

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  19. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans.

    Science.gov (United States)

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A

    2008-12-23

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans.

  20. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  1. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  2. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  3. A Single Argonaute Gene Participates in Exogenous and Endogenous RNAi and Controls Cellular Functions in the Basal Fungus Mucor circinelloides

    Science.gov (United States)

    Nicolás, Francisco E.; Moxon, Simon; de Haro, Juan P.; Dalmay, Tamas; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2013-01-01

    The mechanism of RNAi is well described in metazoans where it plays a role in diverse cellular functions. However, although different classes of endogenous small RNAs (esRNAs) have been identified in fungi, their biological roles are poorly described due, in part, to the lack of phenotype of mutants affected in the biogenesis of these esRNAs. Argonaute proteins are one of the key components of the RNAi pathways, in which different members of this protein family participate in the biogenesis of a wide repertoire of esRNAs molecules. Here we identified three argonaute genes of the fungus Mucor circinelloides and investigated their participation in exogenous and endogenous RNAi. We found that only one of the ago genes, ago-1, is involved in RNAi during vegetative growth and is required for both transgene-induced RNA silencing and the accumulation of distinct classes of esRNAs derived from exons (ex-siRNAs). Classes I and II ex-siRNAs bind to Ago-1 to control mRNA accumulation of the target protein coding genes. Class III ex-siRNAs do not specifically bind to Ago-1, but requires this protein for their production, revealing the complexity of the biogenesis pathways of ex-siRNAs. We also show that ago-1 is involved in the response to environmental signals, since vegetative development and autolysis induced by nutritional stress are affected in ago-1 − M. circinelloides mutants. Our results demonstrate that a single Ago protein participates in the production of different classes of esRNAs that are generated through different pathways. They also highlight the role of ex-siRNAs in the regulation of endogenous genes in fungi and expand the range of biological functions modulated by RNAi. PMID:23935973

  4. Are endogenous feline leukemia viruses really endogenous?

    Science.gov (United States)

    Stewart, H; Jarrett, O; Hosie, M J; Willett, B J

    2011-10-15

    Full length endogenous feline leukemia virus (FeLV) proviruses exist within the genomes of many breeds of domestic cat raising the possibility that they may also exist in a transmissible exogenous form. Such viruses would share receptor usage with the recombinant FeLV-B subgroup, a viral subgroup that arises in vivo by recombination between exogenous subgroup A virus (FeLV-A) and endogenous FeLV. Accordingly, all isolates of FeLV-B made to date have contained a "helper" FeLV-A, consistent with their recombinatorial origin. In order to assess whether endogenous viruses are transmitted between cats, we examined primary isolates of FeLV for which the viral subgroup had been determined for the presence of a subgroup B virus that lacked an FeLV-A. Here we describe the identification of two primary field isolates of FeLV (2518 and 4314) that appeared to contain subgroup B virus only by classical interference assays, raising the possibility of between-host transmission of endogenous FeLV. Sequencing of the env gene and U3 region of the 3' long terminal repeat (LTR) confirmed that both viral genomes contained endogenous viral env genes. However the viral 3' LTRs appeared exogenous in origin with a putative 3' recombination breakpoint residing at the 3' end of the env gene. Further, the FeLV-2518 virions also co-packaged a truncated FeLV-A genome containing a defective env gene, termed FeLV-2518(A) whilst no helper subgroup A viral genome was detected in virions of FeLV-4314. The acquisition of an exogenous LTR by the endogenous FeLV in 4314 may have allowed a recombinant FeLV variant to outgrow an exogenous FeLV-A virus that was presumably present during first infection. Given time, a similar evolution may also occur within the 2518 isolate. The data suggest that endogenous FeLVs may be mobilised by acquisition of exogenous LTRs yielding novel viruses that type biologically as FeLV-B. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  6. An isotopic assessment of protein from diet and endogenous stores: Effects on egg production and incubation behaviour of geese

    Science.gov (United States)

    Schmutz, J.A.; Hobson, K.A.; Morse, J.A.

    2006-01-01

    Little empirical information exists to assess to what degree geese use a capital versus income breeding strategy for investing nutrients into eggs. We used stable isotope methods to directly estimate the sources of protein deposited into egg yolks of Brent Branta bernicla and Emperor Geese Anser canagicus on the Yukon-Kuskokwim Delta, Alaska, USA. Approximately 59 and 45% of protein in egg yolks of Brent and Emperor Geese, respectively, was derived from exogenous sources (i.e. food plants on the local breeding area). Within clutches of Brent Goose eggs, first-laid eggs exhibited slightly higher contributions from endogenous reserves than last-laid eggs. This pattern was less clear for Emperor Geese, which may have been a consequence of possibly analyzing eggs that were laid by intraspecific nest parasites rather than by hosts. For both these species, individuals exhibited large variability in the percent contribution of exogenous versus endogenous stores to eggs, and future studies should identify ecological factors related to this variation. Those Emperor Geese in poor body condition incubated their nests less constantly, and based on δ13C values, they fed on terrestrial foods while off their nests. Although not a pure capital breeder, Emperor Geese used nutrients garnered on spring staging areas to fuel virtually all their own maintenance during incubation and to contribute half or more of the nutrients in eggs. These results highlight the ecological importance of these spring staging habitats to geese.

  7. Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

    Science.gov (United States)

    Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe

    2018-02-19

    Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.

  8. Endogenous Retroviruses in the Genomics Era.

    Science.gov (United States)

    Johnson, Welkin E

    2015-11-01

    Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.

  9. Nanoscale Dewetting Transition in Protein Complex Folding

    Science.gov (United States)

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  10. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    Science.gov (United States)

    Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P

    2009-10-06

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  11. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    Science.gov (United States)

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  12. Comparative evolutionary analysis of protein complexes in E. coli and yeast

    Directory of Open Access Journals (Sweden)

    Ranea Juan AG

    2010-02-01

    Full Text Available Abstract Background Proteins do not act in isolation; they frequently act together in protein complexes to carry out concerted cellular functions. The evolution of complexes is poorly understood, especially in organisms other than yeast, where little experimental data has been available. Results We generated accurate, high coverage datasets of protein complexes for E. coli and yeast in order to study differences in the evolution of complexes between these two species. We show that substantial differences exist in how complexes have evolved between these organisms. A previously proposed model of complex evolution identified complexes with cores of interacting homologues. We support findings of the relative importance of this mode of evolution in yeast, but find that it is much less common in E. coli. Additionally it is shown that those homologues which do cluster in complexes are involved in eukaryote-specific functions. Furthermore we identify correlated pairs of non-homologous domains which occur in multiple protein complexes. These were identified in both yeast and E. coli and we present evidence that these too may represent complex cores in yeast but not those of E. coli. Conclusions Our results suggest that there are differences in the way protein complexes have evolved in E. coli and yeast. Whereas some yeast complexes have evolved by recruiting paralogues, this is not apparent in E. coli. Furthermore, such complexes are involved in eukaryotic-specific functions. This implies that the increase in gene family sizes seen in eukaryotes in part reflects multiple family members being used within complexes. However, in general, in both E. coli and yeast, homologous domains are used in different complexes.

  13. Analysis of close associations of uropod-associated proteins in human T-cells using the proximity ligation assay

    Directory of Open Access Journals (Sweden)

    Tommy Baumann

    2013-10-01

    Full Text Available We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90 also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET. We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.

  14. Combining Semi-Endogenous and Fully Endogenous Growth: a Generalization.

    OpenAIRE

    Cozzi, Guido

    2017-01-01

    This paper shows that combining the semi-endogenous and the fully endogenous growth mechanisms with a general CES aggregator, either growth process can prevail in the balanced growth path depending on their degree of complementarity/substitutability. Policy-induced long-run economic switches to the fully endogenous steady state as the R&D employment ratio surpasses a positive threshold are possible if the two growth engines are gross substitutes.

  15. 'Fractional recovery' analysis of a presynaptic synaptotagmin 1-anchored endocytic protein complex.

    Directory of Open Access Journals (Sweden)

    Rajesh Khanna

    Full Text Available BACKGROUND: The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG, has also been implicated in synaptic vesicle (SV recovery. However, proteins with which STG interacts during SV endocytosis remain poorly understood. We have isolated an STG-associated endocytic complex (SAE from presynaptic nerve terminals and have used a novel fractional recovery (FR assay based on electrostatic dissociation to identify SAE components and map the complex structure. The location of SAE in the presynaptic terminal was determined by high-resolution quantitative immunocytochemistry at the chick ciliary ganglion giant calyx-type synapse. METHODOLOGY/PRINCIPLE FINDINGS: The first step in FR analysis was to immunoprecipitate (IP the complex with an antibody against one protein component (the IP-protein. The immobilized complex was then exposed to a high salt (1150 mM stress-test that caused shedding of co-immunoprecipitated proteins (co-IP-proteins. A Fractional Recovery ratio (FR: recovery after high salt/recovery with control salt as assayed by Western blot was calculated for each co-IP-protein. These FR values reflect complex structure since an easily dissociated protein, with a low FR value, cannot be intermediary between the IP-protein and a salt-resistant protein. The structure of the complex was mapped and a blueprint generated with a pair of FR analyses generated using two different IP-proteins. The blueprint of SAE contains an AP180/X/STG/stonin 2/intersectin/epsin core (X is unknown and epsin is hypothesized, and an AP2 adaptor, H-/L-clathrin coat and dynamin scission protein perimeter. Quantitative immunocytochemistry (ICA/ICQ method at an isolated calyx-type presynaptic terminal indicates that this complex is associated with STG at the presynaptic transmitter release face but not with STG on intracellular synaptic vesicles. CONCLUSIONS/SIGNIFICANCE: We hypothesize that the SAE serves as a recognition site and also as a

  16. Protein scaffolds and higher-order complexes in synthetic biology

    NARCIS (Netherlands)

    den Hamer, A.; Rosier, B.J.H.M.; Brunsveld, L.; de Greef, T.F.A.; Ryadnov, M.; Brunsveld, L.; Suga, H.

    2017-01-01

    Interactions between proteins control molecular functions such as signalling or metabolic activity. Assembly of proteins via scaffold proteins or in higher-order complexes is a key regulatory mechanism. Understanding and functionally applying this concept requires the construction, study, and

  17. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    International Nuclear Information System (INIS)

    Paulin, Sarah; Rosado, Helena; Taylor, Peter W; Jamshad, Mohammed; Dafforn, Timothy R; Garcia-Lara, Jorge; Foster, Simon J; Galley, Nicola F; Roper, David I

    2014-01-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function. (paper)

  18. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    Science.gov (United States)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  19. High endogenous activated protein C levels attenuates bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; von der Thüsen, Jan; Isermann, Berend; Weiler, Hartmut; van der Poll, Tom; Borensztajn, Keren; Spek, Chris A.

    2016-01-01

    Coagulation activation accompanied by reduced anticoagulant activity is a key characteristic of patients with idiopathic pulmonary fibrosis (IPF). Although the importance of coagulation activation in IPF is well studied, the potential relevance of endogenous anticoagulant activity in IPF progression

  20. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Mihaela E Sardiu

    2009-10-01

    Full Text Available Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  1. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex

    Directory of Open Access Journals (Sweden)

    Lisa M. Tuttle

    2018-03-01

    Full Text Available Summary: Transcription activation domains (ADs are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. : Tuttle et al. report a “fuzzy free-for-all” interaction mechanism that explains how seemingly unrelated transcription activators converge on a limited number of coactivator targets. The mechanism provides a rationale for the observation that individually weak and low-specificity interactions can combine to produce biologically critical function without requiring highly ordered structure. Keywords: transcription activation, intrinsically disordered proteins, fuzzy binding

  2. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.

    Science.gov (United States)

    Tan, Chris Soon Heng; Go, Ka Diam; Bisteau, Xavier; Dai, Lingyun; Yong, Chern Han; Prabhu, Nayana; Ozturk, Mert Burak; Lim, Yan Ting; Sreekumar, Lekshmy; Lengqvist, Johan; Tergaonkar, Vinay; Kaldis, Philipp; Sobota, Radoslaw M; Nordlund, Pär

    2018-03-09

    Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. A new method to measure muscle protein synthesis in humans by endogenously introduced d9-leucine and using blood for precursor enrichment determination

    Science.gov (United States)

    Tran, Lee; Masters, Haley; Roust, Lori R; Katsanos, Christos S

    2015-01-01

    Enrichment from the easily accessible blood amino acid pool is commonly used as precursor enrichment to calculate rates of muscle protein fractional synthesis in relevant human studies in lieu of the less accessible muscle fluid amino acid pool. However, the accuracy of this approach depends largely on the extent to which there is low discrepancy in free amino acid enrichment between blood and muscle. Steady-state gradient (i.e., ratio) of amino acid enrichment between blood and muscle fluid in the basal state and in response to amino acid infusion were determined in five healthy subjects, and in association with two separate tracers: d9-leucine, introduced endogenously by the metabolism of d10-leucine (i.e., l-[2,3,3,4,5,5,5,6,6,6-2H10]leucine) infused in blood, and 13C6-phenylalanine introduced/infused in blood. The blood-to-muscle fluid amino acid enrichment ratio was lower (P enrichment introduced endogenously by intravenous infusion of d10-leucine provides a closer estimate of the muscle fluid amino acid enrichment, and its associated changes, than blood phenylalanine enrichment to calculate rates of muscle protein synthesis in humans. PMID:26243214

  4. Peroxisome protein import: a complex journey.

    Science.gov (United States)

    Baker, Alison; Lanyon-Hogg, Thomas; Warriner, Stuart L

    2016-06-15

    The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. © 2016 The Author(s).

  5. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....

  6. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

    DEFF Research Database (Denmark)

    Ho, Yuen; Gruhler, Albrecht; Heilbut, Adrian

    2002-01-01

    The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects...... as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were...... identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two...

  7. Predicting co-complexed protein pairs using genomic and proteomic data integration

    Directory of Open Access Journals (Sweden)

    King Oliver D

    2004-04-01

    Full Text Available Abstract Background Identifying all protein-protein interactions in an organism is a major objective of proteomics. A related goal is to know which protein pairs are present in the same protein complex. High-throughput methods such as yeast two-hybrid (Y2H and affinity purification coupled with mass spectrometry (APMS have been used to detect interacting proteins on a genomic scale. However, both Y2H and APMS methods have substantial false-positive rates. Aside from high-throughput interaction screens, other gene- or protein-pair characteristics may also be informative of physical interaction. Therefore it is desirable to integrate multiple datasets and utilize their different predictive value for more accurate prediction of co-complexed relationship. Results Using a supervised machine learning approach – probabilistic decision tree, we integrated high-throughput protein interaction datasets and other gene- and protein-pair characteristics to predict co-complexed pairs (CCP of proteins. Our predictions proved more sensitive and specific than predictions based on Y2H or APMS methods alone or in combination. Among the top predictions not annotated as CCPs in our reference set (obtained from the MIPS complex catalogue, a significant fraction was found to physically interact according to a separate database (YPD, Yeast Proteome Database, and the remaining predictions may potentially represent unknown CCPs. Conclusions We demonstrated that the probabilistic decision tree approach can be successfully used to predict co-complexed protein (CCP pairs from other characteristics. Our top-scoring CCP predictions provide testable hypotheses for experimental validation.

  8. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  9. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  10. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  11. Tissue protein metabolism in parasitized animals

    International Nuclear Information System (INIS)

    Symons, L.E.A.; Steel, J.W.; Jones, W.O.

    1981-01-01

    The effects of gastrointestinal nematode infection of mammals, particularly of the small intestine of the sheep, on protein metabolism of skeletal muscle, liver, the gastrointestinal tract and wool are described. These changes have been integrated to explain poor growth and production in the sheep heavily infected with Trichostrongylus colubriformis. The rates of both synthesis and catabolism of muscle protein are depressed, but nitrogen is lost from this tissue because the depression of synthesis exceeds that of catabolism. Anorexia is the major cause of these changes. Although the effect on liver protein synthesis is unclear, it is probable that the leakage of plasma proteins into the gastrointestinal tract stimulates an early increase in the rate of synthesis of these proteins, but this eventually declines and is insufficient to correct developing hypoalbuminaemia. Changes in the intestinal tract are complex. Exogenous nitrogen is reduced by anorexia, but the flow of nitrogen through the tract from abomasum to faeces is above normal because of the increase of endogenous protein from leakage of plasma protein and, presumably, from exfoliated epithelial cells. There is evidence that protein metabolism of intestinal tissue, particularly in the uninfected distal two-thirds, is increased. Synthesis of wool protein is decreased. As the result of anorexia, intestinal loss of endogenous protein and an increased rate of intestinal protein metabolism there is a net movement of amino nitrogen from muscle, liver and possibly skin to the intestine of the heavily infected sheep. Thus, the availability of amino nitrogen for growth and wool production is reduced. (author)

  12. Predicting protein complexes using a supervised learning method combined with local structural information.

    Science.gov (United States)

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  13. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.

    Science.gov (United States)

    Wang, Yijie; Qian, Xiaoning

    2017-03-14

    Intuitively, proteins in the same protein complexes should highly interact with each other but rarely interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing computational algorithms do not directly detect protein complexes based on both of these topological properties. Most of them, depending on mathematical definitions of either "modularity" or "conductance", have their own limitations: Modularity has the inherent resolution problem ignoring small protein complexes; and conductance characterizes the separability of complexes but fails to capture the interaction density within complexes. In this paper, we propose a two-step algorithm FLCD (Finding Low-Conductance sets with Dense interactions) to predict overlapping protein complexes with the desired topological structure, which is densely connected inside and well separated from the rest of the networks. First, FLCD detects well-separated subnetworks based on approximating a potential low-conductance set through a personalized PageRank vector from a protein and then solving a mixed integer programming (MIP) problem to find the minimum-conductance set within the identified low-conductance set. At the second step, the densely connected parts in those subnetworks are discovered as the protein complexes by solving another MIP problem that aims to find the dense subnetwork in the minimum-conductance set. Experiments on four large-scale yeast PPI networks from different public databases demonstrate that the complexes predicted by FLCD have better correspondence with the yeast protein complex gold standards than other three state-of-the-art algorithms (ClusterONE, LinkComm, and SR-MCL). Additionally, results of FLCD show higher biological relevance with respect to Gene Ontology (GO) terms by GO enrichment analysis.

  14. Improvement of aerobic energy supply processes in 37-49 yrs old women by means of complex aqua-fitness trainings’ and methodic of endogenous - hypoxic breathing’s application

    Directory of Open Access Journals (Sweden)

    Y.M. Furman

    2015-07-01

    Full Text Available Purpose: substantiation of purposefulness of complex aqua-fitness training and methodic of endogenous-hypoxic breathing’s application for improvement of women’s functional fitness. Material: in the research 13 women of control group and 12 women of experimental one, who had never trained aqua-fitness earlier, participated. (Their age was 37-49 years old. Results: during 24 weeks, at different stages of the research (after 8, 16 and 24 weeks from the beginning of trainings by the worked out program we determined indicators of power (maximal oxygen consumption and capacity (threshold of anaerobic metabolism, which characterize aerobic processes of energy supply. Conclusions: it was proved that complex application of aqua-fitness trainings in combination with methodic of endogenous-hypoxic breathing is effective. It is witnessed by acceleration of increment of absolute and relative indicators of workability, maximal oxygen consumption and threshold of anaerobic metabolism.

  15. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  16. The role of human endogenous retroviruses in brain development and function.

    Science.gov (United States)

    Mortelmans, Kristien; Wang-Johanning, Feng; Johanning, Gary L

    2016-01-01

    Endogenous retroviral sequences are spread throughout the genome of all humans, and make up about 8% of the genome. Despite their prevalence, the function of human endogenous retroviruses (HERVs) in humans is largely unknown. In this review we focus on the brain, and evaluate studies in animal models that address mechanisms of endogenous retrovirus activation in the brain and central nervous system (CNS). One such study in mice found that TRIM28, a protein critical for mouse early development, regulates transcription and silencing of endogenous retroviruses in neural progenitor cells. Another intriguing finding in human brain cells and mouse models was that endogenous retrovirus HERV-K appears to be protective against neurotoxins. We also report on studies that associate HERVs with human diseases of the brain and CNS. There is little doubt of an association between HERVs and a number of CNS diseases. However, a cause and effect relationship between HERVs and these diseases has not yet been established. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  17. The usefulness of cytogenetic parameters, level of p53 protein and endogenous glutathione as intermediate end-points in raw betel-nut genotoxicity.

    Science.gov (United States)

    Kumpawat, K; Chatterjee, A

    2003-07-01

    Betel-nut (BN) chewing related oral mucosal lesions are potential hazards to a large population worldwide. Genotoxicity of betel alkaloids, polyphenol and tannin fractions have been reported. It has been shown earlier that BN ingredients altered the level of endogenous glutathione (GSH) which could modulate the host susceptibility to the action of other chemical carcinogens. The north-east Indian variety of BN, locally known as 'kwai', is raw, wet and consumed unprocessed with betel-leaf and slaked lime and contains higher alkaloids, polyphenol and tannins as compared to the dried one. Therefore, the purpose of this study was to investigate the extent of DNA damage, pattern of cell kinetics, the level of p53-protein and endogenous GSH in kwai chewers in the tribal population of Meghalaya state in the northeastern region of India with an aim to see whether these end-points could serve as biomarkers of genetic damage of relevance for genotoxic/carcinogenic process. The present data show higher DNA damage, delay in cell kinetics, p53 expression and lower GSH-level in heavy chewers (HC) than nonchewers (NC). The influence of bleomycin (BLM) on chromatid break induction in G2-phase of peripheral blood lymphocytes in NC and HC has been analysed to determine individual susceptibility to carcinogenic assaults. HC showed higher induction of chromatid breaks than NC. Risk assessment in this study suggests an interaction between carcinogen exposure and mutagen sensitivity measures, risk estimates being higher in those individuals who both consume kwai and express sensitivity to free radical oxygen damage in vitro. From this study it seems that besides cytogenetical parameters, the level of endogenous GSH and the level of p53 protein could act as effective biomarkers for kwai chewers.

  18. The fifth adaptor protein complex.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2011-10-01

    Full Text Available Adaptor protein (AP complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.

  19. On the importance of polar interactions for complexes containing intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Eric T C Wong

    Full Text Available There is a growing recognition for the importance of proteins with large intrinsically disordered (ID segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

  20. Endogenous spar tin, mutated in hereditary spastic paraplegia, has a complex subcellular localization suggesting diverse roles in neurons

    International Nuclear Information System (INIS)

    Robay, Dimitri; Patel, Heema; Simpson, Michael A.; Brown, Nigel A.; Crosby, Andrew H.

    2006-01-01

    Mutation of spartin (SPG20) underlies a complicated form of hereditary spastic paraplegia, a disorder principally defined by the degeneration of upper motor neurons. Using a polyclonal antibody against spartin to gain insight into the function of the endogenous molecule, we show that the endogenous molecule is present in two main isoforms of 85 kDa and 100 kDa, and 75 kDa and 85 kDa in human and murine, respectively, with restricted subcellular localization. Immunohistochemical studies on human and mouse embryo sections and in vitro cell studies indicate that spartin is likely to possess both nuclear and cytoplasmic functions. The nuclear expression of spartin closely mirrors that of the snRNP (small nuclear ribonucleoprotein) marker α-Sm, a component of the spliceosome. Spartin is also enriched at the centrosome within mitotic structures. Notably we show that spartin protein undergoes dynamic positional changes in differentiating human SH-SY5Y cells. In undifferentiated non-neuronal cells, spartin displays a nuclear and diffuse cytosolic profile, whereas spartin transiently accumulates in the trans-Golgi network and subsequently decorates discrete puncta along neurites in terminally differentiated neuroblastic cells. Investigation of these spartin-positive vesicles reveals that a large proportion colocalizes with the synaptic vesicle marker synaptotagmin. Spartin is also enriched in synaptic-like structures and in synaptic vesicle-enriched fraction

  1. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  2. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    Science.gov (United States)

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence

    Directory of Open Access Journals (Sweden)

    Esperanza Fernández

    2017-10-01

    Full Text Available Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function.

  4. Which clustering algorithm is better for predicting protein complexes?

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos N

    2011-12-01

    Full Text Available Abstract Background Protein-Protein interactions (PPI play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H and Tandem Affinity Purification (TAP methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm

  5. Availability of endogenous peptides limits expression of an M3a-Ld major histocompatibility complex class I chimera

    Science.gov (United States)

    1994-01-01

    Taking advantage of our understanding of the peptide specificity of the major histocompatibility complex class I-b molecule M3a, we sought to determine why these molecules are poorly represented on the cell surface. To this end we constructed a chimeric molecule with the alpha 1 and alpha 2 domains of M3a and alpha 3 of Ld thereby allowing use of available monoclonal antibodies to quantify surface expression. Transfected, but not control, B10.CAS2 (H-2M3b) cells were lysed readily by M3a-restricted monoclonal cytotoxic T lymphocytes. Thus, the chimera bound, trafficked, and presented endogenous mitochondrial peptides. However, despite high levels of M3a-Ld mRNA, transfectants were negative by surface staining. This finding was consistent with inefficient trafficking to the cell surface. Incubation at 26 degrees C, thought to permit trafficking of unoccupied heavy (H) chains, resulted in detectable cell surface expression of chimeric molecules. Incubation with exogenous peptide at 26 degrees C (but not at 37 degrees C) greatly enhanced expression of M3a-Ld molecules in a dose- dependent manner, suggesting stabilization of unoccupied molecules. Stable association of beta 2-microglobulin with the chimeric H chain was observed in labeled cell lysates only in the presence of exogenous specific peptide, indicating that peptide is required for the formation of a ternary complex. These results indicate that surface expression of M3a-Ld is limited largely by the steady-state availability of endogenous peptides. Since most known M3a-binding peptides are N- formylated, native M3a may normally be expressed at high levels only during infection by intracellular bacteria. PMID:8270862

  6. Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.

    Science.gov (United States)

    Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2017-03-15

    The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Proteomics analysis of the endogenous, constitutive, leaf SUMOylome.

    Science.gov (United States)

    Colignon, Bertrand; Delaive, Edouard; Dieu, Marc; Demazy, Catherine; Muhovski, Yordan; Wallon, Cindy; Raes, Martine; Mauro, Sergio

    2017-01-06

    SUMOylation is a post-translational modification which regulates a number of critical biological processes in, for example mammals, yeast and plants. In order to fully understand the functional effects of SUMOylation an essential first step is the identification of endogenous targets for SUMOylation. Here we report the results of using a recently developed proteomic approach based on the use of 3D gels to identify the endogenous SUMO targets in leaves of Solanum tuberosum. By using 3D gels we avoid the problem of co-migration of proteins, which is a major limitation of 2D gels, and we enable the use of the highly sensitive CyDye DIGE fluor saturation dyes. Using this new method we have identified 39 individual proteins as probable SUMO targets in leaves of Solanum tuberosum. The advantages of this method compared with other approaches are discussed, and possible future developments are outlined. The authors have no conflicts of interest to declare. All authors have approved the manuscript and agree with submission to Journal of Proteomics. Copyright © 2016. Published by Elsevier B.V.

  8. Wheat-specific gene, ribosomal protein l21, used as the endogenous reference gene for qualitative and real-time quantitative polymerase chain reaction detection of transgenes.

    Science.gov (United States)

    Liu, Yi-Ke; Li, He-Ping; Huang, Tao; Cheng, Wei; Gao, Chun-Sheng; Zuo, Dong-Yun; Zhao, Zheng-Xi; Liao, Yu-Cai

    2014-10-29

    Wheat-specific ribosomal protein L21 (RPL21) is an endogenous reference gene suitable for genetically modified (GM) wheat identification. This taxon-specific RPL21 sequence displayed high homogeneity in different wheat varieties. Southern blots revealed 1 or 3 copies, and sequence analyses showed one amplicon in common wheat. Combined analyses with sequences from common wheat (AABBDD) and three diploid ancestral species, Triticum urartu (AA), Aegilops speltoides (BB), and Aegilops tauschii (DD), demonstrated the presence of this amplicon in the AA genome. Using conventional qualitative polymerase chain reaction (PCR), the limit of detection was 2 copies of wheat haploid genome per reaction. In the quantitative real-time PCR assay, limits of detection and quantification were about 2 and 8 haploid genome copies, respectively, the latter of which is 2.5-4-fold lower than other reported wheat endogenous reference genes. Construct-specific PCR assays were developed using RPL21 as an endogenous reference gene, and as little as 0.5% of GM wheat contents containing Arabidopsis NPR1 were properly quantified.

  9. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-01-01

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  10. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong

    2018-05-20

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  11. ComplexContact: a web server for inter-protein contact prediction using deep learning.

    Science.gov (United States)

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-05-22

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  12. [Physico-chemical characteristics of endogenous regulatory oligopeptides].

    Science.gov (United States)

    Zamiatnin, A A

    1990-01-01

    Analysis of amino acid residue content in endogenous regulatory oligopeptides possessing a preset spectrum of functional activity has been made. It has been shown that compared to proteins the oligopeptides contain a greater number of positively charged and cyclic radicals. All 525 oligopeptides with the preset spectrum of functional activity contained in EROP-Moscow data bank were found to have the same physicochemical characteristics.

  13. Genome-wide analysis of potential cross-reactive endogenous allergens in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Fang Chao Zhu

    2015-01-01

    Full Text Available The proteins in the food are the source of common allergic components to certain patients. Current lists of plant endogenous allergens were based on the medical/clinical reports as well as laboratory results. Plant genome sequences made it possible to predict and characterize the genome-wide of putative endogenous allergens in rice (Oryza sativa L.. In this work, we identified and characterized 122 candidate rice allergens including the 22 allergens in present databases. Conserved domain analysis also revealed 37 domains among rice allergens including one novel domain (histidine kinase-, DNA gyrase B-, and HSP90-like ATPase, PF13589 adding to the allergen protein database. Phylogenetic analysis of the allergens revealed the diversity among the Prolamin superfamily and DnaK protein family, respectively. Additionally, some allergens proteins clustered on the rice chromosome might suggest the molecular function during the evolution.

  14. Endogenous fertility and development traps with endogenous lifetime

    OpenAIRE

    Fanti, Luciano; Gori, Luca

    2010-01-01

    We extend the literature on endogenous lifetime and economic growth by Chakraborty (2004) and Bunzel and Qiao (2005) to endogenous fertility. We show that development traps due to underinvestments in health cannot appear when fertility is an economic decision variable and the costs of children are represented by a constant fraction of the parents' income used for their upbringing.

  15. Analysis of human protein replacement stable cell lines established using snoMEN-PR vector.

    Directory of Open Access Journals (Sweden)

    Motoharu Ono

    Full Text Available The study of the function of many human proteins is often hampered by technical limitations, such as cytotoxicity and phenotypes that result from overexpression of the protein of interest together with the endogenous version. Here we present the snoMEN (snoRNA Modulator of gene ExpressioN vector technology for generating stable cell lines where expression of the endogenous protein can be reduced and replaced by an exogenous protein, such as a fluorescent protein (FP-tagged version. SnoMEN are snoRNAs engineered to contain complementary sequences that can promote knock-down of targeted RNAs. We have established and characterised two such partial protein replacement human cell lines (snoMEN-PR. Quantitative mass spectrometry was used to analyse the specificity of knock-down and replacement at the protein level and also showed an increased pull-down efficiency of protein complexes containing exogenous, tagged proteins in the protein replacement cell lines, as compared with conventional co-expression strategies. The snoMEN approach facilitates the study of mammalian proteins, particularly those that have so far been difficult to investigate by exogenous expression and has wide applications in basic and applied gene-expression research.

  16. Induced pluripotency with endogenous and inducible genes

    International Nuclear Information System (INIS)

    Duinsbergen, Dirk; Eriksson, Malin; Hoen, Peter A.C. 't; Frisen, Jonas; Mikkers, Harald

    2008-01-01

    The recent discovery that two partly overlapping sets of four genes induce nuclear reprogramming of mouse and even human cells has opened up new possibilities for cell replacement therapies. Although the combination of genes that induce pluripotency differs to some extent, Oct4 and Sox2 appear to be a prerequisite. The introduction of four genes, several of which been linked with cancer, using retroviral approaches is however unlikely to be suitable for future clinical applications. Towards developing a safer reprogramming protocol, we investigated whether cell types that express one of the most critical reprogramming genes endogenously are predisposed to reprogramming. We show here that three of the original four pluripotency transcription factors (Oct4, Klf4 and c-Myc or MYCER TAM ) induced reprogramming of mouse neural stem (NS) cells exploiting endogenous SoxB1 protein levels in these cells. The reprogrammed neural stem cells differentiated into cells of each germ layer in vitro and in vivo, and contributed to mouse development in vivo. Thus a combinatorial approach taking advantage of endogenously expressed genes and inducible transgenes may contribute to the development of improved reprogramming protocols

  17. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  18. MnTM-4-PyP modulates endogenous antioxidant responses and protects primary cortical neurons against oxidative stress.

    Science.gov (United States)

    Cheng, Kuo-Yuan; Guo, Fei; Lu, Jia-Qi; Cao, Yuan-Zhao; Wang, Tian-Chang; Yang, Qi; Xia, Qing

    2015-05-01

    Oxidative stress is a direct cause of injury in various neural diseases. Manganese porphyrins (MnPs), a large category of superoxide dismutase (SOD) mimics, shown universally to have effects in numerous neural disease models in vivo. Given their complex intracellular redox activities, detailed mechanisms underlying the biomedical efficacies are not fully elucidated. This study sought to investigate the regulation of endogenous antioxidant systems by a MnP (MnTM-4-PyP) and its role in the protection against neural oxidative stress. Primary cortical neurons were treated with MnTM-4-PyP prior to hydrogen peroxide-induced oxidative stress. MnTM-4-PyP increased cell viability, reduced intracellular level of reactive oxygen species, inhibited mitochondrial apoptotic pathway, and ameliorated endoplasmic reticulum function. The protein levels and activities of endogenous SODs were elevated, but not those of catalase. SOD2 transcription was promoted in a transcription factor-specific manner. Additionally, we found FOXO3A and Sirt3 levels also increased. These effects were not observed with MnTM-4-PyP alone. Induction of various levels of endogenous antioxidant responses by MnTM-4-PyP has indispensable functions in its protection for cortical neurons against hydrogen peroxide-induced oxidative stress. © 2014 John Wiley & Sons Ltd.

  19. Neuronal Rat Brain Damage Caused by Endogenous and Exogenous Hyperthermia

    Directory of Open Access Journals (Sweden)

    Mustafa Aydın

    2012-03-01

    Full Text Available OBJECTIVE: Hyperthermia may induce pathologic alterations within body systems and organs including brain. In this study, neuronal effects of endogenous and exogenous hyperthermia (41°C were studied in rats. METHODS: The endogenous hyperthermia (41°C was induced by lipopolysaccharide and the exogenous by an (electric heater. Possible neuronal damage was evaluated by examining healthy, apoptotic and necrotic cells, and heat shock proteins (HSP 27, HSP 70 in the cerebral cortex, cerebellum and hypothalamus RESULTS: At cellular level, when all neuronal tissues are taken into account; (i a significant increase in the necrotic cells was observed in the both groups (p0.05. CONCLUSION: The neural tissue of brain can show different degree of response to hyperthermia. But we can conclude that endogenous hyperthermia is more harmful to central nervous system than exogenous hyperthermia

  20. Total soluble and endogenous secretory receptor for advanced glycation endproducts (RAGE) in IBD

    NARCIS (Netherlands)

    Meijer, Berrie; Hoskin, Teagan; Ashcroft, Anna; Burgess, Laura; Keenan, Jacqueline I.; Falvey, James; Gearry, Richard B.; Day, Andrew S.

    2014-01-01

    Recruitment and activation of neutrophils, with release of specific proteins such as S100 proteins, is a feature of inflammatory bowel disease (IBD). Soluble forms of the receptor for advanced glycation endproducts (sRAGE), and variants such as endogenous secretory (esRAGE), can act as decoy

  1. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    Science.gov (United States)

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  2. A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum

    OpenAIRE

    Phillips, Jonathan E.; Gomer, Richard H.

    2012-01-01

    Chemorepellants may play multiple roles in physiological and pathological processes. However, few endogenous chemorepellants have been identified, and how they function is unclear. We found that the autocrine signal AprA, which is produced by growing Dictyostelium discoideum cells and inhibits their proliferation, also functions as a chemorepellant. Wild-type cells at the edge of a colony show directed movement outward from the colony, whereas cells lacking AprA do not. Cells show directed mo...

  3. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  4. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  5. Endogenous proteolytic enzymes--a study of their impact on cod (Gadus morhua) muscle proteins and textural properties in a fermented product.

    Science.gov (United States)

    Yang, Fang; Rustad, Turid; Xu, Yanshun; Jiang, Qixing; Xia, Wenshui

    2015-04-01

    The aim of this study was to investigate endogenous proteolytic activities in a cod product and their impact on muscle proteins and textural properties during fermentation and storage. The result of specific proteolytic activities showed that cathepsins, especially cathepsin B, had the highest activities during fermentation and storage. SDS-PAGE indicated more degradation of myofibrillar proteins by cathepsin L than other proteases and that the hydrolysis by cathepsins was pronounced in the last stage of fermentation. Texture analysis showed that cathepsins had a negative impact on gel strength and this impact increased in the last stage of fermentation. However the product still had a firm texture. During storage (4 °C) for one week, no significant changes were seen in the gel strength. In conclusion, cathepsins had more impact on muscle proteins and textural properties than other proteases during fermentation but had little impact on gel strength during storage at 4 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    Science.gov (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  7. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  8. Radiolysis of DNA-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Begusova, Marie [Department of Radiation Dosimetry, Nuclear Physics Institute, Na Truhlarce 39/64, CZ-18086, Prague 8 (Czech Republic)]. E-mail: begusova@ujf.cas.cz; Gillard, Nathalie [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France); Sy, Denise [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France); Castaing, Bertrand [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France); Charlier, Michel [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France); Spotheim-Maurizot, Melanie [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France)

    2005-02-01

    We discuss here modifications of DNA and protein radiolysis due to the interaction of these two partners in specific complexes. Experimental patterns of frank strand breaks (FSB) and alkali revealed breaks (ARB) obtained for DNA lac operator bound to the lac repressor and for a DNA containing an abasic site analog bound to the formamidopyrimidine-DNA glycosylase are reported. Experimental data are compared to predicted damage distribution obtained using the theoretical model RADACK.

  9. Radiolysis of DNA-protein complexes

    International Nuclear Information System (INIS)

    Begusova, Marie; Gillard, Nathalie; Sy, Denise; Castaing, Bertrand; Charlier, Michel; Spotheim-Maurizot, Melanie

    2005-01-01

    We discuss here modifications of DNA and protein radiolysis due to the interaction of these two partners in specific complexes. Experimental patterns of frank strand breaks (FSB) and alkali revealed breaks (ARB) obtained for DNA lac operator bound to the lac repressor and for a DNA containing an abasic site analog bound to the formamidopyrimidine-DNA glycosylase are reported. Experimental data are compared to predicted damage distribution obtained using the theoretical model RADACK

  10. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  11. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  12. Encapsulation of Protein-Polysaccharide HIP Complex in Polymeric Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ripal Gaudana

    2011-01-01

    Full Text Available The objective of the present study is to formulate and characterize a nanoparticulate-based formulation of a macromolecule in a hydrophobic ion pairing (HIP complex form. So far, HIP complexation approach has been studied only for proteins with molecular weight of 10–20 kDa. Hence, we have selected bovine serum albumin (BSA having higher molecular weight (66.3 kDa as a model protein and dextran sulphate (DS as a complexing polymer to generate HIP complex. We have prepared and optimized the HIP complex formation process of BSA with DS. Ionic interactions between basic amino acids of BSA with sulphate groups of DS were confirmed by FTIR analysis. Further, nanoparticles were prepared and characterized with respect to size and surface morphology. We observed significant entrapment of BSA in nanoparticles prepared with minimal amounts of PLGA polymer. Finally, results of circular dichroism and intrinsic fluorescence assay have clearly indicated that HIP complexation and method of nanoparticle preparation did not alter the secondary and tertiary structures of BSA.

  13. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  14. Impact of cell culture process changes on endogenous retrovirus expression.

    Science.gov (United States)

    Brorson, Kurt; De Wit, Christina; Hamilton, Elizabeth; Mustafa, Mehnaz; Swann, Patrick G; Kiss, Robert; Taticek, Ron; Polastri, Gian; Stein, Kathryn E; Xu, Yuan

    2002-11-05

    Cell culture process changes (e.g., changes in scale, medium formulation, operational conditions) and cell line changes are common during the development life cycle of a therapeutic protein. To ensure that the impact of such process changes on product quality and safety is minimal, it is standard practice to compare critical product quality and safety attributes before and after the changes. One potential concern introduced by cell culture process improvements is the possibility of increased endogenous retrovirus expression to a level above the clearance capability of the subsequent purification process. To address this, retrovirus expression was measured in scaled down and full production scaled Chinese hamster ovary (CHO) cell cultures of four monoclonal antibodies and one recombinant protein before and after process changes. Two highly sensitive, quantitative (Q)-PCR-based assays were used to measure endogenous retroviruses. It is shown that cell culture process changes that primarily alter media components, nutrient feed volume, seed density, cell bank source (i.e., master cell bank vs. working cell bank), and vial size, or culture scale, singly or in combination, do not impact the rate of retrovirus expression to an extent greater than the variability of the Q-PCR assays (0.2-0.5 log(10)). Cell culture changes that significantly alter the metabolic state of the cells and/or rates of protein expression (e.g., pH and temperature shifts, NaButyrate addition) measurably impact the rate of retrovirus synthesis (up to 2 log(10)). The greatest degree of variation in endogenous retrovirus expression was observed between individual cell lines (up to 3 log(10)). These data support the practice of measuring endogenous retrovirus output for each new cell line introduced into manufacturing or after process changes that significantly increase product-specific productivity or alter the metabolic state, but suggest that reassessment of retrovirus expression after other

  15. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  17. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  18. Affinity capture of biotinylated proteins at acidic conditions to facilitate hydrogen/deuterium exchange mass spectrometry analysis of multimeric protein complexes

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Jørgensen, Thomas J. D.; Koefoed, Klaus

    2013-01-01

    Characterization of conformational and dynamic changes associated with protein interactions can be done by hydrogen/deuterium exchange mass spectrometry (HDX-MS) by comparing the deuterium uptake in the bound and unbound state of the proteins. Investigation of local hydrogen/deuterium exchange...... in heteromultimeric protein complexes poses a challenge for the method due to the increased complexity of the mixture of peptides originating from all interaction partners in the complex. Previously, interference of peptides from one interaction partner has been removed by immobilizing the intact protein on beads...... complexes without interference of peptides originating from other interaction partners in the complex. The biotin-streptavidin strategy has been successfully implemented in a model system with two recombinant monoclonal antibodies that target nonoverlapping epitopes on the human epidermal growth factor...

  19. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  20. PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.

    Science.gov (United States)

    Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M

    2017-09-01

    We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Data on endogenous bovine ovarian follicular cells peptides and small proteins obtained through Top-down High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Valérie Labas

    2017-08-01

    Full Text Available The endogenous peptides and small proteins extracted from bovine ovarian follicular cells (oocytes, cumulus and granulosa cells were identified by Top-down High Resolution Mass Spectrometry (TD-HR-MS/MS in order to annotate peptido- and proteoforms detected using qualitative and quantitative profiling method based on ICM-MS (Intact Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. The description and analysis of these Top-down MS data in the context of oocyte quality biomarkers research are available in the original research article of Labas et al. (2017 http://dx.doi.org/10.1016/j.jprot.2017.03.027 [1]. Raw data derived from this peptidomic/proteomic analysis have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (dataset identifier PXD004892. Here, we described the inventory of all identified peptido- and proteoforms including their biochemical and structural features, and functional annotation of correspondent proteins. This peptide/protein inventory revealed that TD-HR-MS/MS was appropriate method for both global and targeted proteomic analysis of ovarian tissues, and it can be further employed as a reference for other studies on follicular cells including single oocytes.

  2. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

  3. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2015-01-01

    Reducing the computational effort and increasing the accuracy of potential energy functions is of utmost importance in modeling biological systems, for instance in protein structure prediction, docking or design. Evaluating interactions between nonbonded atoms is the bottleneck of such computations......-complexes from scratch for every configuration encountered during the search for the native structure would make this approach hopelessly slow. However, it is argued that kinetic a-complexes can be used to reduce the computational effort of determining the potential energy when "moving" from one configuration...... to a neighboring one. As a consequence, relatively expensive (initial) construction of an a-complex is expected to be compensated by subsequent fast kinetic updates during the search process. Computational results presented in this paper are limited. However, they suggest that the applicability of a...

  4. Nuclear pore complex protein mediated nuclear localization of dicer protein in human cells.

    Directory of Open Access Journals (Sweden)

    Yoshinari Ando

    Full Text Available Human DICER1 protein cleaves double-stranded RNA into small sizes, a crucial step in production of single-stranded RNAs which are mediating factors of cytoplasmic RNA interference. Here, we clearly demonstrate that human DICER1 protein localizes not only to the cytoplasm but also to the nucleoplasm. We also find that human DICER1 protein associates with the NUP153 protein, one component of the nuclear pore complex. This association is detected predominantly in the cytoplasm but is also clearly distinguishable at the nuclear periphery. Additional characterization of the NUP153-DICER1 association suggests NUP153 plays a crucial role in the nuclear localization of the DICER1 protein.

  5. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese

    International Nuclear Information System (INIS)

    Wenk, Patricia; Kaushik, Monu; Richter, Diane; Vogel, Marc; Suess, Beatrix; Corzilius, Björn

    2015-01-01

    We report the direct dynamic nuclear polarization (DNP) of 13 C nuclei of a uniformly [ 13 C, 15 N]-labeled, paramagnetic full-length hammerhead ribozyme (HHRz) complex with Mn 2+ where the enhanced polarization is fully provided by the endogenously bound metal ion and no exogenous polarizing agent is added. A 13 C enhancement factor of ε = 8 was observed by intra-complex DNP at 9.4 T. In contrast, “conventional” indirect and direct DNP experiments were performed using AMUPol as polarizing agent where we obtained a 1 H enhancement factor of ε ≈ 250. Comparison with the diamagnetic (Mg 2+ ) HHRz complex shows that the presence of Mn 2+ only marginally influences the (DNP-enhanced) NMR properties of the RNA. Furthermore two-dimensional correlation spectra ( 15 N– 13 C and 13 C– 13 C) reveal structural inhomogeneity in the frozen, amorphous state indicating the coexistence of several conformational states. These demonstrations of intra-complex DNP using an endogenous metal ion as well as DNP-enhanced MAS NMR of RNA in general yield important information for the development of new methods in structural biology

  6. Effect of adeturone on the concentration of endogenous sulfhydryl groups in mouse spleen and liver

    International Nuclear Information System (INIS)

    Pantev, T.; Bychvarova, K.

    1981-01-01

    Levels of endogenous sulfhydryl groups (total, protein, and non-protein) in mouse liver and spleen were studied for response to the radioprotective drug Adeturone (AET adenosine triphosphate) as recorded at various time intervals (5 - 90 min) following administration of a 300 mg/kg b.w. dose. Spleen sulfhydryl concentration levels tended to elevation, with the peak effect noted at 45 min post-treatment. In the liver, augmentation was observed only for non-protein sylfhydryl groups, at 10 and 15 min post-treatment (time intervals when Adeturone affords maximum protection against radiation); at the 60 min, however, there was a statistically reliable drop. The findings indicate that Adeturone treatment produces response patterns of opposite directions in liver and spleen endogenous thiols. (A.B.)

  7. Avian endogenous provirus (ev-3) env gene sequencing: implication for pathogenic retrovirus origination.

    Science.gov (United States)

    Tikhonenko, A T; Lomovskaya, O L

    1990-02-01

    The avian endogenous env gene product blocks the surface receptor and, as a result, cells become immune to related exogenous retroviruses. On the other hand, the same sequence can be included in the pathogenic retrovirus genome, as shown by oligonucleotide mapping. However, since the complete env gene sequence was not known, the comparison of genomic nucleotide sequences was not possible. Therefore an avian endogenous provirus with an intact env gene was cloned from a chicken gene bank and the regions coding for the C terminus of the gp85 and gp37 proteins were sequenced. Comparison of this sequence with those of other retroviruses proved that one of the pathogenic viruses associated with osteopetrosis is a cross between avian endogenous virus and Rous sarcoma virus. Retroviruses and, especially, endogenous retroviruses are traditionally of the most developed models of viral carcinogenesis. Many endogenous retroviruses are implicated in neoplastic transformation of the cell. For instance, endogenous mouse mammary tumor virus of some inbred lines appears to be the only causative agent in these mammary cancers. Other even nonpathogenic murine endogenous retroviruses are involved in the origination of MCF-type recombinant acute leukosis viruses. Some endogenous retroviruses are implicated in the transduction or activation of cellular protooncogenes. Our interest in endogenous viruses is based on their ability to make cells resistant to exogenous retroviruses. Expression of their major envelope glycoprotein leads to cellular surface receptor blockage and imparts immunity to infection by the related leukemia retroviruses. This problem is quite elaborated for chicken endogenous virus RAV-O (7-9).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.

    Science.gov (United States)

    Peng, Wei; Wang, Jianxin; Zhao, Bihai; Wang, Lusheng

    2015-01-01

    Protein complexes play a significant role in understanding the underlying mechanism of most cellular functions. Recently, many researchers have explored computational methods to identify protein complexes from protein-protein interaction (PPI) networks. One group of researchers focus on detecting local dense subgraphs which correspond to protein complexes by considering local neighbors. The drawback of this kind of approach is that the global information of the networks is ignored. Some methods such as Markov Clustering algorithm (MCL), PageRank-Nibble are proposed to find protein complexes based on random walk technique which can exploit the global structure of networks. However, these methods ignore the inherent core-attachment structure of protein complexes and treat adjacent node equally. In this paper, we design a weighted PageRank-Nibble algorithm which assigns each adjacent node with different probability, and propose a novel method named WPNCA to detect protein complex from PPI networks by using weighted PageRank-Nibble algorithm and core-attachment structure. Firstly, WPNCA partitions the PPI networks into multiple dense clusters by using weighted PageRank-Nibble algorithm. Then the cores of these clusters are detected and the rest of proteins in the clusters will be selected as attachments to form the final predicted protein complexes. The experiments on yeast data show that WPNCA outperforms the existing methods in terms of both accuracy and p-value. The software for WPNCA is available at "http://netlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download.html".

  9. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    Science.gov (United States)

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger

  10. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    International Nuclear Information System (INIS)

    De Santis, E; Minicozzi, V; Morante, S; Rossi, G C; Stellato, F

    2016-01-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed. (paper)

  11. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    Science.gov (United States)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  12. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  13. Pancreatic Islet Protein Complexes and Their Dysregulation in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Brunak, Søren

    2017-01-01

    Type 2 diabetes (T2D) is a complex disease that involves multiple genes. Numerous risk loci have already been associated with T2D, although many susceptibility genes remain to be identified given heritability estimates. Systems biology approaches hold potential for discovering novel T2D genes...... by considering their biological context, such as tissue-specific protein interaction partners. Pancreatic islets are a key T2D tissue and many of the known genetic risk variants lead to impaired islet function, hence a better understanding of the islet-specific dysregulation in the disease-state is essential...... to unveil the full potential of person-specific profiles. Here we identify 3,692 overlapping pancreatic islet protein complexes (containing 10,805 genes) by integrating islet gene and protein expression data with protein interactions. We found 24 of these complexes to be significantly enriched for genes...

  14. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    Science.gov (United States)

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  16. Radiation-induced dissociation of stable DNA-protein complexes in Erlich ascites carcinoma cells

    International Nuclear Information System (INIS)

    Juhasz, P.P.; Sirota, N.P.; Gaziev, A.I.

    1982-01-01

    DNA of Ehrlich ascites carcinoma cells prepared under conditions that were highly denaturing for proteins but not for DNA, contained a group of nonhistone residual proteins. The amount of these proteins increased during DNA replication. The DNA-protein complex observed was sensitive to proteolytic enzymes and/or SH-reagents. γ-irradiation cells with moderate doses leads to a decrease in the amount of DNA-protein complexes. High-dose gamma-irradiation produces enhanced linking of chromosomal proteins with DNA. (author)

  17. Protein complex detection in PPI networks based on data integration and supervised learning method.

    Science.gov (United States)

    Yu, Feng; Yang, Zhi; Hu, Xiao; Sun, Yuan; Lin, Hong; Wang, Jian

    2015-01-01

    Revealing protein complexes are important for understanding principles of cellular organization and function. High-throughput experimental techniques have produced a large amount of protein interactions, which makes it possible to predict protein complexes from protein-protein interaction (PPI) networks. However, the small amount of known physical interactions may limit protein complex detection. The new PPI networks are constructed by integrating PPI datasets with the large and readily available PPI data from biomedical literature, and then the less reliable PPI between two proteins are filtered out based on semantic similarity and topological similarity of the two proteins. Finally, the supervised learning protein complex detection (SLPC), which can make full use of the information of available known complexes, is applied to detect protein complex on the new PPI networks. The experimental results of SLPC on two different categories yeast PPI networks demonstrate effectiveness of the approach: compared with the original PPI networks, the best average improvements of 4.76, 6.81 and 15.75 percentage units in the F-score, accuracy and maximum matching ratio (MMR) are achieved respectively; compared with the denoising PPI networks, the best average improvements of 3.91, 4.61 and 12.10 percentage units in the F-score, accuracy and MMR are achieved respectively; compared with ClusterONE, the start-of the-art complex detection method, on the denoising extended PPI networks, the average improvements of 26.02 and 22.40 percentage units in the F-score and MMR are achieved respectively. The experimental results show that the performances of SLPC have a large improvement through integration of new receivable PPI data from biomedical literature into original PPI networks and denoising PPI networks. In addition, our protein complexes detection method can achieve better performance than ClusterONE.

  18. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  19. Stress activates pronociceptive endogenous opioid signalling in DRG neurons during chronic colitis.

    Science.gov (United States)

    Guerrero-Alba, Raquel; Valdez-Morales, Eduardo E; Jimenez-Vargas, Nestor N; Lopez-Lopez, Cintya; Jaramillo-Polanco, Josue; Okamoto, Takanobu; Nasser, Yasmin; Bunnett, Nigel W; Lomax, Alan E; Vanner, Stephen J

    2017-12-01

    Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca 2+ imaging techniques. Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca 2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein βϒ subunits. Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Determination of nitrogen absorption and endogenous nitrogen secretion in the digestive tract of pigs fed with nitrogen-15-labelled dried whey

    International Nuclear Information System (INIS)

    Gebhardt, G.; Souffrant, W.; Koehler, R.; Zebrowska, T.

    1977-01-01

    Two fistulated pigs weighing between 15kg and 54kg were given experimental diets containing 15 N-labelled dried whey. The labelled experimental diets were given once only. Samples of the digesta were taken from the duodenum and terminal ileum at various intervals of time up to 48h after feeding the labelled protein feed. The digesta were separated into the four following fractions: Residue on centrifugation, proteins, peptides and free amino acids. The secretion of endogenous nitrogen in the duodenum was 12.5g/24h in pigs having a live weight of 50kg. The endogenous nitrogen was found to be relatively uniformly distributed among the four fractions. The rate of secretion of endogenous nitrogen showed a continuous decrease during 24h. The secretion of endogenous nitrogen in the terminal ileum was 54 to 60mg of nitrogen per kilogram live weight. After passage through the small intestine the greater part of the free amino acids in digesta was of exogenous origin. In the protein fraction most came from endogenous proteins. A true absorption of 17% of nitrogen was determined in the duodenum. The amount of nitrogen absorbed in the terminal part of the small intestine was, on average, 90% relative to the nitrogen intake. The true digestibility calculated with the amount of 15 N in food and faeces was 98%. (author)

  1. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    Science.gov (United States)

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling. PMID:18829464

  2. Assembly of oligomeric death domain complexes during Toll receptor signaling.

    Science.gov (United States)

    Moncrieffe, Martin C; Grossmann, J Günter; Gay, Nicholas J

    2008-11-28

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling.

  3. Targeted Quantitation of Site-Specific Cysteine Oxidation in Endogenous Proteins Using a Differential Alkylation and Multiple Reaction Monitoring Mass Spectrometry Approach

    Science.gov (United States)

    Held, Jason M.; Danielson, Steven R.; Behring, Jessica B.; Atsriku, Christian; Britton, David J.; Puckett, Rachel L.; Schilling, Birgit; Campisi, Judith; Benz, Christopher C.; Gibson, Bradford W.

    2010-01-01

    Reactive oxygen species (ROS) are both physiological intermediates in cellular signaling and mediators of oxidative stress. The cysteine-specific redox-sensitivity of proteins can shed light on how ROS are regulated and function, but low sensitivity has limited quantification of the redox state of many fundamental cellular regulators in a cellular context. Here we describe a highly sensitive and reproducible oxidation analysis approach (OxMRM) that combines protein purification, differential alkylation with stable isotopes, and multiple reaction monitoring mass spectrometry that can be applied in a targeted manner to virtually any cysteine or protein. Using this approach, we quantified the site-specific cysteine oxidation status of endogenous p53 for the first time and found that Cys182 at the dimerization interface of the DNA binding domain is particularly susceptible to diamide oxidation intracellularly. OxMRM enables analysis of sulfinic and sulfonic acid oxidation levels, which we validate by assessing the oxidation of the catalytic Cys215 of protein tyrosine phosphatase-1B under numerous oxidant conditions. OxMRM also complements unbiased redox proteomics discovery studies as a verification tool through its high sensitivity, accuracy, precision, and throughput. PMID:20233844

  4. Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Manuel Hiss

    2017-10-01

    Full Text Available The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.

  5. Compound complex enzymes and proteins of Stipa capillata from Semipalatinsk polygon

    International Nuclear Information System (INIS)

    Sarsenbaev, K.N.; Esnazarov, U.; Sarsenbaeva, M.V.; Seisebaev, A.

    2002-01-01

    The effects of low and high doses of irradiation near Semipalatinsk Atomic lake on the compound complex of different enzymes and proteins of leaves from different population of Stipa capillata are considered. 36 samples of Stipa capillata were analyzed by the iso-electrofocusing methods, native and SDS-electrophoresis. Levels of radioactivity effect on compound complex of peroxidase, esterase, acid phosphates and soluble proteins were found. SDS-PAGE and IEF methods did not show difference in peptides spectra between 36 populations of examined species. It means, that difference between contaminated and non-contaminated populations not so big as was expected. Compound complex soluble protein of Stipa capillata leaves changes under chronic doses of radioactivity. The difference in spectra between control and contaminated leaves make up 3-6 bands. Control leaves have more high molecular weight proteins than contaminated ones. Appearance of new bands is one of ways of plant adaptation. New components of enzymes spectra and soluble proteins were found. It was suggested, that gene mutation or post-translation modification of these proteins are result of chronic irradiation. To prove exactly genetic nature of this alteration aminoacids sequence for these proteins the DNA sequence of different Stipa capillata populations genomes were compared

  6. Identification of unknown protein complex members by radiolocalization and analysis of low-abundance complexes resolved using native polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Bose, Mahuya; Adams, Brian P; Whittal, Randy M; Bose, Himangshu S

    2008-02-01

    Identification of unknown binding partners of a protein of interest can be a difficult process. Current strategies to determine protein binding partners result in a high amount of false-positives, requiring use of several different methods to confirm the accuracy of the apparent association. We have developed and utilized a method that is reliable and easily substantiated. Complexes are isolated from cell extract after exposure to the radiolabeled protein of interest, followed by resolution on a native polyacrylamide gel. Native conformations are preserved, allowing the complex members to maintain associations. By radiolabeling the protein of interest, the complex can be easily identified at detection levels below the threshold of Serva Blue, Coomassie, and silver stains. The visualized radioactive band is analyzed by MS to identify binding partners, which can be subsequently verified by antibody shift and immunoprecipitation of the complex. By using this method we have successfully identified binding partners of two proteins that reside in different locations of a cellular organelle.

  7. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    Science.gov (United States)

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  9. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    Science.gov (United States)

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  10. Influence of Pea Protein Aggregates on the Structure and Stability of Pea Protein/Soybean Polysaccharide Complex Emulsions

    Directory of Open Access Journals (Sweden)

    Baoru Yin

    2015-03-01

    Full Text Available The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS, and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  11. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  12. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70

    Directory of Open Access Journals (Sweden)

    Noireaux Vincent

    2010-06-01

    Full Text Available Abstract Background Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro. Results In this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP regeneration systems: creatine phosphate (CP, phosphoenolpyruvate (PEP, and 3-phosphoglyceric acid (3-PGA. The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture. Conclusions Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma

  13. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Conformational changes in the AAA ATPase p97–p47 adaptor complex

    Science.gov (United States)

    Beuron, Fabienne; Dreveny, Ingrid; Yuan, Xuemei; Pye, Valerie E; Mckeown, Ciaran; Briggs, Louise C; Cliff, Matthew J; Kaneko, Yayoi; Wallis, Russell; Isaacson, Rivka L; Ladbury, John E; Matthews, Steve J; Kondo, Hisao; Zhang, Xiaodong; Freemont, Paul S

    2006-01-01

    The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at ∼20 Å resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes. PMID:16601695

  15. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point.

    Science.gov (United States)

    de Vries, R

    2004-02-15

    Electrostatic complexation of flexible polyanions with the whey proteins alpha-lactalbumin and beta-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Huckel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that alpha-lactalbumin complexes much more strongly than beta-lactoglobulin. For alpha-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for beta-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches. Copyright 2004 American Institute of Physics

  17. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy

    Directory of Open Access Journals (Sweden)

    Emiliano eMacaluso

    2013-10-01

    Full Text Available The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the ventral fronto-parietal networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions.

  18. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy

    Science.gov (United States)

    Macaluso, Emiliano; Doricchi, Fabrizio

    2013-01-01

    The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal (vFP) regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the vFP networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions. PMID:24155707

  19. Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy.

    Science.gov (United States)

    Macaluso, Emiliano; Doricchi, Fabrizio

    2013-01-01

    The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal (vFP) regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the vFP networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions.

  20. The roles of USH1 proteins and PDZ domain-containing USH proteins in USH2 complex integrity in cochlear hair cells.

    Science.gov (United States)

    Zou, Junhuang; Chen, Qian; Almishaal, Ali; Mathur, Pranav Dinesh; Zheng, Tihua; Tian, Cong; Zheng, Qing Y; Yang, Jun

    2017-02-01

    Usher syndrome (USH) is the most common cause of inherited deaf-blindness, manifested as USH1, USH2 and USH3 clinical types. The protein products of USH2 causative and modifier genes, USH2A, ADGRV1, WHRN and PDZD7, interact to assemble a multiprotein complex at the ankle link region of the mechanosensitive stereociliary bundle in hair cells. Defects in this complex cause stereociliary bundle disorganization and hearing loss. The four USH2 proteins also interact in vitro with USH1 proteins including myosin VIIa, USH1G (SANS), CIB2 and harmonin. However, it is unclear whether the interactions between USH1 and USH2 proteins occur in vivo and whether USH1 proteins play a role in USH2 complex assembly in hair cells. In this study, we identified a novel interaction between myosin VIIa and PDZD7 by FLAG pull-down assay. We further investigated the role of the above-mentioned four USH1 proteins in the cochlear USH2 complex assembly using USH1 mutant mice. We showed that only myosin VIIa is indispensable for USH2 complex assembly at ankle links, indicating the potential transport and/or anchoring role of myosin VIIa for USH2 proteins in hair cells. However, myosin VIIa is not required for USH2 complex assembly in photoreceptors. We further showed that, while PDZ protein harmonin is not involved, its paralogous USH2 proteins, PDZD7 and whirlin, function synergistically in USH2 complex assembly in cochlear hair cells. In summary, our studies provide novel insight into the functional relationship between USH1 and USH2 proteins in the cochlea and the retina as well as the disease mechanisms underlying USH1 and USH2. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines.

    Science.gov (United States)

    Bennett, Nigel C; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2014-05-01

    In prostate cancer (PCa) patients, the protein target for androgen deprivation and blockade therapies is androgen receptor (AR). AR interacts with many proteins that function to either co-activate or co-repress its activity. Caveolin-1 (Cav-1) is not found in normal prostatic epithelium, but is found in PCa, and may be an AR co-regulator protein. We investigated cell line-specific signatures and associations of endogenous AR and Cav-1 in six PCa cell lines of known androgen sensitivity: LNCaP (androgen sensitive); 22Rv1 (androgen responsive); PC3, DU145, and ALVA41 (androgen non-reliant); and RWPE1 (non-malignant). Protein and mRNA expression profiles were compared and electron microscopy used to identify cells with caveolar structures. For cell lines expressing both AR and Cav-1, knockdown techniques using small interfering RNA against AR or Cav-1 were used to test whether diminished expression of one affected the other. Co-sedimentation of AR and Cav-1 was used to test their association. A reporter assay for AR genomic activity was utilized following Cav-1 knockdown. AR-expressing LNCaP and 22Rv1 cells had low endogenous Cav-1 mRNA and protein. Cell lines that expressed little or no AR (DU145, PC3, ALVA41, and RWPE1) expressed high endogenous levels of Cav-1. AR knockdown in LNCaP cells had little effect on Cav-1, but Cav-1 knockdown inhibited AR expression and genomic activity. These data show endogenous AR and Cav-1 mRNA and protein expression is inversely related in PCa cells, with Cav-1 acting on the androgen/AR signaling axis possibly as an AR co-activator, demonstrated by diminished AR genomic activity following Cav-1 knockdown. © 2013 Wiley Periodicals, Inc.

  2. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  3. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  4. Radiation damage to DNA in DNA-protein complexes.

    Science.gov (United States)

    Spotheim-Maurizot, M; Davídková, M

    2011-06-03

    The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.

  5. Glacial cycles: exogenous orbital changes vs. endogenous climate dynamics

    Science.gov (United States)

    Kaufmann, R. K.; Juselius, K.

    2010-04-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed to simulate glacial cycles accurately. Also, results suggest that non-linear dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles.

  6. MFIB: a repository of protein complexes with mutual folding induced by binding.

    Science.gov (United States)

    Fichó, Erzsébet; Reményi, István; Simon, István; Mészáros, Bálint

    2017-11-15

    It is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein-protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs. Here we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes. MFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. simon.istvan@ttk.mta.hu, meszaros.balint@ttk.mta.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  7. Partial purification of xylosyltransferase (XylT) from rat liver and characterization of endogenous acceptors

    International Nuclear Information System (INIS)

    Klinger, M.; Roden, L.

    1986-01-01

    The biosynthesis of the carbohydrate-protein linkage region of most proteoglycan species is initiated by transfer of xylose from UDP-xylose to serine hydroxyl groups in the core protein. The XylT catalyzing this reaction has been previously purified from embryonic chick cartilage and from a rat chondrosarcoma but not from a normal mammalian tissue. In this study, XylT was extracted from rat liver by homogenization in buffer containing 1 M KCl and was partially purified by chromatography on heparin-Sepharose, AH-Sepharose, and on Sepharose-linked tryptic fragments of silk fibroin. The eluate from the latter contained more than 40% of the applied activity and less than 5% of the protein. Gel chromatography of XylT eluted from heparin-Sepharose indicated a mol. wt. of 95,000 to 100,000. Incorporation of ( 3 H)xylose into endogenous acceptors in the crude extract amounted to more than 50% of the total observed with added substrate (silk fibroin). Of the total endogenous acceptor activity in the crude extract, 98% was not adsorbed to heparin-Sepharose and yielded a labeled product which was stable to treatment with 0.5 M NaOH at 20 0 C for 16 h; this material may have been glycogen. In contrast, most of the radioactivity incorporated into the endogenous acceptor in the heparin-Sepharose eluate was alkali-labile, as would be expected for the xylosylated core protein of a proteoglycan

  8. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, Patricia [University of Tübingen, Werner Siemens Imaging Center and Department of Preclinical Imaging and Radiopharmacy (Germany); Kaushik, Monu; Richter, Diane [Goethe University, Institute of Physical und Theoretical Chemistry, Institute of Biophysical Chemistry und Center for Biomolecular Magnetic Resonance (BMRZ) (Germany); Vogel, Marc; Suess, Beatrix [Technical University Darmstadt, Department of Biology (Germany); Corzilius, Björn, E-mail: corzilius@em.uni-frankfurt.de [Goethe University, Institute of Physical und Theoretical Chemistry, Institute of Biophysical Chemistry und Center for Biomolecular Magnetic Resonance (BMRZ) (Germany)

    2015-09-15

    We report the direct dynamic nuclear polarization (DNP) of {sup 13}C nuclei of a uniformly [{sup 13}C,{sup 15}N]-labeled, paramagnetic full-length hammerhead ribozyme (HHRz) complex with Mn{sup 2+} where the enhanced polarization is fully provided by the endogenously bound metal ion and no exogenous polarizing agent is added. A {sup 13}C enhancement factor of ε = 8 was observed by intra-complex DNP at 9.4 T. In contrast, “conventional” indirect and direct DNP experiments were performed using AMUPol as polarizing agent where we obtained a {sup 1}H enhancement factor of ε ≈ 250. Comparison with the diamagnetic (Mg{sup 2+}) HHRz complex shows that the presence of Mn{sup 2+} only marginally influences the (DNP-enhanced) NMR properties of the RNA. Furthermore two-dimensional correlation spectra ({sup 15}N–{sup 13}C and {sup 13}C–{sup 13}C) reveal structural inhomogeneity in the frozen, amorphous state indicating the coexistence of several conformational states. These demonstrations of intra-complex DNP using an endogenous metal ion as well as DNP-enhanced MAS NMR of RNA in general yield important information for the development of new methods in structural biology.

  9. The Endogenous Exposome

    Science.gov (United States)

    Nakamura, Jun; Mutlu, Esra; Sharma, Vyom; Collins, Leonard; Bodnar, Wanda; Yu, Rui; Lai, Yongquan; Moeller, Benjamin; Lu, Kun; Swenberg, James

    2014-01-01

    The concept of the Exposome, is a compilation of diseases and one’s lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the Endogenous Exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions. PMID:24767943

  10. Fast quantification of endogenous carbohydrates in plasma using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao

    2015-01-01

    Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  12. Revelation of endogenously bound Fe{sup 2+} ions in the crystal structure of ferritin from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Thiruselvam, Viswanathan [Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025 (India); Sivaraman, Padavattan [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Kumarevel, Thirumananseri, E-mail: kumarevel.thirumananseri@riken.jp [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Structural Biology Laboratory, RIKEN Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Ponnuswamy, Mondikalipudur Nanjappagounder, E-mail: mnpsy2004@yahoo.com [Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2014-10-24

    Highlights: • Crystal structure of ferritin was determined. • Endogenously expressed iron’s were identified. • Binuclear iron sites were observed at A and B active sites. - Abstract: Ferritin is an iron regulatory protein. It is responsible for storage and detoxification of excess iron thereby it regulates iron level in the body. Here we report the crystal structure of ferritin with two endogenously expressed Fe atoms binding in both the sites. The protein was purified and characterized by MALDI-TOF and N-terminal amino acid sequencing. The crystal belongs to I4 space group and it diffracted up to 2.5 Å. The structural analysis suggested that it crystallizes as hexamer and confirmed that it happened to be the first report of endogenously expressed Fe ions incorporated in both the A and B sites, situated in between the helices.

  13. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    Directory of Open Access Journals (Sweden)

    Katrina Brudzynski

    Full Text Available Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002 with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a high molecular weight complexes (230-180 kDa enriched in proteins but possessing a limited reducing activity toward the NBT and (b lower molecular size complexes (110-85 kDa enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the

  14. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  15. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    Science.gov (United States)

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  16. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea.

    Directory of Open Access Journals (Sweden)

    Françoise Paquet

    Full Text Available In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1 from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.

  17. Rabbit macrophages secrete two biochemically and immunologically distinct endogenous pyrogens.

    Science.gov (United States)

    Murphy, P A; Cebula, T A; Levin, J; Windle, B E

    1981-10-01

    Rabbit endogenous pyrogens occurred in two forms. One was an apparently single protein with a pI of 7.3; the other was a family of proteins with pI values of 4.5 to 5.0. We selected two of the latter, with pI values of 4.6 and 4.72, as representative of the group and compared them with the pI 7.3 pyrogen. Antisera raised in three goats completely neutralized the pyrogenic activity of the pI 7.3 pyrogen. Larger doses of these antisera did not block the pyrogenic activity of either of the pI 4.5 to 5.0 pyrogens. The pI 7.3 pyrogen contained a free --SH group which was essential to its biological activity. It was inactivated by 100 mM N-ethylmaleimide or 200 mM iodoacetamide, bound to Thiol-Sepharose columns, and could be eluted from them with mercaptoethanol. Neither of the pI 4.5 to 5.0 pyrogens was inactivated by N-ethylmaleimide or iodoacetamide, and neither bound to Thiol-Sepharose. Both endogenous pyrogens gave negative results in the Limulus lysate test for bacterial endotoxins. These results suggest that the pI 7.3 and pI 4.5 to 5.0 endogenous pyrogens are not closely related to each other and are consistent with the idea that they may not be related at all. Alternative hypotheses are discussed.

  18. Endogenous Locus Reporter Assays.

    Science.gov (United States)

    Liu, Yaping; Hermes, Jeffrey; Li, Jing; Tudor, Matthew

    2018-01-01

    Reporter gene assays are widely used in high-throughput screening (HTS) to identify compounds that modulate gene expression. Traditionally a reporter gene assay is built by cloning an endogenous promoter sequence or synthetic response elements in the regulatory region of a reporter gene to monitor transcriptional activity of a specific biological process (exogenous reporter assay). In contrast, an endogenous locus reporter has a reporter gene inserted in the endogenous gene locus that allows the reporter gene to be expressed under the control of the same regulatory elements as the endogenous gene, thus more accurately reflecting the changes seen in the regulation of the actual gene. In this chapter, we introduce some of the considerations behind building a reporter gene assay for high-throughput compound screening and describe the methods we have utilized to establish 1536-well format endogenous locus reporter and exogenous reporter assays for the screening of compounds that modulate Myc pathway activity.

  19. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    Science.gov (United States)

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Selectivity and evolutionary divergence of metabotropic glutamate receptors for endogenous ligands and G proteins coupled to phospholipase C or TRP channels.

    Science.gov (United States)

    Kang, Hye Jin; Menlove, Kit; Ma, Jianpeng; Wilkins, Angela; Lichtarge, Olivier; Wensel, Theodore G

    2014-10-24

    To define the upstream and downstream signaling specificities of metabotropic glutamate receptors (mGluR), we have examined the ability of representative mGluR of group I, II, and III to be activated by endogenous amino acids and catalyze activation of G proteins coupled to phospholipase C (PLC), or activation of G(i/o) proteins coupled to the ion channel TRPC4β. Fluorescence-based assays have allowed us to observe interactions not previously reported or clearly identified. We have found that the specificity for endogenous amino acids is remarkably stringent. Even at millimolar levels, structurally similar compounds do not elicit significant activation. As reported previously, the clear exception is L-serine-O-phosphate (L-SOP), which strongly activates group III mGluR, especially mGluR4,-6,-8 but not group I or II mGluR. Whereas L-SOP cannot activate mGluR1 or mGluR2, it acts as a weak antagonist for mGluR1 and a potent antagonist for mGluR2, suggesting that co-recognition of L-glutamate and L-SOP arose early in evolution, and was followed later by divergence of group I and group II mGluR versus group III in l-SOP responses. mGluR7 has low affinity and efficacy for activation by both L-glutamate and L-SOP. Molecular docking studies suggested that residue 74 corresponding to lysine in mGluR4 and asparagine in mGluR7 might play a key role, and, indeed, mutagenesis experiments demonstrated that mutating this residue to lysine in mGluR7 enhances the potency of L-SOP. Experiments with pertussis toxin and dominant-negative Gα(i/o) proteins revealed that mGluR1 couples strongly to TRPC4β through Gα(i/o), in addition to coupling to PLC through Gα(q/11). © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Selectivity and Evolutionary Divergence of Metabotropic Glutamate Receptors for Endogenous Ligands and G Proteins Coupled to Phospholipase C or TRP Channels*

    Science.gov (United States)

    Kang, Hye Jin; Menlove, Kit; Ma, Jianpeng; Wilkins, Angela; Lichtarge, Olivier; Wensel, Theodore G.

    2014-01-01

    To define the upstream and downstream signaling specificities of metabotropic glutamate receptors (mGluR), we have examined the ability of representative mGluR of group I, II, and III to be activated by endogenous amino acids and catalyze activation of G proteins coupled to phospholipase C (PLC), or activation of Gi/o proteins coupled to the ion channel TRPC4β. Fluorescence-based assays have allowed us to observe interactions not previously reported or clearly identified. We have found that the specificity for endogenous amino acids is remarkably stringent. Even at millimolar levels, structurally similar compounds do not elicit significant activation. As reported previously, the clear exception is l-serine-O-phosphate (l-SOP), which strongly activates group III mGluR, especially mGluR4,-6,-8 but not group I or II mGluR. Whereas l-SOP cannot activate mGluR1 or mGluR2, it acts as a weak antagonist for mGluR1 and a potent antagonist for mGluR2, suggesting that co-recognition of l-glutamate and l-SOP arose early in evolution, and was followed later by divergence of group I and group II mGluR versus group III in l-SOP responses. mGluR7 has low affinity and efficacy for activation by both l-glutamate and l-SOP. Molecular docking studies suggested that residue 74 corresponding to lysine in mGluR4 and asparagine in mGluR7 might play a key role, and, indeed, mutagenesis experiments demonstrated that mutating this residue to lysine in mGluR7 enhances the potency of l-SOP. Experiments with pertussis toxin and dominant-negative Gαi/o proteins revealed that mGluR1 couples strongly to TRPC4β through Gαi/o, in addition to coupling to PLC through Gαq/11. PMID:25193666

  2. Study of new interactions of glitazone's stereoisomers and the endogenous ligand 15d-PGJ2 on six different PPAR gamma proteins.

    Science.gov (United States)

    Álvarez-Almazán, Samuel; Bello, Martiniano; Tamay-Cach, Feliciano; Martínez-Archundia, Marlet; Alemán-González-Duhart, Diana; Correa-Basurto, José; Mendieta-Wejebe, Jessica Elena

    2017-10-15

    Diabetes mellitus is a chronic disease characterized by hyperglycemia, insulin resistance and hyperlipidemia. Glitazones or thiazolidinediones (TZD) are drugs that act as insulin-sensitizing agents whose molecular target is the peroxisome proliferator-activated receptor gamma (PPARγ). The euglycemic action of TZD has been linked with the induction of type 4 glucose transporter. However, it has been shown that the effect of TZD depends on the specific stereoisomer that interacts with PPARγ. Therefore, this work is focused on exploring the interactions and geometry adopted by glitazone's stereoisomers and one endogenous ligand on different conformations of the six crystals of the PPARγ protein using molecular docking and molecular dynamics (MD) simulations accompanied by the MMGBSA approach. Specifically, the 2,4-thiazolidinedione ring, pioglitazone (PIO), rosiglitazone (ROSI) and troglitazone (TRO) stereoisomers (exogenous ligands), as well as the endogenous ligand 15d-PGJ2, were evaluated. The six crystallographic structures of PPARγ are available at Protein Data Bank as the PDB entries 2PRG, 4PRG, 3T03, 1I7I, 1FM6, and 4EMA. According to the results, a boomerang shape and a particular location of ligands were found with low variations according to the protein conformations. The 15d-PGJ2, TZD, PIO, ROSI and (S,S)-TRO enantiomers were mostly stabilized by twenty hydrophobic residues: Phe226, Pro227, Leu228, Ile281, Phe282, Cys285, Ala292, Ile296, Ile326, Tyr327, Met329, Leu330, Leu333, Met334, Val339, Ile341, Met348, Leu353, Phe363 and Met364. Most hydrogen bond interactions were found between the polar groups of ligands with Arg288, Ser289, Lys367, Gln286, His323, Glu343 and His449 residues. An energetic analysis revealed binding free energy trends that supported known experimental findings of other authors describing better binding properties for PIO, ROSI and (S,S)-TRO than for 15d-PGJ2 and the TZD ring. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nitrogen utilization in pigs fed diets with soybean and rapeseed products leading to different ileal endogenous nitrogen losses

    NARCIS (Netherlands)

    Grala, W.; Verstegen, M.W.A.; Jansman, A.J.M.; Huisman, J.; Wasilewko, J.

    1998-01-01

    Nitrogen (N) balance was determined in 36 pigs (BW 24 to 30 kg) fed diets inducing different ileal endogenous N losses (ENL). We tested the hypothesis that enhanced ENL may be indicative of a higher recycling of endogenous proteins that will induce a greater urinary N loss and a lower efficiency of

  4. A novel endogenous betaretrovirus group characterized from polar bears (Ursus maritimus) and giant pandas (Ailuropoda melanoleuca)

    DEFF Research Database (Denmark)

    Mayer, Jens; Tsangaras, Kyriakos; Heeger, Felix

    2013-01-01

    . Molecular dating indicates the group originated before the divergence of bears from a common ancestor but is not present in all carnivores. Closely related sequences were identified in the giant panda (Ailuropoda melanoleuca) and characterized from its genome. We have designated the polar bear and giant...... panda sequences U. maritimus endogenous retrovirus (UmaERV) and A. melanoleuca endogenous retrovirus (AmeERV), respectively. Phylogenetic analysis demonstrated that the bear virus group is nested within the HERV-K supergroup among bovine and bat endogenous retroviruses suggesting a complex evolutionary......Transcriptome analysis of polar bears (Ursus maritimus) yielded sequences with highest similarity to the human endogenous retrovirus group HERV-K(HML-2). Further analysis of the polar bear draft genome identified an endogenous betaretrovirus group comprising 26 proviral copies and 231 solo LTRs...

  5. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    Science.gov (United States)

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Endogenous sex steroids and cardio- and cerebro-vascular disease in the postmenopausal period.

    Science.gov (United States)

    Pappa, Theodora; Alevizaki, Maria

    2012-08-01

    Cardio- and cerebro-vascular diseases are two leading causes of death and long-term disability in postmenopausal women. The acute fall of estrogen in menopause is associated with increased cardiovascular risk. The relative contribution of androgen to this risk is also being recognized. The use of more sensitive assays for estradiol measurement and the study of receptor and carrier protein gene polymorphisms have provided some new information on the clinical relevance of endogenous sex steroids. We provide an update on the role of endogenous sex steroids on cardio- and cerebro-vascular disease in the postmenopausal period. We performed a PubMed search using the terms 'endogenous estrogen', 'androgen', 'cardiovascular disease', 'cerebro-vascular disease', 'stroke', 'carotid artery disease', and 'subclinical atherosclerosis'. The majority of studies show a beneficial effect of endogenous estrogen on the vasculature; however, there are a few studies reporting the contrary. A significant body of literature has reported associations of endogenous estrogen and androgen with early markers of atherosclerosis and metabolic parameters. Data on the relevance of endogenous sex steroids in heart disease and stroke are inconclusive. Most studies support a beneficial role of endogenous estrogens and, probably, an adverse effect of androgens in the vasculature in postmenopausal women. However, the described associations may not always be considered as causal. It is possible that circulating estrogen might represent a marker of general health status or alternatively reflect the sum of endogenous androgens aromatized in the periphery. Elucidating the role of sex steroids in cardio- and cerebro-vascular disease remains an interesting field of future research.

  7. COMe: the ontology of bioinorganic proteins

    Directory of Open Access Journals (Sweden)

    Contrino Sergio

    2004-02-01

    Full Text Available Abstract Background Many characterised proteins contain metal ions, small organic molecules or modified residues. In contrast, the huge amount of data generated by genome projects consists exclusively of sequences with almost no annotation. One of the goals of the structural genomics initiative is to provide representative three-dimensional (3-D structures for as many protein/domain folds as possible to allow successful homology modelling. However, important functional features such as metal co-ordination or a type of prosthetic group are not always conserved in homologous proteins. So far, the problem of correct annotation of bioinorganic proteins has been largely ignored by the bioinformatics community and information on bioinorganic centres obtained by methods other than crystallography or NMR is only available in literature databases. Results COMe (Co-Ordination of Metals represents the ontology for bioinorganic and other small molecule centres in complex proteins. COMe consists of three types of entities: 'bioinorganic motif' (BIM, 'molecule' (MOL, and 'complex proteins' (PRX, with each entity being assigned a unique identifier. A BIM consists of at least one centre (metal atom, inorganic cluster, organic molecule and two or more endogenous and/or exogenous ligands. BIMs are represented as one-dimensional (1-D strings and 2-D diagrams. A MOL entity represents a 'small molecule' which, when in complex with one or more polypeptides, forms a functional protein. The PRX entities refer to the functional proteins as well as to separate protein domains and subunits. The complex proteins in COMe are subdivided into three categories: (i metalloproteins, (ii organic prosthetic group proteins and (iii modified amino acid proteins. The data are currently stored in both XML format and a relational database and are available at http://www.ebi.ac.uk/come/. Conclusion COMe provides the classification of proteins according to their 'bioinorganic' features

  8. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine

  9. Mutational definition of functional domains within the Rev homolog encoded by human endogenous retrovirus K.

    Science.gov (United States)

    Bogerd, H P; Wiegand, H L; Yang, J; Cullen, B R

    2000-10-01

    Nuclear export of the incompletely spliced mRNAs encoded by several complex retroviruses, including human immunodeficiency virus type 1 (HIV-1), is dependent on a virally encoded adapter protein, termed Rev in HIV-1, that directly binds both to a cis-acting viral RNA target site and to the cellular Crm1 export factor. Human endogenous retrovirus K, a family of ancient endogenous retroviruses that is not related to the exogenous retrovirus HIV-1, was recently shown to also encode a Crm1-dependent nuclear RNA export factor, termed K-Rev. Although HIV-1 Rev and K-Rev display little sequence identity, they share the ability not only to bind to Crm1 and to RNA but also to form homomultimers and shuttle between nucleus and cytoplasm. We have used mutational analysis to identify sequences in the 105-amino-acid K-Rev protein required for each of these distinct biological activities. While mutations in K-Rev that inactivate any one of these properties also blocked K-Rev-dependent nuclear RNA export, several K-Rev mutants were comparable to wild type when assayed for any of these individual activities yet nevertheless defective for RNA export. Although several nonfunctional K-Rev mutants acted as dominant negative inhibitors of K-Rev-, but not HIV-1 Rev-, dependent RNA export, these were not defined by their inability to bind to Crm1, as is seen with HIV-1 Rev. In total, this analysis suggests a functional architecture for K-Rev that is similar to, but distinct from, that described for HIV-1 Rev and raises the possibility that viral RNA export mediated by the approximately 25 million-year-old K-Rev protein may require an additional cellular cofactor that is not required for HIV-1 Rev function.

  10. A soluble envelope protein of endogenous retrovirus (FeLIX) present in serum of domestic cats mediates infection of a pathogenic variant of feline leukemia virus.

    Science.gov (United States)

    Sakaguchi, Shoichi; Shojima, Takayuki; Fukui, Daisuke; Miyazawa, Takayuki

    2015-03-01

    T-lymphotropic feline leukemia virus (FeLV-T), a highly pathogenic variant of FeLV, induces severe immunosuppression in cats. FeLV-T is fusion defective because in its PHQ motif, a gammaretroviral consensus motif in the N terminus of an envelope protein, histidine is replaced with aspartate. Infection by FeLV-T requires FeLIX, a truncated envelope protein encoded by an endogenous FeLV, for transactivation of infectivity and Pit1 for binding FeLIX. Although Pit1 is present in most tissues in cats, the expression of FeLIX is limited to certain cells in lymphoid organs. Therefore, the host cell range of FeLV-T was thought to be restricted to cells expressing FeLIX. However, because FeLIX is a soluble factor and is expressed constitutively in lymphoid organs, we presumed it to be present in blood and evaluated its activities in sera of various mammalian species using a pseudotype assay. We demonstrated that cat serum has FeLIX activity at a functional level, suggesting that FeLIX is present in the blood and that FeLV-T may be able to infect cells expressing Pit1 regardless of the expression of FeLIX in vivo. In addition, FeLIX activities in sera were detected only in domestic cats and not in other feline species tested. To our knowledge, this is the first report to prove that a large amount of truncated envelope protein of endogenous retrovirus is circulating in the blood to facilitate the infection of a pathogenic exogenous retrovirus. © 2015 The Authors.

  11. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    Directory of Open Access Journals (Sweden)

    Jianbo Zhang

    2018-01-01

    Full Text Available Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrolein. Reuterin is an antimicrobial multicomponent system consisting of 3-hydroxypropionaldehyde, its dimer and hydrate, and also acrolein. The major conclusion is that gut microbes can metabolize glycerol to reuterin and that this transformation occurs in vivo. Given the known toxicity of acrolein, the observation that acrolein is formed in the gut necessitates further investigations on functional relevance for gut microbiota and the host.

  12. The interactions of multisensory integration with endogenous and exogenous attention

    Science.gov (United States)

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-01-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. PMID:26546734

  13. Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder.

    Science.gov (United States)

    Sekiguchi, Mari; Katayama, Syouichi; Hatano, Naoya; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2013-07-15

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in brain and mutations of its gene are known to be associated with neurodevelopmental disorders such as X-linked West syndrome and Rett syndrome. However, the physiological substrates of CDKL5 that are directly linked to these neurodevelopmental disorders are currently unknown. In this study, we explored endogenous substrates for CDKL5 in mouse brain extracts fractionated by a liquid-phase isoelectric focusing. In conjunction with CDKL5 phosphorylation assay, this approach detected a protein band with an apparent molecular mass of 120kDa that is remarkably phosphorylated by CDKL5. This 120-kDa protein was identified as amphiphysin 1 (Amph1) by LC-MS/MS analysis, and the site of phosphorylation by CDKL5 was determined to be Ser-293. The phosphorylation mimic mutants, Amph1(S293E) and Amph1(S293D), showed significantly reduced affinity for endophilin, a protein involved in synaptic vesicle endocytosis. Introduction of point mutations in the catalytic domain of CDKL5, which are disease-causing missense mutations found in Rett patients, resulted in the impairment of kinase activity toward Amph1. These results suggest that Amph1 is the cytoplasmic substrate for CDKL5 and that its phosphorylation may play crucial roles in the neuronal development. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  15. Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish

    Science.gov (United States)

    Ohga, Rie; Ota, Satoshi; Kawahara, Atsuo

    2015-01-01

    The type II clustered regularly interspaced short palindromic repeats (CRISPR) associated with Cas9 endonuclease (CRISPR/Cas9) has become a powerful genetic tool for understanding the function of a gene of interest. In zebrafish, the injection of Cas9 mRNA and guide-RNA (gRNA), which are prepared using an in vitro transcription system, efficiently induce DNA double-strand breaks (DSBs) at the targeted genomic locus. Because gRNA was originally constructed by fusing two short RNAs CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA), we examined the effect of synthetic crRNAs and tracrRNA with Cas9 mRNA or Cas9 protein on the genome editing activity. We previously reported that the disruption of tyrosinase (tyr) by tyr-gRNA/Cas9 mRNA causes a retinal pigment defect, whereas the disruption of spns2 by spns2-gRNA1/Cas9 mRNA leads to a cardiac progenitor migration defect in zebrafish. Here, we found that the injection of spns2-crRNA1, tyr-crRNA and tracrRNA with Cas9 mRNA or Cas9 protein simultaneously caused a migration defect in cardiac progenitors and a pigment defect in retinal epithelial cells. A time course analysis demonstrated that the injection of crRNAs and tracrRNA with Cas9 protein rapidly induced genome modifications compared with the injection of crRNAs and tracrRNA with Cas9 mRNA. We further show that the crRNA-tracrRNA-Cas9 protein complex is functional for the visualization of endogenous gene expression; therefore, this is a very powerful, ready-to-use system in zebrafish. PMID:26010089

  16. Extreme disorder in an ultrahigh-affinity protein complex

    DEFF Research Database (Denmark)

    Borgia, Alessandro; Borgia, Madeleine B; Bugge, Katrine

    2018-01-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions...... with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring...... or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex...

  17. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Directory of Open Access Journals (Sweden)

    Kathrin Roderer

    Full Text Available The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS. The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  18. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Science.gov (United States)

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  19. Characterization of Macrophage Endogenous S-Nitrosoproteome Using a Cysteine-Specific Phosphonate Adaptable Tag in Combination with TiO2 Chromatography.

    Science.gov (United States)

    Ibáñez-Vea, María; Huang, Honggang; Martínez de Morentin, Xabier; Pérez, Estela; Gato, Maria; Zuazo, Miren; Arasanz, Hugo; Fernández-Irigoyen, Joaquin; Santamaría, Enrique; Fernandez-Hinojal, Gonzalo; Larsen, Martin R; Escors, David; Kochan, Grazyna

    2018-03-02

    Protein S-nitrosylation is a cysteine post-translational modification mediated by nitric oxide. An increasing number of studies highlight S-nitrosylation as an important regulator of signaling involved in numerous cellular processes. Despite the significant progress in the development of redox proteomic methods, identification and quantification of endogeneous S-nitrosylation using high-throughput mass-spectrometry-based methods is a technical challenge because this modification is highly labile. To overcome this drawback, most methods induce S-nitrosylation chemically in proteins using nitrosylating compounds before analysis, with the risk of introducing nonphysiological S-nitrosylation. Here we present a novel method to efficiently identify endogenous S-nitrosopeptides in the macrophage total proteome. Our approach is based on the labeling of S-nitrosopeptides reduced by ascorbate with a cysteine specific phosphonate adaptable tag (CysPAT), followed by titanium dioxide (TiO 2 ) chromatography enrichment prior to nLC-MS/MS analysis. To test our procedure, we performed a large-scale analysis of this low-abundant modification in a murine macrophage cell line. We identified 569 endogeneous S-nitrosylated proteins compared with 795 following exogenous chemically induced S-nitrosylation. Importantly, we discovered 579 novel S-nitrosylation sites. The large number of identified endogenous S-nitrosylated peptides allowed the definition of two S-nitrosylation consensus sites, highlighting protein translation and redox processes as key S-nitrosylation targets in macrophages.

  20. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  1. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    Science.gov (United States)

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  2. Glucocorticoid-related bone changes from endogenous or exogenous glucocorticoids.

    Science.gov (United States)

    Warriner, Amy H; Saag, Kenneth G

    2013-12-01

    Glucocorticoids have a negative impact on bone through direct effects on bone cells and indirect effects on calcium absorption. Here, recent findings regarding glucocorticoid-induced osteoporosis, bone changes in patients with endogenous glucocorticoid derangements, and treatment of steroid-induced bone disease are reviewed. Although the majority of our understanding arises from the outcomes of patients treated with exogenous steroids, endogenous overproduction appears to be similarly destructive to bone, but these effects are reversible with cure of the underlying disease process. Additionally, there are bone changes that occur in diseases that interrupt adrenal glucocorticoid production, both in response to our inability to perfectly match glucocorticoid replacement and also related to the underlying disease process. More investigation is required to understand which patients with endogenous overproduction or underproduction of glucocorticoid would benefit from osteoporosis treatment. Better understood is the benefit that can be achieved with currently approved treatments for glucocorticoid-induced osteoporosis from exogenous steroids. With growing concern of long-term use of bisphosphonates, however, further investigation into the duration of use and use in certain populations, such as children and premenopausal women, is essential. Glucocorticoid-induced osteoporosis is a complex disease that is becoming better understood through advances in the study of exogenous and endogenous glucocorticoid exposure. Further advancement of proper treatment and prevention is on the horizon.

  3. Endogenous Prospect Theory

    OpenAIRE

    Schmidt, Ulrich; Zank, Horst

    2010-01-01

    In previous models of (cumulative) prospect theory reference-dependence of preferences is imposed beforehand and the location of the reference point is exogenously determined. This paper provides an axiomatization of a new specification of cumulative prospect theory, termed endogenous prospect theory, where reference-dependence is derived from preference conditions and a unique reference point arises endogenously.

  4. The potential roles of endogenous retroviruses in autoimmunity.

    Science.gov (United States)

    Nakagawa, K; Harrison, L C

    1996-08-01

    Endogenous retroviruses (ERVs) are estimated to comprise up to 1% of human DNA. While the genome of many ERVs is interrupted by termination codons, deletions or frame shift mutations, some ERVs are transcriptionally active and recent studies reveal protein expression or particle formation by human ERVs. ERVs have been implicated as aetiological agents of autoimmune disease, because of their structural and sequence similarities to exogenous retroviruses associated with immune dysregulation and their tissue-specific or differentiation-dependent expression. In fact, retrovirus-like particles distinct from those of known exogenous retroviruses and immune responses to ERV proteins have been observed in autoimmune disease. Quantitatively or structurally aberrant expression of normally cryptic ERVs, induced by environmental or endogenous factors, could initiate autoimmunity through direct or indirect mechanisms. ERVs may lead to immune dysregulation as insertional mutagens or cis-regulatory elements of cellular genes involved in immune function. ERVs may also encode elements like tax in human T-lymphotrophic virus type I (HTLV-I) or tat in human immunodeficiency virus-I (HIV-I) that are capable of transactivating cellular genes. More directly, human ERV gene products themselves may be immunologically active, by analogy with the superantigen activity in the long terminal repeat (LTR) of mouse mammary tumour viruses (MMTV) and the non-specific immunosuppressive activity in mammalian type C retrovirus env protein. Alternatively, increased expression of an ERV protein, or expression of a novel ERV protein not expressed in the thymus during acquisition of immune tolerance, may lead to its perception as a neoantigen. Paraneoplastic syndromes raise the possibility that novel ERV-encoded epitopes expressed by a tumour elicit immunity to cross-reactive epitopes in normal tissues. Recombination events between different but related ERVs, to whose products the host is immunologically

  5. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR)

    Science.gov (United States)

    Laszlo, Kenneth J.; Bush, Matthew F.

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.

  6. A human endogenous protein exerts multi-role biomimetic chemistry in synthesis of paramagnetic gold nanostructures for tumor bimodal imaging.

    Science.gov (United States)

    Yang, Weitao; Wu, Xiaoli; Dou, Yan; Chang, Jin; Xiang, Chenyang; Yu, Jiani; Wang, Jun; Wang, Xiuli; Zhang, Bingbo

    2018-04-01

    Protein-mediated biomimetic nanoparticles because of simplicity of their synthesis, subdued nonspecific adsorption, improved pharmacokinetics, and biocompatibility have been receiving increasing attention recently. Nevertheless, only a handful of proteins have been developed for biomimetic synthesis. Worse still, most of them are constrained on single-function usages in chemistry. Exploring new functional proteins, especially those with multi-dentate moieties for multi-role biomimetic chemistry, still remains a substantial challenge. Here, we report on a human endogenous protein, glutathione S-transferase (GST), with favorable amino acid motifs, that has innate talents in incubating high quality gold nanoparticles without adding reducing agents at physiological temperature, and particularly can further anchor gadolinium ions without adding extra chelators. The resultant paramagnetic AuNPs@GST Gd exhibits highly crystallization and uniform size of ca. 10 nm. Compared with clinical contrast agents (Iopamidol, Magnevist), AuNPs@GST Gd shows better imaging performance (e.g. enhanced relaxivity and larger X-ray attenuation efficiency) with clear evidence from Monte Carlo simulation and in vitro experimental results. Further in vivo imaging demonstrates good tumor targeting and clearance of AuNPs@GST Gd without obvious systemic toxicity. Particularly, low immunogenicity of AuNPs@GST Gd is certified by immunological status evaluation of T cells after stimulated with them. This study for the first time demonstrates the manipulation of a human protein for multi-role biomimetic chemistry depending on its unique amino acid motifs and its incorporation into a synthetic agent for potentially addressing some critical issues in cancer nanotheranostics such as synthetic methodology, biocompatibility, function integration, targeting, and immunogenicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pröpper, Kevin [University of Göttingen, (Germany); Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Meindl, Kathrin; Sammito, Massimo [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Dittrich, Birger; Sheldrick, George M. [University of Göttingen, (Germany); Pohl, Ehmke, E-mail: ehmke.pohl@durham.ac.uk [Durham University, (United Kingdom); Usón, Isabel, E-mail: ehmke.pohl@durham.ac.uk [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); University of Göttingen, (Germany)

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.

  8. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    Science.gov (United States)

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  9. Endogenous Nur77 Is a Specific Indicator of Antigen Receptor Signaling in Human T and B Cells.

    Science.gov (United States)

    Ashouri, Judith F; Weiss, Arthur

    2017-01-15

    Distinguishing true Ag-stimulated lymphocytes from bystanders activated by the inflammatory milieu has been difficult. Nur77 is an immediate early gene whose expression is rapidly upregulated by TCR signaling in murine T cells and human thymocytes. Nur77-GFP transgenes serve as specific TCR and BCR signaling reporters in murine transgenic models. In this study, we demonstrate that endogenous Nur77 protein expression can serve as a reporter of TCR and BCR specific signaling in human PBMCs. Nur77 protein amounts were assessed by immunofluorescence and flow cytometry in T and B cells isolated from human PBMCs obtained from healthy donors that had been stimulated by their respective Ag receptors. We demonstrate that endogenous Nur77 is a more specific reporter of Ag-specific signaling events than the commonly used CD69 activation marker in both human T and B cells. This is reflective of the disparity in signaling pathways that regulate the expression of Nur77 and CD69. Assessing endogenous Nur77 protein expression has great potential to identify Ag-activated lymphocytes in human disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse-associated protein 97

    DEFF Research Database (Denmark)

    Chi, Celestine Ngang; Bach, Anders; Engström, Åke

    2011-01-01

    The E6 protein of human papillomavirus exhibits complex interaction patterns with several host proteins and their roles in HPV mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor......, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues...

  11. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    Science.gov (United States)

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  12. Biochemical characterization of native Usher protein complexes from a vesicular subfraction of tracheal epithelial cells.

    Science.gov (United States)

    Zallocchi, Marisa; Sisson, Joseph H; Cosgrove, Dominic

    2010-02-16

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in nondetergent buffer and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15, and VLGR-1 and a different one at the top of the gradient that included all of the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100-200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins cosediment into the gradient at a sedimentation coefficient of approximately 50 S, correlating with a predicted molecular mass of 2 x 10(6) Da. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher protein complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors.

  13. BIOCHEMICAL CHARACTERIZATION OF NATIVE USHER PROTEIN COMPLEXES FROM A VESICULAR SUBFRACTION OF TRACHEAL EPITHELIAL CELLS†

    Science.gov (United States)

    Zallocchi, Marisa; Sisson, Joseph H.; Cosgrove, Dominic

    2010-01-01

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells, and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in non-detergent buffer, and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15 and VLGR-1, and a different one at the top of the gradient that included all the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100–200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins co-sediment into the gradient at a sedimentation coefficient of approximately 50S, correlating with a predicted molecular mass of 2 × 106 Daltons. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher proteins complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors. PMID:20058854

  14. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.

    Science.gov (United States)

    Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary

    2012-05-22

    In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Is There a Role for Endogenous 5-HT in Gastrointestinal Motility? How Recent Studies Have Changed Our Understanding.

    Science.gov (United States)

    Spencer, Nick J; Keating, Damien J

    2016-01-01

    Over the past few years, there have been dramatic changes in our understanding of the role of endogenous 5-hydroxytryptamine (5-HT) in the generation of gastrointestinal (GI) motility patterns in the small and large intestine. The idea that endogenous 5-HT played a major role in the generation of peristalsis in the small intestine was first proposed in the mid 1950s, after it was discovered that endogenous 5-HT could be released from the mucosa at a similar time that peristalsis occurred; and that exogenous 5-HT could potently stimulate peristalsis. The fact that exogenous 5-HT stimulated peristalsis and that there was a similarity in timing between the release of 5-HT from the mucosa and the onset of peristalsis led investigators to propose that release of endogenous 5-HT from the mucosa was causally related to the generation of peristalsis. In further support of this, other studies showed that selective 5-HT antagonists could inhibit or block peristalsis, and other motor patterns, such as the migrating motor complex. Taken together, based on these findings, some laboratories believed that endogenous 5-HT (synthesized in the gut wall) was an important mediator, or initiator, of different propulsive motor patterns in the lower GI tract. This notion changed dramatically in the past few years, however, after it was discovered that removal of the mucosa abolished all cyclical release of endogenous 5-HT, but did not block peristalsis, nor the cyclical migrating complex. Furthermore, other laboratories revealed that genetic deletion of the gene tryptophan hydroxylase 1 (TPH-1) (that synthesizes endogenous 5-HT in the mucosa) actually had no inhibitory effect on transit of intestinal contents in live animals. Then, perhaps one of the most startling of all observations was the discovery that selective 5-HT receptor antagonists actually have the same inhibitory effects on peristalsis and the migrating complex in segments of intestine that had been depleted of all

  16. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    This thesis consists of two parts. The rst part is divided into five chapters. Chapter 1 gives a general introduction to the bio-molecular systems that have been studied. These are membrane proteins and their lipid environments in the form of phospholipid nanodiscs. Membrane proteins...... the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... combine the bene ts of each of the methods and give unique structural information about relevant bio-molecular complexes in solution. Chapter 4 describes the work behind a proposal of a small-angle neutron scattering instrument for the European Spallation Source under construction in Lund. The instrument...

  17. Elevated endogenous expression of the dominant negative basic helix-loop-helix protein ID1 correlates with significant centrosome abnormalities in human tumor cells

    Directory of Open Access Journals (Sweden)

    Gutmann Anja

    2010-01-01

    Full Text Available Abstract Background ID proteins are dominant negative inhibitors of basic helix-loop-helix transcription factors that have multiple functions during development and cellular differentiation. Ectopic (over-expression of ID1 extends the lifespan of primary human epithelial cells. High expression levels of ID1 have been detected in multiple human malignancies, and in some have been correlated with unfavorable clinical prognosis. ID1 protein is localized at the centrosomes and forced (over-expression of ID1 results in errors during centrosome duplication. Results Here we analyzed the steady state expression levels of the four ID-proteins in 18 tumor cell lines and assessed the number of centrosome abnormalities. While expression of ID1, ID2, and ID3 was detected, we failed to detect protein expression of ID4. Expression of ID1 correlated with increased supernumerary centrosomes in most cell lines analyzed. Conclusions This is the first report that shows that not only ectopic expression in tissue culture but endogenous levels of ID1 modulate centrosome numbers. Thus, our findings support the hypothesis that ID1 interferes with centrosome homeostasis, most likely contributing to genomic instability and associated tumor aggressiveness.

  18. Characterization of the human GARP (Golgi associated retrograde protein) complex

    International Nuclear Information System (INIS)

    Liewen, Heike; Meinhold-Heerlein, Ivo; Oliveira, Vasco; Schwarzenbacher, Robert; Luo Guorong; Wadle, Andreas; Jung, Martin; Pfreundschuh, Michael; Stenner-Liewen, Frank

    2005-01-01

    The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the 'orphan' SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells

  19. α-Syntrophin stabilizes catalase to reduce endogenous reactive oxygen species levels during myoblast differentiation.

    Science.gov (United States)

    Moon, Jae Yun; Choi, Su Jin; Heo, Cheol Ho; Kim, Hwan Myung; Kim, Hye Sun

    2017-07-01

    α-Syntrophin is a component of the dystrophin-glycoprotein complex that interacts with various intracellular signaling proteins in muscle cells. The α-syntrophin knock-down C2 cell line (SNKD), established by infecting lentivirus particles with α-syntrophin shRNA, is characterized by a defect in terminal differentiation and increase in cell death. Since myoblast differentiation is accompanied by intensive mitochondrial biogenesis, the generation of intracellular reactive oxygen species (ROS) is also increased during myogenesis. Two-photon microscopy imaging showed that excessive intracellular ROS accumulated during the differentiation of SNKD cells as compared with control cells. The formation of 4-hydroxynonenal adduct, a byproduct of lipid peroxidation during oxidative stress, significantly increased in differentiated SNKD myotubes and was dramatically reduced by epigallocatechin-3-gallate, a well-known ROS scavenger. Among antioxidant enzymes, catalase was significantly decreased during differentiation of SNKD cells without changes at the mRNA level. Of interest was the finding that the degradation of catalase was rescued by MG132, a proteasome inhibitor, in the SNKD cells. This study demonstrates a novel function of α-syntrophin. This protein plays an important role in the regulation of oxidative stress from endogenously generated ROS during myoblast differentiation by modulating the protein stability of catalase. © 2017 Federation of European Biochemical Societies.

  20. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  1. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore

    Science.gov (United States)

    Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2017-08-01

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  2. On the origins of endogenous thoughts.

    Science.gov (United States)

    Tillas, Alexandros

    2017-05-01

    Endogenous thoughts are thoughts that we activate in a top-down manner or in the absence of the appropriate stimuli. We use endogenous thoughts to plan or recall past events. In this sense, endogenous thinking is one of the hallmarks of our cognitive lives. In this paper, I investigate how it is that we come to possess endogenous control over our thoughts. Starting from the close relation between language and thinking, I look into speech production-a process motorically controlled by the inferior frontal gyrus (IFG). Interestingly, IFG is also closely related to silent talking, as well as volition. The connection between IFG and volition is important given that endogenous thoughts are or at least greatly resemble voluntary actions. Against this background, I argue that IFG is key to understanding the origins of conscious endogenous thoughts. Furthermore, I look into goal-directed thinking and show that IFG plays a key role also in unconscious endogenous thinking.

  3. The role of plasma proteins in formation of obstructive protamine complexes

    International Nuclear Information System (INIS)

    De Paulis, R.; Mohammad, S.F.; Chiariello, L.; Morea, M.; Olsen, D.B.

    1991-01-01

    Formation of complexes between heparin and protamine (in saline), or heparin, plasma proteins, and protamine (in plasma) was assessed by measurements of light transmission through different test solutions. To examine the formation of these complexes, 125I-labeled protamine was used. Addition of 125I-protamine to plasma or blood resulted in the sedimentation of 125I-protamine in the form of insoluble complexes. This complex formation was not affected by the presence of heparin, suggesting that protamine-plasma protein interaction may be primarily responsible for precipitation of 125I-protamine. To assess the capability of these complexes to obstruct the pulmonary circulation, an in vitro experimental model was developed. Citrated serum, plasma, blood, or saline were allowed to flow through a glass bead column with the help of a peristaltic pump. A pressure transducer positioned before the column allowed pressure measurements at a constant flow rate during the experiment. Mixing of protamine with plasma or blood prior to their passage through the glass bead column resulted in a significant increase in pressure suggesting that the column was being clogged with insoluble complexes. The increase in pressure occurred both in the presence and absence of heparin in plasma or blood. Under identical experimental conditions, the increase in pressure was insignificant when protamine was added to saline or serum regardless of whether heparin was present or absent. This was further confirmed by the use of 125I-protamine. These observations suggest that protamine forms insoluble complexes with certain plasma proteins. Based on these observations, it is hypothesized that following intravenous administration, protamine immediately forms complexes in circulating blood

  4. Helicase properties of the Escherichia coli UvrAb protein complex

    International Nuclear Information System (INIS)

    Oh, E.Y.; Grossman, L.

    1987-01-01

    The Escherichia coli UvrA protein has an associated ATPase activity with a turnover number affected by the presence of UvrB protein as well as by DNA. Specifically, the structure of DNA significantly influences the turnover rate of the UvrAB ATPase activity. Double-stranded DNA maximally activates the turnover rate 10-fold whereas single-stranded DNA maximally activates the turnover rate 20-fold, suggesting that the mode of interaction of UvrAB protein with different DNAs is distinctive. We have previously shown that the UvrAB protein complex, driven by the binding energy of ATP, can locally unwind supercoiled DNA. The nature of the DNA unwinding activity and single-stranded DNA activation of ATPase activity suggest potential helicase activity. In the presence of a number of helicase substrates, the UvrAB complex, indeed, manifests a strand-displacement activity-unwinding short duplexes and D-loop DNA, thereby generating component DNA structures. The energy for the activity is derived from ATP or dATP hydrolysis. Unlike the E. coli DnaB, the UvrAB helicase is sensitive to UV-induced photoproducts

  5. iview: an interactive WebGL visualizer for protein-ligand complex.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  6. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt.

    Science.gov (United States)

    Chen, Ye; Liang, Yuzhen; Hu, Tingting; Wei, Riming; Cai, Congjie; Wang, Ping; Wang, Lingyu; Qiao, Wei; Feng, Leping

    2017-11-01

    Nicotinamide phosphoribosyltransferase (Nampt) is a key enzyme in the nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway. Exogenous extra cellular Nampt has been reported to increase the synthesis of pro-fibrotic molecules in various types of renal cells. However, the role of endogenous Namptenzymatic activity in diabetic renal cells, particularly those associated with inflammation and fibrosis through the nuclear factor (NF)-κB p65 and sirtuin 1 (Sirt1) pathway is still unknown. In the present study, a possible mechanism by which endogenous Nampt upregulation affects the expression of pro-inflammatory and pro-fibrotic cytokines in vivo and in vitro , is reported. The present results demonstrate that the expression of vimentin and fibronectin was directly implicated in endogenous Nampt upregulation. The expression levels of Poly(ADP-ribose) polymerase-1, NF-κB p65, forkhead box protein O1 and B-cell lymphoma 2-like protein 4 were also significantly increased at 96 h compared with control group (Pendogenous Nampt upregulation. Furthermore, the expression level of Sirt1 was significantly reduced (Pendogenous Nampt upregulation may be critical in the treatment of DN pro-inflammatory fibrosis and NMN is likely to be a potential pharmacological agent for the treatment of resistant DN nephritic fibrosis.

  7. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases

    Science.gov (United States)

    Xu, Qifang; Malecka, Kimberly L.; Fink, Lauren; Jordan, E. Joseph; Duffy, Erin; Kolander, Samuel; Peterson, Jeffrey; Dunbrack, Roland L.

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an “autophosphorylation complex.” We developed and applied a structural bioinformatics method to identify all such autophosphorylation kinase complexes in X-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which 5 complexes had not previously been described in the publications describing the crystal structures. These 5 consist of tyrosine residues in the N-terminal juxtamembrane regions of colony stimulating factor 1 receptor (CSF1R, Tyr561) and EPH receptor A2 (EPHA2, Tyr594), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr394) and insulin-like growth factor 1 receptor (IGF1R, Tyr1166), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser142). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro447 to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets. PMID:26628682

  8. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  9. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  10. Research of the complex of functional and technological properties of animal protein

    Directory of Open Access Journals (Sweden)

    Олена Борисівна Дроменко

    2016-12-01

    Full Text Available The analysis of the results of analytical and practical research of the complex of functional and technological properties of animal protein Gelexcel A-95 as the basis for creation of complex functional additives is shown. The regularities of their changes are determined depending on technological factors. Rational parameters of animal protein rehydration, gelation conditions, emulsification for further use in the process of production of meat products are identified

  11. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; Wolff, Jeremy J.; Somogyi, Árpád; Pedder, Randall E.; Quintyn, Royston S.; Morrison, Lindsay J.; Easterling, Michael L.; Paša-Tolić, Ljiljana; Wysocki, Vicki H.

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  12. Large, dynamic, multi-protein complexes: a challenge for structural biology

    Czech Academy of Sciences Publication Activity Database

    Rozycki, B.; Bouřa, Evžen

    2014-01-01

    Roč. 26, č. 46 (2014), 463103/1-463103/11 ISSN 0953-8984 R&D Projects: GA MŠk LO1302 EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : protein structure * multi-protein complexes * hybrid methods of structural biology Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.346, year: 2014

  13. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs)

    International Nuclear Information System (INIS)

    Kaulitz, Danny; Fiebig, Uwe; Eschricht, Magdalena; Wurzbacher, Christian; Kurth, Reinhard; Denner, Joachim

    2011-01-01

    Antibodies neutralising porcine endogenous retroviruses (PERVs) were induced in different animal species by immunisation with the transmembrane envelope protein p15E. These antibodies recognised epitopes, designated E1, in the fusion peptide proximal region (FPPR) of p15E, and E2 in the membrane proximal external region (MPER). E2 is localised in a position similar to that of an epitope in the transmembrane envelope protein gp41 of the human immunodeficiency virus-1 (HIV-1), recognised by the monoclonal antibody 4E10 that is broadly neutralising. To detect neutralising antibodies specific for PERV, a novel assay was developed, which is based on quantification of provirus integration by real-time PCR. In addition, for the first time, highly effective neutralising antibodies were obtained by immunisation with the surface envelope protein of PERV. These data indicate that neutralising antibodies can be induced by immunisation with both envelope proteins.

  14. The interactions of multisensory integration with endogenous and exogenous attention.

    Science.gov (United States)

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-02-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  16. Endogenous annexin A1 counter-regulates bleomycin-induced lung fibrosis

    Directory of Open Access Journals (Sweden)

    Flower Roderick J

    2011-10-01

    Full Text Available Abstract Background The balancing functions of pro/anti-inflammatory mediators of the complex innate responses have been investigated in a variety of experimental inflammatory settings. Annexin-A1 (AnxA1 is one mediator of endogenous anti-inflammation, affording regulation of leukocyte trafficking and activation in many contexts, yet its role in lung pathologies has been scarcely investigated, despite being highly expressed in lung cells. Here we have applied the bleomycin lung fibrosis model to AnxA1 null mice over a 21-day time-course, to monitor potential impact of this mediator on the control of the inflammatory and fibrotic phases. Results Analyses in wild-type mice revealed strict spatial and temporal regulation of the Anxa1 gene, e.g. up-regulation in epithelial cells and infiltrated granulocytes at day 7, followed by augmented protein levels in alveolar macrophages by day 21. Absence of AnxA1 caused increases in: i the degree of inflammation at day 7; and ii indexes of fibrosis (assessed by deposition of hydroxyproline in the lung at day 7 and 21. These alterations in AnxA1 null mice were paralleled by augmented TGF-β1, IFN-γ and TNF-α generation compared to wild-type mice. Finally, treatment of wild type animals with an AnxA1 peptido-mimetic, given prophylactically (from day 0 to 21 or therapeutically (from day 14 onward, ameliorated both signs of inflammation and fibrosis. Conclusion Collectively these data reveal a pathophysiological relevance for endogenous AnxA1 in lung inflammation and, more importantly, fibrosis, and may open new insights for the pharmacological treatment of lung fibrosis.

  17. Habits, aspirations and endogenous fertility

    OpenAIRE

    Luciano Fanti

    2012-01-01

    Motivated by the increasing literature on endogenous preferences as well as on endogenous fertility, this paper investigates the implications of the interaction of the endogenous determination of the number of children with habit and aspiration formation in an OLG model. In contrast with the previous literature, we show that greater aspirations may lead to higher savings, and more interestingly, always increase the neoclassical economic growth.

  18. Specificity of the amino acid content of endogenous regulatory oligopeptides.

    Science.gov (United States)

    Zamyatnin, A A

    1991-07-01

    The amino acid residue content of endogenous regulatory oligopeptides possessing a certain spectrum of functional activity has been analyzed. It has been shown that compared to proteins, the oligopeptides contain a greater number of positively charged and cyclic radicals. All 579 oligopeptides contained in the EROP-Moscow data bank with the given spectrum of functional activity have been found to have common physicochemical characteristics.

  19. GBA manager: an online tool for querying low-complexity regions in proteins.

    Science.gov (United States)

    Bandyopadhyay, Nirmalya; Kahveci, Tamer

    2010-01-01

    Abstract We developed GBA Manager, an online software that facilitates the Graph-Based Algorithm (GBA) we proposed in our earlier work. GBA identifies the low-complexity regions (LCR) of protein sequences. GBA exploits a similarity matrix, such as BLOSUM62, to compute the complexity of the subsequences of the input protein sequence. It uses a graph-based algorithm to accurately compute the regions that have low complexities. GBA Manager is a user friendly web-service that enables online querying of protein sequences using GBA. In addition to querying capabilities of the existing GBA algorithm, GBA Manager computes the p-values of the LCR identified. The p-value gives an estimate of the possibility that the region appears by chance. GBA Manager presents the output in three different understandable formats. GBA Manager is freely accessible at http://bioinformatics.cise.ufl.edu/GBA/GBA.htm .

  20. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  1. Microbial endogenous response to acute inhibitory impact of antibiotics.

    Science.gov (United States)

    Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D

    2017-06-13

    Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).

  2. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment

    OpenAIRE

    Takaiwa, Fumio

    2013-01-01

    Seeds must maintain a constant level of nitrogen in order to germinate. When recombinant proteins are produced while endogenous seed protein expression is suppressed, the production levels of the foreign proteins increase to compensate for the decreased synthesis of endogenous proteins. Thus, exchanging the production of endogenous seed proteins for that of foreign proteins is a promising approach to increase the yield of foreign recombinant proteins. Providing a space for the deposition of r...

  3. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    OpenAIRE

    Choe Senyon; Riek Roland; Johnson Casey; Kefala Georgia; Maslennikov Innokentiy; Kwiatkowski Witek

    2007-01-01

    Abstract Background Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characteriza...

  4. A novel endogenous betaretrovirus group characterized from polar bears (Ursus maritimus) and giant pandas (Ailuropoda melanoleuca).

    Science.gov (United States)

    Mayer, Jens; Tsangaras, Kyriakos; Heeger, Felix; Avila-Arcos, María; Stenglein, Mark D; Chen, Wei; Sun, Wei; Mazzoni, Camila J; Osterrieder, Nikolaus; Greenwood, Alex D

    2013-08-15

    Transcriptome analysis of polar bears (Ursus maritimus) yielded sequences with highest similarity to the human endogenous retrovirus group HERV-K(HML-2). Further analysis of the polar bear draft genome identified an endogenous betaretrovirus group comprising 26 proviral copies and 231 solo LTRs. Molecular dating indicates the group originated before the divergence of bears from a common ancestor but is not present in all carnivores. Closely related sequences were identified in the giant panda (Ailuropoda melanoleuca) and characterized from its genome. We have designated the polar bear and giant panda sequences U. maritimus endogenous retrovirus (UmaERV) and A. melanoleuca endogenous retrovirus (AmeERV), respectively. Phylogenetic analysis demonstrated that the bear virus group is nested within the HERV-K supergroup among bovine and bat endogenous retroviruses suggesting a complex evolutionary history within the HERV-K group. All individual remnants of proviral sequences contain numerous frameshifts and stop codons and thus, the virus is likely non-infectious. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Host-virus interactions of mammalian endogenous retroviruses

    OpenAIRE

    Farkašová, Helena

    2017-01-01

    Endogenous retroviruses (ERVs) originate by germline infection and subsequent mendelian inheritance of their exogenous counterparts. With notable exceptions, all mammalian ERVs are evolutionarily old and fixed in the population of its host species. Some groups of retroviruses were believed not to be able to form endogenous copies. We discovered an additional endogenous Lentivirus and a first endogenous Deltaretrovirus. Both of these groups were previously considered unable to form endogenous ...

  6. Extreme disorder in an ultrahigh-affinity protein complex

    Science.gov (United States)

    Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin

    2018-03-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.

  7. Endogenous Monetary Policy Regime Change

    OpenAIRE

    Troy Davig; Eric M. Leeper

    2006-01-01

    This paper makes changes in monetary policy rules (or regimes) endogenous. Changes are triggered when certain endogenous variables cross specified thresholds. Rational expectations equilibria are examined in three models of threshold switching to illustrate that (i) expectations formation effects generated by the possibility of regime change can be quantitatively important; (ii) symmetric shocks can have asymmetric effects; (iii) endogenous switching is a natural way to formally model preempt...

  8. A novel method for preparation of HAMLET-like protein complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Leonteva, Marina V; Fadeev, Roman S; Chekanov, Aleksei V; Zhadan, Andrei P; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2011-09-01

    Some natural proteins induce tumor-selective apoptosis. α-Lactalbumin (α-LA), a milk calcium-binding protein, is converted into an antitumor form, called HAMLET/BAMLET, via partial unfolding and association with oleic acid (OA). Besides triggering multiple cell death mechanisms in tumor cells, HAMLET exhibits bactericidal activity against Streptococcus pneumoniae. The existing methods for preparation of active complexes of α-LA with OA employ neutral pH solutions, which greatly limit water solubility of OA. Therefore these methods suffer from low scalability and/or heterogeneity of the resulting α-LA - OA samples. In this study we present a novel method for preparation of α-LA - OA complexes using alkaline conditions that favor aqueous solubility of OA. The unbound OA is removed by precipitation under acidic conditions. The resulting sample, bLA-OA-45, bears 11 OA molecules and exhibits physico-chemical properties similar to those of BAMLET. Cytotoxic activities of bLA-OA-45 against human epidermoid larynx carcinoma and S. pneumoniae D39 cells are close to those of HAMLET. Treatment of S. pneumoniae with bLA-OA-45 or HAMLET induces depolarization and rupture of the membrane. The cells are markedly rescued from death upon pretreatment with an inhibitor of Ca(2+) transport. Hence, the activation mechanisms of S. pneumoniae death are analogous for these two complexes. The developed express method for preparation of active α-LA - OA complex is high-throughput and suited for development of other protein complexes with low-molecular-weight amphiphilic substances possessing valuable cytotoxic properties. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography.

    Science.gov (United States)

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H

    2012-09-11

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  10. Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.

    Science.gov (United States)

    Waegemann, Karin; Popov-Čeleketić, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2015-03-13

    Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses.

    Science.gov (United States)

    Arjan-Odedra, Shetal; Swanson, Chad M; Sherer, Nathan M; Wolinsky, Steven M; Malim, Michael H

    2012-06-22

    The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements. MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing. We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells.

  12. Use of a sensitive EnVision +-based detection system for Western blotting: avoidance of streptavidin binding to endogenous biotin and biotin-containing proteins in kidney and other tissues.

    Science.gov (United States)

    Banks, Rosamonde E; Craven, Rachel A; Harnden, Patricia A; Selby, Peter J

    2003-04-01

    Western blotting remains a central technique in confirming identities of proteins, their quantitation and analysis of various isoforms. The biotin-avidin/streptavidin system is often used as an amplification step to increase sensitivity but in some tissues such as kidney, "nonspecific" interactions may be a problem due to high levels of endogenous biotin-containing proteins. The EnVision system, developed for immunohistochemical applications, relies on binding of a polymeric conjugate consisting of up to 100 peroxidase molecules and 20 secondary antibody molecules linked directly to an activated dextran backbone, to the primary antibody. This study demonstrates that it is also a viable and sensitive alternative detection system in Western blotting applications.

  13. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina; Malara, Natalia Maria; Trunzo, Valentina; Perozziello, Gerardo; Neužil, Pavel; Francardi, Marco; Roveda, Laura; Renne, Maria; Prati, Ubaldo; Mollace, Vincenzo; Manz, Andreas; Di Fabrizio, Enzo M.

    2013-01-01

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction's strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.

    Science.gov (United States)

    Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura

    2017-01-01

    Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.

  16. Syncytin-1, an endogenous retroviral protein, triggers the activation of CRP via TLR3 signal cascade in glial cells.

    Science.gov (United States)

    Wang, Xiuling; Liu, Zhongchun; Wang, Peigang; Li, Shan; Zeng, Jie; Tu, Xiaoning; Yan, Qiujin; Xiao, Zheman; Pan, Mengxian; Zhu, Fan

    2018-01-01

    Schizophrenia is a devastating psychiatric disorder that impacts on social functioning and quality of life, and there is accumulating evidence that inflammation is a potential pathogenic mechanism of schizophrenia. However, the mechanism of inflammation possibly occurred in schizophrenia has not been well understood. The endogenous retroviral protein syncytin-1 and inflammatory marker CRP are both abnormally expressed in schizophrenia patients. CRP is one of the markers of bacterial infection generally. Less clear is whether virus or viral protein can trigger the activation of CRP. Here, we detected a robust increase of the levels of syncytin-1 and CRP in schizophrenia patients, and displayed a positive correlation and marked consistency between expressions of syncytin-1 and CRP in schizophrenia patients. Furthermore, overexpression of syncytin-1 significantly elevated the levels of CRP, TLR3, and IL-6 in both human microglia and astrocytes. TLR3 deficiency impaired the expressions of CRP and IL-6 induced by syncytin-1. Importantly, we observed a cellular co-localization and a direct interaction between syncytin-1 and TLR3. Additionally, knockdown of IL-6 inhibited the syncytin-1-induced CRP expression. Thus, the totality of these results showed that viral protein syncytin-1 could trigger the activation of CRP, which might explain the elevated CRP in sterile inflammation and exhibit a novel mechanism for regulation of inflammation by syncytin-1 in schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    Science.gov (United States)

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  18. Survey of large protein complexes D. vulgaris reveals great structural diversity

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.-G.; Dong, M.; Liu, H.; Camp, L.; Geller, J.; Singer, M.; Hazen, T. C.; Choi, M.; Witkowska, H. E.; Ball, D. A.; Typke, D.; Downing, K. H.; Shatsky, M.; Brenner, S. E.; Chandonia, J.-M.; Biggin, M. D.; Glaeser, R. M.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.

  19. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences

    Directory of Open Access Journals (Sweden)

    Charalambos Chrysostomou

    2015-01-01

    Full Text Available Complex informational spectrum analysis for protein sequences (CISAPS and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

  20. A novel protein-protein interaction in the RES (REtention and Splicing) complex.

    Science.gov (United States)

    Tripsianes, Konstantinos; Friberg, Anders; Barrandon, Charlotte; Brooks, Mark; van Tilbeurgh, Herman; Seraphin, Bertrand; Sattler, Michael

    2014-10-10

    The retention and splicing (RES) complex is a conserved spliceosome-associated module that was shown to enhance splicing of a subset of transcripts and promote the nuclear retention of unspliced pre-mRNAs in yeast. The heterotrimeric RES complex is organized around the Snu17p protein that binds to both the Bud13p and Pml1p subunits. Snu17p exhibits an RRM domain that resembles a U2AF homology motif (UHM) and Bud13p harbors a Trp residue reminiscent of an UHM-ligand motif (ULM). It has therefore been proposed that the interaction between Snu17p and Bud13p resembles canonical UHM-ULM complexes. Here, we have used biochemical and NMR structural analysis to characterize the structure of the yeast Snu17p-Bud13p complex. Unlike known UHMs that sequester the Trp residue of the ULM ligand in a hydrophobic pocket, Snu17p and Bud13p utilize a large interaction surface formed around the two helices of the Snu17p domain. In total 18 residues of the Bud13p ligand wrap around the Snu17p helical surface in an U-turn-like arrangement. The invariant Trp(232) in Bud13p is located in the center of the turn, and contacts surface residues of Snu17p. The structural data are supported by mutational analysis and indicate that Snu17p provides an extended binding surface with Bud13p that is notably distinct from canonical UHM-ULM interactions. Our data highlight structural diversity in RRM-protein interactions, analogous to the one seen for nucleic acid interactions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    International Nuclear Information System (INIS)

    Wang Haidong; Niu, Catherine Hui; Yang Qiaoqin; Badea, Ildiko

    2011-01-01

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  2. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haidong [Department of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Niu, Catherine Hui [Department of Chemical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Yang Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Badea, Ildiko, E-mail: catherine.niu@usask.ca [Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9 (Canada)

    2011-04-08

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  3. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins.

    Directory of Open Access Journals (Sweden)

    Yun-Shiang Chang

    Full Text Available BACKGROUND: Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus, is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process. PRINCIPAL FINDINGS: In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers. CONCLUSIONS: From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented.

  4. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    Science.gov (United States)

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  5. Solubilization and reconstitution of the formylmethionylleucylphenylalanine receptor coupled to guanine nucleotide regulatory protein

    International Nuclear Information System (INIS)

    Williamson, K.; Dickey, B.F.; Pyun, H.Y.; Navarro, J.

    1988-01-01

    The authors describe the solubilization, resolution, and reconstitution of the formylmethionylleucylphenylalanine (fMet-Leu-Phe) receptor and guanine nucleotide regulatory proteins (G-proteins). The receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Guanine nucleotides decreased the number of high-affinity binding sites and accelerated the rate of dissociation of the receptor-ligand complex, suggesting that the solubilized receptor remained coupled to endogenous G-proteins. The solubilized receptor was resolved from endogenous G-proteins by fractionation on a wheat germ agglutinin (WGA)-Sepharose 4B column. High-affinity [ 3 H]fMet-Leu-Phe binding to the WGA-purified receptor was diminished and exhibited reduced guanine nucleotide sensitivity. High-affinity [ 3 H]fMET-Leu-Phe binding and guanine nucleotide sensitivity were reconstituted upon the addition of purified brain G-proteins. Similar results were obtained when the receptor was reconstituted with brain G-proteins into phospholipid vesicles by gel filtration chromatography. In addition, they also demonstrated fMET-Leu-Phe-dependent GTP hydrolysis in the reconstituted vesicles. The results of this work indicate that coupling of the fMet-Leu-Phe receptor to G-proteins converts the receptor to a high-affinity binding state and that agonist produces activation of G-proteins. The resolution and functional reconstitution of this receptor should provide an important step toward the elucidation of the molecular mechanism of the fMet-Leu-Phe transduction system in neutrophils

  6. Ternary complex formation of lanthanides and radiolanthanides with phosphate and serum proteins

    International Nuclear Information System (INIS)

    Neumaier, B.; Roesch, F.

    1999-01-01

    Radioyttrium was recently reported to form ternary complexes with phosphate and serum proteins in blood. In the present work it was investigated whether the trivalent radiolanthanides react in a chemically similar way. In systematic binding studies using gel filtration a ternary complex formation between different lanthanides, phosphate and serum proteins could be identified. The tendency to build a ternary compound of the type Ln III - phosphate - serum protein, however, is dependent on the ionic radii of the lanthanides. Whereas the light and transition lanthanides have a strong inclination to build a ternary complex, this tendency is weaker for the heavier ones. Taking into account the high content of phosphate in human blood, the corresponding ternary complexes of radiolanthanides represent an important transport form of these elements in blood. This finding may contribute to an understanding of the nuclear medical observation on the biodistribution of radiolanthanides. The heavy radiolanthanides can be classified as bone seeking metals, whereas the light and transition lanthanide elements accumulate mainly in the liver and the spleen. For the lighter radiolanthanides the corresponding ternary complexes thus represent an important transport form in blood. This physicochemical form of lanthanides mainly results in reticulo endothelial accumulation; on the other hand, the lower tendency of heavier lanthanides leads to preferential skeletal deposition. (orig.)

  7. DNA-Directed Assembly of Capture Tools for Constitutional Studies of Large Protein Complexes.

    Science.gov (United States)

    Meyer, Rebecca; Faesen, Alex; Vogel, Katrin; Jeganathan, Sadasivam; Musacchio, Andrea; Niemeyer, Christof M

    2015-06-10

    Large supramolecular protein complexes, such as the molecular machinery involved in gene regulation, cell signaling, or cell division, are key in all fundamental processes of life. Detailed elucidation of structure and dynamics of such complexes can be achieved by reverse-engineering parts of the complexes in order to probe their interactions with distinctive binding partners in vitro. The exploitation of DNA nanostructures to mimic partially assembled supramolecular protein complexes in which the presence and state of two or more proteins are decisive for binding of additional building blocks is reported here. To this end, four-way DNA Holliday junction motifs bearing a fluorescein and a biotin tag, for tracking and affinity capture, respectively, are site-specifically functionalized with centromeric protein (CENP) C and CENP-T. The latter serves as baits for binding of the so-called KMN component, thereby mimicking early stages of the assembly of kinetochores, structures that mediate and control the attachment of microtubules to chromosomes in the spindle apparatus. Results from pull-down experiments are consistent with the hypothesis that CENP-C and CENP-T may bind cooperatively to the KMN network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. ENDOGENEITY OF INDONESIAN MONEY SUPPLY

    Directory of Open Access Journals (Sweden)

    Meutia Safrina Rachma

    2011-09-01

    Full Text Available There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5-2010(6, the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not have control power on money supply. The bank is only able to maintain the stability and control the movement of broad money supply. Keywords: Endogenous variable, money supply, vector autoregressionJEL classification numbers: E51, E52, E58

  9. The 15N-leucine single-injection method allows for determining endogenous losses and true digestibility of amino acids in cecectomized roosters.

    Directory of Open Access Journals (Sweden)

    Rujiu Hu

    Full Text Available This study was conducted to assess the influence of dietary protein content in poultry when using the 15N-leucine single-injection method to determine endogenous amino acid losses (EAALs in poultry. Forty-eight cecectomized roosters (2.39 ± 0.23 kg were randomly allocated to eight dietary treatments containing protein levels of 0, 3%, 6%, 9%, 12%, 15%, 18% and 21%. Each bird was precisely fed an experimental diet of 25 g/kg of body weight. After feeding, all roosters were subcutaneously injected with a 15N-leucine solution at a dose of 20 mg/kg of body weight. Blood was sampled 23 h after the injection, and excreta samples were continuously collected during the course of the 48-h experiment. The ratio of 15N-enrichment of leucine in crude mucin to free leucine in plasma ranged from 0.664 to 0.763 and remained relatively consistent (P > 0.05 across all treatments. The amino acid (AA profiles of total endogenous AAs, except isoleucine, alanine, aspartic acid, cysteine, proline and serine, were not influenced (P > 0.05 by dietary protein contents. The predominant endogenous AAs in the excreta were glutamic acid, aspartic acid, threonine, serine and proline. The order of the relative proportions of these predominant AAs also remained relatively constant (P > 0.05. The endogenous losses of total AAs determined with the 15N-leucine single-injection method increased curvilinearly with the dietary protein contents. The true digestibility of most AAs and total AAs was independent of their respective dietary protein levels. Collectively, the 15N-leucine single-injection method is appropriate for determining EAALs and the true digestibility of AAs in poultry fed varying levels of protein-containing ingredients.

  10. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  11. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  12. Identification of Protein Complexes from Tandem Affinity Purification/Mass Spectrometry Data via Biased Random Walk.

    Science.gov (United States)

    Cai, Bingjing; Wang, Haiying; Zheng, Huiru; Wang, Hui

    2015-01-01

    Systematic identification of protein complexes from protein-protein interaction networks (PPIs) is an important application of data mining in life science. Over the past decades, various new clustering techniques have been developed based on modelling PPIs as binary relations. Non-binary information of co-complex relations (prey/bait) in PPIs data derived from tandem affinity purification/mass spectrometry (TAP-MS) experiments has been unfairly disregarded. In this paper, we propose a Biased Random Walk based algorithm for detecting protein complexes from TAP-MS data, resulting in the random walk with restarting baits (RWRB). RWRB is developed based on Random walk with restart. The main contribution of RWRB is the incorporation of co-complex relations in TAP-MS PPI networks into the clustering process, by implementing a new restarting strategy during the process of random walk. Through experimentation on un-weighted and weighted TAP-MS data sets, we validated biological significance of our results by mapping them to manually curated complexes. Results showed that, by incorporating non-binary, co-membership information, significant improvement has been achieved in terms of both statistical measurements and biological relevance. Better accuracy demonstrates that the proposed method outperformed several state-of-the-art clustering algorithms for the detection of protein complexes in TAP-MS data.

  13. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses

    Science.gov (United States)

    2012-01-01

    Background The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements. Results MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing. Conclusions We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells. PMID:22727223

  14. Endogenous Retrovirus ev21 Dose Not Recombine with ALV-J and Induces the Expression of ISGs in the Host.

    Science.gov (United States)

    Feng, Min; Tan, Yan; Dai, Manman; Li, Yuanfang; Xie, Tingting; Li, Hongmei; Shi, Meiqing; Zhang, Xiquan

    2016-01-01

    Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression. Endogenous viruses integrate into host genomes and can recombine with exogenous avian leukosis virus (ALV). In this study, we analyzed the interaction of endogenous retrovirus 21 ( ev21 ) with the ALV-J in late-feathering Chinese yellow chicken. Two ALV-J strains M180 and K243 were isolated from late-feathering and fast-feathering Chinese yellow chicken flocks, respectively. The env gene of the two strains showed 94.2-94.8% nucleotide identity with reference ALV-J strains. Compared with the env gene and the LTR of ev21 and M180, the nucleotide identity of LTR was 69.7% and env gene was 58.4%, respectively, especially the amino acid identity of env gene as low as 14.2%. Phylogenetic analysis of the nucleotide sequence of the env gene and the 3'LTR showed that M180 was closely related to ALV-J, and was located in a distinct group with ev21 in the phylogenetic tree. Using co-immunoprecipitation (co-IP), we next demonstrate that the envelope protein of ev21 does not interact with the M180 envelope protein. We further show that the envelope protein of ev21 cannot activate ALV-J LTR promoter activity using luciferase-reporter assays. qPCR and western blot analysis revealed that envelope protein of endogenous ev21 can facilitate the expression of PKR at 6h post ALV-J infection (hpi) and facilitate the expression of ISG12 and CH25H at 24 hpi. However, the expression of the env gene of M180 strain was not significantly at 6 and 24 hpi. We conclude that there is no evidence of recombination between endogenous retrovirus ev21 and ALV-J strain M180 in late-feathering Chinese yellow chicken, and envelope protein of ev21 can affect the expression of host ISGs, but appears not to influence the replication of ALV-J strain M180. This is the first report of interaction among the endogenous retrovirus ev21, ALV-J and the late-feathering chicken.

  15. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik; Marziale, Alexander N.; Reiner, Thomas; Kraus, Florian; Herdtweck, Eberhardt; Raba, Andreas; Eppinger, Jö rg

    2013-01-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  16. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik

    2013-11-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  17. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    Science.gov (United States)

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  18. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

    Directory of Open Access Journals (Sweden)

    Kris E Spaeth

    2009-09-01

    Full Text Available In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone. Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole ("inclusion". The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.

  19. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach.

    Science.gov (United States)

    Rouquié, David; Capt, Annabelle; Eby, William H; Sekar, Vaithilingam; Hérouet-Guicheney, Corinne

    2010-12-01

    As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Transfection of Eimeria mitis with yellow fluorescent protein as reporter and the endogenous development of the transgenic parasite.

    Directory of Open Access Journals (Sweden)

    Mei Qin

    Full Text Available BACKGROUND: Advancements have been made in the genetic manipulation of apicomplexan parasites. Both the in vitro transient and in vivo stable transfection of Eimeria tenella have been developed successfully. Herein, we report the transient and stable transfection of Eimeria mitis. METHODS AND FINDINGS: Sporozoites of E. mitis transfected with enhanced yellow fluorescent protein (EYFP expression plasmid were inoculated into chickens via the cloacal route. The recovered fluorescent oocysts were sorted by fluorescence activated cell sorting (FACS and then passaged 6 generations successively in chickens. The resulting population was analyzed by genome walking and Western blot. The endogenous development of the transgenic E. mitis was observed and its reproduction potential was tested. The stable transfection of E. mitis was developed. Genome walking confirmed the random integration of plasmid DNA into the genome; while Western blot analysis demonstrated the expression of foreign proteins. Constitutive expression of EYFP was observed in all stages of merogony, gametogony and sporogony. The peak of the transgenic oocyst output was delayed by 24 h and the total oocyst reproduction was reduced by 7-fold when compared to the parental strain. CONCLUSION: Stable transfection of E. mitis was successfully developed. The expression of foreign antigens in the transgenic parasites will facilitate the development of transgenic E. mitis as a vaccine vector.

  1. Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Directory of Open Access Journals (Sweden)

    Onofrio Zirafi

    2015-05-01

    Full Text Available CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.

  2. Strategies for the structural analysis of multi-protein complexes: lessons from the 3D-Repertoire project.

    Science.gov (United States)

    Collinet, B; Friberg, A; Brooks, M A; van den Elzen, T; Henriot, V; Dziembowski, A; Graille, M; Durand, D; Leulliot, N; Saint André, C; Lazar, N; Sattler, M; Séraphin, B; van Tilbeurgh, H

    2011-08-01

    Structural studies of multi-protein complexes, whether by X-ray diffraction, scattering, NMR spectroscopy or electron microscopy, require stringent quality control of the component samples. The inability to produce 'keystone' subunits in a soluble and correctly folded form is a serious impediment to the reconstitution of the complexes. Co-expression of the components offers a valuable alternative to the expression of single proteins as a route to obtain sufficient amounts of the sample of interest. Even in cases where milligram-scale quantities of purified complex of interest become available, there is still no guarantee that good quality crystals can be obtained. At this step, protein engineering of one or more components of the complex is frequently required to improve solubility, yield or the ability to crystallize the sample. Subsequent characterization of these constructs may be performed by solution techniques such as Small Angle X-ray Scattering and Nuclear Magnetic Resonance to identify 'well behaved' complexes. Herein, we recount our experiences gained at protein production and complex assembly during the European 3D Repertoire project (3DR). The goal of this consortium was to obtain structural information on multi-protein complexes from yeast by combining crystallography, electron microscopy, NMR and in silico modeling methods. We present here representative set case studies of complexes that were produced and analyzed within the 3DR project. Our experience provides useful insight into strategies that are more generally applicable for structural analysis of protein complexes. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Characteristics of the Inhibition of Potato (Solanum tuberosum) Invertase by an Endogenous Proteinaceous Inhibitor in Potatoes

    Science.gov (United States)

    Bracho, Geracimo E.; Whitaker, John R.

    1990-01-01

    Effect of several parameters on inhibition of potato (Solanum tuberosum) invertase by its endogenous proteinaceous inhibitor was determined using homogeneous preparations of both proteins. The inhibitor and invertase formed an inactive complex with an observed association rate constant at pH 4.70 and 37°C of 8.82 × 102 per molar per second and a dissociation rate constant of 3.3 × 10−3 per minute. The inhibitor appeared to bind to invertase in more than one step. Initial interaction (measured by loss of invertase activity) was rapid, relatively weak, readily reversible (Ki of 2 × 10−6 molar) and noncompetitive with substrate at pH 4.70. Initial interaction was probably followed by isomerization to a tighter (Ki of 6.23 × 10−8 molar) complex, which dissociated slowly with a half-time of 3.5 hour. Interaction between enzyme and inhibitor appeared to be of ionic character and essentially pH independent between pH 3.5 and 7.4. PMID:16667286

  4. Circulating growth hormone (GH)-binding protein complex: a major constituent of plasma GH in man

    International Nuclear Information System (INIS)

    Baumann, G.; Amburn, K.; Shaw, M.A.

    1988-01-01

    The recent discovery of a specific binding protein for human GH (hGH) in human plasma suggests that hGH circulates in part as a complex in association with the binding protein(s). However, the magnitude of the complexed fraction prevailing under physiological conditions is unknown because of 1) dissociation of the complex during analysis and 2) potential differences in the binding characteristics of radiolabeled and native hGH. We conducted experiments designed to minimize dissociation during analysis (gel filtration in prelabeled columns, frontal analysis, and batch molecular sieving) with both native and radioiodinated hGH. All three methods yielded similar estimates for the complexed fraction. In normal plasma the bound fraction for 22 K hGH averaged 50.1% (range, 39-59%), that for 20 K hGH averaged 28.5% (range, 26-31%). Above a hGH level of about 20 ng/ml the bound fraction declines in concentration-dependent manner due to saturation of the binding protein. We conclude that a substantial part of circulating hGH is complexed with carrier proteins. This concept has important implications for the metabolism, distribution, and biological activity of hGH

  5. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica; Limongi, Tania; Falqui, Andrea; Genovese, Alessandro; Allione, Marco; Moretti, Manola; Lopatin, Sergei; Tirinato, Luca; Das, Gobind; Torre, Bruno; Giugni, Andrea; Cesca, F.; Benfenati, F.; Di Fabrizio, Enzo M.

    2017-01-01

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  6. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica

    2017-01-17

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  7. REFERENCE MODELS OF ENDOGENOUS ECONOMIC GROWTH

    OpenAIRE

    GEAMĂNU MARINELA

    2012-01-01

    The new endogenous growth theories are a very important research area for shaping the most effective policies and long term sustainable development strategies. Endogenous growth theory has emerged as a reaction to the imperfections of neoclassical theory, by the fact that the economic growth is the endogenous product of an economical system.

  8. ENDOGENEITY OF INDONESIAN MONEY SUPPLY

    OpenAIRE

    Rachma, Meutia Safrina

    2011-01-01

    There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5)-2010(6), the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not hav...

  9. Endogeneity Of Indonesian Money Supply

    OpenAIRE

    Rachma, Meutia Safrina

    2010-01-01

    There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5)-2010(6), the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not hav...

  10. Endogenous pyrogen activity in human plasma after exercise.

    Science.gov (United States)

    Cannon, J G; Kluger, M J

    1983-05-06

    Plasma obtained from human subjects after exercise and injected intraperitoneally into rats elevated rat rectal temperature and depressed plasma iron and zinc concentrations. The pyrogenic component was heat-denaturable and had an apparent molecular weight of 14,000 daltons. Human mononuclear leukocytes obtained after exercise and incubated in vitro released a factor into the medium that also elevated body temperature in rats and reduced trace metal concentrations. These results suggest that endogenous pyrogen, a protein mediator of fever and trace metal metabolism during infection, is released during exercise.

  11. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    Science.gov (United States)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  12. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  13. Methodical investigation of the endogenous N excretion in feces by 15N-labelled rats

    International Nuclear Information System (INIS)

    Bergner, U.; Bergner, H.

    1983-01-01

    Wistar rats (approximately 100g live weight, n = 8) received a wheat diet and were labelled over a period of 7 days with 15 N-ammonium acetate. From day 1 - 5 of the experiment after the end of the labelling feces and urine were collected and analysed. After the animals were killed (day 5 of the experiment) the atom-% 15 N excess ( 15 N') in the contents of the digestive tract as well as in the tissues of stomach wall, intestinal wall, liver, pancreas and blood plasma was determined. The TCA-soluble fraction of the blood plasma showed 0.44 atom-% 15 N' on day 5 after the end of 15 N labelling. 3 hours before the killing fecal N also showed 0.44 and during the last collection period (24 hours before) an average of 0.51 atom-% 15 N'. Urine decreased in the same period from 0.71 to 0.59 atom-% 15 N'. The endogenous fecal N is calculated to 88%. As the tissues of the digestive tract are likely to supply the biggest part of the endogenous fecal protein, the values of atom-% 15 N' from the TCA-precipitable fraction of the intestinal wall and of the pancreas gland was calculed to an average of 0.526. According to this the calculation endogenous fecal N is 84%. It is probable that the quota of endogenous fecal N in the total amount of fecal N varies in dependence on the fermentable crude fiber in the diet as well as on the age of the test animals and thus the bacterial protein synthesis in the colon. As the N used by the bacteria is likely to come from the TCA-soluble fraction of the blood, the calculation formula suggested, which uses the TCA-soluble fraction of the blood plasma, achieves good approximate values also for higher bacterial protein synthesis in the colon. (author)

  14. Structural analysis of DNA–protein complexes regulating the restriction–modification system Esp1396I

    International Nuclear Information System (INIS)

    Martin, Richard N. A.; McGeehan, John E.; Ball, Neil J.; Streeter, Simon D.; Thresh, Sarah-Jane; Kneale, G. G.

    2013-01-01

    Comparison of bound and unbound DNA in protein–DNA co-crystal complexes reveals insights into controller-protein binding and DNA distortion in transcriptional regulation. The controller protein of the type II restriction–modification (RM) system Esp1396I binds to three distinct DNA operator sequences upstream of the methyltransferase and endonuclease genes in order to regulate their expression. Previous biophysical and crystallographic studies have shown molecular details of how the controller protein binds to the operator sites with very different affinities. Here, two protein–DNA co-crystal structures containing portions of unbound DNA from native operator sites are reported. The DNA in both complexes shows significant distortion in the region between the conserved symmetric sequences, similar to that of a DNA duplex when bound by the controller protein (C-protein), indicating that the naked DNA has an intrinsic tendency to bend when not bound to the C-protein. Moreover, the width of the major groove of the DNA adjacent to a bound C-protein dimer is observed to be significantly increased, supporting the idea that this DNA distortion contributes to the substantial cooperativity found when a second C-protein dimer binds to the operator to form the tetrameric repression complex

  15. Whirlin and PDZ domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2.

    Science.gov (United States)

    Chen, Qian; Zou, Junhuang; Shen, Zuolian; Zhang, Weiping; Yang, Jun

    2014-12-26

    Usher syndrome (USH) is the leading genetic cause of combined hearing and vision loss. Among the three USH clinical types, type 2 (USH2) occurs most commonly. USH2A, GPR98, and WHRN are three known causative genes of USH2, whereas PDZD7 is a modifier gene found in USH2 patients. The proteins encoded by these four USH genes have been proposed to form a multiprotein complex, the USH2 complex, due to interactions found among some of these proteins in vitro, their colocalization in vivo, and mutual dependence of some of these proteins for their normal in vivo localizations. However, evidence showing the formation of the USH2 complex is missing, and details on how this complex is formed remain elusive. Here, we systematically investigated interactions among the intracellular regions of the four USH proteins using colocalization, yeast two-hybrid, and pull-down assays. We show that multiple domains of the four USH proteins interact among one another. Importantly, both WHRN and PDZD7 are required for the complex formation with USH2A and GPR98. In this USH2 quaternary complex, WHRN prefers to bind to USH2A, whereas PDZD7 prefers to bind to GPR98. Interaction between WHRN and PDZD7 is the bridge between USH2A and GPR98. Additionally, the USH2 quaternary complex has a variable stoichiometry. These findings suggest that a non-obligate, short term, and dynamic USH2 quaternary protein complex may exist in vivo. Our work provides valuable insight into the physiological role of the USH2 complex in vivo and informs possible reconstruction of the USH2 complex for future therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Colorful packages : fluorescent proteins in complex coacervate core micelles

    NARCIS (Netherlands)

    Nolles, Antsje

    2018-01-01

    This thesis explores the encapsulation of fluorescent proteins (FPs) into complex coacervate core micelles (C3Ms) and features the impact of this encapsulation on the biophysical properties of the FPs. In total eight different FPs were investigated originating from two different classes

  17. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Science.gov (United States)

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  18. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  19. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways.

    Science.gov (United States)

    Weiss, Thomas S; Lupke, Madeleine; Ibrahim, Sara; Buechler, Christa; Lorenz, Julia; Ruemmele, Petra; Hofmann, Ute; Melter, Michael; Dayoub, Rania

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Free fatty acids (FFA) induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration) for FFA induced ER (endoplasmatic reticulum) -stress and lipoapoptosis. Primary human hepatocytes or hepatoma cells either treated with recombinant human ALR (rhALR, 15kDa) or expressing short form ALR (sfALR, 15kDa) were incubated with palmitic acid (PA) and analyzed for lipo-toxicity, -apoptosis, activation of ER-stress response pathways, triacylglycerides (TAG), mRNA and protein expression of lipid metabolizing genes. Both, exogenous rhALR and cytosolic sfALR reduced PA induced caspase 3 activity and Bax protein expression and therefore lipotoxicity. Endogenous sfALR but not rhALR treatment lowered TAG levels, diminished activation of ER-stress mediators C-Jun N-terminal kinase (JNK), X-box binding protein-1 (XBP1) and proapoptotic transcription factor C/EBP-homologous protein (CHOP), and reduced death receptor 5 protein expression. Cellular ALR exerts its lipid lowering and anti-apoptotic actions by enhancing FABP1, which binds toxic FFA, increasing mitochondrial β-oxidation by elevating the mitochondrial FFA transporter CPT1α, and decreasing ELOVL6, which delivers toxic FFA metabolites. We found reduced hepatic mRNA levels of ALR in a high fat diet mouse model, and of ALR and FOXA2, a transcription factor inducing ALR expression, in human steatotic as well as NASH liver samples, which may explain increased lipid deposition and reduced β-oxidation in NASH patients. Present study shows that exogenous and endogenous ALR reduce PA induced lipoapoptosis. Furthermore, cytosolic sfALR changes mRNA and protein expression of genes regulating lipid metabolism, reduces ER-stress finally impeding progression of NASH.

  20. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways.

    Directory of Open Access Journals (Sweden)

    Thomas S Weiss

    Full Text Available Nonalcoholic fatty liver disease (NAFLD covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH and cirrhosis. Free fatty acids (FFA induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration for FFA induced ER (endoplasmatic reticulum -stress and lipoapoptosis. Primary human hepatocytes or hepatoma cells either treated with recombinant human ALR (rhALR, 15kDa or expressing short form ALR (sfALR, 15kDa were incubated with palmitic acid (PA and analyzed for lipo-toxicity, -apoptosis, activation of ER-stress response pathways, triacylglycerides (TAG, mRNA and protein expression of lipid metabolizing genes. Both, exogenous rhALR and cytosolic sfALR reduced PA induced caspase 3 activity and Bax protein expression and therefore lipotoxicity. Endogenous sfALR but not rhALR treatment lowered TAG levels, diminished activation of ER-stress mediators C-Jun N-terminal kinase (JNK, X-box binding protein-1 (XBP1 and proapoptotic transcription factor C/EBP-homologous protein (CHOP, and reduced death