WorldWideScience

Sample records for endogenous circannual rhythm

  1. Circadian and circannual rhythms in the metabolism and ventilation of red-eared sliders (Trachemys scripta elegans).

    Science.gov (United States)

    Reyes, Catalina; Milsom, William K

    2010-01-01

    Endogenous circadian and circannual rhythms may exist in the metabolism, ventilation, and breathing pattern of turtles that could further prolong dive times during daily and seasonal periods of reduced activity. To test this hypothesis, turtles were held under seasonal or constant environmental conditions over a 1-yr period, and in each season, V(O)(2) and respiratory variables were measured in all animals under both the prevailing seasonal conditions and the constant conditions for 24 h. Endogenous circadian and circannual rhythms in metabolism and ventilation occurred independent of ambient temperature, photoperiod, and activity, although long-term entrainment to daily and seasonal changes in temperature and photoperiod were required for them to be expressed. Metabolism and ventilation were always higher during the photophase, and the day-night difference was greater at any given temperature when the photoperiod was provided. When corrected for temperature, turtles had elevated metabolic and ventilation rates in the fall and spring (corresponding to the reproductive seasons) and suppressed metabolism and ventilation during winter. The strength of the circadian rhythm varied seasonally, with proportionately larger day-night differences in colder seasons. Daily and seasonal cycles in ventilation largely followed metabolism, although daily and seasonal changes did occur in the breathing pattern independent of levels of total ventilation. These endogenous circadian and circannual changes in metabolism, ventilation, and breathing pattern prolonged dive times at night and in winter and may serve to reduce the costs of breathing and transport and risk of predation.

  2. Changes in the 5-HT2A receptor system in the pre-mammillary hypothalamus of the ewe are related to regulation of LH pulsatile secretion by an endogenous circannual rhythm

    Directory of Open Access Journals (Sweden)

    Karsch Fred J

    2003-01-01

    Full Text Available Abstract Background We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2A receptor gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm: (a refractoriness (low LH secretion or not (high LH secretion to short days in pineal-intact Ile-de-France ewes (RSD and (b endogenous circannual rhythm (ECR in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm. Results In RSD ewes, density of 5HT2A receptor mRNA (by in situ hybridization was significantly higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P 3H-Ketanserin binding (a specific radioligand of the median part of the premammillary hypothalamus tended to be higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P A receptor mRNA and 3H-Ketanserin binding were both significantly higher in the high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P Conclusions We conclude that these higher 5HT2A receptor gene expression and binding activity of 5HT2A receptor in the premammillary hypothalamus are associated with stimulation of LH pulsatility expressed before the development of refractoriness to short days and prior to the decline of reproductive neuroendocrine activity during expression of the endogenous circannual rhythm.

  3. The Effect of Geographic Location on Circannual Adrenocorticotropic Hormone Plasma Concentrations in Horses in Australia.

    Science.gov (United States)

    Secombe, C J; Tan, R H H; Perara, D I; Byrne, D P; Watts, S P; Wearn, J G

    2017-09-01

    Longitudinal evaluation of plasma endogenous ACTH concentration in clinically normal horses has not been investigated in the Southern Hemisphere. To longitudinally determine monthly upper reference limits for plasma ACTH in 2 disparate Australian geographic locations and to examine whether location affected the circannual rhythm of endogenous ACTH in the 2 groups of horses over a 12-month period. Clinically normal horses horses from Perth and ≤67 pg/mL (upper limit of the 90% CI) in horses from Townsville, than at the acrophase, ≤94 pg/mL (upper limit of the 90% CI) in horses from Perth, ≤101 pg/mL (upper limit of the 90% CI) in horses from Townsville. Circannual rhythms of endogenous ACTH concentrations vary between geographic locations, this could be due to changes in photoperiod or other unknown factors, and upper reference limits should be determined for specific locations. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Circannual rhythm in the incidence of cryptorchidism in Finland

    DEFF Research Database (Denmark)

    Kaleva, Marko M; Virtanen, Helena E; Haavisto, Anne-Maarit

    2005-01-01

    Conflicting data on circannual variation in birth rates of urogenital malformations have been reported previously. To assess risk factors of cryptorchidism we studied the seasonal variation of cryptorchidism in Finland. We performed a prospective cryptorchidism study in Turku, Finland, from 1997 ...

  5. Environmental factors contributed to circannual rhythm of semen quality.

    Science.gov (United States)

    Mao, Huan; Feng, Lei; Yang, Wan-Xi

    2017-01-01

    We investigated whether human semen parameters present circannual rhythm or not, and whether environmental factors exert on semen quality. This retrospective study used data of patients mainly from Reproductive Medicine Center and Urology and Andrology Clinic of a general hospital in China. Sperm concentration and motility were measured by computer aided sperm analysis (CASA). Sperm morphology was scored based on the strict criteria (WHO, 2010). The Kruskal-Wallis rank test was used to investigate the relationship between semen parameters and season/month. Partial correlation coefficients were used to analyze the relationship between semen parameters and environmental factors. In this study, we found that sperm concentration and total amount per ejaculate were significantly lower in summer and higher in winter. But, sperm progressive motility and motility were significantly higher in spring and summer (from March to June), lower in autumn and winter (September and October). Unexpectedly, normal sperm morphology and mixed agglutination reaction (MAR) positive rate didn't vary along with season or month. Furthermore, temperature was negatively related to sperm concentration and total amount per ejaculate. Precipitation was positively associated with progressive motility and normal sperm morphology, but negatively related to sperm head defect percentage. The length of sunlight was positively related to progressive motility. The Air Quality Index (AQI) was positively associated with semen volume and sperm total amount per ejaculate. These suggest seasonal and monthly variation underlying some semen parameters.

  6. Seasonal and daily plasma corticosterone rhythms in American toads, Bufo americanus

    International Nuclear Information System (INIS)

    Pancak, M.K.; Taylor, D.H.

    1983-01-01

    Concentrations of corticosterone were measured in the plasma of American toads, Bufo americanus, on a seasonal basis using a radioimmunoassay technique. Two populations of toads, maintained under different light conditions, were monitored to observe the effects of photoperiod on the seasonal rhythm of plasma corticosterone. Under a natural photoperiod toads demonstrated a rhythm consisting of a spring peak and a fall peak in corticosterone concentration. Toads maintained under a 12L:12D photoperiod all year round demonstrated a similar rhythm with peaks in the spring and fall. This suggests that an endogenous (circannual) rhythm of corticosterone may be playing an important role in the seasonal change of overt behavior and physiology of Bufo americanus. A daily rhythm of corticosterone was also detected in toads when blood samples were taken every 4 hr. When compared to a previously published circadian rhythm study of locomotor activity, the surge in corticosterone concentration for the day occurred at 1730 just prior to the peak in locomotor activity

  7. Hibernation Control Mechanism and Possible Applications to Humans

    Science.gov (United States)

    Kondo, N.

    Mammalian hibernation, characterized by the ability to survive temporarily at low body temperatures close to 0oC, has been reported to increase resistance to various lethal events such as low body temperature, severe ischemia, bacterial infection and irradiation, and to prolong the life span. The application of this physiological phenomenon to space life has been dreamed of. However, realization of this dream has been prevented by a poor understanding of the control mechanisms of hibernation. Recent findings of a novel and unique protein complex (HP) in the blood of chipmunks, a rodent hibernator, which is controlled by the endogenous circannual rhythm of hibernation, allowed new developments in understanding the molecular mechanism of hibernation and its physiological significance. From these studies, two hormones regulated by the brain were identified as promising candidate molecules controlling HP production in the liver, assuming that hibernation is controlled via the neuroendocrine system and regulated by the endogenous circannual rhythm in the brain. A circannual HP rhythm was observed in chipmunks maintaining euthermia under conditions of constant warmth, suggesting that the physiological control of hibernation progresses without a lowering of body temperature. Furthermore, the study of HP rhythm on longevity revealed that a circannual rhythm plays an essential role in the much longer life span of hibernators. The present progress in hibernation research may open a new pathway for manipulating a circannual rhythm controlling hibernation in humans. In the future, this will make it feasible to take advantage of hibernation in space life.

  8. Is there an endogenous tidal foraging rhythm in marine iguanas?

    Science.gov (United States)

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related

  9. The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research.

    Science.gov (United States)

    Reinberg, Alain; Smolensky, Michael H; Touitou, Yvan

    Biological rhythmicity is presumed to be an advantageous genetic adaptation of fitness and survival value resulting from evolution of life forms in an environment that varies predictably-in-time during the 24 h, month, and year. The 24 h light/dark cycle is the prime synchronizer of circadian periodicities, and its modulation over the course of the year, in terms of daytime photoperiod length, is a prime synchronizer of circannual periodicities. Circadian and circannual rhythms have been the major research focus of most scientists. Circa-monthly rhythms triggered or synchronized by the 29.5 day lunar cycle of nighttime light intensity, or specifically the light of the full moon, although explored in waterborne and certain other species, have received far less study, perhaps because of associations with ancient mythology and/or an attitude naturalistic studies are of lesser merit than ones that entail molecular mechanisms. In this editorial, we cite our recent discovery through multidisciplinary naturalistic investigation of a highly integrated circadian, circa-monthly, and circannual time structure, synchronized by the natural ambient nyctohemeral, lunar, and annual light cycles, of the Peruvian apple cactus (C. peruvianus) flowering and reproductive processes that occur in close temporal coordination with like rhythms of the honey bee as its pollinator. This finding led us to explore the preservation of this integrated biological time structure, synchronized and/or triggered by environmental light cues and cycles, in the reproduction of other species, including Homo sapiens, and how the artificial light environment of today in which humans reside may be negatively affecting human reproduction efficiency.

  10. Circadian Rhythm Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Erhan Akinci

    2016-06-01

    Full Text Available The circadian rhythm sleep disorders define the clinical conditions where sleep and ndash;wake rhythm is disrupted despite optimum environmental and social conditions. They occur as a result of the changes in endogenous circadian hours or non-compatibility of environmental factors or social life with endogenous circadian rhythm. The sleep and ndash;wake rhythm is disrupted continuously or in repeating phases depending on lack of balance between internal and external cycles. This condition leads to functional impairments which cause insomnia, excessive sleepiness or both in people. Application of detailed sleep anamnesis and sleep diary with actigraphy record, if possible, will be sufficient for diagnosis. The treatment aims to align endogenous circadian rhythm with environmental conditions. The purpose of this article is to review pathology, clinical characteristics, diagnosis and treatment of circadian rhythm disorder. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 178-189

  11. Seven-day human biological rhythms: An expedition in search of their origin, synchronization, functional advantage, adaptive value and clinical relevance.

    Science.gov (United States)

    Reinberg, Alain E; Dejardin, Laurence; Smolensky, Michael H; Touitou, Yvan

    2017-01-01

    This fact-finding expedition explores the perspectives and knowledge of the origin and functional relevance of the 7 d domain of the biological time structure, with special reference to human beings. These biological rhythms are displayed at various levels of organization in diverse species - from the unicellular sea algae of Acetabularia and Goniaulax to plants, insects, fish, birds and mammals, including man - under natural as well as artificial, i.e. constant, environmental conditions. Nonetheless, very little is known about their derivation, functional advantage, adaptive value, synchronization and potential clinical relevance. About 7 d cosmic cycles are seemingly too weak, and the 6 d work/1 d rest week commanded from G-d through the Laws of Mosses to the Hebrews is too recent an event to be the origin in humans. Moreover, human and insect studies conducted under controlled constant conditions devoid of environmental, social and other time cues report the persistence of 7 d rhythms, but with a slightly different (free-running) period (τ), indicating their source is endogenous. Yet, a series of human and laboratory rodent studies reveal certain mainly non-cyclic exogenous events can trigger 7 d rhythm-like phenomena. However, it is unknown whether such triggers unmask, amplify and/or synchronize previous non-overtly expressed oscillations. Circadian (~24 h), circa-monthly (~30 d) and circannual (~1 y) rhythms are viewed as genetically based features of life forms that during evolution conferred significant functional advantage to individual organisms and survival value to species. No such advantages are apparent for endogenous 7 d rhythms, raising several questions: What is the significance of the 7 d activity/rest cycle, i.e. week, storied in the Book of Genesis and adopted by the Hebrews and thereafter the residents of nearby Mediterranean countries and ultimately the world? Why do humans require 1 d off per 7 d span? Do 7 d rhythms bestow functional

  12. Excitatory Modulation of the preBötzinger Complex Inspiratory Rhythm Generating Network by Endogenous Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Glauber S. F. da Silva

    2017-06-01

    Full Text Available Hydrogen Sulfide (H2S is one of three gasotransmitters that modulate excitability in the CNS. Global application of H2S donors or inhibitors of H2S synthesis to the respiratory network has suggested that inspiratory rhythm is modulated by exogenous and endogenous H2S. However, effects have been variable, which may reflect that the RTN/pFRG (retrotrapezoid nucleus, parafacial respiratory group and the preBötzinger Complex (preBötC, critical for inspiratory rhythm generation are differentially modulated by exogenous H2S. Importantly, site-specific modulation of respiratory nuclei by H2S means that targeted, rather than global, manipulation of respiratory nuclei is required to understand the role of H2S signaling in respiratory control. Thus, our aim was to test whether endogenous H2S, which is produced by cystathionine-β-synthase (CBS in the CNS, acts specifically within the preBötC to modulate inspiratory activity under basal (in vitro/in vivo and hypoxic conditions (in vivo. Inhibition of endogenous H2S production by bath application of the CBS inhibitor, aminooxyacetic acid (AOAA, 0.1–1.0 mM to rhythmic brainstem spinal cord (BSSC and medullary slice preparations from newborn rats, or local application of AOAA into the preBötC (slices only caused a dose-dependent decrease in burst frequency. Unilateral injection of AOAA into the preBötC of anesthetized, paralyzed adult rats decreased basal inspiratory burst frequency, amplitude and ventilatory output. AOAA in vivo did not affect the initial hypoxia-induced (10% O2, 5 min increase in ventilatory output, but enhanced the secondary hypoxic respiratory depression. These data suggest that the preBötC inspiratory network receives tonic excitatory modulation from the CBS-H2S system, and that endogenous H2S attenuates the secondary hypoxic respiratory depression.

  13. An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night

    Science.gov (United States)

    Scheer, Frank A. J. L.; Shea, Thomas J.; Hilton, Michael F.; Shea, Steven A.

    2011-01-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0°). Data were segregated according to: (1) circadian phase (60° bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300°, ~2300–0300 h in these subjects) than during the biological day (bin 180°, ~1500–1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive

  14. Daily rhythms of catalase and glutathione peroxidase expression and activity are endogenously driven in the hippocampus and are modified by a vitamin A-free diet.

    Science.gov (United States)

    Navigatore-Fonzo, Lorena S; Delgado, Silvia M; Gimenez, Maria Sofia; Anzulovich, Ana C

    2014-01-01

    Alterations in enzymatic antioxidant defense systems lead to a deficit of cognitive functions and altered hippocampal synaptic plasticity. The objectives of this study were to investigate endogenous rhythms of catalase (CAT) and glutathione peroxidase (GPx) expression and activity, as well as CREB1 mRNA, in the rat hippocampus, and to evaluate to which extent the vitamin A deficiency could affect those temporal patterns. Rats from control and vitamin A-deficient (VAD) groups received a diet containing 4000 IU of vitamin A/kg diet, or the same diet devoid of vitamin A, respectively, during 3 months. Rats were maintained under 12-hour-dark conditions, during 10 days before the sacrifice. Circadian rhythms of CAT, GPx, RXRγ, and CREB1 mRNA levels were determined by reverse transcriptrase polymerase chain reaction in hippocampus samples isolated every 4 hours during a 24-hour period. CAT and GPx enzymatic activities were also determined by kinetic assays. Regulatory regions of clock and antioxidant enzymes genes were scanned for E-box, RXRE, and CRE sites. E-box, RXRE, and CRE sites were found on regulatory regions of GPx and CAT genes, which display a circadian expression in the rat hippocampus. VAD phase shifted CAT, GPx, and RXRγ endogenous rhythms without affecting circadian expression of CREB1. CAT and GPx expression and enzymatic activity are circadian in the rat hippocampus. The VAD affected the temporal patterns antioxidant genes expression, probably by altering circadian rhythms of its RXR receptors and clock factors; thus, it would impair the temporal orchestration of hippocampal daily cognitive performance.

  15. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    Science.gov (United States)

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.

  16. Neurospora circadian rhythms in space - A reexamination of the endogenous-exogenous question

    Science.gov (United States)

    Sulzman, F. M.; Ellman, D.; Wassmer, G.; Fuller, C. A.; Moore-Ede, M.

    1984-01-01

    To test the functioning of circadian rhythms removed from periodicities of the earth's 24-hour rotation, the conidiation rhythm of the fungus Neurospora crassa was monitored in constant darkness during spaceflight. The free-running period of the rhythm was the same in space as on the earth, but there was a marked reduction in the clarity of the rhythm, and apparent arrhythmicity in some tubes. At the current stage of analysis of the results there is insufficient evidence to determine whether the effect seen in space was related to removal from 24-hour periodicities and whether the circadian timekeeping mechanism, or merely its expression, was affected.

  17. Sex hormone receptors are present in the human suprachiasmatic nucleus

    NARCIS (Netherlands)

    Kruijver, Frank P. M.; Swaab, Dick F.

    2002-01-01

    The suprachiasmatic nucleus (SCN) is the clock of the brain that orchestrates circadian and circannual biological rhythms, such as the rhythms of hormones, body temperature, sleep and mood. These rhythms are frequently disturbed in menopause and even more so in dementia and can be restored in

  18. Diurnal trend in EEG interhemispheric asymmetry in endogenous depressions

    Directory of Open Access Journals (Sweden)

    T S Melnikova

    2011-01-01

    Full Text Available A trend in EEG interhemispheric asymmetry was studied in patients with endogenous depressions in morning and evening hours. In the morning, the spectral power of alpha rhythm particularly in the occipital cortical regions, proved to be higher than that in the evening. In the morning, the interhemispheric differences in the power of occipital alpha rhythm were leveled off while in the evening there was normalization of interhemispheric balance with the higher power of alpha rhythm in the right occipital region. Analysis of the mean coherence (mean Coh of alpha rhythm in individual cortical regions revealed that the patients with endogenous depression had higher readings mainly in the parietal and central regions of both hemispheres and in the right temporal regions in the morning than in the evening. The occipital and posttemporal regions showed an inverse trend in the mean Coh - it was lower in the morning than in the evening

  19. Seasonal variations in health-related human physical activity.

    Science.gov (United States)

    Reilly, Thomas; Peiser, Benny

    2006-01-01

    There are profound fluctuations in climate that occur within the annual cycle of seasonal changes. The severity of these changes depends on latitude of location and prevailing topography. Living creatures have evolved means of coping with seasonal extremes. Endogenous circannual cycles, at least in humans, appear to have been masked by mechanisms employed to cope with environmental changes. Physical activity levels tend to be lower in winter than in summer, mediating effects on health-related fitness. In athletes, seasonal changes are dictated by requirements of the annual programme of competitive engagements rather than an inherent circannual rhythm. Injury rates are influenced by seasonal environmental factors, notably in field sports. Season of birth has been related to susceptibility to selected morbidities, including mental ill-health. In age-restricted sports, there is a date-of-birth bias favouring those individuals born early in the competitive year. Trainers and selectors should acknowledge this trend if they are to avoid omitting gifted individuals, born later in the year, from talent development programmes.

  20. Circadian Rhythm Sleep-Wake Disorders.

    Science.gov (United States)

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  2. Hypophysectomy abolishes rhythms in rat thyroid hormones but not in the thyroid clock

    DEFF Research Database (Denmark)

    Fahrenkrug, J; Georg, B; Hannibal, J

    2017-01-01

    The endocrine body rhythms including the hypothalamic-pituitary-thyroid axis seem to be regulated by the circadian timing system, and daily rhythmicity of circulating thyroid-stimulating hormone (TSH) is well established. The circadian rhythms are generated by endogenous clocks in the central bra...

  3. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Mathias Teschke

    Full Text Available Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.

  4. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster

    OpenAIRE

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M.; Giebultowicz, Jadwiga M.

    2013-01-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exerci...

  5. Melatonin in sleepless children : everything has a rhythm?

    NARCIS (Netherlands)

    van Geijlswijk, I.M.

    2011-01-01

    Every living organism has an biological clock regulating endogenous melatonin production, synchronized by exogenous impulses like daylight, temperature and feeding. Inappropriately applied bright light disturbs this melatonin rhythm. Some large swine producers apply artificial light three times a

  6. Exogenous melatonin entrains rhythm and reduces amplitude of endogenous melatonin : An in vivo microdialysis study

    NARCIS (Netherlands)

    Drijfhout, W.J; Homan, E.J; Brons, H.F; Oakley, M; Skingle, M; Grol, Cor; Westerink, B.H.C.

    The circadian rhythm of melatonin production was studied using on-line, in vivo microdialysis in the rat pineal gland. With this technique it was possible to record a pronounced melatonin rhythm with very high time resolution. Three phase-markers of the rhythm were calculated from the data,

  7. [Dynamic Attending Binds Time and Rhythm Perception].

    Science.gov (United States)

    Kuroda, Tsuyoshi; Ono, Fuminori; Kadota, Hiroshi

    2017-11-01

    Relations between time and rhythm perception are discussed in this review of psychophysical research relevant to the multiple-look effect and dynamic-attending theory. Discrimination of two neighboring intervals that are marked by three successive sounds is improved when the presentation of the first (standard, S) interval is repeated before that of the second (comparison, C), as SSSSC. This improvement in sensitivity, called the multiple-look effect, occurs because listeners (1) perceive regular rhythm during the repetition of the standard interval, (2) predict the timing of subsequent sounds, and (3) detect sounds that are deviated from the predicted timing. The dynamic-attending theory attributes such predictions to the entrainment of attentional rhythms. An endogenous attentional rhythm is synchronized with the periodic succession of sounds marking the repeated standard. The standard and the comparison are discriminated on the basis of whether the ending marker of the comparison appears at the peak of the entrained attentional rhythm. This theory is compatible with the findings of recent neurophysiological studies that relate temporal prediction to neural oscillations.

  8. Circadian rhythms, metabolism, and chrononutrition in rodents and humans

    Science.gov (United States)

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial respon...

  9. Biological and psychological rhythms: an integrative approach to rhythm disturbances in autistic disorder.

    Science.gov (United States)

    Botbol, Michel; Cabon, Philippe; Kermarrec, Solenn; Tordjman, Sylvie

    2013-09-01

    Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep-wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep-wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Introduction: circadian rhythm and its disruption: impact on reproductive function.

    Science.gov (United States)

    Casper, Robert F; Gladanac, Bojana

    2014-08-01

    Almost all forms of life have predictable daily or circadian rhythms in molecular, endocrine, and behavioral functions. In mammals, a central pacemaker located in the suprachiasmatic nuclei coordinates the timing of these rhythms. Daily light exposure that affects the retina of the eye directly influences this area, which is required to align endogenous processes to the appropriate time of day. The present "Views and Reviews" articles discuss the influence of circadian rhythms, especially nightly secretion of melatonin, on reproductive function and parturition. In addition, an examination is made of problems that arise from recurrent circadian rhythm disruption associated with changes in light exposure patterns common to modern day society. Finally, a possible solution to prevent disruptions in circadian phase markers by filtering out short wavelengths from nocturnal light is reviewed. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    Science.gov (United States)

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  12. Circadian rhythms, time-restricted feeding, and healthy aging.

    Science.gov (United States)

    Manoogian, Emily N C; Panda, Satchidananda

    2017-10-01

    Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Alpha Power Modulates Perception Independently of Endogenous Factors

    Directory of Open Access Journals (Sweden)

    Sasskia Brüers

    2018-04-01

    Full Text Available Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF, a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution. Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between

  14. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus

    Directory of Open Access Journals (Sweden)

    Guilding Clare

    2009-08-01

    Full Text Available Abstract Background In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH, a site pivotal for optimal internal homeostatic regulation. Results Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc and dorsomedial nuclei (DMH. Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT. A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Conclusion Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.

  15. Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects.

    Science.gov (United States)

    Poiré, Richard; Wiese-Klinkenberg, Anika; Parent, Boris; Mielewczik, Michael; Schurr, Ulrich; Tardieu, François; Walter, Achim

    2010-06-01

    Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.

  16. Temporal coherence of phenological and climatic rhythmicity in Beijing

    Science.gov (United States)

    Chen, Xiaoqiu; Zhang, Weiqi; Ren, Shilong; Lang, Weiguang; Liang, Boyi; Liu, Guohua

    2017-10-01

    Using woody plant phenological data in the Beijing Botanical Garden from 1979 to 2013, we revealed three levels of phenology rhythms and examined their coherence with temperature rhythms. First, the sequential and correlative rhythm shows that occurrence dates of various phenological events obey a certain time sequence within a year and synchronously advance or postpone among years. The positive correlation between spring phenophase dates is much stronger than that between autumn phenophase dates and attenuates as the time interval between two spring phenophases increases. This phenological rhythm can be explained by positive correlation between above 0 °C mean temperatures corresponding to different phenophase dates. Second, the circannual rhythm indicates that recurrence interval of a phenophase in the same species in two adjacent years is about 365 days, which can be explained by the 365-day recurrence interval in the first and last dates of threshold temperatures. Moreover, an earlier phenophase date in the current year may lead to a later phenophase date in the next year through extending recurrence interval. Thus, the plant phenology sequential and correlative rhythm and circannual rhythm are interacted, which mirrors the interaction between seasonal variation and annual periodicity of temperature. Finally, the multi-year rhythm implies that phenophase dates display quasi-periodicity more than 1 year. The same 12-year periodicity in phenophase and threshold temperature dates confirmed temperature controls of the phenology multi-year rhythm. Our findings provide new perspectives for examining phenological response to climate change and developing comprehensive phenology models considering temporal coherence of phenological and climatic rhythmicity.

  17. Clinical Trial of the Effect of Exercise on Resetting of the Endogenous Circadian Pacemaker

    National Research Council Canada - National Science Library

    Czeisler, Charles

    2000-01-01

    ...: test the hypothesis that multiple nightly bouts of exercise will induce significant delays in the endogenous circadian rhythms of core body temperature, plasma - melatonin, reaction time, alertness...

  18. Two mechanisms of rephasal of circadian rhythms in response to a 180 deg phase shift /simulated 12-hr time zone change/

    Science.gov (United States)

    Deroshia, C. W.; Winget, C. M.; Bond, G. H.

    1976-01-01

    A model developed by Wever (1966) is considered. The model describes the behavior of circadian rhythms in response to photoperiod phase shifts simulating time zone changes, as a function of endogenous periodicity, light intensity, and direction of phase shift. A description is given of an investigation conducted to test the model upon the deep body temperature rhythm in unrestrained subhuman primates. An evaluation is conducted regarding the applicability of the model in predicting the type and duration of desynchronization induced by simulated time zone changes as a function of endogenous periodicity.

  19. Uncovering different masking factors on wrist skin temperature rhythm in free-living subjects.

    Directory of Open Access Journals (Sweden)

    Antonio Martinez-Nicolas

    Full Text Available Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18-24 years old were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a "constant routine" protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature. Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions.

  20. Increase in Synchronization of Autonomic Rhythms between Individuals When Listening to Music

    Science.gov (United States)

    Bernardi, Nicolò F.; Codrons, Erwan; di Leo, Rita; Vandoni, Matteo; Cavallaro, Filippo; Vita, Giuseppe; Bernardi, Luciano

    2017-01-01

    In light of theories postulating a role for music in forming emotional and social bonds, here we investigated whether endogenous rhythms synchronize between multiple individuals when listening to music. Cardiovascular and respiratory recordings were taken from multiple individuals (musically trained or music-naïve) simultaneously, at rest and during a live concert comprising music excerpts with varying degrees of complexity of the acoustic envelope. Inter-individual synchronization of cardiorespiratory rhythms showed a subtle but reliable increase during passively listening to music compared to baseline. The low-level auditory features of the music were largely responsible for creating or disrupting such synchronism, explaining ~80% of its variance, over and beyond subjective musical preferences and previous musical training. Listening to simple rhythms and melodies, which largely dominate the choice of music during rituals and mass events, brings individuals together in terms of their physiological rhythms, which could explain why music is widely used to favor social bonds. PMID:29089898

  1. Rhythms of mammalian body temperature can sustain peripheral circadian clocks.

    Science.gov (United States)

    Brown, Steven A; Zumbrunn, Gottlieb; Fleury-Olela, Fabienne; Preitner, Nicolas; Schibler, Ueli

    2002-09-17

    Low-amplitude temperature oscillations can entrain the phase of circadian rhythms in several unicellular and multicellular organisms, including Neurospora and Drosophila. Because mammalian body temperature is subject to circadian variations of 1 degrees C-4 degrees C, we wished to determine whether these temperature cycles could serve as a Zeitgeber for circadian gene expression in peripheral cell types. In RAT1 fibroblasts cultured in vitro, circadian gene expression could be established by a square wave temperature rhythm with a (Delta)T of 4 degrees C (12 hr 37 degrees C/12 hr 33 degrees C). To examine whether natural body temperature rhythms can also affect circadian gene expression, we first measured core body temperature cycles in the peritoneal cavities of mice by radiotelemetry. We then reproduced these rhythms with high precision in the liquid medium of cultured fibroblasts for several days by means of a homemade computer-driven incubator. While these "in vivo" temperature rhythms were incapable of establishing circadian gene expression de novo, they could maintain previously induced rhythms for multiple days; by contrast, the rhythms of control cells kept at constant temperature rapidly dampened. Moreover, circadian oscillations of environmental temperature could reentrain circadian clocks in the livers of mice, probably via the changes they imposed upon both body temperature and feeding behavior. Interestingly, these changes in ambient temperature did not affect the phase of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. We postulate that both endogenous and environmental temperature cycles can participate in the synchronization of peripheral clocks in mammals.

  2. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster.

    Science.gov (United States)

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M; Giebultowicz, Jadwiga M

    2013-11-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exercise via stimulation of upward climbing movement could improve circadian rest/activity rhythms in aging Drosophila melanogaster. We found that repeated exercise regimen did not strengthen circadian locomotor activity rhythms in aging flies and had no effect on their lifespan. We also tested the effects of exercise on mobility and determined that regular exercise lowered age-specific climbing ability in both wild type and clock mutant flies. Interestingly, the climbing ability was most significantly reduced in flies carrying a null mutation in the core clock gene period, while rescue of this gene significantly improved climbing to wild type levels. Our work highlights the importance of period in sustaining endurance in aging flies exposed to physical challenge. © 2013.

  3. Rhythms of locomotion expressed by Limulus polyphemus, the American horseshoe crab: I. Synchronization by artificial tides.

    Science.gov (United States)

    Chabot, Christopher C; Skinner, Stephen J; Watson, Winsor H

    2008-08-01

    Limulus polyphemus, the American horseshoe crab, has an endogenous clock that drives circatidal rhythms of locomotor activity. In this study, we examined the ability of artificial tides to entrain the locomotor rhythms of Limulus in the laboratory. In experiments one and two, the activity of 16 individuals of L. polyphemus was monitored with activity boxes and "running wheels." When the crabs were exposed to artificial tides created by changes in water depth, circatidal rhythms were observed in animals exposed to 12.4-h "tidal" cycles of either water depth changes (8 of 8 animals) or inundation (7 of 8 animals). In experiment three, an additional 8 animals were exposed to water depth changes under cyclic conditions of light and dark and then monitored for 10 days with no imposed artificial tides. Most animals (5) clearly synchronized their activity to the imposed artificial tidal cycles, and 3 of these animals showed clear evidence of entrainment after the artificial tides were terminated. Overall, these results demonstrate that the endogenous tidal clock that influences locomotion in Limulus can be entrained by imposed artificial tides. In the laboratory, these tidal cues override the influence of light/dark cycles. In their natural habitat, where both tidal and photoperiod inputs are typically always present, their activity rhythms are likely to be much more complex.

  4. Daily Rhythms of Hunger and Satiety in Healthy Men during One Week of Sleep Restriction and Circadian Misalignment.

    Science.gov (United States)

    Sargent, Charli; Zhou, Xuan; Matthews, Raymond W; Darwent, David; Roach, Gregory D

    2016-01-29

    The impact of sleep restriction on the endogenous circadian rhythms of hunger and satiety were examined in 28 healthy young men. Participants were scheduled to 2 × 24-h days of baseline followed by 8 × 28-h days of forced desynchrony during which sleep was either moderately restricted (equivalent to 6 h in bed/24 h; n = 14) or severely restricted (equivalent to 4 h in bed/24 h; n = 14). Self-reported hunger and satisfaction were assessed every 2.5 h during wake periods using visual analogue scales. Participants were served standardised meals and snacks at regular intervals and were not permitted to eat ad libitum. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. Both hunger and satiety exhibited a marked endogenous circadian rhythm. Hunger was highest, and satiety was lowest, in the biological evening (i.e., ~17:00-21:00 h) whereas hunger was lowest, and satiety was highest in the biological night (i.e., 01:00-05:00 h). The results are consistent with expectations based on previous reports and may explain in some part the decrease in appetite that is commonly reported by individuals who are required to work at night. Interestingly, the endogenous rhythms of hunger and satiety do not appear to be altered by severe--as compared to moderate--sleep restriction.

  5. Daily Rhythms of Hunger and Satiety in Healthy Men during One Week of Sleep Restriction and Circadian Misalignment

    Directory of Open Access Journals (Sweden)

    Charli Sargent

    2016-01-01

    Full Text Available The impact of sleep restriction on the endogenous circadian rhythms of hunger and satiety were examined in 28 healthy young men. Participants were scheduled to 2 × 24-h days of baseline followed by 8 × 28-h days of forced desynchrony during which sleep was either moderately restricted (equivalent to 6 h in bed/24 h; n = 14 or severely restricted (equivalent to 4 h in bed/24 h; n = 14. Self-reported hunger and satisfaction were assessed every 2.5 h during wake periods using visual analogue scales. Participants were served standardised meals and snacks at regular intervals and were not permitted to eat ad libitum. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. Both hunger and satiety exhibited a marked endogenous circadian rhythm. Hunger was highest, and satiety was lowest, in the biological evening (i.e., ~17:00–21:00 h whereas hunger was lowest, and satiety was highest in the biological night (i.e., 01:00–05:00 h. The results are consistent with expectations based on previous reports and may explain in some part the decrease in appetite that is commonly reported by individuals who are required to work at night. Interestingly, the endogenous rhythms of hunger and satiety do not appear to be altered by severe—as compared to moderate—sleep restriction.

  6. An approximation to the temporal order in endogenous circadian rhythms of genes implicated in human adipose tissue metabolism

    Science.gov (United States)

    Although it is well established that human adipose tissue (AT) shows circadian rhythmicity, published studies have been discussed as if tissues or systems showed only one or few circadian rhythms at a time. To provide an overall view of the internal temporal order of circadian rhythms in human AT in...

  7. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Bédard, Nathalie

    2012-01-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock...

  8. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.

    Science.gov (United States)

    Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred

    2016-02-01

    The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).

  9. Endogenous Circadian Regulation of Pro-inflammatory Cytokines and Chemokines in the Presence of Bacterial Lipopolysaccharide in Humans

    Science.gov (United States)

    Rahman, Shadab A.; Castanon-Cervantes, Oscar; Scheer, Frank A.J.L.; Shea, Steven A.; Czeisler, Charles A.; Davidson, Alec J.; Lockley, Steven W.

    2015-01-01

    Various aspects of immune response exhibit 24-hour variations suggesting that infection susceptibility and treatment efficacy may vary by time of day. Whether these 24-hour variations are endogenous or evoked by changes in environmental or behavioral conditions is not known. We assessed the endogenous circadian control and environmental and behavioral influences on ex-vivo lipopolysaccharide stimulation of whole blood in thirteen healthy participants under 48 hours of baseline conditions with standard sleep-wake schedules and 40–50 hours of constant environmental and behavioral (constant routine; CR) conditions. Significant 24-hour rhythms were observed under baseline conditions in Monocyte Chemotactic Protein, Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin 8 but not Tumor Necrosis Factor alpha whereas significant 24-hour rhythms were observed in all four immune factors under CR conditions. The rhythm amplitudes, expressed as a percentage of mean, were comparable between immune factors and across conditions. In contrast, the acrophase time (time of the fitted peak) was different between immune factors, and included daytime and nighttime peaks and changes across behavioral conditions. These results suggest that the endogenous circadian system underpins the temporal organization of immune responses in humans with additional effects of external environmental and behavioral cycles. These findings have implications for understanding the adverse effects of recurrent circadian disruption and sleep curtailment on immune function. PMID:25452149

  10. Sleep, circadian rhythm and body weight: parallel developments.

    Science.gov (United States)

    Westerterp-Plantenga, Margriet S

    2016-11-01

    Circadian alignment is crucial for body-weight management, and for metabolic health. In this context, circadian alignment consists of alignment of sleep, meal patterns and physical activity. During puberty a significant reduction in sleep duration occurs, and pubertal status is inversely associated with sleep duration. A consistent inverse association between habitual sleep duration and body-weight development occurs, independent of possible confounders. Research on misalignment reveals that circadian misalignment affects sleep-architecture and subsequently disturbs glucose-insulin metabolism, substrate oxidation, leptin- and ghrelin concentrations, appetite, food reward, hypothalamic-pituitary-adrenal-axis activity and gut-peptide concentrations enhancing positive energy balance and metabolic disturbance. Not only aligning meals and sleep in a circadian way is crucial, also regular physical activity during the day strongly promotes the stability and amplitude of circadian rhythm, and thus may serve as an instrument to restore poor circadian rhythms. Endogenicity may play a role in interaction of these environmental variables with a genetic predisposition. In conclusion, notwithstanding the separate favourable effects of sufficient daily physical activity, regular meal patterns, sufficient sleep duration and quality sleep on energy balance, the overall effect of the amplitude and stability of the circadian rhythm, perhaps including genetic predisposition, may integrate the separate effects in an additive way.

  11. Circadian rhythms in sports performance--an update.

    Science.gov (United States)

    Drust, B; Waterhouse, J; Atkinson, G; Edwards, B; Reilly, T

    2005-01-01

    We discuss current knowledge on the description, impact, and underlying causes of circadian rhythmicity in sports performance. We argue that there is a wealth of information from both applied and experimental work, which, when considered together, suggests that sports performance is affected by time of day in normal entrained conditions and that the variation has at least some input from endogenous mechanisms. Nevertheless, precise information on the relative importance of endogenous and exogenous factors is lacking. No single study can answer both the applied and basic research questions that are relevant to this topic, but an appropriate mixture of real-world research on rhythm disturbances and tightly controlled experiments involving forced desynchronization protocols is needed. Important issues, which should be considered by any chronobiologist interested in sports and exercise, include how representative the study sample and the selected performance tests are, test-retest reliability, as well as overall design of the experiment.

  12. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.

    Directory of Open Access Journals (Sweden)

    Lisa Marshall

    Full Text Available Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz during non-rapid eye movement sleep (NonREM sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies.

  13. A circadian rhythm of conidiation in Neurospora crassa (L-12)

    Science.gov (United States)

    Miyoshi, Yashuhiro

    1993-01-01

    Two fungi growth chambers containing six growth tubes each are used in this experiment. One chamber is for the space experiment; the other is for the simultaneous ground control experiment. The hyphae of Neurospora crassa band A mutant are inoculated at one end of each tube. Both the chambers are kept at 3 C plus or minus 1.5 C to stop hyphae growth until the Spacelab is activated. After the activation, each chamber is transferred simultaneously to the Spacelab and a phytotron in KSC and kept in continuous light at the same temperature. After about 24 hours of light exposure, each chamber is inserted into a growth chamber bag to keep it in constant darkness. The circadian rhythm of conidiation is initiated by this light to dark transition. After the dark incubation for 5 days at room temperature, both the growth chambers are kept at 3 C plus or minus 1.5 C to stop growth of the hyphae. After the space shuttle lands, both conidiation patterns are compared and analyzed. It has been known that numerous physiological phenomena show circadian rhythms. They are characterized by the fact that the oscillation can persist under constant conditions of light and temperature. Therefore, it has been accepted by most investigators that the generation mechanism of the circadian rhythm is endogeneous. However, one cannot reject the possibility that these rhythms are caused by some geophysical exogeneous factor having a 24-hour period, such as atmospheric pressure, gravity, or electromagnetic radiation. We use Neurospora crassa band A mutual which shows an obvious circadian rhythm in its spore-forming (conidiation) on the ground, and we intend to attempt the conidation of this mutant in the Spacelab where 24-hour periodicity is severely attenuated and to elucidate the effect of the geophysical exogeneous factor in the generation mechanism of the circadian rhythm.

  14. Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres

    Directory of Open Access Journals (Sweden)

    Izhak David

    2016-09-01

    Full Text Available Cockroaches are rapid and stable runners whose gaits emerge from the intricate, and not fully resolved, interplay between endogenous oscillatory pattern-generating networks and sensory feedback that shapes their rhythmic output. Here we studied the endogenous motor output of a brainless, deafferented preparation. We monitored the pilocarpine-induced rhythmic activity of levator and depressor motor neurons in the mesothoracic and metathoracic segments in order to reveal the oscillatory networks’ architecture and interactions. Data analyses included phase relations, latencies between and overlaps of rhythmic bursts, spike frequencies, and the dependence of these parameters on cycle frequency. We found that, overall, ipsilateral connections are stronger than contralateral ones. Our findings revealed asymmetries in connectivity among the different ganglia, in which meta-to-mesothoracic ascending coupling is stronger than meso-to-metathoracic descending coupling. Within-ganglion coupling between the metathoracic hemiganglia is stronger than that in the mesothoracic ganglion. We also report differences in the role and mode of operation of homologue network units (manifested by levator and depressor nerve activity. Many observed characteristics are similar to those exhibited by intact animals, suggesting a dominant role for feedforward control in cockroach locomotion. Based on these data we posit a connectivity scheme among components of the locomotion pattern generating system.

  15. Circadian Rhythm Neuropeptides in Drosophila: Signals for Normal Circadian Function and Circadian Neurodegenerative Disease.

    Science.gov (United States)

    He, Qiankun; Wu, Binbin; Price, Jeffrey L; Zhao, Zhangwu

    2017-04-21

    Circadian rhythm is a ubiquitous phenomenon in many organisms ranging from prokaryotes to eukaryotes. During more than four decades, the intrinsic and exogenous regulations of circadian rhythm have been studied. This review summarizes the core endogenous oscillation in Drosophila and then focuses on the neuropeptides, neurotransmitters and hormones that mediate its outputs and integration in Drosophila and the links between several of these (pigment dispersing factor (PDF) and insulin-like peptides) and neurodegenerative disease. These signaling molecules convey important network connectivity and signaling information for normal circadian function, but PDF and insulin-like peptides can also convey signals that lead to apoptosis, enhanced neurodegeneration and cognitive decline in flies carrying circadian mutations or in a senescent state.

  16. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer.

    Science.gov (United States)

    Truong, Kimberly K; Lam, Michael T; Grandner, Michael A; Sassoon, Catherine S; Malhotra, Atul

    2016-07-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption.

  17. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    Science.gov (United States)

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  18. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans.

    Science.gov (United States)

    Eastman, Charmane I; Suh, Christina; Tomaka, Victoria A; Crowley, Stephanie J

    2015-02-11

    Successful adaptation to modern civilization requires the internal circadian clock to make large phase shifts in response to circumstances (e.g., jet travel and shift work) that were not encountered during most of our evolution. We found that the magnitude and direction of the circadian clock's phase shift after the light/dark and sleep/wake/meal schedule was phase-advanced (made earlier) by 9 hours differed in European-Americans compared to African-Americans. European-Americans had larger phase shifts, but were more likely to phase-delay after the 9-hour advance (to phase shift in the wrong direction). The magnitude and direction of the phase shift was related to the free-running circadian period, and European-Americans had a longer circadian period than African-Americans. Circadian period was related to the percent Sub-Saharan African and European ancestry from DNA samples. We speculate that a short circadian period was advantageous during our evolution in Africa and lengthened with northern migrations out of Africa. The differences in circadian rhythms remaining today are relevant for understanding and treating the modern circadian-rhythm-based disorders which are due to a misalignment between the internal circadian rhythms and the times for sleep, work, school and meals.

  19. Photoperiodism and enzyme rhythms: Kinetic characteristics of the photoperiodic induction of Crassulacean acid metabolism.

    Science.gov (United States)

    Brulfert, J; Guerrier, D; Queiroz, O

    1975-01-01

    The effect of photoperiod on Crassulacean acid metabolism (CAM) in Kalanchoe blossfeldiana Poellniz, cv. Tom Thumb, has characteristics similar to its effect on flowering in this plant (although these two phenomena are not causally related). The photoperiodic control of CAM is based on (a) dependance on phytochrome, (b) an endogenous circadian rhythm of sensitivity to photoperiodic signals, (c) a balance between specific positive (increase in enzyme capacity) and negative (inhibitory substances) effects of the photoperiod. Variations in malate content, capacity of phosphoenolpyruvate (PEP) carboxylase, and capacity of CAM inhibitors in young leaves were measured under photoperiodic conditions noninductive for CAM and after transfer into photoperiodic conditions inductive for CAM. Essential characteristics of the photoperiodic induction of CAM are: 1) lag time for malate accumulation; 2) after-effect of the inductive photoperiod on the malate accumulation, on the increase in PEP carboxylase capacity, and on the decrease in the level of long-day produced inhibitors; final levels of malate, enzyme capacity and inhibitor are proportional to the number of inductive day-night cycles; 3) cireadian rhythm in PEP carboxylase capacity with a fixed phase under noninductive photoperiods and a continuously shifting phase under inductive photoperiods, after complex advancing and delaying transients. Kinetic similarities indicate that photoperiodic control of different physiological functions, namely, CAM and flowering, may be achieved through similar mechanisms. Preliminary results with species of Bryophyllum and Sedum support this hypothesis. Phase relationships suggest different degrees of coupling between endogenous enzymic rhythm and photoperiod, depending on whether the plants are under long days or short days.

  20. Clock gene polymorphism, migratory behaviour and geographic distribution: a comparative study of trans-Saharan migratory birds.

    Science.gov (United States)

    Bazzi, Gaia; Cecere, Jacopo G; Caprioli, Manuela; Gatti, Emanuele; Gianfranceschi, Luca; Podofillini, Stefano; Possenti, Cristina D; Ambrosini, Roberto; Saino, Nicola; Spina, Fernando; Rubolini, Diego

    2016-12-01

    Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate 'circadian clock' genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans-Saharan migratory bird species, we investigated the relationships between species-level genetic variation at two candidate genes, Clock and Adcyap1, and species' traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in 'circadian clock' genotype frequencies, Clock allele size increased with breeding latitude across species. However, early- and late-migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long-distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long-distance migratory species, likely resulting from the time constraints imposed by late spring migration. © 2016 John Wiley & Sons Ltd.

  1. Maternal circadian rhythms and the programming of adult health and disease.

    Science.gov (United States)

    Varcoe, Tamara J; Gatford, Kathryn L; Kennaway, David J

    2018-02-01

    The in utero environment is inherently rhythmic, with the fetus subjected to circadian changes in temperature, substrates, and various maternal hormones. Meanwhile, the fetus is developing an endogenous circadian timing system, preparing for life in an external environment where light, food availability, and other environmental factors change predictably and repeatedly every 24 h. In humans, there are many situations that can disrupt circadian rhythms, including shift work, international travel, insomnias, and circadian rhythm disorders (e.g., advanced/delayed sleep phase disorder), with a growing consensus that this chronodisruption can have deleterious consequences for an individual's health and well-being. However, the impact of chronodisruption during pregnancy on the health of both the mother and fetus is not well understood. In this review, we outline circadian timing system ontogeny in mammals and examine emerging research from animal models demonstrating long-term negative implications for progeny health following maternal chronodisruption during pregnancy.

  2. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.

    Science.gov (United States)

    Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C

    2014-04-01

    Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P hour melatonin AUC (P = .001). Disease duration, Unified Parkinson's Disease Rating Scale scores, levodopa equivalent dose, and global Pittsburgh Sleep Quality Index score in the PD group were not significantly related to measures of the melatonin circadian rhythm. Circadian dysfunction may underlie excessive sleepiness in PD. The nature of this association needs to be explored further

  3. Laboratory techniques and rhythmometry

    Science.gov (United States)

    Halberg, F.

    1973-01-01

    Some of the procedures used for the analysis of rhythms are illustrated, notably as these apply to current medical and biological practice. For a quantitative approach to medical and broader socio-ecologic goals, the chronobiologist gathers numerical objective reference standards for rhythmic biophysical, biochemical, and behavioral variables. These biological reference standards can be derived by specialized computer analyses of largely self-measured (until eventually automatically recorded) time series (autorhythmometry). Objective numerical values for individual and population parameters of reproductive cycles can be obtained concomitantly with characteristics of about-yearly (circannual), about-daily (circadian) and other rhythms.

  4. Markets, Bodies, Rhythms

    DEFF Research Database (Denmark)

    Borch, Christian; Bondo Hansen, Kristian; Lange, Ann-Christina

    2015-01-01

    to respond to a widely perceived problem, namely that market rhythms might be contagious and that some form of separation of bodily and market rhythms might therefore be needed. Finally, we show how current high-frequency trading, despite being purely algorithmic, does not render the traders' bodies......This article explores the relationship between bodily rhythms and market rhythms in two distinctly different financial market configurations, namely the open-outcry pit (prevalent especially in the early 20th century) and present-day high-frequency trading. Drawing on Henri Lefebvre......'s rhythmanalysis, we show how traders seek to calibrate their bodily rhythms to those of the market. We argue that, in the case of early-20th-century open-outcry trading pits, traders tried to enact a total merger of bodily and market rhythms. We also demonstrate how, in the 1920s and '30s, market observers began...

  5. Circadian rhythm and its role in malignancy

    Directory of Open Access Journals (Sweden)

    Mahmood Saqib

    2010-03-01

    Full Text Available Abstract Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer.

  6. Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. E.; Gohel, Bakul; Kim, K.; Kwon, H.; An, Kyung Min [Center for Biosignals, Korea Research Institute of Standards and Science(KRISS), Daejeon (Korea, Republic of)

    2015-12-15

    Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8–13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively.

  7. Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

    International Nuclear Information System (INIS)

    Kim, J. E.; Gohel, Bakul; Kim, K.; Kwon, H.; An, Kyung Min

    2015-01-01

    Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8–13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively

  8. Effect of tidal cycle and food intake on the baseline plasma corticosterone rhythm in intertidally foraging marine iguanas.

    Science.gov (United States)

    Woodley, Sarah K; Painter, Danika L; Moore, Michael C; Wikelski, Martin; Romero, L Michael

    2003-06-15

    In most species, plasma levels of baseline glucocorticoids such as corticosterone (B) have a circadian rhythm. This rhythm can be entrained by both photoperiod and food intake and is related to aspects of energy intake and metabolism. Marine iguanas (Amblyrhynchus cristatus) offer a unique opportunity to better understand the relative importance of the light:dark cycle versus food intake in influencing the rhythm in baseline B in a natural system. Compared to other species, food intake is not as strictly determined by the phase of the light:dark cycle. Animals feed in the intertidal zone so feeding activity is heavily influenced by the tidal cycle. We measured baseline plasma B levels in free-living iguanas over several 24-h periods that varied in the timing of low tide/foraging activity. We found that baseline B levels were higher during the day relative to night. However, when low tide occurred during the day, baseline B levels dropped coincident with the timing of low tide. Whether the baseline B rhythm (including the drop during foraging) is an endogenous rhythm with a circatidal component, or is simply a result of feeding and associated physiological changes needs to be tested. Together, these data suggest that the baseline B rhythm in marine iguanas is influenced by the tidal cycle/food intake as well as the light:dark cycle.

  9. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm.

    Science.gov (United States)

    Tranquilli, A L; Turi, A; Giannubilo, S R; Garbati, E

    2004-03-01

    We assessed the correlation between the rhythm of melatonin concentration and circadian blood pressure patterns in normal and hypertensive pregnancy. Ambulatory 24-h blood pressure and blood samples every 4 h were monitored in 16 primigravidae who had shown an abnormal circadian blood pressure pattern (eight pre-eclamptic and eight normotensive) in pregnancy and 6-12 months after pregnancy. The circadian rhythm was analyzed by chronobiological measures. Eight normotensive women with maintained blood pressure rhythm served as controls. During pregnancy, melatonin concentration was significantly higher in pre-eclamptic than in normotensive women (pre-eclampsia, 29.4 +/- 1.9 pg/ml, normotensin, altered rhythm, 15.6 +/- 2.1; controls, 22.7 +/- 1.8; p lost in all pregnant women with loss of blood pressure rhythm. After pregnancy, normotensive women showed a reappearance of both melatonin and blood pressure rhythm, whereas pre-eclamptic women showed a reappearance of blood pressure but not melatonin rhythm. The loss of blood pressure rhythm in pregnancy is consistent with the loss of melatonin concentration rhythm. In pre-eclamptic women, the normalization of blood pressure rhythm, while melatonin rhythm remained altered, suggests a temporal or causal priority of circadian concentration of melatonin in the determination of blood pressure trend.

  10. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors.

    Directory of Open Access Journals (Sweden)

    Frank A J L Scheer

    Full Text Available Platelets are involved in the thromboses that are central to myocardial infarctions and ischemic strokes. Such adverse cardiovascular events have day/night patterns with peaks in the morning (~9 AM, potentially related to endogenous circadian clock control of platelet activation. The objective was to test if the human endogenous circadian system influences (1 platelet function and (2 platelet response to standardized behavioral stressors. We also aimed to compare the magnitude of any effects on platelet function caused by the circadian system with that caused by varied standardized behavioral stressors, including mental arithmetic, passive postural tilt and mild cycling exercise.We studied 12 healthy adults (6 female who lived in individual laboratory suites in dim light for 240 h, with all behaviors scheduled on a 20-h recurring cycle to permit assessment of endogenous circadian function independent from environmental and behavioral effects including the sleep/wake cycle. Circadian phase was assessed from core body temperature. There were highly significant endogenous circadian rhythms in platelet surface activated glycoprotein (GP IIb-IIIa, GPIb and P-selectin (6-17% peak-trough amplitudes; p ≤ 0.01. These circadian peaks occurred at a circadian phase corresponding to 8-9 AM. Platelet count, ATP release, aggregability, and plasma epinephrine also had significant circadian rhythms but with later peaks (corresponding to 3-8 PM. The circadian effects on the platelet activation markers were always larger than that of any of the three behavioral stressors.These data demonstrate robust effects of the endogenous circadian system on platelet activation in humans--independent of the sleep/wake cycle, other behavioral influences and the environment. The 9 AM timing of the circadian peaks of the three platelet surface markers, including platelet surface activated GPIIb-IIIa, the final common pathway of platelet aggregation, suggests that endogenous

  11. Transcription Through The Eye Of A Needle: Daily And Annual Cycles Of Gene Expression Variation In Douglas-Fir Needles

    OpenAIRE

    Dolan, Peter; Cronn, Richard; Denver, Dee; Clair, J.; Neale, David; Wegrzyn, Jill; Jogdeo, Sanjuro

    2017-01-01

    Background: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal rhythms and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii)...

  12. RHYTHM STRUCTURE IN NEWS READING

    Directory of Open Access Journals (Sweden)

    Lluís Mas Manchón

    2013-06-01

    Full Text Available Rhythm is central to news reading in radio and television programs. This paper proposes a three level structure for rhythm in news discourse. It gives a comprehensive definition of rhythm and types of rhythm. Firstly, the Base Rhythm Structure consists of semantic and pragmatic rhythmic accents, coincident with very specific words. Secondly, these accents are grouped together according to type, frequency and order, thereby configuring three types of “rhythmic units” (the Internal Rhythm Structure: starting, main and end units. A last structure level presents four discursive factors that are very important in integrating the overall time structure of news announcing (the Melodic Rhythm Structure. This integral structure for news announcing rhythm should be further tested in acoustic-experimental studies under the criterion of information transmission efficacy.

  13. Dim light at night disrupts molecular circadian rhythms and increases body weight.

    Science.gov (United States)

    Fonken, Laura K; Aubrecht, Taryn G; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J

    2013-08-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.

  14. Rhythm in language acquisition.

    Science.gov (United States)

    Langus, Alan; Mehler, Jacques; Nespor, Marina

    2017-10-01

    Spoken language is governed by rhythm. Linguistic rhythm is hierarchical and the rhythmic hierarchy partially mimics the prosodic as well as the morpho-syntactic hierarchy of spoken language. It can thus provide learners with cues about the structure of the language they are acquiring. We identify three universal levels of linguistic rhythm - the segmental level, the level of the metrical feet and the phonological phrase level - and discuss why primary lexical stress is not rhythmic. We survey experimental evidence on rhythm perception in young infants and native speakers of various languages to determine the properties of linguistic rhythm that are present at birth, those that mature during the first year of life and those that are shaped by the linguistic environment of language learners. We conclude with a discussion of the major gaps in current knowledge on linguistic rhythm and highlight areas of interest for future research that are most likely to yield significant insights into the nature, the perception, and the usefulness of linguistic rhythm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain

    Directory of Open Access Journals (Sweden)

    Goldstein-Kral Lauren

    2011-01-01

    Full Text Available Abstract Background The mammalian suprachiasmatic nucleus (SCN, located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b and cryptochrome 3 (cry3, in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh and serotonin-N-acetyltransferase (aanat2, involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their

  16. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    thus appear to be simple responses of living beings to cyclic presence/absence of ... For example, during leaf movement rhythms, leaves alternate between open and closed states .... gist of his time, in an elegant experiment (Box 2) to study the navigational .... diurnal rhythms as true biological timekeepers, a question which.

  17. An Approximation to the Temporal Order in Endogenous Circadian Rhythms of Genes Implicated in Human Adipose Tissue Metabolism

    Science.gov (United States)

    GARAULET, MARTA; ORDOVÁS, JOSÉ M.; GÓMEZ-ABELLÁN, PURIFICACIÓN; MARTÍNEZ, JOSE A.; MADRID, JUAN A.

    2015-01-01

    Although it is well established that human adipose tissue (AT) shows circadian rhythmicity, published studies have been discussed as if tissues or systems showed only one or few circadian rhythms at a time. To provide an overall view of the internal temporal order of circadian rhythms in human AT including genes implicated in metabolic processes such as energy intake and expenditure, insulin resistance, adipocyte differentiation, dyslipidemia, and body fat distribution. Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥ 40 kg/m2). To investigate rhythmic expression pattern, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h using quantitative real-time PCR. Clock genes, glucocorticoid metabolism-related genes, leptin, adiponectin and their receptors were studied. Significant differences were found both in achrophases and relative-amplitude among genes (P 30%). When interpreting the phase map of gene expression in both depots, data indicated that circadian rhythmicity of the genes studied followed a predictable physiological pattern, particularly for subcutaneous AT. Interesting are the relationships between adiponectin, leptin, and glucocorticoid metabolism-related genes circadian profiles. Their metabolic significance is discussed. Visceral AT behaved in a different way than subcutaneous for most of the genes studied. For every gene, protein mRNA levels fluctuated during the day in synchrony with its receptors. We have provided an overall view of the internal temporal order of circadian rhythms in human adipose tissue. PMID:21520059

  18. Preliminary evidences of circadian fan activity rhythm in Sabella spallanzanii (Gmelin, 1791 (Polychaeta: Sabellidae

    Directory of Open Access Journals (Sweden)

    Jacopo Aguzzi

    2006-12-01

    Full Text Available The fan activity rhythm of Sabella spallanzanii (Gmelin, 1791 and its entrainment capability to light were studied. Animals were tested under constant darkness (DD followed by two consecutive 24 h light-darkness regimes: a first 11 h light period (LD and a second 9 h light period, with its phase inverted (DL. An infrared analogical video-camera took shots each 30 s. A number of pictures with open fan were counted every 15 min. In DD a weak free-running periodicity in the circadian range was found, thus reinforcing the matching of the 24 h period under study in both photoperiod regimes. A nocturnal activity was characterised with a consistent anticipation to lightOFF (i.e. entrainment. Moreover, this phase of entrainment differed between DL and LD. The presence of endogenous activity rhythm with a variable phase angle of entrainment is a distinctive feature of circadian pacemakers.

  19. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    and clocks driving such rhythms have been studied for a long time now, our ... passage of time using near 24 h oscillation as a reference process, and (iii) Output .... Bünning's work on circadian rhythms across model systems ranging from ..... E Bünning, The Physiological Clock, Revised 3rd Edition, The English. Universities ...

  20. Visible Battle Rhythm

    National Research Council Canada - National Science Library

    Cort, Brian; Bouchard, Alain; Gouin, Denis; Proulx, Pascale; Wright, William

    2006-01-01

    .... Visual Battle Rhythm (VBR) is a software prototype which updates the battle rhythm process with modern technology and careful information design to improve the synchronization, situational awareness and decision making ability of commanders...

  1. How Two Players Negotiate Rhythm in a Shared Rhythm Game

    DEFF Research Database (Denmark)

    Hansen, Anne-Marie; Andersen, Hans Jørgen; Raudaskoski, Pirkko Liisa

    2012-01-01

    from each other. Video analysis of user interaction shines light upon how users engaged in a rhythmical relationship, and interviews give information about the user experience in terms of the game play and user collaboration. Based on the findings in this paper we propose design guidelines......In a design and working prototype of a shared music interface eleven teams of two people were to collaborate about filling in holes with tones and beats in an evolving ground rhythm. The hypothesis was that users would tune into each other and have sections of characteristic rhythmical...... relationships that related to the ground rhythm. Results from interaction data show that teams did find a mutual rhythm, and that they were able to keep this rhythm for a while and/or over several small periods. Results also showed that two players engaged in very specific rhythmical relationships that differed...

  2. Rates of insufficiency and deficiency of vitamin D levels in elite professional male and female skiers: A chronobiologic approach.

    Science.gov (United States)

    Vitale, Jacopo Antonino; Lombardi, Giovanni; Cavaleri, Luca; Graziani, Rosa; Schoenhuber, Herbert; Torre, Antonio La; Banfi, Giuseppe

    2018-04-01

    Vitamin D is essential for the maintenance and promotion of musculoskeletal health, for the functioning of the immune, cardiovascular and reproductive systems, and its main action is to keep calcium and phosphate plasmatic physiological concentrations at intestinal, renal and bony level. Vitamin D affects several parameters related to physical performance too and a particularly high percentage of vitamin D insufficiency and deficiency in professional athletes has been observed. Several variables are able to impair the synthesis of 25(OH)D in athletes, specifically both genetic and environmental factors, but the most probable explanation for the deficient/insufficient vitamin D levels is the insufficient ultraviolet B light (UVB) exposure during winter. To confirm this, the existence of a circannual rhythm of vitamin D in professional soccer players, highlighting a peak in summer and lowest values in winter regardless the period of the season, has been documented. Nonetheless, from what we are aware of, no other study adopted a chronobiologic approach to better understand and describe the circannual variations of serum 25(OH)D in other sport disciplines. Therefore, we studied serum vitamin D in a cohort of top-level professional skiers, during a period of three consecutive competitive seasons (2015, 2016 and 2017), in order to evaluate, with a rhythmometric approach, the vitamin D behavior along the year. The study population was composed by 152 professional Italian alpine skiers of FISI (Winter Sport Italian Federation), 63 females and 89 males (mean age: 24.1 ± 3.2 years) and a total of 298 blood drawings were carried out to determine plasma 25(OH)D. Vitamin D data were compared between genders and then processed with the population mean cosinor tests to evaluate the presence of a circannual rhythm, both for female and male athletes. In total, 77 skiers (50.7%) showed, at least once during the three competitive seasons, an insufficient level of 25(OH)D and

  3. Entrainment of the Circadian Rhythm in Egg Hatching of the Crab Dyspanopeus sayi by Chemical Cues from Ovigerous Females.

    Science.gov (United States)

    Forward, Richard B; Sanchez, Kevin G; Riley, Paul P

    2016-02-01

    The subtidal crab Dyspanopeus sayi has a circadian rhythm in larval release with a free-running period of 24.1 h. Under constant conditions, eggs hatch primarily in the 4-h interval after the time of sunset. The study tested the new model for entrainment in subtidal crabs, which proposes that the female perceives the environmental cycles and entrains the endogenous rhythm in the embryos. Results verified the model for D. sayi. Hatching by embryos collected from the field when they had not yet developed eye pigments, and were kept in constant conditions attached to their mother, exhibited the circadian hatching rhythm. Attached embryos could also be entrained to a new photoperiod in the laboratory before they developed eye pigments. Further, mature embryos removed from the female hatched rhythmically, indicating that a circadian rhythm resides in the embryos. However, if mature embryos with eye pigments were removed from the female and exposed to a new light-dark cycle, they could not be entrained to the new cycle; rather, they hatched according to the timing of the original light-dark cycle. Nevertheless, detached, mature embryos would entrain to a new light-dark cycle if they were in chemical, but not physical, contact with the female. Thus, the female perceives the light-dark cycle, and uses chemical cues to entrain the circadian rhythm of hatching by the embryos. © 2016 Marine Biological Laboratory.

  4. Evaluation of parameters of a plankton community's biological rhythms under the natural environment of the Black Sea using the Fourier transform method.

    Science.gov (United States)

    Mel'nikova, Ye B

    2017-05-01

    Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Temperature compensation and entrainment in circadian rhythms

    International Nuclear Information System (INIS)

    Bodenstein, C; Heiland, I; Schuster, S

    2012-01-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles. (paper)

  6. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  7. PPARα is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    International Nuclear Information System (INIS)

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio

    2007-01-01

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARα) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARα ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbα was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARα is involved in circadian clock control independently of the SCN and that PPARα could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS

  8. Novel non-indolic melatonin receptor agonists differentially entrain endogenous melatonin rhythm and increase its amplitude

    NARCIS (Netherlands)

    Drijfhout, W.J; de Vries, J.B; Homan, E.J; Brons, H.F; Copinga, S; Gruppen, G; Beresford, I.J M; Hagan, R.M; Grol, Cor; Westerink, B.H.C.

    1999-01-01

    In this study we have examined the ability of melatonin and four synthetic melatonin receptor agonists to entrain endogenous melatonin secretion in rats, free running in constant darkness. The circadian melatonin profile was measured by trans-pineal microdialysis, which not only reveals the time of

  9. Rhythm and Time in Music Epitomize the Temporal Dynamics of Human Communicative Behavior: The Broad Implications of London's Trinity

    Directory of Open Access Journals (Sweden)

    Peter E. Keller

    2012-09-01

    Full Text Available Three key issues about rhythm and timing in music are drawn to the attention of linguists in a paper by London (2012. In this commentary, I argue that these issues are relevant not only to linguists, but also to those in any field dealing with the temporal dynamics of human communicative behavior. Thus, the distinction between endogenously and exogenously driven mechanisms of perceptual organization, the active nature of perception, and the presence of multiple time scales are topics that also concern experimental psychologists and cognitive neuroscientists. London’s argument that these three issues play a crucial role in the perception of rhythm and timing implies that they should be considered collectively when attempting to understand diverse communicative acts.

  10. Human biological rhythm in traditional Chinese medicine

    Directory of Open Access Journals (Sweden)

    Tianxing Zhang

    2016-10-01

    Full Text Available Traditional Chinese medicine (TCM has a comprehensive and thorough understanding of biological rhythm. Biological rhythm is an inherent connotation of “harmony between human and nature”, one of the thoughts in TCM. TCM discusses emphatically circadian rhythm, syzygial rhythm and seasonal rhythm, and particularly circadian and seasonal rhythms. Theories of Yin Yang and Five Elements are the principles and methods, with which TCM understands biological rhythms. Based on theories in TCM, biological rhythm in essence is a continuous variation of the human body state synchronized with natural rhythms, and theories of Yin Yang and Five Elements are both language tools to describe this continuous variation and theoretical tools for its investigation and application. The understandings of biological rhythm in TCM can be applied to etiology, health care, disease control and treatment. Many understandings in TCM have been confirmed by modern research and clinical reports, but there are still some pending issues. TCM is distinguished for its holistic viewpoint on biological rhythms.

  11. Sympathetic rhythms and nervous integration.

    Science.gov (United States)

    Gilbey, Michael P

    2007-04-01

    1. The present review focuses on some of the processes producing rhythms in sympathetic nerves influencing cardiovascular functions and considers their potential relevance to nervous integration. 2. Two mechanisms are considered that may account for rhythmic sympathetic discharges. First, neuronal elements of peripheral or central origin produce rhythmic activity by phasically exciting and/or inhibiting neurons within central sympathetic networks. Second, rhythms arise within central sympathetic networks. Evidence is considered that indicates the operation of both mechanisms; the first in muscle and the second in skin sympathetic vasoconstrictor networks. 3. Sympathetic activity to the rat tail, a model for the nervous control of skin circulation, is regulated by central networks involved in thermoregulation and those associated with fear and arousal. In an anaesthetized preparation, activity displays an apparently autonomous rhythm (T-rhythm; 0.4-1.2 Hz) and the level of activity can be manipulated by regulating core body temperature. This model has been used to study rhythm generation in central sympathetic networks and possible functional relevance. 4. A unique insight provided by the T rhythm, into possible physiological function(s) underlying rhythmic sympathetic discharges is that the activity of single sympathetic post-ganglionic neurons within a population innervating the same target can have different rhythm frequencies. Therefore, the graded and dynamic entrainment of the rhythms by inputs, such as central respiratory drive and/or lung inflation-related afferent activity, can produce graded and dynamic synchronization of sympathetic discharges. The degree of synchronization may influence the efficacy of transmission in a target chain of excitable cells. 5. The T-rhythm may be generated within the spinal cord because the intrathecal application of 5-hydroxytryptamine at the L1 level of the spinal cord of a rat spinalized at T10-T11 produces a T-like rhythm

  12. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    OpenAIRE

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the...

  13. Cumulative effect of X-ray radiation and inflammatory reaction on the circadian rhythm of tyrosine aminotransferase in the liver of mice

    International Nuclear Information System (INIS)

    Jungowska-Klin, B.

    1980-01-01

    The activity of tyrosine aminotransferase (TAT) in the liver of mice subjected simultaneously to ionizing radiation and to local inflammatory process showed in the first 24 hours of the experiment statistically significant changes resulting from summation of the harmful effects of both factors. In the second 24-hour period an evident tendency was observed for return of a normal circadian rhythm of the enzyme. This points to presence of an endogenous mechanism of suppression of the manifestations of significant desynchronization of the circadian rhythm. The paper contains also a trial of mathematical analysis of changes in TAT activity in the circadian rhythm, a description and analysis or the suppression process, qualitative and quantitative determination of the phenomenon of cumulation of the effects of powerful stress factors acting on the animal organism. The obtained results were compared with the results of investigations of TAT activity changes obtained in the case of separate application of the stress factors selected for this experiment. (author)

  14. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  15. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  16. Dissipative structures and biological rhythms

    Science.gov (United States)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  17. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    Science.gov (United States)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats.

    Science.gov (United States)

    Su, Yan; Foppen, Ewout; Mansur Machado, Frederico Sander; Fliers, Eric; Kalsbeek, Andries

    2018-02-15

    Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.

  19. Sleep and circadian rhythm disruption in social jetlag and mental illness.

    Science.gov (United States)

    Foster, Russell G; Peirson, Stuart N; Wulff, Katharina; Winnebeck, Eva; Vetter, Céline; Roenneberg, Till

    2013-01-01

    Sleep and wake represent two profoundly different states of physiology that arise within the brain from a complex interaction between multiple neural circuits and neurotransmitter systems. These neural networks are, in turn, adjusted by three key drivers that collectively determine the duration, quality, and efficiency of sleep. Two of these drivers are endogenous, namely, the circadian system and a homeostatic hourglass oscillator, while the third is exogenous-our societal structure (social time). In this chapter, we outline the neuroscience of sleep and highlight the links between sleep, mood, cognition, and mental health. We emphasize that the complexity of sleep/wake generation and regulation makes this behavioral cycle very vulnerable to disruption and then explore this concept by examining sleep and circadian rhythm disruption (SCRD) when the exogenous and endogenous drivers of sleep are in conflict. SCRD can be particularly severe when social timing forces an abnormal pattern of sleep and wake upon our endogenous sleep biology. SCRD is also very common in mental illness, and although well known, this association is poorly understood or treated. Recent studies suggest that the generation of sleep and mental health shares overlapping neural mechanisms such that defects in these endogenous pathways result in pathologies to both behaviors. The evidence for this association is examined in some detail. We conclude this review by suggesting that the emerging understanding of the neurobiology of sleep/wake behavior, and of the health consequences of sleep disruption, will provide new ways to decrease the conflict between biological and societal timing in both the healthy and individuals with mental illness. © 2013, Elsevier Inc. All Rights Reserved.

  20. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation.

    Science.gov (United States)

    Hindle, Allyson G; Martin, Sandra L

    2014-02-01

    Winter hibernators repeatedly cycle between cold torpor and rewarming supported by nonshivering thermogenesis in brown adipose tissue (BAT). In contrast, summer animals are homeotherms, undergoing reproduction, growth, and fattening. This life history confers variability to BAT recruitment and activity. To address the components underlying prewinter enhancement and winter activation, we interrogated the BAT proteome in 13-lined ground squirrels among three summer and five winter states. We also examined mixed physiology in fall and spring individuals to test for ambient temperature and seasonal effects, as well as the timing of seasonal transitions. BAT form and function differ circannually in these animals, as evidenced by morphology and proteome dynamics. This intrinsic pattern distinguished homeothermic groups and early vs. late winter hibernators. Homeothermic variation derived from postemergence delay in growth and substrate biosynthesis. The heterothermic proteome varied less despite extreme winter physiological shifts and was optimized to exploit lipids by enhanced fatty acid binding, β-oxidation, and mitochondrial protein translocation. Surprisingly, ambient temperature did not affect the BAT proteome during transition seasons; rather, the pronounced summer-winter shift preceded environmental changes and phenotypic progression. During fall transition, differential regulation of two fatty acid binding proteins provides further evidence of recruitment and separates proteomic preparation from successful hibernation. Abundance of FABP4 correlates with torpor bout length throughout the year, clarifying its potential function in hibernation. Metabolically active BAT is a target for treating human obesity and metabolic disorders. Understanding the hibernator's extreme and seasonally distinct recruitment and activation control strategies offers untapped potential to identify novel, therapeutically relevant regulatory pathways.

  1. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.

    Science.gov (United States)

    Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian

    2017-11-01

    Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.

  2. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  3. Deciphering the Function of the Blunt Circadian Rhythm of Melatonin in the Newborn Lamb: Impact on Adrenal and Heart.

    Science.gov (United States)

    Seron-Ferre, Maria; Torres-Farfan, Claudia; Valenzuela, Francisco J; Castillo-Galan, Sebastian; Rojas, Auristela; Mendez, Natalia; Reynolds, Henry; Valenzuela, Guillermo J; Llanos, Anibal J

    2017-09-01

    Neonatal lambs, as with human and other neonates, have low arrhythmic endogenous levels of melatonin for several weeks until they start their own pineal rhythm of melatonin production at approximately 2 weeks of life. During pregnancy, daily rhythmic transfer of maternal melatonin to the fetus has important physiological roles in sheep, nonhuman primates, and rats. This melatonin rhythm provides a circadian signal and also participates in adjusting the physiology of several organs in preparation for extrauterine life. We propose that the ensuing absence of a melatonin rhythm plays a role in neonatal adaptation. To test this hypothesis, we studied the effects of imposing a high-amplitude melatonin rhythm in the newborn lamb on (1) clock time-related changes in cortisol and plasma variables and (2) clock time-related changes of gene expression of clock genes and selected functional genes in the adrenal gland and heart. We treated newborn lambs with a daily oral dose of melatonin (0.25 mg/kg) from birth to 5 days of age, recreating a high-amplitude melatonin rhythm. This treatment suppressed clock time-related changes of plasma adrenocorticotropic hormone, cortisol, clock gene expression, and functional genes in the newborn adrenal gland. In the heart, it decreased heart/body weight ratio, increased expression of Anp and Bnp, and resulted in different heart gene expression from control newborns. The interference of this postnatal melatonin treatment with the normal postnatal pattern of adrenocortical function and heart development support a physiological role for the window of flat postnatal melatonin levels during the neonatal transition. Copyright © 2017 Endocrine Society.

  4. Factors influencing circadian rhythms in acetaminophen lethality.

    Science.gov (United States)

    Schnell, R C; Bozigian, H P; Davies, M H; Merrick, B A; Park, K S; McMillan, D A

    1984-01-01

    Experiments were conducted to examine the effects of changes in lighting schedules and food consumption on circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice. Under a normal lighting schedule (light: 06.00-18.00 h), male mice exhibited a circadian rhythm in acetaminophen lethality (peak: 18.00 h; nadir: 06.00, 10.00 h) and an inverse rhythm in hepatic glutathione concentrations (peak: 06.00, 10.00 h; nadir: 18.00 h). Under a reversed lighting schedule (light: 18.00-06.00 h) the glutathione rhythm was reversed and the rhythm in acetaminophen lethality was altered showing greater sensitivity to the drug. Under continuous light, there was a shift in the acetaminophen lethality and the hepatic glutathione rhythms. Under continuous dark, both rhythms were abolished. Under a normal lighting regimen, hepatic glutathione levels were closely correlated with food consumption; i.e., both were increased during the dark phase and decreased during the light phase. Fasting the mice for 12 h abolished the rhythms in acetaminophen lethality and hepatic glutathione levels; moreover, the lethality was increased and the hepatic glutathione levels were decreased. These experiments show that both lighting schedules and feeding can alter the circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice.

  5. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.

    2018-02-26

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  6. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F

    2017-12-07

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host\\'s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host\\'s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  7. Cognitive performance as a zeitgeber: cognitive oscillators and cholinergic modulation of the SCN entrain circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Howard J Gritton

    Full Text Available The suprachiasmatic nucleus (SCN is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior.

  8. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  9. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    Science.gov (United States)

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Rhetorical Nature of Rhythm

    NARCIS (Netherlands)

    Balint, Mihaela; Dascalu, Mihai; Trausan-Matu, Stefan

    2017-01-01

    Up to date, linguistic rhythm has been studied for speech, but the rhythm of written texts has been merely recognized, and not analyzed or interpreted in connection to natural language tasks. We provide an extension of the textual rhythmic features we proposed in previous work, and

  11. Learning by joining the rhythm

    DEFF Research Database (Denmark)

    Lund, Ole; Ravn, Susanne; Christensen, Mette Krogh

    2012-01-01

    This article aims to explore how a joint rhythm is learned. The exploration is based on a combination of a case study of training in elite rowing and theoretical considerations concerning mutual incorporation of skills in learning. In 2009 Juliane and Anne start to row the double sculler together....... The two rowers’ aim is to be among the exclusive group of teams that qualify for the Olympic Games three years later. However Anne is not a rower, and has to be apprenticed by Juliane, who is an experienced elite rower. One important learning goal in the apprenticeship is to find a good joint rhythm......, to be able to put optimal effort into the rowing. Thus the apprenticeship is about developing a sense for a good rhythm in Anne which corresponds to Juliane’s fine-grained sense of what a good rhythm should feel like. Our study suggests that apprenticeship learning has to be understood as an embodied...

  12. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.; van der Veen, Daan R.; O’ Donnell, Aidan J.; Cumnock, Katherine; Schneider, David; Pain, Arnab; Subudhi, Amit; Ramaprasad, Abhinay; Rund, Samuel S. C.; Savill, Nicholas J.; Reece, Sarah E.

    2018-01-01

    by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms

  13. Impact of dispersed coupling strength on the free running periods of circadian rhythms

    Science.gov (United States)

    Gu, Changgui; Rohling, Jos H. T.; Liang, Xiaoming; Yang, Huijie

    2016-03-01

    The dominant endogenous clock, named the suprachiasmatic nucleus (SCN), regulates circadian rhythms of behavioral and physiological activity in mammals. One of the main characteristics of the SCN is that the animal maintains a circadian rhythm with a period close to 24 h in the absence of a daily light-dark cycle (called the free running period). The free running period varies among species due to heterogeneity of the SCN network. Previous studies have shown that the heterogeneity in cellular coupling as well as in intrinsic neuronal periods shortens the free running period. Furthermore, as derived from experiments, one neuron's coupling strength is negatively associated with its period. It is unknown what the effects of this association between coupling strength and period are on the free running period and how the heterogeneity in coupling strength influences this free running period. In the present study we found that in the presence of a negative relationship between one neuron's coupling strength and its period, surprisingly, the dispersion of coupling strengths increases the free running period. Our present finding may shed new light on the understanding of the heterogeneous SCN network and provides an alternative explanation for the diversity of free running periods between species.

  14. Modulation of Somatosensory Alpha Rhythm by Transcranial Alternating Current Stimulation at Mu-Frequency

    Directory of Open Access Journals (Sweden)

    Christopher Gundlach

    2017-08-01

    Full Text Available Introduction: Transcranial alternating current stimulation (tACS is emerging as an interventional tool to modulate different functions of the brain, potentially by interacting with intrinsic ongoing neuronal oscillations. Functionally different intrinsic alpha oscillations are found throughout the cortex. Yet it remains unclear whether tACS is capable of specifically modulating the somatosensory mu-rhythm in amplitude.Objectives: We used tACS to modulate mu-alpha oscillations in amplitude. When compared to sham stimulation we expected a modulation of mu-alpha oscillations but not visual alpha oscillations by tACS.Methods: Individual mu-alpha frequencies were determined in 25 participants. Subsequently, blocks of tACS with individual mu-alpha frequency and sham stimulation were applied over primary somatosensory cortex (SI. Electroencephalogram (EEG was recorded before and after either stimulation or sham. Modulations of mu-alpha and, for control, visual alpha amplitudes were then compared between tACS and sham.Results: Somatosensory mu-alpha oscillations decreased in amplitude after tACS was applied at participants’ individual mu-alpha frequency. No changes in amplitude were observed for sham stimulation. Furthermore, visual alpha oscillations were not affected by tACS or sham, respectively.Conclusion: Our results demonstrate the capability of tACS to specifically modulate the targeted somatosensory mu-rhythm when the tACS frequency is tuned to the individual endogenous rhythm and applied over somatosensory areas. Our results are in contrast to previously reported amplitude increases of visual alpha oscillations induced by tACS applied over visual cortex. Our results may point to a specific interaction between our stimulation protocol and the functional architecture of the somatosensory system.

  15. RNAi of the circadian clock gene period disrupts the circadian rhythm but not the circatidal rhythm in the mangrove cricket

    OpenAIRE

    Takekata, Hiroki; Matsuura, Yu; Goto, Shin G.; Satoh, Aya; Numata, Hideharu

    2012-01-01

    The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in t...

  16. REPRODUCTIVE SEASONALITY AND ITS CONTROL IN SPANISH SHEEP AND GOATS

    Directory of Open Access Journals (Sweden)

    Amelia Gómez Brunet

    2011-12-01

    Full Text Available Sheep and goat breeds from subtropical, middle and high latitudes show seasonal changes in reproductive activity. In general, the breeding season starts in autumn and ends in winter, with anoestrus in spring/summer. An endogenous circannual rhythm driven and synchronised by the annual photoperiod cycle regulates the onset and offset of the breeding season. However, the timing and duration of the breeding season can be affected by interactions between the photoperiod and factors such as breed, geographical origin, nutritional and lactational status, social interactions, and the season of parturition. Seasonality in reproduction is naturally accompanied by variation in the availability and price of meat, milk and cheese over the year, affecting the economy of farmers, consumers and the food industry alike. The control of reproduction outside the normal breeding season by inducing and synchronizing oestrus and ovulation plus the use of artificial insemination and/or natural mating would help ensure the year-round availability of products. This review describes the seasonal variation in the sexual activity of ovine and caprine species with special regard to local Spanish sheep and goats breeds, examines how the photoperiod regulates their annual reproductive cycle, and discusses a number of strategies that can be used to induce and synchronise ovulation outside the natural breeding season.

  17. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine.

    Science.gov (United States)

    Huang, Rong-Chi

    2018-02-01

    Circadian clocks evolved to allow plants and animals to adapt their behaviors to the 24-hr change in the external environment due to the Earth's rotation. While the first scientific observation of circadian rhythm in the plant leaf movement may be dated back to the early 18th century, it took 200 years to realize that the leaf movement is controlled by an endogenous circadian clock. The cloning and characterization of the first Drosophila clock gene period in the early 1980s, independently by Jeffery C. Hall and Michael Rosbash at Brandeis University and Michael Young at Rockefeller University, paved the way for their further discoveries of additional genes and proteins, culminating in establishing the so-called transcriptional translational feedback loop (TTFL) model for the generation of autonomous oscillator with a period of ∼24 h. The 2017 Nobel Prize in Physiology or Medicine was awarded to honor their discoveries of molecular mechanisms controlling the circadian rhythm. Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  18. Cross-Cultural Influences on Rhythm Processing: Reproduction, Discrimination, and Beat Tapping

    Directory of Open Access Journals (Sweden)

    Daniel J Cameron

    2015-04-01

    Full Text Available The structures of musical rhythm differ between cultures, despite the fact that the ability to synchronize one’s movements to musical rhythms appears to be universal. To measure the influence of culture on rhythm processing, we tested East African and North American adults on the perception, production, and beat tapping of rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced both by the culture of the participant and by the culture of the rhythm. Specifically, we predicted that a participant’s ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than unfamiliar rhythms. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  19. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping.

    Science.gov (United States)

    Cameron, Daniel J; Bentley, Jocelyn; Grahn, Jessica A

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant's ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  20. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    nature of the system underlying such rhythms and inspired one of the ... behaviours and physiological processes were discovered in a wide range of animals. ... is thought to coordinate internal physiology, and thereby confer benefits to living ...

  1. Dysrhythmia: a specific congenital rhythm perception deficit

    Directory of Open Access Journals (Sweden)

    Jacques eLaunay

    2014-02-01

    Full Text Available Why do some people have problems ‘feeling the beat’? Here we investigate participants with congenital impairments in musical rhythm perception and production. A web-based version of the Montreal Battery of Evaluation of Amusia (MBEA was used to screen for difficulties with rhythmic processing in a large sample and we identified three ‘dysrhythmic’ individuals who scored below cut-off for the rhythm subtest, but not the pitch-based subtests. Follow-up testing in the laboratory was conducted to characterize the nature of both rhythm perception and production deficits in these dysrhythmic individuals. We found that they differed from control participants when required to synchronize their tapping to an external stimulus with a metrical pulse, but not when required to tap spontaneously (with no external stimulus or to tap in time to an isochronous stimulus. Dysrhythmics exhibited a general tendency to tap at half the expected tempo when asked to synchronize to the beat of strongly metrical rhythms. These results suggest that the individuals studied here did not have motor production problems, but suffer from a selective rhythm perception deficit that influences the ability to entrain to metrical rhythms.

  2. Dim nighttime illumination interacts with parametric effects of bright light to increase the stability of circadian rhythm bifurcation in hamsters.

    Science.gov (United States)

    Evans, Jennifer A; Elliott, Jeffrey A; Gorman, Michael R

    2011-07-01

    The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, "full" and "skeleton" photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological

  3. Acquisition of speech rhythm in first language.

    Science.gov (United States)

    Polyanskaya, Leona; Ordin, Mikhail

    2015-09-01

    Analysis of English rhythm in speech produced by children and adults revealed that speech rhythm becomes increasingly more stress-timed as language acquisition progresses. Children reach the adult-like target by 11 to 12 years. The employed speech elicitation paradigm ensured that the sentences produced by adults and children at different ages were comparable in terms of lexical content, segmental composition, and phonotactic complexity. Detected differences between child and adult rhythm and between rhythm in child speech at various ages cannot be attributed to acquisition of phonotactic language features or vocabulary, and indicate the development of language-specific phonetic timing in the course of acquisition.

  4. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats

    NARCIS (Netherlands)

    Su, Yan; Foppen, Ewout; Mansur Machado, Frederico Sander; Fliers, Eric; Kalsbeek, A.

    2018-01-01

    Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily

  5. Spontaneous internal desynchronization of locomotor activity and body temperature rhythms from plasma melatonin rhythm in rats exposed to constant dim light

    Directory of Open Access Journals (Sweden)

    Bullock Nicole M

    2006-04-01

    Full Text Available Abstract Background We have recently reported that spontaneous internal desynchronization between the locomotor activity rhythm and the melatonin rhythm may occur in rats (30% of tested animals when they are maintained in constant dim red light (LLdim for 60 days. Previous work has also shown that melatonin plays an important role in the modulation of the circadian rhythms of running wheel activity (Rw and body temperature (Tb. The aim of the present study was to investigate the effect that desynchronization of the melatonin rhythm may have on the coupling and expression of circadian rhythms in Rw and Tb. Methods Rats were maintained in a temperature controlled (23–24°C ventilated lightproof room under LLdim (red dim light 1 μW/cm2 [5 Lux], lower wavelength cutoff at 640 nm. Animals were individually housed in cages equipped with a running wheel and a magnetic sensor system to detect wheel rotation; Tb was monitored by telemetry. Tb and Rw data were recorded in 5-min bins and saved on disk. For each animal, we determined the mesor and the amplitude of the Rw and Tb rhythm using waveform analysis on 7-day segments of the data. After sixty days of LLdim exposure, blood samples (80–100 μM were collected every 4 hours over a 24-hrs period from the tail artery, and serum melatonin levels were measured by radioimmunoassay. Results Twenty-one animals showed clear circadian rhythms Rw and Tb, whereas one animal was arrhythmic. Rw and Tb rhythms were always strictly associated and we did not observe desynchronization between these two rhythms. Plasma melatonin levels showed marked variations among individuals in the peak levels and in the night-to-day ratio. In six rats, the night-to-day ratio was less than 2, whereas in the rat that showed arrhythmicity in Rw and Tb melatonin levels were high and rhythmic with a large night-to-day ratio. In seven animals, serum melatonin levels peaked during the subjective day (from CT0 to CT8, thus suggesting

  6. Diurnal rhythms in psychological reward functioning in healthy young men: 'Wanting', liking, and learning.

    Science.gov (United States)

    Byrne, Jamie E M; Murray, Greg

    2017-01-01

    A range of evidence suggests that human reward functioning is partly driven by the endogenous circadian system, generating 24-hour rhythms in behavioural measures of reward activation. Reward functioning is multifaceted but literature to date is largely limited to measures of self-reported positive mood states. The aim of this study was to advance the field by testing for hypothesised diurnal variation in previously unexplored components of psychological reward: 'wanting', liking, and learning using subjective and behavioural measures. Risky decision making (automatic Balloon Analogue Risk Task), affective responsivity to positive images (International Affective Pictures System), uncued self-reported discrete emotions, and learning-contingent reward (Iowa Gambling Task) were measured at 10.00 hours, 14.00 hours, and 19.00 hours in a counterbalanced repeated measures design with 50 healthy male participants (aged 18-30). As hypothesised, risky decision making (unconscious 'wanting') and ratings of arousal towards positive images (conscious wanting) exhibited a diurnal waveform with indices highest at 14.00 hours. No diurnal rhythm was observed for liking (pleasure ratings to positive images, discrete uncued positive emotions) or in a learning-contingent reward task. Findings reaffirm that diurnal variation in human reward functioning is most pronounced in the motivational 'wanting' components of reward.

  7. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    Early studies on circadian rhythms focussed on unravelling the fundamental .... careful analysis revealed that deaths of most arrhythmic indi- viduals were due to .... is no more a sci-fi movie script and is achievable through a technique called ...

  8. Rhythm information represented in the fronto-parieto-cerebellar motor system.

    Science.gov (United States)

    Konoike, Naho; Kotozaki, Yuka; Miyachi, Shigehiro; Miyauchi, Carlos Makoto; Yomogida, Yukihito; Akimoto, Yoritaka; Kuraoka, Koji; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki

    2012-10-15

    Rhythm is an essential element of human culture, particularly in language and music. To acquire language or music, we have to perceive the sensory inputs, organize them into structured sequences as rhythms, actively hold the rhythm information in mind, and use the information when we reproduce or mimic the same rhythm. Previous brain imaging studies have elucidated brain regions related to the perception and production of rhythms. However, the neural substrates involved in the working memory of rhythm remain unclear. In addition, little is known about the processing of rhythm information from non-auditory inputs (visual or tactile). Therefore, we measured brain activity by functional magnetic resonance imaging while healthy subjects memorized and reproduced auditory and visual rhythmic information. The inferior parietal lobule, inferior frontal gyrus, supplementary motor area, and cerebellum exhibited significant activations during both encoding and retrieving rhythm information. In addition, most of these areas exhibited significant activation also during the maintenance of rhythm information. All of these regions functioned in the processing of auditory and visual rhythms. The bilateral inferior parietal lobule, inferior frontal gyrus, supplementary motor area, and cerebellum are thought to be essential for motor control. When we listen to a certain rhythm, we are often stimulated to move our body, which suggests the existence of a strong interaction between rhythm processing and the motor system. Here, we propose that rhythm information may be represented and retained as information about bodily movements in the supra-modal motor brain system. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Basic Principles of Interpersonal Social Rhythm Therapy in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Gokben Hizli Sayar

    2014-08-01

    Full Text Available Interpersonal Social Rhythm Therapy is a psychotherapy modality that helps the patient recognize the relationship between disruptions in social rhythms and the onset of previous episodes of psychiatric disorders. It uses psychoeducation and behavioral techniques to maintain social rhythm and sleep/wake regularity. It is closely related to and ldquo;social zeitgeber theory and rdquo; that emphasizes the importance that social rhythm regularity may play in synchronization of circadian rhythms in individuals with or at risk for bipolar spectrum disorders. Interpersonal and social rhythm therapy have been shown to stabilize social rhythms and enhance course and outcome in bipolar disorder. This review focuses on the theoretical principles and the basic steps of interpersonal and social rhythm therapy as a psychotherapy approach in bipolar disorder. PubMed, Scopus, Google Scholar databases were searched without temporal restriction. Search terms included interpersonal social rhythm therapy, bipolar, mood disorders. Abstracts were reviewed for relevance, and randomized controlled trials of interpersonal and social rhythm therapy in bipolar disorder selected. These researches also summarized on the final part of this review. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(4.000: 438-446

  10. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Circadian Rhythms ... M Vaze1 Vijay Kumar Sharma1. Chronobiology Laboratory Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, Bangalore 560 064, India.

  11. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Circadian Rhythms: Why do ... Nikhil Vijay Kumar Sharma1. Chronobiology Laboratory Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, Bangalore 560 064, India.

  12. Daily Rhythms in Mobile Telephone Communication.

    Science.gov (United States)

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G B; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I M; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals' social networks. Further, women's calls were longer than men's calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day.

  13. Ischemic stroke destabilizes circadian rhythms

    Directory of Open Access Journals (Sweden)

    Borjigin Jimo

    2008-10-01

    Full Text Available Abstract Background The central circadian pacemaker is a remarkably robust regulator of daily rhythmic variations of cardiovascular, endocrine, and neural physiology. Environmental lighting conditions are powerful modulators of circadian rhythms, but regulation of circadian rhythms by disease states is less clear. Here, we examine the effect of ischemic stroke on circadian rhythms in rats using high-resolution pineal microdialysis. Methods Rats were housed in LD 12:12 h conditions and monitored by pineal microdialysis to determine baseline melatonin timing profiles. After demonstration that the circadian expression of melatonin was at steady state, rats were subjected to experimental stroke using two-hour intralumenal filament occlusion of the middle cerebral artery. The animals were returned to their cages, and melatonin monitoring was resumed. The timing of onset, offset, and duration of melatonin secretion were calculated before and after stroke to determine changes in circadian rhythms of melatonin secretion. At the end of the monitoring period, brains were analyzed to determine infarct volume. Results Rats demonstrated immediate shifts in melatonin timing after stroke. We observed a broad range of perturbations in melatonin timing in subsequent days, with rats exhibiting onset/offset patterns which included: advance/advance, advance/delay, delay/advance, and delay/delay. Melatonin rhythms displayed prolonged instability several days after stroke, with a majority of rats showing a day-to-day alternation between advance and delay in melatonin onset and duration. Duration of melatonin secretion changed in response to stroke, and this change was strongly determined by the shift in melatonin onset time. There was no correlation between infarct size and the direction or amplitude of melatonin phase shifting. Conclusion This is the first demonstration that stroke induces immediate changes in the timing of pineal melatonin secretion, indicating

  14. Monkey Lipsmacking Develops Like the Human Speech Rhythm

    Science.gov (United States)

    Morrill, Ryan J.; Paukner, Annika; Ferrari, Pier F.; Ghazanfar, Asif A.

    2012-01-01

    Across all languages studied to date, audiovisual speech exhibits a consistent rhythmic structure. This rhythm is critical to speech perception. Some have suggested that the speech rhythm evolved "de novo" in humans. An alternative account--the one we explored here--is that the rhythm of speech evolved through the modification of rhythmic facial…

  15. Mu rhythm desynchronization by tongue thrust observation

    Directory of Open Access Journals (Sweden)

    Kotoe eSakihara

    2015-09-01

    Full Text Available We aimed to investigate the mu rhythm in the sensorimotor area during tongue thrust observation and to obtain an answer to the question as to how subtle non-verbal orofacial movement observation activates the sensorimotor area. Ten healthy volunteers performed finger tap execution, tongue thrust execution, and tongue thrust observation. The electroencephalogram was recorded from 128 electrodes placed on the scalp, and regions of interest were set at sensorimotor areas. The event-related desynchronization (ERD and event-related synchronization (ERS for the mu rhythm (8–13 Hz and beta (13−25 Hz bands were measured. Tongue thrust observation induced mu rhythm ERD, and the ERD was detected at the left hemisphere regardless whether the observed tongue thrust was toward the left or right. Mu rhythm ERD was also recorded during tongue thrust execution. However, temporal analysis revealed that the ERD associated with tongue thrust observation preceded that associated with execution by approximately 2 s. Tongue thrust observation induces mu rhythm ERD in sensorimotor cortex with left hemispheric dominance.

  16. Are endogenous feline leukemia viruses really endogenous?

    Science.gov (United States)

    Stewart, H; Jarrett, O; Hosie, M J; Willett, B J

    2011-10-15

    Full length endogenous feline leukemia virus (FeLV) proviruses exist within the genomes of many breeds of domestic cat raising the possibility that they may also exist in a transmissible exogenous form. Such viruses would share receptor usage with the recombinant FeLV-B subgroup, a viral subgroup that arises in vivo by recombination between exogenous subgroup A virus (FeLV-A) and endogenous FeLV. Accordingly, all isolates of FeLV-B made to date have contained a "helper" FeLV-A, consistent with their recombinatorial origin. In order to assess whether endogenous viruses are transmitted between cats, we examined primary isolates of FeLV for which the viral subgroup had been determined for the presence of a subgroup B virus that lacked an FeLV-A. Here we describe the identification of two primary field isolates of FeLV (2518 and 4314) that appeared to contain subgroup B virus only by classical interference assays, raising the possibility of between-host transmission of endogenous FeLV. Sequencing of the env gene and U3 region of the 3' long terminal repeat (LTR) confirmed that both viral genomes contained endogenous viral env genes. However the viral 3' LTRs appeared exogenous in origin with a putative 3' recombination breakpoint residing at the 3' end of the env gene. Further, the FeLV-2518 virions also co-packaged a truncated FeLV-A genome containing a defective env gene, termed FeLV-2518(A) whilst no helper subgroup A viral genome was detected in virions of FeLV-4314. The acquisition of an exogenous LTR by the endogenous FeLV in 4314 may have allowed a recombinant FeLV variant to outgrow an exogenous FeLV-A virus that was presumably present during first infection. Given time, a similar evolution may also occur within the 2518 isolate. The data suggest that endogenous FeLVs may be mobilised by acquisition of exogenous LTRs yielding novel viruses that type biologically as FeLV-B. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. ‘Ragged Time’ in Intra-panel Comics Rhythms

    Directory of Open Access Journals (Sweden)

    Corry Shores

    2016-07-01

    Full Text Available A phenomenological method of comics analysis can be useful when we need to uncover the structural features of the comics experience itself. One fruitful application would be in the study of irregular intra-panel rhythms, where the temporalized divisions are not visibly indicated but rather are only experienced. By means of Gilles Deleuze’s notion of rhythmic repetition and his elaboration of it through Olivier Messiaen’s theory of ‘kinetic’ rhythm, we will formulate a conception of visual rhythm as being based on metrical irregularity. We further explicate this concept of irregular rhythm by drawing upon the notion of ‘ragged time’ in the early jazz musical form, ragtime. We finally test its usefulness by examining how the ‘jazzy’ rhythms of Cubist-styled panels by Art Spiegelman and Mary Fleener generate an experience of ragged time.

  18. Endogenous antipyretics.

    Science.gov (United States)

    Roth, Joachim

    2006-09-01

    The febrile increase of body temperature is regarded as a component of the complex host response to infection or inflammation that accompanies the activation of the immune system. Late phases of fever appear mediated by pro-inflammatory cytokines called endogenous pyrogens. The rise of body temperature is beneficial because it accelerates several components of the activated immune system. To prevent an excessive and dangerous rise of body temperature the febrile response is controlled, limited in strength and duration, and sometimes even prevented by the actions of endogenous antipyretic substances liberated systemically or within the brain during fever. In most cases the antipyretic effects are achieved by an inhibitory influence on the formation or action of endogenous pyrogens, or by effects on neuronal thermoregulatory circuits that are activated during fever. Endogenous antipyretic substances include steroid hormones, neuropeptides, cytokines and other molecules. It is the purpose of this review to consider the current state in the research on endogenous antipyretic systems.

  19. Combining Semi-Endogenous and Fully Endogenous Growth: a Generalization.

    OpenAIRE

    Cozzi, Guido

    2017-01-01

    This paper shows that combining the semi-endogenous and the fully endogenous growth mechanisms with a general CES aggregator, either growth process can prevail in the balanced growth path depending on their degree of complementarity/substitutability. Policy-induced long-run economic switches to the fully endogenous steady state as the R&D employment ratio surpasses a positive threshold are possible if the two growth engines are gross substitutes.

  20. A Reliable Method for Rhythm Analysis during Cardiopulmonary Resuscitation

    Directory of Open Access Journals (Sweden)

    U. Ayala

    2014-01-01

    Full Text Available Interruptions in cardiopulmonary resuscitation (CPR compromise defibrillation success. However, CPR must be interrupted to analyze the rhythm because although current methods for rhythm analysis during CPR have high sensitivity for shockable rhythms, the specificity for nonshockable rhythms is still too low. This paper introduces a new approach to rhythm analysis during CPR that combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA designed to optimally classify the filtered signal. Emphasis is on designing an algorithm with high specificity. The SAA includes a detector for low electrical activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach shows an important increase in specificity without compromising the sensitivity when compared to previous studies.

  1. Fluctuation of biological rhythm in finger tapping

    Science.gov (United States)

    Yoshinaga, H.; Miyazima, S.; Mitake, S.

    2000-06-01

    By analyzing biological rhythms obtained from finger tapping, we have investigated the differences of two biological rhythms between healthy and handicapped persons caused by Parkinson, brain infraction, car accident and so on. In this study, we have observed the motion of handedness of all subjects and obtained a slope a which characterizes a power-law relation between frequency and amplitude of finger-tapping rhythm. From our results, we have estimated that the slope a=0.06 is a rough criterion in order to distinguish healthy and handicapped persons.

  2. Methodic of perfection of higher pedagogical educational establishments girl students’ rhythm

    Directory of Open Access Journals (Sweden)

    A.N. Kolumbet

    2016-06-01

    Full Text Available Purpose: to study influence of methodic of rhythm perfection on girl students’ coordination abilities. Material: in the research 264 girl students participated. We assessed individual and collective rhythm, internal and external motor rhythm; rhythm in exercises with musical accompaniment. Results: we have determined that creative motor tasks require variable conditions for their realization. We have proved demand in appropriate criteria for their assessment. It is noted that there is a demand in development of rhythm, considering its main kinds and manifestations, which are formed with some peculiarities. Individual rhythm is determined by activation of attention and its level. It is perfected more successfully rather with stimulated development than with natural. It was found that with age the character of natural progressing of rhythm preserves. Conclusions: it is recommended to develop rhythm in compliance with its kinds and manifestations. Progressing and perfection of rhythm is a long lasted process and shall be realized during all period of girl students’ studying. Such approach forms girl students’ demand in finding of purposeful motor rhythm in all their new motor actions. It ensures optimality of their fulfillment.

  3. Interactive Rhythm Learning System by Combining Tablet Computers and Robots

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chou

    2017-03-01

    Full Text Available This study proposes a percussion learning device that combines tablet computers and robots. This device comprises two systems: a rhythm teaching system, in which users can compose and practice rhythms by using a tablet computer, and a robot performance system. First, teachers compose the rhythm training contents on the tablet computer. Then, the learners practice these percussion exercises by using the tablet computer and a small drum set. The teaching system provides a new and user-friendly score editing interface for composing a rhythm exercise. It also provides a rhythm rating function to facilitate percussion training for children and improve the stability of rhythmic beating. To encourage children to practice percussion exercises, a robotic performance system is used to interact with the children; this system can perform percussion exercises for students to listen to and then help them practice the exercise. This interaction enhances children’s interest and motivation to learn and practice rhythm exercises. The results of experimental course and field trials reveal that the proposed system not only increases students’ interest and efficiency in learning but also helps them in understanding musical rhythms through interaction and composing simple rhythms.

  4. Circadian rhythm in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Eleftheriou, Andreas; Ulander, Martin; Lundin, Fredrik

    2018-01-01

    The pathogenesis of idiopathic normal pressure hydrocephalus (iNPH) takes place in structures close to the cerebral ventricular system. Suprachiasmatic nucleus (SCN), situated close to the third ventricle, is involved in circadian rhythm. Diurnal disturbances are well-known in demented patients. The cognitive decline in iNPH is potentially reversible after a shunt operation. Diurnal rhythm has never been studied in iNPH. We hypothesize that there is a disturbance of circadian rhythm in iNPH-patients and the aim was to study any changes of the diurnal rhythm (mesor and circadian period) as well as any changes of the diurnal amplitude and acrophase of the activity in iNPH-patients before and after a shunt operation. Twenty consecutive iNPH-patients fulfilling the criteria of the American iNPH-guidelines, 9 males and 11 females, mean age 73 (49-81) years were included. The patients underwent a pre-operative clinical work-up including 10m walk time (w10mt) steps (w10ms), TUG-time (TUGt) and steps (TUGs) and for cognitive function an MMSE score was measured. In order to receive circadian rhythm data actigraphic recordings were performed using the SenseWear 2 (BodyMedia Inc Pittsburgh, PA, USA) actigraph. Cosinor analyses of accelerometry data were performed in "R" using non-linear regression with Levenburg- Marquardt estimation. Pre- and post-operative data regarding mesor, amplitude and circadian period were compared using Wilcoxon-Mann-Whitney test for paired data. Twenty patients were evaluated before and three month post-operatively. Motor function (w10mt, w10ms, TUGt, TUGs) was significantly improved while MMSE was not significantly changed. Actigraphic measurements (mesor, amplitude and circadian period) showed no significant changes after shunt operation. This is the first systematic study of circadian rhythm in iNPH-patients. We found no significant changes in circadian rhythm after shunt surgery. The conceptual idea of diurnal rhythm changes in hydrocephalus is

  5. A circadian rhythm regulating hyphal melanization in Cercospora kikuchii.

    Science.gov (United States)

    Bluhm, Burton H; Burnham, A Michele; Dunkle, Larry D

    2010-01-01

    Many metabolic and developmental processes in fungi are controlled by biological rhythms. Circadian rhythms approximate a daily (24 h) cycle and have been thoroughly studied in the model fungus, Neurospora crassa. However relatively few examples of true circadian rhythms have been documented among other filamentous fungi. In this study we describe a circadian rhythm underlying hyphal melanization in Cercospora kikuchii, an important pathogen of soybean. After growth in light or light : dark cycles, colonies transferred to darkness produced zonate bands of melanized hyphae interspersed with bands of hyaline hyphae. Rhythmic production of bands was remarkably persistent in the absence of external cues, lasting at least 7 d after transfer to darkness, and was compensated over a range of temperatures. As in N. crassa, blue light but not red light was sufficient to entrain the circadian rhythm in C. kikuchii, and a putative ortholog of white collar-1, one of the genes required for light responses in N. crassa, was identified in C. kikuchii. Circadian regulation of melanization is conserved in other members of the genus: Similar rhythms were identified in another field isolate of C. kikuchii as well as field isolates of C. beticola and C. sorghi, but not in wild-type strains of C. zeae-maydis or C. zeina. This report represents the first documented circadian rhythm among Dothideomycete fungi and provides a new opportunity to dissect the molecular basis of circadian rhythms among filamentous fungi.

  6. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    Directory of Open Access Journals (Sweden)

    Yaoming Yang

    2012-06-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Previous work has focused on the role of ubiquitin ligases in the clock mechanism. Here we show a role for the rhythmically-expressed deubiquitinating enzyme ubiquitin specific peptidase 2 (USP2 in clock function. Mice with a deletion of the Usp2 gene (Usp2 KO display a longer free-running period of locomotor activity rhythms and altered responses of the clock to light. This was associated with altered expression of clock genes in synchronized Usp2 KO mouse embryonic fibroblasts and increased levels of clock protein PERIOD1 (PER1. USP2 can be coimmunoprecipitated with several clock proteins but directly interacts specifically with PER1 and deubiquitinates it. Interestingly, this deubiquitination does not alter PER1 stability. Taken together, our results identify USP2 as a new core component of the clock machinery and demonstrate a role for deubiquitination in the regulation of the circadian clock, both at the level of the core pacemaker and its response to external cues.

  7. Circadian rhythm and sleep influences on digestive physiology and disorders

    OpenAIRE

    Vaughn, Bradley; Rotolo,Sean; Roth,Heidi

    2014-01-01

    Bradley V Vaughn, Sean Rotolo, Heidi L Roth Division of Sleep Medicine, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Circadian rhythms and sleep influence a variety of physiological functions, including the digestive system. The digestive system also has intrinsic rhythms that interact dynamically with circadian rhythms. New advances in understanding the interaction of these rhythms and sleep provide the prospect of evaluating their...

  8. A Statistical Analysis of Rhythm Patterns in Ghaleb Dehlavi’s Sonnets

    Directory of Open Access Journals (Sweden)

    M. Ghazanfari

    Full Text Available Ghaleb Dehlavi is considered as the best-known 13th century Indian poet. Also a writer and researcher, he was a Muslim originally from Touran with Eibak Turk ancestors. He was a pioneer of new styles in Urdu poetry. His poems are written in Urdu as well as Persian. His elaborate prose apart, Dehlavi’s odes and lyrics denote the poet’s noble thoughts and lofty nature. In spite of such traits and amazing proficiency in writing Persian poems, though a non-Persian speaker, the man has remained unknown or ignored in Iran. The present paper seeks to make orientations to Ghaleb Dehlavi by examining the rhythm patterns of his sonnets.Making references to the Indian style, the paper offers a typology and a computational account of rhythms as used in Ghaleb’s poems. It is found that 20 different rhythms are employed to versify a totality of 334 sonnets of which 85 percent are in only six rhythms. These six happen to be so frequently used in Persian too.The most frequent rhythm used by Ghaleb is ‘mafoolon faelaton mafaelon faelon’. Highly employed in Persian sonnets too, this rhythm is so capable of expressing the intended concepts. ‘Mafaelon faalaton mafaelna falon’ is another rhythm of his interest used more frequently in his anthology than in Persian poetry. The rhythm ‘mafoolon mafaelon mafaelon faolon’, vastly used by Saadi and Hafiz, also appeals to Ghaleb.Ghaleb’s application of the octave rhythms ‘raml’ and ‘hazj’, which sound so grave in Persian, suggests his tendency for the Indian style in poetry. However, the rise and fall in the frequency of certain rhythms in his anthology may be viewed as an indication of a retreat from his previously practiced literary style. The only rare rhythm in Ghaleb’s poems is ‘faelaton mafoolon faelaton mafoolon’ first tried in Attar’s sonnets. This rhythm has also been tried by Hafiz, Khajou Kermani, Saeb, Kalim, Feyz Kashani, and Bidel Dehlavi. The rhythm has given a stylistic

  9. Development of cortisol circadian rhythm in infancy.

    NARCIS (Netherlands)

    Weerth, C. de; Zijl, R.H.

    2003-01-01

    BACKGROUND AND AIMS: Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not

  10. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus.

    Science.gov (United States)

    Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad

    2017-08-01

    Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Circadian Rhythms in Cyanobacteria

    Science.gov (United States)

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  12. Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony.

    Science.gov (United States)

    Thomas, Karen A; Burr, Robert L; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-12-01

    Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. The aim of this to examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Forty-three healthy mother-infant pairs. Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10h of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (pcircadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (pcircadian rhythm. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Circadian rhythms in cognitive performance: implications for neuropsychological assessment

    Directory of Open Access Journals (Sweden)

    Valdez P

    2012-12-01

    Full Text Available Pablo Valdez, Candelaria Ramírez, Aída GarcíaLaboratory of Psychophysiology, School of Psychology, University of Nuevo León, Monterrey, Nuevo León, MéxicoAbstract: Circadian variations have been found in human performance, including the efficiency to execute many tasks, such as sensory, motor, reaction time, time estimation, memory, verbal, arithmetic calculations, and simulated driving tasks. Performance increases during the day and decreases during the night. Circadian rhythms have been found in three basic neuropsychological processes (attention, working memory, and executive functions, which may explain oscillations in the performance of many tasks. The time course of circadian rhythms in cognitive performance may be modified significantly in patients with brain disorders, due to chronotype, age, alterations of the circadian rhythm, sleep deprivation, type of disorder, and medication. This review analyzes the recent results on circadian rhythms in cognitive performance, as well as the implications of these rhythms for the neuropsychological assessment of patients with brain disorders such as traumatic head injury, stroke, dementia, developmental disorders, and psychiatric disorders.Keywords: human circadian rhythms, cognitive performance, neuropsychological assessment, attention, working memory, executive functions

  14. Endogenous fertility and development traps with endogenous lifetime

    OpenAIRE

    Fanti, Luciano; Gori, Luca

    2010-01-01

    We extend the literature on endogenous lifetime and economic growth by Chakraborty (2004) and Bunzel and Qiao (2005) to endogenous fertility. We show that development traps due to underinvestments in health cannot appear when fertility is an economic decision variable and the costs of children are represented by a constant fraction of the parents' income used for their upbringing.

  15. Current knowledge on the melatonin system in teleost fish.

    Science.gov (United States)

    Falcón, J; Migaud, H; Muñoz-Cueto, J A; Carrillo, M

    2010-02-01

    Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.

    Science.gov (United States)

    Kampschmidt, R F; Upchurch, H F; Worthington, M L

    1983-07-01

    It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen.

  17. Circadian rhythm and sleep influences on digestive physiology and disorders

    Directory of Open Access Journals (Sweden)

    Vaughn BV

    2014-09-01

    Full Text Available Bradley V Vaughn, Sean Rotolo, Heidi L Roth Division of Sleep Medicine, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Circadian rhythms and sleep influence a variety of physiological functions, including the digestive system. The digestive system also has intrinsic rhythms that interact dynamically with circadian rhythms. New advances in understanding the interaction of these rhythms and sleep provide the prospect of evaluating their role in normal physiology and the link of their disruption to pathological conditions. Recent work has demonstrated that sleep and circadian factors influence appetite, nutrient absorption, and metabolism. Disruption of sleep and circadian rhythms may increase vulnerability to digestive disorders, including reflux, ulcers, inflammatory bowel issues, irritable bowel disease, and gastrointestinal cancer. As our knowledge of the link between circadian timing and gastrointestinal physiology grows, so do our opportunities to provide promising diagnostic and therapeutic approaches for gastrointestinal disorders. Keywords: digestion, digestive diseases, gastrointestinal reflux, sleep, circadian rhythm 

  18. Alpha-band rhythm suppression during memory recall reflecting memory performance.

    Science.gov (United States)

    Yokosawa, Koichi; Kimura, Keisuke; Chitose, Ryota; Momiki, Takuya; Kuriki, Shinya

    2016-08-01

    Alpha-band rhythm is thought to be involved in memory processes, similarly to other spontaneous brain rhythms. Ten right-handed healthy volunteers participated in our proposed sequential short-term memory task that provides a serial position effect in accuracy rate. We recorded alpha-band rhythms by magnetoencephalography during performance of the task and observed that the amplitude of the rhythm was suppressed dramatically in the memory recall period. The suppressed region was estimated to be in the occipital lobe, suggesting that alpha-band rhythm is suppressed by activation of the occipital attentional network. Additionally, the alpha-band suppression reflected accuracy rate, that is, the amplitude was suppressed more when recalling items with higher accuracy rate. The sensors with a significant correlation between alpha-band amplitude and accuracy rate were located widely from the frontal to occipital regions mainly in the right hemisphere. The results suggests that alpha-band rhythm is involved in memory recall and can be index of memory performance.

  19. Analysis of Handwriting based on Rhythm Perception

    Science.gov (United States)

    Saito, Kazuya; Uchida, Masafumi; Nozawa, Akio

    Humanity fluctuation was reported in some fields. In handwriting process, fluctuation appears on handwriting-velocity. In this report, we focused attention on human rhythm perception and analyzed fluctuation in handwriting process. As a result, 1/f noise related to rhythm perception and features may caused by Kahneman's capacity model were measured on handwriting process.

  20. Unexpected diversity in socially synchronized rhythms of shorebirds

    NARCIS (Netherlands)

    Bulla, Martin; Valcu, Mihai; Dokter, Adriaan M; Dondua, Alexei G; Kosztolányi, András; Helm, Barbara; Sandercock, Brett K; Casler, Bruce; Ens, Bruno J.; Spiegel, Caleb S; Hassell, Chris J; Küpper, Clemens; Minton, Clive; Burgas, Daniel; Lank, David B; Payer, David C; Loktionov, Egor Y; Nol, Erica; Kwon, Eunbi; Smith, Fletcher; Gates, H River; Vitnerová, Hana; Prüter, Hanna; Johnson, James A; St Clair, James J H; Lamarre, Jean-François; Rausch, Jennie; Reneerkens, Jeroen; Conklin, Jesse R; Burger, Joanna; Liebezeit, Joe; Bêty, Joël; Coleman, Jonathan T; Figuerola, Jordi; Hooijmeijer, Joslyn; Alves, José A; Smith, Joseph A M; Weidinger, Karel; Koivula, Kari; Gosbell, Ken; Exo, Klaus-Michael; Niles, Larry; Koloski, Laura; McKinnon, Laura; Praus, Libor; Klaassen, Marcel; Giroux, Marie-Andrée; Sládeček, Martin; Boldenow, Megan L; Goldstein, Michael I; Šálek, Miroslav; Senner, Nathan; Rönkä, Nelli; Lecomte, Nicolas; Gilg, Olivier; Vincze, Orsolya; Johnson, Oscar W; Smith, Paul A; Woodard, Paul F; Tomkovich, Pavel S; Battley, Phil F; Bentzen, Rebecca; Lanctot, Richard B; Porter, Ron; Saalfeld, Sarah T; Freeman, Scott; Brown, Stephen C; Yezerinac, Stephen; Székely, Tamás; Montalvo, Tomás; Piersma, Theunis; Loverti, Vanessa; Pakanen, Veli-Matti; Tijsen, Wim; Kempenaers, Bart

    2016-01-01

    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities

  1. Reviewing the musical component of rhythm of "poetry" and the factors influencing it

    Directory of Open Access Journals (Sweden)

    Ma’sumeh Ma’dankan

    2017-04-01

    Full Text Available ‘Rhythm’ is the most important component in the music of poetry. In this paper, in addition to defining rhythm, we have studied relative components which have most influence on the music of poetry. ‘Rhythm’ is the first common factor in different arts especially music and poetry. Poetry has always been along with rhythm. A short and complete definition of ‘rhythm’ is: “Rhythm is the balance resulting from sequence of letters or rhythms at certain limited times”.The most important factors affecting rhythm are: Proportion of syllables at prosodic rhythms: Every syllable has its special musical load at prosodic rhythms. It is clear that if each of them is mostly used at one rhythm, it will mostly and clearly show its own special state. Sequence of syllables at prosodic rhythms: Succession of long or short syllables because of their special vocal effect on rhythm is very effective on the musical quality of rhythm. Application of long syllable: The most the number of long syllables in a verse, the heavier will be the rhythm of the verse. Because in this way the number of syllables of every verse will be decreased and their temporal duration will be increased. Conformity of the end of words with the end of elements (space between words with space between elements: conformity of the end of words and elements because of the repeated sequence of an element highly strengthens the effect of that prosodic element at the mind of the listener. These constant and repeated scansions make the poem rhythmic and enrich its music. Making accidental or the second rhythm: one way for innovation and overcoming the natural music of a rhythm is making a special rhythm other than the main prosodic rhythm of poem by arranging the words in a special order in a way that it conforms to the other scansion of the same prosodic rhythm. Using regular space between words other than space of elements: sometimes the poet without using a different scansion of the

  2. Mechanisms of influence of probiotic "Laminolact Sporting" on the indexes of special trained of skilled sportsmen

    Directory of Open Access Journals (Sweden)

    Gunina L.M.

    2012-04-01

    Full Text Available Influence of functional probiotic product of "Laminolact Sporting" on the indexes of special trained of power and cyclic types of sport skilled representatives is studied. It is set, that of the basis of improvement of the special preparedness of sportsmen are the positive changes of immunological indexes, decline of expressed of endogenous intoxication as well as improvement of myocardium retractive ability. Expediency of application of probiotic is reasonable in composition the chart of pharmacological support on the stages of circannual macrocycle of skilled sportsmen preparation.

  3. Chronotype and circadian rhythm in bipolar disorder: A systematic review.

    Science.gov (United States)

    Melo, Matias C A; Abreu, Rafael L C; Linhares Neto, Vicente B; de Bruin, Pedro F C; de Bruin, Veralice M S

    2017-08-01

    Despite a complex relationship between mood, sleep and rhythm, the impact of circadian disruptions on bipolar disorder (BD) has not been clarified. The purpose of this systematic review was to define current evidence regarding chronotype and circadian rhythm patterns in BD patients. 42 studies were included, involving 3432 BD patients. Disruption of the biological rhythm was identified, even in drug-naïve BD patients and independently of mood status. Daily profiles of melatonin levels and cortisol indicated a delayed phase. Depression was more frequently associated with circadian alterations than euthymia. Few studies evaluated mania, demonstrating irregular rhythms. Evening type was more common in BD adults. Studies about the influence of chronotype on depressive symptoms showed conflicting results. Only one investigation observed the influences of chronotype in mania, revealing no significant association. Effects of psychoeducation and lithium on rhythm in BD patients were poorly studied, demonstrating no improvement of rhythm parameters. Studies about genetics are incipient. In conclusion, disruption in circadian rhythm and eveningness are common in BD. Prospective research evaluating the impact of circadian disruption on mood symptoms, metabolism, seasonality, the influence of age and the effects of mood stabilizers are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Circadian Sleep-Wake Rhythm of Older Adults with Intellectual Disabilities

    Science.gov (United States)

    Maaskant, Marijke; van de Wouw, Ellen; van Wijck, Ruud; Evenhuis, Heleen M.; Echteld, Michael A.

    2013-01-01

    The circadian sleep-wake rhythm changes with aging, resulting in a more fragmented sleep-wake pattern. In individuals with intellectual disabilities (ID), brain structures regulating the sleep-wake rhythm might be affected. The aims of this study were to compare the sleep-wake rhythm of older adults with ID to that of older adults in the general…

  5. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson's disease.

    Science.gov (United States)

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Vanwersch, Raymond A P; Estevao, Dave L; Tass, Peter A

    2017-08-01

    Neurofeedback may enhance compensatory brain mechanisms. EEG-based sensorimotor rhythm neurofeedback training was suggested to be beneficial in Parkinson's disease. In a placebo-controlled study in parkinsonian nonhuman primates we here show that sensorimotor rhythm neurofeedback training reduces MPTP-induced parkinsonian symptoms and both ON and OFF scores during classical L-DOPA treatment. Our findings encourage further development of sensorimotor rhythm neurofeedback training as adjunct therapy for Parkinson's disease which might help reduce L-DOPA-induced side effects.

  6. Rhythms in the endocrine system of fish: a review.

    Science.gov (United States)

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  7. Neural responses to complex auditory rhythms: the role of attending

    Directory of Open Access Journals (Sweden)

    Heather L Chapin

    2010-12-01

    Full Text Available The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus.

  8. The Rest-Activity Rhythm and Physical Activity in Early-Onset Dementia

    NARCIS (Netherlands)

    Hooghiemstra, A.M.; Eggermont, L.H.P.; Scheltens, P.; van der Flier, W.M.; Scherder, E.J.A.

    2015-01-01

    Background: A substantial part of elderly persons with dementia show rest-activity rhythm disturbances. The rest-activity rhythm is important to study in people with early-onset dementia (EOD) for rest-activity rhythm disturbances are predictive of institutionalization, and caregivers of young

  9. Educating the sense of rhythm in primary education students

    Directory of Open Access Journals (Sweden)

    Silvia GRĂDINARU

    2017-03-01

    Full Text Available Background: Rhythm as a core element of complex coordination is the key to efficient moulding of motor skills specific to sports activities in curricula. Practicing physical exercise in a varied rhythm and tempo in primary school students moulds the skill of achieving correct movement basics (direction, span, coordination, and expressivity. The use of music in sports classes improves kinetics and vestibular sensitivity. The sense of rhythm and tempo are imperative criteria in vocational schools. Purpose: This paper aims to describe a pattern of means selected to develop the sense of rhythm and to allow movements in different sports branches with increased efficiency. Methods: The test battery was applied on a sample of 15 students from the 4th grade of the “Ion Vidu” National Arts College in Timisoara, Romania, aged 9-10 years, over an entire school year, using different rhythms and tempos during sports classes, which were later used in gymnastics, athletic events, and basketball. Results: Data recorded after the application tests, processed and interpreted confirms the proposed assumption and validates the motor contents used. Conclusions: Sense of rhythm is a component of coordinative capacity that is required to be educated from an early age. Rhythmic movements are easier to automate saving energy and motivating students to an active and conscious participation.

  10. Implications of Circadian Rhythm in Dopamine and Mood Regulation.

    Science.gov (United States)

    Kim, Jeongah; Jang, Sangwon; Choe, Han Kyoung; Chung, Sooyoung; Son, Gi Hoon; Kim, Kyungjin

    2017-07-31

    Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-erbα induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

  11. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  12. Circadian Activity Rhythms, Time Urgency, and Achievement Concerns.

    Science.gov (United States)

    Watts, Barbara L.

    Many physiological and psychological processes fluctuate throughout the day in fairly stable, rhythmic patterns. The relationship between individual differences in circadian activity rhythms and a sense of time urgency were explored as well as a number of achievement-related variables. Undergraduates (N=308), whose circadian activity rhythms were…

  13. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  14. Circadian Rhythm Sleep-Wake Disorders in Older Adults.

    Science.gov (United States)

    Kim, Jee Hyun; Duffy, Jeanne F

    2018-03-01

    The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows wakefulness throughout the day and a long consolidated sleep episode at night. Mismatch between the desired timing of sleep and the ability to fall and remain asleep is a hallmark of the circadian rhythm sleep-wake disorders. This article discusses changes in circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep-wake disorders; and how neurologic diseases in older patients affect circadian rhythms and sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [Interpersonal and social rhythm therapy (IPSRT)].

    Science.gov (United States)

    Bottai, T; Biloa-Tang, M; Christophe, S; Dupuy, C; Jacquesy, L; Kochman, F; Meynard, J-A; Papeta, D; Rahioui, H; Adida, M; Fakra, E; Kaladjian, A; Pringuey, D; Azorin, J-M

    2010-12-01

    Bipolar disorder is common, recurrent, often severe and debiliting disorder. All types of bipolar disorder have a common determinant: depressive episode. It is justify to propose a psychotherapy which shown efficacy in depression. Howewer, perturbations in circadian rhythms have been implicated in the genesis of each episode of the illness. Biological circadian dysregulation can be encouraged by alteration of time-givers (Zeitgebers) or occurrence of time-disturbers (Zeitstörers). Addition of social rhythm therapy to interpersonal psychotherapy leads to create a new psychotherapy adaptated to bipolar disorders: InterPersonal and Social Rhythm Therapy (IPSRT). IPSRT, in combinaison with medication, has demonstrated efficacy as a treatment for bipolar disorders. IPSRT combines psychoeducation, behavioral strategy to regularize daily routines and interpersonal psychotherapy which help patients cope better with the multiple psychosocial and relationship problems associated with this chronic disorder. The main issues of this psychotherapy are: to take the history of the patient's illness and review of medication, to help patient for "grief for the lost healthy self" translated in the french version in "acceptance of a long-term medical condition", to give the sick role, to examinate the current relationships and changes proximal to the emergence of mood symptoms in the four problem areas (unresolved grief, interpersonal disputes, role transitions, role déficits), to examinate and increase daily routines and social rhythms. French version of IPSRT called TIPARS (with few differences), a time-limited psychotherapy, in 24 sessions during approximatively 6 months, is conducted in three phases. In the initial phase, the therapist takes a thorough history of previous episodes and their interpersonal context and a review of previous medication, provides psychoeducation, evaluates social rhythms, introduces the Social Rhythm Metric, identifies the patient's main interpersonal

  16. RHYTHM DISTURBANCES DURING COLONOSCOPY

    Directory of Open Access Journals (Sweden)

    D. Jordanov

    2012-08-01

    Full Text Available Purpose: The purpose of this study is to assess the risk of inducing rhythm disturbances of the heart during colonoscopy.Patients and methods used: 80 patients had undergone colonoscopyper formed by two experienced specialists of endoscopy for the period from March to December 2011. The endoscopies were performed without premedication and sedation. Holter was placed on each patient one hour before the endoscopic examination, and the record continued one hour after the manipulation. The blood pressure was measured before, during and after the procedure.Results: During colonoscopy 25 patients (31,25% manifested rhythm disorders. In 15 patients (18,75% sinus tachycardia occurred. In 7 patients (8,75% suptraventricular extra systoles were observed and in 3 patients (3,75% - ventricular extra systoles. No ST-T changes were found. Highest values of the blood pressure were measured before and during the endoscopy, but the values did not exceed 160/105 mmHg. In 10 patients (12,5% a hypotensive reaction was observed, bur the values were not lower than 80/ 50. In 2 patients there was a short bradycardia with a heart frequency 50-55 /min.Conclusions: Our results showed that the rhythm disorders during lower colonoscopy occur in approximately 1/3 of the examined patients, there is an increase or decrease of the blood pressure in some patients, but that doesn’t require physician’s aid and the examination can be carried out safely without monitoring.

  17. Speech-like rhythm in a voiced and voiceless orangutan call.

    Directory of Open Access Journals (Sweden)

    Adriano R Lameira

    Full Text Available The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined "clicks" and "faux-speech." Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech

  18. Influence of artificially induced light pollution on the hormone system of two common fish species, perch and roach, in a rural habitat.

    Science.gov (United States)

    Brüning, Anika; Kloas, Werner; Preuer, Torsten; Hölker, Franz

    2018-01-01

    Almost all life on earth has adapted to natural cycles of light and dark by evolving circadian and circannual rhythms to synchronize behavioural and physiological processes with the environment. Artificial light at night (ALAN) is suspected to interfere with these rhythms. In this study we examined the influence of ALAN on nocturnal melatonin and sex steroid blood concentrations and mRNA expression of gonadotropins in the pituitary of European perch ( Perca fluviatilis ) and roach ( Rutilus rutilus ). In a rural experimental setting, fish were held in net cages in drainage channels experiencing either additional ALAN of ~15 lx at the water surface or natural light conditions at half-moon. No differences in melatonin concentrations between ALAN and natural conditions were detected. However, blood concentration of sex steroids (17β-estradiol; 11-ketotestosterone) as well as mRNA expression of gonadotropins (luteinizing hormone, follicle stimulating hormone) was reduced in both fish species. We conclude that ALAN can disturb biological rhythms in fish in urban waters. However, impacts on melatonin rhythm might have been blurred by individual differences, sampling methods and moonlight. The effect of ALAN on biomarkers of reproduction suggests a photo-labile period around the onset of gonadogenesis, including the experimental period (August). Light pollution therefore has a great potential to influence crucial life history traits with unpredictable outcome for fish population dynamics.

  19. Maternal and infant activity: Analytic approaches for the study of circadian rhythm.

    Science.gov (United States)

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2015-11-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R(2), NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta(2)) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and

  20. Social Rhythm and Mental Health: A Cross-Cultural Comparison.

    Directory of Open Access Journals (Sweden)

    Jürgen Margraf

    Full Text Available Social rhythm refers to the regularity with which one engages in social activities throughout the week, and has established links with bipolar disorder, as well as some links with depression and anxiety. The aim of the present study is to examine social rhythm and its relationship to various aspects of health, including physical health, negative mental health, and positive mental health.Questionnaire data were obtained from a large-scale multi-national sample of 8095 representative participants from the U.S., Russia, and Germany.Results indicated that social rhythm irregularity is related to increased reporting of health problems, depression, anxiety, and stress. In contrast, greater regularity is related to better overall health state, life satisfaction, and positive mental health. The effects are generally small in size, but hold even when controlling for gender, marital status, education, income, country, and social support. Further, social rhythm means differ across Russia, the U.S., and Germany. Relationships with mental health are present in all three countries, but differ in magnitude.Social rhythm irregularity is related to mental health in Russia, the U.S., and Germany.

  1. Are circadian rhythms new pathways to understand Autism Spectrum Disorder?

    Science.gov (United States)

    Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N

    2016-11-01

    Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Speech rhythm in Kannada speaking adults who stutter.

    Science.gov (United States)

    Maruthy, Santosh; Venugopal, Sahana; Parakh, Priyanka

    2017-10-01

    A longstanding hypothesis about the underlying mechanisms of stuttering suggests that speech disfluencies may be associated with problems in timing and temporal patterning of speech events. Fifteen adults who do and do not stutter read five sentences, and from these, the vocalic and consonantal durations were measured. Using these, pairwise variability index (raw PVI for consonantal intervals and normalised PVI for vocalic intervals) and interval based rhythm metrics (PercV, DeltaC, DeltaV, VarcoC and VarcoV) were calculated for all the participants. Findings suggested higher mean values in adults who stutter when compared to adults who do not stutter for all the rhythm metrics except for VarcoV. Further, statistically significant difference between the two groups was found for all the rhythm metrics except for VarcoV. Combining the present results with consistent prior findings based on rhythm deficits in children and adults who stutter, there appears to be strong empirical support for the hypothesis that individuals who stutter may have deficits in generation of rhythmic speech patterns.

  3. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech.

    Science.gov (United States)

    Borrie, Stephanie A; Lansford, Kaitlin L; Barrett, Tyson S

    2017-03-01

    The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception (initial intelligibility) and learning (intelligibility improvement) of naturally dysrhythmic speech, dysarthria. Fifty young adults with typical hearing participated in 3 key tests, including a rhythm perception test, a receptive vocabulary test, and a speech perception and learning test, with standard pretest, familiarization, and posttest phases. Initial intelligibility scores were calculated as the proportion of correct pretest words, while intelligibility improvement scores were calculated by subtracting this proportion from the proportion of correct posttest words. Rhythm perception scores predicted intelligibility improvement scores but not initial intelligibility. On the other hand, receptive vocabulary scores predicted initial intelligibility scores but not intelligibility improvement. Expertise in rhythm perception appears to provide an advantage for processing dysrhythmic speech, but a familiarization experience is required for the advantage to be realized. Findings are discussed in relation to the role of rhythm in speech processing and shed light on processing models that consider the consequence of rhythm abnormalities in dysarthria.

  4. Circadian rhythm disturbance after radiotherapy for brain tumor in infantile period

    International Nuclear Information System (INIS)

    Kubota, Masaya; Shinozaki, Masako; Sasaki, Hideo.

    1993-01-01

    We report a 19-year-old man suffering from circadian sleep-wake (S-W) rhythm disturbance after total tumor resection and whole brain irradiation. The patient was diagnosed as having astrocytoma in the right temporal lobe by CT scan and angiography at the age of 6 months. After total tumor resection and whole brain irradiation ( 60 Co 60 Gy), he showed profound psychomotor retardation, endoclinologic dysfunction including hypothyroidism and growth hormone deficiency, and S-W rhythm disturbance. At the age of 19, brain MRI revealed asymmetrical low intensity in the hypothalamic region. On endoclinological examination panhypopituitarism due to primary hypothalamic lesion was evident. His S-W rhythm was disturbed; i.e., sleep periods were dispersedly distributed throughout 24 hours. So he showed a lethargic tendency in the daytime. All-day polysomnography revealed abnormal sleep structure such as the absence of sleep spindle and hump, peripheral apnea, snoring and low oxygen saturation. After L-thyroxine supplementation his daily activity improved gradually. The decrease in short time sleep and tendency of a free-running rhythm were observed and oxygen saturation improved remarkably. Peripheral apnea and snoring disappeared. This wakening effect of L-thyroxine administration may be due to improvement of hypothyroidism symptom such as myxoedematous pharynx. It also seems related to the alteration of the central S-W rhythm regulation, because free-running rhythm appeared after L-thyroxine administration. Vitamin B 12 (VB 12 ), which has been reported to be effective for S-W rhythm disorders, was not effective for our patient's free-running rhythm. Compared with the patients responding to VB 12 , our patient's organic brain damage was more evident radiologically and endoclinologically. Following the hypothesis that VB 12 has a potential to reinforce the entrainment of circadian rhythm, our patient's organic brain damage may include entrainment system. (author)

  5. Musical rhythm spectra from Bach to Joplin obey a 1/f power law.

    Science.gov (United States)

    Levitin, Daniel J; Chordia, Parag; Menon, Vinod

    2012-03-06

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/f(β) power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  6. [Psychoeducation and interpersonal and social rhythm therapy for bipolar disorder].

    Science.gov (United States)

    Mizushima, Hiroko

    2011-01-01

    In treating bipolar disorder, specific psychotherapies in adjunct to pharmacotherapy have been shown to be effective in preventing new episodes and treating depressive episodes. Among those, interpersonal and social rhythm therapy (IPSRT) developed by Frank, amalgamation of interpersonal psychotherapy (IPT) with behavioral therapy focused on social rhythm has been shown to be an efficacious adjunct to mediation in preventing new episodes in bipolar I patients and in treating depression in bipolar I arid II disorder. IPSRT has also been shown to enhance total functioning, relationship functioning and life satisfaction among patients with bipolar disorder, even after pretreatment functioning and concurrent depression were covaried. IPSRT was designed to directly address the major pathways to recurrence in bipolar disorder, namely medication nonadherence, stressful life events, and disruptions in social rhythms. IPT, originated by Klerman et al., is a strategic time-limited psychotherapy focused on one or two of four current interpersonal problem areas (ie, grief, interpersonal role disputes, role transitions, and interpersonal dificits). In IPSRT, the fifth problem area "grief for the lost healthy self" has been added in order to promote acceptance of the diagnosis and the need for life-long treatment. Social rhythm therapy is a behavioral approach aiming at increasing regularity of social rhythms using the Social Rhythm Metric (SRM), a chart to record daily social activities including how stimulating they were, developed from observation that disruptions in social rhythms often trigger affective episodes in patients with bipolar disorder. IPSRT also appears to be a promising intervention for a subset of individuals with bipolar II depression as monotherapy for the acute treatment.

  7. Light Rhythms in Architecture

    DEFF Research Database (Denmark)

    Bülow, Katja

    2013-01-01

    formation and rhythm. When integrated into an architectural concept, electrical lighting non-intended for poetic composition has the ability to contribute to place, time, and function-telling aspects of places in urban contexts. Urban environments are information wise challenging to pre-historic human...

  8. The Endogenous Exposome

    Science.gov (United States)

    Nakamura, Jun; Mutlu, Esra; Sharma, Vyom; Collins, Leonard; Bodnar, Wanda; Yu, Rui; Lai, Yongquan; Moeller, Benjamin; Lu, Kun; Swenberg, James

    2014-01-01

    The concept of the Exposome, is a compilation of diseases and one’s lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the Endogenous Exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions. PMID:24767943

  9. A Circadian Rhythm Regulating Hyphal Melanization in Cercospora Kikuchii

    Science.gov (United States)

    Circadian rhythms, biochemical or developmental processes with a period length of approximately 24 hours, are thoroughly documented in plants and animals. However, virtually all of what is currently known about circadian rhythms in fungi is derived from the model fungus, Neurospora crassa, including...

  10. Production of endogenous pyrogen.

    Science.gov (United States)

    Dinarello, C A

    1979-01-01

    The production and release of endogenous pyrogen by the host is the first step in the pathogenesis of fever. Endogenous pyrogen is a low-molecular-weight protein released from phagocytic leukocytes in response to several substances of diverse nature. Some of these agents stimulate production of endogenous pyrogen because they are toxic; others act as antigens and interact with either antibody or sensitized lymphocytes in order to induce its production. Some tumors of macrophage origin produce the molecule spontaneously. Whatever the mechanism involved, endogenous pyrogen is synthesized following transcription of new DNA and translation of mRNA into new protein. Once synthesis is completed, the molecule is released without significant intracellular storage. Recent evidence suggests that following release, molecular aggregates form which are biologically active. In its monomer form, endogenous pyrogen is a potent fever-producing substance and mediates fever by its action on the thermoregulatory center.

  11. Daily rhythm of phosphoenolpyruvate carboxylase in Crassulacean acid metabolism plants : Immunological evidence for the absence of a rhythm in protein synthesis.

    Science.gov (United States)

    Brulfert, J; Vidal, J; Gadal, P; Queiroz, O

    1982-11-01

    Immunotitration of phosphoenolpyruvate carboxylase (EC 4.1.1.31) extracted from leaves of Kalanchoe blossfeldiana v. Poelln. cv. Tom Thumb. It was established that at different times of the day-night cycle the daily rhythm of enzyme capacity does not result from a rhythm in protein synthesis, but rather from changes in the specific activity of the enzyme.

  12. Endogenous circannual rhythmicity in body mass, molt, and plumage of Great Knots (Calidris tenuirostris)

    NARCIS (Netherlands)

    Piersma, Theunis; Brugge, Maarten; Spaans, Bernard; Battley, Phil F.; Handel, C.M.

    Four Great Knots (Calidris tenuirostris) were kept for six years in a constant-temperature indoor aviary. For two of those six years, they were kept under photoperiodic conditions that mimicked natural changes in daylength for wild birds, followed by four years under a constant photoperiod

  13. Candidate genes have sex-specific effects on timing of spring migration and moult speed in a long-distance migratory bird.

    Science.gov (United States)

    Bazzi, Gaia; Podofillini, Stefano; Gatti, Emanuele; Gianfranceschi, Luca; Cecere, Jacopo G; Spina, Fernando; Saino, Nicola; Rubolini, Diego

    2017-10-01

    The timing of major life-history events, such as migration and moult, is set by endogenous circadian and circannual clocks, that have been well characterized at the molecular level. Conversely, the genetic sources of variation in phenology and in other behavioral traits have been sparsely addressed. It has been proposed that inter-individual variability in the timing of seasonal events may arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade of the endogenous clocks. In this study of a long-distance migratory passerine bird, the willow warbler Phylloscopus trochilus , we investigated whether allelic variation at 5 polymorphic loci of 4 candidate genes ( Adcyap1 , Clock , Creb1 , and Npas2 ), predicted 2 major components of the annual schedule, namely timing of spring migration across the central Mediterranean sea and moult speed, the latter gauged from ptilochronological analyses of tail feathers moulted in the African winter quarters. We identified a novel Clock gene locus ( Clock region 3) showing polyQ polymorphism, which was however not significantly associated with any phenotypic trait. Npas2 allele size predicted male (but not female) spring migration date, with males bearing longer alleles migrating significantly earlier than those bearing shorter alleles. Creb1 allele size significantly predicted male (but not female) moult speed, longer alleles being associated with faster moult. All other genotype-phenotype associations were statistically non-significant. These findings provide new evidence for a role of candidate genes in modulating the phenology of different circannual activities in long-distance migratory birds, and for the occurrence of sex-specific candidate gene effects.

  14. Autism as a disorder of biological and behavioral rhythms: Towards new therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Sylvie eTordjman

    2015-02-01

    Full Text Available There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional and relational rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators suggests that this hormone might be also involved in the synchrony of motor, emotional and relational rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors or interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional and relational rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony such as the Early Start Denver Model (ESDM.

  15. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.

    Science.gov (United States)

    Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.

  16. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans.

    Science.gov (United States)

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement.

  17. Internal Medicine Physicians’ Perceptions Regarding Rate versus Rhythm Control for Atrial Fibrillation

    Science.gov (United States)

    McCabe, James M.; Johnson, Colleen J; Marcus, Gregory M

    2011-01-01

    Atrial fibrillation (AF) is often managed by general internal medicine physicians. Available data suggest that guidelines regarding AF management are often not followed, but the reasons for this remain unknown. We sought to assess the knowledge and beliefs of internists regarding strategies to treat AF. We conducted a national electronic survey of internal medicine physicians regarding their perceptions of optimal AF management, with an emphasis on the rationale for choosing a rhythm or rate control strategy. One hundred and forty-eight physicians from 36 different states responded (representing at least 19% of unique e-mails opened). Half of the respondents reported managing their AF patients independently without referral to a cardiologist. Seventy-three percent of participants believe a rhythm control strategy conveys a decreased stroke risk, 64% believe there is a mortality benefit to rhythm control, and 55% think that it would help avoid long term anticoagulation. Comparing those who prefer a rhythm control strategy to everyone else, those who favor rhythm control statistically significantly more often believe that rhythm control reduces the risk for stroke (96% versus 67%, p=0.009) and that rhythm control allows for the discontinuation of anticoagulation therapy (76% versus 49%, p=0.045). In conclusion, contrary to available data in clinical trials and recent guidelines regarding the rationale for choosing a rhythm control strategy in treating AF, the majority of study participants believe that rhythm control decreases stroke risk, decreases mortality, and allows for discontinuation of anticoagulation therapy. These prevalent misconceptions may substantially contribute to guideline non-adherence. PMID:19195516

  18. Endogenous Locus Reporter Assays.

    Science.gov (United States)

    Liu, Yaping; Hermes, Jeffrey; Li, Jing; Tudor, Matthew

    2018-01-01

    Reporter gene assays are widely used in high-throughput screening (HTS) to identify compounds that modulate gene expression. Traditionally a reporter gene assay is built by cloning an endogenous promoter sequence or synthetic response elements in the regulatory region of a reporter gene to monitor transcriptional activity of a specific biological process (exogenous reporter assay). In contrast, an endogenous locus reporter has a reporter gene inserted in the endogenous gene locus that allows the reporter gene to be expressed under the control of the same regulatory elements as the endogenous gene, thus more accurately reflecting the changes seen in the regulation of the actual gene. In this chapter, we introduce some of the considerations behind building a reporter gene assay for high-throughput compound screening and describe the methods we have utilized to establish 1536-well format endogenous locus reporter and exogenous reporter assays for the screening of compounds that modulate Myc pathway activity.

  19. Relation between functional connectivity and rhythm discrimination in children who do and do not stutter

    Directory of Open Access Journals (Sweden)

    Soo-Eun Chang

    2016-01-01

    Full Text Available Our ability to perceive and produce rhythmic patterns in the environment supports fundamental human capacities ranging from music and language processing to the coordination of action. This article considers whether spontaneous correlated brain activity within a basal ganglia-thalamocortical (rhythm network is associated with individual differences in auditory rhythm discrimination. Moreover, do children who stutter with demonstrated deficits in rhythm perception have weaker links between rhythm network functional connectivity and rhythm discrimination? All children in the study underwent a resting-state fMRI session, from which functional connectivity measures within the rhythm network were extracted from spontaneous brain activity. In a separate session, the same children completed an auditory rhythm-discrimination task, where behavioral performance was assessed using signal detection analysis. We hypothesized that in typically developing children, rhythm network functional connectivity would be associated with behavioral performance on the rhythm discrimination task, but that this relationship would be attenuated in children who stutter. Results supported our hypotheses, lending strong support for the view that (1 children who stutter have weaker rhythm network connectivity and (2 the lack of a relation between rhythm network connectivity and rhythm discrimination in children who stutter may be an important contributing factor to the etiology of stuttering.

  20. Right- and left-brain hemisphere. Rhythm in reaction time to light signals is task-load-dependent: age, gender, and handgrip strength rhythm comparisons.

    Science.gov (United States)

    Reinberg, Alain; Bicakova-Rocher, Alena; Mechkouri, Mohamed; Ashkenazi, Israel

    2002-11-01

    In healthy mature subjects simple reaction time (SRT) to a single light signal (an easy task) is associated with a prominent rhythm with tau = 24 h of dominant (DH) as well as nondominant (NDH) hand performance, while three-choice reaction time (CRT), a complex task, is associated with tau = 24 h of the DH but tau gender on the difference in tau of the NDH and DH, as it relates to the corresponding cortical hemisphere of the brain, in comparison to the rhythm in handgrip strength. Healthy subjects, 9 (5 M and 4 F) adolescents 10-16 yr of age and 15 (8 M and 7 F) adults 18-67 yr of age, active between 08:00 +/- 1 h and 23:00 +/- 1:30 h and free of alcohol, tobacco, and drug consumption volunteered. Data were gathered longitudinally at home and work 4-7 times daily for 11-20 d. At each test time the following variables were assessed: grip strength of both hands (Dynamometer: Colin-Gentile, Paris, France); single reaction time to a yellow signal (SRT); and CRT to randomized yellow, red, or green signal series with varying instruction from test to test (Psycholog-24: Biophyderm, France). Rhythms in the performance in SRT, CRT, and handgrip strength of both DH and NDH were explored. The sleep-wake rhythm was assessed by sleep-logs, and in a subset of 14 subjects it was also assessed by wrist actigraphy (Mini-Motionlogger: AMI, Ardsley NY). Exploration of the prominent period tau of time series was achieved by a special power spectra analysis for unequally spaced data. Cosinor analysis was used to quantify the rhythm amplitude A and rhythm-adjusted mean M of the power spectral analysis determined trial tau. A 24h sleep-wake rhythm was detected in almost all cases. In adults, a prominent tau of 24 h characterized the performance of the easy task by both the DH and NDH. In adults a prominent tau of 24 h was also detected in the complex CRT task performed by the DH, but for the NDH the tau was gender-related but was age-related since it was seldom observed in adolescent

  1. Mood Disorders, Circadian Rhythms, Melatonin and Melatonin Agonists

    Directory of Open Access Journals (Sweden)

    M.A. Quera Salva

    2012-04-01

    Full Text Available Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC. Melatonin (N-acetyl-5-hydroxytryptamine is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse.

  2. Circadian rhythms on skin function of hairless rats: light and thermic influences.

    Science.gov (United States)

    Flo, Ana; Díez-Noguera, Antoni; Calpena, Ana C; Cambras, Trinitat

    2014-03-01

    Circadian rhythms are present in most functions of living beings. We have demonstrated the presence of circadian rhythms in skin variables (transepidermal water loss, TEWL; stratum corneum hydration, SCH; and skin temperature) in hairless rats under different environmental conditions of light and temperature. Circadian rhythms in TEWL and SCH showed mean amplitudes of about 20% and 14% around the mean, respectively, and appeared under light-dark cycles as well as under constant darkness. Environmental temperature was able to override TEWL, but not SCH rhythm, evidencing the dependency of TEWL on the temperature. Mean daily values of TEWL and SCH, and also the amplitude of TEWL rhythm, increased with the age of the animal. Under constant light, situation that induces arrhythmicity in rats, SCH and TEWL were inversely correlated. The results suggest the importance to take into account the functional skin rhythms in research in dermatological sciences. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Circadian rhythm of urinary potassium excretion during treatment with an angiotensin receptor blocker.

    Science.gov (United States)

    Ogiyama, Yoshiaki; Miura, Toshiyuki; Watanabe, Shuichi; Fuwa, Daisuke; Tomonari, Tatsuya; Ota, Keisuke; Kato, Yoko; Ichikawa, Tadashi; Shirasawa, Yuichi; Ito, Akinori; Yoshida, Atsuhiro; Fukuda, Michio; Kimura, Genjiro

    2014-12-01

    We have reported that the circadian rhythm of urinary potassium excretion (U(K)V) is determined by the rhythm of urinary sodium excretion (U(Na)V) in patients with chronic kidney disease (CKD). We also reported that treatment with an angiotensin receptor blocker (ARB) increased the U(Na)V during the daytime, and restored the non-dipper blood pressure (BP) rhythm into a dipper pattern. However, the circadian rhythm of U(K)V during ARB treatment has not been reported. Circadian rhythms of U(Na)V and U(K)V were examined in 44 patients with CKD undergoing treatment with ARB. Whole-day U(Na)V was not altered by ARB whereas whole-day U(K)V decreased. Even during the ARB treatment, the significant relationship persisted between the night/day ratios of U(Na)V and U(K)V (r=0.56, pcircadian rhythm of U(K)V was determined by the rhythm of UNaV even during ARB treatment. Changes in the circadian U(K)V rhythm were not determined by aldosterone but by U(Na)V. © The Author(s) 2013.

  4. Ultradian activity rhythms in large groups of newly hatched chicks (Gallus gallus domesticus).

    Science.gov (United States)

    Nielsen, B L; Erhard, H W; Friggens, N C; McLeod, J E

    2008-07-01

    A clutch of young chicks housed with a mother hen exhibit ultradian (within day) rhythms of activity corresponding to the brooding cycle of the hen. In the present study clear evidence was found of ultradian activity rhythms in newly hatched domestic chicks housed in groups larger than natural clutch size without a mother hen or any other obvious external time-keeper. No consistent synchrony was found between groups housed in different pens within the same room. The ultradian rhythms disappeared with time and little evidence of group rhythmicity remained by the third night. This disappearance over time suggests that the presence of a mother hen may be pivotal for the long-term maintenance of these rhythms. The ultradian rhythm of the chicks may also play an important role in the initiation of brooding cycles during the behavioural transition of the mother hen from incubation to brooding. Computer simulations of individual activity rhythms were found to reproduce the observations made on a group basis. This was achievable even when individual chick rhythms were modelled as independent of each other, thus no assumptions of social facilitation are necessary to obtain ultradian activity rhythms on a group level.

  5. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans

    Science.gov (United States)

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement. PMID:26132703

  6. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans.

    Directory of Open Access Journals (Sweden)

    Yuko Hattori

    Full Text Available Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum and auditory rhythms (e.g., hearing music while walking. Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse, suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement.

  7. Effects of Some Aspects of Rhythm on Tempo Perception.

    Science.gov (United States)

    Wang, Cecilia Chu

    1984-01-01

    Results indicated that significantly more time is needed to perceive tempo increase than tempo decrease, uneven rhythm then even rhythm, and melody alone than melody with accompaniment. Furthermore, significant interaction effects involving beat locations of tempo change suggest that differential groupings may be a factor in tempo discrimination.…

  8. Effects of tempo and timing of simple musical rhythms

    NARCIS (Netherlands)

    Repp, B.H.; Windsor, W.L.; Desain, P.W.M.

    2002-01-01

    In this study we investigated whether and how the timing of musical rhythms changes with tempo. Twelve skilled pianists played a monophonic 8-bar melody in 21 different rhythmic versions at 4 different tempi. Within bars, the rhythms represented all possible ordered pairs and triplets of note values

  9. Rhythm generation through period concatenation in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Mark A Kramer

    2008-09-01

    Full Text Available Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period and beta2 ( approximately 40 ms period rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms+beta2 period (40 ms = beta1 period (65 ms. In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

  10. Sleep, 24-hour activity rhythms, and brain structure : A population-based study

    NARCIS (Netherlands)

    L.A. Zuurbier (Lisette)

    2016-01-01

    markdownabstractIn this thesis, Chapter 2 focuses on sleep, 24-hour activity rhythms and health. Chapter 2.1 describes the influence of demographics, lifestyle and sleep on 24-hour activity rhythms. In Chapter 2.2 sleep and 24-hour activity rhythms are used to predict mortality. This chapter is

  11. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech

    Science.gov (United States)

    Borrie, Stephanie A.; Lansford, Kaitlin L.; Barrett, Tyson S.

    2017-01-01

    Purpose: The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception…

  12. Impact of chronodisruption during primate pregnancy on the maternal and newborn temperature rhythms.

    Directory of Open Access Journals (Sweden)

    María Serón-Ferré

    Full Text Available Disruption of the maternal environment during pregnancy is a key contributor to offspring diseases that develop in adult life. To explore the impact of chronodisruption during pregnancy in primates, we exposed pregnant capuchin monkeys to constant light (eliminating the maternal melatonin rhythm from the last third of gestation to term. Maternal temperature and activity circadian rhythms were assessed as well as the newborn temperature rhythm. Additionally we studied the effect of daily maternal melatonin replacement during pregnancy on these rhythms. Ten pregnant capuchin monkeys were exposed to constant light from 60% of gestation to term. Five received a daily oral dose of melatonin (250 µg kg/body weight at 1800 h (LL+Mel and the other five a placebo (LL. Six additional pregnant females were maintained in a 14∶10 light:dark cycles and their newborns were used as controls (LD. Rhythms were recorded 96 h before delivery in the mother and at 4-6 days of age in the newborn. Exposure to constant light had no effect on the maternal body temperature rhythm however it delayed the acrophase of the activity rhythm. Neither rhythm was affected by melatonin replacement. In contrast, maternal exposure to constant light affected the newborn body temperature rhythm. This rhythm was entrained in control newborns whereas LL newborns showed a random distribution of the acrophases over 24-h. In addition, mean temperature was decreased (34.0±0.6 vs 36.1±0.2°C, in LL and control, respectively P<0.05. Maternal melatonin replacement during pregnancy re-synchronized the acrophases and restored mean temperature to the values in control newborns. Our findings demonstrate that prenatal melatonin is a Zeitgeber for the newborn temperature rhythm and supports normal body temperature maintenance. Altogether these prenatal melatonin effects highlight the physiological importance of the maternal melatonin rhythm during pregnancy for the newborn primate.

  13. Using Rhythms of Relationships to Understand Email Archives

    National Research Council Canada - National Science Library

    Perer, Adam; Shneiderman, Ben; Oard, Douglas W

    2005-01-01

    ...: analyzing the temporal rhythms of social relationships. We provide methods for constructing meaningful rhythms from the email headers by identifying relationships and interpreting their attributes. With these visualization techniques, email archive explorers can uncover insights that may have been otherwise hidden in the archive. We apply our methods to an individual's fifteen-year email archive, which consists of about 45,000 messages and over 4,000 relationships.

  14. [The influence of interfered circadian rhythm on pregnancy and neonatal rats].

    Science.gov (United States)

    Chen, Wen-Jun; Sheng, Wen-Jie; Guo, Yin-Hua; Tan, Yong

    2015-10-25

    The aim of this study was to observe the influence of interfered circadian rhythm on pregnancy of rats and growth of neonatal rats, and to explore the relationship between the interfered circadian rhythm and the changes of melatonin and progesterone. Continuous light was used to inhibit melatonin secretion and therefore the interfered circadian rhythm animal model was obtained. The influence of interfered circadian rhythm on delivery of pregnant rats was observed. Serum was collected from rats during different stages of pregnancy to measure the concentrations of melatonin and progesterone. In order to observe the embryo resorption rate, half of pregnant rats were randomly selected to undergo a laparotomy, and the remainder was used to observe delivery and assess the growth of neonatal rats after delivery. The results showed that the interfered circadian rhythm induced adverse effects on pregnancy outcomes, including an increase of embryo resorption rate and a decrease in the number of live births; inhibited the secretion of melatonin along with decreased serum progesterone level; prolonged the stage of labor, but not the duration of pregnancy; and disturbed the fetal intrauterine growth and the growth of neonatal rats. The results suggest that interfered circadian rhythm condition made by continuous light could make adverse effects on both pregnant rats and neonatal rats. The results of our study may provide a way to modulate pregnant women's circadian rhythm and a possibility of application of melatonin on pregnant women.

  15. External and internal controls of lunar-related reproductive rhythms in fishes.

    Science.gov (United States)

    Takemura, A; Rahman, M S; Park, Y J

    2010-01-01

    Reproductive activities of many fish species are, to some extent, entrained to cues from the moon. During the spawning season, synchronous spawning is repeated at intervals of c. 1 month (lunar spawning cycle) and 2 weeks (semi-lunar spawning cycle) or daily according to tidal changes (tidal spawning cycle). In species showing lunar-related spawning cycles, oocytes in the ovary develop towards and mature around a specific moon phase for lunar spawners, around spring tides for semi-lunar spawners and at daytime high tides for tidal spawners. The production of sex steroid hormones also changes in accordance with synchronous oocyte development. Since the production of the steroid hormones with lunar-related reproductive periodicity is regulated by gonadotropins, it is considered that the higher parts of the hypothalamus-pituitary-gonad axis play important roles in the perception and regulation of lunar-related periodicity. It is likely that fishes perceive cues from the moon by sensory organs; however, it is still unknown how lunar cues are transduced as an endogenous rhythm exerting lunar-related spawning rhythmicity. Recent research has revealed that melatonin fluctuated according to the brightness at night, magnetic fields and the tidal cycle. In addition, cyclic changes in hydrostatic pressure had an effect on monoamine contents in the brain. These factors may be indirectly related to the exertion of lunar-related periodicity. Molecular approaches have revealed that mRNA expressions of light-sensitive clock genes change with moonlight, suggesting that brightness at night plays a role in phase-shifting or resetting of biological clocks. Some species may have evolved biological clocks in relation to lunar cycles, although it is still not known how lunar periodicities are endogenously regulated in fishes. This review demonstrates that lunar-related periodicity is utilized and incorporated by ecological and physiological mechanisms governing the reproductive success

  16. The aesthetic value of the golden ratio and rhythm of the photographs

    Directory of Open Access Journals (Sweden)

    Ivan Budimir

    2015-05-01

    Full Text Available The study analyzes the aesthetic value of rhythm of the photos as opposed to the form in which the rhythm is subjected. With the method of experimental aesthetics, the visual aesthetics experiment is conducted in which the tested quality of the different forms of proportional rhythm due to the shape and length of the interval as a part of the rhythmic matrix. The experimental part consisted of an assessment of visual quality of the 5 photos containing different variations of proportional rate. On all the photographs the rhythm is constituted of cigarettes situated on the surface of the old concrete. Spacing between cigarettes and interval length is successively reduced to accurately defined proportions. In one photograph, the relations between the neighboring intervals are in line with the ratio of the golden section. The experiment involved 32 subjects who had the task of assessing the level of the aesthetic qualities of rhythm on the Likert scale from 1 to 5 where the grades cannot be repeated. Measurement of the quality of a particular form of rhythm is defined as the arithmetic mean score of all respondents. The highest mean is given to the test image with uniform rhythm when the second place is reserved for a photograph whose rhythm is aligned with the golden section. Conducted analysis of repeated measures ANOVA showed that the obtained arithmetic means differ significantly (F = 3.430, p = 0.011 with a significance level of p 0.05.

  17. Recent Advances in Circadian Rhythms in Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Lihong eChen

    2015-04-01

    Full Text Available Growing evidence shows that intrinsic circadian clocks are tightly related to cardiovascular functions. The diurnal changes in blood pressure and heart rate are well known circadian rhythms. Endothelial function, platelet aggregation and thrombus formation exhibit circadian changes as well. The onset of many cardiovascular diseases (CVDs or events, such as myocardial infarction, stroke, arrhythmia, and sudden cardiac death, also exhibits temporal trends. Furthermore, there is strong evidence from animal models and epidemiological studies showing that disruption of circadian rhythms is a significant risk factor for many CVDs, and the intervention of CVDs may have a time dependent effect. In this mini review, we summarized recent advances in our understanding of the relationship between circadian rhythm and cardiovascular physiology and diseases including blood pressure regulation and myocardial infarction.

  18. Crosslinguistic Application of English-Centric Rhythm Descriptors in Motor Speech Disorders

    Science.gov (United States)

    Liss, Julie M.; Utianski, Rene; Lansford, Kaitlin

    2014-01-01

    Background Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. Objective The goals of this paper are to (i) provide a review of the cognitive- linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. Summary This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. PMID:24157596

  19. Sustained Accelerated Idioventricular Rhythm in a Centrifuge-Simulated Suborbital Spaceflight.

    Science.gov (United States)

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M

    2017-08-01

    Hypergravitational exposures during human centrifugation are known to provoke dysrhythmias, including sinus dysrhythmias/tachycardias, premature atrial/ventricular contractions, and even atrial fibrillations or flutter patterns. However, events are generally short-lived and resolve rapidly after cessation of acceleration. This case report describes a prolonged ectopic ventricular rhythm in response to high G exposure. A previously healthy 30-yr-old man voluntarily participated in centrifuge trials as a part of a larger study, experiencing a total of 7 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak +3.5 Gz, run 2) and two +Gx runs (peak +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Hemodynamic data collected included blood pressure, heart rate, and continuous three-lead electrocardiogram. Following the final acceleration exposure of the last Day 2 run (peak +4.5 Gx and +4.0 Gz combined, resultant +6.0 G), during a period of idle resting centrifuge activity (resultant vector +1.4 G), the subject demonstrated a marked change in his three-lead electrocardiogram from normal sinus rhythm to a wide-complex ectopic ventricular rhythm at a rate of 91-95 bpm, consistent with an accelerated idioventricular rhythm (AIVR). This rhythm was sustained for 2 m, 24 s before reversion to normal sinus. The subject reported no adverse symptoms during this time. While prolonged, the dysrhythmia was asymptomatic and self-limited. AIVR is likely a physiological response to acceleration and can be managed conservatively. Vigilance is needed to ensure that AIVR is correctly distinguished from other, malignant rhythms to avoid inappropriate treatment and negative operational impacts.Suresh R, Blue RS, Mathers C, Castleberry TL, Vanderploeg JM. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(8):789-793.

  20. The maturation of cortical sleep rhythms and networks over early development

    OpenAIRE

    Chu, Catherine Jean; Leahy, J.; Pathmanathan, Jay Sriram; Kramer, M.A.; Cash, Sydney S.

    2014-01-01

    Objective: Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods: We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. ...

  1. The Impact of Instrument-Specific Musical Training on Rhythm Perception and Production.

    Science.gov (United States)

    Matthews, Tomas E; Thibodeau, Joseph N L; Gunther, Brian P; Penhune, Virginia B

    2016-01-01

    Studies comparing musicians and non-musicians have shown that musical training can improve rhythmic perception and production. These findings tell us that training can result in rhythm processing advantages, but they do not tell us whether practicing a particular instrument could lead to specific effects on rhythm perception or production. The current study used a battery of four rhythm perception and production tasks that were designed to test both higher- and lower-level aspects of rhythm processing. Four groups of musicians (drummers, singers, pianists, string players) and a control group of non-musicians were tested. Within-task differences in performance showed that factors such as meter, metrical complexity, tempo, and beat phase significantly affected the ability to perceive and synchronize taps to a rhythm or beat. Musicians showed better performance on all rhythm tasks compared to non-musicians. Interestingly, our results revealed no significant differences between musician groups for the vast majority of task measures. This was despite the fact that all musicians were selected to have the majority of their training on the target instrument, had on average more than 10 years of experience on their instrument, and were currently practicing. These results suggest that general musical experience is more important than specialized musical experience with regards to perception and production of rhythms.

  2. The impact of instrument-specific musical training on rhythm perception and production

    Directory of Open Access Journals (Sweden)

    Tomas Edward Matthews

    2016-02-01

    Full Text Available Various studies have shown that musical training can improve rhythmic perception and production. These findings tell us that music training can result in rhythm processing advantages but they do not tell us whether practicing a particular instrument could lead to specific effects on rhythm perception or production. The current study used a battery of four rhythm perception and production tasks that were designed to test both higher- and lower-level aspects of rhythm processing. Four groups of musicians (drummers, singers, pianists, string players and a control group of non-musicians were tested. Within-task differences in performance showed that factors such as meter, metrical complexity, tempo and beat phase significantly affected the ability to perceive and synchronize taps to a rhythm or beat. Musicians showed better performance on all rhythm tasks compared to non-musicians. Interestingly, our results revealed no significant differences between musician groups for the vast majority of task measures. This is despite the fact that all musicians were selected to have the majority of their training on the target instrument, had on average more than ten years of experience on their instrument, and were currently practicing. These results suggest that general musical experience is more important than specialized musical experience with regards to perception and production of rhythms.

  3. Find a Heart Rhythm Specialist

    Science.gov (United States)

    ... Taiwan Thailand Turkey United Arab Emirates United Kingdom Venezuela Vietnam Within 5 miles 10 miles 15 miles ... info@HRSonline.org © Heart Rhythm Society 2017 Privacy Policy | Linking Policy | Patient Education Disclaimer You are about ...

  4. Endogenous Prospect Theory

    OpenAIRE

    Schmidt, Ulrich; Zank, Horst

    2010-01-01

    In previous models of (cumulative) prospect theory reference-dependence of preferences is imposed beforehand and the location of the reference point is exogenously determined. This paper provides an axiomatization of a new specification of cumulative prospect theory, termed endogenous prospect theory, where reference-dependence is derived from preference conditions and a unique reference point arises endogenously.

  5. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; Jusko, William J; DuBois, Debra C

    2015-06-01

    Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  7. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    Science.gov (United States)

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. An analysis of heart rhythm dynamics using a three-coupled oscillator model

    International Nuclear Information System (INIS)

    Gois, Sandra R.F.S.M.; Savi, Marcelo A.

    2009-01-01

    Rhythmic phenomena represent one of the most striking manifestations of the dynamic behavior in biological systems. Understanding the mechanisms responsible for biological rhythms is crucial for the comprehension of the dynamics of life. Natural rhythms could be either regular or irregular over time and space. Each kind of dynamical behavior may be related to both normal and pathological physiological functioning. The cardiac conducting system can be treated as a network of self-excitatory elements and, since these elements exhibit oscillatory behavior, they can be modeled as nonlinear oscillators. This paper proposes a mathematical model to describe heart rhythms considering three modified Van der Pol oscillators connected with time delay couplings. Therefore, the heart dynamics is represented by a system of differential difference equations. Numerical simulations are carried out presenting qualitative agreement with the general heart rhythm behavior. Normal and pathological rhythms represented by the ECG signals are reproduced. Pathological rhythms are generated by either the coupling alterations that represents communications aspects in the heart electric system or forcing excitation representing external pacemaker excitation.

  9. [Circadian rhythm : Influence on Epworth Sleepiness Scale score].

    Science.gov (United States)

    Herzog, M; Bedorf, A; Rohrmeier, C; Kühnel, T; Herzog, B; Bremert, T; Plontke, S; Plößl, S

    2017-02-01

    The Epworth Sleepiness Scale (ESS) is frequently used to determine daytime sleepiness in patients with sleep-disordered breathing. It is still unclear whether different levels of alertness induced by the circadian rhythm influence ESS score. The aim of this study is to investigate the influence of circadian rhythm-dependent alertness on ESS performance. In a monocentric prospective noninterventional observation study, 97 patients with suspected sleep-disordered breathing were investigated with respect to daytime sleepiness in temporal relationship to polysomnographic examination and treatment. The Karolinska Sleepiness Scale (KSS) and the Stanford Sleepiness Scale (SSS) served as references for the detection of present sleepiness at three different measurement times (morning, noon, evening), prior to and following a diagnostic polysomnography night as well as after a continuous positive airway pressure (CPAP) titration night (9 measurements in total). The KSS, SSS, and ESS were performed at these times in a randomized order. The KSS and SSS scores revealed a circadian rhythm-dependent curve with increased sleepiness at noon and in the evening. Following a diagnostic polysomnography night, the scores were increased compared to the measurements prior to the night. After the CPAP titration night, sleepiness in the morning was reduced. KSS and SSS reflect the changes in alertness induced by the circadian rhythm. The ESS score war neither altered by the intra-daily nor by the inter-daily changes in the level of alertness. According to the present data, the ESS serves as a reliable instrument to detect the level of daytime sleepiness independently of the circadian rhythm-dependent level of alertness.

  10. Biologic Rhythms Derived from Siberian Mammoths Hairs

    Energy Technology Data Exchange (ETDEWEB)

    M Spilde; A Lanzirotti; C Qualls; G Phillips; A Ali; L Agenbroad; O Appenzeller

    2011-12-31

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was {approx}31 cms/year and {approx}16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  11. Biologic rhythms derived from Siberian mammoths' hairs.

    Directory of Open Access Journals (Sweden)

    Mike Spilde

    Full Text Available Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios, which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  12. The Examination of Relationship between Life Rhythm and Parent's Consciousness among Young Children

    OpenAIRE

    Tanaka, Saori

    2008-01-01

    The social background of child care and rearing has changed rapidly today in Japan. Also young children's life rhythm has changed compared with before. These disorders of life rhythm cause big influence to young children's mind and body health. To improve young child's mind and body health, it is effective that parents improve the life rhythm at home. Therefore, the educational campaign to parents about young child's life rhythm was held. In this research, the relationship between improvement...

  13. Circadian rhythms of women with fibromyalgia

    Science.gov (United States)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  14. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

    Science.gov (United States)

    Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin

    2014-01-01

    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109

  15. A novel animal model linking adiposity to altered circadian rhythms

    Science.gov (United States)

    Researchers have provided evidence for a link between obesity and altered circadian rhythms (e.g., shift work, disrupted sleep), but the mechanism for this association is still unknown. Adipocytes possess an intrinsic circadian clock, and circadian rhythms in adipocytokines and adipose tissue metab...

  16. Biological Rhythms in the Skin

    Directory of Open Access Journals (Sweden)

    Mary S. Matsui

    2016-05-01

    Full Text Available Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin.

  17. Pharmacologic Rhythm Control versus Rate Control in Heart Failure and Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Gladys Gladys

    2017-01-01

    Full Text Available Heart failure (HF with atrial fibrillation (AF is correlated with worse prognosis requiring special approach.Rate control has been the first line of treatment in cases of HF and HF. On the other hand, rhythm controlhas been proven to be effective in returning sinus rhythm resulting in better prognosis for patients with HFbut not HF. Its role in cocurring cases of HF and AF is not fully understood. Thus, this study aims to analysewhether pharmacologic rhythm control can be applied to cases of HF and AF to reduce mortality. A searchwas conducted via PubMed, Medline, ProQuest, and Cochrane Database on January 2016. One study wasselected after filtering process by inclusion and exclusion criteria and critical appraisal was performed. It wasfound that there was rhythm control and rate control do no have favouring effect towards mortality shown byRR 1.03 (95% CI 0.90-1.17, p=0.69. Rate control has protective effect towards hospitalizations by RR of 0.92(95% CI 0.86 – 0.98, p=0.008, NNT=19. To conclude, rhythm control is not superior to rate control in reducingmortality and rate control should be still be considered as first line treatment of HF and AF. Keywords: heart failure, pharmacologic rhythm control, rate control, atrial fibrillation   Farmakologis Rhythm Control Dibandingkan dengan Rate Control padaKasus Gagal Jantung dan Atrial Fibrilasi Abstrak Gagal jantung dengan atrial fibrilasi berhubungan dengan prognosis yang lebih buruk dan membutuhkanpenanganan khusus. Saat ini strategi rate control merupakan terapi lini pertama pada kasus gagal jantungdan atrial fibrilasi. Rhythm control memberikan prognosis yang lebih baik pada pasien gagal jantung denganmengembalikan sinus ritme. Kegunaan rhythm control pada kasus gagal jantung dan atrial fibrilasi sampaisaat ini belum sepenuhnya dimengerti. Tujuan studi ini adalah menelaah apakah terapi farmakologis rhythmcontrol dapat menurunkan mortalitas gagal jantung dan atrial fibrilasi. Pencarian data

  18. Ecological assessment of seasonal bioclimatic and production rhythms in agrosystems of the Republic of Armenia

    Directory of Open Access Journals (Sweden)

    Arsen Grigoryan

    2017-06-01

    Full Text Available In the article the time features of occurrence of bioclimatic and industrial rhythms according to altitudinal belts are analyzed, a nomogram is composed and spatial and time patterns of rhythms are revealed, the ways of the rational use of seasonal rhythms and greening agrosystems of the Republic of Armenia (RA are shown. The paper summarizes 80–100-year summer monitoring data on onset timing of the main seasonal bioclimatic rhythms of animate and inanimate nature in the RA. The definition of bioclimatic rhythms is given. The importance of studies of seasonal rhythms of nature and society, especially in the non-tropical zones of the Earth is shown. Besides, the special importance of bioclimatic seasonal rhythms' study in order to optimize agro-zootechnical activities and to green agricultural systems is emphasized. Continuous chain of natural rhythms leads to the formation of adequate seasonal rhythms in the production activities of all sectors of the economy, ensuring the functioning of the biosphere and society. The regularities of the timing of seasonal bioclimatic rhythms' onset by the vertical zones in Armenia taking into account the atmospheric moisture of regions is set, vertical gradients are calculated and a nomogram allowing to develop calendars of seasonal works being carried out in certain regions is drawn.

  19. On the origins of endogenous thoughts.

    Science.gov (United States)

    Tillas, Alexandros

    2017-05-01

    Endogenous thoughts are thoughts that we activate in a top-down manner or in the absence of the appropriate stimuli. We use endogenous thoughts to plan or recall past events. In this sense, endogenous thinking is one of the hallmarks of our cognitive lives. In this paper, I investigate how it is that we come to possess endogenous control over our thoughts. Starting from the close relation between language and thinking, I look into speech production-a process motorically controlled by the inferior frontal gyrus (IFG). Interestingly, IFG is also closely related to silent talking, as well as volition. The connection between IFG and volition is important given that endogenous thoughts are or at least greatly resemble voluntary actions. Against this background, I argue that IFG is key to understanding the origins of conscious endogenous thoughts. Furthermore, I look into goal-directed thinking and show that IFG plays a key role also in unconscious endogenous thinking.

  20. The effect of lens aging and cataract surgery on circadian rhythm.

    Science.gov (United States)

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.

  1. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    Science.gov (United States)

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Methods Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N–H cycles. Key Results Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Conclusions Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to ‘anticipate’ dawn, dusk or mid-day respectively, independently of the photoperiod. PMID:26070640

  2. Maternal exercise, season and sex modify the human fetal circadian rhythm.

    Science.gov (United States)

    Sletten, Julie; Cornelissen, Germaine; Assmus, Jørg; Kiserud, Torvid; Albrechtsen, Susanne; Kessler, Jörg

    2018-05-13

    The knowledge on circadian rhythmicity is rapidly expanding. We aimed to define the longitudinal development of the circadian heart rate rhythm in the human fetus in an unrestricted, out-of-hospital setting, and to examine the effects of maternal physical activity, season and fetal sex. We recruited 48 women with low-risk singleton pregnancies. Using a portable monitor for continuous fetal electrocardiography, fetal heart rate recordings were obtained around gestational weeks 24, 28, 32 and 36. Circadian rhythmicity in fetal heart rate and fetal heart rate variation was detected by cosinor analysis; developmental trends were calculated by population-mean cosinor and multilevel analysis. For the fetal heart rate and fetal heart rate variation, a significant circadian rhythm was present in 122/123 (99.2%) and 116/121 (95.9%) of the individual recordings, respectively. The rhythms were best described by combining cosine waves with periods of 24 and 8 hours. With increasing gestational age, the magnitude of the fetal heart rate rhythm increased, and the peak of the fetal heart rate variation rhythm shifted from a mean of 14:25 (24 weeks) to 20:52 (36 weeks). With advancing gestation, the rhythm-adjusted mean value of the fetal heart rate decreased linearly in females (prhythm diversity was found in male fetuses, during higher maternal physical activity and during the summer season. The dynamic development of the fetal circadian heart rate rhythm during the second half of pregnancy is modified by fetal sex, maternal physical activity and season. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Gamification Quest: Rhythm. Music as a game mechanic

    OpenAIRE

    Granell Díaz, Marina

    2017-01-01

    Treball Final de Grau en Disseny i Desenvolupament de Videojocs. Codi: VJ1241. Curs acadèmic: 2016/2017 This document constitutes the Technical Report for the project Gamification Quest: Rhythm, music as a game mechanic for the Videogame Design and Development bachelor degree. The project consists on the design and implementation of rhythm game mechanics integrated in a gamification environment applied to education. The video game will be implemented on the game engine Unity (10), ...

  4. Interactions between thalamic and cortical rhythms during semantic memory recall in human

    Science.gov (United States)

    Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.

    2002-04-01

    Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.

  5. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity.

    Science.gov (United States)

    Torres-Ruiz, J; Sulli, A; Cutolo, M; Shoenfeld, Y

    2017-08-01

    Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.

  6. Rhythm and timing in autism: Learning to dance

    Directory of Open Access Journals (Sweden)

    Pat eAmos

    2013-04-01

    Full Text Available In recent years, a significant body of research has focused on challenges to neural connectivity as a key to understanding autism. In contrast to attempts to identify a single static, primarily brain-based deficit, children and adults diagnosed with autism are increasingly perceived as out of sync with their internal and external environments in dynamic ways that must also involve operations of the peripheral nervous systems. The noisiness that seems to occur in both directions of neural flow may help explain challenges to movement and sensing, and ultimately to entrainment with circadian rhythms and social interactions. across the autism spectrum. Profound differences in the rhythm and timing of movement have been tracked to infancy. Difficulties with self-synchrony inhibit praxis, and can disrupt the dance of relationships through which caregiver and child build meaning. Different sensory aspects of a situation may fail to match up; ultimately, intentions and actions themselves may be uncoupled. This uncoupling may help explain the expressions of alienation from the actions of one’s body which recur in the autobiographical autism literature. Multi-modal/cross-modal coordination of different types of sensory information into coherent events may be difficult to achieve because amodal properties (e.g. rhythm and tempo that help unite perceptions are unreliable. One question posed to the connectivity research concerns the role of rhythm and timing in this operation, and whether these can be mobilized to reduce overload and enhance performance. A case is made for developmental research addressing how people with autism actively explore and make sense of their environments. The parent/author recommends investigating approaches such as scaffolding interactions via rhythm, following the person’s lead, slowing the pace, discriminating between intentional communication and stray motor patterns, and organizing information through one sensory mode at

  7. Circadian rhythms in healthy aging--effects downstream from the pacemaker

    Science.gov (United States)

    Monk, T. H.; Kupfer, D. J.

    2000-01-01

    Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms "downstream" from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24 h routine, sleeping at night) and unmasking (36 h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men).

  8. Biological rhythm in 1/f fluctuations of heart rate in asthmatic children

    Directory of Open Access Journals (Sweden)

    Norio Kazuma

    2004-01-01

    Conclusion: During an asthma attack, the rhythm of 1/f fluctuations is ultradian (cycle length under 20 h, compared with various rhythms during a non-attack period. In future, we will clarify the relevance of the ultradian rhythm of 1/f fluctuations over a 24 h period and the biological life-support system at a point of time of an asthma attack.

  9. Rhythm-based segmentation of Popular Chinese Music

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2005-01-01

    We present a new method to segment popular music based on rhythm. By computing a shortest path based on the self-similarity matrix calculated from a model of rhythm, segmenting boundaries are found along the di- agonal of the matrix. The cost of a new segment is opti- mized by matching manual...... and automatic segment boundaries. We compile a small song database of 21 randomly selected popular Chinese songs which come from Chinese Mainland, Taiwan and Hong Kong. The segmenting results on the small corpus show that 78% manual segmentation points are detected and 74% auto- matic segmentation points...

  10. Circadian rhythm asynchrony in man during hypokinesis.

    Science.gov (United States)

    Winget, C. M.; Vernikos-Danellis, J.; Cronin, S. E.; Leach, C. S.; Rambaut, P. C.; Mack, P. B.

    1972-01-01

    Posture and exercise were investigated as synchronizers of certain physiologic rhythms in eight healthy male subjects in a defined environment. Four subjects exercised during bed rest. Body temperature (BT), heart rate, plasma thyroid hormone, and plasma steroid data were obtained from the subjects for a 6-day ambulatory equilibration period before bed rest, 56 days of bed rest, and a 10-day recovery period after bed rest. The results indicate that the mechanism regulating the circadian rhythmicity of the cardiovascular system is rigorously controlled and independent of the endocrine system, while the BT rhythm is more closely aligned to the endocrine system.

  11. Circadian rhythms in mitochondrial respiration

    NARCIS (Netherlands)

    de Goede, Paul; Wefers, Jakob; Brombacher, Eline Constance; Schrauwen, P; Kalsbeek, A.

    2018-01-01

    Many physiological processes are regulated with a 24h periodicity to anticipate the environmental changes of day to nighttime and vice versa. These 24h regulations, commonly termed circadian rhythms, amongst others control the sleep-wake cycle, locomotor activity and preparation for food

  12. Habits, aspirations and endogenous fertility

    OpenAIRE

    Luciano Fanti

    2012-01-01

    Motivated by the increasing literature on endogenous preferences as well as on endogenous fertility, this paper investigates the implications of the interaction of the endogenous determination of the number of children with habit and aspiration formation in an OLG model. In contrast with the previous literature, we show that greater aspirations may lead to higher savings, and more interestingly, always increase the neoclassical economic growth.

  13. Enhanced timing abilities in percussionists generalize to rhythms without a musical beat.

    Science.gov (United States)

    Cameron, Daniel J; Grahn, Jessica A

    2014-01-01

    The ability to entrain movements to music is arguably universal, but it is unclear how specialized training may influence this. Previous research suggests that percussionists have superior temporal precision in perception and production tasks. Such superiority may be limited to temporal sequences that resemble real music or, alternatively, may generalize to musically implausible sequences. To test this, percussionists and nonpercussionists completed two tasks that used rhythmic sequences varying in musical plausibility. In the beat tapping task, participants tapped with the beat of a rhythmic sequence over 3 stages: finding the beat (as an initial sequence played), continuation of the beat (as a second sequence was introduced and played simultaneously), and switching to a second beat (the initial sequence finished, leaving only the second). The meters of the two sequences were either congruent or incongruent, as were their tempi (minimum inter-onset intervals). In the rhythm reproduction task, participants reproduced rhythms of four types, ranging from high to low musical plausibility: Metric simple rhythms induced a strong sense of the beat, metric complex rhythms induced a weaker sense of the beat, nonmetric rhythms had no beat, and jittered nonmetric rhythms also had no beat as well as low temporal predictability. For both tasks, percussionists performed more accurately than nonpercussionists. In addition, both groups were better with musically plausible than implausible conditions. Overall, the percussionists' superior abilities to entrain to, and reproduce, rhythms generalized to musically implausible sequences.

  14. Enhanced Timing Abilities in Percussionists Generalize to Rhythms Without a Musical Beat

    Directory of Open Access Journals (Sweden)

    Daniel J Cameron

    2014-12-01

    Full Text Available The ability to entrain movements to music is arguably universal, but it is unclear how specialized training may influence this. Previous research suggests that percussionists have superior temporal precision in perception and production tasks. Such superiority may be limited to temporal sequences that resemble real music or, alternatively, may generalize to musically implausible sequences. To test this, percussionists and nonpercussionists completed two tasks that used rhythmic sequences varying in musical plausibility. In the beat tapping task, participants tapped with the beat of a rhythmic sequence over 3 stages: finding the beat (as an initial sequence played, continuation of the beat (as a second sequence was introduced and played simultaneously, and switching to a second beat (the initial sequence finished, leaving only the second. The metres of the two sequences were either congruent or incongruent, as were their tempi (minimum inter-onset intervals. In the rhythm reproduction task, participants reproduced rhythms of four types, ranging from high to low musical plausibility: Metric simple rhythms induced a strong sense of the beat, metric complex rhythms induced a weaker sense of the beat, nonmetric rhythms had no beat, and jittered nonmetric rhythms also had no beat as well as low temporal predictability. For both tasks, percussionists performed more accurately than nonpercussionists. In addition, both groups were better with musically plausible than implausible conditions. Overall, the percussionists’ superior abilities to entrain to, and reproduce, rhythms generalized to musically implausible sequences.

  15. The evolution of rhythm cognition: Timing in music and speech

    NARCIS (Netherlands)

    Ravignani, A.; Honing, H.; Kotz, S.A.

    This editorial serves a number of purposes. First, it aims at summarizing and discussing 33 accepted contributions to the special issue ‘The evolution of rhythm cognition: Timing in music and speech’. The major focus of the issue is the cognitive neuroscience of rhythm, intended as a neurobehavioral

  16. Interaction with Mass Media: The Importance of Rhythm and Tempo.

    Science.gov (United States)

    Snow, Robert P.

    1987-01-01

    Stresses that understanding the impact of interaction with mass media requires conceptualizing media as an institutionalized social form. A critical feature of this process is the grammatical character of media interaction in the form of rhythm and tempo, because these rhythms and tempos become established in everyday routine. (SKC)

  17. Circadian Rhythm Control: Neurophysiological Investigations

    Science.gov (United States)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  18. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    Science.gov (United States)

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  19. Children's Aural and Kinesthetic Understanding of Rhythm: Developing an Instructional Model

    Science.gov (United States)

    Foley, Adam D.

    2013-01-01

    The purpose of this study was to develop a deeper understanding of aural and kinesthetic rhythm skill development in elementary school-age children. In this study, I examined my curriculum model for rhythm understanding, which included creating and implementing assessments of movement skills in meter and rhythm. The research questions were: 1.…

  20. Rhythm perturbations in acoustically paced treadmill walking after stroke.

    Science.gov (United States)

    Roerdink, Melvyn; Lamoth, Claudine J C; van Kordelaar, Joost; Elich, Peter; Konijnenbelt, Manin; Kwakkel, Gert; Beek, Peter J

    2009-09-01

    In rehabilitation, acoustic rhythms are often used to improve gait after stroke. Acoustic cueing may enhance gait coordination by creating a stable coupling between heel strikes and metronome beats and provide a means to train the adaptability of gait coordination to environmental changes, as required in everyday life ambulation. To examine the stability and adaptability of auditory-motor synchronization in acoustically paced treadmill walking in stroke patients. Eleven stroke patients and 10 healthy controls walked on a treadmill at preferred speed and cadence under no metronome, single-metronome (pacing only paretic or nonparetic steps), and double-metronome (pacing both footfalls) conditions. The stability of auditory-motor synchronization was quantified by the variability of the phase relation between footfalls and beats. In a separate session, the acoustic rhythms were perturbed and adaptations to restore auditory-motor synchronization were quantified. For both groups, auditory-motor synchronization was more stable for double-metronome than single-metronome conditions, with stroke patients exhibiting an overall weaker coupling of footfalls to metronome beats than controls. The recovery characteristics following rhythm perturbations corroborated the stability findings and further revealed that stroke patients had difficulty in accelerating their steps and instead preferred a slower-step response to restore synchronization. In gait rehabilitation practice, the use of acoustic rhythms may be more effective when both footfalls are paced. In addition, rhythm perturbations during acoustically paced treadmill walking may not only be employed to evaluate the stability of auditory-motor synchronization but also have promising implications for evaluation and training of gait adaptations in neurorehabilitation practice.

  1. Host-virus interactions of mammalian endogenous retroviruses

    OpenAIRE

    Farkašová, Helena

    2017-01-01

    Endogenous retroviruses (ERVs) originate by germline infection and subsequent mendelian inheritance of their exogenous counterparts. With notable exceptions, all mammalian ERVs are evolutionarily old and fixed in the population of its host species. Some groups of retroviruses were believed not to be able to form endogenous copies. We discovered an additional endogenous Lentivirus and a first endogenous Deltaretrovirus. Both of these groups were previously considered unable to form endogenous ...

  2. Circadian Rhythm Management System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The value of measuring sleep-wake cycles is significantly enhanced by measuring other physiological signals that depend on circadian rhythms (such as heart rate and...

  3. Endogenous Monetary Policy Regime Change

    OpenAIRE

    Troy Davig; Eric M. Leeper

    2006-01-01

    This paper makes changes in monetary policy rules (or regimes) endogenous. Changes are triggered when certain endogenous variables cross specified thresholds. Rational expectations equilibria are examined in three models of threshold switching to illustrate that (i) expectations formation effects generated by the possibility of regime change can be quantitatively important; (ii) symmetric shocks can have asymmetric effects; (iii) endogenous switching is a natural way to formally model preempt...

  4. Alteration of circadian rhythm during epileptogenesis: implications for the suprachiasmatic nucleus circuits.

    Science.gov (United States)

    Xiang, Yan; Li, Zhi-Xiao; Zhang, Ding-Yu; He, Zhi-Gang; Hu, Ji; Xiang, Hong-Bing

    2017-01-01

    It is important to realize that characterization of the circadian rhythm patterns of seizure occurrence can implicate in diagnosis and treatment of selected types of epilepsy. Evidence suggests a role for the suprachiasmatic nucleus (SCN) circuits in overall circadian rhythm and seizure susceptibility both in animals and humans. Thus, we conclude that SCN circuits may exert modifying effects on circadian rhythmicity and neuronal excitability during epileptogenesis. SCN circuits will be studied in our brain centre and collaborating centres to explore further the interaction between the circadian rhythm and epileptic seizures. More and thorough research is warranted to provide insight into epileptic seizures with circadian disruption comorbidities such as disorders of cardiovascular parameters and core body temperature circadian rhythms.

  5. Composition and functional property of photosynthetic pigments under circadian rhythm in the cyanobacterium Spirulina platensis.

    Science.gov (United States)

    Kumar, Deepak; Kannaujiya, Vinod K; Richa; Pathak, Jainendra; Sundaram, Shanthy; Sinha, Rajeshwar P

    2018-05-01

    Circadian rhythm is an important endogenous biological signal for sustainable growth and development of cyanobacteria in natural ecosystems. Circadian effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A) and ultraviolet-B (UV-B) radiations on pigment composition have been studied in the cyanobacterium Spirulina platensis under light (L)/dark (D) oscillation with a combination of 4/20, 8/16, 12/12, 16/8, 20/4 and 24/24 h time duration. Circadian exposure of PAR + UV-A (PA) and PAR + UV-A + UV-B (PAB) showed more than twofold decline in Chl a, total protein and phycocyanin (PC) in light phase and significant recovery was achieved in dark phase. The fluorescence emission wavelength of PC was shifted towards lower wavelengths in the light phase of PAB in comparison to P and PA whereas the same wavelength was retrieved in the dark phase. The production of free radicals was accelerated twofold in the light phase (24 h L) whereas the same was retrieved to the level of control during the dark phase. Oxidatively induced damage was alleviated by antioxidative enzymes such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the light phase (0-24-h L) whereas the dark phase showed significant inhibition of the same enzymes. Similar characteristic inhibition of free radicals and recovery of PC was observed inside cellular filament after circadian rhythm of 24/24 h (L/D). Circadian exposure of P, PA and PAB significantly altered the synthesis and recovery of pigments that could be crucial for optimization and sustainable production of photosynthetic products for human welfare.

  6. Sleep and circadian rhythm disruption in neuropsychiatric illness.

    Science.gov (United States)

    Jagannath, Aarti; Peirson, Stuart N; Foster, Russell G

    2013-10-01

    Sleep and circadian rhythm disruption (SCRD) is a common feature in many neuropsychiatric diseases including schizophrenia, bipolar disorder and depression. Although the precise mechanisms remain unclear, recent evidence suggests that this comorbidity is not simply a product of medication or an absence of social routine, but instead reflects commonly affected underlying pathways and mechanisms. For example, several genes intimately involved in the generation and regulation of circadian rhythms and sleep have been linked to psychiatric illness. Further, several genes linked to mental illness have recently been shown to also play a role in normal sleep and circadian behaviour. Here we describe some of the emerging common mechanisms that link circadian rhythms, sleep and SCRD in severe mental illnesses. A deeper understanding of these links will provide not only a greater understanding of disease mechanisms, but also holds the promise of novel avenues for therapeutic intervention. Copyright © 2013. Published by Elsevier Ltd.

  7. A New Perspective for Parkinson's Disease: Circadian Rhythm.

    Science.gov (United States)

    Li, Siyue; Wang, Yali; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-02-01

    Circadian rhythm is manifested by the behavioral and physiological changes from day to night, which is controlled by the pacemaker and its regulator. The former is located at the suprachiasmatic nuclei (SCN) in the anterior hypothalamus, while the latter is composed of clock genes present in all tissues. Circadian desynchronization influences normal patterns of day-night rhythms such as sleep and alertness cycles, rest and activity cycles. Parkinson's disease (PD) exhibits diurnal fluctuations. Circadian dysfunction has been observed in PD patients and animal models, which may result in negative consequences to the homeostasis and even exacerbate the disease progression. Therefore, circadian therapies, including light stimulation, physical activity, dietary and social schedules, may be helpful for PD patients. However, the cellular and molecular mechanisms that underlie the circadian dysfunction in PD remain elusive. Further research on circadian patterns is needed. This article summarizes the existing research on the circadian rhythms in PD, focusing on the clinical symptom variations, molecular changes, as well as the available treatment options.

  8. [NEUROSEMANTIC AND PSYCHOPHYSIOLOGICAL CORRELATES OF RHYTHM-SUGGESTIVE CORRECTION OF STRESS CONDITIONS].

    Science.gov (United States)

    Ushakov, I B; Ivanov, A V; Kvasovets, S V; Bubeev, Yu A

    2015-01-01

    Correlates of successful rhythm-suggestive compensation of stress in sportsmen with neurotic symptoms developed in consequence of painful experience of failure were studied. Effectiveness of the rhythm-suggestive and rational psychological methods was compared by measuring the evoked potentials response to emotionally significant extramental verbal stimuli and images, and using psychophysiological test MASTER to track dynamics of a number of body functional parameters. The rational compensation has been shown to reduce the psychic tension and to set right the voluntary control process. Rhythm-suggestive programs are good for compensation of post-stress emotions and affectations, and the involuntary control process. It was found that correction potentialities of the rhythm-suggestive programs together with the psychodiagnostic advantages of test MASTER are promising instruments for dynamic monitoring of the mental state with the aim to prevent workplace stresses and to provide rehabilitation treatment of aftermaths.

  9. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses.

    Science.gov (United States)

    Arjan-Odedra, Shetal; Swanson, Chad M; Sherer, Nathan M; Wolinsky, Steven M; Malim, Michael H

    2012-06-22

    The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements. MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing. We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells.

  10. Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones

    Science.gov (United States)

    Mong, Jessica A.; Baker, Fiona C.; Mahoney, Megan M.; Paul, Ketema N.; Schwartz, Michael D.; Semba, Kazue; Silver, Rae

    2011-01-01

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master “circadian clock” within the suprachiasmatic nucleus (SCN), modulate photic effects on activity in males points to novel mechanisms of circadian control. Work in aromatase deficient (ArKO) mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a mini-symposium at the 2011 annual meeting of the Society for Neuroscience. PMID:22072663

  11. The rhythm and tempo of the game of highly qualified teams

    Directory of Open Access Journals (Sweden)

    V’yacheslav Mulik

    2015-06-01

    Full Text Available Purpose: to set indicators of rhythm and tempo of the game teams of high qualification. Material and Methods: analysis of the scientific-methodical literature, registration of technical-tactical actions, methods of mathematical statistics. The study of competitive activities was conducted with participating teams of world championship 2014. Results: the acticle shows indicators of the rhythm and tempo of the game of well-qualified teams. Conclusions: teams-winners have surpassed teams that concede in terms of indicators of passes the ball, shots at goal, the rhythm of the game, tempo of game.

  12. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. I. Localization of the pacemaker and the photoreceptor.

    Science.gov (United States)

    Abe, Y; Ushirogawa, H; Tomioka, K

    1997-10-01

    Circadian locomotor rhythm and its underlying mechanism were investigated in the cricket, Gryllodes sigillatus. Adult male crickets showed a nocturnal locomotor rhythm peaking early in the dark phase of a light to dark cycle. This rhythm persisted under constant darkness (DD) with a free-running period averaging 23.1 +/- 0.3 hr. Although constant bright light made most animals arrhythmic, about 40% of the animals showed free-running rhythms with a period longer than 24 hr under constant dim light condition. On transfer to DD, all arrhythmic animals restored the locomotor rhythm. Bilateral optic nerve severance resulted in free-running of the rhythm even under light-dark cycles. The free-running period of the optic nerve severed animals was significantly longer than sham operated crickets in DD, suggesting that the compound eye plays some role in determining the free-running period. Removal of bilateral lamina-medulla portion of the optic lobe abolished the rhythm under DD. These results demonstrate that the photoreceptor for entrainment is the compound eye and the optic lobe is indispensable for persistence of the rhythm. However, 75% and 54% of the optic lobeless animals showed aberrant rhythms with a period very close to 24 hr under light and temperature cycles, respectively, suggesting that there are neural and/or humoral mechanisms for the aberrant rhythms outside of the optic lobe. Since ocelli removal did not affect the photoperiodically induced rhythm, it is likely that the photoreception for the rhythm is performed through an extraretinal photoreceptor.

  13. Development of a Low-cost, Comprehensive Recording System for Circadian Rhythm Behavior.

    Science.gov (United States)

    Kwon, Jea; Park, Min Gu; Lee, Seung Eun; Lee, C Justin

    2018-02-01

    Circadian rhythm is defined as a 24-hour biological oscillation, which persists even without any external cues but also can be re-entrained by various environmental cues. One of the widely accepted circadian rhythm behavioral experiment is measuring the wheel-running activity (WRA) of rodents. However, the price for commercially available WRA recording system is not easily affordable for researchers due to high-cost implementation of sensors for wheel rotation. Here, we developed a cost-effective and comprehensive system for circadian rhythm recording by measuring the house-keeping activities (HKA). We have monitored animal's HKA as electrical signal by simply connecting animal housing cage with a standard analog/digital converter: input to the metal lid and ground to the metal grid floor. We show that acquired electrical signals are combined activities of eating, drinking and natural locomotor behaviors which are well-known indicators of circadian rhythm. Post-processing of measured electrical signals enabled us to draw actogram, which verifies HKA to be reliable circadian rhythm indicator. To provide easy access of HKA recording system for researchers, we have developed user-friendly MATLAB-based software, Circa Analysis. This software provides functions for easy extraction of scalable "touch activity" from raw data files by automating seven steps of post-processing and drawing actograms with highly intuitive user-interface and various options. With our cost-effective HKA circadian rhythm recording system, we have estimated the cost of our system to be less than $150 per channel. We anticipate our system will benefit many researchers who would like to study circadian rhythm.

  14. Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.

    Science.gov (United States)

    De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J

    2007-12-01

    Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.

  15. Temporal interactions between cortical rhythms

    Directory of Open Access Journals (Sweden)

    Anita K Roopun

    2008-12-01

    Full Text Available Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two coactive local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved – alternate, single periods of each original rhythm form one period of a new frequency - suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales.

  16. ENDOGENEITY OF INDONESIAN MONEY SUPPLY

    Directory of Open Access Journals (Sweden)

    Meutia Safrina Rachma

    2011-09-01

    Full Text Available There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5-2010(6, the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not have control power on money supply. The bank is only able to maintain the stability and control the movement of broad money supply. Keywords: Endogenous variable, money supply, vector autoregressionJEL classification numbers: E51, E52, E58

  17. Sleep, Memory & Brain Rhythms.

    Science.gov (United States)

    Watson, Brendon O; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called "sharp-wave ripple" seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep-REM and non-REM, the latter of which has an abundance of ripple electrical activity-might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.

  18. Resonance of about-weekly human heart rate rhythm with solar activity change.

    Science.gov (United States)

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  19. Circadian Rhythm Shapes the Gut Microbiota Affecting Host Radiosensitivity.

    Science.gov (United States)

    Cui, Ming; Xiao, Huiwen; Luo, Dan; Zhang, Xin; Zhao, Shuyi; Zheng, Qisheng; Li, Yuan; Zhao, Yu; Dong, Jiali; Li, Hang; Wang, Haichao; Fan, Saijun

    2016-10-26

    Modern lifestyles, such as shift work, nocturnal social activities, and jet lag, disturb the circadian rhythm. The interaction between mammals and the co-evolved intestinal microbiota modulates host physiopathological processes. Radiotherapy is a cornerstone of modern management of malignancies; however, it was previously unknown whether circadian rhythm disorder impairs prognosis after radiotherapy. To investigate the effect of circadian rhythm on radiotherapy, C57BL/6 mice were housed in different dark/light cycles, and their intestinal bacterial compositions were compared using high throughput sequencing. The survival rate, body weight, and food intake of mice in diverse cohorts were measured following irradiation exposure. Finally, the enteric bacterial composition of irradiated mice that experienced different dark/light cycles was assessed using 16S RNA sequencing. Intriguingly, mice housed in aberrant light cycles harbored a reduction of observed intestinal bacterial species and shifts of gut bacterial composition compared with those of the mice kept under 12 h dark/12 h light cycles, resulting in a decrease of host radioresistance. Moreover, the alteration of enteric bacterial composition of mice in different groups was dissimilar. Our findings provide novel insights into the effects of biological clocks on the gut bacterial composition, and underpin that the circadian rhythm influences the prognosis of patients after radiotherapy in a preclinical setting.

  20. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses

    Science.gov (United States)

    2012-01-01

    Background The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements. Results MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing. Conclusions We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells. PMID:22727223

  1. Characteristics and classification of hippocampal θ rhythm induced by passive translational displacement.

    Science.gov (United States)

    Xie, Kangning; Yan, Yili; Fang, Xiaolei; Gao, Shangkai; Hong, Bo

    2012-04-25

    Theta rhythms in the hippocampus are believed to be the "metric" relating to various behavior patterns for free roaming rats. In this study, the theta rhythms were studied while rats either walked or were passively translated by a toy car on a linear track (referred to as WALK and TRANS respectively). For the similar running speeds in WALK and TRANS conditions, theta frequency and amplitude were both reduced during TRANS. Theta modulation of pyramidal cells during TRANS was reduced compared to that during WALK. Theta frequency was positively correlated with translation speed during TRANS. Theta rhythm remained apparent during TRANS and WALK after large dose of atropine sulfate (blocking the cholinergic pathway) was injected compared to still states. The present study demonstrated the patterns of theta rhythm induced by passive translation in rats and suggested that the Type I theta rhythm could occur during non-voluntary locomotion. We further argued that the perception of actual self-motion may be the underlying mechanism that initiates and modulates type I theta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Molecular cloning and characterization of the light-regulation and circadian-rhythm of the VDE gene promoter from Zingiber officinale.

    Science.gov (United States)

    Zhao, Wenchao; Wang, Shaohui; Li, Xin; Huang, Hongyu; Sui, Xiaolei; Zhang, Zhenxian

    2012-08-01

    Ginger (Zingiber officinale Rosc.) is prone to photoinhibition under intense sunlight. Excessive light can be dissipated by the xanthophyll cycle, where violaxanthin de-epoxidase (VDE) plays a critical role in protecting the photosynthesis apparatus from the damage of excessive light. We isolated ~2.0 kb of ginger VDE (GVDE) gene promoter, which contained the circadian box, I-box, G-box and GT-1 motif. Histochemical staining of Arabidopsis indicated the GVDE promoter was active in almost all organs, especially green tissues. β-glucuronidase (GUS) activity driven by GVDE promoter was repressed rather than activated by high light. GUS activity was altered by hormones, growth regulators and abiotic stresses, which increased with 2,4-dichlorophenoxyacetic acid and decreased with abscisic acid, salicylic acid, zeatin, salt (sodium chloride) and polyethylene glycol. Interestingly, GUS activities with gibberellin or indole-3-acetic acid increased in the short-term (24 h) and decreased in the long-term (48 and 72 h). Analysis of 5' flank deletion found two crucial functional regions residing in -679 to -833 and -63 to -210. Northern blotting analysis found transcription to be regulated by the endogenous circadian clock. Finally, we found a region necessary for regulating the circadian rhythm and another for the basic promoter activity. Key message A novel promoter, named GVDE promoter, was first isolated and analyzed in this study. We have determined one region crucial for promoter activity and another responsible for keeping circadian rhythms.

  3. Weak circadian rhythm increases neutropenia risk among breast cancer patients undergoing adjuvant chemotherapy.

    Science.gov (United States)

    Li, Wentao; Kwok, Carol Chi-Hei; Chan, Dominic Chun-Wan; Wang, Feng; Tse, Lap Ah

    2018-04-01

    Severe neutropenia is a common dose-limiting side effect of adjuvant breast cancer chemotherapy. We aimed to test the hypothesis that weak circadian rhythm is associated with an increased risk of neutropenia using a cohort study. We consecutively recruited 193 breast cancer patients who received adjuvant chemotherapy (5-fluorouracil, epirubicin, and cyclophosphamide followed by docetaxel; doxorubicin and cyclophosphamide; docetaxel and cyclophosphamide). Participants wore a wrist actigraph continuously for 168 h at the beginning of chemotherapy. Values of percent rhythm and double amplitude below medians represented weak circadian rhythm. Mesor measured the mean activity level and acrophase symboled the peak time of the rhythm. We used Cox proportional hazard regression model to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) of grade 4 neutropenia and febrile neutropenia in relation to actigraphy-derived parameters. Low levels of percent rhythm (HR:2.59, 95% CI 1.50-4.72), double amplitude (HR:2.70, 95% CI 1.51-4.85), and mesor (HR: 2.48, 95% CI 1.44-4.29) were positively associated with the risk of grade 4 neutropenia during chemotherapy. Low levels of percent rhythm (HR: 2.41, 95% CI 1.02-5.69) and double amplitude (HR:2.49, 95% CI 1.05-5.90) were also associated with increased risks of febrile neutropenia. The HRs for acrophase were not statistically significant. This study provides the first epidemiological evidence that increased risks of grade 4 neutropenia and febrile neutropenia are associated with weak circadian rhythm among adjuvant breast cancer patients. The results suggest that circadian rhythm might be one potential target for the prevention of chemotherapy-induced neutropenia among cancer patients.

  4. Intracerebral evidence of rhythm transform in the human auditory cortex.

    Science.gov (United States)

    Nozaradan, Sylvie; Mouraux, André; Jonas, Jacques; Colnat-Coulbois, Sophie; Rossion, Bruno; Maillard, Louis

    2017-07-01

    Musical entrainment is shared by all human cultures and the perception of a periodic beat is a cornerstone of this entrainment behavior. Here, we investigated whether beat perception might have its roots in the earliest stages of auditory cortical processing. Local field potentials were recorded from 8 patients implanted with depth-electrodes in Heschl's gyrus and the planum temporale (55 recording sites in total), usually considered as human primary and secondary auditory cortices. Using a frequency-tagging approach, we show that both low-frequency (30 Hz) neural activities in these structures faithfully track auditory rhythms through frequency-locking to the rhythm envelope. A selective gain in amplitude of the response frequency-locked to the beat frequency was observed for the low-frequency activities but not for the high-frequency activities, and was sharper in the planum temporale, especially for the more challenging syncopated rhythm. Hence, this gain process is not systematic in all activities produced in these areas and depends on the complexity of the rhythmic input. Moreover, this gain was disrupted when the rhythm was presented at fast speed, revealing low-pass response properties which could account for the propensity to perceive a beat only within the musical tempo range. Together, these observations show that, even though part of these neural transforms of rhythms could already take place in subcortical auditory processes, the earliest auditory cortical processes shape the neural representation of rhythmic inputs in favor of the emergence of a periodic beat.

  5. Heart rhythm analysis using ECG recorded with a novel sternum based patch technology

    DEFF Research Database (Denmark)

    Saadi, Dorthe Bodholt; Fauerskov, Inge; Osmanagic, Armin

    2013-01-01

    , reliable long-term ECG recordings. The device is designed for high compliance and low patient burden. This novel patch technology is CE approved for ambulatory ECG recording of two ECG channels on the sternum. This paper describes a clinical pilot study regarding the usefulness of these ECG signals...... for heart rhythm analysis. A clinical technician with experience in ECG interpretation selected 200 noise-free 7 seconds ECG segments from 25 different patients. These 200 ECG segments were evaluated by two medical doctors according to their usefulness for heart rhythm analysis. The first doctor considered...... 98.5% of the segments useful for rhythm analysis, whereas the second doctor considered 99.5% of the segments useful for rhythm analysis. The conclusion of this pilot study indicates that two channel ECG recorded on the sternum is useful for rhythm analysis and could be used as input to diagnosis...

  6. REFERENCE MODELS OF ENDOGENOUS ECONOMIC GROWTH

    OpenAIRE

    GEAMĂNU MARINELA

    2012-01-01

    The new endogenous growth theories are a very important research area for shaping the most effective policies and long term sustainable development strategies. Endogenous growth theory has emerged as a reaction to the imperfections of neoclassical theory, by the fact that the economic growth is the endogenous product of an economical system.

  7. ENDOGENEITY OF INDONESIAN MONEY SUPPLY

    OpenAIRE

    Rachma, Meutia Safrina

    2011-01-01

    There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5)-2010(6), the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not hav...

  8. Endogeneity Of Indonesian Money Supply

    OpenAIRE

    Rachma, Meutia Safrina

    2010-01-01

    There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5)-2010(6), the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not hav...

  9. Circadian Rhythm of Glomerular Filtration and Solute Handling Related to Nocturnal Enuresis.

    Science.gov (United States)

    Dossche, L; Raes, A; Hoebeke, P; De Bruyne, P; Vande Walle, J

    2016-01-01

    Although nocturnal polyuria in patients with monosymptomatic enuresis can largely be explained by the decreased nocturnal vasopressin secretion hypothesis, other circadian rhythms in the kidney also seem to have a role. We recently documented an absent day/night rhythm in a subgroup of desmopressin refractory cases. We explore the importance of abnormal circadian rhythm of glomerular filtration and tubular (sodium, potassium) parameters in patients with monosymptomatic enuresis. In this retrospective study of a tertiary enuresis population we collected data subsequent to a standardized screening (International Children's Continence Society questionnaire), 14-day diary for nocturnal enuresis and diuresis, and 24-hour concentration profile. The study population consisted of 139 children with nocturnal enuresis who were 5 years or older. Children with nonmonosymptomatic nocturnal enuresis were used as controls. There was a maintained circadian rhythm of glomerular filtration, sodium, osmotic excretion and diuresis rate in children with monosymptomatic and nonmonosymptomatic nocturnal enuresis, and there was no difference between the 2 groups. Secondary analysis revealed that in patients with nocturnal polyuria (with monosymptomatic or nonmonosymptomatic nocturnal enuresis) circadian rhythm of glomerular filtration, sodium and osmotic excretion, and diuresis rate was diminished in contrast to those without nocturnal polyuria (p Circadian rhythm of the kidney does not differ between patients with nonmonosymptomatic and monosymptomatic enuresis. However, the subgroup with enuresis and nocturnal polyuria has a diminished circadian rhythm of nocturnal diuresis, sodium excretion and glomerular filtration in contrast to children without nocturnal polyuria. This observation cannot be explained by the vasopressin theory alone. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    Science.gov (United States)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  11. From the Cover: Musical rhythm spectra from Bach to Joplin obey a 1/f power law

    Science.gov (United States)

    Levitin, Daniel J.; Chordia, Parag; Menon, Vinod

    2012-03-01

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  12. Circadian rhythm disruption was observed in hand, foot, and mouth disease patients.

    Science.gov (United States)

    Zhu, Yu; Jiang, Zhou; Xiao, Guoguang; Cheng, Suting; Wen, Yang; Wan, Chaomin

    2015-03-01

    Hand, foot, and mouth disease (HFMD) with central nerve system complications may rapidly progress to fulminated cardiorespiratory failure, with higher mortality and worse prognosis. It has been reported that circadian rhythms of heart rate (HR) and respiratory rate are useful in predicting prognosis of severe cardiovascular and neurological diseases. The present study aims to investigate the characteristics of the circadian rhythms of HR, respiratory rate, and temperature in HFMD patients with neurological complications. Hospitalized HFMD patients including 33 common cases (common group), 61 severe cases (severe group), and 9 critical cases (critical group) were contrasted retrospectively. Their HR, respiratory rate, and temperatures were measured every 4 hours during the first 48-hour in the hospital. Data were analyzed with the least-squares fit of a 24-hour cosine function by the single cosinor and population-mean cosinor method. Results of population-mean cosinor analysis demonstrated that the circadian rhythm of HR, respiratory rate, and temperature was present in the common and severe group, but absent in the critical group. The midline-estimating statistic of rhythm (MESOR) (P = 0.016) and acrophase (P circadian characteristics of HR among 3 groups. Compared with the common group, the MESOR of temperature and respiratory rate was significantly higher, and acrophase of temperature and respiratory rate was 2 hours ahead in the severe group, critical HFMD patients lost their population-circadian rhythm of temperature, HR, and respiratory rate. The high values of temperature and respiratory rate for the common group were concentrated between 3 and 9 PM, whereas those for the severe group were more dispersive. And the high values for the critical group were equally distributed in 24 hours of the day. Circadian rhythm of patients' temperature in the common group was the same as the normal rhythm of human body temperature. Circadian rhythm of patients

  13. Sleep and Sleep-wake Rhythm in Older Adults with Intellectual Disabilities

    NARCIS (Netherlands)

    E. van de Wouw-Van Dijk (Ellen)

    2013-01-01

    textabstractEveryone who has experienced poor sleep knows how it affects daytime functioning and wellbeing. A good night’s rest and a stable sleep-wake rhythm are therefore very important. The sleep-wake rhythm is regulated by several brain structures. People with an intellectual disability (ID) all

  14. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    Science.gov (United States)

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Standing down Straight: Jump Rhythm Technique's Rhythm-Driven, Community-Directed Approach to Dance Education

    Science.gov (United States)

    Siegenfeld, Billy

    2009-01-01

    "Standing down straight" means to stand on two feet with both stability and relaxation. Using standing down straight as the foundation of class work, Jump Rhythm Technique offers a fresh alternative to conventional systems of dance study. It bases its pedagogy on three behaviors: grounding the body so that it can move with power and efficiency,…

  16. Sleep and circadian rhythm disturbance in bipolar disorder.

    Science.gov (United States)

    Bradley, A J; Webb-Mitchell, R; Hazu, A; Slater, N; Middleton, B; Gallagher, P; McAllister-Williams, H; Anderson, K N

    2017-07-01

    Subjective reports of insomnia and hypersomnia are common in bipolar disorder (BD). It is unclear to what extent these relate to underlying circadian rhythm disturbance (CRD). In this study we aimed to objectively assess sleep and circadian rhythm in a cohort of patients with BD compared to matched controls. Forty-six patients with BD and 42 controls had comprehensive sleep/circadian rhythm assessment with respiratory sleep studies, prolonged accelerometry over 3 weeks, sleep questionnaires and diaries, melatonin levels, alongside mood, psychosocial functioning and quality of life (QoL) questionnaires. Twenty-three (50%) patients with BD had abnormal sleep, of whom 12 (52%) had CRD and 29% had obstructive sleep apnoea. Patients with abnormal sleep had lower 24-h melatonin secretion compared to controls and patients with normal sleep. Abnormal sleep/CRD in BD was associated with impaired functioning and worse QoL. BD is associated with high rates of abnormal sleep and CRD. The association between these disorders, mood and functioning, and the direction of causality, warrants further investigation.

  17. Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence.

    Directory of Open Access Journals (Sweden)

    Maria Paula Roncaglia-Denissen

    Full Text Available In the current event-related potential (ERP study, we investigated how speech rhythm impacts speech segmentation and facilitates the resolution of syntactic ambiguities in auditory sentence processing. Participants listened to syntactically ambiguous German subject- and object-first sentences that were spoken with either regular or irregular speech rhythm. Rhythmicity was established by a constant metric pattern of three unstressed syllables between two stressed ones that created rhythmic groups of constant size. Accuracy rates in a comprehension task revealed that participants understood rhythmically regular sentences better than rhythmically irregular ones. Furthermore, the mean amplitude of the P600 component was reduced in response to object-first sentences only when embedded in rhythmically regular but not rhythmically irregular context. This P600 reduction indicates facilitated processing of sentence structure possibly due to a decrease in processing costs for the less-preferred structure (object-first. Our data suggest an early and continuous use of rhythm by the syntactic parser and support language processing models assuming an interactive and incremental use of linguistic information during language processing.

  18. Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence.

    Science.gov (United States)

    Roncaglia-Denissen, Maria Paula; Schmidt-Kassow, Maren; Kotz, Sonja A

    2013-01-01

    In the current event-related potential (ERP) study, we investigated how speech rhythm impacts speech segmentation and facilitates the resolution of syntactic ambiguities in auditory sentence processing. Participants listened to syntactically ambiguous German subject- and object-first sentences that were spoken with either regular or irregular speech rhythm. Rhythmicity was established by a constant metric pattern of three unstressed syllables between two stressed ones that created rhythmic groups of constant size. Accuracy rates in a comprehension task revealed that participants understood rhythmically regular sentences better than rhythmically irregular ones. Furthermore, the mean amplitude of the P600 component was reduced in response to object-first sentences only when embedded in rhythmically regular but not rhythmically irregular context. This P600 reduction indicates facilitated processing of sentence structure possibly due to a decrease in processing costs for the less-preferred structure (object-first). Our data suggest an early and continuous use of rhythm by the syntactic parser and support language processing models assuming an interactive and incremental use of linguistic information during language processing.

  19. Clinical skills: cardiac rhythm recognition and monitoring.

    Science.gov (United States)

    Sharman, Joanna

    With technological advances, changes in provision of healthcare services and increasing pressure on critical care services, ward patients' severity of illness is ever increasing. As such, nurses need to develop their skills and knowledge to care for their client group. Competency in cardiac rhythm monitoring is beneficial to identify changes in cardiac status, assess response to treatment, diagnosis and post-surgical monitoring. This paper describes the basic anatomy and physiology of the heart and its conduction system, and explains a simple and easy to remember process of analysing cardiac rhythms (Resuscitation Council UK, 2000) that can be used in first-line assessment to assist healthcare practitioners in providing care to their patients.

  20. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    Science.gov (United States)

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  1. Core temperature rhythms in normal and tumor-bearing mice.

    Science.gov (United States)

    Griffith, D J; Busot, J C; Lee, W E; Djeu, D J

    1993-01-01

    The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.

  2. Sleep, circadian rhythms, and athletic performance.

    Science.gov (United States)

    Thun, Eirunn; Bjorvatn, Bjørn; Flo, Elisabeth; Harris, Anette; Pallesen, Ståle

    2015-10-01

    Sleep deprivation and time of day are both known to influence performance. A growing body of research has focused on how sleep and circadian rhythms impact athletic performance. This review provides a systematic overview of this research. We searched three different databases for articles on these issues and inspected relevant reference lists. In all, 113 articles met our inclusion criteria. The most robust result is that athletic performance seems to be best in the evening around the time when the core body temperature typically is at its peak. Sleep deprivation was negatively associated with performance whereas sleep extension seems to improve performance. The effects of desynchronization of circadian rhythms depend on the local time at which performance occurs. The review includes a discussion of differences regarding types of skills involved as well as methodological issues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    Science.gov (United States)

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  4. Perceiving Speech Rhythm in Music: Listeners Classify Instrumental Songs According to Language of Origin

    Science.gov (United States)

    Hannon, Eric E.

    2009-01-01

    Recent evidence suggests that the musical rhythm of a particular culture may parallel the speech rhythm of that culture's language (Patel, A. D., & Daniele, J. R. (2003). "An empirical comparison of rhythm in language and music." "Cognition, 87," B35-B45). The present experiments aimed to determine whether listeners actually perceive such rhythmic…

  5. Cytokines as endogenous pyrogens.

    Science.gov (United States)

    Dinarello, C A

    1999-03-01

    Cytokines are pleiotropic molecules mediating several pathologic processes. Long before the discovery of cytokines as immune system growth factors or as bone marrow stimulants, investigators learned a great deal about cytokines when they studied them as the endogenous mediators of fever. The terms "granulocytic" or "endogenous pyrogen" were used to describe substances with the biologic property of fever induction. Today, we recognize that pyrogenicity is a fundamental biologic property of several cytokines and hence the clinically recognizeable property of fever links host perturbations during disease with fundamental perturbations in cell biology. In this review, the discoveries made on endogenous pyrogens are revisited, with insights into the importance of the earlier work to the present-day understanding of cytokines in health and in disease.

  6. Chapter 11 - Electrical Coupling in the Generation of Vertebrate Motor Rhythms

    DEFF Research Database (Denmark)

    Li, W.C.; Rekling, Jens Christian

    2017-01-01

    Many forms of vertebrate motor activity like chewing, breathing, and locomotion are rhythmic. This requires synchronized discharges of motoneurons controlling different muscle groups in an orchestrated manner. We provide a brief review of the presence and role of electrical coupling in a few well...... of electrical coupling in vertebrate motor rhythms appears to be critically dependent on developmental age, with more crucial functions in the early postnatal period than in the adult.......-studied systems: the pacemaker nucleus in weakly electric fish; mesencephalic trigeminal nucleus involved in chewing rhythms; mammalian spinal motoneurons and excitatory interneurons in the Xenopus tadpole swimming circuit, brainstem circuits underlying breathing rhythm, and central respiratory chemosensitivity...

  7. Later endogenous circadian temperature nadir relative to an earlier wake time in older people

    Science.gov (United States)

    Duffy, J. F.; Dijk, D. J.; Klerman, E. B.; Czeisler, C. A.

    1998-01-01

    The contribution of the circadian timing system to the age-related advance of sleep-wake timing was investigated in two experiments. In a constant routine protocol, we found that the average wake time and endogenous circadian phase of 44 older subjects were earlier than that of 101 young men. However, the earlier circadian phase of the older subjects actually occurred later relative to their habitual wake time than it did in young men. These results indicate that an age-related advance of circadian phase cannot fully account for the high prevalence of early morning awakening in healthy older people. In a second study, 13 older subjects and 10 young men were scheduled to a 28-h day, such that they were scheduled to sleep at many circadian phases. Self-reported awakening from scheduled sleep episodes and cognitive throughput during the second half of the wake episode varied markedly as a function of circadian phase in both groups. The rising phase of both rhythms was advanced in the older subjects, suggesting an age-related change in the circadian regulation of sleep-wake propensity. We hypothesize that under entrained conditions, these age-related changes in the relationship between circadian phase and wake time are likely associated with self-selected light exposure at an earlier circadian phase. This earlier exposure to light could account for the earlier clock hour to which the endogenous circadian pacemaker is entrained in older people and thereby further increase their propensity to awaken at an even earlier time.

  8. THEORY AND PRACTICE OF RHYTHM IN THE PROFESSIONAL TRAINING SYSTEM FOR ATHLETES AND TEACHING STAFF

    Directory of Open Access Journals (Sweden)

    Olga Aftimichuk

    2015-09-01

    Full Text Available Background . Rhythm is important for the implementation of all processes as in nature and in living organisms. It organizes motor human activity making it more productive and rational. On teaching working and sports motions the process of the impellent work correct rhythm assimilation plays an important role because it determines the movement performance optimum that is shown in its automation process reduction. As a result, man’s physical strength and nervous energy are saved. Rhythm category acquires a special status for the physical training specialist. All his activity including the motor component depends on the rhythm. The aim of the research is to study the physiology of rhythm and justify the more efficient training process for future teachers and coaches. Methods . The following theoretical research methods were used: the abstract and axiomatic methods, analysis and synthesis, induction and deduction, idealization, comparison and generalization. Results. As a result of study of materials from the natural sciences, numerology, psychology, music, cybernetics, synergetic, physiology, was found that the change of different states, as in nature and in living organisms, is an undulating rhythmic character. Physiological basis of the same rhythm is dynamic change excitation and inhibition processes occurring in the central nervous system. In this paper features of rhythm were identified. To accelerate the assimilation of motor action rational rhythm it is necessary to develop a sense of rhythm which is successfully formed in during the musical-motor activities. Conclusions. For today the study of the rhythm phenomenon in professional preparation on physical education and sport, in our opinion, requires the further study. Adding exercises involving certain motor skills elements similar in rhythmic structure with professional and technical actions to the coaches and teachers education and the competitive technology formation should be

  9. Physical Cues Controlling Seasonal Immune Allocation in a Natural Piscine Model

    Directory of Open Access Journals (Sweden)

    Alexander Stewart

    2018-03-01

    Full Text Available Seasonal patterns in immunity are frequently observed in vertebrates but are poorly understood. Here, we focused on a natural piscine model, the three-spined stickleback (Gasterosteus aculeatus, and asked how seasonal immune allocation is driven by physical variables (time, light, and heat. Using functionally-relevant gene expression metrics as a reporter of seasonal immune allocation, we synchronously sampled fish monthly from the wild (two habitats, and from semi-natural outdoors mesocosms (stocked from one of the wild habitats. This was repeated across two annual cycles, with continuous within-habitat monitoring of environmental temperature and implementing a manipulation of temperature in the mesocosms. We also conducted a long-term laboratory experiment, subjecting acclimated wild fish to natural and accelerated (×2 photoperiodic change at 7 and 15°C. The laboratory experiment demonstrated that immune allocation was independent of photoperiod and only a very modest effect, at most, was controlled by a tentative endogenous circannual rhythm. On the other hand, experimentally-determined thermal effects were able to quantitatively predict much of the summer–winter fluctuation observed in the field and mesocosms. Importantly, however, temperature was insufficient to fully predict, and occasionally was a poor predictor of, natural patterns. Thermal effects can thus be overridden by other (unidentified natural environmental variation and do not take the form of an unavoidable constraint due to cold-blooded physiology. This is consistent with a context-dependent strategic control of immunity in response to temperature variation, and points to the existence of temperature-sensitive regulatory circuits that might be conserved in other vertebrates.

  10. The daily rhythm of body temperature, heart and respiratory rate in newborn dogs.

    Science.gov (United States)

    Piccione, Giuseppe; Giudice, Elisabetta; Fazio, Francesco; Mortola, Jacopo P

    2010-08-01

    We asked whether, during the postnatal period, the daily patterns of body temperature (Tb), heart rate (HR) and breathing frequency (f) begin and develop in synchrony. To this end, measurements of HR, f and Tb were performed weekly, on two consecutive days, for the first two postnatal months on puppies of three breeds of dogs (Rottweiler, Cocker Spaniel and Carlino dogs) with very different birth weights and postnatal growth patterns. Ambient conditions and feeding habits were constant for all puppies. The results indicated that (1) the 24-h average Tb increased and average HR and f decreased with growth, (2) the daily rhythms in Tb were apparent by 4 weeks, irrespective of the puppy's growth pattern, (3) the daily rhythm of Tb in the puppy was not necessarily following that of the mother; in fact, it could anticipate it. (4) The daily rhythms in HR and f were not apparent for the whole study period. We conclude that in neonatal dogs the onset of the daily rhythms of Tb has no obvious relationship with body size or rate of growth and is not cued by the maternal Tb rhythm. The daily rhythms of HR and f do not appear before 2 months of age. Hence, they are not in synchrony with those of Tb.

  11. Rhythm recognition is accountable for the majority of hands-off time during cardiopulmonary resuscitation

    DEFF Research Database (Denmark)

    Hansen, Lars Koch; Brabrand, Mikkel

    2014-01-01

    or not was 3.4 s [95% confidence interval (CI): 2.8-3.9] for shockable and 4.4 s (95% CI: 3.6-5.3) for nonshockable rhythms (P4.0 s (95% CI: 3.5-4.5). Of all shockable rhythms, 95.2 % were correctly diagnosed as shockable, compared with 88.6 % of nonshockable rhythms...

  12. Meditations on the unitary rhythm of dying-grieving.

    Science.gov (United States)

    Malinski, Violet M

    2012-07-01

    When someone faces loss of a loved one, that person simultaneously grieves and dies a little, just as the one dying also grieves. The author's personal conceptualization of dying and grieving as a unitary rhythm is explored based primarily on her interpretation of Rogers' science of unitary human beings, along with selected examples from related nursing literature and from the emerging focus on continuing bonds in other disciplines. Examples from contemporary songwriters that depict such a unitary conceptualization are given along with personal examples. The author concludes with her description of the unitary rhythm of dying-grieving.

  13. Cortical plasticity induced by short-term multimodal musical rhythm training.

    Directory of Open Access Journals (Sweden)

    Claudia Lappe

    Full Text Available Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have previously shown that short-term piano practice increase the magnetoencephalographic (MEG response to melodic material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group (sensorimotor-auditory, SA learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity was evaluated using MEG, comparing the mismatch negativity (MMN in response to occasional rhythmic deviants in a repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in the absence of motor production.

  14. Endogenous growth and the environment

    NARCIS (Netherlands)

    Withagen, C.A.A.M.; Vellinga, N.

    2001-01-01

    This paper examines the relationship between environmental policy and growth, from the perspective of endogenous growth theory. In particular three standard endogenous growth models are supplemented with environmental issues, such as pollution and exhaustibility of natural resources. It is found

  15. Endogenous growth and environmental policy

    NARCIS (Netherlands)

    Withagen, C.A.A.M.; Vellinga, N.

    2001-01-01

    This paper examines the relationship between environmental policy and growth, from the perspective of endogenous growth theory. In particular three standard endogenous growth models are supplemented with environmental issues, such as pollution and exhaustibility of natural resources. It is found

  16. The maturation of cortical sleep rhythms and networks over early development.

    Science.gov (United States)

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. [Effects of acupuncture on circadian rhythm of blood pressure in patients with essential hypertension].

    Science.gov (United States)

    Lei, Yun; Jin, Jiu; Ban, Haipeng; Du, Yuzheng

    2017-11-12

    To observe the effects of acupuncture combined with medication on circadian rhythm of blood pressure in patients with essential hypertension. Sixty-four patients of essential hypertension were randomly divided into an observation group and a control group, 32 cases in each group. All the patients maintained original treatment (taking antihypertensive medication); the patients in the observation group were treated with acupuncture method of " Huoxue Sanfeng , Shugan Jianpi ", once a day, five times per week, for totally 6 weeks (30 times). The circadian rhythm of blood pressure and related dynamic parameters were observed before and after treatment in the two groups. (1) The differences of daytime average systolic blood pressure (dASBP), daytime average diastolic blood pressure (dADBP), nighttime average systolic blood pressure (nASBP) and circadian rhythm of systolic blood pressure before and after treatment were significant in the observation group (all P circadian rhythm of blood pressure and related dynamic parameters before and after treatment were insignificant in the control group (all P >0.05). The nASBP and circadian rhythm of systolic blood pressure in the observation group were significantly different from those in the control group (all P circadian rhythm of blood pressure in the observation group was higher than that in the control group ( P circadian rhythm of blood pressure and related dynamic parameters in patients with essential hypertension.

  18. Endogenous pyrogen-like substance produced by reptiles.

    Science.gov (United States)

    Bernheim, H A; Kluger, M J

    1977-06-01

    1. Injection of lizards (Dipsosaurus dorsalis) with rabbit endogenous pyrogen led to a fever. Injections with denatured endogenous pyrogen did not affect body temperature. 2. Injection of lizards with lizard endogenous pyrogen led to a fever of short duration, while injection of denatured lizard endogenous pyrogen produced no change in body temperature. 3. These data support the hypothesis that the febrile mechanism observed in the higher vertebrates has its origins in some primitive vertebrate.

  19. Rhythm Deficits in "Tone Deafness"

    Science.gov (United States)

    Foxton, Jessica M.; Nandy, Rachel K.; Griffiths, Timothy D.

    2006-01-01

    It is commonly observed that "tone deaf" individuals are unable to hear the beat of a tune, yet deficits on simple timing tests have not been found. In this study, we investigated rhythm processing in nine individuals with congenital amusia ("tone deafness") and nine controls. Participants were presented with pairs of 5-note sequences, and were…

  20. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Song, Jia; Chu, Shuaishuai; Cui, Yin; Qian, Yue; Li, Xiuxiu; Xu, Fangxia; Shao, Xueming; Ma, Zhengliang; Xia, Tianjiao; Gu, Xiaoping

    2018-04-13

    Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization. Copyright © 2018. Published by Elsevier Inc.

  1. Stochastic Alternating Dynamics for Synchronous EAD-Like Beating Rhythms in Cultured Cardiac Myocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ning; ZHANG Hui-Min; LIU Zhi-Qiang; DING Xue-Li; YANG Ming-Hao; GU Hua-Guang; REN Wei

    2009-01-01

    Dissolved cardiac myocytes can couple together and generate synchronous beatings in culture. We observed a synchronized early after-depolarization(EAD)-like rhythm in cultured cardiac myocytes and reproduced the experimental observation in a network mathematical model whose dynamics are close to a Hopf bifurcation. The mechanism for this EAD-like rhythm is attributed to noised-induced stochastic alternatings between the focus and the limit cycle. These results provide novel understandings for pathological heart rhythms like the early immature beatings.

  2. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients

    NARCIS (Netherlands)

    van Someren, E. J.; Kessler, A.; Mirmiran, M.; Swaab, D. F.

    1997-01-01

    Light is known to be an important modulator of circadian rhythms. We tested the hypothesis than an enduring increase in the daytime environmental illumination level improves rest-activity rhythm disturbances in demented patients. Actigraphy was performed before, during, and after 4 weeks of

  3. Two Coupled Oscillators : Simulations of the Circadian Pacemaker in Mammalian Activity Rhythms

    NARCIS (Netherlands)

    Daan, Serge; Berde, Charles

    1978-01-01

    In the activity rhythms of captive small mammals a variety of features, most notably “splitting”, sugges that two coupled oscillators may constitute the pacemaker system which underlies the rhythms. A proposed phenomenological model is developed and expanded here using an explicit quantitative

  4. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from Arabidopsis.

    Science.gov (United States)

    Yeang, Hoong-Yeet

    2015-07-01

    An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the

  5. Shared Components of Rhythm Generation for Locomotion and Scratching Exist Prior to Motoneurons

    Directory of Open Access Journals (Sweden)

    Zhao-Zhe Hao

    2017-08-01

    Full Text Available Does the spinal cord use a single network to generate locomotor and scratching rhythms or two separate networks? Previous research showed that simultaneous swim and scratch stimulation (“dual stimulation” in immobilized, spinal turtles evokes a single rhythm in hindlimb motor nerves with a frequency often greater than during swim stimulation alone or scratch stimulation alone. This suggests that the signals that trigger swimming and scratching converge and are integrated within the spinal cord. However, these results could not determine whether the integration occurs in motoneurons themselves or earlier, in spinal interneurons. Here, we recorded intracellularly from hindlimb motoneurons during dual stimulation. Motoneuron membrane potentials displayed regular oscillations at a higher frequency during dual stimulation than during swim or scratch stimulation alone. In contrast, arithmetic addition of the oscillations during swimming alone and scratching alone with various delays always generated irregular oscillations. Also, the standard deviation of the phase-normalized membrane potential during dual stimulation was similar to those during swimming or scratching alone. In contrast, the standard deviation was greater when pooling cycles of swimming alone and scratching alone for two of the three forms of scratching. This shows that dual stimulation generates a single rhythm prior to motoneurons. Thus, either swimming and scratching largely share a rhythm generator or the two rhythms are integrated into one rhythm by strong interactions among interneurons.

  6. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2

    DEFF Research Database (Denmark)

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted...... cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2(-/-) mice. Circadian rhythms in QT100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2......(-/-), respectively (p = 0.15). A diurnal rhythm in QT100 intervals was only found in WT mice. QTmean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2(-/-). The amplitude of the circadian rhythm in QTmean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2(-/-), respectively (p = 0...

  7. Egg-laying rhythm in Drosophila melanogaster

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... production of oocytes to egg-laying on selected sites (Alle- mand 1976b; Yang et al. .... (vii) Is the egg-laying rhythm regulated by hormones? .... were shown to be induced by factors synthesized in the re- productive tract of the ...

  8. Tests of the disrupted behavioral rhythms hypothesis for accelerated summer weight gain

    Science.gov (United States)

    The school-summer paradigm offers an opportunity to explore school-summer differences in children's behavioral rhythms and their association with seasonal changes in BMI. In the absence of the environmental demands and cues associated with the school year, children's behavioral rhythms (e.g., sleep...

  9. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements

    Directory of Open Access Journals (Sweden)

    Jeffery G. Bednark

    2015-07-01

    Full Text Available Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g. rhythm and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI and multi-voxel pattern analysis (MVPA, we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the SMA and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia.

  10. Development of Salivary Cortisol Circadian Rhythm and Reference Intervals in Full-Term Infants.

    Science.gov (United States)

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O; Mörelius, Evalotte

    2015-01-01

    Cortisol concentrations in plasma display a circadian rhythm in adults and children older than one year. Earlier studies report divergent results regarding when cortisol circadian rhythm is established. The present study aims to investigate at what age infants develop a circadian rhythm, as well as the possible influences of behavioral regularity and daily life trauma on when the rhythm is established. Furthermore, we determine age-related reference intervals for cortisol concentrations in saliva during the first year of life. 130 healthy full-term infants were included in a prospective, longitudinal study with saliva sampling on two consecutive days, in the morning (07:30-09:30), noon (10:00-12:00) and evening (19:30-21:30), each month from birth until the infant was twelve months old. Information about development of behavioral regularity and potential exposure to trauma was obtained from the parents through the Baby Behavior Questionnaire and the Life Incidence of Traumatic Events checklist. A significant group-level circadian rhythm of salivary cortisol secretion was established at one month, and remained throughout the first year of life, although there was considerable individual variability. No correlation was found between development of cortisol circadian rhythm and the results from either the Baby Behavior Questionnaire or the Life Incidence of Traumatic Events checklist. The study presents salivary cortisol reference intervals for infants during the first twelve months of life. Cortisol circadian rhythm in infants is already established by one month of age, earlier than previous studies have shown. The current study also provides first year age-related reference intervals for salivary cortisol levels in healthy, full-term infants.

  11. Period concatenation underlies interactions between gamma and beta rhythms in neocortex

    Directory of Open Access Journals (Sweden)

    Anita K Roopun

    2008-04-01

    Full Text Available The neocortex generates rhythmic electrical activity over a frequency range covering many decades. Specific cognitive and motor states are associated with oscillations in discrete frequency bands within this range, but it is not known whether interactions and transitions between distinct frequencies are of functional importance. When coexpressed rhythms have frequencies that differ by a factor of two or more interactions can be seen in terms of phase synchronization. Larger frequency differences can result in interactions in the form of nesting of faster frequencies within slower ones by a process of amplitude modulation. It is not known how coexpressed rhythms, whose frequencies differ by less than a factor of two may interact. Here we show that two frequencies (gamma – 40 Hz and beta2 – 25 Hz, coexpressed in superficial and deep cortical laminae with low temporal interaction, can combine to generate a third frequency (beta1 – 15 Hz showing strong temporal interaction. The process occurs via period concatenation, with basic rhythm-generating microcircuits underlying gamma and beta2 rhythms forming the building blocks of the beta1 rhythm by a process of addition. The mean ratio of adjacent frequency components was a constant – approximately the golden mean – which served to both minimize temporal interactions, and permit multiple transitions, between frequencies. The resulting temporal landscape may provide a framework for multiplexing – parallel information processing on multiple temporal scales.

  12. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism

    DEFF Research Database (Denmark)

    Feng, Dan; Liu, Tao; Sun, Zheng

    2011-01-01

    Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost whe...

  13. The role of stress and accent in the perception of speech rhythm

    NARCIS (Netherlands)

    Grover, C.N.; Terken, J.M.B.

    1995-01-01

    Modelling rhythmic characteristics of speech is expected to contribute to the acceptability of synthetic speech. However, before rules for the control of speech rhythm in synthetic speech can be developed, we need to know which properties of speech give rise to the perception of speech rhythm. An

  14. Top-down beta rhythms support selective attention via interlaminar interaction: a model.

    Directory of Open Access Journals (Sweden)

    Jung H Lee

    Full Text Available Cortical rhythms have been thought to play crucial roles in our cognitive abilities. Rhythmic activity in the beta frequency band, around 20 Hz, has been reported in recent studies that focused on neural correlates of attention, indicating that top-down beta rhythms, generated in higher cognitive areas and delivered to earlier sensory areas, can support attentional gain modulation. To elucidate functional roles of beta rhythms and underlying mechanisms, we built a computational model of sensory cortical areas. Our simulation results show that top-down beta rhythms can activate ascending synaptic projections from L5 to L4 and L2/3, responsible for biased competition in superficial layers. In the simulation, slow-inhibitory interneurons are shown to resonate to the 20 Hz input and modulate the activity in superficial layers in an attention-related manner. The predicted critical roles of these cells in attentional gain provide a potential mechanism by which cholinergic drive can support selective attention.

  15. Circadian rhythms and obesity in mammals.

    Science.gov (United States)

    Froy, Oren

    2012-01-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR), and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This paper focuses on circadian rhythms and their link to obesity.

  16. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form

    Directory of Open Access Journals (Sweden)

    Antonio Fernández-Caballero

    2017-04-01

    Full Text Available This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG by using a brain–computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.

  17. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease.

    Science.gov (United States)

    van Wamelen, Daniel J; Roos, Raymund Ac; Aziz, Nasir A

    2015-12-01

    Aside from the well-known motor, cognitive and psychiatric signs and symptoms, Huntington disease (HD) is also frequently complicated by circadian rhythm and sleep disturbances. Despite the observation that these disturbances often precede motor onset and have a high prevalence, no studies are available in HD patients which assess potential treatments. In this review, we will briefly outline the nature of circadian rhythm and sleep disturbances in HD and subsequently focus on potential treatments based on findings in other neurodegenerative diseases with similarities to HD, such as Parkinson and Alzheimer disease. The most promising treatment options to date for circadian rhythm and sleep disruption in HD include melatonin (agonists) and bright light therapy, although further corroboration in clinical trials is warranted.

  18. Alterations in the circadian rhythm of salivary melatonin begin during middle-age

    NARCIS (Netherlands)

    Zhou, Jiang-Ning; Liu, Rong-Yu; van Heerikhuize, Joop; Hofman, Michel A.; Swaab, Dick F.

    2003-01-01

    To investigate whether free melatonin may be better suited to reveal age-related changes, we studied the circadian rhythm alterations in saliva melatonin levels during aging. Special attention was paid to the question as to how the free melatonin rhythms change in aging and when such changes take

  19. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeon Acipenser fulvescens.

    Directory of Open Access Journals (Sweden)

    Jon C Svendsen

    Full Text Available Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons. Using juvenile lake sturgeon (Acipenser fulvescens, the objective of this study was to test four hypotheses: 1 A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2 A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3 measurements of forced maximum metabolic rate (MMR(F are repeatable in individual fish; and 4 MMR(F correlates positively with spontaneous maximum metabolic rate (MMR(S. Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMR(F. Trials lasting 24 h were used to measure standard metabolic rate (SMR and MMR(S. Repeatability and correlations between MMR(F and MMR(S were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O(2sat, demonstrating oxygen regulation. In contrast, MMR(F was affected by hypoxia and decreased across the range from 100% O(2sat to 70% O(2sat. MMR(F was repeatable in individual fish, and MMR(F correlated positively with MMR(S, but the relationships between MMR(F and MMR(S were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor. Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMR(F and MMR(S support the conjecture that MMR(F represents a measure of organism performance that could be a target of natural selection.

  20. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    Science.gov (United States)

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  1. Melatonin Entrains PER2::LUC Bioluminescence Circadian Rhythm in the Mouse Cornea

    Science.gov (United States)

    Baba, Kenkichi; Davidson, Alec J.; Tosini, Gianluca

    2015-01-01

    Purpose Previous studies have reported the presence of a circadian rhythm in PERIOD2::LUCIFERASE (PER2::LUC) bioluminescence in mouse photoreceptors, retina, RPE, and cornea. Melatonin (MLT) modulates many physiological functions in the eye and it is believed to be one of the key circadian signals within the eye. The aim of the present study was to investigate the regulation of the PER2::LUC circadian rhythm in mouse cornea and to determine the role played by MLT. Methods Corneas were obtained from PER2::LUC mice and cultured to measure bioluminescence rhythmicity in isolated tissue using a Lumicycle or CCD camera. To determine the time-dependent resetting of the corneal circadian clocks in response to MLT or IIK7 (a melatonin type 2 receptor, MT2, agonist) was added to the cultured corneas at different times of the day. We also defined the location of the MT2 receptor within different corneal layers using immunohistochemistry. Results A long-lasting bioluminescence rhythm was recorded from cultured PER2::LUC cornea and PER2::LUC signal was localized to the corneal epithelium and endothelium. MLT administration in the early night delayed the cornea rhythm, whereas administration of MLT at late night to early morning advanced the cornea rhythm. Treatment with IIK7 mimicked the MLT phase-shifting effect. Consistent with these results, MT2 immunoreactivity was localized to the corneal epithelium and endothelium. Conclusions Our work demonstrates that MLT entrains the PER2::LUC bioluminescence rhythm in the cornea. Our data indicate that the cornea may represent a model to study the molecular mechanisms by which MLT affects the circadian clock. PMID:26207312

  2. Got Rhythm...For Better and for Worse. Cross-Modal Effects of Auditory Rhythm on Visual Word Recognition

    Science.gov (United States)

    Brochard, Renaud; Tassin, Maxime; Zagar, Daniel

    2013-01-01

    The present research aimed to investigate whether, as previously observed with pictures, background auditory rhythm would also influence visual word recognition. In a lexical decision task, participants were presented with bisyllabic visual words, segmented into two successive groups of letters, while an irrelevant strongly metric auditory…

  3. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    Science.gov (United States)

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  4. Current Conceptual Challenges in the Study of Rhythm Processing Deficits

    Directory of Open Access Journals (Sweden)

    Pauline eTranchant

    2015-06-01

    Full Text Available Interest in the study of rhythm processing deficits (RPD is currently growing in the cognitive neuroscience community, as this type of investigation constitutes a powerful tool for the understanding of normal rhythm processing. Because this field is in its infancy, it still lacks a common conceptual vocabulary to facilitate effective communication between different researchers and research groups. In this commentary, we provide a brief review of recent reports of RPD through the lens of one important empirical issue: the method by which beat perception is measured, and the consequences of method selection for the researcher’s ability to specify which mechanisms are impaired in RPD. This critical reading advocates for the importance of matching measurement tools to the putative neurocognitive mechanisms under study, and reveals the need for effective and specific assessments of the different aspects of rhythm perception and synchronization.

  5. Chorusing, synchrony and the evolutionary functions of rhythm

    Directory of Open Access Journals (Sweden)

    Andrea eRavignani

    2014-10-01

    Full Text Available A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc. with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony, we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, making group behavior key to understand the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates. Finally, we propose an Evolving Signal Timing hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s of rhythmic behavior in our proto-musical primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and

  6. Chorusing, synchrony, and the evolutionary functions of rhythm.

    Science.gov (United States)

    Ravignani, Andrea; Bowling, Daniel L; Fitch, W Tecumseh

    2014-01-01

    A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an "Evolving Signal Timing" hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our "proto-musical" primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and

  7. Effect of age, gender and exercise on salivary dehydroepiandrosterone circadian rhythm profile in human volunteers.

    Science.gov (United States)

    Al-Turk, Walid; Al-Dujaili, Emad A S

    2016-02-01

    There has been a lot of effort by scientists to elucidate the multi functions of the naturally occurring hormone, dehydroepiandrosterone (DHEA). However, to plan research experiments optimally, it is important first to characterize the diurnal rhythm in healthy individuals. The aim of this research was to investigate the daily circadian rhythms of DHEA among the 2 genders, and the effect of age and exercise on salivary DHEA circadian rhythms. Volunteers (20-39 and 40-60 years) were recruited for 2 studies investigating the salivary DHEA circadian rhythm. The first study looked at the effect of gender and age on DHEA levels on 2 non-consecutive days, and the second study explored the effect of exercise on DHEA circadian rhythm in males. DHEA levels were estimated by a sensitive and specific ELISA method. The results showed a clear daily circadian rhythm in salivary DHEA in all participants groups, however the profile was flatter in the older female group. There was a significant difference between age and gender groups particularly at 8.00 h. In young males DHEA reduced from 541.1 ± 101.3 (mean ± sd) at 8.00 h to 198.9 ± 90.7 pg/mL at 18.00 h; pcircadian rhythm in salivary DHEA in all participants was observed, but the profile was flatter in the older groups. Copyright © 2016. Published by Elsevier Inc.

  8. Fluoxetine normalizes disrupted light-induced entrainment, fragmented ultradian rhythms and altered hippocampal clock gene expression in an animal model of high trait anxiety- and depression-related behavior.

    Science.gov (United States)

    Schaufler, Jörg; Ronovsky, Marianne; Savalli, Giorgia; Cabatic, Maureen; Sartori, Simone B; Singewald, Nicolas; Pollak, Daniela D

    2016-01-01

    Disturbances of circadian rhythms are a key symptom of mood and anxiety disorders. Selective serotonin reuptake inhibitors (SSRIs) - commonly used antidepressant drugs - also modulate aspects of circadian rhythmicity. However, their potential to restore circadian disturbances in depression remains to be investigated. The effects of the SSRI fluoxetine on genetically based, depression-related circadian disruptions at the behavioral and molecular level were examined using mice selectively bred for high anxiety-related and co-segregating depression-like behavior (HAB) and normal anxiety/depression behavior mice (NAB). The length of the circadian period was increased in fluoxetine-treated HAB as compared to NAB mice while the number of activity bouts and light-induced entrainment were comparable. No difference in hippocampal Cry2 expression, previously reported to be dysbalanced in untreated HAB mice, was observed, while Per2 and Per3 mRNA levels were higher in HAB mice under fluoxetine treatment. The present findings provide evidence that fluoxetine treatment normalizes disrupted circadian locomotor activity and clock gene expression in a genetic mouse model of high trait anxiety and depression. An interaction between the molecular mechanisms mediating the antidepressant response to fluoxetine and the endogenous regulation of circadian rhythms in genetically based mood and anxiety disorders is proposed.

  9. Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus

    Science.gov (United States)

    2017-01-01

    Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders. PMID:29230328

  10. Circadian rhythms in handwriting kinematics and legibility.

    Science.gov (United States)

    Jasper, Isabelle; Gordijn, Marijke; Häussler, Andreas; Hermsdörfer, Joachim

    2011-08-01

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10 Dutch subjects) or in Berlin (9 German subjects). Both groups wrote every 3h a test sentence of similar structure in their native language. Kinematic handwriting performance was assessed with a digitizing tablet and evaluated by writing speed, writing fluency, and script size. Writing speed (frequency of strokes and average velocity) revealed a clear circadian rhythm, with a parallel decline during night and a minimum around 3:00 h in the morning for both groups. Script size and movement fluency did not vary with time of day in neither group. Legibility of handwriting was evaluated by intra-individually ranking handwriting specimens of the 13 sessions by 10 German and 10 Dutch raters. Whereas legibility ratings of the German handwriting specimens deteriorated during night in parallel with slower writing speed, legibility of the Dutch handwriting deteriorated not until the next morning. In conclusion, the circadian rhythm of handwriting kinematics seems to be independent of script language at least among the two tested western countries. Moreover, handwriting legibility is also subject to a circadian rhythm which, however, seems to be influenced by variations in the assessment protocol. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Circadian rhythm of temperature selection in a nocturnal lizard.

    Science.gov (United States)

    Refinetti, R; Susalka, S J

    1997-08-01

    We recorded body temperature and locomotor activity of Tokay geckos (Gekko gecko) with free access to a heat source under a 14:10 light-dark cycle and in constant darkness. Under the light-dark cycle, the lizards selected higher temperatures during the light phase, when locomotor activity was less intense. Rhythmicity in temperature selection was transiently disrupted but later resumed when the animals were placed in constant darkness. These results demonstrate the existence of a circadian rhythm of temperature selection in nocturnal ectotherms and extend previous findings of a temporal mismatch between the rhythms of locomotor activity and temperature selection in nocturnal rodents.

  12. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    Science.gov (United States)

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  13. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Annaëlle Charrier

    2017-04-01

    Full Text Available In mammals, the circadian clocks network (central and peripheral oscillators controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder. However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders. First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  14. Serial recall of rhythms and verbal sequences: Impacts of concurrent tasks and irrelevant sound.

    Science.gov (United States)

    Hall, Debbora; Gathercole, Susan E

    2011-08-01

    Rhythmic grouping enhances verbal serial recall, yet very little is known about memory for rhythmic patterns. The aim of this study was to compare the cognitive processes supporting memory for rhythmic and verbal sequences using a range of concurrent tasks and irrelevant sounds. In Experiment 1, both concurrent articulation and paced finger tapping during presentation and during a retention interval impaired rhythm recall, while letter recall was only impaired by concurrent articulation. In Experiments 2 and 3, irrelevant sound consisted of irrelevant speech or tones, changing-state or steady-state sound, and syncopated or paced sound during presentation and during a retention interval. Irrelevant speech was more damaging to rhythm and letter recall than was irrelevant tone sound, but there was no effect of changing state on rhythm recall, while letter recall accuracy was disrupted by changing-state sound. Pacing of sound did not consistently affect either rhythm or letter recall. There are similarities in the way speech and rhythms are processed that appear to extend beyond reliance on temporal coding mechanisms involved in serial-order recall.

  15. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer.

    Science.gov (United States)

    Altman, Brian J

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.

  16. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    Science.gov (United States)

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  17. Controlling Circadian Rhythms by Dark-Pulse Perturbations in Arabidopsis thaliana

    Science.gov (United States)

    Fukuda, Hirokazu; Murase, Haruhiko; Tokuda, Isao T.

    2013-01-01

    Plant circadian systems are composed of a large number of self-sustained cellular circadian oscillators. Although the light-dark signal in the natural environment is known to be the most powerful Zeitgeber for the entrainment of cellular oscillators, its effect is too strong to control the plant rhythm into various forms of synchrony. Here, we show that the application of pulse perturbations, i.e., short-term injections of darkness under constant light, provides a novel technique for controlling the synchronized behavior of plant rhythm in Arabidopsis thaliana. By destroying the synchronized cellular activities, circadian singularity was experimentally induced. The present technique is based upon the theory of phase oscillators, which does not require prior knowledge of the detailed dynamics of the plant system but only knowledge of its phase and amplitude responses to the pulse perturbation. Our approach can be applied to diverse problems of controlling biological rhythms in living systems. PMID:23524981

  18. A multimodal spectral approach to characterize rhythm in natural speech.

    Science.gov (United States)

    Alexandrou, Anna Maria; Saarinen, Timo; Kujala, Jan; Salmelin, Riitta

    2016-01-01

    Human utterances demonstrate temporal patterning, also referred to as rhythm. While simple oromotor behaviors (e.g., chewing) feature a salient periodical structure, conversational speech displays a time-varying quasi-rhythmic pattern. Quantification of periodicity in speech is challenging. Unimodal spectral approaches have highlighted rhythmic aspects of speech. However, speech is a complex multimodal phenomenon that arises from the interplay of articulatory, respiratory, and vocal systems. The present study addressed the question of whether a multimodal spectral approach, in the form of coherence analysis between electromyographic (EMG) and acoustic signals, would allow one to characterize rhythm in natural speech more efficiently than a unimodal analysis. The main experimental task consisted of speech production at three speaking rates; a simple oromotor task served as control. The EMG-acoustic coherence emerged as a sensitive means of tracking speech rhythm, whereas spectral analysis of either EMG or acoustic amplitude envelope alone was less informative. Coherence metrics seem to distinguish and highlight rhythmic structure in natural speech.

  19. Evaluation of circadian phenotypes utilizing fibroblasts from patients with circadian rhythm sleep disorders.

    Science.gov (United States)

    Hida, A; Ohsawa, Y; Kitamura, S; Nakazaki, K; Ayabe, N; Motomura, Y; Matsui, K; Kobayashi, M; Usui, A; Inoue, Y; Kusanagi, H; Kamei, Y; Mishima, K

    2017-04-25

    We evaluated the circadian phenotypes of patients with delayed sleep-wake phase disorder (DSWPD) and non-24-hour sleep-wake rhythm disorder (N24SWD), two different circadian rhythm sleep disorders (CRSDs) by measuring clock gene expression rhythms in fibroblast cells derived from individual patients. Bmal1-luciferase (Bmal1-luc) expression rhythms were measured in the primary fibroblast cells derived from skin biopsy samples of patients with DSWPD and N24SWD, as well as control subjects. The period length of the Bmal1-luc rhythm (in vitro period) was distributed normally and was 22.80±0.47 (mean±s.d.) h in control-derived fibroblasts. The in vitro periods in DSWPD-derived fibroblasts and N24SWD-derived fibroblasts were 22.67±0.67 h and 23.18±0.70 h, respectively. The N24SWD group showed a significantly longer in vitro period than did the control or DSWPD group. Furthermore, in vitro period was associated with response to chronotherapy in the N24SWD group. Longer in vitro periods were observed in the non-responders (mean±s.d.: 23.59±0.89 h) compared with the responders (mean±s.d.: 22.97±0.47 h) in the N24SWD group. Our results indicate that prolonged circadian periods contribute to the onset and poor treatment outcome of N24SWD. In vitro rhythm assays could be useful for predicting circadian phenotypes and clinical prognosis in patients with CRSDs.

  20. Orchestrating intensities and rhythms

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Juelskjær, Malou

    2016-01-01

    environmentality and learning-centered governance standards has dramatic and performative effects for the production of (educational) subjectivities. This implies a shift from governing identities, categories and structures towards orchestrating affective intensities and rhythms. Finally, the article discusses...... and the making of subjects have held sway for many years; and it is also well known that schools have been some of the most regular purchasers of psychological methods, tests and classifications. Following but also elaborating upon governmentality studies, it is suggested that a current shift towards...

  1. Ciliary neurotrophic factor is an endogenous pyrogen.

    Science.gov (United States)

    Shapiro, L; Zhang, X X; Rupp, R G; Wolff, S M; Dinarello, C A

    1993-09-15

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) following intravenous injection; CNTF fever was blocked by pretreatment with indomethacin. The fever induced by CNTF was not due to contaminating endotoxins. Increasing doses of CNTF resulted in prolongation of the fever, suggesting the subsequent induction of additional endogenous pyrogenic activity. After passive transfer of plasma obtained during CNTF-induced fever, endogenous pyrogen activity was not present in the circulation; CNTF also did not induce the endogenous pyrogens interleukin 1, tumor necrosis factor, or interleukin 6 in vitro. Nevertheless, a second endogenous pyrogen may originate within the central nervous system following the systemic injection of CNTF. Of the four endogenous pyrogens described to date (interleukin 1, tumor necrosis factor, interferon, and interleukin 6), CNTF, like interleukin 6, utilizes the cell-surface gp 130 signal-transduction apparatus.

  2. [Echocardiographic factors predictive of restoration and maintenance of sinus rhythm after reduction of atrial fibrillation].

    Science.gov (United States)

    Ben Khalfallah, A; Sanaa, I

    2007-09-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. While the arrhythmia was initially thought to be little more than a nuisance, it is now clear that AF has a significant negative impact on quality of life and a corresponding increase in both morbidity and mortality. The aim of this study was to identify Doppler echographic patterns that allow prediction of atrial fibrillation reduction and maintenance of sinus rhythm within 12 months. One hundred and thirty patients having permanent atrial fibrillation, recent (51) or chronic (79) are included in the study, excepting those with valvular heart disease or thyroid dysfunction. The mean age was 63.5 +/- 11.3 years. Both transthoracic and transoesophageal echocardiography was performed using a Philips SONOS 5500 Echograph, before cardioversion. Were studied: end diastolic and systolic left ventricular diameters, left ventricular ejectionnal fraction, left atrial area (LAA), left atrial diameter, left atrial appendage area and peak emptying velocities of the left atrial appendage (PeV). Sinus rhythm was re-established in 102 patients (44 having recent and 58 chronic atrial fibrillation). Sinus rhythm was maintained for 12 months in 79 patients. Within the echographic parameters studied, the left atrial area (LAA) and peak emptying velocities of left atrial appendage (PeV) before cardioversion were the best predictors of restoration of sinus rhythm. On monovariate analysis, SOG is significantly lower and PicV is significantly higher in patients whose sinus rhythm had been restored in comparison with those with permanent atrial fibrillation. (Mean SOG: 27.7 +/- 7.62 vs. 34 +/- 7,6 cm2, ppredict on mono and multivariate analysis (p=0.05, OR=0.5, IC=0.36 à 3.56), re-establishing of sinus rhythm whereas in patients with chronic atrial fibrillation, peak emptying velocity of left atrial appendage predict better re-establishing of sinus rhythm (p=0.04, OR=1.29, IC=0.12 à 4.23). The threshold values of LAA and Pe

  3. EFFECTS OF CIRCADIAN RHYTHM ON BALANCE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Karagul Osman

    2017-09-01

    Full Text Available Introduction. The aim of the study was to examine the effect of circadian rhythm on dynamic balance performance and to determine the role of physical activity level, body temperature, chronotype, and gender in this possible effect. Material and

  4. Clinical predictors of shockable versus non-shockable rhythms in patients with out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Granfeldt, Asger; Wissenberg, Mads; Hansen, Steen Møller

    2016-01-01

    Aim To identify factors associated with a non-shockable rhythm as first recorded heart rhythm. Methods Patients ≥18 years old suffering out-of-hospital cardiac arrest between 2001 and 2012 were identified in the population-based Danish Cardiac Arrest Registry. Danish administrative registries were...... used to identify chronic diseases (within 10 years) and drug prescriptions (within 180 days). A multivariable logistic regression model, including patient related and cardiac arrest related characteristics, was used to estimate odds ratios (OR) for factors associated with non-shockable rhythm. Results...... compared to patients with shockable rhythm. In the adjusted multivariable regression model, pre-existing non-cardiovascular disease and drug prescription were associated with a non-shockable rhythm e.g. chronic obstructive lung disease (OR 1.44 [95% CI: 1.32–1.58]); and the prescription for antidepressants...

  5. Lighting, sleep and circadian rhythm: An intervention study in the intensive care unit.

    Science.gov (United States)

    Engwall, Marie; Fridh, Isabell; Johansson, Lotta; Bergbom, Ingegerd; Lindahl, Berit

    2015-12-01

    Patients in an intensive care unit (ICU) may risk disruption of their circadian rhythm. In an intervention research project a cycled lighting system was set up in an ICU room to support patients' circadian rhythm. Part I aimed to compare experiences of the lighting environment in two rooms with different lighting environments by lighting experiences questionnaire. The results indicated differences in advantage for the patients in the intervention room (n=48), in perception of daytime brightness (p=0.004). In nighttime, greater lighting variation (p=0.005) was found in the ordinary room (n=52). Part II aimed to describe experiences of lighting in the room equipped with the cycled lighting environment. Patients (n=19) were interviewed and the results were presented in categories: "A dynamic lighting environment", "Impact of lighting on patients' sleep", "The impact of lighting/lights on circadian rhythm" and "The lighting calms". Most had experiences from sleep disorders and half had nightmares/sights and circadian rhythm disruption. Nearly all were pleased with the cycled lighting environment, which together with daylight supported their circadian rhythm. In night's actual lighting levels helped patients and staff to connect which engendered feelings of calm. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    DEFF Research Database (Denmark)

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we...... than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion....... use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype...

  7. Acquisition of speech rhythm in a second language by learners with rhythmically different native languages.

    Science.gov (United States)

    Ordin, Mikhail; Polyanskaya, Leona

    2015-08-01

    The development of speech rhythm in second language (L2) acquisition was investigated. Speech rhythm was defined as durational variability that can be captured by the interval-based rhythm metrics. These metrics were used to examine the differences in durational variability between proficiency levels in L2 English spoken by French and German learners. The results reveal that durational variability increased as L2 acquisition progressed in both groups of learners. This indicates that speech rhythm in L2 English develops from more syllable-timed toward more stress-timed patterns irrespective of whether the native language of the learner is rhythmically similar to or different from the target language. Although both groups showed similar development of speech rhythm in L2 acquisition, there were also differences: German learners achieved a degree of durational variability typical of the target language, while French learners exhibited lower variability than native British speakers, even at an advanced proficiency level.

  8. Effects of adrenaline on rhythm transitions in out-of-hospital cardiac arrest.

    Science.gov (United States)

    Neset, Andres; Nordseth, Trond; Kramer-Johansen, Jo; Wik, Lars; Olasveengen, Theresa M

    2013-11-01

    We wanted to study the effects of intravenous (i.v.) adrenaline (epinephrine) on rhythm transitions during cardiac arrest with initial or secondary ventricular fibrillation/tachycardia (VF/VT). Post hoc analysis of patients included in a randomised controlled trial of i.v. drugs in adult, non-traumatic out-of-hospital cardiac arrest patients who were defibrillated and had a readable electrocardiography recording. Patients who received adrenaline were compared with patients who did not. Cardiac rhythms were annotated manually using the defibrillator data. Eight hundred and forty-nine patients were included in the randomised trial of which 223 were included in this analysis; 119 in the adrenaline group and 104 in the no-adrenaline group. The proportion of patients with one or more VF/VT episodes after temporary return of spontaneous circulation (ROSC) was higher in the adrenaline than in the no-adrenaline group, 24% vs. 12%, P = 0.03. Most relapses from ROSC to VF/VT in the no-adrenaline group occurred during the first 20 min of resuscitation, whereas patients in the adrenaline group experienced such relapses even after 20 min. Fibrillations from asystole or pulseless electrical activity, shock resistant VF/VT and the number of rhythm transitions per patient was higher in the adrenalin group compared with the no-adrenalin group: 90% vs. 69%, P adrenaline had more rhythm transitions from ROSC and non-shockable rhythms to VF/VT. © 2013 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Word-by-word entrainment of speech rhythm during joint story building

    Directory of Open Access Journals (Sweden)

    Tommi eHimberg

    2015-06-01

    Full Text Available Movements and behaviour synchronise during social interaction at many levels, often unintentionally. During smooth conversation, for example, participants adapt to each others' speech rates. Here we aimed to find out to which extent speakers adapt their turn-taking rhythms during a story-building game.Nine sex-matched dyads of adults (12 males, 6 females created two 5-min stories by contributing to them alternatingly one word at a time. The participants were located in different rooms, with audio connection during one story and audiovisual during the other. They were free to select the topic of the story.Although the participants received no instructions regarding the timing of the story building, their word rhythms were highly entrained (R ̅ = 0.70, p < 0.001 even though the rhythms as such were unstable (R ̅ = 0.14 for pooled data. Such high entrainment in the absence of steady word rhythm occurred in every individual story, independently of whether the subjects were connected via audio-only or audiovisual link.The observed entrainment was of similar strength as typical entrainment in finger-tapping tasks where participants are specifically instructed to synchronize their behaviour. Thus speech seems to spontaneously induce strong entrainment between the conversation partners, likely reflecting automatic alignment of their semantic and syntactic processes.

  10. Circadian rhythms regulate amelogenesis.

    Science.gov (United States)

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-07-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Social memory in the rat: circadian variation and effect of circadian rhythm disruption

    NARCIS (Netherlands)

    Reijmers, L.G.J.E.; Leus, I.E.; Burbach, J.P.H.; Spruijt, B.M.; Ree, van J.M.

    2001-01-01

    Disruption of circadian rhythm can impair long-term passive avoidance memory of rats and mice. The present study investigated whether disruption of circadian rhythm can also impair social memory of male rats. Social memory was assessed using the social discrimination test, in which a short-term

  12. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver

    NARCIS (Netherlands)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-01-01

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms

  13. Rhythms of EEG and cognitive processes

    Directory of Open Access Journals (Sweden)

    Novikova S.I.

    2015-06-01

    Full Text Available The study of cognitive processes is regarded to be more effective if it combines a psychological approach with a neurophysiological one. This approach makes it possible to come closer to understanding of the basic mechanisms of different cognitive processes, to describe the patterns of forming these mechanisms in ontogenesis, to investigate the origin of cognitive impairments, and to develop intervention techniques. The promising way of investigating the mechanisms of cognitive functions is the electroencephalography (EEG. This is a non-invasive, safe, and relatively cheap method of research of the functional condition of the brain. The characteristics of EEG rhythms, recorded with different cognitive loads, reflect the processes of functional modulation of neural network activity of the cortex, which serves the neurophysiologic basis for attention, memory and other cognitive processes. The article provides an overview of works containing the analysis of the alpha and theta rhythms’ dynamics in various states of wakefulness. It also introduces the substantiation of methodology of functional regulatory approach to the interpretation of behaviors of EEG rhythms.

  14. Action experience, more than observation, influences mu rhythm desynchronization.

    Directory of Open Access Journals (Sweden)

    Erin N Cannon

    Full Text Available Since the discovery of mirror neurons in premotor and parietal areas of the macaque monkey, the idea that action and perception may share the same neural code has been of central interest in social, developmental, and cognitive neurosciences. A fundamental question concerns how a putative human mirror neuron system may be tuned to the motor experiences of the individual. The current study tested the hypothesis that prior motor experience modulated the sensorimotor mu and beta rhythms. Specifically, we hypothesized that these sensorimotor rhythms would be more desynchronized after active motor experience compared to passive observation experience. To test our hypothesis, we collected EEG from adult participants during the observation of a relatively novel action: an experimenter used a claw-like tool to pick up a toy. Prior to EEG collection, we trained one group of adults to perform this action with the tool (performers. A second group comprised trained video coders, who only had experience observing the action (observers. Both the performers and the observers had no prior motor and visual experience with the action. A third group of novices was also tested. Performers exhibited the greatest mu rhythm desynchronization in the 8-13 Hz band, particularly in the right hemisphere compared to observers and novices. This study is the first to contrast active tool-use experience and observation experience in the mu rhythm and to show modulation with relatively shorter amounts of experience than prior mirror neuron expertise studies. These findings are discussed with respect to its broader implication as a neural signature for a mechanism of early social learning.

  15. Circadian rhythm of pineal uptake of 32P in domestic fowl

    International Nuclear Information System (INIS)

    Sackman, J.W.

    1977-01-01

    The uptake of radioactive phosphorus by the pineal gland in White Leghorn cockerels (Gallus domesticus) showed a diurnal variation with maxima in the light phase and minima in the dark phase of the light: dark cycle. Constant light caused the rhythm to disappear while constant dark had no effect other than lowering the amplitude of the variations. These data indicate that the rhythm in pineal uptake of 32 P is circadian. (author)

  16. Adrenal, thyroid, and testicular hormone rhythms in male golden hamsters on long and short days

    International Nuclear Information System (INIS)

    Ottenweller, J.E.; Tapp, W.N.; Pitman, D.L.; Natelson, B.H.

    1987-01-01

    Plasma concentrations of adrenal, thyroid, and testicular hormones were measured at 4-h intervals around the clock in male hamsters on long (14:10-h light-dark cycle) and short (10:14-h light-dark cycle) days. Plasma corticosterone, cortisol, thyroxine (T 4 ), triiodothyronine (T 3 ), and testosterone rhythms were present on long days. The only one of these hormones to have a significant rhythm on short days was cortisol, but even its amplitude was suppressed compared with the cortisol rhythm on long days. Short days also lowered mean plasma levels of cortisol, T 4 , T 3 , and testosterone. Finally, short days raised the ratio of corticosterone to cortisol and lowered the ratio of T 4 to T 3 . Both ratios had significant rhythms on long days but not on short days. Because of the many interactions among adrenal, thyroid, and testicular hormone axes, it is unclear whether the primary effect of short days is on one of these endocrine systems or on another factor that has separate effects on each of the hormone rhythms that was measured. Nonetheless, it is clear that a major effect of short day lengths in hamsters is to suppress hormone rhythms. Explanations of photoperiodic effects that depend on endocrine mediation should take this into account

  17. Feeding cycle-dependent circulating insulin fluctuation is not a dominant Zeitgeber for mouse peripheral clocks except in the liver: Differences between endogenous and exogenous insulin effects.

    Science.gov (United States)

    Oishi, Katsutaka; Yasumoto, Yuki; Higo-Yamamoto, Sayaka; Yamamoto, Saori; Ohkura, Naoki

    2017-01-29

    The master clock in the suprachiasmatic nucleus synchronizes peripheral clocks via humoral and neural signals in mammals. Insulin is thought to be a critical Zeitgeber (synchronizer) for peripheral clocks because it induces transient clock gene expression in cultured cells. However, the extent to which fluctuations in feeding-dependent endogenous insulin affect the temporal expression of clock genes remains unclear. We therefore investigated the temporal expression profiles of clock genes in the peripheral tissues of mice fed for 8 h during either the daytime (DF) or the nighttime (NF) for one week to determine the involvement of feeding cycle-dependent endogenous insulin rhythms in the circadian regulation of peripheral clocks. The phase of circulating insulin fluctuations was reversed in DF compared with NF mice, although those of circulating corticosterone fluctuations and nocturnal locomotor activity were identical between these mice. The reversed feeding cycle affected the circadian phases of Per1 and Per2 gene expression in the liver and not in heart, lung, white adipose and skeletal muscle tissues. On the other hand, injected exogenous insulin significantly induced Akt phosphorylation in the heart and skeletal muscle as well as the liver, and significantly induced Per1 and Per2 gene expression in all examined tissues. These findings suggest that feeding cycles and feeding cycle-dependent endogenous insulin fluctuations are not dominant entrainment signals for peripheral clocks other than the liver, although exogenous insulin might reset peripheral oscillators in mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Psychology of the Embrace: How Body Rhythms Communicate the Need to Indulge or Separate.

    Science.gov (United States)

    Koch, Sabine C; Rautner, Helena

    2017-11-29

    In the context of embodiment research, there has been a growing interest in phenomena of interpersonal resonance. Given that haptic communication is particularly under-researched, we focused on the phenomenon of embracing. When we embrace a dear friend to say good-bye at the end of a great evening, we typically first employ smooth and yielding movements with round transitions between muscular tensing and relaxing ( smooth , indulging rhythms ), and when the embrace is getting too long, we start to use slight patting ( sharp , fighting rhythms with sharp transitions) on the back or the shoulders of the partner in order to indicate that we now want to end the embrace. On the ground of interpersonal resonance, most persons (per-sonare, latin = to sound through) understand these implicit nonverbal signals, expressed in haptic tension-flow changes, and will react accordingly. To experimentally test the hypothesis that smooth, indulgent rhythms signal the wish to continue, and sharp, fighting rhythms signal the wish to separate from an embrace, we randomly assigned 64 participants, all students at the University of Heidelberg, to two differently sequenced embrace conditions: (a) with the fighting rhythm at the end of the sequence of two indulgent rhythms (Sequence A: smooth-smooth-sharp); and (b) with the fighting rhythm between two indulgent rhythms (Sequence B: smooth-sharp-smooth). Participants were embraced for 30 s by a female confe-derate with their eyes blindfolded to focus on haptic and kinesthetic cues without being distracted by visual cues. They were instructed to let go of a handkerchief that they held between the fingers of their dominant hand during the embrace, when they felt that the embracer signaled the wish to finish the embrace. Participants significantly more often dropped the handkerchief in the phase of the fighting rhythm, no matter in which location it occurred in the embrace sequence. We assume that we learn such rhythmic behaviors and their

  19. Absence of Circadian Rhythms of Preterm Premature Rupture of Membranes and Preterm Placental Abruption

    Science.gov (United States)

    Luque-Fernandez, Miguel Angel; Ananth, Cande V.; Sanchez, Sixto E.; Qiu, Chun-fang; Hernandez-Diaz, Sonia; Valdimarsdottir, Unnur; Gelaye, Bizu; Williams, Michelle A.

    2014-01-01

    Purpose Data regarding circadian rhythm in the onset of spontaneous preterm premature rupture of membranes (PROM) and placental abruption (PA) cases are conflicting. We modeled the time of onset of preterm PROM and PA cases and examined if the circadian profiles varied based on the gestational age at delivery. Methods We used parametric and nonparametric methods, including trigonometric regression in the framework of generalized linear models, to test the presence of circadian rhythms in the time of onset of preterm PROM and PA cases, among 395 women who delivered a singleton between 2009 and 2010 in Lima, Peru. Results We found a diurnal circadian pattern, with a morning peak at 07h:32’ (95%CI:05h:46’ – 09h:18’) among moderate preterm PROM cases (P-value<0.001), and some evidence of a diurnal circadian periodicity among PA cases in term infants (P-value=0.067). However, we did not find evidence of circadian rhythms in the time of onset of extremely or very preterm PROM (P-value=0.259) and preterm PA (P-value=0.224). Conclusions The circadian rhythms of the time of onset of preterm PROM and PA cases varied based on gestational weeks at delivery. While circadian rhythms were presented among moderate preterm PROM and term PA cases, there was no evidence of circadian rhythms among preterm PA and very or extremely preterm PROM cases, underlying other mechanisms associated with the time of onset. PMID:25453346

  20. Interaction between endogenous and exogenous orienting in crossmodal attention.

    Science.gov (United States)

    Chen, Xiaoxi; Chen, Qi; Gao, Dingguo; Yue, Zhenzhu

    2012-08-01

    Using a cue-target paradigm, we investigated the interaction between endogenous and exogenous orienting in cross-modal attention. A peripheral (exogenous) cue was presented after a central (endogenous) cue with a variable time interval. The endogenous and exogenous cues were presented in one sensory modality (auditory in Experiment 1 and visual in Experiment 2) whereas the target was presented in another modality. Both experiments showed a significant endogenous cuing effect (longer reaction times in the invalid condition than in the valid condition). However, exogenous cuing produced a facilitatory effect in both experiments in response to the target when endogenous cuing was valid, but it elicited a facilitatory effect in Experiment 1 and an inhibitory effect in Experiment 2 when endogenous cuing was invalid. These findings indicate that endogenous and exogenous cuing can co-operate in orienting attention to the crossmodal target. Moreover, the interaction between endogenous and exogenous orienting of attention is modulated by the modality between the cue and the target. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  1. Effect of Spaceflight on the Circadian Rhythm, Lifespan and Gene Expression of Drosophila melanogaster

    Science.gov (United States)

    Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821

  2. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Lingling Ma

    Full Text Available Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.

  3. Rhythm-based Analysis As A Different Way Of Viewing Work Life In A School

    DEFF Research Database (Denmark)

    Clausen, Jacob

    This abstract is about rhythms and how professionals struggle to balance two categories of rhythms in a public school. The teachers at this school clearly expressed that they had a common denominator in regards to their work life, being that they did not have enough time to do their work....... Their understanding of time were always audible and they were very verbal about their frustrations in relation to time (pressure). The full article is about rhythms in a specific public school as a way to gather a new perspective on work life....

  4. Are human endogenous retroviruses triggers of autoimmune diseases?

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Villesen, Palle; Nissen, Kari K

    2016-01-01

    factors. Viruses including human endogenous retroviruses have long been linked to the occurrence of autoimmunity, but never proven to be causative factors. Endogenous viruses are retroviral sequences embedded in the host germline DNA and transmitted vertically through successive generations in a Mendelian...... manner. In this study by means of genetic epidemiology, we have searched for the involvement of endogenous retroviruses in three selected autoimmune diseases: multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. We found that at least one human endogenous retroviral locus...

  5. Contagion risk in endogenous financial networks

    International Nuclear Information System (INIS)

    Li, Shouwei; Sui, Xin

    2016-01-01

    Highlights: • We propose an endogenous financial network model. • Endogenous networks include interbank networks, inter-firm networks and bank-firm networks. • We investigate contagion risk in endogenous financial networks. - Abstract: In this paper, we investigate contagion risk in an endogenous financial network, which is characterized by credit relationships connecting downstream and upstream firms, interbank credit relationships and credit relationships connecting firms and banks. The findings suggest that: increasing the number of potential lenders randomly selected can lead to an increase in the number of bank bankruptcies, while the number of firm bankruptcies presents a trend of increase after the decrease; after the intensity of choice parameter rises beyond a threshold, the number of bankruptcies in three sectors (downstream firms, upstream firms and banks) shows a relatively large margin of increase, and keeps at a relatively high level; there exists different trends for bankruptcies in different sectors with the change of the parameter of credits’ interest rates.

  6. Endogenous price flexibility and optimal monetary policy

    OpenAIRE

    Ozge Senay; Alan Sutherland

    2014-01-01

    Much of the literature on optimal monetary policy uses models in which the degree of nominal price flexibility is exogenous. There are, however, good reasons to suppose that the degree of price flexibility adjusts endogenously to changes in monetary conditions. This article extends the standard new Keynesian model to incorporate an endogenous degree of price flexibility. The model shows that endogenizing the degree of price flexibility tends to shift optimal monetary policy towards complete i...

  7. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.

    Science.gov (United States)

    Liberman, Tamara; Velluti, Ricardo A; Pedemonte, Marisa

    2009-11-17

    The hippocampal theta rhythm is associated with the processing of sensory systems such as touch, smell, vision and hearing, as well as with motor activity, the modulation of autonomic processes such as cardiac rhythm, and learning and memory processes. The discovery of temporal correlation (phase locking) between the theta rhythm and both visual and auditory neuronal activity has led us to postulate the participation of such rhythm in the temporal processing of sensory information. In addition, changes in attention can modify both the theta rhythm and the auditory and visual sensory activity. The present report tested the hypothesis that the temporal correlation between auditory neuronal discharges in the inferior colliculus central nucleus (ICc) and the hippocampal theta rhythm could be enhanced by changes in sensory stimulation. We presented chronically implanted guinea pigs with auditory stimuli that varied over time, and recorded the auditory response during wakefulness. It was observed that the stimulation shifts were capable of producing the temporal phase correlations between the theta rhythm and the ICc unit firing, and they differed depending on the stimulus change performed. Such correlations disappeared approximately 6 s after the change presentation. Furthermore, the power of the hippocampal theta rhythm increased in half of the cases presented with a stimulation change. Based on these data, we propose that the degree of correlation between the unitary activity and the hippocampal theta rhythm varies with--and therefore may signal--stimulus novelty.

  8. Reducing language to rhythm: Amazonian Bora drummed language exploits speech rhythm for long-distance communication

    Science.gov (United States)

    Seifart, Frank; Meyer, Julien; Grawunder, Sven; Dentel, Laure

    2018-04-01

    Many drum communication systems around the world transmit information by emulating tonal and rhythmic patterns of spoken languages in sequences of drumbeats. Their rhythmic characteristics, in particular, have not been systematically studied so far, although understanding them represents a rare occasion for providing an original insight into the basic units of speech rhythm as selected by natural speech practices directly based on beats. Here, we analyse a corpus of Bora drum communication from the northwest Amazon, which is nowadays endangered with extinction. We show that four rhythmic units are encoded in the length of pauses between beats. We argue that these units correspond to vowel-to-vowel intervals with different numbers of consonants and vowel lengths. By contrast, aligning beats with syllables, mora or only vowel length yields inconsistent results. Moreover, we also show that Bora drummed messages conventionally select rhythmically distinct markers to further distinguish words. The two phonological tones represented in drummed speech encode only few lexical contrasts. Rhythm thus appears to crucially contribute to the intelligibility of drummed Bora. Our study provides novel evidence for the role of rhythmic structures composed of vowel-to-vowel intervals in the complex puzzle concerning the redundancy and distinctiveness of acoustic features embedded in speech.

  9. The Role of Rhythm in Speech and Language Rehabilitation: The SEP Hypothesis.

    Science.gov (United States)

    Fujii, Shinya; Wan, Catherine Y

    2014-01-01

    For thousands of years, human beings have engaged in rhythmic activities such as drumming, dancing, and singing. Rhythm can be a powerful medium to stimulate communication and social interactions, due to the strong sensorimotor coupling. For example, the mere presence of an underlying beat or pulse can result in spontaneous motor responses such as hand clapping, foot stepping, and rhythmic vocalizations. Examining the relationship between rhythm and speech is fundamental not only to our understanding of the origins of human communication but also in the treatment of neurological disorders. In this paper, we explore whether rhythm has therapeutic potential for promoting recovery from speech and language dysfunctions. Although clinical studies are limited to date, existing experimental evidence demonstrates rich rhythmic organization in both music and language, as well as overlapping brain networks that are crucial in the design of rehabilitation approaches. Here, we propose the "SEP" hypothesis, which postulates that (1) "sound envelope processing" and (2) "synchronization and entrainment to pulse" may help stimulate brain networks that underlie human communication. Ultimately, we hope that the SEP hypothesis will provide a useful framework for facilitating rhythm-based research in various patient populations.

  10. Sleep- and circadian rhythm-associated pathways as therapeutic targets in bipolar disorder.

    Science.gov (United States)

    Bellivier, Frank; Geoffroy, Pierre-Alexis; Etain, Bruno; Scott, Jan

    2015-06-01

    Disruptions in sleep and circadian rhythms are observed in individuals with bipolar disorders (BD), both during acute mood episodes and remission. Such abnormalities may relate to dysfunction of the molecular circadian clock and could offer a target for new drugs. This review focuses on clinical, actigraphic, biochemical and genetic biomarkers of BDs, as well as animal and cellular models, and highlights that sleep and circadian rhythm disturbances are closely linked to the susceptibility to BDs and vulnerability to mood relapses. As lithium is likely to act as a synchronizer and stabilizer of circadian rhythms, we will review pharmacogenetic studies testing circadian gene polymorphisms and prophylactic response to lithium. Interventions such as sleep deprivation, light therapy and psychological therapies may also target sleep and circadian disruptions in BDs efficiently for treatment and prevention of bipolar depression. We suggest that future research should clarify the associations between sleep and circadian rhythm disturbances and alterations of the molecular clock in order to identify critical targets within the circadian pathway. The investigation of such targets using human cellular models or animal models combined with 'omics' approaches are crucial steps for new drug development.

  11. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaper, Tasso J., E-mail: tasso@bu.edu; Kramer, Mark A., E-mail: mak@bu.edu [Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215 (United States); Rotstein, Horacio G., E-mail: horacio@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

  12. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    International Nuclear Information System (INIS)

    Kaper, Tasso J.; Kramer, Mark A.; Rotstein, Horacio G.

    2013-01-01

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases

  13. Mozart, Mozart Rhythm and Retrograde Mozart Effects: Evidences from Behaviours and Neurobiology Bases.

    Science.gov (United States)

    Xing, Yingshou; Xia, Yang; Kendrick, Keith; Liu, Xiuxiu; Wang, Maosen; Wu, Dan; Yang, Hua; Jing, Wei; Guo, Daqing; Yao, Dezhong

    2016-01-21

    The phenomenal finding that listening to Mozart K.448 enhances performance on spatial tasks has motivated a continuous surge in promoting music education over the past two decades. But there have been inconsistent reports in previous studies of the Mozart effect. Here conducted was a systematic study, with Mozart and retrograde Mozart music, Mozart music rhythm and pitch, behaviours and neurobiology tests, rats and humans subjects. We show that while the Mozart K.448 has positive cognitive effects, the retrograde version has a negative effect on rats' performance in the Morris water maze test and on human subjects' performance in the paper folding and cutting test and the pencil-and-paper maze test. Such findings are further confirmed by subsequent immunohistochemical analyses in rats on the neurogenesis and protein levels of BDNF and its receptor, TrkB. Furthermore, when the rhythm and pitch of the normal and retrograde Mozart music are manipulated independently, the learning performance of the rats in the Morris water maze test indicated that rhythm is a crucial element in producing the behavioural effects. These findings suggest that the nature of Mozart effect is the Mozart rhythm effect, and indicate that different music may have quite different to opposite effects. Further study on rhythm effect may provide clues to understand the common basis over animals from rats to humans.

  14. Endogenous Pyrogen Physiology.

    Science.gov (United States)

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  15. Parkinsonian syndromes presenting with circadian rhythm sleep disorder- advanced sleep-phase type.

    Science.gov (United States)

    Shukla, Garima; Kaul, Bhavna; Gupta, Anupama; Goyal, Vinay; Behari, Madhuri

    2015-01-01

    Circadian rhythm sleep disorder-advanced sleep-phase type is a relatively uncommon disorder, mostly seen among the elderly population. Impaired circadian rhythms have been reported in neurodegenerative conditions; however, there are no reports of any circadian rhythm sleep disorder among patients with Parkinsonian syndromes. We report two patients who presented with this circadian rhythm disorder, and were then diagnosed with a Parkinsonian syndrome. The cases. A 65-year-old retired man presented with history of abrupt change in sleep schedules, sleeping around 6.30-7 p.m. and waking up around 3-4 a.m. for the last 2 months. On detailed examination, the patient was observed to have symmetrical bradykinesia and cogwheel rigidity of limbs. A diagnosis of multiple system atrophy was made, supported by MRI findings and evidence of autonomic dysfunction. Symptoms of change in sleep-wake cycles resolved over the next 1 year, while the patient was treated with dopaminergic therapy. A 47-year-old man, who was being evaluated for presurgical investigation for refractory temporal lobe epilepsy, presented with complaints suggestive of dysarthria, bradykinesia of limbs and frequent falls for 5 months. Simultaneously, he began to sleep around 7 p.m. and wake up at about 2-3 a.m. Examination revealed severe axial rigidity, restricted vertical gaze and bradykinesia of limbs. A diagnosis of progressive supranuclear palsy was made. This is the first report of Parkinson's plus syndromes presenting with a circadian rhythm sleep disorder-advanced sleep-phase type. More prospective assessment for circadian sleep disorders may introduce useful insights into similar associations. Copyright 2015, NMJI.

  16. Circadian rhythm characteristics of oral squamous cell carcinoma growth in an orthotopic xenograft model

    Directory of Open Access Journals (Sweden)

    Zhao NB

    2013-01-01

    Full Text Available Ningbo Zhao,* Hong Tang,* Kai Yang, Dan Chen Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China*These authors contributed equally to this workBackground: Recent studies show that circadian rhythm changes are closely related to the occurrence and development of various tumors, such as breast, liver, and prostate. However, there are significant differences in circadian rhythm between different tumors. At present, the circadian rhythm characteristics of oral cancer remain unknown. The purpose of this study is to investigate the circadian rhythm characteristics of the in vivo growth of oral squamous cell carcinoma (OSCC.Materials and methods: Thirty-two nude mice were placed under 12-hour light/12-hour dark cycles. The human OSCC cell line BcaCD885 was inoculated in the cheek of nude mice. After 3 weeks, eight mice were sacrificed at four time points, including 4 hours after light onset (HALO, 10 HALO, 16 HALO, and 22 HALO, during a period of 24 hours. The volume of excised tumors was measured and the proliferative index (PI and apoptotic index (AI of tumor cells were determined by flow cytometry. A cosine analysis method was used to determine whether the tumor volume, PI, and AI obeyed a circadian rhythm.Results: There was a significant circadian rhythm in the tumor volume and PI of OSCC cells. For the tumor volume, there were significant differences between the four time points. The peak and trough values of the tumor volume appeared at 3.23 HALO and 15.23 HALO, whereas the peak and trough values of PI appeared at 6.60 HALO and 18.16 HALO, respectively. However, there was no circadian rhythm in the AI of tumor cells, despite significant differences between the four time points.Conclusion: This study demonstrates, for the first time, that the tumor volume and PI of in vivo growing OSCC undergo circadian rhythms. These results support the assertion that time factor should be

  17. Working night shifts affects surgeons' biological rhythm

    DEFF Research Database (Denmark)

    Amirian, Ilda; Andersen, Lærke T; Rosenberg, Jacob

    2015-01-01

    BACKGROUND: Chronic sleep deprivation combined with work during the night is known to affect performance and compromise residents' own safety. The aim of this study was to examine markers of circadian rhythm and the sleep-wake cycle in surgeons working night shifts. METHODS: Surgeons were monitor...

  18. Transcutaneous electrical nerve stimulation (TENS) improves the rest-activity rhythm in midstage Alzheimer's disease

    NARCIS (Netherlands)

    Scherder, E. J.; van Someren, E. J.; Swaab, D. F.

    1999-01-01

    Nightly restlessness in patients with Alzheimer's disease (AD) is probably due to a disorder of circadian rhythms. Transcutaneous electrical nerve stimulation (TENS) was previously reported to increase the strength of coupling of the circadian rest activity rhythm to Zeitgebers in early stage

  19. Regulation of reproduction by the circadian rhythms.

    Science.gov (United States)

    Zhang, Wen-Xiang; Chen, Si-Yu; Liu, Chang

    2016-12-25

    Mammals synchronize their circadian activity primarily to the cycles of light and darkness in the environment. Circadian rhythm is controlled by the central clock in the hypothalamic suprachiasmatic nucleus (SCN) and the peripheral clocks in various tissues. More importantly, the central clock can integrate photic/nonphotic signals to generate rhythmic outputs, and then drive the slave oscillators in peripheral tissues through neuroendocrine and behavioral signals. Human reproductive activities, as some other physiological functions, are controlled by the biological clocks. Accumulating lines of epidemiological and genetic evidence indicate that disruption of circadian clock can be directly involved in multiple pathological processes, including infertility. In this review, we mainly discuss the presence of a circadian clock in reproductive tissues and its roles in follicles development, ovulation, spermatogenesis, fertilization and embryo implantation, etc. As the increased shift work and assisted reproductive technologies possibly disrupt circadian rhythmicity to impact reproduction, the importance of circadian rhythms should be highlighted in the regulation of reproductive process.

  20. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study.

    Science.gov (United States)

    Collado, María Carmen; Engen, Phillip A; Bandín, Cristina; Cabrera-Rubio, Raúl; Voigt, Robin M; Green, Stefan J; Naqib, Ankur; Keshavarzian, Ali; Scheer, Frank A J L; Garaulet, Marta

    2018-04-01

    The composition of the diet (what we eat) has been widely related to the microbiota profile. However, whether the timing of food consumption (when we eat) influences microbiota in humans is unknown. A randomized, crossover study was performed in 10 healthy normal-weight young women to test the effect of the timing of food intake on the human microbiota in the saliva and fecal samples. More specifically, to determine whether eating late alters daily rhythms of human salivary microbiota, we interrogated salivary microbiota in samples obtained at 4 specific time points over 24 h, to achieve a better understanding of the relationship between food timing and metabolic alterations in humans. Results revealed significant diurnal rhythms in salivary diversity and bacterial relative abundance ( i.e., TM7 and Fusobacteria) across both early and late eating conditions. More importantly, meal timing affected diurnal rhythms in diversity of salivary microbiota toward an inverted rhythm between the eating conditions, and eating late increased the number of putative proinflammatory taxa, showing a diurnal rhythm in the saliva. In a randomized, crossover study, we showed for the first time the impact of the timing of food intake on human salivary microbiota. Eating the main meal late inverts the daily rhythm of salivary microbiota diversity which may have a deleterious effect on the metabolism of the host.-Collado, M. C., Engen, P. A., Bandín, C., Cabrera-Rubio, R., Voigt, R. M., Green, S. J., Naqib, A., Keshavarzian, A., Scheer, F. A. J. L., Garaulet, M. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study.

  1. Biological behaviour of cucumbers depending on rhythm of seed irradiation with laser beam

    International Nuclear Information System (INIS)

    Cholakov, D.

    1997-01-01

    The aim of the study was to determine the optimal parameters of laser stimulation and obtained as a result resonance activation of phytohormones responsible for growth and formation of generative organs. The influence of the rhythm of irradiation on its effect was investigated. Cucumber seeds from the Bulgarian salad cultivar Gergana were irradiated with helium-neon laser of 632.8 nm wave length and exit power 20 mw. Besides control samples, the following irradiation groups were examined: 7-times on the 28th day before sowing (variant 7); 7-times in rhythm - 4-times on the 28th and 3-times on the 14th day before sowing (4+3); 7-times in rhythm - 3-times on the 28th and 3-times on the 14th and once on the day before sowing (3+3+1); 7-times in rhythm - 2-times on the 28th, the 21st and the 14th day and once on the day before sowing (2+2+2+1); 7-times in rhythm - once on the 28th, 24th, 20th, 16th, 12th, 8th and 4th day before sowing (1+1+1+1+1+1+1). There was the highest radiobiological effect at the rhythm of irradiation (2+2+2+1) and (1+1+1+1+1+1+1). The rhythmical application of radiation dose ensures better accumulation of the polarized light by the plant cells. The change of their electric vectors accelerates their growth and forces the physiological and biochemical processes. As a result the early yield has been increased respectively by 15.6% and 12% and the total standard yield - by 15.4% and 11.7%

  2. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory.

    Science.gov (United States)

    Wei, Ting-Ying; Chang, Da-Wei; Liu, You-De; Liu, Chen-Wei; Young, Chung-Ping; Liang, Sheng-Fu; Shaw, Fu-Zen

    2017-11-13

    Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.

  3. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    Directory of Open Access Journals (Sweden)

    Otto Appenzeller

    Full Text Available Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.

  4. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal

    Science.gov (United States)

    Fisk, Angus S.; Tam, Shu K. E.; Brown, Laurence A.; Vyazovskiy, Vladyslav V.; Bannerman, David M.; Peirson, Stuart N.

    2018-01-01

    Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses. PMID:29479335

  5. Development of the cortisol circadian rhythm in the light of stress early in life.

    Science.gov (United States)

    Simons, Sterre S H; Beijers, Roseriet; Cillessen, Antonius H N; de Weerth, Carolina

    2015-12-01

    The secretion of the stress hormone cortisol follows a diurnal circadian rhythm. There are indications that this rhythm is affected by stress early in life. This paper addresses the development of the cortisol circadian rhythm between 1 and 6 years of age, and the role of maternal stress and anxiety early in the child's life on this (developing) rhythm. Participants were 193 healthy mother-child dyads from a community sample. Self-reported maternal stress and anxiety and physiological stress (saliva cortisol), were assessed prenatally (gestational week 37). Postnatally, self-reported maternal stress and anxiety were measured at 3, 6, 12, 30, and 72 months. Saliva cortisol samples from the children were collected on two days (four times each day) at 12, 30, and 72 months of age. The total amount of cortisol during the day and the cortisol decline over the day were determined to indicate children's cortisol circadian rhythm. Multilevel analyses showed that the total amount of cortisol decreased between 1 and 6 years. Furthermore, more maternal pregnancy-specific stress was related to higher total amounts of cortisol in the child. Higher levels of early postnatal maternal anxiety were associated with flatter cortisol declines in children. Higher levels of early postnatal maternal daily hassles were associated with steeper child cortisol declines over the day. These results indicated developmental change in children's cortisol secretion from 1 to 6 years and associations between maternal stress and anxiety early in children's lives and children's cortisol circadian rhythm in early childhood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Estrous correlated modulations of circadian and ultradian wheel-running activity rhythms in LEW/Ztm rats

    OpenAIRE

    Wollnik, Franziska; Turek, Fred W.

    1988-01-01

    Estrogen treatment alters the expression of ultradian activity rhythms in male and female LEW/Ztm rats. This finding raises the possibility that the expression of ultradian rhythms may vary on different days of the estrous cycle. To test this hypothesis, we recorded the circadian and ultradian wheel-running activity rhythms of entrained (LD 12:12) and free-running sexually mature LEW/Ztm females during their 4- or 5-day estrous cycle. The mean daily activity, the duration of activity, the cir...

  7. Endogenous money: the evolutionary versus revolutionary views

    OpenAIRE

    Louis-Philippe Rochon; Sergio Rossi

    2013-01-01

    The purpose of this paper is to shed light on the endogenous nature of money. Contrary to the established post-Keynesian, or evolutionary, view, this paper argues that money has always been endogenous, irrespective of the historical period. Instead of the evolutionary theory of money and banking that can be traced back to Chick (1986), this paper puts forward a revolutionary definition of endogenous money consistent with many aspects of post-Keynesian economics as well as with the monetary ci...

  8. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2.

    Science.gov (United States)

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter; Thomsen, Morten B

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2 -/- mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT 100 = QT/(RR/100) 1/2 ). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QT mean-RR ). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2 -/- (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2 -/- mice. Circadian rhythms in QT 100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2 -/- , respectively (p = 0.15). A diurnal rhythm in QT 100 intervals was only found in WT mice. QT mean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2 -/- . The amplitude of the circadian rhythm in QT mean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2 -/- , respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.

  9. Psychology of the Embrace: How Body Rhythms Communicate the Need to Indulge or Separate

    Directory of Open Access Journals (Sweden)

    Sabine C. Koch

    2017-11-01

    Full Text Available In the context of embodiment research, there has been a growing interest in phenomena of interpersonal resonance. Given that haptic communication is particularly under-researched, we focused on the phenomenon of embracing. When we embrace a dear friend to say good-bye at the end of a great evening, we typically first employ smooth and yielding movements with round transitions between muscular tensing and relaxing (smooth, indulging rhythms, and when the embrace is getting too long, we start to use slight patting (sharp, fighting rhythms with sharp transitions on the back or the shoulders of the partner in order to indicate that we now want to end the embrace. On the ground of interpersonal resonance, most persons (per-sonare, latin = to sound through understand these implicit nonverbal signals, expressed in haptic tension-flow changes, and will react accordingly. To experimentally test the hypothesis that smooth, indulgent rhythms signal the wish to continue, and sharp, fighting rhythms signal the wish to separate from an embrace, we randomly assigned 64 participants, all students at the University of Heidelberg, to two differently sequenced embrace conditions: (a with the fighting rhythm at the end of the sequence of two indulgent rhythms (Sequence A: smooth-smooth-sharp; and (b with the fighting rhythm between two indulgent rhythms (Sequence B: smooth-sharp-smooth. Participants were embraced for 30 s by a female confe­derate with their eyes blindfolded to focus on haptic and kinesthetic cues without being distracted by visual cues. They were instructed to let go of a handkerchief that they held between the fingers of their dominant hand during the embrace, when they felt that the embracer signaled the wish to finish the embrace. Participants significantly more often dropped the handkerchief in the phase of the fighting rhythm, no matter in which location it occurred in the embrace sequence. We assume that we learn such rhythmic behaviors and

  10. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks.

    Science.gov (United States)

    Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin

    2018-05-01

    Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.

  11. Light Rhythms in Architecture

    DEFF Research Database (Denmark)

    Bülow, Katja

    2013-01-01

    On one hand, urban lighting expresses itself in a complex visual environment made by the interplay by between many separate lighting schemes, as street lighting, shop lighting, luminous commercials etc. On the other, a noticeable order of patterns occurs, when lighting is observed as luminous...... formation and rhythm. When integrated into an architectural concept, electrical lighting non-intended for poetic composition has the ability to contribute to place, time, and function-telling aspects of places in urban contexts. Urban environments are information wise challenging to pre-historic human...... instincts, but they can be met by careful selection and adjustment of existing light situations....

  12. Endogenous Peer Effects: Fact or Fiction?

    Science.gov (United States)

    Yeung, Ryan; Nguyen-Hoang, Phuong

    2016-01-01

    The authors examine endogenous peer effects, which occur when a student's behavior or outcome is a function of the behavior or outcome of his or her peer group. Endogenous peer effects have important implications for educational policies such as busing, school choice and tracking. In this study, the authors quantitatively review the literature on…

  13. Turn exchange rhythm in English dialogues

    Science.gov (United States)

    Fon, Janice

    2005-09-01

    This study looked at the relationship between rhythm and exchange type in British English, a stress-timed language, and Singaporean English, a syllable-timed language, using a spontaneous speech corpus. Exchange intervals (EIs), or the time difference between the end of one speaker and the beginning of another, were measured and exchanges of different types were labeled. Results showed that, in a dialogue, EIs were generally limited to a narrow range. However, within this range, EIs had at least four functions. First, EIs were reflective of the cognitive load and functioned as a way to differentiate various exchange types. Those requiring more cognitive resources, such as question-and-answer pairs, generally needed longer EIs than those not as cognitively loaded, such as backchanneling pairs. Second, EIs were indicative of linguistic rhythm. Singaporean English tended to have shorter EIs than British English. Third, EIs were reflective of politeness. The degree of politeness correlated negatively with EI. Shorter EIs showed a higher degree of respect. Finally, EIs were also indicative of the level of insecurity of a speaker, which was best reflected by gender differences. Females in general had longer EIs than males.

  14. Opportunities for detection and use of QTL influencing seasonal reproduction in sheep: a review

    Directory of Open Access Journals (Sweden)

    Notter David R

    2005-12-01

    Full Text Available Abstract Genetic improvement in traits associated with seasonal breeding in sheep is challenging because these traits have low heritabilities, are generally not expressed until late in life, are commonly recorded only in females, and are expressed only in some lambing seasons and management systems. Detection of quantitative trait loci and their use in marker-assisted selection could therefore substantially enhance selection responses. A population of sheep with an extended breeding season was developed through selection for fertility in spring matings and provides opportunities for further study of candidate genes influencing seasonal breeding. In particular, the melatonin receptor 1a gene is polymorphic in many sheep breeds and appears to influence a number of seasonal reproductive responses. In addition, a variety of clock genes have been identified in laboratory mammals and shown to influence biological rhythms. Mutations in these clock genes have been identified and shown to influence circadian periodicities and reproductive patterns in golden hamster and mouse. In sheep, expression of clock genes in the suprachaismatic nucleus and pars tuberalis (PT suggests that "calendar" cells in the ovine PT play a role in maintaining circannual rhythms. Thus the various clock genes represent potentially important candidate genes that may be involved in control of seasonal breeding.

  15. Light pollution alters the phenology of dawn and dusk singing in common European songbirds.

    Science.gov (United States)

    Da Silva, Arnaud; Valcu, Mihai; Kempenaers, Bart

    2015-05-05

    Artificial night lighting is expanding globally, but its ecological consequences remain little understood. Animals often use changes in day length as a cue to time seasonal behaviour. Artificial night lighting may influence the perception of day length, and may thus affect both circadian and circannual rhythms. Over a 3.5 month period, from winter to breeding, we recorded daily singing activity of six common songbird species in 12 woodland sites, half of which were affected by street lighting. We previously reported on analyses suggesting that artificial night lighting affects the daily timing of singing in five species. The main aim of this study was to investigate whether the presence of artificial night lighting is also associated with the seasonal occurrence of dawn and dusk singing. We found that in four species dawn and dusk singing developed earlier in the year at sites exposed to light pollution. We also examined the effects of weather conditions and found that rain and low temperatures negatively affected the occurrence of dawn and dusk singing. Our results support the hypothesis that artificial night lighting alters natural seasonal rhythms, independently of other effects of urbanization. The fitness consequences of the observed changes in seasonal timing of behaviour remain unknown.

  16. Circadian rhythm of leaf movement in Capsicum annuum observed during centrifugation

    Science.gov (United States)

    Chapman, D. K.; Brown, A. H.; Dahl, A. O.

    1975-01-01

    Plant circadian rhythms of leaf movement in seedlings of the pepper plant (Capsicum annuum L., var. Yolo Wonder) were observed at different g-levels by means of a centrifuge. Except for the chronically imposed g-force all environmental conditions to which the plants were exposed were held constant. The circadian period, rate of change of amplitude of successive oscillations, symmetry of the cycles, and phase of the rhythm all were found not to be significantly correlated with the magnitude of the sustained g-force.

  17. Adolescents at clinical-high risk for psychosis: Circadian rhythm disturbances predict worsened prognosis at 1-year follow-up.

    Science.gov (United States)

    Lunsford-Avery, Jessica R; Gonçalves, Bruno da Silva Brandão; Brietzke, Elisa; Bressan, Rodrigo A; Gadelha, Ary; Auerbach, Randy P; Mittal, Vijay A

    2017-11-01

    Individuals with psychotic disorders experience disruptions to both the sleep and circadian components of the sleep/wake cycle. Recent evidence has supported a role of sleep disturbances in emerging psychosis. However, less is known about how circadian rhythm disruptions may relate to psychosis symptoms and prognosis for adolescents with clinical high-risk (CHR) syndromes. The present study examines circadian rest/activity rhythms in CHR and healthy control (HC) youth to clarify the relationships among circadian rhythm disturbance, psychosis symptoms, psychosocial functioning, and the longitudinal course of illness. Thirty-four CHR and 32 HC participants were administered a baseline evaluation, which included clinical interviews, 5days of actigraphy, and a sleep/activity diary. CHR (n=29) participants were re-administered clinical interviews at a 1-year follow-up assessment. Relative to HC, CHR youth exhibited more fragmented circadian rhythms and later onset of nocturnal rest. Circadian disturbances (fragmented rhythms, low daily activity) were associated with increased psychotic symptom severity among CHR participants at baseline. Circadian disruptions (lower daily activity, rhythms that were more fragmented and/or desynchronized with the light/dark cycle) also predicted severity of psychosis symptoms and psychosocial impairment at 1-year follow-up among CHR youth. Circadian rhythm disturbances may represent a potential vulnerability marker for emergence of psychosis, and thus, rest/activity rhythm stabilization has promise to inform early-identification and prevention/intervention strategies for CHR youth. Future studies with longer study designs are necessary to further examine circadian rhythms in the prodromal period and rates of conversion to psychosis among CHR teens. Copyright © 2017. Published by Elsevier B.V.

  18. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats.

    Science.gov (United States)

    Souza, Leonardo C; Martynhak, Bruno J; Bassani, Taysa B; Turnes, Joelle de M; Machado, Meira M; Moura, Eric; Andreatini, Roberto; Vital, Maria A B F

    2018-05-01

    Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model. Copyright © 2018. Published by Elsevier Inc.

  19. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    Science.gov (United States)

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  20. Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music

    Directory of Open Access Journals (Sweden)

    Peter eVuust

    2014-10-01

    Full Text Available Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of predictive coding, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a predictive coding model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (‘rhythm’ and the brain’s anticipatory structuring of music (‘meter’. Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the predictive coding theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

  1. Therapeutic targeting strategies using endogenous cells and proteins.

    Science.gov (United States)

    Parayath, Neha N; Amiji, Mansoor M

    2017-07-28

    Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of Melodic Rhythm on Elementary Students' and College Undergraduates' Perceptions of Relative Tempo.

    Science.gov (United States)

    Duke, Robert A.

    1989-01-01

    Uses extant musical examples as stimuli in order to assess the effect of melodic rhythm as a determinant of relative tempo as perceived by college undergraduates and elementary students. Results indicate that subjects responded to the melodic rhythm as well as the beat when making tempo judgments. (LS)

  3. 59 eyes with endogenous endophthalmitis

    DEFF Research Database (Denmark)

    Bjerrum, Søren Solborg; la Cour, Morten

    2017-01-01

    BACKGROUND: To study the epidemiology of patients with endogenous endophthalmitis in Denmark. MATERIAL AND METHODS: Retrospective and prospective case series of 59 eyes in patients with endogenous endophthalmitis in Denmark between 2000 and 2016. RESULTS: The age of the patients ranged from 28 to......, the visual outcome and the mortality of the patients. The epidemiology of the disease is very different in Scandinavia compared to Asia. The visual prognosis remains grave and the majority of the eyes lose useful vision....

  4. Non-24-Hour Sleep–Wake Rhythm Disorder in the Totally Blind: Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Maria Antonia Quera Salva

    2017-12-01

    Full Text Available Several aspects of human physiology and behavior are dominated by 24-h circadian rhythms with key impacts on health and well-being. These include mainly the sleep–wake cycle, vigilance and performance patterns, and some hormone secretions. The rhythms are generated spontaneously by an internal “pacemaker,” the suprachiasmatic nuclei within the anterior hypothalamus. This master clock has, for most humans, an intrinsic rhythm slightly longer than 24 h. Daily retinal light exposure is necessary for the synchronization of the circadian rhythms with the external 24-h solar environment. This daily synchronization process generally poses no problems for sighted individuals except in the context of jetlag or working night shifts being conditions of circadian desynchrony. However, many blind subjects with no light perception had periodical circadian desynchrony, in the absence of light information to the master clock leading to poor circadian rhythm synchronization. Affected patients experience cyclical or periodic episodes of poor sleep and daytime dysfunction, severely interfering with social, academic, and professional life. The diagnosis of Non-24 Sleep–Wake Rhythm Disorder, also named free-running disorder, non-entrained disorder, or hypernycthemeral syndrome, remains challenging from a clinical point of view due to the cyclical symptoms and should be confirmed by measurements of circadian biomarkers such as urinary melatonin to demonstrate a circadian period outside the normal range. Management includes behavioral modification and melatonin. Tasimelteon, a novel melatonin receptor 1 and 2 agonist, has demonstrated its effectiveness and safety with an evening dose of 20 mg and is currently the only treatment approved by the FDA and the European Medicines Agency.

  5. Independent effects of endogenous and exogenous attention in touch.

    Science.gov (United States)

    Jones, Alexander; Forster, Bettina

    2013-12-01

    Endogenous and exogenous attention in touch have typically been investigated separately. Here we use a double-cueing paradigm manipulating both types of orienting in each trial. Bilateral endogenous cues induced long-lasting facilitation of endogenous attention up to 2 s. However, the exogenous cue only elicited an effect at short intervals. Our results favour a supramodal account of attention and this study provides new insight into how endogenous and exogenous attention operates in the tactile modality.

  6. Effects of N-acetylcysteine and imipramine in a model of acute rhythm disruption in BALB/c mice.

    Science.gov (United States)

    Pilz, Luísa K; Trojan, Yasmine; Quiles, Caroline L; Benvenutti, Radharani; Melo, Gabriela; Levandovski, Rosa; Hidalgo, Maria Paz L; Elisabetsky, Elaine

    2015-03-01

    Circadian rhythm disturbances are among the risk factors for depression, but specific animal models are lacking. This study aimed to characterize the effects of acute rhythm disruption in mice and investigate the effects of imipramine and N-acetylcysteine (NAC) on rhythm disruption-induced changes. Mice were exposed to 12:12-hour followed by 10:10-hour light:dark cycles (LD); under the latter, mice were treated with saline, imipramine or NAC. Rhythms of rest/activity and temperature were assessed with actigraphs and iButtons, respectively. Hole-board and social preference tests were performed at the beginning of the experiment and again at the 8th 10:10 LD, when plasma corticosterone and IL-6 levels were also assessed. Actograms showed that the 10:10 LD schedule prevents the entrainment of temperature and activity rhythms for at least 13 cycles. Subsequent light regimen change activity and temperature amplitudes showed similar patterns of decline followed by recovery attempts. During the 10:10 LD schedule, activity and temperature amplitudes were significantly decreased (paired t test), an effect exacerbated by imipramine (ANOVA/SNK). The 10:10 LD schedule increased anxiety (paired t test), an effect prevented by NAC (30 mg/kg). This study identified mild but significant behavioral changes at specific time points after light regimen change. We suggest that if repeated overtime, these subtle changes may contribute to lasting behavioral disturbancess relevant to anxiety and mood disorders. Data suggest that imipramine may contribute to sustained rhythm disturbances, while NAC appears to prevent rhythm disruption-induced anxiety. Associations between sleep/circadian disturbances and the recurrence of depressive episodes underscore the relevance of potential drug-induced maintenance of disturbed rhythms.

  7. A visual analytics design for studying rhythm patterns from human daily movement data

    Directory of Open Access Journals (Sweden)

    Wei Zeng

    2017-06-01

    Full Text Available Human’s daily movements exhibit high regularity in a space–time context that typically forms circadian rhythms. Understanding the rhythms for human daily movements is of high interest to a variety of parties from urban planners, transportation analysts, to business strategists. In this paper, we present an interactive visual analytics design for understanding and utilizing data collected from tracking human’s movements. The resulting system identifies and visually presents frequent human movement rhythms to support interactive exploration and analysis of the data over space and time. Case studies using real-world human movement data, including massive urban public transportation data in Singapore and the MIT reality mining dataset, and interviews with transportation researches were conducted to demonstrate the effectiveness and usefulness of our system.

  8. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar

    Science.gov (United States)

    Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William

    2016-01-01

    Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation. PMID:27494172

  9. Effects of irradiation on the circadian rhythm in the release of peptides in the suprachiasmatic nucleus culture

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kimihiko [Yokohama City Univ. (Japan). School of Medicine

    2000-03-01

    Mammalian circadian rhythms are regulated by the circadian clock which is located in the hypothalamic suprachiasmatic nucleus (SCN). In the present study, we examined the effect of irradiation on the circadian rhythm in the release of arginine-vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) in slice cultures of the rat SCN. The effect of irradiation on the glial cell proliferation in the SCN culture was also examined by the immunohistochemical method. In SCN cultures which received irradiation, circadian rhythms in the release of AVP and VIP were detected, as observed in the SCN culture not irradiated. However, the AVP and VIP rhythms showed various phase angle differences in some cultures irradiated, which suggested that irradiation caused a looseness of coupling between AVP and VIP oscillators. On the other hand, the number of glial cells was decreased by irradiation. These results suggested that the dissociation of the two peptide rhythms after irradiation might be due to the inhibition of glial cell proliferation. Furthermore, the radiation changed the amplitude of AVP and VIP rhythms, suggesting that couplings within both AVP and VIP oscillators were influenced by irradiation. (author)

  10. Effects of irradiation on the circadian rhythm in the release of peptides in the suprachiasmatic nucleus culture

    International Nuclear Information System (INIS)

    Saito, Kimihiko

    2000-01-01

    Mammalian circadian rhythms are regulated by the circadian clock which is located in the hypothalamic suprachiasmatic nucleus (SCN). In the present study, we examined the effect of irradiation on the circadian rhythm in the release of arginine-vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) in slice cultures of the rat SCN. The effect of irradiation on the glial cell proliferation in the SCN culture was also examined by the immunohistochemical method. In SCN cultures which received irradiation, circadian rhythms in the release of AVP and VIP were detected, as observed in the SCN culture not irradiated. However, the AVP and VIP rhythms showed various phase angle differences in some cultures irradiated, which suggested that irradiation caused a looseness of coupling between AVP and VIP oscillators. On the other hand, the number of glial cells was decreased by irradiation. These results suggested that the dissociation of the two peptide rhythms after irradiation might be due to the inhibition of glial cell proliferation. Furthermore, the radiation changed the amplitude of AVP and VIP rhythms, suggesting that couplings within both AVP and VIP oscillators were influenced by irradiation. (author)

  11. Algorithm for personal identification in distance learning system based on registration of keyboard rhythm

    Science.gov (United States)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Sivandaev, S. V.

    2018-05-01

    The article describes the method of identifying a person in distance learning systems based on a keyboard rhythm. An algorithm for the organization of access control is proposed, which implements authentication, identification and verification of a person using the keyboard rhythm. Authentication methods based on biometric personal parameters, including those based on the keyboard rhythm, due to the inexistence of biometric characteristics without a particular person, are able to provide an advanced accuracy and inability to refuse authorship and convenience for operators of automated systems, in comparison with other methods of conformity checking. Methods of permanent hidden keyboard monitoring allow detecting the substitution of a student and blocking the key system.

  12. Cortisol, reaction time test and health among offshore shift workers

    DEFF Research Database (Denmark)

    Harris, Anette; Waage, Siri; Ursin, Holger

    2010-01-01

    The stress hormone cortisol shows a pronounced endogenous diurnal rhythm, which is affected by the sleep/wake cycle, meals and activity. Shift work and especially night work disrupts the sleep/wake cycle and causes a desynchronization of the natural biological rhythms. Therefore, different shift...

  13. Endogenous versus exogenous shocks in systems with memory

    Science.gov (United States)

    Sornette, D.; Helmstetter, A.

    2003-02-01

    Systems with long-range persistence and memory are shown to exhibit different precursory as well as recovery patterns in response to shocks of exogenous versus endogenous origins. By endogenous, we envision either fluctuations resulting from an underlying chaotic dynamics or from a stochastic forcing origin which may be external or be an effective coarse-grained description of the microscopic fluctuations. In this scenario, endogenous shocks result from a kind of constructive interference of accumulated fluctuations whose impacts survive longer than the large shocks themselves. As a consequence, the recovery after an endogenous shock is in general slower at early times and can be at long times either slower or faster than after an exogenous perturbation. This offers the tantalizing possibility of distinguishing between an endogenous versus exogenous cause of a given shock, even when there is no “smoking gun”. This could help in investigating the exogenous versus self-organized origins in problems such as the causes of major biological extinctions, of change of weather regimes and of the climate, in tracing the source of social upheaval and wars, and so on. Sornette et al., Volatility fingerprints of large stocks: endogenous versus exogenous, cond-mat/0204626 has already shown how this concept can be applied concretely to differentiate the effects on financial markets of the 11 September 2001 attack or of the coup against Gorbachev on 19 August 1991 (exogenous) from financial crashes such as October 1987 (endogenous).

  14. Delayed Circadian Rhythm in Adults with Attention-Deficit/Hyperactivity Disorder and Chronic Sleep-Onset Insomnia

    NARCIS (Netherlands)

    van Veen, M.M.; Kooij, J.J.S; Boonstra, A. M.; Gordijn, M.C.M.; van Someren, E.J.W.

    2010-01-01

    Background: Previous studies suggest circadian rhythm disturbances in children with attention-deficit/hyperactivity disorder (ADHD) and sleep-onset insomnia (SOI). We investigate here sleep and rhythms in activity and melatonin in adults with ADHD. Methods: Sleep logs and actigraphy data were

  15. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception

    Science.gov (United States)

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance. PMID:27313900

  16. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis

    Science.gov (United States)

    Hausdorff, J. M.; Lertratanakul, A.; Cudkowicz, M. E.; Peterson, A. L.; Kaliton, D.; Goldberger, A. L.

    2000-01-01

    Amyotrophic lateral sclerosis (ALS) is a disorder marked by loss of motoneurons. We hypothesized that subjects with ALS would have an altered gait rhythm, with an increase in both the magnitude of the stride-to-stride fluctuations and perturbations in the fluctuation dynamics. To test for this locomotor instability, we quantitatively compared the gait rhythm of subjects with ALS with that of normal controls and with that of subjects with Parkinson's disease (PD) and Huntington's disease (HD), pathologies of the basal ganglia. Subjects walked for 5 min at their usual pace wearing an ankle-worn recorder that enabled determination of the duration of each stride and of stride-to-stride fluctuations. We found that the gait of patients with ALS is less steady and more temporally disorganized compared with that of healthy controls. In addition, advanced ALS, HD, and PD were associated with certain common, as well as apparently distinct, features of altered stride dynamics. Thus stride-to-stride control of gait rhythm is apparently compromised with ALS. Moreover, a matrix of markers based on gait dynamics may be useful in characterizing certain pathologies of motor control and, possibly, in quantitatively monitoring disease progression and evaluating therapeutic interventions.

  17. Redox rhythm reinforces the circadian clock to gate immune response.

    Science.gov (United States)

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  18. A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG.

    Science.gov (United States)

    Cona, F; Zavaglia, M; Massimini, M; Rosanova, M; Ursino, M

    2011-08-01

    Knowledge of cortical rhythms represents an important aspect of modern neuroscience, to understand how the brain realizes its functions. Recent data suggest that different regions in the brain may exhibit distinct electroencephalogram (EEG) rhythms when perturbed by Transcranial Magnetic Stimulation (TMS) and that these rhythms can change due to the connectivity among regions. In this context, in silico simulations may help the validation of these hypotheses that would be difficult to be verified in vivo. Neural mass models can be very useful to simulate specific aspects of electrical brain activity and, above all, to analyze and identify the overall frequency content of EEG in a cortical region of interest (ROI). In this work we implemented a model of connectivity among cortical regions to fit the impulse responses in three ROIs recorded during a series of TMS/EEG experiments performed in five subjects and using three different impulse intensities. In particular we investigated Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe). Results show that the model can reproduce the natural rhythms of the three regions quite well, acting on a few internal parameters. Moreover, the model can explain most rhythm changes induced by stimulation of another region, and inter-subject variability, by estimating just a few long-range connectivity parameters among ROIs. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Facial nerve activity disrupts psychomotor rhythms in the forehead microvasculature.

    Science.gov (United States)

    Drummond, Peter D; O'Brien, Geraldine

    2011-10-28

    Forehead blood flow was monitored in seven participants with a unilateral facial nerve lesion during relaxation, respiratory biofeedback and a sad documentary. Vascular waves at 0.1Hz strengthened during respiratory biofeedback, in tune with breathing cycles that also averaged 0.1Hz. In addition, a psychomotor rhythm at 0.15Hz was more prominent in vascular waveforms on the denervated than intact side of the forehead, both before and during relaxation and the sad documentary. These findings suggest that parasympathetic activity in the facial nerve interferes with the psychomotor rhythm in the forehead microvasculature. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  1. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  2. International Environmental Agreements with Endogenous or Exogenous Risk

    OpenAIRE

    Fuhai Hong; Larry Karp

    2014-01-01

    We examine the effect of endogenous and exogenous risk on the equilibrium (expected) membership of an International Environmental Agreement when countries are risk averse. Endogenous risk arises when countries use mixed rather than pure strategies at the participation game, and exogenous risk arises from the inherent uncertainty about the costs and benefits of increased abate- ment. Under endogenous risk, an increase in risk aversion increases expected participation. Under exogenous risk and ...

  3. The sensory-motor theory of rhythm and beat induction 20 years on: A new synthesis and future perspectives.

    Directory of Open Access Journals (Sweden)

    Neil Philip Todd

    2015-08-01

    Full Text Available Some 20 years ago Todd and colleagues proposed that rhythm perception is mediated by the conjunction of a sensory representation of the auditory input and a motor representation of the body (Todd 1994, 1995, and that a sense of motion from sound is mediated by the vestibular system (Todd 1992, 1993. These ideas were developed into a sensory-motor theory of rhythm and beat induction (Todd et al. 1999. A neurological substrate was proposed which might form the biological basis of the theory (Todd et al. 2002. The theory was implemented as a computational model and a number of experiments conducted to test it. In the following time there have been several key developments. One is the demonstration that the vestibular system is primal to rhythm perception, and in related work several experiments have provided further evidence that rhythm perception is body dependent. Another is independent advances in imaging, which have revealed the brain areas associated with both vestibular processing and rhythm perception. A third is the finding that vestibular receptors contribute to auditory evoked potentials (Todd et al. 2014ab. These behavioural and neurobiological developments demand a theoretical overview which could provide a new synthesis over the domain of rhythm perception. In this paper we suggest four propositions as the basis for such a synthesis. (1 Rhythm perception is a form of vestibular perception; (2 Rhythm perception evokes both external and internal guidance of somatotopic representations; (3 A link from the limbic system to the internal guidance pathway mediates the dance habit; (4 The vestibular reward mechanism is innate. The new synthesis provides an explanation for a number of phenomena not often considered by rhythm researchers. We discuss these along with possible computational implementations and alternative models and propose a number of new directions for future research.

  4. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish.

    Directory of Open Access Journals (Sweden)

    Xinle Li

    Full Text Available In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.

  5. F0-based rhythm effects on the perception of local syllable prominence

    DEFF Research Database (Denmark)

    Niebuhr, Oliver

    2009-01-01

    of the global rhythmic context with regard to both the prominence and the F(0) patterns. Two conclusions were drawn on this basis. First, listeners use speech rhythm to predict the perceptual properties of syllables, which is in line with the guide function that speech rhythm is assumed to have in German...

  6. Daily rhythms of the sleep-wake cycle

    Directory of Open Access Journals (Sweden)

    Waterhouse Jim

    2012-03-01

    Full Text Available Abstract The amount and timing of sleep and sleep architecture (sleep stages are determined by several factors, important among which are the environment, circadian rhythms and time awake. Separating the roles played by these factors requires specific protocols, including the constant routine and altered sleep-wake schedules. Results from such protocols have led to the discovery of the factors that determine the amounts and distribution of slow wave and rapid eye movement sleep as well as to the development of models to determine the amount and timing of sleep. One successful model postulates two processes. The first is process S, which is due to sleep pressure (and increases with time awake and is attributed to a 'sleep homeostat'. Process S reverses during slow wave sleep (when it is called process S'. The second is process C, which shows a daily rhythm that is parallel to the rhythm of core temperature. Processes S and C combine approximately additively to determine the times of sleep onset and waking. The model has proved useful in describing normal sleep in adults. Current work aims to identify the detailed nature of processes S and C. The model can also be applied to circumstances when the sleep-wake cycle is different from the norm in some way. These circumstances include: those who are poor sleepers or short sleepers; the role an individual's chronotype (a measure of how the timing of the individual's preferred sleep-wake cycle compares with the average for a population; and changes in the sleep-wake cycle with age, particularly in adolescence and aging, since individuals tend to prefer to go to sleep later during adolescence and earlier in old age. In all circumstances, the evidence that sleep times and architecture are altered and the possible causes of these changes (including altered S, S' and C processes are examined.

  7. Importance of Endogenous Fibrinolysis in Platelet Thrombus Formation.

    Science.gov (United States)

    Gue, Ying X; Gorog, Diana A

    2017-08-25

    The processes of thrombosis and coagulation are finely regulated by endogenous fibrinolysis maintaining healthy equilibrium. When the balance is altered in favour of platelet activation and/or coagulation, or if endogenous fibrinolysis becomes less efficient, pathological thrombosis can occur. Arterial thrombosis remains a major cause of morbidity and mortality in the world despite advances in medical therapies. The role endogenous fibrinolysis in the pathogenesis of arterial thrombosis has gained increasing attention in recent years as it presents novel ways to prevent and treat existing diseases. In this review article, we discuss the role of endogenous fibrinolysis in platelet thrombus formation, methods of measurement of fibrinolytic activity, its role in predicting cardiovascular diseases and clinical outcomes and future directions.

  8. Bimanual tapping of a syncopated rhythm reveals hemispheric preferences for relative movement frequencies.

    Science.gov (United States)

    Pflug, Anja; Gompf, Florian; Kell, Christian Alexander

    2017-08-01

    In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Circadian rhythm of blood pressure and the renin-angiotensin system in the kidney.

    Science.gov (United States)

    Ohashi, Naro; Isobe, Shinsuke; Ishigaki, Sayaka; Yasuda, Hideo

    2017-05-01

    Activation of the intrarenal renin-angiotensin system (RAS) has a critical role in the pathophysiology of the circadian rhythm of blood pressure (BP) and renal injury, independent of circulating RAS. Although it is clear that the circulating RAS has a circadian rhythm, reports of a circadian rhythm in tissue-specific RAS are limited. Clinical studies evaluating intrarenal RAS activity by urinary angiotensinogen (AGT) levels have indicated that urinary AGT levels were equally low during both the daytime and nighttime in individuals without chronic kidney disease (CKD) and that urinary AGT levels were higher during the daytime than at nighttime in patients with CKD. Moreover, urinary AGT levels of the night-to-day (N/D) ratio of urinary AGT were positively correlated with the levels of N/D of urinary protein, albumin excretion and BP. In addition, animal studies have demonstrated that the expression of intrarenal RAS components, such as AGT, angiotensin II (AngII) and AngII type 1 receptor proteins, increased and peaked at the same time as BP and urinary protein excretion during the resting phase, and the amplitude of the oscillations of these proteins was augmented in a chronic progressive nephritis animal compared with a control. Thus, the circadian rhythm of intrarenal RAS activation may lead to renal damage and hypertension, which both are associated with diurnal variations in BP. It is possible that augmented glomerular permeability increases AGT excretion levels into the tubular lumen and that circadian fluctuation of glomerular permeability influences the circadian rhythm of the intrarenal RAS.

  10. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians.

    Science.gov (United States)

    Bailey, Jennifer A; Penhune, Virginia B

    2010-07-01

    Behavioural and neuroimaging studies provide evidence for a possible "sensitive" period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.

  11. Hericium erinaceus extracts alter behavioral rhythm in mice.

    Science.gov (United States)

    Furuta, Shoko; Kuwahara, Rika; Hiraki, Eri; Ohnuki, Koichiro; Yasuo, Shinobu; Shimizu, Kuniyoshi

    2016-01-01

    Hericium erinaceus (HE), an edible mushroom, has been used as a herbal medicine in several Asian countries since ancient times. HE has potential as a medicine for the treatment and prevention of dementia, a disorder closely linked with circadian rhythm. This study investigated the effects of the intake of HE extracts on behavioral rhythm, photosensitivity of the circadian clock, and clock gene mRNA expression in the suprachiasmatic nucleus (SCN), a central clock, in mice. Although the HE ethanol extract only affected the offset time of activity, the HE water extract advanced the sleep-wake cycle without affecting the free-running period, photosensitivity, or the clock gene mRNA expression in SCN. In addition, both extracts decreased wakefulness around end of active phase. The findings of the present study suggest that HE may serve as a functional food in the prevention and treatment of Alzheimer's disease and delayed sleep phase syndrome.

  12. Synergetic fMRI-EEG brain mapping in alpha-rhythm voluntary control mode.

    Science.gov (United States)

    Shtark, M B; Verevkin, E G; Kozlova, L I; Mazhirina, K G; Pokrovskii, M A; Petrovskii, E D; Savelov, A A; Starostin, A S; Yarosh, S V

    2015-03-01

    For the first time in neurobiology-related issues, the synergistic spatial dynamics of EEG and fMRI (BOLD phenomenon) was studied during cognitive alpha biofeedback training in the operant conditioning mode (acoustic reinforcement of alpha-rhythm development and stability). Significant changes in alpha-rhythm intensity were found in T6 electrode area (Brodmann area 37). Brodmann areas related to solving alpha-training tasks and maximally involved in the formation of new neuronal network were middle and superior temporal gyri (areas 21, 22, and 37), fusiform gyrus, inferior frontal gyrus (areas 4, 6, and 46), anterior cingulate gyrus (areas 23 and 24), cuneus, and precuneus (area 7). Wide involvement of Brodmann areas is determined by psychological architecture of alpha-rhythm generating system control that includes complex cognitive activities: decision making, retrieval of long-term memory, evaluation of the reward and control efficiency during alpha-EEG biofeedback.

  13. Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Kiehn, O; Sillar, K T; Kjaerulff, O

    1999-01-01

    locomotor-like rhythm, in which activity alternated between the left and right sides, and between rostral and caudal roots on the same side. As shown previously, stable locomotor activity could be induced by bath application of N-methyl-D-aspartate (NMDA; 4-8.5 microM) and/or serotonin (5-HT; 4-20 micro......M). NA modulated this activity by decreasing the cycle frequency and increasing the ventral root burst duration. These effects were dose dependent in the concentration range 1-5 microM. In contrast, at no concentration tested did NA have consistent effects on burst amplitudes or on the background...... activity of the ongoing rhythm. Moreover, NA did not obviously affect the left/right and rostrocaudal alternation of the NMDA/5-HT rhythm. The NMDA/5-HT locomotor rhythm sometimes displayed a time-dependent breakdown in coordination, ultimately resulting in tonic ventral root activity. However...

  14. Bilateral endogenous Fusarium solani endophthalmitis in a liver-transplanted patient

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Skovlund; Prause, Jan Ulrik; Kiilgaard, Jens Folke

    2014-01-01

    Endogenous Fusarium endophthalmitis is a rare disease predominantly described in immunocompromised patients often due to leukemia. We report a case of bilateral endogenous Fusarium solani endophthalmitis in a liver-transplanted patient.......Endogenous Fusarium endophthalmitis is a rare disease predominantly described in immunocompromised patients often due to leukemia. We report a case of bilateral endogenous Fusarium solani endophthalmitis in a liver-transplanted patient....

  15. High beat-to-beat blood pressure variability in atrial fibrillation compared to sinus rhythm.

    Science.gov (United States)

    Olbers, Joakim; Gille, Adam; Ljungman, Petter; Rosenqvist, Mårten; Östergren, Jan; Witt, Nils

    2018-02-07

    Atrial fibrillation (AF) is associated with an increased risk for cardiovascular morbidity and mortality, not entirely explained by thromboembolism. The underlying mechanisms for this association are largely unknown. Similarly, high blood pressure (BP) increases the risk for cardiovascular events. Despite this the interplay between AF and BP is insufficiently studied. The purpose of this study was to examine and quantify the beat-to-beat blood pressure variability in patients with AF in comparison to a control group of patients with sinus rhythm. We studied 33 patients - 21 in atrial fibrillation and 12 in sinus rhythm - undergoing routine coronary angiography. Invasive blood pressure was recorded at three locations: radial artery, brachial artery and ascending aorta. Blood pressure variability, defined as average beat-to-beat blood pressure difference, was calculated for systolic and diastolic blood pressure at each site. We observed a significant difference (p blood pressure variability between the atrial fibrillation and sinus rhythm groups at all locations. Systolic blood pressure variability roughly doubled in the atrial fibrillation group compared to the sinus rhythm group (4.9 and 2.4 mmHg respectively). Diastolic beat-to-beat blood pressure variability was approximately 6 times as high in the atrial fibrillation group compared to the sinus rhythm group (7.5 and 1.2 mmHg respectively). No significant difference in blood pressure variability was seen between measurement locations. Beat-to-beat blood pressure variability in patients with atrial fibrillation was substantially higher than in patients with sinus rhythm. Hemodynamic effects of this beat-to-beat variation in blood pressure may negatively affect vascular structure and function, which may contribute to the increased cardiovascular morbidity and mortality seen in patients with atrial fibrillation.

  16. Relationship between neural rhythm generation disorders and physical disabilities in Parkinson's disease patients' walking.

    Science.gov (United States)

    Ota, Leo; Uchitomi, Hirotaka; Ogawa, Ken-ichiro; Orimo, Satoshi; Miyake, Yoshihiro

    2014-01-01

    Walking is generated by the interaction between neural rhythmic and physical activities. In fact, Parkinson's disease (PD), which is an example of disease, causes not only neural rhythm generation disorders but also physical disabilities. However, the relationship between neural rhythm generation disorders and physical disabilities has not been determined. The aim of this study was to identify the mechanism of gait rhythm generation. In former research, neural rhythm generation disorders in PD patients' walking were characterized by stride intervals, which are more variable and fluctuate randomly. The variability and fluctuation property were quantified using the coefficient of variation (CV) and scaling exponent α. Conversely, because walking is a dynamic process, postural reflex disorder (PRD) is considered the best way to estimate physical disabilities in walking. Therefore, we classified the severity of PRD using CV and α. Specifically, PD patients and healthy elderly were classified into three groups: no-PRD, mild-PRD, and obvious-PRD. We compared the contributions of CV and α to the accuracy of this classification. In this study, 45 PD patients and 17 healthy elderly people walked 200 m. The severity of PRD was determined using the modified Hoehn-Yahr scale (mH-Y). People with mH-Y scores of 2.5 and 3 had mild-PRD and obvious-PRD, respectively. As a result, CV differentiated no-PRD from PRD, indicating the correlation between CV and PRD. Considering that PRD is independent of neural rhythm generation, this result suggests the existence of feedback process from physical activities to neural rhythmic activities. Moreover, α differentiated obvious-PRD from mild-PRD. Considering α reflects the intensity of interaction between factors, this result suggests the change of the interaction. Therefore, the interaction between neural rhythmic and physical activities is thought to plays an important role for gait rhythm generation. These characteristics have

  17. Feeding Releases Endogenous Opioids in Humans.

    Science.gov (United States)

    Tuulari, Jetro J; Tuominen, Lauri; de Boer, Femke E; Hirvonen, Jussi; Helin, Semi; Nuutila, Pirjo; Nummenmaa, Lauri

    2017-08-23

    The endogenous opioid system supports a multitude of functions related to appetitive behavior in humans and animals, and it has been proposed to govern hedonic aspects of feeding thus contributing to the development of obesity. Here we used positron emission tomography to investigate whether feeding results in hedonia-dependent endogenous opioid release in humans. Ten healthy males were recruited for the study. They were scanned with the μ-opioid-specific ligand [ 11 C]carfentanil three times, as follows: after a palatable meal, a nonpalatable meal, and after an overnight fast. Subjective mood, satiety, and circulating hormone levels were measured. Feeding induced significant endogenous opioid release throughout the brain. This response was more pronounced following a nonpalatable meal versus a palatable meal, and independent of the subjective hedonic responses to feeding. We conclude that feeding consistently triggers cerebral opioid release even in the absence of subjective pleasure associated with feeding, suggesting that metabolic and homeostatic rather than exclusively hedonic responses play a role in the feeding-triggered cerebral opioid release. SIGNIFICANCE STATEMENT The endogenous opioid system supports both hedonic and homeostatic functions. It has been proposed that overeating and concomitant opioid release could downregulate opioid receptors and promote the development of obesity. However, it remains unresolved whether feeding leads to endogenous opioid release in humans. We used in vivo positron emission tomography to test whether feeding triggers cerebral opioid release and whether this response is associated with pleasurable sensations. We scanned volunteers using the μ-opioid receptor-specific radioligand [ 11 C]carfentanil three times, as follows: after an overnight fast, after consuming a palatable meal, and after consuming a nonpalatable meal. Feeding led to significant endogenous opioid release, and this occurred also in the absence of feeding

  18. Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome.

    Science.gov (United States)

    Hove, Michael J; Iversen, John R; Zhang, Allen; Repp, Bruno H

    2013-07-01

    Synchronization of finger taps with periodically flashing visual stimuli is known to be much more variable than synchronization with an auditory metronome. When one of these rhythms is the synchronization target and the other serves as a distracter at various temporal offsets, strong auditory dominance is observed. However, it has recently been shown that visuomotor synchronization improves substantially with moving stimuli such as a continuously bouncing ball. The present study pitted a bouncing ball against an auditory metronome in a target-distracter synchronization paradigm, with the participants being auditory experts (musicians) and visual experts (video gamers and ball players). Synchronization was still less variable with auditory than with visual target stimuli in both groups. For musicians, auditory stimuli tended to be more distracting than visual stimuli, whereas the opposite was the case for the visual experts. Overall, there was no main effect of distracter modality. Thus, a distracting spatiotemporal visual rhythm can be as effective as a distracting auditory rhythm in its capacity to perturb synchronous movement, but its effectiveness also depends on modality-specific expertise.

  19. Ethical and methodological standards for laboratory and medical biological rhythm research.

    Science.gov (United States)

    Portaluppi, Francesco; Touitou, Yvan; Smolensky, Michael H

    2008-11-01

    The main objectives of this article are to update the ethical standards for the conduct of human and animal biological rhythm research and recommend essential elements for quality chronobiological research information, which should be especially useful for new investigators of the rhythms of life. A secondary objective is to provide for those with an interest in the results of chronobiology investigations, but who might be unfamiliar with the field, an introduction to the basic methods and standards of biological rhythm research and time series data analysis. The journal and its editors endorse compliance of all investigators to the principles of the Declaration of Helsinki of the World Medical Association, which relate to the conduct of ethical research on human beings, and the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, which relate to the conduct of ethical research on laboratory and other animals. The editors and the readers of the journal expect the authors of submitted manuscripts to have adhered to the ethical standards dictated by local, national, and international laws and regulations in the conduct of investigations and to be unbiased and accurate in reporting never-before-published research findings. Authors of scientific papers are required to disclose all potential conflicts of interest, particularly when the research is funded in part or in full by the medical and pharmaceutical industry, when the authors are stock-holders of the company that manufactures or markets the products under study, or when the authors are a recent or current paid consultant to the involved company. It is the responsibility of the authors of submitted manuscripts to clearly present sufficient detail about the synchronizer schedule of the studied subjects (i.e., the sleep-wake schedule, ambient light-dark cycle, intensity and spectrum of ambient light exposure, seasons when the research was

  20. Circadian rhythms in effects of hypnotics and sleep inducers.

    Science.gov (United States)

    Reinberg, A

    1986-01-01

    Chronopharmacology involves the investigation of drug effects as a function of biological time and the investigation of drug effects on rhythm characteristics. Three new concepts must be considered: (a) the chronokinetics of a drug, embracing rhythmic (circadian) changes in drug bioavailability (or pharmacokinetics) and its excretion (urinary among others); (b) the chronaesthesia of a biosystem to a drug, i.e. circadian changes in the susceptibility of any biosystem to a drug (including organ systems, parasites, etc.); skin and bronchial chronaesthesia to various agents have been documented in man; and (c) the chronergy of a drug, taking into consideration its chronokinetics and the chronaesthesia of the involved organismic biosystems. The term chronergy includes rhythmic changes in the overall effects and in the effectiveness of some drugs. Clinical chronopharmacology is useful for solving problems of drug optimization, i.e. enhancing the desired efficiency of a drug and reducing its undesired effects. Circadian rhythms can be demonstrated in various effects of drugs on sleep, anaesthesia and related processes. For example, in the rat the duration of sleep induced by substances such as pentobarbital, hexobarbital, Althesin (alphaxadone and alphadoline in castor oil) is circadian system stage-dependent. Time-dependent changes of liver enzymes (e.g. hexobarbital oxidase) play a role in these circadian rhythms. The clinical chronopharmacokinetics of benzodiazepines have been documented in man. Chronopharmacologic methods can be used to study desired and undesired hypnotic effects of substances. Such is the case of new antihistamines (anti-H1), which do not induce sleepiness, in either acute or chronic administration. Pertinent also is the problem of intolerance to shift-work. Intolerant shift-workers are subject to internal desynchronization between at least two rhythms (e.g. activity-rest cycle and body temperature). Clinically these workers suffer from sleep

  1. The Endogenous-Exogenous Partition in Attribution Theory

    Science.gov (United States)

    Kruglanski, Arie W.

    1975-01-01

    Within lay explanation of actions, several significant inferences are assumed to follow from the partition between endogenous and exogenous attributions. An endogenous action is judged to constitute an end in itself; an exogenous action is judged to serve as a means to some further end. (Editor/RK)

  2. Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator.

    Directory of Open Access Journals (Sweden)

    Kevin R Hayes

    Full Text Available BACKGROUND: Plant diurnal rhythms are vital environmental adaptations to coordinate internal physiological responses to alternating day-night cycles. A comprehensive view of diurnal biology has been lacking for maize (Zea mays, a major world crop. METHODOLOGY: A photosynthetic tissue, the leaf, and a non-photosynthetic tissue, the developing ear, were sampled under natural field conditions. Genome-wide transcript profiling was conducted on a high-density 105 K Agilent microarray to investigate diurnal rhythms. CONCLUSIONS: In both leaves and ears, the core oscillators were intact and diurnally cycling. Maize core oscillator genes are found to be largely conserved with their Arabidopsis counterparts. Diurnal gene regulation occurs in leaves, with some 23% of expressed transcripts exhibiting a diurnal cycling pattern. These transcripts can be assigned to over 1700 gene ontology functional terms, underscoring the pervasive impact of diurnal rhythms on plant biology. Considering the peak expression time for each diurnally regulated gene, and its corresponding functional assignment, most gene functions display temporal enrichment in the day, often with distinct patterns, such as dawn or midday preferred, indicating that there is a staged procession of biological events undulating with the diurnal cycle. Notably, many gene functions display a bimodal enrichment flanking the midday photosynthetic maximum, with an initial peak in mid-morning followed by another peak during the afternoon/evening. In contrast to leaves, in developing ears as few as 47 gene transcripts are diurnally regulated, and this set of transcripts includes primarily the core oscillators. In developing ears, which are largely shielded from light, the core oscillator therefore is intact with little outward effect on transcription.

  3. THE PROCESSES OF ENDOGENIZING IN THE ENDOGENOUS GROWTH: THE CASE OF TURKEY

    Directory of Open Access Journals (Sweden)

    OSMAN DEMİR

    2013-06-01

    Full Text Available The aim of this study is to state how the main inputs of endogenous growth, i.e. knowledge, human capital and technological progress are made endogenous by education, R&D, university-industry cooperation, learning by doing and diffusion within the production process. Competitiveness of firms and countries would increase as educated people enter into workforce; as R&D produces new technologies which are used in the production process; as theoretical knowledge meets with practice by university-industry cooperation; and as workers have more experience by learning by doing. In empirical analysis for Turkey is made by using data of 1970-2001 term it was found that a positive relationship among labour and capital factors and GNP and a negative relationship among education expenditures and foreign trade volume and capital stock.

  4. Natural Rhythms and Temporal Perception - Visualization of Sunlight Patterns with Energy Monitoring

    OpenAIRE

    Opitz, Christoph

    2018-01-01

    In his book Ritual House, Ralph Knowles states, "The houses we inhabit, the cities surrounding our houses, even the clothes we wear - all are shelters we erect against the elements. But they are also manifestations of ancient rituals, developed in response to nature's rhythms" (2006). Implicit within this quote is the importance of nature's rhythms in our lives, particularly those related to the movement of the sun. Many built environments have no connection to the exterior. Those who work i...

  5. Routine versus aggressive upstream rhythm control for prevention of early atrial fibrillation in heart failure: background, aims and design of the RACE 3 study.

    Science.gov (United States)

    Alings, M; Smit, M D; Moes, M L; Crijns, H J G M; Tijssen, J G P; Brügemann, J; Hillege, H L; Lane, D A; Lip, G Y H; Smeets, J R L M; Tieleman, R G; Tukkie, R; Willems, F F; Vermond, R A; Van Veldhuisen, D J; Van Gelder, I C

    2013-07-01

    Rhythm control for atrial fibrillation (AF) is cumbersome because of its progressive nature caused by structural remodelling. Upstream therapy refers to therapeutic interventions aiming to modify the atrial substrate, leading to prevention of AF. The Routine versus Aggressive upstream rhythm Control for prevention of Early AF in heart failure (RACE 3) study hypothesises that aggressive upstream rhythm control increases persistence of sinus rhythm compared with conventional rhythm control in patients with early AF and mild-to-moderate early systolic or diastolic heart failure undergoing electrical cardioversion. RACE 3 is a prospective, randomised, open, multinational, multicenter trial. Upstream rhythm control consists of angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers, mineralocorticoid receptor antagonists, statins, cardiac rehabilitation therapy, and intensive counselling on dietary restrictions, exercise maintenance, and drug adherence. Conventional rhythm control consists of routine rhythm control therapy without cardiac rehabilitation therapy and intensive counselling. In both arms, every effort is made to keep patients in the rhythm control strategy, and ion channel antiarrhythmic drugs or pulmonary vein ablation may be instituted if AF relapses. Total inclusion will be 250 patients. If upstream therapy proves to be effective in improving maintenance of sinus rhythm, it could become a new approach to rhythm control supporting conventional pharmacological and non-pharmacological rhythm control.

  6. Circadian activity rhythms for mothers with an infant in ICU

    Directory of Open Access Journals (Sweden)

    Shih-Yu eLee

    2010-12-01

    Full Text Available Circadian rhythms influence sleep and wakefulness. Circadian activity rhythms (CAR are altered in individuals with dementia or seasonal affective disorder. To date, studies exploring CAR and sleep in postpartum women are rare. The purpose of this report is to describe relationships between CAR, sleep disturbance, and fatigue among 72 first-time mothers during their 2nd week postpartum while their newborn remain hospitalized in intensive care unit (ICU. Seventy two mothers were included in this secondary data analysis sample from three separate studies. Participants completed the General Sleep Disturbance Scale (GSDS, Numerical Rating Scale for Fatigue (NRS-F, and a sleep diary. The objective sleep data included total sleep time (TST, wake after sleep onset (WASO, and CAR determined by the circadian quotient (amplitude/mesor averaged from at least 48-hours of wrist actigraphy monitoring. The TST of mothers who self-reported as poor sleepers was 354 minutes (SEM= 21.9, with a mean WASO of 19.5% (SEM= 2.8. The overall sleep quality measured by the GSDS was clinically, significantly disrupted (M= 5.5, SD= 1.2. The mean score for morning fatigue was 5.8 (SD= 2.0, indicating moderate fatigue severity. The CAR was .62 (SEM= .04, indicating poor synchronization. The self-reported good sleepers (GSDS < 3 had better CAR (M= .71, SEM= .02 than poor sleepers (GSDS > 3 (t [70] = 2.0, p< .05. A higher circadian equation was associated with higher TST (r= .83, p<.001, less WASO (r= -.50, p< .001, lower self-reported sleep disturbance scores (r= -.35, p= .01, and less morning fatigue (r= -.26. Findings indicate that mothers with a hospitalized infant have both nocturnal sleep problems and disturbed circadian activity rhythms. Factors responsible for these sleep and rhythm disturbances, the adverse effects on mother’s physical and mental well-being, and mother-infant relationship require further study.

  7. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015

    Science.gov (United States)

    Auger, R. Robert; Burgess, Helen J.; Emens, Jonathan S.; Deriy, Ludmila V.; Thomas, Sherene M.; Sharkey, Katherine M.

    2015-01-01

    A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed. Citation: Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med 2015;11(10):1199–1236. PMID:26414986

  8. Suicide attempts in children and adolescents: The place of clock genes and early rhythm dysfunction.

    Science.gov (United States)

    Olliac, Bertrand; Ouss, Lisa; Charrier, Annaëlle

    2016-11-01

    Suicide remains one of the leading causes of death among young people, and suicidal ideation and behavior are relatively common in healthy and clinical populations. Suicide risk in childhood and adolescence is often approached from the perspective of nosographic categories to which predictive variables for suicidal acts are often linked. The cascading effects resulting from altered clock genes in a pediatric population could participate in biological rhythm abnormalities and the emergence of suicide attempts through impaired regulation of circadian rhythms and emotional states with neurodevelopmental effects. Also, early trauma and stressful life events can alter the expression of clock genes and contribute to the emergence of suicide attempts. Alteration of clock genes might lead to desynchronized and abnormal circadian rhythms impairing in turn the synchronization between external and internal rhythms and therefore the adaptation of the individual to his/her internal and external environment with the development of psychiatric disorders associated with increased risk for suicide attempts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    Science.gov (United States)

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  10. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair.

  11. Thalamic gap junctions control local neuronal synchrony and influence macroscopic oscillation amplitude during EEG alpha rhythms

    Directory of Open Access Journals (Sweden)

    Stuart eHughes

    2011-08-01

    Full Text Available Although EEG alpha ( (8-13 Hz rhythms are often considered to reflect an ‘idling’ brain state, numerous studies indicate that they are also related to many aspects of perception. Recently, we outlined a potential cellular substrate by which such aspects of perception might be linked to basic  rhythm mechanisms. This scheme relies on a specialized subset of rhythmically bursting thalamocortical (TC neurons (high-threshold bursting cells in the lateral geniculate nucleus (LGN which are interconnected by gap junctions (GJs. By engaging GABAergic interneurons, that in turn inhibit conventional relay-mode TC neurons, these cells can lead to an effective temporal framing of thalamic relay-mode output. Although the role of GJs is pivotal in this scheme, evidence for their involvement in thalamic  rhythms has thus far mainly derived from experiments in in vitro slice preparations. In addition, direct anatomical evidence of neuronal GJs in the LGN is currently lacking. To address the first of these issues we tested the effects of the GJ inhibitors, carbenoxolone (CBX and 18-glycyrrhetinic acid (18-GA, given directly to the LGN via reverse microdialysis, on spontaneous LGN and EEG  rhythms in behaving cats. We also examined the effect of CBX on  rhythm-related LGN unit activity. Indicative of a role for thalamic GJs in these activities, 18-GA and CBX reversibly suppressed both LGN and EEG  rhythms, with CBX also decreasing neuronal synchrony. To address the second point, we used electron microscopy to obtain definitive ultrastructural evidence for the presence of GJs between neurons in the cat LGN. As interneurons show no phenotypic evidence of GJ coupling (i.e. dye-coupling and spikelets we conclude that these GJs must belong to TC neurons. The potential significance of these findings for relating macroscopic changes in  rhythms to basic cellular processes is discussed.

  12. Applying Endogenous Knowledge in the African Context ...

    African Journals Online (AJOL)

    The question presented in this article is how to improve the dispute resolution competence of practitioners in Africa. The response offered involves enhancing the endogenous knowledge of a dispute and how to resolve it. This requires not only an understanding of what endogenous knowledge is, but also an alignment of ...

  13. Circadian changes in urinary Na + /K + ratio in humans: is there a ...

    African Journals Online (AJOL)

    Background: There are indications that the renal excretion of Na+ and K+ is affected by the body's circadian rhythm. Aldosterone is known to be the major determinant of urinary Na+/K+ ratio. However, recent reports suggest that the circadian rhythm of K+ excretion does not depend on endogenous aldosterone.

  14. Speech rhythm alterations in Spanish-speaking individuals with Alzheimer's disease.

    Science.gov (United States)

    Martínez-Sánchez, Francisco; Meilán, Juan J G; Vera-Ferrandiz, Juan Antonio; Carro, Juan; Pujante-Valverde, Isabel M; Ivanova, Olga; Carcavilla, Nuria

    2017-07-01

    Rhythm is the speech property related to the temporal organization of sounds. Considerable evidence is now available for suggesting that dementia of Alzheimer's type is associated with impairments in speech rhythm. The aim of this study is to assess the use of an automatic computerized system for measuring speech rhythm characteristics in an oral reading task performed by 45 patients with Alzheimer's disease (AD) compared with those same characteristics among 82 healthy older adults without a diagnosis of dementia, and matched by age, sex and cultural background. Ranges of rhythmic-metric and clinical measurements were applied. The results show rhythmic differences between the groups, with higher variability of syllabic intervals in AD patients. Signal processing algorithms applied to oral reading recordings prove to be capable of differentiating between AD patients and older adults without dementia with an accuracy of 87% (specificity 81.7%, sensitivity 82.2%), based on the standard deviation of the duration of syllabic intervals. Experimental results show that the syllabic variability measurements extracted from the speech signal can be used to distinguish between older adults without a diagnosis of dementia and those with AD, and may be useful as a tool for the objective study and quantification of speech deficits in AD.

  15. Alignment strategies for the entrainment of music and movement rhythms.

    Science.gov (United States)

    Moens, Bart; Leman, Marc

    2015-03-01

    Theories of entrainment assume that spontaneous entrainment emerges from dynamic laws that operate via mediators on interactions, whereby entrainment is facilitated if certain conditions are fulfilled. In this study, we show that mediators can be built that affect the entrainment of human locomotion to music. More specifically, we built D-Jogger, a music player that functions as a mediator between music and locomotion rhythms. The D-Jogger makes it possible to manipulate the timing differences between salient moments of the rhythms (beats and footfalls) through the manipulation of the musical period and phase, which affect the condition in which entrainment functions. We conducted several experiments to explore different strategies for manipulating the entrainment of locomotion and music. The results of these experiments showed that spontaneous entrainment can be manipulated, thereby suggesting different strategies on how to embark. The findings furthermore suggest a distinction among different modalities of entrainment: finding the beat (the most difficult part of entrainment), keeping the beat (easier, as a temporal scheme has been established), and being in phase (no entrainment is needed because the music is always adapted to the human rhythm). This study points to a new avenue of research on entrainment and opens new perspectives for the neuroscience of music. © 2014 New York Academy of Sciences.

  16. The Paradox of Isochrony in the Evolution of Human Rhythm

    Directory of Open Access Journals (Sweden)

    Andrea Ravignani

    2017-11-01

    Full Text Available Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general.

  17. Circadian rhythm disruption as a link between Attention-Deficit/Hyperactivity Disorder and obesity?

    Science.gov (United States)

    Vogel, Suzan W N; Bijlenga, Denise; Tanke, Marjolein; Bron, Tannetje I; van der Heijden, Kristiaan B; Swaab, Hanna; Beekman, Aartjan T F; Kooij, J J Sandra

    2015-11-01

    Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) have a high prevalence of obesity. This is the first study to investigate whether circadian rhythm disruption is a mechanism linking ADHD symptoms to obesity. ADHD symptoms and two manifestations of circadian rhythm disruption: sleep problems and an unstable eating pattern (skipping breakfast and binge eating later in the day) were assessed in participants with obesity (n= 114), controls (n= 154), and adult ADHD patients (n= 202). Participants with obesity had a higher prevalence of ADHD symptoms and short sleep on free days as compared to controls, but a lower prevalence of ADHD symptoms, short sleep on free days, and an unstable eating pattern as compared to ADHD patients.We found that participants with obesity had a similar prevalence rate of an unstable eating pattern when compared to controls. Moreover, mediation analyses showed that both sleep duration and an unstable eating pattern mediated the association between ADHD symptoms and body mass index (BMI). Our study supports the hypothesis that circadian rhythm disruption is a mechanism linking ADHD symptoms to obesity. Further research is needed to determine if treatment of ADHD and circadian rhythm disruption is effective in the prevention and treatment of obesity in patients with obesity and/or ADHD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm.

    Science.gov (United States)

    Bouchlariotou, Sofia; Liakopoulos, Vassilios; Giannopoulou, Myrto; Arampatzis, Spyridon; Eleftheriadis, Theodoros; Mertens, Peter R; Zintzaras, Elias; Messinis, Ioannis E; Stefanidis, Ioannis

    2014-08-01

    Non-dipping circadian blood pressure (BP) is a common finding in preeclampsia, accompanied by adverse outcomes. Melatonin plays pivotal role in biological circadian rhythms. This study investigated the relationship between melatonin secretion and circadian BP rhythm in preeclampsia. Cases were women with preeclampsia treated between January 2006 and June 2007 in the University Hospital of Larissa. Volunteers with normal pregnancy, matched for chronological and gestational age, served as controls. Twenty-four hour ambulatory BP monitoring was applied. Serum melatonin and urine 6-sulfatoxymelatonin levels were determined in day and night time samples by enzyme-linked immunoassays. Measurements were repeated 2 months after delivery. Thirty-one women with preeclampsia and 20 controls were included. Twenty-one of the 31 women with preeclampsia were non-dippers. Compared to normal pregnancy, in preeclampsia there were significantly lower night time melatonin (48.4 ± 24.7 vs. 85.4 ± 26.9 pg/mL, pcircadian BP rhythm status ascribed this finding exclusively to non-dippers (pcircadian BP and melatonin secretion rhythm reappeared. In contrast, in cases with retained non-dipping status (n=10) melatonin secretion rhythm remained impaired: daytime versus night time melatonin (33.5 ± 13.0 vs. 28.0 ± 13.8 pg/mL, p=0.386). Urinary 6-sulfatoxymelatonin levels were, overall, similar to serum melatonin. Circadian BP and melatonin secretion rhythm follow parallel course in preeclampsia, both during pregnancy and, at least 2 months after delivery. Our findings may be not sufficient to implicate a putative therapeutic effect of melatonin, however, they clearly emphasize that its involvement in the pathogenesis of a non-dipping BP in preeclampsia needs intensive further investigation.

  19. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.

    Directory of Open Access Journals (Sweden)

    Mika Shapiro-Reznik

    Full Text Available The neurexin genes (NRXN1/2/3 encode two families (α and β of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4. Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic

  20. The Applicability of Rhythm-Motor Tasks to a New Dual Task Paradigm for Older Adults

    Directory of Open Access Journals (Sweden)

    Soo Ji Kim

    2017-12-01

    Full Text Available Given the interplay between cognitive and motor functions during walking, cognitive demands required during gait have been investigated with regard to dual task performance. Along with the needs to understand how the type of concurrent task while walking affects gait performance, there are calls for diversified dual tasks that can be applied to older adults with varying levels of cognitive decline. Therefore, this study aimed to examine how rhythm-motor tasks affect dual task performance and gait control, compared to a traditional cognitive-motor task. Also, it examined whether rhythm-motor tasks are correlated with traditional cognitive-motor task performance and cognitive measures. Eighteen older adults without cognitive impairment participated in this study. Each participant was instructed to walk at self-paced tempo without performing a concurrent task (single walking task and walk while separately performing two types of concurrent tasks: rhythm-motor and cognitive-motor tasks. Rhythm-motor tasks included instrument playing (WalkIP, matching to rhythmic cueing (WalkRC, and instrument playing while matching to rhythmic cueing (WalkIP+RC. The cognitive-motor task involved counting forward by 3s (WalkCount.f3. In each condition, dual task costs (DTC, a measure for how dual tasks affect gait parameters, were measured in terms of walking speed and stride length. The ratio of stride length to walking speed, a measure for dynamic control of gait, was also examined. The results of this study demonstrated that the task type was found to significantly influence these measures. Rhythm-motor tasks were found to interfere with gait parameters to a lesser extent than the cognitive-motor task (WalkCount.f3. In terms of ratio measures, stride length remained at a similar level, walking speed greatly decreased in the WalkCount.f3 condition. Significant correlations between dual task-related measures during rhythm-motor and cognitive-motor tasks support the

  1. Explaining Cigarette Smoking: An Endogenous-Exogenous Analysis.

    Science.gov (United States)

    McKillip, Jack

    Kruglanski's endogenous-exogenous partition, when applied to reasons given by smokers for smoking cigarettes, distinguishes two types of actions: (1) endogenous reasons implying that the behavior of consuming the cigarette is the goal of the action and the actor is positive toward the behavior, and (2) exogenous reasons implying that the behavior…

  2. Time-of-day effects in implicit racial in-group preferences are likely selection effects, not circadian rhythms

    Directory of Open Access Journals (Sweden)

    Timothy P. Schofield

    2016-04-01

    Full Text Available Time-of-day effects in human psychological functioning have been known of since the 1800s. However, outside of research specifically focused on the quantification of circadian rhythms, their study has largely been neglected. Moves toward online data collection now mean that psychological investigations take place around the clock, which affords researchers the ability to easily study time-of-day effects. Recent analyses have shown, for instance, that implicit attitudes have time-of-day effects. The plausibility that these effects indicate circadian rhythms rather than selection effects is considered in the current study. There was little evidence that the time-of-day effects in implicit attitudes shifted appropriately with factors known to influence the time of circadian rhythms. Moreover, even variables that cannot logically show circadian rhythms demonstrated stronger time-of-day effects than did implicit attitudes. Taken together, these results suggest that time-of-day effects in implicit attitudes are more likely to represent processes of selection rather than circadian rhythms, but do not rule out the latter possibility.

  3. Time-of-day effects in implicit racial in-group preferences are likely selection effects, not circadian rhythms.

    Science.gov (United States)

    Schofield, Timothy P

    2016-01-01

    Time-of-day effects in human psychological functioning have been known of since the 1800s. However, outside of research specifically focused on the quantification of circadian rhythms, their study has largely been neglected. Moves toward online data collection now mean that psychological investigations take place around the clock, which affords researchers the ability to easily study time-of-day effects. Recent analyses have shown, for instance, that implicit attitudes have time-of-day effects. The plausibility that these effects indicate circadian rhythms rather than selection effects is considered in the current study. There was little evidence that the time-of-day effects in implicit attitudes shifted appropriately with factors known to influence the time of circadian rhythms. Moreover, even variables that cannot logically show circadian rhythms demonstrated stronger time-of-day effects than did implicit attitudes. Taken together, these results suggest that time-of-day effects in implicit attitudes are more likely to represent processes of selection rather than circadian rhythms, but do not rule out the latter possibility.

  4. Endogenous opiates and behavior: 2014.

    Science.gov (United States)

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  5. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. II. Interactions between bilaterally paired circadian pacemakers.

    Science.gov (United States)

    Ushirogawa, H; Abe, Y; Tomioka, K

    1997-10-01

    The optic lobe is essential for circadian locomotor rhythms in the cricket, Gryllodes sigillatus. We examined potential interactions between the bilaterally paired optic lobes in circadian rhythm generation. When one optic lobe was removed, the free-running period of the locomotor rhythm slightly but significantly lengthened. When exposed to light-dark cycles (LD) with 26 hr period, intact and sham operated animals were clearly entrained to the light cycle, but a large number of animals receiving unilateral optic nerve severance showed rhythm dissociation. In the dissociation, two rhythmic components appeared; one was readily entrained to the given LD and the other free-ran with a period shorter than 24 hr, and activity was expressed only when they were inphase. The period of the free-running component was significantly longer than that of the animals with a single blinded pacemaker kept in LD13:13, suggesting that the pacemaker on the intact side had some influence on the blinded pacemaker even in the dissociated state. The ratio of animals with rhythm dissociation was greater with the lower light intensity of the LD. The results suggest that the bilaterally distributed pacemakers are only weakly coupled to one another but strongly suppress the activity driven by the partner pacemaker during their subjective day. The strong suppression of activity would be advantageous to keep a stable nocturnality for this cricket living indoors.

  6. [Circadian rhythm in susceptibility of mice to the anti-tumor drug carboplatin].

    Science.gov (United States)

    Lu, X H; Yin, L J

    1994-12-01

    The platinum-containing compounds has become a major chemical agent in the treatment of cancer. A circadian rhythm in the susceptibility of rodents and human being to cisplatin has been demonstrated, the maximal tolerance being found in the animal's active phase. Carboplatin is a second generation analog. Two studies were performed on mice with carboplatin under 12:12 light dark cycle to study its chronotoxicity and chronoeffectiveness. In study I, single intraperitoneal injection of 192mg/kg (LD50) carboplatin was given to four groups of mice at four different circadian stage. It was found that at 50% the overall mortality of mice, there was a mortality difference of 28% for mice receiving the drug at 9 a.m. to 71% for mice receiving drug at 9 p.m. It demonstrated that carboplatin was better tolerated in the animal's early sleep phase. In study II, S180 tumor-bearing mice were treated with 50mg/kg of carboplatin. The longest mean survival time and the lowest marrow toxicity occurred in the group which received the drug at the beginning of the sleep phase. It showed that the susceptibility of mice to carboplatin is circadian stage dependent. These data clearly demonstrate that, by timing the administration of drugs according to body rhythms, such as the host susceptibility-resistance rhythm to a drug, one can gain a therapeutic advantage over an approach which ignores such rhythms.

  7. Circadian Rhythm and Sleep During Prolonged Antarctic Residence at Chinese Zhongshan Station.

    Science.gov (United States)

    Chen, Nan; Wu, Quan; Xiong, Yanlei; Chen, Guang; Song, Dandan; Xu, Chengli

    2016-12-01

    Residence at Zhongshan Station (69°22'24″S, 76°22'40″E) for over 1 year exposes winter-over members to marked changes of light-dark cycle, ranging from the constant daylight of polar days to the constant darkness of polar nights, in addition to geographic and social isolation. This extreme photoperiodic environment may increase the risk of sleep disturbances and circadian desynchrony. The aim of this study was to investigate the circadian rhythm and sleep phase of Chinese winter-over expeditioners at Zhongshan Station. This study was conducted on 17 healthy male participants before departure from Shanghai and during residence at Zhongshan Station for 1 year (before winter, mid-winter, and end of winter). Sequential urine samples over 48 hours were obtained, 6-sulphatoxymelatonin in urine was assessed, and the circadian rhythm was analyzed by a cosine curve-fitting method. Participants' sleep parameters were obtained from wrist actigraphy and sleep logs. Morningness-Eveningness Questionnaire and Seasonal Pattern Assessment Questionnaire were completed. The acrophase of 6-sulphatoxymelatonin rhythm, sleep onset, sleep offset, and mid-sleep time were delayed significantly (P circadian rhythm and sleep phase, later chronotype, and incidence of subsyndromal seasonal affective disorder. An appropriate combination of artificial bright light during dark winter months and a strict social schedule are recommended in a winter-over station in Antarctica. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. P-wave dispersion in endogenous and exogenous subclinical hyperthyroidism.

    Science.gov (United States)

    Gen, R; Akbay, E; Camsari, A; Ozcan, T

    2010-02-01

    The aim of this study was to measure maximum P wave duration (Pmax) and P wave dispersion (PWD), which can be indicators for the risk of paroxysmal atrial fibrillation when increased, and to reveal their relationship with thyroid hormone levels in patients with endogenous and exogenous subclinical hyperthyroidism. Seventy-one patients with sublinical thyrotoxicosis (34 endogenous, 37 exogenous) and 69 healthy individuals were enrolled in the study. Pmax and minimum P wave duration (Pmin) on electrocardiogram recordings were measured and PWD was calculated as Pmax-Pmin. Pmax (pendogenous subclinical hyperthyroidism compared with the control group. Pmax (pexogenous subclinical thyrotoxicosis compared with the control group. Pmax (p=0.710) and PWD (p=0.127) were not significantly different in patients with endogenous subclinical hyperthyroidism compared with exogenous subclinical hyperthyroid patients. Pmax and PWD negatively associated with TSH in endogenous and exogenous subclinical hyperthyroidism. In the present study, we observed that Pmax and PWD were longer in patients with endogenous and exogenous subclinical hyperthyroidism. Lack of a difference in Pmax and PWD between patients with endogenous and exogenous subclinical hyperthyroidism seems to support the idea that hormone levels rather than the etiology of thyrotoxicosis affect the heart.

  9. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology.

    Science.gov (United States)

    Reiter, Russel J; Tan, Dun Xian; Korkmaz, Ahmet; Rosales-Corral, Sergio A

    2014-01-01

    Research within the last decade has shown melatonin to have previously-unsuspected beneficial actions on the peripheral reproductive organs. Likewise, numerous investigations have documented that stable circadian rhythms are also helpful in maintaining reproductive health. The relationship of melatonin and circadian rhythmicity to maternal and fetal health is summarized in this review. Databases were searched for the related published English literature up to 15 May 2013. The search terms used in various combinations included melatonin, circadian rhythms, biological clock, suprachiasmatic nucleus, ovary, pregnancy, uterus, placenta, fetus, pre-eclampsia, intrauterine growth restriction, ischemia-reperfusion, chronodisruption, antioxidants, oxidative stress and free radicals. The results of the studies uncovered are summarized herein. Both melatonin and circadian rhythms impact reproduction, especially during pregnancy. Melatonin is a multifaceted molecule with direct free radical scavenging and indirect antioxidant activities. Melatonin is produced in both the ovary and in the placenta where it protects against molecular mutilation and cellular dysfunction arising from oxidative/nitrosative stress. The placenta, in particular, is often a site of excessive free radical generation due to less than optimal adhesion to the uterine wall, which leads to either persistent hypoxia or intermittent hypoxia and reoxygenation, processes that cause massive free radical generation and organ dysfunction. This may contribute to pre-eclampsia and other disorders which often complicate pregnancy. Melatonin has ameliorated free radical damage to the placenta and to the fetus in experiments using non-human mammals. Likewise, the maintenance of a regular maternal light/dark and sleep/wake cycle is important to stabilize circadian rhythms generated by the maternal central circadian pacemaker, the suprachiasmatic nuclei. Optimal circadian rhythmicity in the mother is important since her

  10. The effect of pitch, rhythm, and familiarity on working memory and anxiety as measured by digit recall performance.

    Science.gov (United States)

    Silverman, Michael J

    2010-01-01

    The purpose of this study was to isolate and quantitatively evaluate the effects of pitch and rhythm of unfamiliar and familiar melodies on working memory and anxiety as measured by sequential digit recall performance. Participants (N = 60) listened to 6 treatment conditions each consisting of 9 randomized monosyllabic digits. The digits were paired with (a) a familiar melody and pitch only, (b) a familiar melody and rhythm only, (c) a familiar melody with both pitch and rhythm, (d) an unfamiliar melody with pitch only, (e) an unfamiliar melody with rhythm only, and (f) an unfamiliar melody with both pitch and rhythm. The 6 different treatments were counterbalanced using a Latin square design in an attempt to control for order effects. Participants rated their state anxiety on a Likert-type scale before, midway through, and after the digits test. No statistically significant order, learning, or practice effects were found. A 3-way repeated-measures ANOVA indicated a statistically significant difference in digit recall performance across musical element conditions and groups. Results indicated that music majors outperformed nonmusic majors on the digit recall task. Participants were able to recall digits from the rhythm condition most accurately while recalling digits from pitch only and both pitch and rhythm conditions the least accurately. Graphic analysis of treatment as a function of sequential position indicated digit recall was best during conditions of primacy and recency. No main effects were found for the familiarity condition. Additionally, no main effects or interactions were found for the anxiety variable. The results of this study are congruent with existing working memory and music literature suggesting that pairing information with rhythm can facilitate recall, music majors outperform non-music majors, and recall accuracy is best in positions of primacy and recency. Implications for practice in therapy and education are made as well as suggestions for

  11. Endogene CGRP

    OpenAIRE

    Höfer, Martina

    2010-01-01

    Hintergrund und Ziele Die vorliegende tierexperimentelle Arbeit beschäftigt sich mit der Frage, welche Rolle endogenes Calcitonin-gene related peptide (CGRP) in der Niere spielt. Hierbei untersuchten wir die renale CGRP Freisetzung aus renalen Afferenzen in vitro anhand von gesunden Tieren und einem pathologischen Modell der Glomerulonephritis. Man weiß bereits, dass sowohl sympathische als auch primär sensorische Neuronen die Entzündung und die Immunantwort in der Peripherie regulieren (68)....

  12. [The endogenous opioid system and drug addiction].

    Science.gov (United States)

    Maldonado, R

    2010-01-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  13. Endogenous Money Supply and Money Demand

    OpenAIRE

    Woon Gyu Choi; Seonghwan Oh

    2000-01-01

    This paper explores the behavior of money demand by explicitly accounting for the money supply endogeneity arising from endogenous monetary policy and financial innovations. Our theoretical analysis indicates that money supply factors matter in the money demand function when the money supply partially responds to money demand. Our empirical results with U.S. data provide strong evidence for the relevance of the policy stance to the demand for MI under a regime in which monetary policy is subs...

  14. Chaos control applied to heart rhythm dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Borem Ferreira, Bianca, E-mail: biaborem@gmail.com [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil); Souza de Paula, Aline, E-mail: alinedepaula@unb.br [Universidade de Brasi' lia, Department of Mechanical Engineering, 70.910.900 Brasilia, DF (Brazil); Amorim Savi, Marcelo, E-mail: savi@mecanica.ufrj.br [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil)

    2011-08-15

    Highlights: > A natural cardiac pacemaker is modeled by a modified Van der Pol oscillator. > Responses related to normal and chaotic, pathological functioning of the heart are investigated. > Chaos control methods are applied to avoid pathological behaviors of heart dynamics. > Different approaches are treated: stabilization of unstable periodic orbits and chaos suppression. - Abstract: The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback control method is applied to a natural cardiac pacemaker described by a mathematical model. The model consists of a modified Van der Pol equation that reproduces the behavior of this pacemaker. Results show the ability of the chaos control strategy to control the system response performing either the stabilization of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac pathologies.

  15. Influence of photoperiod and running wheel access on the entrainment of split circadian rhythms in hamsters

    Directory of Open Access Journals (Sweden)

    Elliott Jeffrey A

    2005-06-01

    Full Text Available Abstract Background In the laboratory, behavioral and physiological states of nocturnal rodents alternate, with a period near 24 h, between those appropriate for the night (e.g., elevated wheel-running activity and high melatonin secretion and for the day (e.g., rest and low melatonin secretion. Under appropriate 24 h light:dark:light:dark conditions, however, rodents may be readily induced to express bimodal rest/activity cycles that reflect a global temporal reorganization of the central neural pacemaker in the hypothalamus. We examine here how the relative length of the light and dark phases of the environmental cycle influences this rhythm splitting and the necessity of a running wheel for expression of this entrainment condition. Results Rhythm splitting was observed in wheel-running and general locomotion of Siberian and Syrian hamsters. The latter also manifest split rhythms in body temperature. Access to a running wheel was necessary neither for the induction nor maintenance of this entrainment pattern. While rhythms were only transiently split in many animals with two 5 h nights, the incidence of splitting was greater with twice daily nights of shorter duration. Removal of running wheels altered the body temperature rhythm but did not eliminate its clear bimodality. Conclusion The expression of entrained, split circadian rhythms exhibits no strict dependence on access to a running wheel, but can be facilitated by manipulation of ambient lighting conditions. These circadian entrainment patterns may be of therapeutic value to human shift-workers and others facing chronobiological challenges.

  16. Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanchoë daigremontiana Hamet et Perrier.

    Science.gov (United States)

    Wyka, T P; Duarte, H M; Lüttge, U E

    2005-03-01

    In continuous light, the Crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier has a circadian rhythm of gas exchange with peaks occurring during the subjective night. The rhythm of gas exchange is coupled to a weak, reverse phased rhythm of quantum yield of photosystem II (Phi (PSII)). To test if the rhythm of Phi (PSII) persists in the absence of stomatal control, leaves were coated with a thin layer of translucent silicone grease which prevented CO2 and H2O exchange. In spite of this treatment, the rhythm of Phi (PSII) occurred with close to normal phase timing and with a much larger amplitude than in uncoated leaves. The mechanism underlying the Phi (PSII) rhythm in coated leaves can be explained by a circadian activity of phosphoenolpyruvate carboxylase (PEPC). At peaks of PEPC activity, the small amount of CO2 contained in the coated leaf could have become depleted, preventing the carboxylase activity of Rubisco and causing decreases in electron transport rates (observed as deep troughs of Phi (PSII) at 23-h in LL and at ca. 24-h intervals afterwards). Peaks of Phi (PSII) would be caused by a downregulation of PEPC leading to improved supply of CO2 to Rubisco. Substrate limitation of photochemistry at 23 h (trough of Phi (PSII)) was also suggested by the weak response of ETR in coated leaves to stepwise light enhancement. These results show that photosynthetic rhythmicity in K. daigremontiana is independent of stomatal regulation and may originate in the mesophyll.

  17. Optimized endogenous post-stratification in forest inventories

    Science.gov (United States)

    Paul L. Patterson

    2012-01-01

    An example of endogenous post-stratification is the use of remote sensing data with a sample of ground data to build a logistic regression model to predict the probability that a plot is forested and using the predicted probabilities to form categories for post-stratification. An optimized endogenous post-stratified estimator of the proportion of forest has been...

  18. Abnormality of circadian rhythm of serum melatonin and other biochemical parameters in fibromyalgia syndrome.

    Science.gov (United States)

    Mahdi, Abbas Ali; Fatima, Ghizal; Das, Siddhartha Kumar; Verma, Nar Singh

    2011-04-01

    Fibromyalgia syndrome (FMS) is a complex chronic condition causing widespread pain and variety of other symptoms. It produces pain in the soft tissues located around joints throughout the body. FMS has unknown etiology and its pathophysiology is not fully understood. However, abnormality in circadian rhythm of hormonal profiles and cytokines has been observed in this disorder. Moreover, there are reports of deficiency of serotonin, melatonin, cortisol and cytokines in FMS patients, which are fully regulated by circadian rhythm. Melatonin, the primary hormone of the pineal gland regulates the body's circadian rhythm and normally its levels begin to rise in the mid-to-late evening, remain high for most of the night, and then decrease in the early morning. FMS patients have lower melatonin secretion during the hours of darkness than the healthy subjects. This may contribute to impaired sleep at night, fatigue during the day and changed pain perception. Studies have shown blunting of normal diurnal cortisol rhythm, with elevated evening serum cortisol level in patients with FMS. Thus, due to perturbed level of cortisol secretion several symptoms of FMS may occur. Moreover, disturbed cytokine levels have also been reported in FMS patients. Therefore, circadian rhythm can be an important factor in the pathophysiology, diagnosis and treatment of FMS. This article explores the circadian pattern of abnormalities in FMS patients, as this may help in better understanding the role of variation in symptoms of FMS and its possible relationship with circadian variations of melatonin, cortisol, cytokines and serotonin levels.

  19. Dynamic equilibrium of endogenous selenium nanoparticles in selenite-exposed cancer cells: a deep insight into the interaction between endogenous SeNPs and proteins.

    Science.gov (United States)

    Bao, Peng; Chen, Song-Can; Xiao, Ke-Qing

    2015-12-01

    Elemental selenium (Se) was recently found to exist as endogenous nanoparticles (i.e., SeNPs) in selenite-exposed cancer cells. By sequestrating critical intracellular proteins, SeNPs appear capable of giving rise to multiple cytotoxicity mechanisms including inhibition of glycolysis, glycolysis-dependent mitochondrial dysfunction, microtubule depolymerization and inhibition of autophagy. In this work, we reveal a dynamic equilibrium of endogenous SeNP assembly and disassembly in selenite-exposed H157 cells. Endogenous SeNPs are observed both in the cytoplasm and in organelles. There is an increase in endogenous SeNPs between 24 h and 36 h, and a decrease between 36 h and 72 h according to transmission electron microscopy results and UV-Vis measurements. These observations imply that elemental Se in SeNPs could be oxidized back into selenite by scavenging superoxide radicals and ultimately re-reduced into selenide; then the assembly and disassembly of SeNPs proceed simultaneously with the sequestration and release of SeNP high-affinity proteins. There is also a possibility that the reduction of elemental Se to selenide pathway may lie in selenite-exposed cancer cells, which results in the assembly and disassembly of endogenous SeNPs. Genome-wide expression analysis results show that endogenous SeNPs significantly altered the expression of 504 genes, compared to the control. The endogenous SeNPs induced mitochondrial impairment and decreasing of the annexin A2 level can lead to inhibition of cancer cell invasion and migration. This dynamic flux of endogenous SeNPs amplifies their cytotoxic potential in cancer cells, thus provide a starting point to design more efficient intracellular self-assembling systems for overcoming multidrug resistance.

  20. Photoperiodic regulation of the hamster testis: dependence on circadian rhythms

    International Nuclear Information System (INIS)

    Eskes, G.A.; Zucker, I.

    1978-01-01

    The testes of hamsters exposed to short days (10 hr of light per day) regress within 13 weeks. Administration of 7.5 percent deuterium oxide to hamsters lengthens the period of free running circadian activity rhythms by 2.2 percent and prevents testicular regression during short-day exposure. This is consistent with predictions derived from an external coincidence model for photoperiodic time measurement: Deuterium oxide changes phase relationships between the light-dark cycle and the circadian system, the hamster's daily photosensitive phase is stimulated with light during short days, and the testes remain large. Conservation of the period of circadian rhythms within narrow limits has adaptive significance for hamster photoperiodism and for the occurrence and phasing of the annual reproductive cycle