WorldWideScience

Sample records for endogenous cannabinoid anandamide

  1. N-acylethanolamines, anandamide and food intake

    DEFF Research Database (Denmark)

    Hansen, Harald S; Diep, Thi Ai

    2009-01-01

    in their biosynthesis in specific tissues are not clarified. It has been suggested that endogenous anandamide could stimulate food intake by activation of cannabinoid receptors in the brain and/or in the intestinal tissue. On the other hand, endogenous OEA and PEA have been suggested to inhibit food intake by acting...... on receptors in the intestine. At present, there is no clear role for endogenous anandamide in controlling food intake via cannabinoid receptors, neither centrally nor in the gastrointestinal tract. However, OEA, PEA and perhaps also LEA may be involved in regulation of food intake by selective prolongation...... OEA is less clear. Prolonged intake of dietary fat (45 energy%) may promote over-consumption of food by decreasing the endogenous levels of OEA, PEA and LEA in the intestine....

  2. Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells.

    Science.gov (United States)

    Kishimoto, Seishi; Muramatsu, Mayumi; Gokoh, Maiko; Oka, Saori; Waku, Keizo; Sugiura, Takayuki

    2005-02-01

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays important physiological roles in several mammalian tissues and cells, yet the details remain ambiguous. In this study, we first examined the effects of 2-arachidonoylglycerol on the motility of human natural killer cells. We found that 2-arachidonoylglycerol induces the migration of KHYG-1 cells (a natural killer leukemia cell line) and human peripheral blood natural killer cells. The migration of natural killer cells induced by 2-arachidonoylglycerol was abolished by treating the cells with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the 2-arachidonoylglycerol-induced migration. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, did not induce the migration. Delta9-tetrahydrocannabinol, a major psychoactive constituent of marijuana, also failed to induce the migration; instead, the addition of delta9-tetrahydrocannabinol together with 2-arachidonoylglycerol abolished the migration induced by 2-arachidonoylglycerol. It is conceivable that the endogenous ligand for the cannabinoid receptor, that is, 2-arachidonoylglycerol, affects natural killer cell functions such as migration, thereby contributing to the host-defense mechanism against infectious viruses and tumor cells.

  3. The endocannabinoid anandamide regulates the peristaltic reflex by reducing neuro-neuronal and neuro-muscular neurotransmission in ascending myenteric reflex pathways in rats.

    Science.gov (United States)

    Sibaev, Andrei; Yuece, Birol; Allescher, Hans Dieter; Saur, Dieter; Storr, Martin; Kurjak, Manfred

    2014-04-01

    Endocannabinoids (EC) and the cannabinoid-1 (CB1) receptor are involved in the regulation of motility in the gastrointestinal (GI) tract. However, the underlying physiological mechanisms are not completely resolved. The purpose of this work was to study the physiological influence of the endocannabinoid anandamide, the putative endogenous CB1 active cannabinoid, and of the CB1 receptor on ascending peristaltic activity and to identify the involved neuro-neuronal, neuro-muscular and electrophysiological mechanisms. The effects of anandamide and the CB1 receptor antagonist SR141716A were investigated on contractions of the circular smooth muscle of rat ileum and in longitudinal rat ileum segments where the ascending myenteric part of the peristaltic reflex was studied in a newly designed organ bath. Additionally intracellular recordings were performed in ileum and colon. Anandamide significantly reduced cholinergic twitch contractions of ileum smooth muscle whereas SR141716A caused an increase. Anandamide reduced the ascending peristaltic contraction by affecting neuro-neuronal and neuro-muscular neurotransmission. SR141716A showed opposite effects and all anandamide effects were antagonized by SR141716A (1 μM). Anandamide reduced excitatory junction potentials (EJP) and inhibitory junction potentials (IJP), whereas intestinal slow waves were not affected. CB1 receptors regulate force and timing of the intestinal peristaltic reflex and these actions involve interneurons and motor-neurons. The endogenous cannabinoid anandamide mediates these effects by activation of CB1 receptors. The endogenous cannabinoid system is permanently active, suggesting the CB1 receptor being a possible target for the treatment of motility related disorders. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Plant cannabinoids: a neglected pharmacological treasure trove.

    Science.gov (United States)

    Mechoulam, Raphael

    2005-12-01

    Most of the cannabinoids in Cannabis sativa L. have not been fully evaluated for their pharmacological activity. A publication in this issue presents evidence that a plant cannabinoid, Delta(9)-tetrahydrocannabivarin is a potent antagonist of anandamide, a major endogenous cannabinoid. It seems possible that many of the non-psychoactive constituents of this plant will be of biological interest.

  5. Inhibition by anandamide of 6-hydroxydopamine-induced cell death in PC12 cells.

    LENUS (Irish Health Repository)

    Mnich, Katarzyna

    2010-01-01

    6-hydroxydopamine (6-OHDA) is a selective neurotoxin that is widely used to investigate cell death and protective strategies in models of Parkinson\\'s disease. Here, we investigated the effects of the endogenous cannabinoid, anandamide, on 6-OHDA-induced toxicity in rat adrenal phaeochromocytoma PC12 cells. Morphological analysis and caspase-3 activity assay revealed that anandamide inhibited 6-OHDA-induced apoptosis. The protection was not affected by antagonists of either cannabinoid receptors (CB(1) or CB(2)) or the vanilloid receptor TRPV1. Anandamide-dependent protection was reduced by pretreatment with LY294002 (inhibitor of phosphatidylinositol 3-kinase, PI3K) and unaffected by U0126 (inhibitor of extracellularly-regulated kinase). Interestingly, phosphorylation of c-Jun-NH2-terminal kinase (JNK) in cells exposed to 6-OHDA was strongly reduced by anandamide pre-treatment. Furthermore, 6-OHDA induced c-Jun activation and increased Bim expression, both of which were inhibited by anandamide. Together, these data demonstrate antiapoptotic effects of anandamide and also suggest a role for activation of PI3K and inhibition of JNK signalling in anandamide-mediated protection against 6-OHDA.

  6. EFFECT OF CANNABINOIDS ON TESTICULAR ISCHEMIA-REPERFUSION INJURY IN RAT

    Directory of Open Access Journals (Sweden)

    H. Sepehri

    2006-11-01

    Full Text Available Anandamide is an endogenous ligand for cannabinoid receptors and has endothelial protective effect against ischemic preconditioning. The purpose of this study was to investigate the effects of cannabinoids on reperfusion injury due to testicular torsion-detorsion (T/D. A total of 36 adult male Sprague-Dawley rats were divided into 6 groups. Testicular ischemia was achieved by twisting the right testes 720◦ counters clockwise for 1 hour and reperfusion was allowed for 4 hours after detorsion. In baseline (normal group, bilateral orchiectomies performed after anesthesia. Sham operated group was served as a control group. Torsion/detorsion group underwent 1 hour testicular torsion and 4 hours of detorsion. Anandamide (cannabinoid agonist group received pretreatment with intraperitoneally anandamide 30 min before torsion. AM251 (CB1 antagonist group, received intraperitoneally injection of AM251 45 min before torsion. Anandamid/AM251 (An/AM group received administrations of AM251 45 min before torsion and anandamide 30 min before torsion. The ipsilateral malondialdehyde (MDA level in T/D group were significantly higher versus control and base line groups. Ipsilateral MDA values in anandamid group were significantly lower than T/D and An/AM groups. There were also significant decreases in catalase activity in T/D group compared with control and base line groups. These values were significantly higher in cannabinoid group versus T/D and An/AM groups. Anandamide increased ipsilateral intratesticular antioxidative markers and decreased free radicals formation during reperfusion phase after unilateral testicular torsion, which was reflected in lesser testicular MDA level. Furthermore, the effects of anandamide were mediated via cannabinoid receptors, since AM251 could abolish these effects.

  7. R-Flurbiprofen Reduces Neuropathic Pain in Rodents by Restoring Endogenous Cannabinoids

    Science.gov (United States)

    Marian, Claudiu; Häussler, Annett; Wijnvoord, Nina; Ziebell, Simone; Metzner, Julia; Koch, Marco; Myrczek, Thekla; Bechmann, Ingo; Kuner, Rohini; Costigan, Michael; Dehghani, Faramarz; Geisslinger, Gerd; Tegeder, Irmgard

    2010-01-01

    Background R-flurbiprofen, one of the enantiomers of flurbiprofen racemate, is inactive with respect to cyclooxygenase inhibition, but shows analgesic properties without relevant toxicity. Its mode of action is still unclear. Methodology/Principal Findings We show that R-flurbiprofen reduces glutamate release in the dorsal horn of the spinal cord evoked by sciatic nerve injury and thereby alleviates pain in sciatic nerve injury models of neuropathic pain in rats and mice. This is mediated by restoring the balance of endocannabinoids (eCB), which is disturbed following peripheral nerve injury in the DRGs, spinal cord and forebrain. The imbalance results from transcriptional adaptations of fatty acid amide hydrolase (FAAH) and NAPE-phospholipase D, i.e. the major enzymes involved in anandamide metabolism and synthesis, respectively. R-flurbiprofen inhibits FAAH activity and normalizes NAPE-PLD expression. As a consequence, R-Flurbiprofen improves endogenous cannabinoid mediated effects, indicated by the reduction of glutamate release, increased activity of the anti-inflammatory transcription factor PPARγ and attenuation of microglia activation. Antinociceptive effects are lost by combined inhibition of CB1 and CB2 receptors and partially abolished in CB1 receptor deficient mice. R-flurbiprofen does however not cause changes of core body temperature which is a typical indicator of central effects of cannabinoid-1 receptor agonists. Conclusion Our results suggest that R-flurbiprofen improves the endogenous mechanisms to regain stability after axonal injury and to fend off chronic neuropathic pain by modulating the endocannabinoid system and thus constitutes an attractive, novel therapeutic agent in the treatment of chronic, intractable pain. PMID:20498712

  8. R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids.

    Directory of Open Access Journals (Sweden)

    Philipp Bishay

    Full Text Available BACKGROUND: R-flurbiprofen, one of the enantiomers of flurbiprofen racemate, is inactive with respect to cyclooxygenase inhibition, but shows analgesic properties without relevant toxicity. Its mode of action is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: We show that R-flurbiprofen reduces glutamate release in the dorsal horn of the spinal cord evoked by sciatic nerve injury and thereby alleviates pain in sciatic nerve injury models of neuropathic pain in rats and mice. This is mediated by restoring the balance of endocannabinoids (eCB, which is disturbed following peripheral nerve injury in the DRGs, spinal cord and forebrain. The imbalance results from transcriptional adaptations of fatty acid amide hydrolase (FAAH and NAPE-phospholipase D, i.e. the major enzymes involved in anandamide metabolism and synthesis, respectively. R-flurbiprofen inhibits FAAH activity and normalizes NAPE-PLD expression. As a consequence, R-Flurbiprofen improves endogenous cannabinoid mediated effects, indicated by the reduction of glutamate release, increased activity of the anti-inflammatory transcription factor PPARgamma and attenuation of microglia activation. Antinociceptive effects are lost by combined inhibition of CB1 and CB2 receptors and partially abolished in CB1 receptor deficient mice. R-flurbiprofen does however not cause changes of core body temperature which is a typical indicator of central effects of cannabinoid-1 receptor agonists. CONCLUSION: Our results suggest that R-flurbiprofen improves the endogenous mechanisms to regain stability after axonal injury and to fend off chronic neuropathic pain by modulating the endocannabinoid system and thus constitutes an attractive, novel therapeutic agent in the treatment of chronic, intractable pain.

  9. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs).

    Science.gov (United States)

    Deutsch, Dale G

    2016-01-01

    This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that "solubilize" anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992). As to

  10. Developmental aspects of anandamide: ontogeny of response and prenatal exposure.

    Science.gov (United States)

    Fride, E; Mechoulam, R

    1996-02-01

    Recent breakthroughs in cannabinoid research, including the identification of two cannabinoid receptors (CB receptors) and a family of endogenous ligands, the anandamides, may shed new light on the sequelae of pre- and perinatal exposure to cannabinoid receptor ligands and enable the experimental manipulation of the endogenous ligand in the developing organism. In the present study we examined the behavioural response to anandamide (ANA) in developing mice from day 13 into adulthood. We observed that depression of ambulation in an open field and the analgetic response to ANA are not fully developed until adulthood. In a separate set of experiments, we administered five daily injections of ANA (SC, 20 mg/kg) during the last trimester of pregnancy. No effects on birth weight, litter size, sex ratio and eye opening were detected after maternal ANA treatment. Further, no effects on open field performance of the offspring were observed until 4 weeks of age. However, from 40 days of age, a number of differences between the prenatal ANA and control offspring were detected. Thus, the offspring from ANA-treated dams showed impaired responsiveness to a challenge with ANA or delta 0-THC expressed as a lack of immobility in the ring test for catalepsy, hypothermia and analgesia. On the other hand, without challenge, they exhibited a spontaneous decrease in open field activity, catalepsy, hypothermia and a hypoalgetic tendency. These data suggest that exposure to excessive amounts of ANA during gestation alters the functioning of the ANA-CB receptor system. Further experiments investigating responsivity of the immune system suggest an increased inflammatory response to arachidonic acid, and enhanced hypothermic response to lipopolysaccharide in prenatally treated offspring. The results are discussed in relation to other manipulations of the maternal milieu, especially prenatal stress. It is concluded that alterations induced by prenatal exposure to ANA, cannabinoids and other

  11. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    Science.gov (United States)

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.

  12. The Endocannabinoid System, Aggression, and the Violence of Synthetic Cannabinoid Use, Borderline Personality Disorder, Antisocial Personality Disorder, and Other Psychiatric Disorders.

    Science.gov (United States)

    Kolla, Nathan J; Mishra, Achal

    2018-01-01

    Endogenous and exogenous cannabinoids bind to central cannabinoid receptors to control a multitude of behavioral functions, including aggression. The first main objective of this review is to dissect components of the endocannabinoid system, including cannabinoid 1 and cannabinoid 2 receptors; the endogenous cannabinoids anandamide and 2-arachidonoylglycerol; and the indirect cannabinoid modulators fatty acid amide hydrolase and monoacylglycerol lipase; that have shown abnormalities in basic research studies investigating mechanisms of aggression. While most human research has concluded that the active ingredient of marijuana, Δ9-tetrahydrocannabinol, tends to dampen rather than provoke aggression in acute doses, recent evidence supports a relationship between the ingestion of synthetic cannabinoids and emergence of violent or aggressive behavior. Thus, another objective is to evaluate the emerging clinical data. This paper also discusses the relationship between prenatal and perinatal exposure to cannabis as well as use of cannabis in adolescence on aggressive outcomes. A final objective of the paper is to discuss endocannabinoid abnormalities in psychotic and affective disorders, as well as clinically aggressive populations, such as borderline personality disorder and antisocial personality disorder. With regard to the former condition, decreased anandamide metabolites have been reported in the cerebrospinal fluid, while some preliminary evidence suggests that fatty acid amide hydrolase genetic polymorphisms are linked to antisocial personality disorder and impulsive-antisocial psychopathic traits. To summarize, this paper will draw upon basic and clinical research to explain how the endocannabinoid system may contribute to the genesis of aggressive behavior.

  13. The Endocannabinoid System, Aggression, and the Violence of Synthetic Cannabinoid Use, Borderline Personality Disorder, Antisocial Personality Disorder, and Other Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Nathan J. Kolla

    2018-03-01

    Full Text Available Endogenous and exogenous cannabinoids bind to central cannabinoid receptors to control a multitude of behavioral functions, including aggression. The first main objective of this review is to dissect components of the endocannabinoid system, including cannabinoid 1 and cannabinoid 2 receptors; the endogenous cannabinoids anandamide and 2-arachidonoylglycerol; and the indirect cannabinoid modulators fatty acid amide hydrolase and monoacylglycerol lipase; that have shown abnormalities in basic research studies investigating mechanisms of aggression. While most human research has concluded that the active ingredient of marijuana, Δ9-tetrahydrocannabinol, tends to dampen rather than provoke aggression in acute doses, recent evidence supports a relationship between the ingestion of synthetic cannabinoids and emergence of violent or aggressive behavior. Thus, another objective is to evaluate the emerging clinical data. This paper also discusses the relationship between prenatal and perinatal exposure to cannabis as well as use of cannabis in adolescence on aggressive outcomes. A final objective of the paper is to discuss endocannabinoid abnormalities in psychotic and affective disorders, as well as clinically aggressive populations, such as borderline personality disorder and antisocial personality disorder. With regard to the former condition, decreased anandamide metabolites have been reported in the cerebrospinal fluid, while some preliminary evidence suggests that fatty acid amide hydrolase genetic polymorphisms are linked to antisocial personality disorder and impulsive-antisocial psychopathic traits. To summarize, this paper will draw upon basic and clinical research to explain how the endocannabinoid system may contribute to the genesis of aggressive behavior.

  14. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    Science.gov (United States)

    Woolcott, Orison O; Richey, Joyce M; Kabir, Morvarid; Chow, Robert H; Iyer, Malini S; Kirkman, Erlinda L; Stefanovski, Darko; Lottati, Maya; Kim, Stella P; Harrison, L Nicole; Ionut, Viorica; Zheng, Dan; Hsu, Isabel R; Catalano, Karyn J; Chiu, Jenny D; Bradshaw, Heather; Wu, Qiang; Kolka, Cathryn M; Bergman, Richard N

    2015-01-01

    Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia. To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets. Dogs were fed a high-fat diet (n = 9) for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7). Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, Pcanines, high-fat diet-induced insulin resistance does not alter plasma anandamide levels or further potentiate the insulinotropic effect of anandamide in vitro.

  15. Cannabinoids enhance gastric X/A-like cells activity.

    Directory of Open Access Journals (Sweden)

    Bogusław Sawicki

    2008-06-01

    Full Text Available It has been reported that cannabinoids may cause overeating in humans and in laboratory animals. Although, endogenous cannabinoids and their receptors (CB1 have been found in the hypothalamus, and recently also in gastrointestinal tract, the precise mechanism of appetite control by cannabinoids remains unknown. Recently, ghrelin--a hormone secreted mainly from the stomach X/A-like cells was proposed to be an appetite stimulating agent. The aim of this study was the evaluation of the influence of a single ip injection of a stable analogue of endogenous cannabinoid--anandamide, R-(+-methanandamide (2.5 mg/kg and CP 55,940 (0.25 mg/kg, an exogenous agonist of CB1 receptors, on ghrelin plasma concentration and on ghrelin immunoreactivity in the gastric mucosa of male Wistar rats. Four hours after a single injection of both cannabinoids or vehicle, the animals were anaesthetized and blood was taken from the abdominal aorta to determinate plasma ghrelin concentration by RIA. Subsequently, the animals underwent resection of distal part of stomach. Immunohistochemical study of gastric mucosa, using the EnVision method and specific monoclonal antibodies against ghrelin was performed. The intensity of ghrelin immunoreactivity in X/A-like cells was analyzed using Olympus Cell D image analysis system. The attenuation of ghrelin-immunoreactivity of gastric mucosa, after a single injection of R-(+-methanandamide and CP 55,940 was accompanied by a significant increase of ghrelin plasma concentration. These results indicate that stimulation of appetite exerted by cannabinoids may be connected with an increase of ghrelin secretion from gastric X/A-like cells.

  16. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  17. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training

    NARCIS (Netherlands)

    Morena, M.; Roozendaal, B.; Trezza, V.; Ratano, P.; Peloso, A.; Hauer, D.; Atsak, P.; Trabace, L.; Cuomo, V.; McGaugh, J.L.; Schelling, G.; Campolongo, P.

    2014-01-01

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The

  18. Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats.

    Directory of Open Access Journals (Sweden)

    Adriaan W Bruijnzeel

    Full Text Available Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1 receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has

  19. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates

    Science.gov (United States)

    Justinova, Zuzana; Mangieri, Regina A.; Bortolato, Marco; Chefer, Svetlana I.; Mukhin, Alexey G.; Clapper, Jason R.; King, Alvin R.; Redhi, Godfrey H.; Yasar, Sevil; Piomelli, Daniele; Goldberg, Steven R.

    2008-01-01

    Background CB1 cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors, however, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys. Methods We investigated the reinforcing effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 in monkeys trained to intravenously self-administer Δ9-tetrahydrocannabinol (THC), anandamide or cocaine, and quantified brain endocannabinoid levels using liquid chromatography/mass spectrometry. We measured brain FAAH activity using an ex vivo enzyme assay. Results URB597 (0.3 mg/kg, intravenous) blocked FAAH activity and increased anandamide levels throughout the monkey brain. This effect was accompanied by a marked compensatory decrease in 2-AG levels. Monkeys did not self-administer URB597 and the drug did not promote reinstatement of extinguished drug-seeking behavior previously maintained by THC, anandamide, or cocaine. Pretreatment with URB597 did not modify self-administration of THC or cocaine even though, as expected, it significantly potentiated anandamide self-administration. Conclusions In the monkey brain, the FAAH inhibitor URB597 increases anandamide levels while causing a compensatory down-regulation in 2-AG levels. These effects are accompanied by a striking lack of reinforcing properties, which distinguishes URB597 from direct-acting cannabinoid agonists such as THC. Our results reveal an unexpected functional heterogeneity within the endocannabinoid signaling system, and suggest that FAAH inhibitors might be used therapeutically without risk of abuse or triggering of relapse to drug abuse. PMID:18814866

  20. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    Directory of Open Access Journals (Sweden)

    Orison O Woolcott

    Full Text Available Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia.To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets.Dogs were fed a high-fat diet (n = 9 for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7.Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, P<0.01. In vivo insulin sensitivity decreased by 31.3±12.1% (P<0.05, concomitant with a decrease in plasma 2-arachidonoyl glycerol (from 39.1±5.2 to 15.7±2.0 nmol/L but not anandamide, oleoyl ethanolamide, linoleoyl ethanolamide, or palmitoyl ethanolamide. In control-diet animals (body weight: 28.8±1.0 kg, islets incubated with anandamide had a higher basal and glucose-stimulated insulin secretion as compared with no treatment. Islets from fat-fed animals (34.5±1.3 kg; P<0.05 versus control did not exhibit further potentiation of anandamide-induced insulin secretion as compared with control-diet animals. Glucagon but not somatostatin secretion in vitro was also increased in response to anandamide, but there was no difference between groups (P = 0.705. No differences in gene expression of CB1R or CB2R between groups were found.In canines, high-fat diet

  1. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    Science.gov (United States)

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  2. Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro.

    Science.gov (United States)

    Harvey, Benjamin S; Ohlsson, Katharina S; Mååg, Jesper L V; Musgrave, Ian F; Smid, Scott D

    2012-01-01

    Cannabinoids have been widely reported to have neuroprotective properties in vitro and in vivo. In this study we compared the effects of CB1 and CB2 receptor-selective ligands, the endocannabinoid anandamide and the phytocannabinoid cannabidiol, against oxidative stress and the toxic hallmark Alzheimer's protein, β-amyloid (Aβ) in neuronal cell lines. PC12 or SH-SY5Y cells were selectively exposed to either hydrogen peroxide, tert-butyl hydroperoxide or Aβ, alone or in the presence of the CB1 specific agonist arachidonyl-2'-chloroethylamide (ACEA), CB2 specific agonist JWH-015, anandamide or cannabidiol. Cannabidiol improved cell viability in response to tert-butyl hydroperoxide in PC12 and SH-SY5Y cells, while hydrogen peroxide-mediated toxicity was unaffected by cannabidiol pretreatment. Aβ exposure evoked a loss of cell viability in PC12 cells. Of the cannabinoids tested, only anandamide was able to inhibit Aβ-evoked neurotoxicity. ACEA had no effect on Aβ-evoked neurotoxicity, suggesting a CB1 receptor-independent effect of anandamide. JWH-015 pretreatment was also without protective influence on PC12 cells from either pro-oxidant or Aβ exposure. None of the cannabinoids directly inhibited or disrupted preformed Aβ fibrils and aggregates. In conclusion, the endocannabinoid anandamide protects neuronal cells from Aβ exposure via a pathway unrelated to CB1 or CB2 receptor activation. The protective effect of cannabidiol against oxidative stress does not confer protection against Aβ exposure, suggesting divergent pathways for neuroprotection of these two cannabinoids. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist.

    Science.gov (United States)

    Justinová, Zuzana; Ferré, Sergi; Redhi, Godfrey H; Mascia, Paola; Stroik, Jessica; Quarta, Davide; Yasar, Sevil; Müller, Christa E; Franco, Rafael; Goldberg, Steven R

    2011-07-01

    Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse. Addiction Biology © 2010 Society for the Study of Addiction. No claim to original US government works.

  4. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  5. Functional interactions between endogenous cannabinoid and opioid systems: focus on alcohol, genetics and drug-addicted behaviors.

    Science.gov (United States)

    López-Moreno, J A; López-Jiménez, A; Gorriti, M A; de Fonseca, F Rodríguez

    2010-04-01

    Although the first studies regarding the endogenous opioid system and addiction were published during the 1940s, addiction and cannabinoids were not addressed until the 1970s. Currently, the number of opioid addiction studies indexed in PubMed-Medline is 16 times greater than the number of cannabinoid addiction reports. More recently, functional interactions have been demonstrated between the endogenous cannabinoid and opioid systems. For example, the cannabinoid brain receptor type 1 (CB1) and mu opioid receptor type 1 (MOR1) co-localize in the same presynaptic nerve terminals and signal through a common receptor-mediated G-protein pathway. Here, we review a great variety of behavioral models of drug addiction and alcohol-related behaviors. We also include data providing clear evidence that activation of the cannabinoid and opioid endogenous systems via WIN 55,512-2 (0.4-10 mg/kg) and morphine (1.0-10 mg/kg), respectively, produces similar levels of relapse to alcohol in operant alcohol self-administration tasks. Finally, we discuss genetic studies that reveal significant associations between polymorphisms in MOR1 and CB1 receptors and drug addiction. For example, the SNP A118G, which changes the amino acid aspartate to asparagine in the MOR1 gene, is highly associated with altered opioid system function. The presence of a microsatellite polymorphism of an (AAT)n triplet near the CB1 gene is associated with drug addiction phenotypes. But, studies exploring haplotypes with regard to both systems, however, are lacking.

  6. A Personal Retrospective: Elevating Anandamide (AEA by Targeting Fatty Acid Amide Hydrolase (FAAH and the Fatty Acid Binding Proteins (FABPs

    Directory of Open Access Journals (Sweden)

    Dale Deutsch

    2016-10-01

    Full Text Available This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and, until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and, as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that solubilize anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions.

  7. The Endocannabinoid System Modulating Levels of Consciousness, Emotions and Likely Dream Contents.

    Science.gov (United States)

    Murillo-Rodriguez, Eric; Pastrana-Trejo, Jose Carlos; Salas-Crisóstomo, Mireille; de-la-Cruz, Miriel

    2017-01-01

    Cannabinoids are derivatives that are either compounds occurring naturally in the plant, Cannabis sativa or synthetic analogs of these molecules. The first and most widely investigated of the cannabinoids is Δ9-tetrahydrocannabinol (Δ9-THC), which is the main psychotropic constituent of cannabis and undergoes significant binding to cannabinoid receptors. These cannabinoid receptors are seven-transmembrane receptors that received their name from the fact that they respond to cannabinoid compounds, including Δ9-THC. The cannabinoid receptors have been described in rat, human and mouse brains and they have been named the CB1 and CB2 cannabinoid receptors. Later, an endogenous molecule that exerts pharmacological effects similar to those described by Δ9-THC and binds to the cannabinoid receptors was discovered. This molecule, named anandamide, was the first of five endogenous cannabinoid receptor agonists described to date in the mammalian brain and other tissues. Of these endogenous cannabinoids or endocannabinoids, the most thoroughly investigated to date have been anandamide and 2-arachidonoylglycerol (2-AG). Over the years, a significant number of articles have been published in the field of endogenous cannabinoids, suggesting a modulatory profile in multiple neurobiological roles of endocannabinoids. The general consensus accepts that the endogenous cannabinoid system includes natural ligands (such as anandamide and 2- AG), receptors (CB1 and CB2), and the main enzymes responsible for the hydrolysis of anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) as well as the anandamide membrane transporter (AMT). To date, diverse pieces of evidence have shown that the endocannabinoid system controls multiple functions such as feeding, pain, learning and memory and has been linked with various disturbances, such as Parkinson´s disease. Among the modulatory properties of the endocannabinoid system, current data

  8. Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter.

    Science.gov (United States)

    Di Scala, Coralie; Fantini, Jacques; Yahi, Nouara; Barrantes, Francisco J; Chahinian, Henri

    2018-05-22

    Anandamide is a lipid neurotransmitter derived from arachidonic acid, a polyunsaturated fatty acid. The chemical differences between anandamide and arachidonic acid result in a slightly enhanced solubility in water and absence of an ionisable group for the neurotransmitter compared with the fatty acid. In this review, we first analyze the conformational flexibility of anandamide in aqueous and membrane phases. We next study the interaction of the neurotransmitter with membrane lipids and discuss the molecular basis of the unexpected selectivity of anandamide for cholesterol and ceramide from among other membrane lipids. We show that cholesterol behaves as a binding partner for anandamide, and that following an initial interaction mediated by the establishment of a hydrogen bond, anandamide is attracted towards the membrane interior, where it forms a molecular complex with cholesterol after a functional conformation adaptation to the apolar membrane milieu. The complex is then directed to the anandamide cannabinoid receptor (CB1) which displays a high affinity binding pocket for anandamide. We propose that cholesterol may regulate the entry and exit of anandamide in and out of CB1 by interacting with low affinity cholesterol recognition sites (CARC and CRAC) located in transmembrane helices. The mirror topology of cholesterol binding sites in the seventh transmembrane domain is consistent with the delivery, extraction and flip-flop of anandamide through a coordinated cholesterol-dependent mechanism. The binding of anandamide to ceramide illustrates another key function of membrane lipids which may occur independently of protein receptors. Interestingly, ceramide forms a tight complex with anandamide which blocks the degradation pathway of both lipids and could be exploited for anti-cancer therapies.

  9. CB1 cannabinoid receptor-mediated anandamide signaling mechanisms of the inferior colliculus modulate the haloperidol-induced catalepsy.

    Science.gov (United States)

    Medeiros, P; de Freitas, R L; Silva, M O; Coimbra, N C; Melo-Thomas, L

    2016-11-19

    The inferior colliculus (IC), a midbrain structure that processes acoustic information of aversive nature, is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Previous evidence relating the IC to motor behavior shows that glutamatergic and GABAergic mechanisms in the IC exert influence on systemic haloperidol-induced catalepsy. There is substantial evidence supporting a role played by the endocannabinoid system as a modulator of the glutamatergic neurotransmission, as well as the dopaminergic activity in the basal nuclei and therefore it may be considered as a potential pharmacological target for the treatment of movement disorders. The present study evaluated if the endocannabinoid system in the IC plays a role in the elaboration of systemic haloperidol-induced catalepsy. Male Wistar rats received intracollicular microinjection of either the endogenous cannabinoid anandamide (AEA) at different concentrations (5, 50 or 100pmol/0.2μl), the CB 1 cannabinoid receptor antagonist AM251 at 50, 100 or 200pmol/0.2μl or vehicle, followed by intraperitoneal (IP) administration of either haloperidol at 0.5 or 1mg/kg or physiological saline. Systemic injection of haloperidol at both doses (0.5 or 1mg/kg, IP) produced a cataleptic state, compared to vehicle/physiological saline-treated group, lasting 30 and 50min after systemic administration of the dopaminergic receptors non-selective antagonist. The midbrain microinjection of AEA at 50pmol/0.2μl increased the latency for stepping down from the horizontal bar after systemic administration of haloperidol. Moreover, the intracollicular administration of AEA at 50pmol/0.2μl was able to increase the duration of catalepsy as compared to AEA at 100pmol/0.2-μl-treated group. Intracollicular pretreatment with AM251 at the intermediate concentration (100pmol/0.2μl) was able to decrease the duration of catalepsy after systemic administration of haloperidol. However

  10. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa.

    Science.gov (United States)

    Monteleone, Palmiero; Matias, Isabelle; Martiadis, Vassilis; De Petrocellis, Luciano; Maj, Mario; Di Marzo, Vincenzo

    2005-06-01

    The endocannabinoid system, consisting of two cannabinoid receptors (CB1 and CB2) and the endogenous ligands anandamide (arachidonoylethanolamide (AEA)) and 2-arachidonoylglycerol (2-AG), has been shown to control food intake in both animals and humans, modulating either rewarding or quantitative aspects of the eating behavior. Moreover, hypothalamic endocannabinoids seem to be part of neural circuitry involved in the modulating effects of leptin on energy homeostasis. Therefore, alterations of the endocannabinoid system could be involved in the pathophysiology of eating disorders, where a deranged leptin signalling has been also reported. In order to verify this hypothesis, we measured plasma levels of AEA, 2-AG, and leptin in 15 women with anorexia nervosa (AN), 12 women with bulimia nervosa (BN), 11 women with binge-eating disorder (BED), and 15 healthy women. Plasma levels of AEA resulted significantly enhanced in both anorexic and BED women, but not in bulimic patients. No significant change occurred in the plasma levels of 2-AG in all the patients' groups. Moreover, circulating AEA levels were significantly and inversely correlated with plasma leptin concentrations in both healthy controls and anorexic women. These findings show for the first time a derangement in the production of the endogenous cannabinoid AEA in drug-free symptomatic women with AN or with BED. Although the pathophysiological significance of this alteration awaits further studies to be clarified, it suggests a possible involvement of AEA in the mediation of the rewarding aspects of the aberrant eating behaviors occurring in AN and BED.

  11. Restored Plasma Anandamide and Endometrial Expression of Fatty Acid Amide Hydrolase in Women With Polycystic Ovary Syndrome by the Combination Use of Diane-35 and Metformin.

    Science.gov (United States)

    Cui, Na; Feng, Xiaoye; Zhao, Zhiming; Zhang, Jie; Xu, Yueming; Wang, Luning; Hao, Guimin

    2017-04-01

    Polycystic ovary syndrome (PCOS) is a metabolic and endocrinal disorder affecting a number of women of reproductive age. We aimed to reveal the correlation between the endocannabinoid system and PCOS, which may provide a new therapeutic target for PCOS treatment. Serum levels of anandamide and 2-arachidonoylglycerol andexpression of cannabinoid receptors and fatty acid amide hydrolase (FAAH) in the endometrium were compared between women with PCOS and infertile women without PCOS, as well as women with PCOS before and after treatment with Diane-35 and metformin. Cannabinoid receptors and FAAH in the endometrium were stained using the immunohistochemical method. Results were analyzed by calculating integrated optical density. Plasma anandamide was increased significantly in women with PCOS compared with infertile women without PCOS. Treatment with Diane-35 and metformin reversed this increase in women with PCOS. No significant difference in 2-arachidonoylglycerol was observed between the infertile women with or without PCOS. The women with PCOS had lower endometrial expression of FAAH compared with infertile women without PCOS, whereas no significant difference in endometrial expression of cannabinoid receptors was observed between the women with PCOS and infertile women without PCOS. We found that after treatment with Diane-35 and metformin, FAAH expression tended toward a significant increase compared with women before the treatment. Endocannabinoid system may be involved in the progression of PCOS, and serum anandamide could serve as a potential biomarker of clinical diagnosis of PCOS. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  12. Brain uptake and metabolism of the endocannabinoid anandamide labeled in either the arachidonoyl or ethanolamine moiety

    International Nuclear Information System (INIS)

    Hu, Kun; Sonti, Shilpa; Glaser, Sherrye T.; Duclos, Richard I.; Gatley, Samuel J.

    2017-01-01

    Introduction: Anandamide (N-arachidonoylethanolamine) is a retrograde neuromodulator that activates cannabinoid receptors. The concentration of anandamide in the brain is controlled by fatty acid amide hydrolase (FAAH), which has been the focus of recent drug discovery efforts. Previous studies in C57BL/6 mice using [ 3 H-arachidonoyl]anandamide demonstrated deposition of tritium in thalamus and cortical areas that was blocked by treatment with an FAAH inhibitor and that was not seen in FAAH-knockout mice. This suggested that long chain fatty acid amides radiolabeled in the fatty acid moiety might be useful as ex vivo and in vivo radiotracers for FAAH, since labeled fatty acid released by hydrolysis would be rapidly incorporated into phospholipids with long metabolic turnover periods. Methods: Radiotracers were administered intravenously to conscious Swiss–Webster mice, and radioactivity concentrations in brain areas was quantified and radiolabeled metabolites determined by radiochromatography. Results: [ 14 C]Arachidonic acid, [ 14 C-arachidonoyl]anandamide and [ 14 C-ethanolamine]anandamide, and also [ 14 C]myristic acid, [ 14 C-myristoyl]myristoylethanolamine and [ 14 C-ethanolamine]myristoyl-ethanolamine all had very similar distribution patterns, with whole brain radioactivity concentrations of 2–4% injected dose per gram. Pretreatment with the potent selective FAAH inhibitor URB597 did not significantly alter distribution patterns although radiochromatography demonstrated that the rate of incorporation of label from [ 14 C]anandamide into phospholipids was decreased. Pretreatment with the muscarinic agonist arecoline which increases cerebral perfusion increased brain uptake of radiolabel from [ 14 C]arachidonic acid and [ 14 C-ethanolamine]anandamide, and (in dual isotope studies) from the unrelated tracer [ 125 I]RTI-55. Conclusions: Together with our previously published study with [ 18 F-palmitoyl]16-fluoro-palmitoylethanolamine, the data show that the

  13. Intrahippocampal administration of anandamide increases REM sleep.

    Science.gov (United States)

    Rueda-Orozco, Pavel Ernesto; Soria-Gómez, Edgar; Montes-Rodríguez, Corinne Jennifer; Pérez-Morales, Marcel; Prospéro-García, Oscar

    2010-04-05

    A nascent literature has postulated endocannabinoids (eCBs) as strong sleep-inducing lipids, particularly rapid-eye-movement sleep (REMs), nevertheless the exact mechanisms behind this effect remain to be determined. Anandamide and 2-arachidonyl glycerol, two of the most important eCBS, are synthesized in the hippocampus. This structure also expresses a high concentration of cannabinoid receptor 1 (CB1). Recent extensive literature supports eCBs as important regulators of hippocampal activity. It has also been shown that these molecules vary their expression on the hippocampus depending on the light-dark cycle. In this context we decided to analyze the effect of intrahippocampal administration of the eCB anandamide (ANA) on the sleep-waking cycle at two points of the light-dark cycle. Our data indicate that the administration of ANA directly into the hippocampus increases REMs in a dose dependent manner during the dark but not during the light phase of the cycle. The increase of REMs was blocked by the CB1 antagonist AM251. This effect was specific for the hippocampus since ANA administrations in the surrounding cortex did not elicit any change in REMs. These results support the idea of a direct relationship between hippocampal activity and sleep mechanisms by means of eCBs. The data presented here show, for the first time that eCBs administered into the hippocampus trigger REMs and support previous studies where chemical stimulation of limbic areas triggered sleep.

  14. Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

    Directory of Open Access Journals (Sweden)

    Attila Oláh

    2017-11-01

    Full Text Available It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−-trans-Δ9-tetrahydrocannabinol (THC, (−-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB, e.g., arachidonoylethanolamine (anandamide, AEA, 2-arachidonoylglycerol (2-AG, etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc., and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS, a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i to summarize the most recent findings of the field; (ii to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii to identify open questions and key challenges; and (iv to suggest promising future directions for cannabinoid-based drug development.

  15. Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats.

    Science.gov (United States)

    Haller, J; Barna, I; Barsvari, B; Gyimesi Pelczer, K; Yasar, S; Panlilio, L V; Goldberg, S

    2009-07-01

    Since the discovery of endogenous cannabinoid signaling, the number of studies exploring its role in health and disease has increased exponentially. Fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of the endocannabinoid anandamide, has emerged as a promising target for anxiety-related disorders. FAAH inhibitors (e.g., URB597) increase brain levels of anandamide and induce anxiolytic-like effects in rodents. Recent findings, however, questioned the efficacy of URB597 as an anxiolytic. We tested here the hypothesis that conflicting findings are due to variations in the stressfulness of experimental conditions employed in various studies. We found that URB597 (0.1-0.3 mg/kg) did not produce anxiolytic effects when the aversiveness of testing procedures was minimized by handling rats daily before experimentation, by habituating them to the experimental room, or by employing low illumination during testing. In contrast, URB597 had robust anxiolytic effects when the aversiveness of the testing environment was increased by eliminating habituation to the experimental room or by employing bright lighting conditions. Unlike URB597, the benzodiazepine chlordiazepoxide (5 mg/kg) had anxiolytic effects under all testing conditions. The anxiolytic effects of URB597 were abolished by the cannabinoid CB1-receptor antagonist AM251, showing that they were mediated by CB1 receptors. Close inspection of experimental conditions employed in earlier reports suggests that conflicting findings with URB597 can be explained by different testing conditions, such as those manipulated in the present study. Our findings show that FAAH inhibition does not affect anxiety under mildly stressful circumstances but protects against the anxiogenic effects of aversive stimuli.

  16. [Short-and long-term effects of cannabinoids on memory, cognition and mental illness].

    Science.gov (United States)

    Sagie, Shira; Eliasi, Yehuda; Livneh, Ido; Bart, Yosi; Monovich, Einat

    2013-12-01

    Marijuana is considered the most commonly used drug in the world, with estimated millions of users. There is dissent in the medical world about the positive and negative effects of marijuana, and recently, a large research effort has been directed to that domain. The main influencing drug ingredient is THC, which acts on the cannabinoid system and binds to the CB1 receptor. The discovery of the receptor led to the finding of an endogenous ligand, anandamide, and another receptor-CB2. The researchers also discovered that cannabinoids have extensive biological activity, and its short and long-term effects may cause cognitive and emotional deficiencies. Findings show that the short-term effects, such as shortterm memory and verbal Learning, are reversible. However, despite the accumulation of evidence about long-term cognitive damage due to cannabis use, it is difficult to find unequivocal results, arising from the existence of many variables such as large differences between cannabis users, frequency of use, dosage and endogenous brain compensation. Apart from cognitive damage, current studies investigate how marijuana affects mental illness: a high correlation between cannabis use and schizophrenia was found and a high risk to undergo a psychotic attack. Furthermore, patients with schizophrenia who used cannabis showed a selective neuro-psychological disruption, and similar cognitive deficiencies and brain morphological changes were found among healthy cannabis users and schizophrenia patients. In contrast to the negative effects of marijuana including addiction, there are the medical uses: reducing pain, anxiety and nausea, increasing appetite and an anti-inflammatory activity. Medicalization of marijuana encourages frequent use, which may elevate depression.

  17. Endocannabinoid metabolism in human glioblastomas and meningiomas compared to human non-tumour brain tissue

    DEFF Research Database (Denmark)

    Petersen, G.; Moesgaard, B.; Hansen, Harald S.

    2005-01-01

    The endogenous levels of the two cannabinoid receptor ligands 2-arachidonoyl glycerol and anandamide, and their respective congeners, monoacyl glycerols and N-acylethanolamines, as well as the phospholipid precursors of N-acylethanolamines, were measured by gas chromatography-mass spectrometry in...

  18. Blockade of Cannabinoid CB1 Receptors in the Dorsal Periaqueductal Gray Unmasks the Antinociceptive Effect of Local Injections of Anandamide in Mice

    Directory of Open Access Journals (Sweden)

    Diego C. Mascarenhas

    2017-10-01

    Full Text Available Divergent results in pain management account for the growing number of studies aiming at elucidating the pharmacology of the endocannabinoid/endovanilloid anandamide (AEA within several pain-related brain structures. For instance, the stimulation of both Transient Receptor Potential Vanilloid type 1 (TRPV1 and Cannabinoid type 1 (CB1 receptors led to paradoxical effects on nociception. Here, we attempted to propose a clear and reproducible methodology to achieve the antinociceptive effect of exogenous AEA within the dorsal periaqueductal gray (dPAG of mice exposed to the tail-flick test. Accordingly, male Swiss mice received intra-dPAG injection of AEA (CB1/TRPV1 agonist, capsaicin (TRPV1 agonist, WIN (CB1 agonist, AM251 (CB1 antagonist, and 6-iodonordihydrocapsaicin (6-IODO (TRPV1 selective antagonist and their nociceptive response was assessed with the tail-flick test. In order to assess AEA effects on nociception specifically at vanilloid or cannabinoid (CB substrates into the dPAG, mice underwent an intrinsically inactive dose of AM251 or 6-IODO followed by local AEA injections and were subjected to the same test. While intra-dPAG AEA did not change acute pain, local injections of capsaicin or WIN induced a marked TRPV1- and CB1-dependent antinociceptive effect, respectively. Regarding the role of AEA specifically at CB/vanilloid substrates, while the blockade of TRPV1 did not change the lack of effects of intra-dPAG AEA on nociception, local pre-treatment of AM251, a CB1 antagonist, led to a clear AEA-induced antinociception. It seems that the exogenous AEA-induced antinociception is unmasked when it selectively binds to vanilloid substrates, which might be useful to address acute pain in basic and perhaps clinical trials.

  19. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice

    OpenAIRE

    Walentiny, D. Matthew; Vann, Robert E.; Wiley, Jenny L.

    2015-01-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ9 -tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with sim...

  20. Anandamide inhibits adhesion and migration of breast cancer cells

    International Nuclear Information System (INIS)

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo; Bifulco, Maurizio

    2006-01-01

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB 1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB 1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB 1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB 1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  1. N-Acylethanolamines in human reproductive fluids

    OpenAIRE

    Schuel, H; Burkman, LJ; Lippes, J; Crickard, K; Forester, E; Piomelli, D; Giuffrida, A

    2002-01-01

    N-Acylethanolamines (NAEs) are an important family of lipid-signaling molecules. Arachidonylethanolamide (anandamide) (AEA), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) are co-produced from similar phospholipid precursors when neurons are stimulated. AEA is an endogenous agonist (endocannabinoid) for cannabinoid receptors. It binds with higher affinity to type CB1 than to type CB2 cannabinoid receptors. PEA does not bind to CB1, while the hypothesis that it reacts with putative ...

  2. Cannabinoids and Pain

    Directory of Open Access Journals (Sweden)

    J Michael Walker

    2001-01-01

    Full Text Available Cannabinoids have been used to treat pain for many centuries. However, only during the past several decades have rigorous scientific methods been applied to understand the mechanisms of cannabinoid action. Cannabinoid receptors were discovered in the late 1980s and have been found to mediate the effects of cannabinoids on the nervous system. Several endocannabinoids were subsequently identified. Many studies of cannabinoid analgesia in animals during the past century showed that cannabinoids block all types of pain studied. These effects were found to be due to the suppression of spinal and thalamic nociceptive neurons, independent of any actions on the motor systems. Spinal, supraspinal and peripheral sites of cannabinoid analgesia have been identified. Endocannabinoids are released upon electrical stimulation of the periaqueductal gray, and in response to inflammation in the extremities. These observations and others thus suggest that a natural function of cannabinoid receptors and their endogenous ligands is to regulate pain sensitivity. The therapeutic potential of cannabinoids remains an important topic for future investigations, with previous work suggesting utility in clinical studies of cancer and surgical pain. New modes of delivery and/or new compounds lacking the psychotropic properties of the standard cannabinoid ligands offer promise for cannabinoid therapeutics for pain.

  3. Binding of anandamide to bovine serum albumin

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2003-01-01

    The endocannabinoid anandamide is of lipid nature and may thus bind to albumin in the vascular system, as do fatty acids. The knowledge of the free water-phase concentration of anandamide is essential for the investigations of its transfer from the binding protein to cellular membranes, because...... a water-phase shuttle of monomers mediates such transfers. We have used our method based upon the use of albumin-filled red cell ghosts as a dispersed biological "reference binder" to measure the water-phase concentrations of anandamide. These concentrations were measured in buffer (pH 7.3) in equilibrium...... that BSA has one high-affinity binding site for anandamide at all four temperatures. The free energy of anandamide binding (¿G) is calculated to -43.05 kJ mol with a large enthalpy (¿H ) contribution of -42.09 kJ mol. Anandamide has vasodilator activity, and the binding to albumin may mediate its transport...

  4. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Science.gov (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  5. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA.The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component of 34 µM.The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.

  6. Effects of TRPV1 activation on synaptic excitation in the dentate gyrus of a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Bhaskaran, Muthu D; Smith, Bret N

    2010-06-01

    Temporal lobe epilepsy (TLE) is a condition characterized by an imbalance between excitation and inhibition in the temporal lobe. Hallmarks of this change are axon sprouting and accompanying synaptic reorganization in the temporal lobe. Synthetic and endogenous cannabinoids have variable therapeutic potential in treating intractable temporal lobe epilepsy, in part because cannabinoid ligands can bind multiple receptor types. This study utilized in vitro electrophysiological methods to examine the effect of transient receptor potential vanilloid type 1 (TRPV1) activation in dentate gyrus granule cells in a murine model of TLE. Capsaicin, a selective TRPV1 agonist had no measurable effect on overall synaptic input to granule cells in control animals, but significantly enhanced spontaneous and miniature EPSC frequency in mice with TLE. Exogenous application of anandamide, an endogenous cannabinoid that acts at both TRPV1 and cannabinoid type 1 receptors (CB1R), also enhanced glutamate release in the presence of a CB1R antagonist. Anandamide reduced the EPSC frequency when TRPV1 were blocked with capsazepine. Western blot analysis of TRPV1 receptor indicated protein expression was significantly greater in the dentate gyrus of mice with TLE compared with control mice. This study indicates that a prominent cannabinoid agonist can increase excitatory circuit activity in the synaptically reorganized dentate gyrus of mice with TLE by activating TRPV1 receptors, and suggests caution in designing anticonvulsant therapy based on modulating the endocannabinoid system. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  7. Preclinical Science Regarding Cannabinoids as Analgesics: An Overview

    Directory of Open Access Journals (Sweden)

    ME Lynch

    2005-01-01

    Full Text Available Modern pharmacology of cannabinoids began in 1964 with the isolation and partial synthesis of delta-9-tetrahydrocannabinol, the main psychoactive agent in herbal cannabis. Since then, potent antinociceptive and antihyperalgesic effects of cannabinoid agonists in animal models of acute and chronic pain; the presence of cannabinoid receptors in pain-processing areas of the brain, spinal cord and periphery; and evidence supporting endogenous modulation of pain systems by cannabinoids has provided support that cannabinoids exhibit significant potential as analgesics. The present article presents an overview of the preclinical science.

  8. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture.

    Science.gov (United States)

    Miyashita, Keiko; Oyama, Tohru; Sakuta, Tetsuya; Tokuda, Masayuki; Torii, Mitsuo

    2012-06-01

    Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Cannabinoids on the Brain

    Directory of Open Access Journals (Sweden)

    Andrew J. Irving

    2002-01-01

    Full Text Available Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.

  10. Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data.

    Science.gov (United States)

    Di Scala, Coralie; Mazzarino, Morgane; Yahi, Nouara; Varini, Karine; Garmy, Nicolas; Fantini, Jacques; Chahinian, Henri

    2017-10-01

    Anandamide is a lipid neurotransmitter that interacts with various plasma membrane lipids. The data here consists of molecular dynamics simulations of anandamide, C18-ceramide and cholesterol performed in vacuo and within a hydrated palmitoyl-oleoyl-phosphatidylcholine (POPC)/cholesterol membrane. Several models of anandamide/cholesterol and anandamide/ceramide complexes are presented. The energy of interaction and the nature of the intermolecular forces involved in each of these complexes are detailed. The impact of water molecules hydrating the POPC/cholesterol membrane for the stability of the anandamide/cholesterol and anandamide/ceramide complexes is also analyzed. From a total number of 1920 water molecules stochatiscally merged with the lipid matrix, 48 were eventually redistributed around the polar head groups of the anandamide/ceramide complex, whereas only 15 reached with the anandamide/cholesterol complex. The interpretation of this dataset is presented in the accompanying article "Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells" [1].

  11. Antinociceptive interactions between anandamide and endomorphin-1 at the spinal level.

    Science.gov (United States)

    Tuboly, Gabor; Mecs, Laszlo; Benedek, György; Horvath, Gyöngyi

    2009-04-01

    1. Although it is well known that the combined administration of synthetic or plant-originated opioids with cannabinoids (CB) results in synergistic antinociception, the effects of combined administration of endogenous ligands acting at micro-opioid and CB receptors are not known. The aim of the present study was to determine the interaction between anandamide (AEA; a CB(1) receptor agonist) and endomorphin-1 (EM-1; a micro-opioid receptor agonist) after intrathecal administration. 2. Nociception was assessed by the paw-withdrawal test after carrageenan-induced inflammation in male Wistar rats. 3. Endomorphin-1 (16.4 pmol to 16.4 nmol) and AEA (4.3-288 nmol) alone dose-dependently decreased carrageenan-induced thermal hyperalgesia, although the highest dose of AEA also exhibited pain-inducing potential. The potency of AEA was approximately 59-fold lower than that of EM-1 (35% effective dose (ED(35)) 194.4 vs 3.3 nmol, respectively). Coadministration of these ligands revealed that combinations of 16.4 pmol EM-1 plus 28.8 or 86.5 nmol AEA were more effective than either drug alone, but other combinations were no more effective than the administration of EM-1 itself. Therefore, coadministration of AEA did not significantly shift the dose-response curve to EM-1. 4. The results of the present study indicate that the coadministration of AEA and EM-1 results in potentiated antihyperalgesia only for a combination of specific doses. Because AEA activates other receptor types (e.g. TRPV1) in addition to CB(1) receptors, the results of the present suggest that, after the coadministration of EM-1 and AEA, complex interactions ensue that may lead to different outcomes compared with those seen following the injection of exogenous ligands.

  12. Endocannabinoid system and drug addiction: new insights from mutant mice approaches.

    Science.gov (United States)

    Maldonado, Rafael; Robledo, Patricia; Berrendero, Fernando

    2013-08-01

    The involvement of the endocannabinoid system in drug addiction was initially studied by the use of compounds with different affinities for each cannabinoid receptor or for the proteins involved in endocannabinoids inactivation. The generation of genetically modified mice with selective mutations in these endocannabinoid system components has now provided important advances in establishing their specific contribution to drug addiction. These genetic tools have identified the particular interest of CB1 cannabinoid receptor and endogenous anandamide as potential targets for drug addiction treatment. Novel genetic tools will allow determining if the modulation of CB2 cannabinoid receptor activity and 2-arachidonoylglycerol tone can also have an important therapeutic relevance for drug addiction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years

    Directory of Open Access Journals (Sweden)

    Mauro Maccarrone

    2017-05-01

    Full Text Available Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB” was identified as N-arachidonoylethanolamine (or anandamide (AEA, and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.

  14. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research

    Directory of Open Access Journals (Sweden)

    Rafael N. Ruggiero

    2017-06-01

    Full Text Available Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC or ameliorate (e.g., cannabidiol, CBD schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.

  15. Functional role of cannabinoid receptors in urinary bladder

    Directory of Open Access Journals (Sweden)

    Pradeep Tyagi

    2010-01-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa (marijuana, and their derivatives produce a wide spectrum of central and peripheral effects, some of which may have clinical applications. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has attracted much attention to the general cannabinoid pharmacology. In recent years, studies on the functional role of cannabinoid receptors in bladder have been motivated by the therapeutic effects of cannabinoids on voiding dysfunction in multiple sclerosis patients. In this review, we shall summarize the literature on the expression of cannabinoid receptors in urinary bladder and the peripheral influence of locally and systemically administered cannabinoids in the bladder. The ongoing search for cannabinoid-based therapeutic strategies devoid of psychotropic effects can be complemented with local delivery into bladder by the intravesical route. A greater understanding of the role of the peripheral CB 1 and CB 2 receptor system in lower urinary tract is necessary to allow the development of new treatment for pelvic disorders.

  16. Inactivation of Anandamide Signaling: A Continuing Debate

    Directory of Open Access Journals (Sweden)

    Wael E. Houssen

    2010-10-01

    Full Text Available Since the first endocannabinoid anandamide was identified in 1992, extensive research has been conducted to characterize the elements of the tightly controlled endocannabinoid signaling system. While it was established that the activity of endocannabinoids are terminated by a two-step process that includes cellular uptake and degradation, there is still a continuing debate about the mechanistic role of these processes in inactivating anandamide signals.

  17. Characterization of the hypothermic effect of the synthetic cannabinoid HU-210 in the rat. Relation to the adrenergic system and endogenous pyrogens.

    Science.gov (United States)

    Ovadia, H; Wohlman, A; Mechoulam, R; Weidenfeld, J

    1995-02-01

    In the present study we have characterized the hypothermic effect of the psychoactive cannabinoid HU-210, by investigating its interaction with the endogenous pyrogens, IL-1 and PGE2. We also studied the involvement of the adrenergic system in mediation of this hypothermic effect. Injection of HU-210 directly into the preoptic area caused a dose dependent reduction of rectal temperature from 37 to 32.1 degrees C. Injection of the non-psychoactive analog, HU-211 which does not bind to brain cannabinoid receptor, did not affect body temperature. Injection of the adrenergic agonists, CGP-12177 and clonidine (beta, and alpha adrenergic agonists, respectively) abrogated the hypothermia induced by HU-210. Injection of the adrenergic antagonists, prazosin (alpha 1) and propranolol (beta) enhanced the hypothermic effect of HU-210. Intracerebral administration of IL-1 or PGE2 to rats pretreated with HU-210 caused a transient inhibition of the hypothermia. The ex vivo rate of basal or bacterial endotoxin-induced synthesis of PGE2 by different brain regions, including the preoptic area was not affected by HU-210 administration. These results suggest that the synthetic cannabinoid HU-210 acts in the preoptic area, probably via the brain cannabinoid receptor to induce hypothermia. The hypothermic effect can be antagonized by adrenergic agonists and enhanced by adrenergic antagonists. HU-210 does not interfere with the pyrogenic effect of IL-1 or PGE2.

  18. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies

    Directory of Open Access Journals (Sweden)

    Katia eBefort

    2015-02-01

    Full Text Available The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins and dynorphins. The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids, enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.

  19. Impact of cannabis, cannabinoids and endocannabinoids in the lungs

    Directory of Open Access Journals (Sweden)

    Caroline Turcotte

    2016-09-01

    Full Text Available Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids is the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.

  20. Plasma anandamide and other N-acylethanolamines are correlated with their corresponding free fatty acid levels under both fasting and non-fasting conditions in women

    NARCIS (Netherlands)

    Joosten, M.M.; Balvers, M.G.J.; Verhoeckx, K.C.M.; Hendriks, H.F.J.; Witkamp, R.F.

    2010-01-01

    N-acylethanolamines (NAEs), such as anandamide (AEA), are a group of endogenous lipids derived from a fatty acid linked to ethanolamine and have a wide range of biological activities, including regulation of metabolism and food intake. We hypothesized that i) NAE plasma levels are associated with

  1. The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats.

    Science.gov (United States)

    Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Di Marzo, Vincenzo

    2013-01-17

    The family of the endocannabinoid system comprises endogenous lipids (such as anandamide [ANA]), receptors (CB(1)/CB(2) cannabinoid receptors), metabolic enzymes (fatty acid amide hydrolase [FAAH]) and a putative membrane transporter (anandamide membrane transporter [AMT]). Although the role of ANA, FAAH or the CB(1) cannabinoid receptor in sleep modulation has been reported, the effects of the inhibition of AMT on sleep remain unclear. In the present study, we show that microdialysis perfusion in rats of AMT inhibitors, (9Z)-N-[1-((R)-4-hydroxbenzyl)-2-hydroxyethyl]-9-octadecenamide (OMDM-2) or N-(4-hydroxy-2-methylphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (VDM-11; 10, 20 or 30 μM; each compound) delivered into the paraventricular thalamic nucleus (PVA) increased sleep and decreased waking. In addition, the infusion of compounds reduced the extracellular levels of dopamine collected from nucleus accumbens. Taken together, these findings illustrate a critical role of AMT in sleep modulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication.

    Science.gov (United States)

    Bradshaw, Heather B; Raboune, Siham; Hollis, Jennifer L

    2013-03-19

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining "orphans." That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are "promiscuous" in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically "opportunistic" in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an "orphan" lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  4. Anandamide attenuates Th-17 cell-mediated delayed-type hypersensitivity response by triggering IL-10 production and consequent microRNA induction.

    Directory of Open Access Journals (Sweden)

    Austin R Jackson

    Full Text Available Endogenous cannabinoids [endocannabinoids] are lipid signaling molecules that have been shown to modulate immune functions. However, their role in the regulation of Th17 cells has not been studied previously. In the current study, we used methylated Bovine Serum Albumin [mBSA]-induced delayed type hypersensitivity [DTH] response in C57BL/6 mice, mediated by Th17 cells, as a model to test the anti-inflammatory effects of endocannabinoids. Administration of anandamide [AEA], a member of the endocannabinoid family, into mice resulted in significant mitigation of mBSA-induced inflammation, including foot pad swelling, cell infiltration, and cell proliferation in the draining lymph nodes [LN]. AEA treatment significantly reduced IL-17 and IFN-γ production, as well as decreased RORγt expression while causing significant induction of IL-10 in the draining LNs. IL-10 was critical for the AEA-induced mitigation of DTH response inasmuch as neutralization of IL-10 reversed the effects of AEA. We next analyzed miRNA from the LN cells and found that 100 out of 609 miRNA species were differentially regulated in AEA-treated mice when compared to controls. Several of these miRNAs targeted proinflammatory mediators. Interestingly, many of these miRNA were also upregulated upon in vitro treatment of LN cells with IL-10. Together, the current study demonstrates that AEA may suppress Th-17 cell-mediated DTH response by inducing IL-10 which in turn triggers miRNA that target proinflammatory pathways.

  5. Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease

    Directory of Open Access Journals (Sweden)

    Despina Kokona

    2016-01-01

    Full Text Available The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP. This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease.

  6. Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Ladin

    2016-10-01

    Full Text Available Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated through the endocannabinoid system, which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer development and reduction. However, many studies investigated these roles using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical models and to examine the current standing of cannabinoids currently being tested in human cancer patients.

  7. The Role of Cannabinoid Receptors in the Descending Modulation of Pain

    Directory of Open Access Journals (Sweden)

    Francesco Rossi

    2010-08-01

    Full Text Available The endogenous antinociceptive descending pathway represents a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes the periaqueductal grey (PAG-rostral ventromedial medulla (RVM-dorsal horn (DH axis, which is the best characterized pain modulation system through which pain is endogenously inhibited. Thus, an alternative rational strategy for silencing pain is the activation of this anatomical substrate. Evidence of the involvement of cannabinoid receptors (CB in the supraspinal modulation of pain can be found in several studies in which intra-cerebral microinjections of cannabinoid ligands or positive modulators have proved to be analgesic in different pain models, whereas cannabinoid receptor antagonists or antisense nucleotides towards CB1 receptors have facilitated pain. Like opioids, cannabinoids produce centrally-mediated analgesia by activating a descending pathway which includes PAG and its projection to downstream RVM neurons, which in turn send inhibitory projections to the dorsal horn of the spinal cord. Indeed, several studies underline a supraspinal regulation of cannabinoids on g-aminobutyric acid (GABA and glutamate release which inhibit and enhance the antinociceptive descending pathway, respectively. Cannabinoid receptor activation expressed on presynaptic GABAergic terminals reduces the probability of neurotransmitter release thus dis-inhibiting the PAG-RVM-dorsal horn antinociceptive pathway. Cannabinoids seem to increase glutamate release (maybe as consequence of GABA decrease and to require glutamate receptor activation to induce antinociception. The consequent outcome is behavioral analgesia, which is reproduced in several pain conditions, from acute to chronic pain models such as inflammatory and neuropathic pain. Taken together these findings would suggest that supraspinal cannabinoid receptors have broad applications, from pain control to closely related central nervous system

  8. Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability.

    Science.gov (United States)

    Jacobsson, S O; Rongård, E; Stridh, M; Tiger, G; Fowler, C J

    2000-12-15

    In the present study, the effects of the combination of tamoxifen ((Z)-2[p-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethylamine citrate) and three cannabinoids (Delta(9)-tetrahydrocannabinol [Delta(9)-THC], cannabidiol, and anandamide [AEA]) upon the viability of C6 rat glioma cells was assessed at different incubation times and using different culturing concentrations of foetal bovine serum (FBS). Consistent with previous data for human glioblastoma cells, the tamoxifen sensitivity of the cells was increased as the FBS content of the culture medium was reduced from 10 to 0.4 and 0%. The cells expressed protein kinase C alpha and calmodulin (the concentration of which did not change significantly as the FBS concentration was reduced), but did not express estrogen receptors. Delta(9)-THC and cannabidiol, but not AEA, produced a modest reduction in cell viability after 6 days of incubation in serum-free medium, whereas no effects were seen in 10% FBS-containing medium. There was no observed synergy between the effects of tamoxifen and the cannabinoids upon cell viability.

  9. Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain.

    Science.gov (United States)

    Morgan, Amanda J; Kingsley, Philip J; Mitchener, Michelle M; Altemus, Megan; Patrick, Toni A; Gaulden, Andrew D; Marnett, Lawrence J; Patel, Sachin

    2018-05-09

    Cyclooxygenase-2 (COX-2) catalyzes the formation of prostaglandins, which are involved in immune regulation, vascular function, and synaptic signaling. COX-2 also inactivates the endogenous cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) via oxygenation of its arachidonic acid backbone to form a variety of prostaglandin glyceryl esters (PG-Gs). Although this oxygenation reaction is readily observed in vitro and in intact cells, detection of COX-2-derived 2-AG oxygenation products has not been previously reported in neuronal tissue. Here we show that 2-AG is metabolized in the brain of transgenic COX-2-overexpressing mice and mice treated with lipopolysaccharide to form multiple species of PG-Gs that are detectable only when monoacylglycerol lipase is concomitantly blocked. Formation of these PG-Gs is prevented by acute pharmacological inhibition of COX-2. These data provide evidence that neuronal COX-2 is capable of oxygenating 2-AG to form a variety PG-Gs in vivo and support further investigation of the physiological functions of PG-Gs.

  10. Elevated Brain Cannabinoid CB1 Receptor Availability in Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    Science.gov (United States)

    Neumeister, Alexander; Normandin, Marc D.; Pietrzak, Robert H.; Piomelli, Daniele; Zheng, Ming-Qiang; Gujarro-Anton, Ana; Potenza, Marc N.; Bailey, Christopher R.; Lin, Shu-fei; Najafzadeh, Soheila; Ropchan, Jim; Henry, Shannan; Corsi-Travali, Stefani; Carson, Richard E.; Huang, Yiyun

    2013-01-01

    Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such histories (healthy controls [HC]). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance (MR) imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [11C]OMAR, which measures volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [11C]OMAR VT values (F(2,53)=7.96, p=.001; 19.5% and 14.5% higher, respectively) which were most pronounced in women (F(1,53)=5.52, p=.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively—OMAR VT, anandamide, and cortisol—correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder. PMID:23670490

  11. Molecular mechanisms underlying the effects of cannabinoids in the brain

    OpenAIRE

    Puighermanal Puigvert, Emma, 1983-

    2011-01-01

    El sistema endocannabinoid és un sistema neuromodulador endogen que regula diverses funcions fisiològiques, incloent el control del moviment, la memòria, l’ansietat i el dolor, entre altres. Els compostos cannabinoids es troben principalment a la planta Cannabis sativa i exerceixen els seus efectes actuant al sistema endocannabinoid. Els cannabinoids tenen potencial terapèutic, principalment per l’esclerosi múltiple, el dolor i l’èmesi, tot i que una limitació important pel seu ús recau en el...

  12. The therapeutic potential of cannabis and cannabinoids.

    Science.gov (United States)

    Grotenhermen, Franjo; Müller-Vahl, Kirsten

    2012-07-01

    Cannabis-based medications have been a topic of intense study since the endogenous cannabinoid system was discovered two decades ago. In 2011, for the first time, a cannabis extract was approved for clinical use in Germany. Selective literature review. Cannabis-based medications exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). More than 100 controlled clinical trials of cannabinoids or whole-plant preparations for various indications have been conducted since 1975. The findings of these trials have led to the approval of cannabis-based medicines (dronabinol, nabilone, and a cannabis extract [THC:CBD=1:1]) in several countries. In Germany, a cannabis extract was approved in 2011 for the treatment of moderate to severe refractory spasticity in multiple sclerosis. It is commonly used off label for the treatment of anorexia, nausea, and neuropathic pain. Patients can also apply for government permission to buy medicinal cannabis flowers for self-treatment under medical supervision. The most common side effects of cannabinoids are tiredness and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. There is now clear evidence that cannabinoids are useful for the treatment of various medical conditions.

  13. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer's disease and Less Well-Known Diseases.

    Science.gov (United States)

    Paez, Juan A; Campillo, Nuria E

    2018-02-25

    The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 being cloned in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics could only be justified by the existence of endogenous ligands that are capable of binding to them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA), two years later and the subsequent identification of a family of lipid transmitters known as the fatty acid ester 2-arachidonoylglycerol (2-AG). The endogenous cannabinoid system is a complex signalling system that comprises transmembrane endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation. The endocannabinoid system has been implicated in a wide diversity of biological processes, in both the central and peripheral nervous systems, including memory, learning, neuronal development, stress and emotions, food intake, energy regulation, peripheral metabolism, and the regulation of hormonal balance through the endocrine system. In this context, this article will review the current knowledge of the therapeutic potential of cannabinoid receptor as a target in Alzheimer's disease and other less well-known diseases that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome. The therapeutic applications will be addressed through the study of cannabinoid agonists acting as single drugs and multi-target drugs highlighting the CB2 receptor agonist. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Rimonabant, a selective cannabinoid1 receptor antagonist, protects against light-induced retinal degeneration in vitro and in vivo.

    Science.gov (United States)

    Imamura, Tomoyo; Tsuruma, Kazuhiro; Inoue, Yuki; Otsuka, Tomohiro; Ohno, Yuta; Ogami, Shiho; Yamane, Shinsaku; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-15

    The endocannabinoid system is involved in some neurodegenerative diseases such as Alzheimer's disease. An endogenous constellation of proteins related to cannabinoid 1 receptor signaling, including free fatty acids, diacylglycerol lipase, and N-acylethanolamine-hydrolyzing acid amidase, are localized in the murine retina. Moreover, the expression levels of endogenous agonists of cannabinoid receptors are changed in the vitreous fluid. However, the role of the endocannabinoid system in the retina, particularly in the light-induced photoreceptor degeneration, remains unknown. Therefore, we investigated involvement of the cannabinoid 1 receptor in light-induced retinal degeneration using in vitro and in vivo models. To evaluate the effect of cannabinoid 1 receptors in light irradiation-induced cell death, the mouse retinal cone-cell line (661W) was treated with a cannabinoid 1 receptor antagonist, rimonabant. Time-dependent changes of expression and localization of retinal cannabinoid 1 receptors were measured using Western blot and immunostaining. Retinal damage was induced in mice by exposure to light, followed by intravitreal injection of rimonabant. Electroretinograms and histologic analyses were performed. Rimonabant suppressed light-induced photoreceptor cell death. Cannabinoid 1 receptor expression was upregulated by light exposure. Treatment with rimonabant improved both a- and b-wave amplitudes and the thickness of the outer nuclear layer. These results suggest that the cannabinoid 1 receptor is involved in light-induced retinal degeneration and it may represent a therapeutic target in the light-induced photoreceptor degeneration related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cannabinoids for treatment of Alzheimer’s disease: moving towards the clinic

    Directory of Open Access Journals (Sweden)

    Isidro eFerrer

    2014-03-01

    Full Text Available The limited effectiveness of current therapies against Alzheimer’s disease highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors, with their endogenous ligands and the enzymes related to the synthesis and degradation of these endocannabinoid compounds. Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models by reducing the harmful A peptide action and tau phosphorylation, as well as by promoting the brain’s intrinsic repair mechanisms. Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress. The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of Alzheimer’s disease, which together encourage progress towards a clinical trial.

  16. The effect of anandamide on uterine nitric oxide synthase activity depends on the presence of the blastocyst.

    Directory of Open Access Journals (Sweden)

    Micaela S Sordelli

    2011-04-01

    Full Text Available Nitric oxide production, catalyzed by nitric oxide synthase (NOS, should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1 h(-1 compared to days 4 (0.34±0.03 and 5 (0.35±0.02 of pregnancy and to day 6 implantation sites (0.33±0.01. This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA, an endocannabinoid, binds to cannabinoid receptors type 1 (CB1 and type 2 (CB2, and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04 and URB-597 (1.08±0.09 vs 0.83±0.06 inhibited NOS activity in the absence of a blastocyst (pseudopregnancy through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05. While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02, a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01. Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These

  17. Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis.

    Science.gov (United States)

    Fonseca, B M; Correia-da-Silva, G; Teixeira, N A

    2018-05-01

    Among a variety of phytocannabinoids, Δ 9 -tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells. Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death. The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability. The presence of cannabinoid receptors, transient receptor potential vanilloid 1 (TRPV1), and endocannabinoid-metabolizing enzymes were determined by qRT-PCR and Western blot. We also examined the effects and the underlying mechanisms induced by eCBs and phytocannabinoids in endometrial cancer cell viability. Besides TRPV1, both EC cell lines express all the constituents of the endocannabinoid system. We observed that at concentrations higher than 5 μM, eCBs and CBD induced a significant reduction in cell viability in both Ishikawa and Hec50co cells, whereas THC did not cause any effect. In Ishikawa cells, contrary to Hec50co, treatment with AEA and CBD resulted in an increase in the levels of activated caspase -3/-7, in cleaved PARP, and in reactive oxygen species generation, confirming that the reduction in cell viability observed in the MTT assay was caused by the activation of the apoptotic pathway. Finally, these effects were dependent on TRPV1 activation and intracellular calcium levels. These data indicate that cannabinoids modulate endometrial cancer cell death. Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma. Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.

  18. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Neelamegan Dhamodharan

    2012-06-01

    Full Text Available Abstract Background Anandamide (Arachidonoyl ethanolamide is a potent bioactive lipid studied extensively in humans, which regulates several neurobehavioral processes including pain, feeding and memory. Bioactivity is terminated when hydrolyzed into free arachidonic acid and ethanolamine by the enzyme fatty acid amide hydrolase (FAAH. In this study we report the identification of a FAAH homolog from Dictyostelium discoideum and its function to hydrolyze anandamide. Results A putative FAAH DNA sequence coding for a conserved amidase signature motif was identified in the Dictyostelium genome database and the corresponding cDNA was isolated and expressed as an epitope tagged fusion protein in either E.coli or Dictyostelium. Wild type Dictyostelium cells express FAAH throughout their development life cycle and the protein was found to be predominantly membrane associated. Production of recombinant HIS tagged FAAH protein was not supported in E.coli host, but homologous Dictyostelium host was able to produce the same successfully. Recombinant FAAH protein isolated from Dictyostelium was shown to hydrolyze anandamide and related synthetic fatty acid amide substrates. Conclusions This study describes the first identification and characterisation of an anandamide hydrolyzing enzyme from Dictyostelium discoideum, suggesting the potential of Dictyostelium as a simple eukaryotic model system for studying mechanisms of action of any FAAH inhibitors as drug targets.

  19. Adolescent cannabinoid exposure effects on natural reward seeking and learning in rats.

    Science.gov (United States)

    Schoch, H; Huerta, M Y; Ruiz, C M; Farrell, M R; Jung, K M; Huang, J J; Campbell, R R; Piomelli, D; Mahler, S V

    2018-01-01

    Adolescence is characterized by endocannabinoid (ECB)-dependent refinement of neural circuits underlying emotion, learning, and motivation. As a result, adolescent cannabinoid receptor stimulation (ACRS) with phytocannabinoids or synthetic agonists like "Spice" cause robust and persistent changes in both behavior and circuit architecture in rodents, including in reward-related regions like medial prefrontal cortex and nucleus accumbens (NAc). Here, we examine persistent effects of ACRS with the cannabinoid receptor 1/2 specific agonist WIN55-212,2 (WIN; 1.2 mg/kg/day, postnatal day (PD) 30-43), on natural reward-seeking behaviors and ECB system function in adult male Long Evans rats (PD 60+). WIN ACRS increased palatable food intake, and altered attribution of incentive salience to food cues in a sign-/goal-tracking paradigm. ACRS also blunted hunger-induced sucrose intake, and resulted in increased anandamide and oleoylethanolamide levels in NAc after acute food restriction not seen in controls. ACRS did not affect food neophobia or locomotor response to a novel environment, but did increase preference for exploring a novel environment. These results demonstrate that ACRS causes long-term increases in natural reward-seeking behaviors and ECB system function that persist into adulthood, potentially increasing liability to excessive natural reward seeking later in life.

  20. Cannabinoids and centrak neuropathic pain. A review (Cannabinoidi e dolore neuropatico centrale. Una rassegna

    Directory of Open Access Journals (Sweden)

    Francesco Crestani

    2014-03-01

    Full Text Available Only recently, the medical community highlighted the pharmacological scientific bases of the effects of Cannabis. The most important active principle, Delta-9-tetrahydrocannabinol was identified in the second half of the last century, and receptors were subsequently identified and endogenous ligands, called endocannabinoids, were characterized. The effectiveness of the cannabinoids in the treatment of nausea and vomit due to anti-neoplastic chemotherapy and in the wasting-syndrome during AIDS is recognized. Moreover, the cannabinoids have shown analgesic properties, particularly interesting with regard to the central neuropathic pain. This article will review the current knowledge and will give practical guidance on how to proceed in prescribing cannabinoids.

  1. Type-1 cannabinoid receptors reduce membrane fluidity of capacitated boar sperm by impairing their activation by bicarbonate.

    Directory of Open Access Journals (Sweden)

    Barbara Barboni

    Full Text Available BACKGROUND: Mammalian spermatozoa acquire their full fertilizing ability (so called capacitation within the female genital tract, where they are progressively exposed to inverse gradients of inhibiting and stimulating molecules. METHODOLOGY/PRINCIPAL FINDINGS: In the present research, the effect on this process of anandamide, an endocannabinoid that can either activate or inhibit cannabinoid receptors depending on its concentration, and bicarbonate, an oviductal activatory molecule, was assessed, in order to study the role exerted by the type 1 cannabinoid receptor (CB1R in the process of lipid membrane remodeling crucial to complete capacitation. To this aim, boar sperm were incubated in vitro under capacitating conditions (stimulated by bicarbonate in the presence or in the absence of methanandamide (Met-AEA, a non-hydrolysable analogue of anandamide. The CB1R involvement was studied by using the specific inhibitor (SR141716 or mimicking its activation by adding a permeable cAMP analogue (8Br-cAMP. By an immunocytochemistry approach it was shown that the Met-AEA inhibits the bicarbonate-dependent translocation of CB1R from the post-equatorial to equatorial region of sperm head. In addition it was found that Met-AEA is able to prevent the bicarbonate-induced increase in membrane disorder and the cholesterol extraction, both preliminary to capacitation, acting through a CB1R-cAMP mediated pathway, as indicated by MC540 and filipin staining, EPR spectroscopy and biochemical analysis on whole membranes (CB1R activity and on membrane enriched fraction (C/P content and anisotropy. CONCLUSIONS/SIGNIFICANCE: Altogether, these data demonstrate that the endocannabinoid system strongly inhibits the process of sperm capacitation, acting as membrane stabilizing agent, thus increasing the basic knowledge on capacitation-related signaling and potentially opening new perspectives in diagnostics and therapeutics of male infertility.

  2. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  3. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments...... at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...... of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...

  4. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    Science.gov (United States)

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Endocannabinoid Catabolic Enzymes Play Differential Roles in Thermal Homeostasis in Response to Environmental or Immune Challenge.

    Science.gov (United States)

    Nass, Sara R; Long, Jonathan Z; Schlosburg, Joel E; Cravatt, Benjamin F; Lichtman, Aron H; Kinsey, Steven G

    2015-06-01

    Cannabinoid receptor agonists, such as Δ(9)-THC, the primary active constituent of Cannabis sativa, have anti-pyrogenic effects in a variety of assays. Recently, attention has turned to the endogenous cannabinoid system and how endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide, regulate multiple homeostatic processes, including thermoregulation. Inhibiting endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH), elevates levels of 2-AG or anandamide in vivo, respectively. The purpose of this experiment was to test the hypothesis that endocannabinoid catabolic enzymes function to maintain thermal homeostasis in response to hypothermic challenge. In separate experiments, male C57BL/6J mice were administered a MAGL or FAAH inhibitor, and then challenged with the bacterial endotoxin lipopolysaccharide (LPS; 2 mg/kg ip) or a cold (4 °C) ambient environment. Systemic LPS administration caused a significant decrease in core body temperature after 6 h, and this hypothermia persisted for at least 12 h. Similarly, cold environment induced mild hypothermia that resolved within 30 min. JZL184 exacerbated hypothermia induced by either LPS or cold challenge, both of which effects were blocked by rimonabant, but not SR144528, indicating a CB1 cannabinoid receptor mechanism of action. In contrast, the FAAH inhibitor, PF-3845, had no effect on either LPS-induced or cold-induced hypothermia. These data indicate that unlike direct acting cannabinoid receptor agonists, which elicit profound hypothermic responses on their own, neither MAGL nor FAAH inhibitors affect normal body temperature. However, these endocannabinoid catabolic enzymes play distinct roles in thermoregulation following hypothermic challenges.

  6. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice

    Directory of Open Access Journals (Sweden)

    Cohn Jeffrey S

    2011-07-01

    Full Text Available Abstract Background Omega-3 polyunsaturated fatty acids (ω-3-PUFA are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO, on metabolic parameters in high fat diet (HFD-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT, liver, gastrocnemius muscle, kidneys and heart, of: 1 the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG, 2 two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3 the direct biosynthetic precursors of these compounds. Methods Lipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS. Results Eight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels. Conclusions Our data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.

  7. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.

    Science.gov (United States)

    Walentiny, D Matthew; Vann, Robert E; Wiley, Jenny L

    2015-06-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Phytoestrogens Enhance the Vascular Actions of the Endocannabinoid Anandamide in Mesenteric Beds of Female Rats

    Directory of Open Access Journals (Sweden)

    Roxana N. Peroni

    2012-01-01

    Full Text Available In rat isolated mesenteric beds that were contracted with NA as an in vitro model of the vascular adrenergic hyperactivity that usually precedes the onset of primary hypertension, the oral administration (3 daily doses of either 10 mg/kg genistein or 20 mg/kg daidzein potentiated the anandamide-induced reduction of contractility to NA in female but not in male rats. Oral treatment with phytoestrogens also restored the vascular effects of anandamide as well as the mesenteric content of calcitonin gene-related peptide (CGRP that were reduced after ovariectomy. The enhancement of anandamide effects caused by phytoestrogens was prevented by the concomitant administration of the estrogen receptor antagonist fulvestrant (2.5 mg/kg, s.c., 3 daily doses. It is concluded that, in the vasculature of female rats, phytoestrogens produced an estrogen-receptor-dependent enhancement of the anandamide-vascular actions that involves the modulation of CGRP levels and appears to be relevant whenever an adrenergic hyperactivity occurs.

  9. Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2007-07-01

    Full Text Available Characterization of intrinsic and extrinsic factors regulating the self-renewal/division and differentiation of stem cells is crucial in determining embryonic stem (ES cell fate. ES cells differentiate into multiple hematopoietic lineages during embryoid body (EB formation in vitro, which provides an experimental platform to define the molecular mechanisms controlling germ layer fate determination and tissue formation.The cannabinoid receptor type 1 (CB1 and cannabinoid receptor type 2 (CB2 are members of the G-protein coupled receptor (GPCR family, that are activated by endogenous ligands, the endocannabinoids. CB1 receptor expression is abundant in brain while CB2 receptors are mostly expressed in hematopoietic cells. However, the expression and the precise roles of CB1 and CB2 and their cognate ligands in ES cells are not known. We observed significant induction of CB1 and CB2 cannabinoid receptors during the hematopoietic differentiation of murine ES (mES-derived embryoid bodies. Furthermore, mES cells as well as ES-derived embryoid bodies at days 7 and 14, expressed endocannabinoids, the ligands for both CB1 and CB2. The CB1 and CB2 antagonists (AM251 and AM630, respectively induced mES cell death, strongly suggesting that endocannabinoids are involved in the survival of mES cells. Treatment of mES cells with the exogenous cannabinoid ligand Delta(9-THC resulted in the increased hematopoietic differentiation of mES cells, while addition of AM251 or AM630 blocked embryoid body formation derived from the mES cells. In addition, cannabinoid agonists induced the chemotaxis of ES-derived embryoid bodies, which was specifically inhibited by the CB1 and CB2 antagonists.This work has not been addressed previously and yields new information on the function of cannabinoid receptors, CB1 and CB2, as components of a novel pathway regulating murine ES cell differentiation. This study provides insights into cannabinoid system involvement in ES cell

  10. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia.

    Directory of Open Access Journals (Sweden)

    Martin Kaczocha

    Full Text Available The endocannabinoid anandamide (AEA is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH. Fatty acid binding proteins (FABPs are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1 and peroxisome proliferator-activated receptor alpha (PPARα and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.

  11. [The endogenous opioid system and drug addiction].

    Science.gov (United States)

    Maldonado, R

    2010-01-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  12. Effects of Cannabinoid Drugs on the Deficit of Prepulse Inhibition of Startle in an Animal Model of Schizophrenia: the SHR Strain

    Directory of Open Access Journals (Sweden)

    Raquel eLevin

    2014-02-01

    Full Text Available Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia. We described that the Spontaneously Hypertensive Rats (SHR strain presents a schizophrenia behavioral phenotype that is specifically attenuated by antipsychotic drugs, and potentiated by proschizophrenia manipulations. Based on these findings, we have suggested this strain as an animal model of schizophrenia. The aim of this study was to evaluate the effects of cannabinoid drugs on the deficit of prepulse inhibition of startle (PPI, the main paradigm used to study sensorimotor gating impairment related to schizophrenia, presented by the SHR strain. The following drugs were used: 1 WIN55212,2 (cannabinoid agonist, 2 rimonabant (CB1 antagonist, 3 AM404 (anandamide uptake inhibitor, and 4 cannabidiol (indirect CB1/CB2 receptor antagonist, among other effects. Wistar rats (WR and SHRs were treated with vehicle or different doses of WIN55212 (0.3, 1 or 3 mg/kg, rimonabant (0.75, 1.5 or 3 mg/kg, AM404 (1, 5 or 10 mg/kg or cannabidiol (15, 30 or 60 mg/kg. Vehicle-treated SHRs showed a decreased PPI when compared to WRs. This PPI deficit was reversed by 1 mg/kg WIN and 30 mg/kg cannabidiol. Conversely, 0.75 mg/kg rimonabant decreased PPI in SHR strain, whereas AM404 did not modify it. Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.

  13. R+-methanandamide inhibits tracheal response to endogenously released acetylcholine via capsazepine-sensitive receptors.

    Science.gov (United States)

    Nieri, Paola; Martinotti, Enrica; Testai, Lara; Adinolfi, Barbara; Calderone, Vincenzo; Breschi, Maria Cristina

    2003-01-10

    The effects of cannabinoid drugs on the cholinergic response evoked by electrical field stimulation (0.2 ms pulse width, 20 V amplitude, 10 Hz, 7.5 s train duration) in guinea-pig tracheal preparations were investigated. The stable analogue of the endocannabinoid anandamide, R(+)-methanandamide (10(-7)-10(-4) M), produced a dose-dependent inhibition (up to 27+/-5% of control) of electrical field stimulation-mediated atropine-sensitive response. This effect was not blocked by the selective cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide hydrochloride (SR 141716A; 10(-6) M), and was not reproduced with the cannabinoid CB(1)/CB(2) receptor agonist R(+)-[2,3-dihydro-5-methyl-[(morpholinyl)methyl]pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl)methanone mesylate) (WIN 55,212-2; 10(-8)-10(-5) M) or the cannabinoid CB(2) receptor selective agonist 1-propyl-2-methyl-3-(1-naphthoyl)indole (JWH-015; 10(-8)-10(-5) M); it was, on the contrary, antagonized by the vanilloid antagonist 2-[2-(4-chlorophenyl)ethyl-amino-thiocarbonyl]-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-2 benzazepine (capsazepine; 10(-6) M). At the postjunctional level, neither R(+)-methanandamide nor WIN 55,212-2 nor JWH-015 did affect tracheal contractions induced by exogenous acetylcholine (10(-6) M). An inhibitory vanilloid receptor-mediated effect on the cholinergic response evoked by electrical stimulation was confirmed with the vanilloid agonist capsaicin, at doses (3-6 x 10(-8) M) which poorly influenced the basal smooth muscle tone of trachea. In conclusion, our data indicate that in guinea-pig trachea (a) neither CB(1) nor CB(2) cannabinoid receptor-mediated modulation of acetylcholine release occurs; (b) vanilloid VR1-like receptors appear involved in R(+)-methanandamide inhibitory activity on the cholinergic response to electrical field stimulation.

  14. Endocannabinoid system acts as a regulator of immune homeostasis in the gut.

    Science.gov (United States)

    Acharya, Nandini; Penukonda, Sasi; Shcheglova, Tatiana; Hagymasi, Adam T; Basu, Sreyashi; Srivastava, Pramod K

    2017-05-09

    Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1 hi macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1 -/- or CB2 -/- mice have fewer CX3CR1 hi Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4 + cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4 + T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.

  15. Dose-response effects of systemic anandamide administration in mice sequentially submitted to the open field and elevated plus-maze tests.

    Science.gov (United States)

    Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Palermo-Neto, J

    2009-06-01

    The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P open field test.

  16. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats.

    Science.gov (United States)

    Manduca, Antonia; Morena, Maria; Campolongo, Patrizia; Servadio, Michela; Palmery, Maura; Trabace, Luigia; Hill, Matthew N; Vanderschuren, Louk J M J; Cuomo, Vincenzo; Trezza, Viviana

    2015-08-01

    To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  17. Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors

    Directory of Open Access Journals (Sweden)

    Loría Frida

    2011-08-01

    Full Text Available Abstract Background VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV infection of brain endothelial cells using in vitro and in vivo approaches. Methods i in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii in vivo: CB1 receptor deficient mice (Cnr1-/- infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. Results Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB1 receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB1 receptor deficient mice (Cnr1-/-, the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1-/- mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB1 receptor

  18. Deuterium labeled cannabinoids

    International Nuclear Information System (INIS)

    Driessen, R.A.

    1979-01-01

    Complex reactions involving ring opening, ring closure and rearrangements hamper complete understanding of the fragmentation processes in the mass spectrometric fragmentation patterns of cannabinoids. Specifically labelled compounds are very powerful tools for obtaining more insight into fragmentation mechanisms and ion structures and therefore the synthesis of specifically deuterated cannabinoids was undertaken. For this, it was necessary to investigate the preparation of cannabinoids, appropriately functionalized for specific introduction of deuterium atom labels. The results of mass spectrometry with these labelled cannabinoids are described. (Auth.)

  19. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  20. A role for endocannabinoids in viral-induced dyskinetic and convulsive phenomena.

    Science.gov (United States)

    Solbrig, Marylou V; Adrian, Russell; Baratta, Janie; Piomelli, Daniele; Giuffrida, Andrea

    2005-08-01

    Dyskinesias and seizures are both medically refractory disorders for which cannabinoid-based treatments have shown early promise as primary or adjunctive therapy. Using the Borna disease (BD) virus rat, an animal model of viral encephalopathy with spontaneous hyperkinetic movements and seizure susceptibility, we identified a key role for endocannabinoids in the maintenance of a balanced tone of activity in extrapyramidal and limbic circuits. BD rats showed significant elevations of the endocannabinoid anandamide in subthalamic nucleus, a relay nucleus compromised in hyperkinetic disorders. While direct and indirect cannabinoid agonists had limited motor effects in BD rats, abrupt reductions of endocannabinoid tone by the CB1 antagonist SR141716A (0.3 mg/kg, i.p.) caused seizures characterized by myoclonic jerks time-locked to periodic spike/sharp wave discharges on hippocampal electroencephalography. The general opiate antagonist naloxone (NLX) (1 mg/kg, s.c.), another pharmacologic treatment with potential efficacy in dyskinesias or L-DOPA motor complications, produced similar seizures. No changes in anandamide levels in hippocampus and amygdala were found in convulsing NLX-treated BD rats. In contrast, NLX significantly increased anandamide levels in the same areas of normal uninfected animals, possibly protecting against seizures. Pretreatment with the anandamide transport blocker AM404 (20 mg/kg, i.p.) prevented NLX-induced seizures. These findings are consistent with an anticonvulsant role for endocannabinoids, counteracting aberrant firing produced by convulsive agents, and with a functional or reciprocal relation between opioid and cannabinoid tone with respect to limbic convulsive phenomena.

  1. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  2. Cannabinoid receptor type-1: breaking the dogmas [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Arnau Busquets Garcia

    2016-05-01

    Full Text Available The endocannabinoid system (ECS is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids, and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB1. In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells and intracellular compartments (e.g., mitochondria. Interestingly, cellular and molecular effects are differentially mediated by CB1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons. Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.

  3. PHARMACOLOGY OF CANNABINOIDS

    Directory of Open Access Journals (Sweden)

    Ilonka Ferjan

    2015-06-01

    Full Text Available The discovery of cannabinoid receptors and endocannabinoid system has led to the potential therapeutic use of cannabis derivatives. Cannabinoids acting through the CB1 receptors modulate the release of other neurotransmitters in central nervous system, whereas the activation of peripheral CB2 receptors results in decreased inflammatory response and increased apoptosis of some tumor cells populations. The cannabinoids have been authorized for chemotherapy-induced nausea and vomiting; stimulation of appetite; to alleviate neuropathic pain and spasticity in multiple sclerosis, and to reduce pain in cancer patients. Efficacy in other diseases and clinical conditions should be proven in ongoing or future clinical trials. Isolation and identification of different cannabinoids from cannabis and synthesis of novel, more selective, derivatives widens their therapeutic potential. However, there are numerous adverse effects reported, especially when cannabinoids formulations with unknown quantitative and qualitative composition are used. Addiction, tolerance, withdrawal symptoms, increased risk of acute myocardial re-infarction, and increased risk of psychosis or worsening of psychosis are the most common adverse effects of cannabinoids. Acute adverse effects e. g. severe central nervous system depression, are more pronounced in children than in adults. Potential cannabinoid medicines should be subject to the same regulations as other potential drugs. Safety and efficacy of any potential drug candidate, regardless whether it is plant-derived or synthesized, should be proven in non-clinical studies and clinical trials, as well as the marketing authorization must be issued by the appropriate drug authority. Patients deserve a quality manufactured product, which always contains the specified amount of "Remedium cardinale."

  4. Determination of the phospholipid precursor of anandamide and other N- acylethanolamine phospholipids before and after sodium azide-induced toxicity in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Hansen, H.H.; Schousboe, A.; Hansen, Harald S.

    2000-01-01

    Phospholipase D-mediated hydrolysis of N-acylethanolamine phospholipids (NAPEs) releases anandamide and other N-acylethanolamines, resulting in different actions at cellular targets in the CNS. Recently, we have demonstrated that these N-acyl lipids accumulate in cultured neocortical neurons subj...... method, neuronal NAPE species can be identified and quantified with respect to N-acyl composition, including a trans-isomer of the anandamide precursor. The anandamide precursor is up-regulated to the same extent as other NAPEs upon neuronal injury....

  5. “Redundancy” of Endocannabinoid Inactivation: New Challenges and Opportunities for Pain Control

    Science.gov (United States)

    2012-01-01

    Redundancy of metabolic pathways and molecular targets is a typical feature of all lipid mediators, and endocannabinoids, which were originally defined as endogenous agonists at cannabinoid CB1 and CB2 receptors, are no exception. In particular, the two most studied endocannabinoids, anandamide and 2-arachidonoylglycerol, are inactivated through alternative biochemical routes, including hydrolysis and oxidation, and more than one enzyme might be used even for the same type of inactivating reaction. These enzymes also recognize as substrates other concurrent lipid mediators, whereas, in turn, endocannabinoids might interact with noncannabinoid receptors with subcellular distribution and ultimate biological actions either similar to or completely different from those of cannabinoid receptors. Even splicing variants of endocannabinoid hydrolyzing enzymes, such as FAAH-1, might play distinct roles in endocannabinoid inactivation. Finally, the products of endocannabinoid catabolism may have their own targets, with biological roles different from those of cannabinoid receptors. These peculiarities of endocannabinoid signaling have complicated the use of inhibitors of its inactivation mechanisms as a safer and more efficacious alternative to the direct targeting of cannabinoid receptors for the treatment of several pathological conditions, including pain. However, new strategies, including the rediscovery of “dirty drugs”, and the use of certain natural products (including non-THC cannabis constituents), are emerging that might allow us to make a virtue of necessity and exploit endocannabinoid redundancy to develop new analgesics. PMID:22860203

  6. Dietary linoleic acid elevates endogenous 2-arachidonoylglycerol and anandamide in Atlantic salmon (Salmo salar L.) and mice, and induces weight gain and inflammation in mice

    DEFF Research Database (Denmark)

    Alvheim, Anita R.; Torstensen, Bente E.; Lin, Yu Hong

    2013-01-01

    , arachidonic acid (AA), decreased EPA and DHA, elevated the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and increased TAG accumulation in the salmon liver. In mice, the SO salmon diet increased LA and AA and decreased EPA and DHA in the liver and erythrocyte phospholipids, and elevated......Dietary intake of linoleic acid (LA) has increased dramatically during the twentieth century and is associated with a greater prevalence of obesity. Vegetable oils are recognised as suitable alternatives to fish oil (FO) in feed for Atlantic salmon (Salmo salar L.) but introduce high amounts of LA......-inflammatory properties of EPA and DHA in mice....

  7. Anandamide and 2-AG Are Endogenously Present within the Laterodorsal Tegmental Nucleus: Functional Implications for a role of eCBs in arousal

    DEFF Research Database (Denmark)

    Soni, Neeraj; Prabhala, Bala Krishna; Mehta, Ved

    2017-01-01

    Previously, we presented electrophysiological evidence for presence in mice brain slices of functional cannabinoid type I receptors (CB1Rs) within the laterodorsal tegmentum (LDT), a brain stem nucleus critical in control of arousal and rapid eye movement (REM) sleep. Further, using pharmacological...... as cortical and motor activity characteristic of REM sleep....

  8. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Science.gov (United States)

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  9. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  10. Marijuana and cannabinoid regulation of brain reward circuits.

    Science.gov (United States)

    Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F

    2004-09-01

    The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Delta(9)-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation of these receptors located within the central brain reward circuits that is thought to play an important role in sustaining the self-administration of marijuana in humans, and in mediating the anxiolytic and pleasurable effects of the drug. Here we describe the cellular circuitry of the VTA and the NAc, define the sites within these areas at which cannabinoids alter synaptic processes, and discuss the relevance of these actions to the regulation of reinforcement and reward. In addition, we compare the effects of Delta(9)-THC with those of other commonly abused drugs on these reward circuits, and we discuss the roles that endogenous cannabinoids may play within these brain pathways, and their possible involvement in regulating ongoing brain function, independently of marijuana consumption. We conclude that, whereas Delta(9)-THC alters the activity of these central reward pathways in a manner that is consistent with other abused drugs, the cellular mechanism through which this occurs is likely different, relying upon the combined regulation of several afferent pathways to the VTA.

  11. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases.

    Science.gov (United States)

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish

    2009-12-01

    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  12. Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis.

    Science.gov (United States)

    Petrosino, Stefania; Verde, Roberta; Vaia, Massimo; Allarà, Marco; Iuvone, Teresa; Di Marzo, Vincenzo

    2018-06-01

    Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation. Cannabinoid type-2 (CB 2 ) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD). We investigated if nonpsychotropic cannabinoids, such as cannabidiol (CBD), produced similar effects in this experimental model of ACD. HaCaT cells were stimulated with poly-(I:C), and the release of chemokines and cytokines was measured in the presence of CBD or other phytocannabinoids (such as cannabidiol acid, cannabidivarin, cannabidivarinic acid, cannabichromene, cannabigerol, cannabigerolic acid, cannabigevarin, tetrahydrocannabivarin, and tetrahydrocannabivarinic acid) and antagonists of CB 1 , CB 2 , or transient receptor potential vanilloid type-1 (TRPV1) receptors. HaCaT cell viability following phytocannabinoid treatment was also measured. The cellular levels of endocannabinoids [anandamide (AEA), 2-arachidonoylglycerol] and related molecules (palmitoylethanolamide, oleoylethanolamide) were quantified in poly-(I:C)-stimulated HaCaT cells treated with CBD. We show that in poly-(I:C)-stimulated HaCaT cells, CBD elevates the levels of AEA and dose-dependently inhibits poly-(I:C)-induced release of MCP-2, interleukin-6 (IL-6), IL-8, and tumor necrosis factor- α in a manner reversed by CB 2 and TRPV1 antagonists 6-iodopravadoline (AM630) and 5'-iodio-resiniferatoxin (I-RTX), respectively, with no cytotoxic effect. This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Cannabinoid exposure during zebra finch sensorimotor vocal learning persistently alters expression of endocannabinoid signaling elements and acute agonist responsiveness

    Directory of Open Access Journals (Sweden)

    Lichtman Aron H

    2011-01-01

    Full Text Available Abstract Background Previously we have found that cannabinoid treatment of zebra finches during sensorimotor stages of vocal development alters song patterns produced in adulthood. Such persistently altered behavior must be attributable to changes in physiological substrates responsible for song. We are currently working to identify the nature of such physiological changes, and to understand how they contribute to altered vocal learning. One possibility is that developmental agonist exposure results in altered expression of elements of endocannabinoid signaling systems. To test this hypothesis we have studied effects of the potent cannabinoid receptor agonist WIN55212-2 (WIN on endocannabinoid levels and densities of CB1 immunostaining in zebra finch brain. Results We found that late postnatal WIN treatment caused a long-term global disregulation of both levels of the endocannabinoid, 2-arachidonyl glycerol (2-AG and densities of CB1 immunostaining across brain regions, while repeated cannabinoid treatment in adults produced few long-term changes in the endogenous cannabinoid system. Conclusions Our findings indicate that the zebra finch endocannabinoid system is particularly sensitive to exogenous agonist exposure during the critical period of song learning and provide insight into susceptible brain areas.

  14. Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling

    Science.gov (United States)

    Szabó, Szilárd I.; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G.; Henstridge, Christopher M.; Balla, Gyula Y.; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2014-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically-projecting GABAergic interneurons possess increased CB1 receptor number, active-zone complexity, and receptor/effector ratio compared to dendritically-projecting interneurons, in agreement with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ9-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked dramatic CB1-downregulation in a dose-dependent manner. Full receptor recovery required several weeks after cessation of Δ9-tetrahydrocannabinol treatment. These findings demonstrate that cell-type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits, and identify novel molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction. PMID:25485758

  15. Biased Type 1 Cannabinoid Receptor Signaling Influences Neuronal Viability in a Cell Culture Model of Huntington Disease.

    Science.gov (United States)

    Laprairie, Robert B; Bagher, Amina M; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2016-03-01

    Huntington disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder with limited treatment options. Prior to motor symptom onset or neuronal cell loss in HD, levels of the type 1 cannabinoid receptor (CB1) decrease in the basal ganglia. Decreasing CB1 levels are strongly correlated with chorea and cognitive deficit. CB1 agonists are functionally selective (biased) for divergent signaling pathways. In this study, six cannabinoids were tested for signaling bias in in vitro models of medium spiny projection neurons expressing wild-type (STHdh(Q7/Q7)) or mutant huntingtin protein (STHdh(Q111/Q111)). Signaling bias was assessed using the Black and Leff operational model. Relative activity [ΔlogR (τ/KA)] and system bias (ΔΔlogR) were calculated relative to the reference compound WIN55,212-2 for Gαi/o, Gαs, Gαq, Gβγ, and β-arrestin1 signaling following treatment with 2-arachidonoylglycerol (2-AG), anandamide (AEA), CP55,940, Δ(9)-tetrahydrocannabinol (THC), cannabidiol (CBD), and THC+CBD (1:1), and compared between wild-type and HD cells. The Emax of Gαi/o-dependent extracellular signal-regulated kinase (ERK) signaling was 50% lower in HD cells compared with wild-type cells. 2-AG and AEA displayed Gαi/o/Gβγ bias and normalized CB1 protein levels and improved cell viability, whereas CP55,940 and THC displayed β-arrestin1 bias and reduced CB1 protein levels and cell viability in HD cells. CBD was not a CB1 agonist but inhibited THC-dependent signaling (THC+CBD). Therefore, enhancing Gαi/o-biased endocannabinoid signaling may be therapeutically beneficial in HD. In contrast, cannabinoids that are β-arrestin-biased--such as THC found at high levels in modern varieties of marijuana--may be detrimental to CB1 signaling, particularly in HD where CB1 levels are already reduced. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture.

    Directory of Open Access Journals (Sweden)

    Diana Aguirre-Rueda

    Full Text Available Alzheimer's disease (AD, a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS, and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 55,212-2 (a synthetic cannabinoid on cell viability, inflammatory mediators and oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would be needed to assess the possible beneficial effects of cannabinoids in Alzheimer's disease patients.

  17. Intestinal levels of anandamide and oleoylethanolamide in food-deprived rats are regulated through their precursors

    DEFF Research Database (Denmark)

    Petersen, Gitte; Sørensen, Camilla; Schmid, Patricia C

    2006-01-01

    The anorectic lipid oleoylethanolamide and the orexigenic lipid anandamide both belong to the group of N-acylethanolamines that are generated by the enzyme N-acylphosphatidylethanolamine-hydrolyzing phospholipase D. The levels of the two bioactive lipids were investigated in rat intestines after 24...... h of starvation as well as after 1 and 4 h of re-feeding. Total levels of precursor phospholipids and N-acylethanolamines were decreased upon food-deprivation whereas the level of the anandamide precursor molecule was significantly increased. The level of 2-arachidonoyl-glycerol was unchanged...... as was the activity of N-acyltransferase, N-acylphosphatidylethanolamine-hydrolyzing phospholipase D, and fatty acid amide hydrolase upon starvation and re-feeding. It is concluded that remodeling of the amide-linked fatty acids of N-acylphosphatidylethanolamine is responsible for the opposite effects on levels...

  18. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring.

    Directory of Open Access Journals (Sweden)

    María Teresa Ramírez-López

    Full Text Available Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS. In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a the adult expression of endocannabinoid-related behaviors, b the metabolic profile of adult offspring and c the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue of adult offspring of both sexes. Exposure to a palatable diet resulted in a sex-dimorphic and perinatal diet specific feeding behaviors, including the differential response to the inhibitory effects of the cannabinoid receptor inverse agonist AM251, b features of metabolic syndrome including increased adiposity, hyperleptinemia, hypertriglyceridemia and hypercholesterolemia and c tissue and sex-specific changes in the expression of both CB1 and CB2 receptors and in that of the endocannabinoid-degrading enzymes FAAH and MAGL, being the adipose tissue the most affected organ analyzed. Since the effects were observed in adult animals that were weaned while consuming a normal diet, the present results indicate that the ECS is one of the targets of maternal programming of the offspring energy expenditure. These results clearly indicate that the maternal diet has long-term effects on the development of pups through multiple alterations of signaling homeostatic pathways that include the ECS. The potential relevance of these alterations for the current obesity epidemic is discussed.

  19. Seventh European Workshop on Cannabinoid Research and IACM Eighth Conference on Cannabinoids in Medicine

    OpenAIRE

    Cheer, Joseph F.; Maccarrone, Mauro; Piomelli, Daniele

    2016-01-01

    Abstract The joint 7th European Workshop on Cannabinoid Research and IACM 8th Conference on Cannabinoids in Medicine was held in the beach town of Sestri Levante, Italy, on September 17?19, 2015. In this beautiful setting, world-leading investigators in the field of (endo)cannabinoid research presented exciting new data spanning a broad array of preclinical and clinical topics?from cellular electrophysiology to drug discovery and from potential indications for the therapeutic use of cannabis ...

  20. The Analgesic Potential of Cannabinoids

    Science.gov (United States)

    Elikottil, Jaseena; Gupta, Pankaj; Gupta, Kalpna

    2013-01-01

    Historically and anecdotally cannabinoids have been used as analgesic agents. In recent years, there has been an escalating interest in developing cannabis-derived medications to treat severe pain. This review provides an overview of the history of cannabis use in medicine, cannabinoid signaling pathways, and current data from preclinical as well as clinical studies on using cannabinoids as potential analgesic agents. Clinical and experimental studies show that cannabis-derived compounds act as anti-emetic, appetite modulating and analgesic agents. However, the efficacy of individual products is variable and dependent upon the route of administration. Since opioids are the only therapy for severe pain, analgesic ability of cannabinoids may provide a much-needed alternative to opioids. Moreover, cannabinoids act synergistically with opioids and act as opioid sparing agents, allowing lower doses and fewer side effects from chronic opioid therapy. Thus, rational use of cannabis based medications deserves serious consideration to alleviate the suffering of patients due to severe pain. PMID:20073408

  1. A Review of the Therapeutic Antitumor Potential of Cannabinoids.

    Science.gov (United States)

    Bogdanović, Višnja; Mrdjanović, Jasminka; Borišev, Ivana

    2017-11-01

    The aim of this review is to discuss cannabinoids from a preclinical and clinical oncological perspective and provide the audience with a concise, retrospective overview of the most significant findings concerning the potential use of cannabinoids in cancer treatment. A literature survey of medical and scientific databases was conducted with a focus on the biological and medical potential of cannabinoids in cancer treatment. Cannabis sativa is a plant rich in more than 100 types of cannabinoids. Besides exogenous plant cannabinoids, mammalian endocannabinoids and synthetic cannabinoid analogues have been identified. Cannabinoid receptors type 1 (CB1) and type 2 (CB2) have been isolated and characterized from mammalian cells. Through cannabinoid receptor and non-receptor signaling pathways, cannabinoids show specific cytotoxicity against tumor cells, while protecting healthy tissue from apoptosis. The dual antiproliferative and proapoptotic effects of cannabinoids and associated signaling pathways have been investigated on a large panel of cancer cell lines. Cannabinoids also display potent anticancer activity against tumor xenografts, including tumors that express high resistance to standard chemotherapeutics. Few studies have investigated the possible synergistic effects of cannabinoids with standard oncology therapies, and are based on the preclinically confirmed concept of "cannabinoid sensitizers." Also, clinical trials aimed to confirm the antineoplastic activity of cannabinoids have only been evaluated on a small number of subjects, with no consensus conclusions regarding their effectiveness. A large number of cannabinoid compounds have been discovered, developed, and used to study the effects of cannabinoids on cancers in model systems. However, few clinical trials have been conducted on the use of cannabinoids in the treatment of cancers in humans. Further studies require extensive monitoring of the effects of cannabinoids alone or in combination with

  2. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling.

    Science.gov (United States)

    Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2015-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.

  3. Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration

    DEFF Research Database (Denmark)

    Hansen, H.H.; Lastres-Becker, I.; Berrendero, F.

    2001-01-01

    intracerebral NMDA injection, while less severe insults triggered by mild concussive head trauma or NMDA receptor blockade produced a less pronounced NAE accumulation. By contrast, levels of 2-AG and other 2-MAGs were virtually unaffected by the insults employed, rendering it likely that key enzymes...... following mild concussive head trauma and exposure to NMDA receptor blockade. This may suggest that mild to moderate brain injury may trigger elevated endocannabinoid activity via concomitant increase of anandamide levels, but not 2-AG, and CB receptor density....

  4. Cannabinoids: Medical implications.

    Science.gov (United States)

    Schrot, Richard J; Hubbard, John R

    2016-01-01

    Herbal cannabis has been used for thousands of years for medical purposes. With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored. While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy. While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards. Where medical cannabis is legal, patients typically see a physician who "certifies" that a benefit may result. Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis. In addition, social dysfunction may result at work/school, and there is increased possibility of motor vehicle accidents. Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects.

  5. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB 1 receptor antagonist AM251, but not with the selective CB 2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB 1 receptor, but not by the CB 2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB 1 receptor, but not by the CB 2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB 1 receptors

  6. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly.

    Science.gov (United States)

    Pacher, Pal; Steffens, Sabine; Haskó, György; Schindler, Thomas H; Kunos, George

    2018-03-01

    Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors 1 and 2 (CB 1 R and CB 2 R) has been implicated in a variety of cardiovascular pathologies. Activation of CB 1 R facilitates the development of cardiometabolic disease, whereas activation of CB 2 R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ 9 -tetrahydrocannabinol (THC), is an agonist of both CB 1 R and CB 2 R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB 1 R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility that the use of marijuana or its potent synthetic analogues might be the underlying cause of severe cardiovascular events and pathologies.

  7. Cannabis and Cannabinoids for Chronic Pain.

    Science.gov (United States)

    Romero-Sandoval, E Alfonso; Kolano, Ashley L; Alvarado-Vázquez, P Abigail

    2017-10-05

    The purpose of this study was to provide the most up-to-date scientific evidence of the potential analgesic effects, or lack thereof, of the marijuana plant (cannabis) or cannabinoids, and of safety or tolerability of their long-term use. We found that inhaled (smoked or vaporized) cannabis is consistently effective in reducing chronic non-cancer pain. Oral cannabinoids seem to improve some aspects of chronic pain (sleep and general quality of life), or cancer chronic pain, but they do not seem effective in acute postoperative pain, abdominal chronic pain, or rheumatoid pain. The available literature shows that inhaled cannabis seems to be more tolerable and predictable than oral cannabinoids. Cannabis or cannabinoids are not universally effective for pain. Continued research on cannabis constituents and improving bioavailability for oral cannabinoids is needed. Other aspects of pain management in patients using cannabis require further open discussion: concomitant opioid use, medical vs. recreational cannabis, abuse potential, etc.

  8. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  9. The endogenous opioid system: a common substrate in drug addiction.

    Science.gov (United States)

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  10. Therapeutic Mechanisms for Cannabinoid-Promoted Survival of Oligodendrocytes

    Science.gov (United States)

    2013-06-21

    Studies in vivo were performed to characterize the effect of a novel synthetic cannabinoid compound in preventing inflammation, demyelination and...studied as a possible treatment for MS and one class of compounds that is showing particular promise are the cannabinoids. Cannabis, or marijuana , as it...thus differing in their chemical structures (77). The third class of cannabinoids relates to the synthetic cannabinoids. These synthetic

  11. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus

    DEFF Research Database (Denmark)

    Soni, Neeraj; Satpathy, Shankha; Kohlmeier, Kristi Anne

    2014-01-01

    Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating...... the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via cellular...

  12. Endocannabinoid system in cardiovascular disorders - new pharmacotherapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Pedro Cunha

    2011-01-01

    Full Text Available The long history of Cannabis sativa had its development stimulated and oriented for medicine after the discovery and chemical characterization of its main active ingredient, the 9-tetrahydrocannabinol (9-THC. Consequently, a binding site for 9-THC was identified in rat brains and the first cannabinoid receptor (CB1 was cloned, followed by the CB2 and by the discover of two endogenous agonists: anandamide and 2-arachidonoyl glycerol. Cannabinoid receptors, endocannabinoids and the enzymes that catalyze its synthesis and degradation constitute the endocannabinoid system (ECS, which plays an important role in the cardiovascular system. In vivo experiments with rats have demonstrated the action of anandamide and 2-AG on the development of atherosclerotic plaque, as well as an effect on heart rate, blood pressure, vasoactivity and energy metabolism (action in dyslipidemia and obesity. Recent studies with an antagonist of CB1 receptors showed that the modulation of ECS can play an important role in reducing cardiovascular risk in obese and dyslipidemic patients. Similarly, studies in rats have demonstrated the action of CB2 receptors in adhesion, migration, proliferation and function of immune cells involved in the atherosclerotic plaque formation process. The evidence so far gathered shows that the modulation of ECS (as agonism or antagonism of its receptors is an enormous potential field for research and intervention in multiple areas of human pathophysiology. The development of selective drugs for the CB1 and CB2 receptors may open a door to new therapeutic regimens.This review article aims to address the key findings and evidences on the modulation of ECS, in order to prospect future forms of therapeutic intervention at the cardiovascular level. A recent, emerging, controversial and of undoubted scientific interest subject, which states as a potential therapeutic target to reach in the 21 st century.

  13. Modulation of limbic noradrenergic circuits by cannabinoids

    OpenAIRE

    Carvalho, Ana Raquel Franky Gomes

    2010-01-01

    Tese de doutoramento Medicina The endocannabinoid system has been implicated in the regulation of several physiological functions. The widespread distribution of the endocannabinoid system in the central nervous system (CNS) accounts for many effects attributed to cannabinoids. Importantly, cannabinoids have been shown to modulate mood, cognition and memory. There is growing evidence suggesting that cannabinoids can interact with the noradrenergic system. Noradrenergic trans...

  14. The Pharmacologic and Clinical Effects of Illicit Synthetic Cannabinoids.

    Science.gov (United States)

    White, C Michael

    2017-03-01

    This article presents information on illicitly used synthetic cannabinoids. Synthetic cannabinoids are structurally heterogeneous and commonly used drugs of abuse that act as full agonists of the cannabinoid type-1 receptor but have a variety of additional pharmacologic effects. There are numerous cases of patient harm and death in the United States, Europe, and Australia with many psychological, neurological, cardiovascular, pulmonary, and renal adverse events. Although most users prefer using cannabis, there are convenience, legal, and cost reasons driving the utilization of synthetic cannabinoids. Clinicians should be aware of pharmacologic and clinical similarities and differences between synthetic cannabinoid and cannabis use, the limited ability to detect synthetic cannabinoids in the urine or serum, and guidance to treat adverse events. © 2016, The American College of Clinical Pharmacology.

  15. Comparison of outcome expectancies for synthetic cannabinoids and botanical marijuana.

    Science.gov (United States)

    Lauritsen, Kirstin J; Rosenberg, Harold

    2016-07-01

    Although initially developed for medical purposes, synthetic cannabinoids have also been consumed for recreational purposes. To evaluate whether agreement with positive and negative outcome expectancies differed for synthetic cannabinoids versus botanical marijuana, and assess reported reasons for using synthetic cannabinoids. Using a web-based recruitment and data collection procedure, 186 adults who had used both synthetic cannabinoids and botanical marijuana and 181 adults who had used botanical marijuana but not synthetic cannabinoids, completed measures of outcome expectancies and other relevant questionnaires. A significant interaction revealed that participants who had used both synthetic cannabinoids and botanical marijuana indicated lower agreement with positive expectancies for synthetic cannabinoids, and higher agreement with positive expectancies for botanical marijuana, than did those participants who used only botanical marijuana. There was no interaction between type of drug and use history on agreement with negative expectancies, and participants agreed more strongly with negative outcome expectancies for synthetic cannabinoids than for botanical marijuana whether they had used one or both types of these drugs. The most frequently provided reasons for using synthetic cannabinoids included availability, perceived legality, cost, curiosity, and social interaction. Given growing public acceptance of recreational and medical marijuana, coupled with negative perceptions and increasing regulation of synthetic cannabinoid compounds, botanical marijuana is likely to remain more available and more popular than synthetic cannabinoids.

  16. Lipopolysaccharide-induced pulmonary inflammation is not accompanied by a release of anandamide into the lavage fluid or a down-regulation of the activity of fatty acid amide hydrolase

    DEFF Research Database (Denmark)

    Holt, S.; J. Fowler, C.; Rocksén, D.

    2004-01-01

    The effect of lipopolysaccharide inhalation upon lung anandamide levels, anandamide synthetic enzymes and fatty acid amide hydrolase has been investigated. Lipopolysaccharide exposure produced a dramatic extravasation of neutrophils and release of tumour necrosis factor a into the bronchoalveolar......-acyltransferase and N-acylphosphatidylethanolamine phospholipase D and the activity of fatty acid amide hydrolase in lung membrane fractions did not change significantly following the exposure to lipopolysaccharide. The non-selective fatty acid amide hydrolase inhibitor phenylmethylsulfonyl fluoride was a less potent...... inhibitor of lung fatty acid amide hydrolase than expected from the literature, and a dose of 30 mg/kg i.p. of this compound, which produced a complete inhibition of brain anandamide metabolism, only partially inhibited the lung metabolic activity....

  17. Emerging Role of (EndoCannabinoids in Migraine

    Directory of Open Access Journals (Sweden)

    Pinja Leimuranta

    2018-04-01

    Full Text Available In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i the current knowledge on the endocannabinoid system (ECS with emphasis on expression of its components in migraine related structures; (ii distinguishing peripheral from central site of action of cannabinoids, (iii proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v dual (possibly opposing actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components or novel endocannabinoid therapeutics in migraine treatment.

  18. Cannabinoides y su posible uso en el glaucoma Cannabinoids and their possible use in the treatment of glaucoma

    Directory of Open Access Journals (Sweden)

    Beatriz Zozaya Aldana

    2011-09-01

    Full Text Available Aunque la planta Cannabis sativa ha sido empleada desde la más remota antigüedad con fines medicinales, uno de sus derivados, la marihuana, se ha convertido en la droga de uso ilegal más consumida en el mundo. Asimismo tanto el Cannabis como sus cannabinoides se emplean como terapéutico en pocas enfermedades generalmente neurológicas. Se realizó una revisión bibliográfica para exponer el posible uso de los cannabinoides en la terapéutica del glaucoma. Para ello se tuvo en cuenta la literatura disponible sobre el tema, durante el período enero a septiembre de 2010. Se ha comprobado el efecto hipotensor ocular de los cannabinoides al disminuir la producción de humor acuoso, y aumentar la excreción de humor acuoso a través de la malla trabecular y la vía uveoescleral, efecto compatible con el hallazgo de elevadas concentraciones de receptores de cannabinoides rCB1 y rCB2; además, el tetrahidrocannabinol ha demostrado disminuir el efecto neurodegenerativo en modelos de isquemia cerebral en ratas y se evidenció también el efecto beneficioso de los cannabinoides al disminuir la degeneración secundaria asociada al glaucoma mediada por la excitotoxicidad del glutamato. Estos hallazgos sobre el efecto beneficioso de los cannabinoides como hipotensores oculares y por su efecto neuroprotector, transmiten un mensaje esperanzador sobre la función que estos podrían desempeñar en el campo del glaucoma, aunque para mayor seguridad y eficacia serían necesarios ensayos clínicos encaminados a valorar su aplicabilidad en la práctica clínica diaria.Although the Cannabis Sativa plant has been used since the most remote ancient times for medicinal purposes, one of its derivatives, marijuana, has become the most commonly used illegal drug in the world. Similarly, both Cannabis and the cannabinoids are used therapeutically in a small number of general neurological pathologies. Literature review was made to set forth the possible use of

  19. Leptin Receptor Deficiency is Associated With Upregulation of Cannabinoid 1 Receptors in Limbic Brain Regions

    Science.gov (United States)

    THANOS, PANAYOTIS K.; RAMALHETE, ROBERTO C.; MICHAELIDES, MICHAEL; PIYIS, YIANNI K.; WANG, GENE-JACK; VOLKOW, NORA D.

    2009-01-01

    Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB1R) in overeating and the effects of food deprivation on CB1R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB1R (CB1R binding levels) were assessed using [3H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB1R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB1R binding levels than Le in most brain regions and food restriction was associated with higher CB1R levels in all brain regions in Ob, but not in Le rats. CB1R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB1R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB1R and that leptin interferes with CB1R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin. PMID:18563836

  20. Clinical Effects of Synthetic Cannabinoid Receptor Agonists Compared with Marijuana in Emergency Department Patients with Acute Drug Overdose.

    Science.gov (United States)

    Zaurova, Milana; Hoffman, Robert S; Vlahov, David; Manini, Alex F

    2016-12-01

    Synthetic cannabinoid receptor agonists (SCRAs) are heterogeneous compounds originally intended as probes of the endogenous cannabinoid system or as potential therapeutic agents. We assessed the clinical toxicity associated with recent SCRA use in a large cohort of drug overdose patients. This subgroup analysis of a large (n = 3739) drug overdose cohort study involved consecutive ED patients at two urban teaching hospitals collected between 2009 and 2013. Clinical characteristics of patients with the exposure to SCRAs (SRCA subgroup) were compared with those from patients who smoked traditional cannabinoids (marijuana subgroup). Data included demographics, exposure details, vital signs, mental status, and basic chemistries gathered as part of routine clinical care. Study outcomes included altered mental status and cardiotoxicity. Eighty-seven patients reported exposure to any cannabinoid, of whom 17 reported SCRAs (17 cases, 70 controls, mean age 38.9 years, 77 % males, 31 % Hispanic). There were no significant differences between SRCA and marijuana with respect to demographics (age, gender, and race/ethnicity), exposure history (suicidality, misuse, and intent), vital signs, or serum chemistries. Mental status varied between SRCA and marijuana, with agitation significantly more likely in SCRA subgroup (OR = 3.8, CI = 1.2-11.9). Cardiotoxicity was more pronounced in the SCRA subgroup with dysrhythmia significantly more likely (OR = 9.2, CI = 1.0-108). In the first clinical study comparing the adverse effects of SCRA overdose vs. marijuana controls in an ED population, we found that SCRA overdoses had significantly pronounced neurotoxicity and cardiotoxicity compared with marijuana.

  1. Health Risk Behaviors With Synthetic Cannabinoids Versus Marijuana.

    Science.gov (United States)

    Clayton, Heather B; Lowry, Richard; Ashley, Carmen; Wolkin, Amy; Grant, Althea M

    2017-04-01

    Data are limited on the behavioral risk correlates of synthetic cannabinoid use. The purpose of this study was to compare the behavioral risk correlates of synthetic cannabinoid use with those among marijuana users. Data from the 2015 Youth Risk Behavior Survey, a cross-sectional survey conducted in a nationally representative sample of students in grades 9 through 12 ( N = 15 624), were used to examine the association between self-reported type of marijuana use (ie, never use of marijuana and synthetic cannabinoids, ever use of marijuana only, and ever use of synthetic cannabinoids) and self-report of 36 risk behaviors across 4 domains: substance use, injury/violence, mental health, and sexual health. Multivariable models were used to calculate adjusted prevalence ratios. Students who ever used synthetic cannabinoids had a significantly greater likelihood of engaging in each of the behaviors in the substance use and sexual risk domains compared with students who ever used marijuana only. Students who ever used synthetic cannabinoids were more likely than students who ever used marijuana only to have used marijuana before age 13 years, to have used marijuana ≥1 times during the past 30 days, and to have used marijuana ≥20 times during the past 30 days. Several injury/violence behaviors were more prevalent among students who ever used synthetic cannabinoids compared with students who ever used marijuana only. Health professionals and school-based substance use prevention programs should include strategies focused on the prevention of both synthetic cannabinoids and marijuana. Copyright © 2017 by the American Academy of Pediatrics.

  2. Interactions of Cannabinoids With Biochemical Substrates

    Directory of Open Access Journals (Sweden)

    Brian F Thomas

    2017-05-01

    Full Text Available Recent decades have seen much progress in the identification and characterization of cannabinoid receptors and the elucidation of the mechanisms by which derivatives of the Cannabis sativa plant bind to receptors and produce their physiological and psychological effects. The information generated in this process has enabled better understanding of the fundamental physiological and psychological processes controlled by the central and peripheral nervous systems and has fostered the development of natural and synthetic cannabinoids as therapeutic agents. A negative aspect of this decades-long effort is the proliferation of clandestinely synthesized analogs as recreational street drugs with dangerous effects. Currently, the interactions of cannabinoids with their biochemical substrates are extensively but inadequately understood, and the clinical application of derived and synthetic receptor ligands remains quite limited. The wide anatomical distribution and functional complexity of the cannabinoid system continue to indicate potential for both therapeutic and side effects, which offers challenges and opportunities for medicinal chemists involved in drug discovery and development.

  3. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.

    Science.gov (United States)

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2016-02-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. © The Author(s) 2015.

  4. Cannabinoids in the management of spasticity associated with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Anna Maria Malfitano

    2008-08-01

    Full Text Available Anna Maria Malfitano, Maria Chiara Proto, Maurizio BifulcoDipartimento di Scienze Farmaceutiche, Università degli Studi di SalernoAbstract: The endocannabinoid system and cannabinoid-based treatments have been involved in a wide number of diseases. In particular, several studies suggest that cannabinoids and endocannabinoids may have a key role in the pathogenesis and therapy of multiple sclerosis (MS. In this study we highlight the main findings reported in literature about the relevance of cannabinoid drugs in the management and treatment of MS. An increasing body of evidence suggests that cannabinoids have beneficial effects on the symptoms of MS, including spasticity and pain. In this report we focus on the effects of cannabinoids in the relief of spasticity describing the main findings in vivo, in the mouse experimental allergic encephalomyelitis model of MS. We report on the current treatments used to control MS symptoms and the most recent clinical studies based on cannabinoid treatments, although long-term studies are required to establish whether cannabinoids may have a role beyond symptom amelioration in MS.Keywords: cannabinoids, multiple sclerosis, spasticity

  5. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    Science.gov (United States)

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  6. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    Science.gov (United States)

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.

  7. How important are sex differences in cannabinoid action?

    Science.gov (United States)

    Fattore, Liana; Fratta, Walter

    2010-06-01

    In humans as in animals, males and females are dissimilar in their genetic and hormonally driven behaviour; they process information differently, perceive experience and emotions in different ways, display diverse attitudes, language and social skills, and show sex-related differences in the brain anatomy and organization. Drug addiction is a widespread relapsing illness that affects both men and women. Sex-dependent differences have been frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. Beside sex differences observed in the cannabinoid-induced effects related to cannabis abuse and dependence, cannabinoids have been shown to exert sex-dependent effects also in other physiological and behavioural aspects, such as food intake and energy balance (more evident in males), or anxiety and depression (more evident in females). Research has just begun to identify factors which could provide a neurobiological basis for gender-based differences in cannabinoid effects, among which, gonadal hormones seem to play a crucial role. Yet, cannabinoid pharmacodynamic and pharmacokinetic may also be important, as sex differences in cannabinoid effects might be due, at least in part, to differences in muscle mass and fat tissue distribution between males and females. Here, we will review both clinical and laboratory-based research evidence revealing important sex-related differences in cannabinoid effects, and put forward some suggestions for future studies to fill the gap in our knowledge of gender-specific bias in cannabinoid pharmacology.

  8. Canabinoides: análogos y perspectivas terapéuticas II Cannabinoids: analogues and therapeutical perspectivas II

    Directory of Open Access Journals (Sweden)

    Juan E. Tacoronte Morales

    2008-12-01

    Full Text Available Actualmente se han generado valiosísimas fuentes de información que correlacionan la especie botánica Cannabis sativa L y sus metabolitos secundarios con la medicina (tratamiento terapéutico, farmacología (modelos experimentales y química sintética (diseño y generación de nuevas estructuras y análogos bioisósteres, que avalan la significación del estudio de esta planta, sus extractos, metabolitos, precursores y análogos naturales y sintéticos como fuente de agentes terapéuticos. Por tal motivo se presenta una revisión de la información existente sobre las potenciales implicaciones terapéuticas de sistemas moleculares canabinoidales (endógenos, naturales y sintéticos en el tratamiento de diversas afecciones del sistema nervioso central, que incluye: conceptos de tipos de canabinoides; sistemas de receptores canabinoides CB1 y CB2 y sus ligandos así como evidencias preclínicas de los efectos terapéuticos de canabinoides desde 1970 hasta el 2006.At present, a great amount of valuable information and experimental data has been generated that correlate Cannabis sativa and its secondary metabolites with medicine (therapeutic treatment, pharmacology (experimental animal models and synthetic chemistry (design and generation of new structures and biososteric analogues, showing the importance of the study about this plant, its extracts, metabolite precursors and natural and synthetic analogues as therapeutic agents. Taking theses points into consideration, this article reviews the therapeutic implications of cannabinoid systems (endogenous, natural, and synthetic on several pathologies of central nervous system, including: cannabinoid type concepts, cannabinoid receptor systems CB1 and CB2 and preclinical studies devoted to therapeutic effects of the cannabinoids since 1970 until 2006

  9. Cannabinoids modulate hippocampal memory and plasticity.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2010-10-01

    Considerable evidence demonstrates that cannabinoid agonists impair whereas cannabinoid antagonists improve memory and plasticity. However, recent studies suggest that the effects of cannabinoids on learning do not necessarily follow these simple patterns, particularly when emotional memory processes are involved. We investigated the involvement of the cannabinoid system in hippocampal learning and plasticity using the fear-related inhibitory avoidance (IA) and the non-fear-related spatial learning paradigms, and cellular models of learning and memory, i.e., long-term potentiation (LTP) and long-term depression (LTD). We found that microinjection into the CA1 of the CB1/CB2 receptor agonist WIN55,212-2 (5 μg/side) and an inhibitor of endocannabinoid reuptake and breakdown AM404 (200 ng/side) facilitated the extinction of IA, while the CB1 receptor antagonist AM251 (6 ng/side) impaired it. WIN55,212-2 and AM251 did not affect IA conditioning, while AM404 enhanced it, probably due to a drug-induced increase in pain sensitivity. However, in the water maze, systemic or local CA1 injections of AM251, WIN55,212-2, and AM404 all impaired spatial learning. We also found that i.p. administration of WIN55,212-2 (0.5 mg/kg), AM404 (10 mg/kg), and AM251 (2 mg/kg) impaired LTP in the Schaffer collateral-CA1 projection, whereas AM404 facilitated LTD. Our findings suggest diverse effects of the cannabinoid system on CA1 memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect of cannabinoid activation and deactivation, respectively. Moreover, they provide preclinical support for the suggestion that targeting the endocannabinoid system may aid in the treatment of disorders associated with impaired extinction-like processes, such as post-traumatic stress disorder. © 2009 Wiley-Liss, Inc.

  10. Anandamide levels fluctuate in the bovine oviduct during the oestrous cycle.

    Directory of Open Access Journals (Sweden)

    Maria Gracia Gervasi

    Full Text Available Mammalian oviduct acts as a reservoir for spermatozoa and provides an environment in which they may compete for the opportunity to fertilize the oocyte. Whilst in the oviduct spermatozoa undergo capacitation essential for fertilization. Sperm-oviduct interaction is essential for sperm capacitation and is a tightly regulated process influenced by the local microenvironment. Previously we reported that the endocannabinoid anandamide (AEA regulates sperm release from epithelial oviductal cells by promoting sperm capacitation. The aims of this work were to measure the AEA content and to characterize the main AEA metabolic pathway in the bovine oviduct and determine how these change through the oestrous cycle. In this study, the levels of AEA and two other N-acylethanolamines, N-oleoylethanolamine and N-palmitoylethanolamine, were measured in bovine oviduct collected during different stages of oestrous cycle by ultra high performance liquid chromatography tandem mass spectrometry. Results indicated that intracellular oviductal epithelial levels of all three N-acylethanolamines fluctuate during oestrous cycle. Anandamide from oviductal fluid also varied during oestrous cycle, with the highest values detected during the periovulatory period. Endocannabinoid levels from ipsilateral oviduct to ovulation were higher than those detected in the contralateral one, suggesting that levels of oviductal AEA may be regulated by ovarian hormones. The expression and localization of N-acylethanolamines metabolizing enzymes in bovine oviduct were also determined by RT-PCR, Western blot, and immunohistochemistry but no change was found during the oestrous cycle. Furthermore, nanomolar levels of AEA were detected in follicular fluids, suggesting that during ovulation the mature follicle may contribute to oviductal AEA levels to create an endocannabinoid gradient conducive to the regulation of sperm function for successful fertilization.

  11. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    Science.gov (United States)

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.

  12. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    Science.gov (United States)

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  13. Cannabinoid CB2 Receptors Contribute to Upregulation of β-endorphin in Inflamed Skin Tissues by Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Su Tang-feng

    2011-12-01

    Full Text Available Abstract Background Electroacupuncture (EA can produce analgesia by increasing the β-endorphin level and activation of peripheral μ-opioid receptors in inflamed tissues. Endogenous cannabinoids and peripheral cannabinoid CB2 receptors (CB2Rs are also involved in the antinociceptive effect of EA on inflammatory pain. However, little is known about how peripheral CB2Rs interact with the endogenous opioid system at the inflammatory site and how this interaction contributes to the antinociceptive effect of EA on inflammatory pain. In this study, we determined the role of peripheral CB2Rs in the effects of EA on the expression of β-endorphin in inflamed skin tissues and inflammatory pain. Results Inflammatory pain was induced by injection of complete Freund's adjuvant into the left hindpaw of rats. Thermal hyperalgesia was tested with a radiant heat stimulus, and mechanical allodynia was quantified using von Frey filaments. The mRNA level of POMC and protein level of β-endorphin were quantified by real-time PCR and Western blotting, respectively. The β-endorphin-containing keratinocytes and immune cells in the inflamed skin tissues were detected by double-immunofluorescence labeling. The CB2R agonist AM1241 or EA significantly reduced thermal hyperalgesia and mechanical allodynia, whereas the selective μ-opioid receptor antagonist β-funaltrexamine significantly attenuated the antinociceptive effect produced by them. AM1241 or EA significantly increased the mRNA level of POMC and the protein level of β-endorphin in inflamed skin tissues, and these effects were significantly attenuated by pretreatment with the CB2R antagonist AM630. AM1241 or EA also significantly increased the percentage of β-endorphin-immunoreactive keratinocytes, macrophages, and T-lymphocytes in inflamed skin tissues, and these effects were blocked by AM630. Conclusions EA and CB2R stimulation reduce inflammatory pain through activation of μ-opioid receptors. EA increases

  14. Emergency Physicians' Knowledge of Cannabinoid Designer Drugs

    Directory of Open Access Journals (Sweden)

    Patrick M Lank

    2013-09-01

    Full Text Available Introduction: The use of synthetic drugs of abuse in the United States has grown in the last few years, with little information available on how much physicians know about these drugs and how they are treating patients using them. The objective of this study was to assess emergency physician (EP knowledge of synthetic cannabinoids (SC.Methods: A self-administered internet-based survey of resident and attending EPs at a large urban emergency department (ED was administered to assess familiarity with the terms Spice or K2 and basic knowledge of SC, and to describe some practice patterns when managing SC intoxication in the ED.Results: Of the 83 physicians invited to participate, 73 (88% completed surveys. The terms “Spice” and “K2” for SC were known to 25/73 (34% and 36/73 (49% of respondents. Knowledge of SC came most commonly (72% from non-medical sources, with lay publications and the internet providing most respondents with information. Among those with previous knowledge of synthetic cannabinoids, 25% were not aware that SC are synthetic drugs, and 17% did not know they are chemically most similar to marijuana. Among all participants, 80% felt unprepared caring for a patient in the ED who had used synthetic cannabinoids.Conclusion: Clinically active EPs are unfamiliar with synthetic cannabinoids. Even those who stated they had heard of synthetic cannabinoids answered poorly on basic knowledge questions. More education is needed among EPs of all ages and levels of training on synthetic cannabinoids. [West J Emerg Med. 2013;14(5:467–470.

  15. Computer modeling of Cannabinoid receptor type 1

    Directory of Open Access Journals (Sweden)

    Sapundzhi Fatima

    2018-01-01

    Full Text Available Cannabinoid receptors are important class of receptors as they are involved in various physiological processes such as appetite, pain-sensation, mood, and memory. It is important to design receptor-selective ligands in order to treat a particular disorder. The aim of the present study is to model the structure of cannabinoid receptor CB1 and to perform docking between obtained models and known ligands. Two models of CBR1 were prepared with two different methods (Modeller of Chimera and MOE. They were used for docking with GOLD 5.2. It was established a high correlation between inhibitory constant Ki of CB1 cannabinoid ligands and the ChemScore scoring function of GOLD, which concerns both models. This suggests that the models of the CB1 receptors obtained could be used for docking studies and in further investigation and design of new potential, selective and active cannabinoids with the desired effects.

  16. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids.

    Science.gov (United States)

    Holland, M L; Lau, D T T; Allen, J D; Arnold, J C

    2007-11-01

    Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter, P-glycoprotein in vitro. Here we address the interaction of cannabinol (CBN), cannabidiol (CBD) and delta 9-tetrahydrocannabinol (THC) with the related multidrug transporter, ABCG2. Cannabinoid inhibition of Abcg2/ABCG2 was assessed using flow cytometric analysis of substrate accumulation and ATPase activity assays. The cytotoxicity and chemosensitization by cannabinoids was determined with cell viability assays. Expression of cannabinoid and vanilloid receptors was assessed using reverse transcriptase polymerase chain reaction, and cannabinoid modulation of ABCG2 expression was examined using immunoblotting. CBN, CBD and THC increased the intracellular accumulation of the Abcg2/ABCG2 substrate, mitoxantrone, in an over-expressing cell line. The THC metabolite, (-)-11-nor-9-carboxy-delta 9-THC was much less potent. The plant cannabinoids inhibited both basal and substrate stimulated ATPase activity of human ABCG2. Cannabinoid cytotoxicity occurred in the absence of known cannabinoid cell surface receptors, and only at concentrations higher than those required for Abcg2/ABCG2 inhibition. Sub-toxic concentrations of the cannabinoids resensitized the overexpressing cell line to the cytotoxic effect of Abcg2/ABCG2 substrates, mitoxantrone and topotecan. This occurred in the absence of any effect on ABCG2 expression. Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates.

  17. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

    Directory of Open Access Journals (Sweden)

    Verde Roberta

    2010-04-01

    Full Text Available Abstract Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT of subjects with both obesity and type 2 diabetes (OBT2D, characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB. Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA and palmitoylethanolamide (PEA, in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners and 2-AG in obesity and type 2 diabetes.

  18. The future of type 1 cannabinoid receptor allosteric ligands.

    Science.gov (United States)

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  19. Cannabinoid Hyperemesis Relieved by Compulsive Bathing

    OpenAIRE

    Chang, Yoon Hee; Windish, Donna M.

    2009-01-01

    Cannabinoid hyperemesis is a clinical syndrome characterized by repeated vomiting and associated learned compulsive hot water bathing behavior due to long-term marijuana use. Research has indentified type 1 cannabinoid receptors in the intestinal nerve plexus that have an inhibitory effect on gastrointestinal motility. This inhibitory effect may lead to hyperemesis in marijuana users. The thermoregulatory role of endocannabinoids may be responsible for the patient's need to take hot showers. ...

  20. Cannabinoid Type-1 Receptor Gene Polymorphisms Are Associated with Central Obesity in a Southern Brazilian Population

    Directory of Open Access Journals (Sweden)

    Janaína P. Jaeger

    2008-01-01

    Full Text Available The CB1 cannabinoid receptor and its endogenous ligands, the endocannabinoids, are involved in energy balance control, stimulating appetite and increasing body weight in wasting syndromes. Different studies have investigated the relationship between polymorphisms of the cannabinoid receptor 1 (CNR1 gene and obesity with conflicting results. In the present study, we investigated the 1359G/A (rs1049353, 3813A/G (rs12720071 and 4895A/G (rs806368 polymorphisms in the CNR1 gene in a Brazilian population of European descent. To verify the association between these variants and obesity-related traits in this population, 756 individuals were genotyped by PCR-RFLP methods. The 4895G allele was associated with waist to hip ratio (WHR (P = 0.014; P = 0.042 after Bonferroni correction. An additive effect with the GAA haplotype was associated with WHR (P = 0.028, although this statistical significance disappeared after Bonferroni correction (P = 0.084. No significant association was observed between the genotypes of the 1359G/A and 3813A/G polymorphisms and any of the quantitative variables investigated. Our findings suggest that CNR1 gene polymorphism is associated with central obesity in this Brazilian population of European ancestry.

  1. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Christoph W Michalski

    2008-02-01

    Full Text Available While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC are unknown.The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP tissues. In vitro, effects of blockade and activation of cannabinoid receptors on pancreatic stellate cells were characterized. In CP, cannabinoid receptors were detected predominantly in areas with inflammatory changes, stellate cells and nerves. Levels of endocannabinoids were decreased compared with normal pancreas. Cannabinoid-receptor-1 antagonism effectuated a small PSC phenotype and a trend toward increased invasiveness. Activation of cannabinoid receptors, however, induced de-activation of PSC and dose-dependently inhibited growth and decreased IL-6 and MCP-1 secretion as well as fibronectin, collagen1 and alphaSMA levels. De-activation of PSC was partially reversible using a combination of cannabinoid-receptor-1 and -2 antagonists. Concomitantly, cannabinoid receptor activation specifically decreased invasiveness of PSC, MMP-2 secretion and led to changes in PSC phenotype accompanied by a reduction of intracellular stress fibres.Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.

  2. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    International Nuclear Information System (INIS)

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-01-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB 1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB 1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis attenuates

  3. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Luciano R. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Gobira, Pedro H.; Viana, Thercia G. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Medeiros, Daniel C.; Ferreira-Vieira, Talita H. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Doria, Juliana G. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, Flávia [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Aguiar, Daniele C. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pereira, Grace S.; Massessini, André R. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ribeiro, Fabíola M. [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Oliveira, Antonio Carlos P. de [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moraes, Marcio F.D., E-mail: mfdm@icb.ufmg.br [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moreira, Fabricio A., E-mail: fabriciomoreira@icb.ufmg.br [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  4. Haloperidol, a Novel Treatment for Cannabinoid Hyperemesis Syndrome.

    Science.gov (United States)

    Witsil, Joanne C; Mycyk, Mark B

    Cannabinoid hyperemesis syndrome (CHS) is typically unresponsive to conventional pharmacologic antiemetics, and patients often require excessive laboratory and radiographic testing and hospital admission. We report 4 cases of CHS that failed standard emergency department therapy but improved significantly after treatment with haloperidol. Although the exact mechanism for CHS remains unclear, dysregulation at cannabinoid type 1 seems to play a role. Recent animal data demonstrate complex interactions between dopamine and cannabinoid type 1 signaling, a potential mechanism for haloperidol success in patients with CHS. Our success with haloperidol in these 4 patients warrants further investigation of haloperidol as an emergency department treatment for CHS.

  5. G-protein coupling of cannabinoid receptors

    International Nuclear Information System (INIS)

    Glass, M.

    2001-01-01

    Full text: Since the cloning of the cannabinoid CB1 and CB2 receptors in the early 1990's extensive research has focused on understanding their signal transduction pathways. While it has been known for sometime that both receptors can couple to intracellular signalling via pertussis toxin sensitive G-proteins (Gi/Go), the specificity and kinetics of these interactions have only recently been elucidated. We have developed an in situ reconstitution approach to investigating receptor-G-protein interactions. This approach involves chaotropic extraction of receptor containing membranes in order to inactivate or remove endogenous G-proteins. Recombinant or isolated brain G-proteins can then be added back to the receptors, and their activation monitored through the binding of [ 35 S]-GTPγS. This technique has been utilised for an extensive study of cannabinoid receptor mediated activation of G-proteins. In these studies we have established that CB1 couples with high affinity to both Gi and Go type G-proteins. In contrast, CB2 couples strongly to Gi, but has a very low affinity for Go. This finding correlated well with the previous findings that while CB1 and CB2 both couple to the inhibition of adenylate cyclase, CB1 but not CB2 could also inhibit calcium channels. We then examined the ability of a range of cannabinoid agonists to activate the Gi and Go via CB1. Conventional receptor theory suggests that a receptor is either active or inactive with regard to a G-protein and that the active receptor activates all relevant G-proteins equally. However, in this study we found that agonists could produce different degrees of activation, depending on which G-protein was present. Further studies have compared the ability of the two endocannabinoids to drive the activation of Gi or Go. These studies show that agonists can induce multiple forms of activated receptor that differ in their ability to catalyse the activation of Gi or Go. The ability of an agonist to drive a receptor

  6. Safety Issues Concerning the Medical Use of Cannabis and Cannabinoids

    Directory of Open Access Journals (Sweden)

    Mark A Ware

    2005-01-01

    Full Text Available Safety issues are a major barrier to the use of cannabis and cannabinoid medications for clinical purposes. Information on the safety of herbal cannabis may be derived from studies of recreational cannabis use, but cannabis exposure and effects may differ widely between medical and recreational cannabis users. Standardized, quality-controlled cannabinoid products are available in Canada, and safety profiles of approved medications are available through the Canadian formulary. In the present article, the evidence behind major safety issues related to cannabis use is summarized, with the aim of promoting informed dialogue between physicians and patients in whom cannabinoid therapy is being considered. Caution is advised in interpreting these data, because clinical experience with cannabinoid use is in the early stages. There is a need for long-term safety monitoring of patients using cannabinoids for a wide variety of conditions, to further guide therapeutic decisions and public policy.

  7. Environmental toxin acrolein alters levels of endogenous lipids, including TRP agonists: A potential mechanism for headache driven by TRPA1 activation

    Directory of Open Access Journals (Sweden)

    Emma Leishman

    2017-01-01

    Full Text Available Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1, a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1 agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization. Keywords: Lipidomics, Endogenous cannabinoid, TRPA1, TRPV1, Lipoamine, Acrolein, Migraine

  8. Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Moesgaard, B.; Hansen, H.H.

    1999-01-01

    N-acyl-phosphatidylethanolamine (NAPE) is present in very small amounts in mammalian tissues (less than 0.1% of total phospholipids). However, NAPE as well as its degradation production, N-acylethanolamine (NAE), can be formed in certain neuronal tissues in response to increased [Ca ](i). A high...... activation of the N-methyl-D-aspartate-receptor. Both NAPE and, to a lesser extent, NAE accumulate in a linear fashion for many hours while at the same time the neurons are dying. Likewise, in neurons prelabeled with C-arachidonic acid, C-arachidonic acid-labeled NAPE, and anandamide (= N...

  9. Involvement of Cannabinoid Signaling in Vincristine-Induced Gastrointestinal Dysmotility in the Rat

    Science.gov (United States)

    Vera, Gema; López-Pérez, Ana E.; Uranga, José A.; Girón, Rocío; Martín-Fontelles, Ma Isabel; Abalo, Raquel

    2017-01-01

    Background: In different models of paralytic ileus, cannabinoid receptors are overexpressed and endogenous cannabinoids are massively released, contributing to gastrointestinal dysmotility. The antitumoral drug vincristine depresses gastrointestinal motility and a similar mechanism could participate in this effect. Therefore, our aim was to determine, using CB1 and CB2 antagonists, whether an increased endocannabinoid tone is involved in vincristine-induced gastrointestinal ileus. Methods: First, we confirmed the effects of vincristine on the gut mucosa, by conventional histological techniques, and characterized its effects on motility, by radiographic means. Conscious male Wistar rats received an intraperitoneal injection of vincristine (0.1–0.5 mg/kg), and barium sulfate (2.5 ml; 2 g/ml) was intragastrically administered 0, 24, or 48 h later. Serial X-rays were obtained at different time-points (0–8 h) after contrast. X-rays were used to build motility curves for each gastrointestinal region and determine the size of stomach and caecum. Tissue samples were taken for histology 48 h after saline or vincristine (0.5 mg/kg). Second, AM251 (a CB1 receptor antagonist) and AM630 (a CB2 receptor antagonist) were used to determine if CB1 and/or CB2 receptors are involved in vincristine-induced gastrointestinal dysmotility. Key results: Vincristine induced damage to the mucosa of ileum and colon and reduced gastrointestinal motor function at 0.5 mg/kg. The effect on motor function was particularly evident when the study started 24 h after administration. AM251, but not AM630, significantly prevented vincristine effect, particularly in the small intestine, when administered thrice. AM251 alone did not significantly alter gastrointestinal motility. Conclusions: The fact that AM251, but not AM630, is capable of reducing the effect of vincristine suggests that, like in other experimental models of paralytic ileus, an increased cannabinoid tone develops and is at least

  10. Synthetic cannabinoid and marijuana exposures reported to poison centers.

    Science.gov (United States)

    Forrester, M B; Kleinschmidt, K; Schwarz, E; Young, A

    2012-10-01

    Synthetic cannabinoids have recently gained popularity as a recreational drug because they are believed to result in a marijuana-like high. This investigation compared synthetic cannabinoids and marijuana exposures reported to a large statewide poison center system. Synthetic cannabinoid and marijuana exposures reported to Texas poison centers during 2010 were identified. The distribution of exposures to the two agents with respect to various demographic and clinical factors were compared by calculating the rate ratio (RR) of the synthetic cannabinoid and marijuana percentages for each subgroup and 95% confidence interval (CI). The proportion of synthetic cannabinoid and marijuana exposures, respectively, were 87.3% and 46.5% via inhalation (RR 1.88, 95% CI 1.38-2.61), 74.9% and 65.7% in male (RR 1.14, 95% CI 0.87-1.51), 40.2% and 56.6% age ≤ 19 years (RR 0.71, 95% CI 0.52-0.98), 79.2% and 58.6% occurring at a residence (RR 1.35, 95% CI 1.02-1.82), 8.4% and 16.2% managed on-site (RR 0.52. 95% CI 0.28-1.00), and 59.3% and 41.4% with serious medical outcomes (RR 1.43, 95% CI 1.03-2.05). Compared to marijuana, synthetic cannabinoid exposures were more likely to be used through inhalation, to involve adults, to be used at a residence, and to result in serious outcomes.

  11. Sustainable production of cannabinoids with supercritical carbon dioxide technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all

  12. Sustainable Production of Cannabinoids with Supercritical Carbon Dioxide Technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all

  13. Synthetic cannabinoid: prevalence, mechanisms of addiction development, mental disorders associated with the use of synthetic cannabinoid

    Directory of Open Access Journals (Sweden)

    Antsyborov A.V.

    2017-04-01

    Full Text Available according to the authors among the new psychoactive substances, the number of which is growing every year, despite the measures aimed at the obstacles to their dissemination there discovered the most frequent violations of psychotic conditions associated with use of synthetic cannabinoid in clinical practice. On the black market, they are distributed through online shops, under the guise of herbal mixtures for Smoking. When ingested, this group of drugs at the peak of intoxication raises a number of mental (different according to the depth of impaired consciousness, auditory and visual hallucinations, panic attacks, acute psychotic paranoid disorders, catatonic stupor, polar affective disorders, acute polythematic delusional symptoms and somatic disorders (disorders of heart rhythm and conduction, acute ischemic disorders, hypertension, depression of respiratory activity, violation of thermoregulation, development of acute renal failure, vomiting, expressed cephalgia, clinic of hypokalemia. In the reviewed literature and authors own observations there have been discovered some cases of mental addiction development to synthetic cannabinoids. The analysis of new literature data and own clinical observations helped the authors to compare the psychotropic effects caused by this group of drugs, relative to other known surfactants. The toxic effects of CSC on the body greatly exceeds the use of plant cannabinoids, and it has almost the same effects as the synthetic cathinone’s. The speed of formation of psychological dependence is lower compared to synthetic cathinone. Developing current strategies for diagnosis, treatment, and rehabilitation of patients who use synthetic cannabinoids remains an important task for practical healthcare.

  14. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Mathieu Lafourcade

    2007-08-01

    Full Text Available Cannabinoids have deleterious effects on prefrontal cortex (PFC-mediated functions and multiple evidences link the endogenous cannabinoid (endocannabinoid system, cannabis use and schizophrenia, a disease in which PFC functions are altered. Nonetheless, the molecular composition and the physiological functions of the endocannabinoid system in the PFC are unknown.Here, using electron microscopy we found that key proteins involved in endocannabinoid signaling are expressed in layers v/vi of the mouse prelimbic area of the PFC: presynaptic cannabinoid CB1 receptors (CB1R faced postsynaptic mGluR5 while diacylglycerol lipase alpha (DGL-alpha, the enzyme generating the endocannabinoid 2-arachidonoyl-glycerol (2-AG was expressed in the same dendritic processes as mGluR5. Activation of presynaptic CB1R strongly inhibited evoked excitatory post-synaptic currents. Prolonged synaptic stimulation at 10Hz induced a profound long-term depression (LTD of layers V/VI excitatory inputs. The endocannabinoid -LTD was presynaptically expressed and depended on the activation of postsynaptic mGluR5, phospholipase C and a rise in postsynaptic Ca(2+ as predicted from the localization of the different components of the endocannabinoid system. Blocking the degradation of 2-AG (with URB 602 but not of anandamide (with URB 597 converted subthreshold tetanus to LTD-inducing ones. Moreover, inhibiting the synthesis of 2-AG with Tetrahydrolipstatin, blocked endocannabinoid-mediated LTD. All together, our data show that 2-AG mediates LTD at these synapses.Our data show that the endocannabinoid -retrograde signaling plays a prominent role in long-term synaptic plasticity at the excitatory synapses of the PFC. Alterations of endocannabinoid -mediated synaptic plasticity may participate to the etiology of PFC-related pathologies.

  15. The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation

    Science.gov (United States)

    Bow, Eric W.; Rimoldi, John M.

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  16. Δ9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells

    Science.gov (United States)

    Sido, Jessica M.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2015-01-01

    Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression. Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts. To this end, we studied HvGD by injecting H-2k splenocytes into H-2b mice and analyzing the immune response in the draining ingLNs. THC treatment significantly reduced T cell proliferation and activation in draining LNs of the recipient mice and decreased early stage rejection-indicator cytokines, including IL-2 and IFN-γ. THC treatment also increased the allogeneic skin graft survival. THC treatment in HvGD mice led to induction of MDSCs. Using MDSC depletion studies as well as adoptive transfer experiments, we found that THC-induced MDSCs were necessary for attenuation of HvGD. Additionally, using pharmacological inhibitors of CB1 and CB2 receptors and CB1 and CB2 knockout mice, we found that THC was working preferentially through CB1. Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection. PMID:26034207

  17. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  18. Spice, pot, and stroke.

    Science.gov (United States)

    Brust, John C M

    2013-12-10

    The endocannabinoid system includes 2 types of G-protein coupled receptors: CB1 (mostly in the brain) and CB2 (in peripheral lymphoid tissue). The major cannabinoid ligands are arachidonylethanolamine ("anandamide," the Sanskrit word for bliss) and 2-arachidonylglycerol ("2AG"). It is by binding to CB1 receptors that δ-9-tetrahydrocannabinol (THC), the principal psychoactive ingredient in marijuana ("pot"), produces its intended subjective effects.

  19. Polarized cellular patterns of endocannabinoid production and detection shape cannabinoid signaling in neurons

    Directory of Open Access Journals (Sweden)

    Delphine eLadarre

    2015-01-01

    Full Text Available Neurons display important differences in plasma membrane composition between somatodendritic and axonal compartments, potentially leading to currently unexplored consequences in G-protein-coupled-receptor signaling. Here, by using highly-resolved biosensor imaging to measure local changes in basal levels of key signaling components, we explored features of type-1 cannabinoid receptor (CB1R signaling in individual axons and dendrites of cultured rat hippocampal neurons. Activation of endogenous CB1Rs led to rapid, Gi/o-protein- and cAMP-mediated decrease of cyclic-AMP-dependent protein kinase (PKA activity in the somatodendritic compartment. In axons, PKA inhibition was significantly stronger, in line with axonally-polarized distribution of CB1Rs. Conversely, inverse agonist AM281 produced marked rapid increase of basal PKA activation in somata and dendrites, but not in axons, removing constitutive activation of CB1Rs generated by local production of the endocannabinoid 2-arachidonoylglycerol (2-AG. Interestingly, somatodendritic 2-AG levels differently modified signaling responses to CB1R activation by Δ9-THC, the psychoactive compound of marijuana, and by the synthetic cannabinoids WIN55,212-2 and CP55,940. These highly contrasted differences in sub-neuronal signaling responses warrant caution in extrapolating pharmacological profiles, which are typically obtained in non-polarized cells, to predict in vivo responses of axonal (i.e. presynaptic GPCRs. Therefore, our results suggest that enhanced comprehension of GPCR signaling constraints imposed by neuronal cell biology may improve the understanding of neuropharmacological action.

  20. [Cannabinoids in pain medicine].

    Science.gov (United States)

    Karst, M

    2018-06-07

    The endocannabinoid system (ECS) controls a large number of vital functions. Suboptimal tone of the ECS in certain regions of the nervous system may be associated with disorders that are also associated with pain. Pain and inflammation processes can be modulated by the exogenous supply of cannabinoids. Low-to-moderate pain-relieving effects and in individual cases large pain-relieving effects were observed in randomized, controlled studies of various types of chronic pain. People with chronic neuropathic pain and stress symptoms seem to particularly benefit. The therapeutic range of cannabinoids is small; often small doses are sufficient for clinically significant effects. The "Cannabis-als-Medizin-Gesetz" (cannabis as medicine law) allows the prescription of cannabis preparations under certain conditions. Available data indicate good long-term efficacy and tolerability. However, there is little systematic long-term experience from clinical studies.

  1. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Shenglong Zou

    2018-03-01

    Full Text Available The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R and 2. The CB1R is the prominent subtype in the central nervous system (CNS and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.

  2. Critical appraisal of the potential use of cannabinoids in cancer management

    Directory of Open Access Journals (Sweden)

    Cridge BJ

    2013-08-01

    Full Text Available Belinda J Cridge, Rhonda J Rosengren Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand Abstract: Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds. Cannabinoids are largely defined by an ability to activate the cannabinoid receptors – CB1 or CB2. The action of the cannabinoids is very dependent on the exact ligand tested, the dose, and the duration of exposure. Some cannabinoids, synthetic or plant-derived, show potential as therapeutic agents, and evidence across a range of cancers and evidence in vitro and in vivo is starting to be accumulated. Studies have now been conducted in a wide range of cell lines, including glioma, breast, prostate, endothelial, liver, and lung. This work is complemented by an increasing body of evidence from in vivo models. However, many of these results remain contradictory, an issue that is not currently able to be resolved through current knowledge of mechanisms of action. While there is a developing understanding of potential mechanisms of action, with the extracellular signal-regulated kinase pathway emerging as a critical signaling juncture in combination with an important role for ceramide and lipid signaling, the relative importance of each pathway is yet to be determined. The interplay between the intracellular pathways of autophagy versus apoptosis is a recent development that is discussed. Overall, there is still a great deal of conflicting evidence around the future utility of the cannabinoids, natural or synthetic, as therapeutic agents. Keywords: cancer, cannabinoid, endocannabinoid, tetrahydrocannabinol, JWH-133, WIN-55,212-2

  3. The Effects of Synthetic Cannabinoids on Alveolar-Arterial Oxygen Gradient

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2016-09-01

    Full Text Available Aim: Synthetic cannabinoids are chemicals that produce several marijuana-like effects in humans. Aim of this study is to investigate the effects of synthetic cannabinoids on to alveolar-arterial oxygen gradient. Material and Method: A total of 112 patients, who admitted directly to emergency clinic with synthetic cannabinoid usage, were determined between February 2014 and August 2014. Blood gases of 41 patients were determined as arterial blood gases on room air, and included in to study. Patients were evaluated according to age, sex, decade, partial pressure of arterial oxygen, partial pressure of arterial carbon dioxide, pH, bicarbonate, metabolic status, age consistent expected alveolar-arterial oxygen gradient and calculated alveolar-arterial oxygen gradient. Results: Synthetic cannabinoid using was higher in males, mean age of patients was 23.32±6.14 years. Number of patients in the third decade were significantly higher than the other decades. The calculated alveolar-arterial oxygen gradient value of patients was significantly higher than age consistent expected alveolar-arterial oxygen gradient value. Respiratory acidosis, was significantly higher than the other types of the metabolic disorders. The best cutoff point for calculated alveolar-arterial oxygen gradient was 12.70, with sensitivity of 90% and specifity of 85%. Area under curve was 0.70 for calculated alveolar-arterial oxygen gradient. Discussion: The value of alveolar-arterial oxygen gradient has been increased due to synthetic cannabinoid usage. This can be used as a supportive parameter in the diagnosis of synthetic cannabinoid usage.

  4. Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Marco Koch

    2017-05-01

    Full Text Available Cannabinoids are lipid messengers that modulate a variety of physiological processes and modify the generation of specific behaviors. In this regard, the cannabinoid receptor type 1 (CB1 represents the most relevant target molecule of cannabinoids so far. One main function of central CB1 signaling is to maintain whole body energy homeostasis. Thus, cannabinoids functionally interact with classical neurotransmitters in neural networks that control energy metabolism and feeding behavior. The promotion of CB1 signaling can increase appetite and stimulate feeding, while blockade of CB1 suppresses hunger and induces hypophagia. However, in order to treat overeating, pharmacological blockade of CB1 by the inverse agonist rimonabant not only suppressed feeding but also resulted in psychiatric side effects. Therefore, research within the last decade focused on deciphering the underlying cellular and molecular mechanisms of central cannabinoid signaling that control feeding and other behaviors, with the overall aim still being the identification of specific targets to develop safe pharmacological interventions for the treatment of obesity. Today, many studies unraveled the subcellular localization of CB1 and the function of cannabinoids in neurons and glial cells within circumscribed brain regions that represent integral parts of neural circuitries controlling feeding behavior. Here, these novel experimental findings will be summarized and recent advances in understanding the mechanisms of CB1-dependent cannabinoid signaling being relevant for central regulation of feeding behavior will be highlighted. Finally, presumed alternative pathways of cannabinoids that are not driven by CB1 activation but also contributing to control of feeding behavior will be introduced.

  5. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

  6. Mechanism of the Interaction of Cannabinoid System in Central Amygdale with Opioid System

    Directory of Open Access Journals (Sweden)

    S. Sarahroodi

    2008-01-01

    Full Text Available Background and objectivesCannabinoids which are active compounds of marijuana show some pharmacological effects similar to the opioids. There are also functional interactions between both cannabinoid and opioid systems. In this study we investigated the role of cannabinoid receptors in central amygdala and its interaction with opioid system.MethodsIn the present study, we investigated the effects of intraperitoneal injection of opioid drugs on response-induced by intra-amygdala (intra-Amyg microinjection of cannabinoid agents in rats, using elevated plus-maze test of anxiety. ResultsIntraperitoneal injection of morphine (3, 6 and 9 mg/kg increased %OAT and %OAE, but not locomotor activity, showing an anxiolytic response. However, some doses of the opioid receptor antagonist, naloxone reduced %OAT and locomotor activity as well. Intra-Amyg administration of CB1 cannabinoid receptor agonist, ACPA (at the dose of 1.25 and 5 ng/rat increased %OAT and %OAE but not locomotor activity, thus showing an anxiolytic response, which was increased by morphine (6 mg/kg, i.p. without any interaction. Naloxone also reduced ACPA effects. Intra-Amyg administration of CB1 cannabinoid receptor antagonist, AM251 (2.5, 25 and 100 ng/rat did not alter %OAT and %OAE but higher doses of drug (25 and 100 ng/rat reduced locomotor activity. However, the drug in combination of morphine anxiolytic response and with naloxone decreased anxiety.ConclusionThe results may indicate an anxiolytic for CB1 cannabinoid. Our results also showed that opioid system may have interaction with cannabinoid receptor in the amygdale. Keywords: Cannabinoids, Morphine; Naloxone, Anxiety, Elevated Plus-Maze

  7. Vaping Synthetic Cannabinoids: A Novel Preclinical Model of E-Cigarette Use in Mice

    Directory of Open Access Journals (Sweden)

    Timothy W Lefever

    2017-03-01

    Full Text Available Smoking is the most common route of administration for cannabis; however, vaping cannabis extracts and synthetic cannabinoids (“fake marijuana” in electronic cigarette devices has become increasingly popular. Yet, most animal models used to investigate biological mechanisms underlying cannabis use employ injection as the route of administration. This study evaluated a novel e-cigarette device that delivers aerosolized cannabinoids to mice. The effects of aerosolized and injected synthetic cannabinoids (CP 55,940, AB-CHMINACA, XLR-11, and JWH-018 in mice were compared in a battery of bioassays in which psychoactive cannabinoids produce characteristic effects. The most potent cannabinoids (CP 55,940 and AB-CHMINACA produced the full cannabinoid profile (ie, hypothermia, hypolocomotion, and analgesia, regardless of the route of administration. In contrast, aerosolized JWH-018 and XLR-11 did not produce the full profile of cannabimimetic effects. Results of time course analysis for hypothermia showed that aerosol exposure to CP 55,940 and AB-CHMINACA produced faster onset of effects and shorter duration of action than injection. The ability to administer cannabinoids to rodents using the most common route of administration among humans provides a method for collecting preclinical data with enhanced translational relevance.

  8. Vaping Synthetic Cannabinoids: A Novel Preclinical Model of E-Cigarette Use in Mice.

    Science.gov (United States)

    Lefever, Timothy W; Marusich, Julie A; Thomas, Brian F; Barrus, Daniel G; Peiper, Nicholas C; Kevin, Richard C; Wiley, Jenny L

    2017-01-01

    Smoking is the most common route of administration for cannabis; however, vaping cannabis extracts and synthetic cannabinoids ("fake marijuana") in electronic cigarette devices has become increasingly popular. Yet, most animal models used to investigate biological mechanisms underlying cannabis use employ injection as the route of administration. This study evaluated a novel e-cigarette device that delivers aerosolized cannabinoids to mice. The effects of aerosolized and injected synthetic cannabinoids (CP 55,940, AB-CHMINACA, XLR-11, and JWH-018) in mice were compared in a battery of bioassays in which psychoactive cannabinoids produce characteristic effects. The most potent cannabinoids (CP 55,940 and AB-CHMINACA) produced the full cannabinoid profile (ie, hypothermia, hypolocomotion, and analgesia), regardless of the route of administration. In contrast, aerosolized JWH-018 and XLR-11 did not produce the full profile of cannabimimetic effects. Results of time course analysis for hypothermia showed that aerosol exposure to CP 55,940 and AB-CHMINACA produced faster onset of effects and shorter duration of action than injection. The ability to administer cannabinoids to rodents using the most common route of administration among humans provides a method for collecting preclinical data with enhanced translational relevance.

  9. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... years, synthetic cannabinoid mixtures have been easy to buy in drug paraphernalia shops, novelty stores, gas stations, and over ... abuse, authorities have made it illegal to sell, buy, or possess some of ... use is that standard drug tests cannot easily detect many of the chemicals ...

  10. In vivo potency of different ligands on voltage-gated sodium channels.

    Science.gov (United States)

    Safrany-Fark, Arpad; Petrovszki, Zita; Kekesi, Gabriella; Liszli, Peter; Benedek, Gyorgy; Keresztes, Csilla; Horvath, Gyongyi

    2015-09-05

    The Ranvier nodes of thick myelinated nerve fibers contain almost exclusively voltage-gated sodium channels (Navs), while the unmyelinated fibers have several receptors (e.g., cannabinoid, transient receptor potential vanilloid receptor 1), too. Therefore, a nerve which contains only motor fibers can be an appropriate in vivo model for selective influence of Navs. The goals were to evaluate the potency of local anesthetic drugs on such a nerve in vivo; furthermore, to investigate the effects of ligands with different structures (arachidonic acid, anandamide, capsaicin and nisoxetine) that were proved to inhibit Navs in vitro with antinociceptive properties. The marginal mandibular branch of the facial nerve was explored in anesthetized Wistar rats; after its stimulation, the electrical activity of the vibrissae muscles was registered following the perineural injection of different drugs. Lidocaine, bupivacaine and ropivacaine evoked dose-dependent decrease in electromyographic activity, i.e., lidocaine had lower potency than bupivacaine or ropivacaine. QX-314 did not cause any effect by itself, but its co-application with lidocaine produced a prolonged inhibition. Nisoxetine had a very low potency. While anandamide and capsaicin in high doses caused about 50% decrease in the amplitude of action potential, arachidonic acid did not influence the responses. We proved that the classical local anesthetics have high potency on motor nerves, suggesting that this method might be a reliable model for selective targeting of Navs in vivo circumstances. It is proposed that the effects of these endogenous lipids and capsaicin on sensory fibers are not primarily mediated by Navs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Exposure to a highly caloric palatable diet during pregestational and gestational periods affects hypothalamic and hippocampal endocannabinoid levels at birth and induces adiposity and anxiety-like behaviors in male rat offspring

    Directory of Open Access Journals (Sweden)

    Maria Teresa eRamírez-López

    2016-01-01

    Full Text Available Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and, although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory and emotions.

  12. Beyond THC: the new generation of cannabinoid designer drugs

    Directory of Open Access Journals (Sweden)

    Liana eFattore

    2011-09-01

    Full Text Available Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC, the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs. From 2008, synthetic cannabinoids were detected in herbal smoking mixtures sold on websites and in head shops under the brand name of Spice Gold, Yucatan Fire, Aroma, and others. Although these products (also known as Spice drugs or legal highs do not contain tobacco or cannabis, when smoked they produce effects similar to THC. Intoxication, withdrawal, psychosis and death have been recently reported after consumption, posing difficult social, political and health challenges. More than 140 different Spice products have been identified to date. The ability to induce strong cannabis-like psychoactive effects, along with the fact that they are readily available on the Internet, still legal in many countries, marketed as natural safe substances, and undetectable by conventional drug screening tests, has rendered these drugs very popular and particularly appealing to young and drug-naïve individuals seeking new experiences. An escalating number of compounds with cannabinoid receptor activity are currently being found as ingredients of Spice, of which almost nothing is known in terms of pharmacology, toxicology and safety. Since legislation started to control the synthetic cannabinoids identified in these herbal mixtures, many new analogs have appeared on the market. New cannabimimetic compounds are likely to be synthesized in the near future to replace banned synthetic cannabinoids, leading to a dog chasing its tail situation. Spice smokers are exposed to drugs that are extremely variable in composition and potency, and are at risk of serious, if not lethal, outcomes. Social and health professionals should maintain a high degree of alertness for Spice use and its possible psychiatric effects in vulnerable people.

  13. Localization and function of the cannabinoid CB1 receptor in the anterolateral bed nucleus of the stria terminalis.

    Directory of Open Access Journals (Sweden)

    Nagore Puente

    Full Text Available BACKGROUND: The bed nucleus of the stria terminalis (BNST is involved in behaviors related to natural reward, drug addiction and stress. In spite of the emerging role of the endogenous cannabinoid (eCB system in these behaviors, little is known about the anatomy and function of this system in the anterolateral BNST (alBNST. The aim of this study was to provide a detailed morphological characterization of the localization of the cannabinoid 1 (CB1 receptor a necessary step toward a better understanding of the physiological roles of the eCB system in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS: We have combined anatomical approaches at the confocal and electron microscopy level to ex-vivo electrophysiological techniques. Here, we report that CB1 is localized on presynaptic membranes of about 55% of immunopositive synaptic terminals for the vesicular glutamate transporter 1 (vGluT1, which contain abundant spherical, clear synaptic vesicles and make asymmetrical synapses with alBNST neurons. About 64% of vGluT1 immunonegative synaptic terminals show CB1 immunolabeling. Furthermore, 30% and 35% of presynaptic boutons localize CB1 in alBNST of conditional mutant mice lacking CB1 mainly from GABAergic neurons (GABA-CB1-KO mice and mainly from cortical glutamatergic neurons (Glu-CB1-KO mice, respectively. Extracellular field recordings and whole cell patch clamp in the alBNST rat brain slice preparation revealed that activation of CB1 strongly inhibits excitatory and inhibitory synaptic transmission. CONCLUSIONS/SIGNIFICANCE: This study supports the anterolateral BNST as a potential neuronal substrate of the effects of cannabinoids on stress-related behaviors.

  14. Multiple sclerosis following treatment with a cannabinoid receptor-1 antagonist

    NARCIS (Netherlands)

    van Oosten, B. W.; Killestein, J.; Mathus-Vliegen, E. M. H.; Polman, C. H.

    2004-01-01

    Laboratory research including animal models of human disease suggests that cannabinoids might have therapeutic potential in multiple sclerosis (MS). We have recently seen a 46-year-old woman who developed MS after starting treatment with a cannabinoid receptor antagonist for obesity. The occurrence

  15. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine

    Directory of Open Access Journals (Sweden)

    David B. Finlay

    2016-03-01

    Full Text Available The orphan receptor GPR18 has become a research target following the discovery of a putative endogenous agonist, N-arachidonoyl glycine (NAGly. Chemical similarity between NAGly and the endocannabinoid anandamide suggested the hypothesis that GPR18 is a third cannabinoid receptor. GPR18-mediated cellular signalling through inhibition of cyclic adenosine monophosphate (cAMP and phosphorylation of extracellular signal-regulated kinase (ERK, in addition to physiological consequences such as regulation of cellular migration and proliferation/apoptosis have been described in response to both NAGly and anandamide. However, discordant findings have also been reported. Here we sought to describe the functional consequences of GPR18 activation in heterologously-expressing HEK cells. GPR18 expression was predominantly intracellular in stably transfected cell lines, but moderate cell surface expression could be achieved in transiently transfected cells which also had higher overall expression. Assays were employed to characterise the ability of NAGly or anandamide to inhibit cAMP or induce ERK phosphorylation through GPR18, or induce receptor trafficking. Positive control experiments, which utilised cells expressing hCB1 receptors (hCB1R, were performed to validate assay design and performance. While these functional pathways in GPR18-expressing cells were not modified on treatment with a panel of putative GPR18 ligands, a constitutive phenotype was discovered for this receptor. Our data reveal that GPR18 undergoes rapid constitutive receptor membrane trafficking—several-fold faster than hCB1R, a highly constitutively active receptor. To enhance the likelihood of detecting agonist-mediated receptor signalling responses, we increased GPR18 protein expression (by tagging with a preprolactin signal sequence and generated a putative constitutively inactive receptor by mutating the hGPR18 gene at amino acid site 108 (alanine to asparagine. This A108N mutant

  16. Potencial terapéutico de los canabinoides como neuroprotectores Therapeutical potential of cannabinoids as neuroprotective agents

    Directory of Open Access Journals (Sweden)

    Laymi Martínez García

    2007-12-01

    with medicine (therapeutic treatment, pharmacology (experimental animal models and synthetic chemistry (design and generation of new structures, showing the importance of the study about this plant, its extracts, metabolites and bio-precursors of therapeutic agents. Taking these points into consideration, this article reviews the therapeutic implications of cannabinoid systems (endogenous, natural, and synthetic on the neurodegenerative diseases of the central nervous system, including concepts of cannabinoid types, cannabinoid CB1 and CB2 receptor systems and preclinical studies devoted to the neuroprotective effects of the cannabinoids from 1970 to 2005

  17. The influence of cannabinoids on learning and memory processes of the dorsal striatum.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2015-11-01

    Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cannabinoids for Medical Use A Systematic Review and Meta-analysis

    NARCIS (Netherlands)

    Whiting, Penny F.; Wolff, Robert F.; Deshpande, Sohan; Di Nisio, Marcello; Duffy, Steven; Hernandez, Adrian V.; Keurentjes, J. Christiaan; Lang, Shona; Misso, Kate; Ryder, Steve; Schmidlkofer, Simone; Westwood, Marie; Kleijnen, Jos

    2015-01-01

    IMPORTANCE Cannabis and cannabinoid drugs are widely used to treat disease or alleviate symptoms, but their efficacy for specific indications is not clear. OBJECTIVE To conduct a systematic review of the benefits and adverse events (AEs) of cannabinoids. DATA SOURCES Twenty-eight databases from

  19. Case Series of Synthetic Cannabinoid Intoxication from One Toxicology Center

    Directory of Open Access Journals (Sweden)

    Kenneth D. Katz

    2016-05-01

    Full Text Available Synthetic cannabinoid use has risen at alarming rates. This case series describes 11 patients exposed to the synthetic cannabinoid, MAB-CHMINACA who presented to an emergency department with life-threatening toxicity including obtundation, severe agitation, seizures and death. All patients required sedatives for agitation, nine required endotracheal intubation, three experienced seizures, and one developed hyperthermia. One developed anoxic brain injury, rhabdomyolysis and died. A significant number were pediatric patients. The mainstay of treatment was aggressive sedation and respiratory support. Synthetic cannabinoids pose a major public health risk. Emergency physicians must be aware of their clinical presentation, diagnosis and treatment.

  20. Critical appraisal of the potential use of cannabinoids in cancer management

    International Nuclear Information System (INIS)

    Cridge, Belinda J; Rosengren, Rhonda J

    2013-01-01

    Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds. Cannabinoids are largely defined by an ability to activate the cannabinoid receptors – CB 1 or CB 2 . The action of the cannabinoids is very dependent on the exact ligand tested, the dose, and the duration of exposure. Some cannabinoids, synthetic or plant-derived, show potential as therapeutic agents, and evidence across a range of cancers and evidence in vitro and in vivo is starting to be accumulated. Studies have now been conducted in a wide range of cell lines, including glioma, breast, prostate, endothelial, liver, and lung. This work is complemented by an increasing body of evidence from in vivo models. However, many of these results remain contradictory, an issue that is not currently able to be resolved through current knowledge of mechanisms of action. While there is a developing understanding of potential mechanisms of action, with the extracellular signal-regulated kinase pathway emerging as a critical signaling juncture in combination with an important role for ceramide and lipid signaling, the relative importance of each pathway is yet to be determined. The interplay between the intracellular pathways of autophagy versus apoptosis is a recent development that is discussed. Overall, there is still a great deal of conflicting evidence around the future utility of the cannabinoids, natural or synthetic, as therapeutic agents

  1. Critical appraisal of the potential use of cannabinoids in cancer management

    Energy Technology Data Exchange (ETDEWEB)

    Cridge, Belinda J; Rosengren, Rhonda J, E-mail: rhonda.rosengren@otago.ac.nz [Department of Pharmacology and Toxicology, University of Otago, Dunedin (New Zealand)

    2013-08-30

    Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds. Cannabinoids are largely defined by an ability to activate the cannabinoid receptors – CB{sub 1} or CB{sub 2}. The action of the cannabinoids is very dependent on the exact ligand tested, the dose, and the duration of exposure. Some cannabinoids, synthetic or plant-derived, show potential as therapeutic agents, and evidence across a range of cancers and evidence in vitro and in vivo is starting to be accumulated. Studies have now been conducted in a wide range of cell lines, including glioma, breast, prostate, endothelial, liver, and lung. This work is complemented by an increasing body of evidence from in vivo models. However, many of these results remain contradictory, an issue that is not currently able to be resolved through current knowledge of mechanisms of action. While there is a developing understanding of potential mechanisms of action, with the extracellular signal-regulated kinase pathway emerging as a critical signaling juncture in combination with an important role for ceramide and lipid signaling, the relative importance of each pathway is yet to be determined. The interplay between the intracellular pathways of autophagy versus apoptosis is a recent development that is discussed. Overall, there is still a great deal of conflicting evidence around the future utility of the cannabinoids, natural or synthetic, as therapeutic agents.

  2. The medicinal use of cannabis and cannabinoids--an international cross-sectional survey on administration forms.

    Science.gov (United States)

    Hazekamp, Arno; Ware, Mark A; Muller-Vahl, Kirsten R; Abrams, Donald; Grotenhermen, Franjo

    2013-01-01

    Cannabinoids, including tetrahydrocannabinol and cannabidiol, are the most important active constituents of the cannabis plant. Over recent years, cannabinoid-based medicines (CBMs) have become increasingly available to patients in many countries, both as pharmaceutical products and as herbal cannabis (marijuana). While there seems to be a demand for multiple cannabinoid-based therapeutic products, specifically for symptomatic amelioration in chronic diseases, therapeutic effects of different CBMs have only been directly compared in a few clinical studies. The survey presented here was performed by the International Association for Cannabinoid Medicines (IACM), and is meant to contribute to the understanding of cannabinoid-based medicine by asking patients who used cannabis or cannabinoids detailed questions about their experiences with different methods of intake. The survey was completed by 953 participants from 31 countries, making this the largest international survey on a wide variety of users of cannabinoid-based medicine performed so far. In general, herbal non-pharmaceutical CBMs received higher appreciation scores by participants than pharmaceutical products containing cannabinoids. However, the number of patients who reported experience with pharmaceutical products was low, limiting conclusions on preferences. Nevertheless, the reported data may be useful for further development of safe and effective medications based on cannabis and single cannabinoids.

  3. 75 FR 71635 - Schedules of Controlled Substances: Temporary Placement of Five Synthetic Cannabinoids Into...

    Science.gov (United States)

    2010-11-24

    ... these THC-like synthetic cannabinoids are marketed as ``legal'' alternatives to marijuana and are being...] Schedules of Controlled Substances: Temporary Placement of Five Synthetic Cannabinoids Into Schedule I... intent to temporarily place five synthetic cannabinoids into the Controlled Substances Act (CSA) pursuant...

  4. Clinical Endocannabinoid Deficiency Reconsidered: Current Research Supports the Theory in Migraine, Fibromyalgia, Irritable Bowel, and Other Treatment-Resistant Syndromes.

    Science.gov (United States)

    Russo, Ethan B

    2016-01-01

    Medicine continues to struggle in its approaches to numerous common subjective pain syndromes that lack objective signs and remain treatment resistant. Foremost among these are migraine, fibromyalgia, and irritable bowel syndrome, disorders that may overlap in their affected populations and whose sufferers have all endured the stigma of a psychosomatic label, as well as the failure of endless pharmacotherapeutic interventions with substandard benefit. The commonality in symptomatology in these conditions displaying hyperalgesia and central sensitization with possible common underlying pathophysiology suggests that a clinical endocannabinoid deficiency might characterize their origin. Its base hypothesis is that all humans have an underlying endocannabinoid tone that is a reflection of levels of the endocannabinoids, anandamide (arachidonylethanolamide), and 2-arachidonoylglycerol, their production, metabolism, and the relative abundance and state of cannabinoid receptors. Its theory is that in certain conditions, whether congenital or acquired, endocannabinoid tone becomes deficient and productive of pathophysiological syndromes. When first proposed in 2001 and subsequently, this theory was based on genetic overlap and comorbidity, patterns of symptomatology that could be mediated by the endocannabinoid system (ECS), and the fact that exogenous cannabinoid treatment frequently provided symptomatic benefit. However, objective proof and formal clinical trial data were lacking. Currently, however, statistically significant differences in cerebrospinal fluid anandamide levels have been documented in migraineurs, and advanced imaging studies have demonstrated ECS hypofunction in post-traumatic stress disorder. Additional studies have provided a firmer foundation for the theory, while clinical data have also produced evidence for decreased pain, improved sleep, and other benefits to cannabinoid treatment and adjunctive lifestyle approaches affecting the ECS.

  5. Feeding induced by cannabinoids is mediated independently of the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Puspha Sinnayah

    2008-05-01

    Full Text Available Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance.Here, we show that peripherally administered CB1-R antagonist (AM251 or agonist equally suppressed or stimulated feeding respectively in A(y , which lack a functional melanocortin system, and wildtype mice, demonstrating that cannabinoid effects on feeding do not require melanocortin circuitry. CB1-R antagonist or agonist administered into the ventral tegmental area (VTA equally suppressed or stimulated feeding respectively, in both genotypes. In addition, peripheral and central cannabinoid administration similarly induced c-Fos activation in brain sites suggesting mediation via motivational dopaminergic circuitry. Amperometry-detected increases in evoked dopamine (DA release by the CB1-R antagonist in nucleus accumbens slices indicates that AM251 modulates DA release from VTA terminals.Our results demonstrate that the effects of cannabinoids on energy balance are independent of hypothalamic melanocortin circuitry and is primarily driven by the reward system.

  6. Cannabinoids cases in polish athletes

    Directory of Open Access Journals (Sweden)

    A Pokrywka

    2009-07-01

    Full Text Available The aim of this study was to investigate the number of cases and the profiles of Polish athletes who had occasionally been using marijuana or hashish throughout the period of 1998-2004, with respect to: sex, age, and discipline of sport as well as the period of testing (in- and out-of-competition. Results of the study were compared with some data reported by other WADA accredited anti-doping laboratories. Totally, 13 631 urine samples taken from Polish athletes of both sexes, aged 10-67 years, performing 46 disciplines of sport were tested. Cannabinoids were detected in 267 samples. Among Polish athletes the relative number of positive THC (tetrahydrocannabinol samples was one of the highest in Europe. The group of young Polish athletes (aged 16-24 years was the most THC-positive. THC-positive cases were noted more frequently in male athletes tested during out of competitions. The so-called contact sports (rugby, ice hockey, skating, boxing, badminton, body building and acrobatic sports were those sports, where the higher risk of cannabis use was observed. The legal interpretation of some positive cannabinoids results would be difficult because of some accidental and unintentional use of the narcotics by sportsmen. It was concluded that national anti-doping organizations (NADO’s, which are competent to judge whether the anti-doping rules were violated, should take into account the possibility of non-intentional doping use of cannabinoids via passive smoking of marijuana.

  7. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition

    Directory of Open Access Journals (Sweden)

    Flores Juana M

    2010-07-01

    Full Text Available Abstract Background ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors. Results Our results show that both Δ9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2. Conclusions Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.

  8. Scotopic vision in the monkey is modulated by the G protein-coupled receptor 55

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha

    2016-01-01

    The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors in the mon......The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors...

  9. Quantification of Cannabinoid Content in Cannabis

    Science.gov (United States)

    Tian, Y.; Zhang, F.; Jia, K.; Wen, M.; Yuan, Ch.

    2015-09-01

    Cannabis is an economically important plant that is used in many fields, in addition to being the most commonly consumed illicit drug worldwide. Monitoring the spatial distribution of cannabis cultivation and judging whether it is drug- or fiber-type cannabis is critical for governments and international communities to understand the scale of the illegal drug trade. The aim of this study was to investigate whether the cannabinoids content in cannabis could be spectrally quantified using a spectrometer and to identify the optimal wavebands for quantifying the cannabinoid content. Spectral reflectance data of dried cannabis leaf samples and the cannabis canopy were measured in the laboratory and in the field, respectively. Correlation analysis and the stepwise multivariate regression method were used to select the optimal wavebands for cannabinoid content quantification based on the laboratory-measured spectral data. The results indicated that the delta-9-tetrahydrocannabinol (THC) content in cannabis leaves could be quantified using laboratory-measured spectral reflectance data and that the 695 nm band is the optimal band for THC content quantification. This study provides prerequisite information for designing spectral equipment to enable immediate quantification of THC content in cannabis and to discriminate drug- from fiber-type cannabis based on THC content quantification in the field.

  10. Treatment of Tourette Syndrome with Cannabinoids

    Directory of Open Access Journals (Sweden)

    Kirsten R. Müller-Vahl

    2013-01-01

    Full Text Available Cannabinoids have been used for hundred of years for medical purposes. To day, the cannabinoid delta-9-tetrahydrocannabinol (THC and the cannabis extract nabiximols are approved for the treatment of nausea, anorexia and spasticity, respectively. In Tourette syndrome (TS several anecdotal reports provided evidence that marijuana might be effective not only in the suppression of tics, but also in the treatment of associated behavioural problems. At the present time there are only two controlled trials available investigating the effect of THC in the treatment of TS. Using both self and examiner rating scales, in both studies a significant tic reduction could be observed after treatment with THC compared to placebo, without causing significant adverse effects. Available data about the effect of THC on obsessive-compulsive symptoms are inconsistent. According to a recent Cochrane review on the efficacy of cannabinoids in TS, definite conclusions cannot be drawn, because longer trials including a larger number of patients are missing. Notwithstanding this appraisal, by many experts THC is recommended for the treatment of TS in adult patients, when first line treatments failed to improve the tics. In treatment resistant adult patients, therefore, treatment with THC should be taken into consideration.

  11. Differential physiological and behavioral cues observed in individuals smoking botanical marijuana versus synthetic cannabinoid drugs.

    Science.gov (United States)

    Chase, Peter B; Hawkins, Jeff; Mosier, Jarrod; Jimenez, Ernest; Boesen, Keith; Logan, Barry K; Walter, Frank G

    2016-01-01

    Synthetic cannabinoid use has increased in many states, and medicinal and/or recreational marijuana use has been legalized in some states. These changes present challenges to law enforcement drug recognition experts (DREs) who determine whether drivers are impaired by synthetic cannabinoids or marijuana, as well as to clinical toxicologists who care for patients with complications from synthetic cannabinoids and marijuana. Our goal was to compare what effects synthetic cannabinoids and marijuana had on performance and behavior, including driving impairment, by reviewing records generated by law enforcement DREs who evaluated motorists arrested for impaired driving. Data were from a retrospective, convenience sample of de-identified arrest reports from impaired drivers suspected of using synthetic cannabinoids (n = 100) or marijuana (n = 33). Inclusion criteria were arrested drivers who admitted to using either synthetic cannabinoids or marijuana, or who possessed either synthetic cannabinoids or marijuana; who also had a DRE evaluation at the scene; and whose blood screens were negative for alcohol and other drugs. Exclusion criteria were impaired drivers arrested with other intoxicants found in their drug or alcohol blood screens. Blood samples were analyzed for 20 popular synthetic cannabinoids by using liquid chromatography-tandem mass spectrometry. Delta-9-tetrahydrocannabinol (THC) and THC-COOH were quantified by gas chromatography-mass spectrometry. Statistical significance was determined by using Fisher's exact test or Student's t-test, where appropriate, to compare the frequency of characteristics of those in the synthetic cannabinoid group versus those in the marijuana group. 16 synthetic cannabinoid and 25 marijuana records met selection criteria; the drivers of these records were arrested for moving violations. Median age for the synthetic cannabinoid group (n = 16, 15 males) was 20 years (IQR 19-23 years). Median age for the marijuana group (n = 25, 21

  12. Cannabinoid receptor 2 participates in amyloid-β processing in a mouse model of Alzheimer's disease but plays a minor role in the therapeutic properties of a cannabis-based medicine

    OpenAIRE

    Aso Pérez, Ester; Andrés Benito, Pol; Carmona, Margarita; Maldonado, Rafael, 1961-; Ferrer, Isidre

    2016-01-01

    The endogenous cannabinoid system represents a promising therapeutic target to modify neurodegenerative pathways linked to Alzheimer's disease (AD). The aim of the present study was to evaluate the specific contribution of CB2 receptor to the progression of AD-like pathology and its role in the positive effect of a cannabis-based medicine (1:1 combination of Δ9-tetrahidrocannabinol and cannabidiol) previously demonstrated to be beneficial in the AβPP/PS1 transgenic model of the disease. A new...

  13. Immune system modulation in the central nervous system: A possible role for endocannabinoids

    International Nuclear Information System (INIS)

    Abd-Allah, Adel R.A.

    2007-01-01

    The immune system is designed to protect the body from infection and tumor formation. To perform this function, cells of the immune system can be dangerous for the survival and function of the neuronal network in the brain under the influence of infection or immune imbalance. An attack of immune cells inside the brain includes the potential for severe neuronal damage or cell death and therefore impairment of the CNS function. To avoid such undesirable action of the immune system, the CNS performs a cascade of cellular and molecular mechanisms enabling strict control of immune reactions i mmune privilege . Under inflammatory and patholological conditions, uncontrolled immune system results in the activation of neuronal damage that is frequently associated with neurological diseases. On the other hand, processes of neuroprotection and neurorepair after neuronal damage depend on a steady and tightly controlled immunesurvelliance. Many immunoprotectants play a role to imbalance the immune reactions in the CNS and other organs which presents an important therapeutic target. It has been reported recently that endocannabinoids are secreted in abundance in the CNS following neuronal insult, probably for its protection. There are at least two types of cannabinoid receptors, CB1 and CB2. Both are coupled to G proteins. CB1 receptors exist primarily on central and peripheral neurons. CB2 receptors are present mainly on immune cells. Endogenous agonists for cannabinoid receptors (endocannabinoids), have been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol (2AG), and 2-archidonyl glyceryl ether. Following their release, endocannabinoids are removed from the extracellular space and then degraded by intracellular enzymic hydrolysis. Therapeutic uses of cannabinoid receptor agonists/antagonists include the management of many disease conditions. They are also involved in immune system suppression and in cell to cell communication

  14. Cannabinoids as modulators of cancer cell viability, neuronal differentiation, and embryonal development

    OpenAIRE

    Gustafsson, Sofia

    2012-01-01

    Cannabinoids (CBs) are compounds that activate the CB1 and CB2 receptors. CB receptors mediate many different physiological functions, and cannabinoids have been reported to decrease tumor cell viability, proliferation, migration, as well as to modulate metastasis. In this thesis, the effects of cannabinoids on human colorectal carcinoma Caco-2 cells (Paper I) and mouse P19 embryonal carcinoma (EC) cells (Paper III) were studied.  In both cell lines, the compounds examined produced a concentr...

  15. Cannabinoid modulation of executive functions

    NARCIS (Netherlands)

    Pattij, T.; Wiskerke, J.; Schoffelmeer, A.N.M.

    2008-01-01

    Executive functions are higher-order cognitive processes such as attention, behavioural flexibility, decision-making, inhibitory control, planning, time estimation and working memory that exert top-down control over behaviour. In addition to the role of cannabinoid signaling in other cognitive

  16. Cannabis, cannabinoids, and health.

    Science.gov (United States)

    Lafaye, Genevieve; Karila, Laurent; Blecha, Lisa; Benyamina, Amine

    2017-09-01

    Cannabis (also known as marijuana) is the most frequently used illicit psychoactive substance in the world. Though it was long considered to be a "soft" drug, studies have proven the harmful psychiatric and addictive effects associated with its use. A number of elements are responsible for the increased complications of cannabis use, including the increase in the potency of cannabis and an evolution in the ratio between the two primary components, Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (toward a higher proportion of Δ 9 -THC), Synthetic cannabinoid (SC) use has rapidly progressed over the last few years, primarily among frequent cannabis users, because SCs provide similar psychoactive effects to cannabis. However, their composition and pharmacological properties make them dangerous substances. Cannabis does have therapeutic properties for certain indications. These therapeutic applications pertain only to certain cannabinoids and their synthetic derivatives. The objective of this article is to summarize current developments concerning cannabis and the spread of SCs. Future studies must further explore the benefit-risk profile of medical cannabis use.

  17. The endocannabinoid system in brain reward processes.

    Science.gov (United States)

    Solinas, M; Goldberg, S R; Piomelli, D

    2008-05-01

    Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.

  18. 77 FR 12508 - Schedules of Controlled Substances: Placement of Five Synthetic Cannabinoids Into Schedule I

    Science.gov (United States)

    2012-03-01

    ... constituent of marijuana. ``Synthetic cannabinoids'' are a large family of chemically unrelated structures... that is more common in current usage, ``marijuana.'' The emergence of these five synthetic cannabinoids... cannabinoids with a potential for abuse similar to the Schedule I substances marijuana and THC. These synthetic...

  19. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  20. Studies of the brain cannabinoid system using positron emission tomography

    International Nuclear Information System (INIS)

    Gatley, S.J.; Volkow, N.D.

    1995-01-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  1. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    International Nuclear Information System (INIS)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-01-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB 1 Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB 2 Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB 2 Rs (hCB 2 Rs). The affinity of cannabinoids for hCB 2 Rs was determined by competition binding studies employing CHO-hCB 2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB 2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB 2 Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB 2 Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ 9 -tetrahydrocannabinol (Δ 9 -THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB 2 R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB 2 Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB 2 Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB 1 and CB 2 Rs. - Highlights: • JWH-018 and JWH-073 are synthetic cannabinoids present in abused K2

  2. The antitumor activity of plant-derived non-psychoactive cannabinoids

    OpenAIRE

    McAllister, Sean D.; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-01-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ9-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown tha...

  3. Cannabinoids and glucocorticoids modulate emotional memory after stress.

    Science.gov (United States)

    Akirav, Irit

    2013-12-01

    Bidirectional and functional relationships between glucocorticoids and the endocannabinoid system have been demonstrated. Here, I review the interaction between the endocannabinoid and glucocorticoid/stress systems. Specifically, stress is known to produce rapid changes in endocannabinoid signaling in stress-responsive brain regions. In turn, the endocannabinoid system plays an important role in the downregulation and habituation of hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to stress. Glucocorticoids also recruit the endocannabinoid system to exert rapid negative feedback control of the HPA axis during stress. It became increasingly clear, however, that cannabinoid CB1 receptors are also abundantly expressed in the basolateral amygdala (BLA) and other limbic regions where they modulate emotional arousal effects on memory. Enhancing cannabinoids signaling using exogenous CB1 receptor agonists prevent the effects of acute stress on emotional memory. I propose a model suggesting that the ameliorating effects of exogenously administered cannabinoids on emotional learning after acute stress are mediated by the decrease in the activity of the HPA axis via GABAergic mechanisms in the amygdala. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials

    OpenAIRE

    Lynch, Mary E; Campbell, Fiona

    2011-01-01

    Effective therapeutic options for patients living with chronic pain are limited. The pain relieving effect of cannabinoids remains unclear. A systematic review of randomized controlled trials (RCTs) examining cannabinoids in the treatment of chronic non-cancer pain was conducted according to the PRISMA statement update on the QUORUM guidelines for reporting systematic reviews that evaluate health care interventions. Cannabinoids studied included smoked cannabis, oromucosal extracts of cannabi...

  5. Cannabinoid Hyperemesis Syndrome: A Paradoxical Cannabis Effect

    Directory of Open Access Journals (Sweden)

    Ivonne Marie Figueroa-Rivera

    2015-01-01

    Full Text Available Despite well-established antiemetic properties of marijuana, there has been increasing evidence of a paradoxical effect in the gastrointestinal tract and central nervous system, given rise to a new and underrecognized clinical entity called the Cannabinoid Hyperemesis Syndrome. Reported cases in the medical literature have established a series of patients exhibiting a classical triad of symptoms: cyclic vomiting, chronic marijuana use, and compulsive bathing. We present a case of a 29-year-old man whose clinical presentation strongly correlates with cannabinoid hyperemesis syndrome. Despite a diagnosis of exclusion, this syndrome should be considered plausible in the setting of a patient with recurrent intractable vomiting and a strong history of cannabis use as presented in this case.

  6. Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB1 Receptors: Implications for Schizophrenia

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-01-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  7. The role of the cannabinoid system in the pathogenesis and treatment of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Bogusława Pietrzak

    2011-09-01

    Full Text Available The lack of satisfactory results of alcohol dependence treatment force us to search for new directions of research. Recent studies concentrate on endocannabinoid transmission. The results show an interplay between the endocannabinoid and dopaminergic signaling in activation of the limbic reward system. The mechanisms leading to development of dependence are very complex and poorly recognized. Endogenous cannabinoids seem to have an important role in the functioning of this system, both directly and indirectly affecting the level of different neurotransmitters. The effect of alcohol on the endocannabinoid system is also complex and involves changes at the molecular level. Experimental studies have demonstrated an important role of the CB1 receptors in the neurochemical mechanism of alcohol consumption and its regulation. SR141716 (rimonabant, a CB1 receptor antagonist, significantly lowers voluntary alcohol intake and motivation for its consumption in various experimental studies. Very encouraging results of preclinical studies were not completely confirmed in the clinical studies. However, further clinical studies are still necessary.

  8. Lipids and addiction: how sex steroids, prostaglandins, and cannabinoids interact with drugs of abuse.

    Science.gov (United States)

    Leishman, Emma; Kokesh, Kevin J; Bradshaw, Heather B

    2013-04-01

    Lipidomics aims to identify and characterize all endogenous species of lipids and understand their roles in cellular signaling and, ultimately, the functioning of the organism. We are on the cusp of fully understanding the functions of many of the lipid signaling systems that have been identified for decades (e.g., steroids, prostaglandins), whereas our understanding of newer lipid signaling systems (e.g., endocannabinoids, N-acyl amides) still lags considerably behind. With an emphasis on their roles in the neurophysiology of addiction, we will examine three classes of lipids--sex steroids, prostaglandins, and cannabinoids--and how they work synergistically in the neurocircuitry of motivation. We will first give a brief overview of the biosynthesis for each class of lipid and its receptors, and then summarize what is known about the collective roles of the lipids in cocaine and alcohol abuse. This approach provides a novel view of lipid signaling as a class of molecules and their synergistic roles in addiction. © 2013 New York Academy of Sciences.

  9. Alcohol and cannabinoids differentially affect HIV infection and function of human monocyte-derived dendritic cells (MDDC

    Directory of Open Access Journals (Sweden)

    Marisela eAgudelo

    2015-12-01

    Full Text Available During human immunodeficiency virus (HIV infection, alcohol has been known to induce inflammation while cannabinoids have been shown to have an anti-inflammatory role. For instance cannabinoids have been shown to reduce susceptibility to HIV-1 infection and attenuate HIV replication in macrophages. Recently, we demonstrated that alcohol induces cannabinoid receptors and regulates cytokine production by monocyte-derived dendritic cells (MDDC. However, the ability of alcohol and cannabinoids to alter MDDC function during HIV infection has not been clearly elucidated yet. In order to study the potential impact of alcohol and cannabinoids on differentiated MDDC infected with HIV, monocytes were cultured for 7 days with GM-CSF and IL-4, differentiated MDDC were infected with HIV-1Ba-L and treated with EtOH (0.1 and 0.2%, THC (5 and 10 uM, or JWH-015 (5 and 10 uM for 4-7 days. HIV infection of MDDC was confirmed by p24 and Long Terminal Repeats (LTR estimation. MDDC endocytosis assay and cytokine array profiles were measured to investigate the effects of HIV and substances of abuse on MDDC function. Our results show the HIV+EtOH treated MDDC had the highest levels of p24 production and expression when compared with the HIV positive controls and the cannabinoid treated cells. Although both cannabinoids, THC and JWH-015 had lower levels of p24 production and expression, the HIV+JWH-015 treated MDDC had the lowest levels of p24 when compared to the HIV+THC treated cells. In addition, MDDC endocytic function and cytokine production were also differentially altered after alcohol and cannabinoid treatments. Our results show a differential effect of alcohol and cannabinoids, which may provide insights into the divergent inflammatory role of alcohol and cannabinoids to modulate MDDC function in the context of HIV infection.

  10. Stability of cannabinoids in urine in three storage temperatures.

    Science.gov (United States)

    Golding Fraga, S; Díaz-Flores Estévez, J; Díaz Romero, C

    1998-01-01

    Stability of cannabinoid compounds in urine samples were evaluated using several storage temperatures. Appreciable losses (> 22.4 percent) were observed in some urine samples, after being stored at room temperature for 10 days. Lower losses (8.1 percent) were observed when the urine samples were refrigerated for 4 weeks. The behavior of urine samples depended on the analyzed urine. This could be due to the different stability of the cannabinoids present in each urine sample. Important losses of 8.0 +/- 10.6, 15.8 +/- 4.2, and 19.6 +/- 6.7 percent were found when the urine samples were frozen during 40 days, 1 year, and 3 years, respectively. Average losses (> > 5 percent) can be observed after one day which could mainly be due to the decrease of the solubility of 11-nor-U9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) or adsorption process of cannabinoid molecules to the plastic storage containers.

  11. [Testing the pharmacological activity of some synthetic cannabinoids in mice (author's transl)].

    Science.gov (United States)

    Ganz, A J; Waser, P G

    1980-01-01

    A series of synthetic cannabinoids were tested in mice for analgesic, anticonvulsant, sedative and reserpine antagonistic properties as well as for influence on body temperature and on motor coordination and compared with the natural delta 9-tetrahydrocannabinol (delta 9-THC), delta 8-tetrahydrocannabinol (delta 8-THC) and cannabidiol (CBD). All cannabinoids were injected s.c. or i.p. in mice as solutions in olive oil. The synthetic cannabinoids, with the exception of the lipophilic ones, were less active than the natural delta 9-THC. 1',1'-dimethyl-delta 8-tetrahydrocannabinol (DM-delta 8-THC) has an analgesic ED 50 of 16 mg/kg s.c. (writhing test) and is three times more active than delta 9-THC, but also eight times less active than morphine. The lipophilic derivatives of delta 8-THC prolonged pentobarbitone narcosis and diminished locomotor activity in mice. Anticonvulsant activities could never be detected; all cannabinoids slightly diminished body temperature and antagonized weakly the hypothermia induced by reserpine. The trained capacity of remaining on the rotating rod was severely shortened for a long time after application of all cannabinoids but mainly by the lipophilic ones. The influence of derivation on the activity of delta 9-THC is discussed.

  12. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  13. A Gut Gone to Pot: A Case of Cannabinoid Hyperemesis Syndrome due to K2, a Synthetic Cannabinoid

    Directory of Open Access Journals (Sweden)

    Anene Ukaigwe

    2014-01-01

    Full Text Available Cannabinoid Hyperemesis Syndrome (CHS was first described in 2004. Due to its novelty, CHS is often unrecognized by clinicians leading to expensive workup of these patients with cyclical symptoms. It may take up to 9 years to diagnose CHS. CHS is characterized by cyclical nausea and vomiting, abdominal pain, and an unusual compulsion to take hot showers in the presence of chronic use of cannabinoids. Cannabicyclohexanol is a synthetic cannabinoid, popularly known as K2 spice. It is a popular marijuana alternative among teenagers and young adults since it is readily available as herbal incense. Unlike marijuana, many users know that K2 is not detected in conventional urine drug screens, allowing those users to conceal their intake from typical detection methods. Serum or urine gas chromatography mass spectrophotometry is diagnostic, though not widely available. Thus, it is imperative for clinicians to recognize CHS, even with negative UDS, to provide cost-effective care. We present a 38-year-old man with a 10-year history of cannabis, and 1-year history of K2 abuse admitted with 1-week history of episodes of nausea, vomiting of clear fluids, and epigastric discomfort. Symptoms are relieved only by hot showers. Extensive laboratory, radiologic, and endoscopic evaluation was unrevealing. CHS was diagnosed, based on proposed criteria by Simonetti et al.

  14. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    International Nuclear Information System (INIS)

    Wohlman, Irene M.; Composto, Gabriella M.; Heck, Diane E.; Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D.; Casillas, Robert P.; Croutch, Claire R.; Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B.; Laskin, Jeffrey D.

    2016-01-01

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  15. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Wohlman, Irene M.; Composto, Gabriella M. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Casillas, Robert P.; Croutch, Claire R. [MRIGlobal, Kansas City, MO (United States); Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ (United States)

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  16. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  17. Cannabinoids: New Promising Agents in the Treatment of Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Sabrina Giacoppo

    2014-11-01

    Full Text Available Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.

  18. Synthetic cannabinoids found in "spice" products alter body temperature and cardiovascular parameters in conscious male rats.

    Science.gov (United States)

    Schindler, Charles W; Gramling, Benjamin R; Justinova, Zuzana; Thorndike, Eric B; Baumann, Michael H

    2017-10-01

    The misuse of synthetic cannabinoids is a persistent public health concern. Because these drugs target the same cannabinoid receptors as the active ingredient of marijuana, Δ 9 -tetrahydrocannabinol (THC), we compared the effects of synthetic cannabinoids and THC on body temperature and cardiovascular parameters. Biotelemetry transmitters for the measurement of body temperature or blood pressure (BP) were surgically implanted into separate groups of male rats. THC and the synthetic cannabinoids CP55,940, JWH-018, AM2201 and XLR-11 were injected s.c., and rats were placed into isolation cubicles for 3h. THC and synthetic cannabinoids produced dose-related decreases in body temperature that were most prominent in the final 2h of the session. The rank order of potency was CP55,940>AM2201=JWH-018>THC=XLR-11. The cannabinoid inverse agonist rimonabant antagonized the hypothermic effect of all compounds. Synthetic cannabinoids elevated BP in comparison to vehicle treatment during the first h of the session, while heart rate was unaffected. The rank order of potency for BP increases was similar to that seen for hypothermia. Hypertensive effects of CP55,940 and JWH-018 were not antagonized by rimonabant or the neutral antagonist AM4113. However, the BP responses to both drugs were antagonized by pretreatment with either the ganglionic blocker hexamethonium or the α 1 adrenergic antagonist prazosin. Our results show that synthetic cannabinoids produce hypothermia in rats by a mechanism involving cannabinoid receptors, while they increase BP by a mechanism independent of these sites. The hypertensive effect appears to involve central sympathetic outflow. Published by Elsevier B.V.

  19. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids

    NARCIS (Netherlands)

    Lozovaya, N.; Yatsenko, N.; Beketov, A.; Tsintsadze, T.; Burnashev, N.

    2005-01-01

    At many central synapses, endocannabinoids released by postsynaptic cells act retrogradely on presynaptic G-protein-coupled cannabinoid receptors to inhibit neurotransmitter release. Here, we demonstrate that cannabinoids may directly affect the functioning of inhibitory glycine receptor (GlyR)

  20. Quantification of anandamide, oleoylethanolamide and palmitoylethanolamide in rodent brain tissue using high performance liquid chromatography–electrospray mass spectroscopy

    Directory of Open Access Journals (Sweden)

    Daniel J. Liput

    2014-08-01

    Full Text Available Reported concentrations for endocannabinoids and related lipids in biological tissues can vary greatly; therefore, methods used to quantify these compounds need to be validated. This report describes a method to quantify anandamide (AEA, oleoylethanolamide (OEA and palmitoylethanolamide (PEA from rodent brain tissue. Analytes were extracted using acetonitrile without further sample clean up, resolved on a C18 reverse-phase column using a gradient mobile phase and detected using electrospray ionization in positive selected ion monitoring mode on a single quadrupole mass spectrometer. The method produced high recovery rates for AEA, OEA and PEA, ranging from 98.1% to 106.2%, 98.5% to 102.2% and 85.4% to 89.5%, respectively. The method resulted in adequate sensitivity with a lower limit of quantification for AEA, OEA and PEA of 1.4 ng/mL, 0.6 ng/mL and 0.5 ng/mL, respectively. The method was reproducible as intraday and interday accuracies and precisions were under 15%. This method was suitable for quantifying AEA, OEA and PEA from rat brain following pharmacological inhibition of fatty acid amide hydrolase. Keywords: Endocannabinoids, Acylethanolamides, Anandamide, OEA, PEA, LC–MS

  1. Examination of the effects of cannabinoid ligands on decision making in a rat gambling task.

    Science.gov (United States)

    Ferland, Jacqueline-Marie N; Carr, Madison R; Lee, Angela M; Hoogeland, Myrthe E; Winstanley, Catharine A; Pattij, Tommy

    2018-07-01

    Although exposure to delta-9-tetrahydrocannabinol (THC) is perceived to be relatively harmless, mounting evidence has begun to show that it is associated with a variety of cognitive deficits, including poor decision making. THC-induced impairments in decision making are thought to be the result of cannabinoid CB1 receptor activation, and although clinical literature suggests that chronic activation via THC contributes to perturbations in decision making, acute CB1 receptor modulation has yielded mixed results. Using an animal model to examine how CB1-specific ligands impact choice biases would provide significant insight as to how recruitment of the endocannabinoid system may influence decision making. Here, we used the rat gambling task (rGT), a validated analogue of the human Iowa Gambling Task, to assess baseline decision making preferences in male Wistar rats. After acquisition rGT performance was measured. Animals were challenged with the CB1 receptor antagonist rimonabant, the partial agonist THC, and the synthetic agonist WIN55,212-2. Animals were also treated acutely with the fatty acid amide hydrolase (FAAH) inhibitor URB597 to selectively upregulate the endocannabinoid anandamide. Blockade of the CB1 receptor produced a trend improvement in decision making in animals who preferred the advantageous task options, yet left choice unaffected in risk-prone rats. Neither CB1 receptor agonist had strong effects on decision making, but a high dose THC decreased premature responses, whereas WIN55,212-2 did the opposite. URB597 did not affect task performance. These results indicate that although chronic CB1 receptor activation may be associated with impaired decision making, acute modulation has modest effects on choice and instead may play a substantive role in regulating impulsive responding. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity

    NARCIS (Netherlands)

    Campolongo, P.; Morena, M.; Scaccianoce, S.; Trezza, V.; Chiarotti, F.; Schelling, G.; Cuomo, V.; Roozendaal, B.

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2

  3. Are cannabinoids effective in multiple sclerosis?

    Directory of Open Access Journals (Sweden)

    Rodrigo Meza

    2017-03-01

    Full Text Available Resumen En el último tiempo, se han descrito diversos beneficios con el uso de cannabinoides en diferentes situaciones clínicas. Dentro de ellas se ha planteado un posible efecto en el control de la esclerosis múltiple, pero la real utilidad clínica es tema de debate. Para responder a esta pregunta utilizamos la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en múltiples bases de datos. Identificamos 25 revisiones sistemáticas que en conjunto incluyen 35 estudios que responden la pregunta de interés, entre ellos 26 estudios aleatorizados. Extrajimos los datos, realizamos un metanálisis y preparamos una tabla de resumen de los resultados utilizando el método GRADE. Concluimos que el uso de cannabinoides en esclerosis múltiple no reduce la espasticidad ni el dolor, y probablemente se asocia a efectos adversos frecuentes.

  4. Efecto neuroprotector de los cannabinoides en las enfermedades neurodegenerativas

    Directory of Open Access Journals (Sweden)

    Carlos Suero-García

    2015-01-01

    Full Text Available Objetivos: Se analiza la situación actual de las investigaciones relacionadas con las sustancias cannabinoides, así como su interacción con el organismo, clasificación, efectos terapéuticos y su uso en las enfermedades neurodegenerativas. Métodos: Se realiza una exhaustiva revisión bibliográfica relacionada con las sustancias cannabinoides y sus derivados sintéticos, haciendo especial hincapié en la forma de interactuar con el organismo y los efectos que provocan dichas interacciones. Concretamente, se estudiarán sus efectos neuroantiinflamatorio y analgésico lo que conlleva al efecto neuroprotector en enfermedades neurodegenerativas tales como Alzheimer, Parkinson, Huntington, esclerosis múltiple y esclerosis lateral amiotrófica. Resultados: Desde hace miles de años la planta Cannabis Sativa ha sido utilizada por muchas culturas con distintos fines, de ocio, textiles, analgésicos, pero no es hasta finales del siglo XX cuando se empieza a incentivar los estudios científicos relacionados con ésta. La planta posee una mezcla de unos 400 componentes, de los cuales 60 pertenecen al grupo de los cannabinoides siendo los principales el cannabinol, cannabidiol y tetrahidrocannabinol. Con el descubrimiento de las sustancias cannabinoides, sus derivados, y los receptores que interactúan, se amplían las posibilidades terapéuticas teniendo un especial interés el efecto neuroprotector que estas sustancias contienen. Conclusiones. Se ha demostrado el gran potencial de los cannabinoides como sustancias terapéuticas más allá de su uso analgésico o antiemético, esto es, en enfermedades neurodegenerativas en las que pueden no solo disminuir los síntomas, sino frenar el proceso de la enfermedad. Otra posible aplicación puede ser en el campo oncológico, siendo particularmente intensa la actividad investigadora realizada en los últimos 15 años.

  5. The role of cannabinoids in prostate cancer: Basic science perspective and potential clinical applications

    Directory of Open Access Journals (Sweden)

    Juan A Ramos

    2012-01-01

    Full Text Available Prostate cancer is a global public health problem, and it is the most common cancer in American men and the second cause for cancer-related death. Experimental evidence shows that prostate tissue possesses cannabinoid receptors and their stimulation results in anti-androgenic effects. To review currently relevant findings related to effects of cannabinoid receptors in prostate cancer. PubMed search utilizing the terms "cannabis," "cannabinoids," "prostate cancer," and "cancer pain management," giving preference to most recent publications was done. Articles identified were screened for their relevance to the field of prostate cancer and interest to both urologist and pain specialists. Prostate cancer cells possess increased expression of both cannabinoid 1 and 2 receptors, and stimulation of these results in decrease in cell viability, increased apoptosis, and decreased androgen receptor expression and prostate-specific antigen excretion. It would be of interest to conduct clinical studies utilizing cannabinoids for patients with metastatic prostate cancer, taking advantage not only of its beneficial effects on prostate cancer but also of their analgesic properties for bone metastatic cancer pain.

  6. The Use of Cannabis and Cannabinoids in Treating Symptoms of Multiple Sclerosis: a Systematic Review of Reviews.

    Science.gov (United States)

    Nielsen, Suzanne; Germanos, Rada; Weier, Megan; Pollard, John; Degenhardt, Louisa; Hall, Wayne; Buckley, Nicholas; Farrell, Michael

    2018-02-13

    Pharmaceutical cannabinoids such as nabiximols, nabilone and dronabinol, and plant-based cannabinoids have been investigated for their therapeutic potential in treating multiple sclerosis (MS) symptoms. This review of reviews aimed to synthesise findings from high quality systematic reviews that examined the safety and effectiveness of cannabinoids in multiple sclerosis. We examined the outcomes of disability and disability progression, pain, spasticity, bladder function, tremor/ataxia, quality of life and adverse effects. We identified 11 eligible systematic reviews providing data from 32 studies, including 10 moderate to high quality RCTs. Five reviews concluded that there was sufficient evidence that cannabinoids may be effective for symptoms of pain and/or spasticity in MS. Few reviews reported conclusions for other symptoms. Recent high quality reviews find cannabinoids may have modest effects in MS for pain or spasticity. Future research should include studies with non-cannabinoid comparators; this is an important gap in the evidence.

  7. Decreased spontaneous eye blink rates in chronic cannabis users: evidence for striatal cannabinoid-dopamine interactions.

    Directory of Open Access Journals (Sweden)

    Mikael A Kowal

    Full Text Available Chronic cannabis use has been shown to block long-term depression of GABA-glutamate synapses in the striatum, which is likely to reduce the extent to which endogenous cannabinoids modulate GABA- and glutamate-related neuronal activity. The current study aimed at investigating the effect of this process on striatal dopamine levels by studying the spontaneous eye blink rate (EBR, a clinical marker of dopamine level in the striatum. 25 adult regular cannabis users and 25 non-user controls matched for age, gender, race, and IQ were compared. Results show a significant reduction in EBR in chronic users as compared to non-users, suggesting an indirect detrimental effect of chronic cannabis use on striatal dopaminergic functioning. Additionally, EBR correlated negatively with years of cannabis exposure, monthly peak cannabis consumption, and lifetime cannabis consumption, pointing to a relationship between the degree of impairment of striatal dopaminergic transmission and cannabis consumption history.

  8. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Ken Soderstrom

    2017-10-01

    Full Text Available Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.

  9. Enhancing the activity of cannabidiol and other cannabinoids in vitro through modifications to drug combinations and treatment schedules.

    Science.gov (United States)

    Scott, Katherine Ann; Shah, Sini; Dalgleish, Angus George; Liu, Wai Man

    2013-10-01

    Cannabinoids are the bioactive components of the Cannabis plant that display a diverse range of therapeutic qualities. We explored the activity of six cannabinoids, used both alone and in combination in leukaemic cells. Cannabinoids were cytostatic and caused a simultaneous arrest at all phases of the cell cycle. Re-culturing pre-treated cells in drug-free medium resulted in dramatic reductions in cell viability. Furthermore, combining cannabinoids was not antagonistic. We suggest that the activities of some cannabinoids are influenced by treatment schedules; therefore, it is important to carefully select the most appropriate strategy in order to maximise their efficacy.

  10. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Science.gov (United States)

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-12-20

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  11. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-12-01

    Full Text Available Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP and long-term depression (LTD. Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses of the midbrain ventral tegmental area (VTA following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids, the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  12. Synaptic Neurotransmission Depression in Ventral Tegmental Dopamine Neurons and Cannabinoid-Associated Addictive Learning

    Science.gov (United States)

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-01-01

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction. PMID:21187978

  13. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro.

    Science.gov (United States)

    Janefjord, Emelie; Mååg, Jesper L V; Harvey, Benjamin S; Smid, Scott D

    2014-01-01

    Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1-42. Aβ1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.

  14. Cannabinoid hyperemesis syndrome with extreme hydrophilia

    Directory of Open Access Journals (Sweden)

    Enuh HA

    2013-08-01

    Full Text Available Hilary A Enuh,1 Julia Chin,1 Jay Nfonoyim21Department of Medicine, 2Critical Care Unit, Richmond University Medical Center, Staten Island, NY, USAAbstract: Marijuana is the most widely used recreational drug in the US. Hyperemetic hydrophilic syndrome is a previously described but infrequently recognized condition of cannabinoid abuse with hyperemesis and obsessive hot showering. We present a 47-year-old male known marijuana addict with intractable abdominal pain who could not wait for physical examination, meal, or medication, because of obsessive compulsive warm baths. He had a history of epilepsy and addiction to marijuana, which he took on the day of admission. He presented to the hospital with a seizure, complicated by nausea, vomiting, and severe abdominal pain. His examination was unremarkable, except for mild epigastric tenderness. His laboratory and radiological tests were within normal limits, except for a positive urine drug screen for marijuana and opiates. He took himself immediately to the bathroom and remained under a hot shower with the exception of two 15-minute breaks for the rest of the day. He stated that it made him feel better than medication. Receiving medication and even eating was a problem because of this compulsive showering. Abstinence from marijuana during the hospital stay made the patient's nausea and vomiting resolve significantly. Cannabinoid hyperemesis is a differential diagnosis among patients with intractable nausea, vomiting, and obsessive hot bathing. The syndrome is an unmistakable indication of marijuana addiction. A thorough history and observation is very valuable. Recognition of this entity will reduce unnecessary testing and utilization of health care resources.Keywords: cannabinoid, compulsive bathing, cyclic vomiting, hyperemesis, hydrophilia, marijuana

  15. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers

    OpenAIRE

    Hirvonen, J; Goodwin, RS; Li, C-T; Terry, GE; Zoghbi, SS; Morse, C; Pike, VW; Volkow, ND; Huestis, MA; Innis, RB

    2011-01-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB1 (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in human subjects who chronically smoke ca...

  16. Are Alcohol Anti-relapsing and Alcohol Withdrawal Drugs Useful in Cannabinoid Users?

    Science.gov (United States)

    Kleczkowska, Patrycja; Smaga, Irena; Filip, Małgorzata; Bujalska-Zadrozny, Magdalena

    2016-11-01

    Cannabinoids are still classified as illegal psychoactive drugs despite their broad and increasingly acknowledged therapeutic potential. These substances are most famous for their wide recreational use, particularly among young adults to either alter the state of consciousness, intensify pleasure induced by other psychoactive substances or as an alternative to the previously abused drugs. It is important to emphasize that cannabinoids are often taken together with a variety of medications intended for the treatment of alcohol use disorder (AUD) or alcohol withdrawal syndrome (AWS). These medications include disulfiram, acamprosate, and naltrexone. In this paper, we summarize recent advances in the knowledge of possible beneficial effects and interactions between cannabinoids and drugs commonly used for treatment of AUD and AWS either comorbid or existing as a separate disorder.

  17. 76 FR 11075 - Schedules of Controlled Substances: Temporary Placement of Five Synthetic Cannabinoids Into...

    Science.gov (United States)

    2011-03-01

    ... constituent of marijuana. ``Synthetic cannabinoids'' are a large family of chemically unrelated structures functionally (biologically) similar to THC, the active principle of marijuana. Two of the five synthetic...-like synthetic cannabinoids are perceived as ``legal'' alternatives to marijuana despite the fact that...

  18. Cannabis, Cannabinoids, and Cerebral Metabolism: Potential Applications in Stroke and Disorders of the Central Nervous System.

    Science.gov (United States)

    Latorre, Julius Gene S; Schmidt, Elena B

    2015-09-01

    No compound has generated more attention in both the scientific and recently in the political arena as much as cannabinoids. These diverse groups of compounds referred collectively as cannabinoids have both been vilified due to its dramatic and potentially harmful psychotropic effects and glorified due to its equally dramatic and potential application in a number of acute and chronic neurological conditions. Previously illegal to possess, cannabis, the plant where natural form of cannabinoids are derived, is now accepted in a growing number of states for medicinal purpose, and some even for recreational use, increasing opportunities for more scientific experimentation. The purpose of this review is to summarize the growing body of literature on cannabinoids and to present an overview of our current state of knowledge of the human endocannabinoid system in the hope of defining the future of cannabinoids and its potential applications in disorders of the central nervous system, focusing on stroke.

  19. Cannabinoids and their possible use in the treatment of glaucoma

    OpenAIRE

    Zozaya Aldana, Beatriz; Medina Rodríguez, Isabel; Tamayo Pineda, Nirma

    2011-01-01

    Aunque la planta Cannabis sativa ha sido empleada desde la más remota antigüedad con fines medicinales, uno de sus derivados, la marihuana, se ha convertido en la droga de uso ilegal más consumida en el mundo. Asimismo tanto el Cannabis como sus cannabinoides se emplean como terapéutico en pocas enfermedades generalmente neurológicas. Se realizó una revisión bibliográfica para exponer el posible uso de los cannabinoides en la terapéutica del glaucoma. Para ello se tuvo en cuenta la literatura...

  20. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats.

    Directory of Open Access Journals (Sweden)

    Hila Abush

    Full Text Available The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg for two weeks during the late adolescence period (post-natal days 45-60 and tested for behavioral and electrophysiological measures of cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP in the ventral subiculum (vSub-nucleus accumbens (NAc pathway were temporary as they lasted only 24 h or 10 d after withdrawal. However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids. Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments and for cannabinoids to be more favorably considered for clinical use.

  1. Cannabinoids facilitate the swallowing reflex elicited by the superior laryngeal nerve stimulation in rats.

    Science.gov (United States)

    Mostafeezur, Rahman Md; Zakir, Hossain Md; Takatsuji, Hanako; Yamada, Yoshiaki; Yamamura, Kensuke; Kitagawa, Junichi

    2012-01-01

    Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1) and 2 (CB2). The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN), with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS) prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67) or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid) neurons in the central pattern generator for swallowing.

  2. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    International Nuclear Information System (INIS)

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  3. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  4. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  5. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  6. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity.

    Science.gov (United States)

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-06-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic-pituitary-adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long

  7. The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids—A Systematic Review

    Directory of Open Access Journals (Sweden)

    Koby Cohen

    2018-02-01

    Full Text Available Background—Cannabis is the most popular illicit drug in the Western world. Repeated cannabis use has been associated with short and long-term range of adverse effects. Recently, new types of designer-drugs containing synthetic cannabinoids have been widespread. These synthetic cannabinoid drugs are associated with undesired adverse effects similar to those seen with cannabis use, yet, in more severe and long-lasting forms. Method—A literature search was conducted using electronic bibliographic databases up to 31 December 2017. Specific search strategies were employed using multiple keywords (e.g., “synthetic cannabinoids AND cognition,” “cannabis AND cognition” and “cannabinoids AND cognition”. Results—The search has yielded 160 eligible studies including 37 preclinical studies (5 attention, 25 short-term memory, 7 cognitive flexibility and 44 human studies (16 attention, 15 working memory, 13 cognitive flexibility. Both pre-clinical and clinical studies demonstrated an association between synthetic cannabinoids and executive-function impairment either after acute or repeated consumptions. These deficits differ in severity depending on several factors including the type of drug, dose of use, quantity, age of onset and duration of use. Conclusions—Understanding the nature of the impaired executive function following consumption of synthetic cannabinoids is crucial in view of the increasing use of these drugs.

  8. Involvement of cannabinoid system in the nucleus accumbens on delay-based decision making in the rat.

    Science.gov (United States)

    Fatahi, Zahra; Sadeghi, Bahman; Haghparast, Abbas

    2018-01-30

    The nucleus accumbens (NAc) plays a fundamental role in decision making and anticipation of reward. In addition, exogenous cannabinoids affect the behavior of humans and animals including disruption of short-term memory and cognitive impairments. Therefore, in this study, cannabinoid agonist and antagonist were administrated into the NAc to determine the effect of cannabinoid activation in the entire NAc on delay-based decision making. Rats were trained on a cost-benefit T-maze decision making task in which the animals were well-trained to choose between a small/immediate reward and a large/delay reward. After training, the animals were implanted with guide cannulae in the NAc. On test day, they received cannabinoid agonist (Win 55,212-2; 10, 50 and 100μM) and/or antagonist (AM251; 45μM) into the NAc. Percentage of high reward choice and latency of reward achievement were evaluated. Results showed that cannabinoid agonist administration caused a decrease in high reward choice such that rats selected small/immediate reward instead of large/delay reward. Moreover, in agonist-treated animals latency of reward achievement increased. Effects of cannabinoid activation on delay-based decision making with equivalent delays demonstrated that if the delay was equated on both arm goals, animals still had a preference for the high/delay reward, showing the results was not caused by an impairment of spatial preference or memory. These finding clarified that cannabinoid system activation in the entire NAc plays a critical role in the regulation of delay-based decision making. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Are cannabinoids effective for Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    Gonzalo A Bravo-Soto

    2017-06-01

    Full Text Available Resumen Se postula que los cannabinoides pudieran tener beneficios en la enfermedad de Parkinson. No obstante, su real efectividad clínica aún es discutida. Para responder a esta pregunta utilizamos Epistemonikos, la mayor base de datos de revisiones sistemáticas en salud, la cual es mantenida mediante búsquedas en múltiples fuentes de información, incluyendo MEDLINE, EMBASE, Cochrane, entre otras. Identificamos seis revisiones sistemáticas que en conjunto incluyen ocho estudios, de los cuales cuatro corresponden a ensayos aleatorizados. Extrajimos los datos desde las revisiones identificadas, reanalizamos los datos de los estudios primarios y preparamos tablas de resumen de los resultados utilizando el método GRADE. Concluimos que los cannabinoides probablemente no disminuyen los síntomas ni las discinesias, y se asocian a efectos adversos frecuentes en pacientes con enfermedad de Parkinson

  10. Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer's disease.

    Science.gov (United States)

    Köfalvi, Attila; Lemos, Cristina; Martín-Moreno, Ana M; Pinheiro, Bárbara S; García-García, Luis; Pozo, Miguel A; Valério-Fernandes, Ângela; Beleza, Rui O; Agostinho, Paula; Rodrigues, Ricardo J; Pasquaré, Susana J; Cunha, Rodrigo A; de Ceballos, María L

    2016-11-01

    Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations. We here addressed the possible role of CB2Rs in the regulation of glucose uptake in the mouse brain. To that aim, we have undertaken 1) measurement of (3)H-deoxyglucose uptake in cultured cortical astrocytes and neurons and in acute hippocampal slices; 2) real-time visualization of fluorescently labeled deoxyglucose uptake in superfused hippocampal slices; and 3) in vivo PET imaging of cerebral (18)F-fluorodeoxyglucose uptake. We now show that both selective (JWH133 and GP1a) as well as non-selective (WIN55212-2) CB2R agonists, but not the CB1R-selective agonist, ACEA, stimulate glucose uptake, in a manner that is sensitive to the CB2R-selective antagonist, AM630. Glucose uptake is stimulated in astrocytes and neurons in culture, in acute hippocampal slices, in different brain areas of young adult male C57Bl/6j and CD-1 mice, as well as in middle-aged C57Bl/6j mice. Among the endocannabinoid metabolizing enzymes, the selective inhibition of COX-2, rather than that of FAAH, MAGL or α,βDH6/12, also stimulates the uptake of glucose in hippocampal slices of middle-aged mice, an effect that was again prevented by AM630. However, we found the levels of the endocannabinoid, anandamide reduced in the hippocampus of TgAPP-2576 mice (a model of β-amyloidosis), and likely as a consequence, COX-2 inhibition failed to stimulate glucose uptake in these mice. Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Effect of the Cannabinoid Receptor-1 antagonist SR141716A on human adipocyte inflammatory profile and differentiation

    Directory of Open Access Journals (Sweden)

    Murumalla Ravi

    2011-11-01

    Full Text Available Abstract Background Obesity is characterized by inflammation, caused by increase in proinflammatory cytokines, a key factor for the development of insulin resistance. SR141716A, a cannabinoid receptor 1 (CB1 antagonist, shows significant improvement in clinical status of obese/diabetic patients. Therefore, we studied the effect of SR141716A on human adipocyte inflammatory profile and differentiation. Methods Adipocytes were obtained from liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. Media and cells were collected for secretory (ELISA and expression analysis (qPCR. Triglyceride accumulation was observed using oil red-O staining. Cholesterol was assayed by a fluorometric method. 2-AG and anandamide were quantified using isotope dilution LC-MS. TLR-binding experiments have been conducted in HEK-Blue cells. Results In LPS-treated mature adipocytes, SR141716A was able to decrease the expression and secretion of TNF-a. This molecule has the same effect in LPS-induced IL-6 secretion, while IL-6 expression is not changed. Concerning MCP-1, the basal level is down-regulated by SR141716A, but not the LPS-induced level. This effect is not caused by a binding of the molecule to TLR4 (LPS receptor. Moreover, SR141716A restored adiponectin secretion to normal levels after LPS treatment. Lastly, no effect of SR141716A was detected on human pre-adipocyte differentiation, although the compound enhanced adiponectin gene expression, but not secretion, in differentiated pre-adipocytes. Conclusion We show for the first time that some clinical effects of SR141716A are probably directly related to its anti-inflammatory effect on mature adipocytes. This fact reinforces that adipose tissue is an important target in the development of tools to treat the metabolic syndrome.

  12. Mechanism of the Interaction of Cannabinoid System in Central Amygdale with Opioid System

    Directory of Open Access Journals (Sweden)

    S Sarahroodi

    2012-05-01

    Full Text Available

    Background and objectives

    Cannabinoids which are active compounds of marijuana show some pharmacological effects similar to the opioids. There are also functional interactions between both cannabinoid and opioid systems. In this study we investigated the role of cannabinoid receptors in central amygdala and its interaction with opioid system.

                                                                                                                             

    Methods

    In the present study, we investigated the effects of intraperitoneal injection of opioid drugs on response-induced by intra-amygdala (intra-Amyg microinjection of cannabinoid agents in rats, using elevated plus-maze test of anxiety.

     

    Results

    Intraperitoneal injection of morphine (3, 6 and 9 mg/kg increased %OAT and %OAE, but not locomotor activity, showing an anxiolytic response. However, some doses of the opioid receptor antagonist, naloxone reduced %OAT and locomotor activity as well. Intra-Amyg administration of CB1 cannabinoid receptor agonist, ACPA (at the dose of 1.25 and 5 ng/rat increased %OAT and %OAE but not locomotor activity, thus showing an anxiolytic response, which was increased by morphine (6 mg/kg, i.p. without any interaction. Naloxone also reduced ACPA effects.  

    Intra-Amyg administration of CB1 cannabinoid receptor antagonist, AM251 (2.5, 25 and 100 ng/rat did not alter %OAT and %OAE but higher doses of drug (25 and 100 ng/rat reduced locomotor activity. However, the drug in combination of morphine anxiolytic response and with naloxone decreased anxiety.

    Conclusion

    The results may indicate an anxiolytic for CB1 cannabinoid. Our results also showed that opioid

  13. Δ9-tetrahydrocannabinol and endocannabinoid degradative enzyme inhibitors attenuate intracranial self-stimulation in mice.

    Science.gov (United States)

    Wiebelhaus, Jason M; Grim, Travis W; Owens, Robert A; Lazenka, Matthew F; Sim-Selley, Laura J; Abdullah, Rehab A; Niphakis, Micah J; Vann, Robert E; Cravatt, Benjamin F; Wiley, Jenny L; Negus, S Stevens; Lichtman, Aron H

    2015-02-01

    A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on

  14. The Role of Cannabinoid Transmission in Emotional Memory Formation: Implications for Addiction and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Huibing eTan

    2014-06-01

    Full Text Available Emerging evidence from both basic and clinical research demonstrates an important role for endocannabinoid (ECB signaling in the processing of emotionally salient information, learning and memory. Cannabinoid transmission within neural circuits involved in emotional processing has been shown to modulate the acquisition, recall and extinction of emotionally salient memories and importantly, can strongly modulate the emotional salience of incoming sensory information. Two neural regions in particular, the medial prefrontal cortex (PFC and the basolateral nucleus of the amygdala (BLA, play important roles in emotional regulation and contain high levels of cannabinoid receptors. Furthermore, both regions show profound abnormalities in neuropsychiatric disorders such as addiction and schizophrenia. Considerable evidence has demonstrated that cannabinoid transmission functionally interacts with dopamine (DA, a neurotransmitter system that is of exceptional importance for both addictive behaviours and the neuropsychopathology of disorders like schizophrenia. Research in our laboratory has focused on how cannabinoid transmission both within and extrinsic to the mesolimbic DA system, including the BLAmPFC circuitry, can modulate both rewarding and aversive emotional information. In this review, we will summarize clinical and basic neuroscience research demonstrating the importance of cannabinoid signaling within this neural circuitry. In particular, evidence will be reviewed emphasizing the importance of cannabinoid signaling within the BLAmPFC circuitry in the context of emotional salience processing, memory formation and memory-related plasticity. We propose that aberrant states of hyper or hypoactive ECB signaling within the amygdala-prefrontal cortical circuit may lead to dysregulation of mesocorticolimbic DA transmission controlling the processing of emotionally salient information. These disturbances may in turn lead to emotional processing

  15. Cannabinoids facilitate the swallowing reflex elicited by the superior laryngeal nerve stimulation in rats.

    Directory of Open Access Journals (Sweden)

    Rahman Md Mostafeezur

    Full Text Available Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1 and 2 (CB2. The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN, with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67 or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid neurons in the central pattern generator for swallowing.

  16. BIASED AGONISM OF THREE DIFFERENT CANNABINOID RECEPTOR AGONISTS IN MOUSE BRAIN CORTEX

    Directory of Open Access Journals (Sweden)

    Rebeca Diez-Alarcia

    2016-11-01

    Full Text Available Cannabinoid receptors are able to couple to different families of G-proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, THC, WIN55212-2 and ACEA in mouse brain cortex.Stimulation of the [35S]GTPS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13, in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 µM was determined by Scintillation Proximity Assay (SPA technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.

  17. Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms

    Directory of Open Access Journals (Sweden)

    Nissar A. Darmani

    2010-07-01

    Full Text Available Cannabinoids are used clinically on a subacute basis as prophylactic agonist antiemetics for the prevention of nausea and vomiting caused by chemotherapeutics. Cannabinoids prevent vomiting by inhibition of release of emetic neurotransmitters via stimulation of presynaptic cannabinoid CB1 receptors. Cannabis-induced hyperemesis is a recently recognized syndrome associated with chronic cannabis use. It is characterized by repeated cyclical vomiting and learned compulsive hot water bathing behavior. Although considered rare, recent international publications of numerous case reports suggest the contrary. The syndrome appears to be a paradox and the pathophysiological mechanism(s underlying the induced vomiting remains unknown. Although some traditional hypotheses have already been proposed, the present review critically explores the basic science of these explanations in the clinical setting and provides more current mechanisms for the induced hyperemesis. These encompass: (1 pharmacokinetic factors such as long half-life, chronic exposure, lipid solubility, individual variation in metabolism/excretion leading to accumulation of emetogenic cannabinoid metabolites, and/or cannabinoid withdrawal; and (2 pharmacodynamic factors including switching of the efficacy of Δ9-THC from partial agonist to antagonist, differential interaction of Δ9-THC with Gs and Gi signal transduction proteins, CB1 receptor desensitization or downregulation, alterations in tissue concentrations of endocannabinoid agonists/inverse agonists, Δ9-THC-induced mobilization of emetogenic metabolites of the arachidonic acid cascade, brainstem versus enteric actions of Δ9-THC, and/or hypothermic versus hyperthermic actions of Δ9-THC. In addition, human and animal findings suggest that chronic exposure to cannabis may not be a prerequisite for the induction of vomiting but is required for the intensity of emesis.

  18. Functional Redundancy Between Canonical Endocannabinoid Signaling Systems in the Modulation of Anxiety.

    Science.gov (United States)

    Bedse, Gaurav; Hartley, Nolan D; Neale, Emily; Gaulden, Andrew D; Patrick, Toni A; Kingsley, Philip J; Uddin, Md Jashim; Plath, Niels; Marnett, Lawrence J; Patel, Sachin

    2017-10-01

    Increasing the available repertoire of effective treatments for mood and anxiety disorders represents a critical unmet need. Pharmacological augmentation of endogenous cannabinoid (eCB) signaling has been suggested to represent a novel approach to the treatment of anxiety disorders; however, the functional interactions between two canonical eCB pathways mediated via anandamide (N-arachidonylethanolamine [AEA]) and 2-arachidonoylglycerol (2-AG) in the regulation of anxiety are not well understood. We utilized pharmacological augmentation and depletion combined with behavioral and electrophysiological approaches to probe the role of 2-AG signaling in the modulation of stress-induced anxiety and the functional redundancy between AEA and 2-AG signaling in the modulation of anxiety-like behaviors in mice. Selective 2-AG augmentation reduced anxiety in the light/dark box assay and prevented stress-induced increases in anxiety associated with limbic AEA deficiency. In contrast, acute 2-AG depletion increased anxiety-like behaviors, which was normalized by selective pharmacological augmentation of AEA signaling and via direct cannabinoid receptor 1 stimulation with Δ 9 -tetrahydrocannabinol. Electrophysiological studies revealed 2-AG modulation of amygdala glutamatergic transmission as a key synaptic correlate of the anxiolytic effects of 2-AG augmentation. Although AEA and 2-AG likely subserve distinct physiological roles, a pharmacological and functional redundancy between these canonical eCB signaling pathways exists in the modulation of anxiety-like behaviors. These data support development of eCB-based treatment approaches for mood and anxiety disorders and suggest a potentially wider therapeutic overlap between AEA and 2-AG augmentation approaches than was previously appreciated. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats.

    Science.gov (United States)

    Zubrzycki, Marek; Janecka, Anna; Liebold, Andreas; Ziegler, Mechthild; Zubrzycka, Maria

    2017-11-01

    Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within the orofacial region are largely unknown. In this study, we tried to determine whether an increase in cannabinoid and opioid concentration in the CSF affects impulse transmission between the motor centres localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were realized on rats using a method that allows the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation. The amplitude of ETJ was a measure of the effect of neurotransmitters on neural structures. Perfusion of cerebral ventricles with anandamide (AEA), endomorphin-2 (EM-2), URB597, an inhibitor of fatty acid amide hydrolase (FAAH) and JZL195, a dual inhibitor of FAAH and monoacylglycerol lipase (MAGL) reduced the ETJ amplitude. The antinociceptive effect of AEA, EM-2, URB597 and JZL195 was blocked by CB 1 receptor antagonist, AM251 and by μ receptor-antagonist, β-funaltrexamine. In contrast to AEA, 2-arachidonoylglycerol alone did not decrease ETJ amplitude. We demonstrated that in the orofacial area, analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by μ and CB 1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand. Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain. © 2017 The British Pharmacological Society.

  20. Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.

    Science.gov (United States)

    Akutsu, Mamoru; Sugie, Ken-Ichi; Saito, Koichi

    2017-01-01

    Gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC-EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC-MS in chemical ionization (CI) mode is frequently used. However, GC-CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC-MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC-PI-MS can easily be used for GC-EI-MS as well. Therefore, GC-EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC-PI-MS for analysis of synthetic cannabinoids.

  1. Signal Peptide and Denaturing Temperature are Critical Factors for Efficient Mammalian Expression and Immunoblotting of Cannabinoid Receptors*

    Science.gov (United States)

    WANG, Chenyun; WANG, Yingying; WANG, Miao; CHEN, Jiankui; YU, Nong; SONG, Shiping; KAMINSKI, Norbert E.; ZHANG, Wei

    2013-01-01

    Summary Many researchers employed mammalian expression system to artificially express cannabinoid receptors, but immunoblot data that directly prove efficient protein expression can hardly be seen in related research reports. In present study, we demonstrated cannabinoid receptor protein was not able to be properly expressed with routine mammalian expression system. This inefficient expression was rescued by endowing an exogenous signal peptide ahead of cannabinoid receptor peptide. In addition, the artificially synthesized cannabinoid receptor was found to aggregate under routine sample denaturing temperatures (i.e., ≥95°C), forming a large molecular weight band when analyzed by immunoblotting. Only denaturing temperatures ≤75°C yielded a clear band at the predicted molecular weight. Collectively, we showed that efficient mammalian expression of cannabinoid receptors need a signal peptide sequence, and described the requirement for a low sample denaturing temperature in immunoblot analysis. These findings provide very useful information for efficient mammalian expression and immunoblotting of membrane receptors. PMID:22528237

  2. Alterations in the Anandamide Metabolism in the Development of Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2014-01-01

    Full Text Available Endocannabinoids (EC, particularly anandamide (AEA, released constitutively in pain pathways might be accountable for the inhibitory effect on nociceptors. Pathogenesis of neuropathic pain may reflect complex remodeling of the dorsal root ganglia (DRGs and spinal cord EC system. Multiple pathways involved both in the biosynthesis and degradation of AEA have been suggested. We investigated the local synthesis and degradation features of AEA in DRGs and spinal cord during the development and maintenance of pain in a model of chronic constriction injury (CCI. All AEA synthesis and degradation enzymes are present on the mRNA level in DRGs and lumbar spinal cord of intact as well as CCI-treated animals. Deregulation of EC system components was consistent with development of pain phenotype at days 3, 7, and 14 after CCI. The expression levels of enzymes involved in AEA degradation was significantly upregulated ipsilateral in DRGs and spinal cord at different time points. Expression of enzymes of the alternative, sPLA2-dependent and PLC-dependent, AEA synthesis pathways was elevated in both of the analyzed structures at all time points. Our data have shown an alteration of alternative AEA synthesis and degradation pathways, which might contribute to the variation of AEA levels and neuropathic pain development.

  3. Safety and Toxicology of Cannabinoids

    OpenAIRE

    Sachs, Jane; McGlade, Erin; Yurgelun-Todd, Deborah

    2015-01-01

    There is extensive research on the safety, toxicology, potency, and therapeutic potential of cannabis. However, uncertainty remains facilitating continued debate on medical and recreational cannabis policies at the state and federal levels. This review will include a brief description of cannabinoids and the endocannabinoid system; a summary of the acute and long-term effects of cannabis; and a discussion of the therapeutic potential of cannabis. The conclusions about safety and efficacy will...

  4. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers.

    Science.gov (United States)

    Hirvonen, J; Goodwin, R S; Li, C-T; Terry, G E; Zoghbi, S S; Morse, C; Pike, V W; Volkow, N D; Huestis, M A; Innis, R B

    2012-06-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB(1) (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB(1) receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ∼4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB(1) receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB(1) receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain.

  5. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    Science.gov (United States)

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds.

  6. Metabolomics and bioanalysis of terpenoid derived secondary metabolites : Analysis of Cannabis sativa L. metabolite production and prenylases for cannabinoid production

    NARCIS (Netherlands)

    Muntendam, Remco

    2015-01-01

    Cannabinoid research has gained a renenewed interest by both the public and scientist. Focus is mainly directed to the medicinal activities, as reported for various cannabinoid structures. This thesis focusses on prenyl-derived secondary metabolites with main focus on cannabinoids. Firstly the

  7. Cannabinoid-like anti-inflammatory compounds from flax fiber.

    Science.gov (United States)

    Styrczewska, Monika; Kulma, Anna; Ratajczak, Katarzyna; Amarowicz, Ryszard; Szopa, Jan

    2012-09-01

    Flax is a valuable source of fibers, linseed and oil. The compounds of the latter two products have already been widely examined and have been proven to possess many health-beneficial properties. In the course of analysis of fibers extract from previously generated transgenic plants overproducing phenylpropanoids a new terpenoid compound was discovered.The UV spectra and the retention time in UPLC analysis of this new compound reveal similarity to a cannabinoid-like compound, probably cannabidiol (CBD). This was confirmed by finding two ions at m/z 174.1 and 231.2 in mass spectra analysis. Further confirmation of the nature of the compound was based on a biological activity assay. It was found that the compound affects the expression of genes involved in inflammatory processes in mouse and human fibroblasts and likely the CBD from Cannabis sativa activates the specific peripheral cannabinoid receptor 2 (CB2) gene expression. Besides fibers, the compound was also found in all other flax tissues. It should be pointed out that the industrial process of fabric production does not affect CBD activity.The presented data suggest for the first time that flax products can be a source of biologically active cannabinoid-like compounds that are able to influence the cell immunological response. These findings might open up many new applications for medical flax products, especially for the fabric as a material for wound dressing with anti-inflammatory properties.

  8. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Dolores Hernán Pérez de la Ossa

    Full Text Available Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9-Tetrahydrocannabinol (THC and Cannabidiol (CBD - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  9. Understanding the Growing Threat of Synthetic Cannabinoids and Its Implications on University-Based Counselors

    Science.gov (United States)

    Golubovic, Nedeljko; Dew, Brian J.

    2017-01-01

    The rise in synthetic cannabinoid use has been one of the nation's most alarming drug-related trends. Considering the popularity of use among young adults, college counselors are likely to be among the 1st professionals to treat clients who use these drugs. In this article, the unique aspects of synthetic cannabinoids are reviewed, implications…

  10. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD.

    Science.gov (United States)

    Han, Jing; Kesner, Philip; Metna-Laurent, Mathilde; Duan, Tingting; Xu, Lin; Georges, Francois; Koehl, Muriel; Abrous, Djoher Nora; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Liu, Qingsong; Bai, Guang; Wang, Wei; Xiong, Lize; Ren, Wei; Marsicano, Giovanni; Zhang, Xia

    2012-03-02

    Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Motion sickness, stress and the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  12. Genetic Variations in the Human Cannabinoid Receptor Gene Are Associated with Happiness

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  13. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines.

    Science.gov (United States)

    Massi, Paola; Vaccani, Angelo; Ceruti, Stefania; Colombo, Arianna; Abbracchio, Maria P; Parolaro, Daniela

    2004-03-01

    Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines. The addition of CBD to the culture medium led to a dramatic drop of mitochondrial oxidative metabolism [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide test] and viability in glioma cells, in a concentration-dependent manner that was already evident 24 h after CBD exposure, with an apparent IC(50) of 25 microM. The antiproliferative effect of CBD was partially prevented by the CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; SR2) and alpha-tocopherol. By contrast, the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716; SR1), capsazepine (vanilloid receptor antagonist), the inhibitors of ceramide generation, or pertussis toxin did not counteract CBD effects. We also show, for the first time, that the antiproliferative effect of CBD was correlated to induction of apoptosis, as determined by cytofluorimetric analysis and single-strand DNA staining, which was not reverted by cannabinoid antagonists. Finally, CBD, administered s.c. to nude mice at the dose of 0.5 mg/mouse, significantly inhibited the growth of subcutaneously implanted U87 human glioma cells. In conclusion, the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.

  14. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Happiness has been viewed as a temporary emotional state (e.g., pleasure and a relatively stable state of being happy (subjective happiness level. As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater

  15. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  16. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    International Nuclear Information System (INIS)

    Silva, L.C.R.; Romero, T.R.L.; Guzzo, L.S.; Duarte, I.D.G.

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E 2 (PGE 2 , 2 µg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE 2 , which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 µg/paw) and AM-630 (100 µg/paw) were used as CB 1 and CB 2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 µg dipyrone (mean = 5.825 ± 2.842 g), 20 µg diclofenac (mean = 4.825 ± 3.850 g) and 40 µg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB 1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB 2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac

  17. Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds.

    Science.gov (United States)

    Dresen, Sebastian; Ferreirós, Nerea; Pütz, Michael; Westphal, Folker; Zimmermann, Ralf; Auwärter, Volker

    2010-10-01

    Herbal mixtures like 'Spice' with potentially bioactive ingredients were available in many European countries since 2004 and are still widely used as a substitute for cannabis, although merchandized as 'herbal incense'. After gaining a high degree of popularity in 2008, big quantities of these drugs were sold. In December 2008, synthetic cannabinoids were identified in the mixtures which were not declared as ingredients: the C(8) homolog of the non-classical cannabinoid CP-47,497 (CP-47,497-C8) and a cannabimimetic aminoalkylindole called JWH-018. In February 2009, a few weeks after the German legislation put these compounds and further pharmacologically active homologs of CP-47,497 under control, another cannabinoid appeared in 'incense' products: the aminoalkylindole JWH-073. In this paper, the results of monitoring of commercially available 'incense' products from June 2008 to September 2009 are presented. In this period of time, more than 140 samples of herbal mixtures were analyzed for bioactive ingredients and synthetic cannabimimetic substances in particular. The results show that the composition of many products changed repeatedly over time as a reaction to prohibition and prosecution of resellers. Therefore neither the reseller nor the consumer of these mixtures can predict the actual content of the 'incense' products. As long as there is no possibility of generic definitions in the controlled substances legislation, further designer cannabinoids will appear on the market as soon as the next legal step has been taken. This is affirmed by the recent identification of the aminoalkylindoles JWH-250 and JWH-398. As further cannabinoids can be expected to occur in the near future, a continuous monitoring of these herbal mixtures is required. The identification of the synthetic opioid O-desmethyltramadol in a herbal mixture declared to contain 'kratom' proves that the concept of selling apparently natural products spiked with potentially dangerous synthetic

  18. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function.

    Science.gov (United States)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    2017-01-01

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CB 1 receptor agonist WIN55,212-2 (WIN) in rats. Lister Hooded male rats were treated intramuscularly with nandrolone (15mg/kg) or vehicle for 14 consecutive days, and then allowed to self-administer WIN (12.5μg/kg/infusion) intravenously. After reaching stable drug intake, self-administration behavior was extinguished to examine drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Other behavioral parameters presumed to influence drug-taking and drug-seeking behaviors were examined to gain more insight into the behavioral specificity of nandrolone treatment. Finally, animals were sacrificed for analysis of CB 1 receptor density and function in selected brain areas. We found that nandrolone-treated rats self-administered up to 2 times more cannabinoid than vehicle-treated rats, but behaved similarly to control rats when tested for drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Enhanced cannabinoid intake by nandrolone-treated rats was not accompanied by changes in locomotor activity, sensorimotor gating, or memory function. However, our molecular data show that after chronic WIN self-administration nandrolone-treated rats display altered CB 1 receptor density and function in selected brain areas. We hypothesize that increased cannabinoid self-administration in nandrolone-treated rats results from a nandrolone-induced decrease in reward function, which rats seem to compensate by voluntarily increasing their cannabinoid intake. Altogether, our findings corroborate the hypothesis that chronic exposure to anabolic-androgenic steroids induces dysfunction of the reward pathway in rats and might represent a potential risk factor for abuse of

  19. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism

    Directory of Open Access Journals (Sweden)

    Dietmar Fuchs

    2010-08-01

    Full Text Available Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC and the non-psychotropic cannabidiol (CBD modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC. The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO, suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.

  20. Aspectos terapêuticos de compostos da planta Cannabis sativa

    Directory of Open Access Journals (Sweden)

    Honório Káthia Maria

    2006-01-01

    Full Text Available Several cannabinoid compounds present therapeutic properties, but also have psychotropic effects, limiting their use as medicine. Nowadays, many important discoveries on the compounds extracted from the plant Cannabis sativa (cannabinoids have contributed to understand the therapeutic properties of these compounds. The main discoveries in the last years on the cannabinoid compounds were: the cannabinoid receptors CB1 and CB2, the endogenous cannabinoids and the possible mechanisms of action involved in the interaction between cannabinoid compounds and the biological receptors. So, from the therapeutical aspects presented in this work, we intended to show the evolution of the Cannabis sativa research and the possible medicinal use of cannabinoid compounds.

  1. Optimization of cAMP fluorescence dataset from ACTOne cannabinoid receptor 1 cell line

    Directory of Open Access Journals (Sweden)

    Chaela S. Presley

    2016-06-01

    Full Text Available The ACTOne cannabinoid receptor 1 functional system is comprised of transfected HEK cells with the parental cyclic nucleotide gated channel (CNG co-transfected with cannabinoid receptor 1 (CB1. The ACTOne CB1 cell line was evaluated for cAMP driven fluorescence by optimizing experimental conditions for sensitivity to forskolin and CP 55,940, reading time point, reliability of cell passage number, and pertussis inactivation of Gi/o.

  2. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    Science.gov (United States)

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  3. Cannabinoid-induced effects on the nociceptive system: a neurophysiological study in patients with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Conte, Antonella; Bettolo, Chiara Marini; Onesti, Emanuela; Frasca, Vittorio; Iacovelli, Elisa; Gilio, Francesca; Giacomelli, Elena; Gabriele, Maria; Aragona, Massimiliano; Tomassini, Valentina; Pantano, Patrizia; Pozzilli, Carlo; Inghilleri, Maurizio

    2009-05-01

    Although clinical studies show that cannabinoids improve central pain in patients with multiple sclerosis (MS) neurophysiological studies are lacking to investigate whether they also suppress these patients' electrophysiological responses to noxious stimulation. The flexion reflex (FR) in humans is a widely used technique for assessing the pain threshold and for studying spinal and supraspinal pain pathways and the neurotransmitter system involved in pain control. In a randomized, double-blind, placebo-controlled, cross-over study we investigated cannabinoid-induced changes in RIII reflex variables (threshold, latency and area) in a group of 18 patients with secondary progressive MS. To investigate whether cannabinoids act indirectly on the nociceptive reflex by modulating lower motoneuron excitability we also evaluated the H-reflex size after tibial nerve stimulation and calculated the H wave/M wave (H/M) ratio. Of the 18 patients recruited and randomized 17 completed the study. After patients used a commercial delta-9-tetrahydrocannabinol (THC) and cannabidiol mixture as an oromucosal spray the RIII reflex threshold increased and RIII reflex area decreased. The visual analogue scale score for pain also decreased, though not significantly. Conversely, the H/M ratio measured before patients received cannabinoids remained unchanged after therapy. In conclusion, the cannabinoid-induced changes in the RIII reflex threshold and area in patients with MS provide objective neurophysiological evidence that cannabinoids modulate the nociceptive system in patients with MS.

  4. Marijuana and other cannabinoids as a treatment for posttraumatic stress disorder: A literature review.

    Science.gov (United States)

    Steenkamp, Maria M; Blessing, Esther M; Galatzer-Levy, Isaac R; Hollahan, Laura C; Anderson, William T

    2017-03-01

    Posttraumatic stress disorder (PTSD) is common in the general population, yet there are limitations to the effectiveness, tolerability, and acceptability of available first-line interventions. We review the extant knowledge on the effects of marijuana and other cannabinoids on PTSD. Potential therapeutic effects of these agents may largely derive from actions on the endocannabinoid system and we review major animal and human findings in this area. Preclinical and clinical studies generally support the biological plausibility for cannabinoids' potential therapeutic effects, but underscore heterogeneity in outcomes depending on dose, chemotype, and individual variation. Treatment outcome studies of whole plant marijuana and related cannabinoids on PTSD are limited and not methodologically rigorous, precluding conclusions about their potential therapeutic effects. Reported benefits for nightmares and sleep (particularly with synthetic cannabinoid nabilone) substantiate larger controlled trials to determine effectiveness and tolerability. Of concern, marijuana use has been linked to adverse psychiatric outcomes, including conditions commonly comorbid with PTSD such as depression, anxiety, psychosis, and substance misuse. Available evidence is stronger for marijuana's harmful effects on the development of psychosis and substance misuse than for the development of depression and anxiety. Marijuana use is also associated with worse treatment outcomes in naturalistic studies, and with maladaptive coping styles that may maintain PTSD symptoms. Known risks of marijuana thus currently outweigh unknown benefits for PTSD. Although controlled research on marijuana and other cannabinoids' effects on PTSD remains limited, rapid shifts in the legal landscape may now enable such studies, potentially opening new avenues in PTSD treatment research. © 2017 Wiley Periodicals, Inc.

  5. Pharmacological effects of cannabinoids on learning and memory in Lymnaea.

    Science.gov (United States)

    Sunada, Hiroshi; Watanabe, Takayuki; Hatakeyama, Dai; Lee, Sangmin; Forest, Jeremy; Sakakibara, Manabu; Ito, Etsuro; Lukowiak, Ken

    2017-09-01

    Cannabinoids are hypothesized to play an important role in modulating learning and memory formation. Here, we identified mRNAs expressed in Lymnaea stagnalis central nervous system that encode two G-protein-coupled receptors ( Lymnaea CBr-like 1 and 2) that structurally resemble mammalian cannabinoid receptors (CBrs). We found that injection of a mammalian CBr agonist WIN 55,212-2 (WIN 55) into the snail before operant conditioning obstructed learning and memory formation. This effect of WIN 55 injection persisted for at least 4 days following its injection. A similar obstruction of learning and memory occurred when a severe traumatic stimulus was delivered to L. stagnalis In contrast, injection of a mammalian CBr antagonist AM 251 enhanced long-term memory formation in snails and reduced the duration of the effects of the severe traumatic stressor on learning and memory. Neither WIN 55 nor AM 251 altered normal homeostatic aerial respiratory behaviour elicited in hypoxic conditions. Our results suggest that putative cannabinoid receptors mediate stressful stimuli that alter learning and memory formation in Lymnaea This is also the first demonstration that putative CBrs are present in Lymnaea and play a key role in learning and memory formation. © 2017. Published by The Company of Biologists Ltd.

  6. Are endogenous feline leukemia viruses really endogenous?

    Science.gov (United States)

    Stewart, H; Jarrett, O; Hosie, M J; Willett, B J

    2011-10-15

    Full length endogenous feline leukemia virus (FeLV) proviruses exist within the genomes of many breeds of domestic cat raising the possibility that they may also exist in a transmissible exogenous form. Such viruses would share receptor usage with the recombinant FeLV-B subgroup, a viral subgroup that arises in vivo by recombination between exogenous subgroup A virus (FeLV-A) and endogenous FeLV. Accordingly, all isolates of FeLV-B made to date have contained a "helper" FeLV-A, consistent with their recombinatorial origin. In order to assess whether endogenous viruses are transmitted between cats, we examined primary isolates of FeLV for which the viral subgroup had been determined for the presence of a subgroup B virus that lacked an FeLV-A. Here we describe the identification of two primary field isolates of FeLV (2518 and 4314) that appeared to contain subgroup B virus only by classical interference assays, raising the possibility of between-host transmission of endogenous FeLV. Sequencing of the env gene and U3 region of the 3' long terminal repeat (LTR) confirmed that both viral genomes contained endogenous viral env genes. However the viral 3' LTRs appeared exogenous in origin with a putative 3' recombination breakpoint residing at the 3' end of the env gene. Further, the FeLV-2518 virions also co-packaged a truncated FeLV-A genome containing a defective env gene, termed FeLV-2518(A) whilst no helper subgroup A viral genome was detected in virions of FeLV-4314. The acquisition of an exogenous LTR by the endogenous FeLV in 4314 may have allowed a recombinant FeLV variant to outgrow an exogenous FeLV-A virus that was presumably present during first infection. Given time, a similar evolution may also occur within the 2518 isolate. The data suggest that endogenous FeLVs may be mobilised by acquisition of exogenous LTRs yielding novel viruses that type biologically as FeLV-B. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Cannabinoids for fibromyalgia.

    Science.gov (United States)

    Walitt, Brian; Klose, Petra; Fitzcharles, Mary-Ann; Phillips, Tudor; Häuser, Winfried

    2016-07-18

    This review is one of a series on drugs used to treat fibromyalgia. Fibromyalgia is a clinically well-defined chronic condition of unknown aetiology characterised by chronic widespread pain that often co-exists with sleep problems and fatigue affecting approximately 2% of the general population. People often report high disability levels and poor health-related quality of life (HRQoL). Drug therapy focuses on reducing key symptoms and disability, and improving HRQoL. Cannabis has been used for millennia to reduce pain and other somatic and psychological symptoms. To assess the efficacy, tolerability and safety of cannabinoids for fibromyalgia symptoms in adults. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE to April 2016, together with reference lists of retrieved papers and reviews, three clinical trial registries, and contact with trial authors. We selected randomised controlled trials of at least four weeks' duration of any formulation of cannabis products used for the treatment of adults with fibromyalgia. Two review authors independently extracted the data of all included studies and assessed risk of bias. We resolved discrepancies by discussion. We performed analysis using three tiers of evidence. First tier evidence was derived from data meeting current best standards and subject to minimal risk of bias (outcome equivalent to substantial pain intensity reduction, intention-to-treat analysis without imputation for drop-outs; at least 200 participants in the comparison, eight to 12 weeks' duration, parallel design), second tier evidence from data that did not meet one or more of these criteria and were considered at some risk of bias but with adequate numbers (i.e. data from at least 200 participants) in the comparison, and third tier evidence from data involving small numbers of participants that were considered very likely to be biased or used outcomes of limited clinical utility, or both. We assessed the

  8. CYP3A4 Mediates Oxidative Metabolism of the Synthetic Cannabinoid AKB-48

    OpenAIRE

    Holm, Niels Bjerre; Nielsen, Line Marie; Linnet, Kristian

    2015-01-01

    Synthetic cannabinoid designer drugs have emerged as drugs of abuse during the last decade, and acute intoxication cases are documented in the scientific literature. Synthetic cannabinoids are extensively metabolized, but our knowledge of the involved enzymes is limited. Here, we investigated the metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), a compound identified in herbal blends from 2012 and onwards. We screened for metabolite formation using a panel of nine rec...

  9. New insights into cannabis consumption; abuses and possible therapeutic effects

    Directory of Open Access Journals (Sweden)

    Daniela Luiza Baconi

    2014-10-01

    Full Text Available Cannabis is one of the oldest psychotropic drugs known to humanity. The paper assesses the current knowledge on the cannabis, including the mechanisms of action and the therapeutic potential of cannabinoids. Three varieties of Cannabis plant are recognised: Cannabis sativa, Cannabis indica, and Cannabis ruderalis. The variety indica is used predominantly to obtain the drugs. Cannabis herb is usually named marijuana, while the cannabis oleoresin secreted by the glandular hairs found mainly on the flowering or fruiting tops of the plant is known as hashish. More than 400 known chemicals are present in cannabis, at least 70 of which are called cannabinoids. The major psychoactive constituent in cannabis is delta-9-tetrahydrocannabinol (Δ9-THC. It is now recognized that there are three types of cannabinoids: natural (phytocannabinoids, endogenous cannabinoids, and synthetic cannabioids. Cannabinoids exert their actions by binding to specific membrane protein, the cannabinoid receptor. To date, two subtypes of cannabinoid receptors, named cannabinoid-1 (CB1, most abundantly expressed in the central nervous system and cannabinoid-2 (CB2 receptors, found predominantly in peripheral tissues with immune functions have been cloned. Therefore, the concept of endogenous cannabinoid system (endocannabinoid system, SEC has been developed. Based on the current scientific evidence, there are several effects of cannabinoids with potential therapeutic use: antiemetic, analgesic in cancerous pains, and chronic neuropathic pain, in multiple sclerosis or spinal cord injuries. Cannabis consume can result in a state of drug dependency and cannabis withdrawal has been included in DSM-V. Cannabis plant remains controversial in the twenty-first century and the potential therapeutic of specific cannabinoid compounds and medical marijuana remains under active medical research.

  10. Endogenous antipyretics.

    Science.gov (United States)

    Roth, Joachim

    2006-09-01

    The febrile increase of body temperature is regarded as a component of the complex host response to infection or inflammation that accompanies the activation of the immune system. Late phases of fever appear mediated by pro-inflammatory cytokines called endogenous pyrogens. The rise of body temperature is beneficial because it accelerates several components of the activated immune system. To prevent an excessive and dangerous rise of body temperature the febrile response is controlled, limited in strength and duration, and sometimes even prevented by the actions of endogenous antipyretic substances liberated systemically or within the brain during fever. In most cases the antipyretic effects are achieved by an inhibitory influence on the formation or action of endogenous pyrogens, or by effects on neuronal thermoregulatory circuits that are activated during fever. Endogenous antipyretic substances include steroid hormones, neuropeptides, cytokines and other molecules. It is the purpose of this review to consider the current state in the research on endogenous antipyretic systems.

  11. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.C.R.; Romero, T.R.L.; Guzzo, L.S.; Duarte, I.D.G. [Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-09-21

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E{sub 2} (PGE{sub 2}, 2 µg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE{sub 2}, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 µg/paw) and AM-630 (100 µg/paw) were used as CB{sub 1} and CB{sub 2} cannabinoid receptor antagonists, respectively. Ipl injection of 40 µg dipyrone (mean = 5.825 ± 2.842 g), 20 µg diclofenac (mean = 4.825 ± 3.850 g) and 40 µg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB{sub 1} cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB{sub 2} cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of

  12. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    Directory of Open Access Journals (Sweden)

    L.C.R. Silva

    2012-12-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group. Hyperalgesia was induced by a subcutaneous intraplantar (ipl injection of prostaglandin E2 (PGE2, 2 μg/paw in the rat’s hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g. AM-251 (80 μg/paw and AM-630 (100 μg/paw were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g, 20 μg diclofenac (mean = 4.825 ± 3.850 g and 40 μg indomethacin (mean = 6.650 ± 3.611 g elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g, diclofenac (mean = 2.50 ± 0.8337 g and indomethacin (mean = 6.650 ± 4.069 g or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g, diclofenac (mean = 6.675 ± 1.368 g and indomethacin (mean = 2.85 ± 5.01 g. Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and

  13. Combining Semi-Endogenous and Fully Endogenous Growth: a Generalization.

    OpenAIRE

    Cozzi, Guido

    2017-01-01

    This paper shows that combining the semi-endogenous and the fully endogenous growth mechanisms with a general CES aggregator, either growth process can prevail in the balanced growth path depending on their degree of complementarity/substitutability. Policy-induced long-run economic switches to the fully endogenous steady state as the R&D employment ratio surpasses a positive threshold are possible if the two growth engines are gross substitutes.

  14. Possible Anandamide and Palmitoylethanolamide involvement in human stroke

    Directory of Open Access Journals (Sweden)

    Pizzolato Gilberto

    2010-05-01

    Full Text Available Abstract Background Endocannabinoids (eCBs are ubiquitous lipid mediators that act on specific (CB1, CB2 and non-specific (TRPV1, PPAR receptors. Despite many experimental animal studies proved eCB involvement in the pathogenesis of stroke, such evidence is still lacking in human patients. Our aim was to determine eCB peripheral levels in acute stroke patients and evaluate their relationship with clinical disability and stroke volume. Methods A cohort of ten patients with a first acute (within six hours since symptoms onset ischemic stroke and a group of eight age- and sex-matched normal subjects were included. Groups were also matched for metabolic profile. All subjects underwent a blood sample collection for anandamide (AEA, 2-arachidonoylglycerol (2-AG and palmitoylethanolamide (PEA measurement; blood sampling was repeated in patients on admission (T0, at 6 (T1 and 18 hours (T2 thereafter. Patients neurological impairment was assessed using NIHSS and Fugl-Meyer Scale arm subitem (FMSa; stroke volume was determined on 48 h follow-up brain CT scans. Blood samples were analyzed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Results 1T0 AEA levels were significantly higher in stroke patients compared to controls. 2A significant inverse correlation between T0 AEA levels and FMSa score was found. Moreover a positive correlation between T0 AEA levels and stroke volume were found in stroke patients. T0 PEA levels in stroke patients were not significantly different from the control group, but showed a significant correlation with the NIHSS scores. T0 2-AG levels were lower in stroke patients compared to controls, but such difference did not reach the significance threshold. Conclusions This is the first demonstration of elevated peripheral AEA levels in acute stroke patients. In agreement with previous murine studies, we found a significant relationship between AEA or PEA levels and neurological involvement, such

  15. Cannabinoid Receptors: A Novel Target for Treating Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2006-01-01

    Recently we have shown that expression levels of both cannabinoid receptors CB and CB12 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2...

  16. Pharmacokinetics of Cannabinoids

    Directory of Open Access Journals (Sweden)

    Iain J McGilveray

    2005-01-01

    Full Text Available Delta-9-tetrahydrocannabinol (Δ-9-THC is the main psychoactive ingredient of cannabis (marijuana. The present review focuses on the pharmacokinetics of THC, but also includes known information for cannabinol and cannabidiol, as well as the synthetic marketed cannabinoids, dronabinol (synthetic THC and nabilone. The variability of THC in plant material (0.3% to 30% leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level of 152±86.3 ng/mL occured approximately 10 min after inhalation. Oral THC, on the other hand, is only 4% to 12% bioavailable and absorption is highly variable. THC is eliminated from plasma in a multiphasic manner, with low amounts detectable for over one week after dosing. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20% and 100% of parent, respectively. THC is widely distributed, particularly to fatty tissues, but less than 1% of an administered dose reaches the brain, while the spleen and body fat are long-term storage sites. The elimination of THC and its many metabolites (from all routes occurs via the feces and urine. Metabolites persist in the urine and feces for severalweeks. Nabilone is well absorbed and the pharmacokinetics, although variable, appear to be linear from oral doses of 1 mg to 4 mg (these doses show a plasma elimination half-life of approximately 2 h. As with THC, there is a high first-pass effect, and the feces to urine ratio of excretion is similar to other cannabinoids. Pharmacokineticpharmacodynamic modelling with plasma THC versus cardiac and psychotropic effects show that after equilibrium is reached, the intensity of effect is proportional to the plasma THC profile. Clinical trials have found that nabilone produces less tachycardia and less euphoria than THC for a similar antiemetic response.

  17. Cannabinoids for epilepsy.

    Science.gov (United States)

    Gloss, David; Vickrey, Barbara

    2014-03-05

    Marijuana appears to have anti-epileptic effects in animals. It is not currently known if it is effective in patients with epilepsy. Some states in the United States of America have explicitly approved its use for epilepsy. To assess the efficacy and safety of cannabinoids when used as monotherapy or add-on treatment for people with epilepsy. We searched the Cochrane Epilepsy Group Specialized Register (9 September 2013), Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2013, Issue 8), MEDLINE (Ovid) (9 September 2013), ISI Web of Knowledge (9 September 2013), CINAHL (EBSCOhost) (9 September 2013), and ClinicalTrials.gov (9 September 2013). In addition, we included studies we personally knew about that were not found by the searches, as well as searched the references in the identified studies. Randomized controlled trials (RCTs) whether blinded or not. Two authors independently selected trials for inclusion and extracted the data. The primary outcome investigated was seizure freedom at one year or more, or three times the longest interseizure interval. Secondary outcomes included responder rate at six months or more, objective quality of life data, and adverse events. We found four randomized trial reports that included a total of 48 patients, each of which used cannabidiol as the treatment agent. One report was an abstract and another was a letter to the editor. Anti-epileptic drugs were continued in all studies. Details of randomisation were not included in any study report. There was no investigation of whether the control and treatment participant groups were the same or different. All the reports were low quality.The four reports only answered the secondary outcome about adverse effects. None of the patients in the treatment groups suffered adverse effects. No reliable conclusions can be drawn at present regarding the efficacy of cannabinoids as a treatment for epilepsy. The dose of 200 to 300 mg daily of cannabidiol was

  18. Safety and Toxicology of Cannabinoids.

    Science.gov (United States)

    Sachs, Jane; McGlade, Erin; Yurgelun-Todd, Deborah

    2015-10-01

    There is extensive research on the safety, toxicology, potency, and therapeutic potential of cannabis. However, uncertainty remains facilitating continued debate on medical and recreational cannabis policies at the state and federal levels. This review will include a brief description of cannabinoids and the endocannabinoid system; a summary of the acute and long-term effects of cannabis; and a discussion of the therapeutic potential of cannabis. The conclusions about safety and efficacy will then be compared with the current social and political climate to suggest future policy directions and general guidelines.

  19. Suppression of vascular endothelial growth factor expression by cannabinoids in a canine osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Figueiredo AS

    2013-07-01

    Full Text Available Andreza S Figueiredo,1 Hiram J García-Crescioni,1 Sandra C Bulla,1 Matthew K Ross,2 Chelsea McIntosh,1 Kari Lunsford,3 Camilo Bulla11Department of Pathobiology and Population Medicine, 2Department of Basic Sciences, 3Department of Clinical Sciences and Animal Health Center, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USAAbstract: Vascular endothelial growth factor (VEGF is a key regulator in both physiologic and pathologic angiogenesis, and cannabinoids decrease VEGF release in human and murine cancer cells. The aim of this study was to assess the in vitro effects of a synthetic cannabinoid, WIN-55,212-2, on the expression of the proangiogenic factor VEGF-A in the canine osteosarcoma cell line 8. After analysis of gene expression by quantitative real-time polymerase chain reaction, the compound decreased VEGF-A expression by 35% ± 10% (P < 0.0001 as compared with the control. This synthetic cannabinoid shows promise as a potential inhibitor of angiogenesis, and further studies are warranted to investigate its in vivo effects and to explore the potential of this and related compounds as adjuvant cancer therapy in the dog.Keywords: dog, cancer, angiogenesis, cannabinoids

  20. Cannabinoid hyperemesissyndrom som årsag til langvarig kvalme og opkastning hos cannabismisbrugere

    DEFF Research Database (Denmark)

    Vindsand Naver, Astrid; Theede, Klaus

    2015-01-01

    Cannabinoid hyperemesis syndrome causing prolonged nausea and vomiting in patients with cannabis abuse Cannabis is one of the most used drugs worldwide. The link between repeated episodes of nausea, vomiting, and cannabis abuse is often missed in patients with prolonged cannabis abuse and is named...... cannabinoid hyperemesis syndrome. Characteristically, the symptoms appear in a cyclical pattern and are relieved by long, hot baths. Physical examination, radiology and endoscopy are often normal. The symptoms resolve with cessation of cannabis abuse. Health professionals must be aware of this syndrome...... in order to detect the patients early and to avoid extensive medical workup....

  1. Are cannabinoids effective for HIV wasting syndrome?

    Directory of Open Access Journals (Sweden)

    Alejandra Núñez

    2017-12-01

    Full Text Available Resumen INTRODUCCIÓN El síndrome de emaciación (wasting en VIH/SIDA aún permanece como un problema común, constituyéndose como un factor de mortalidad en esta población. Se ha postulado el uso de cannabinoides como tratamiento de la baja de peso secundaria a la infección por VIH, lo que aún es controvertido. MÉTODOS Para responder esta pregunta utilizamos Epistemonikos, la mayor base de datos de revisiones sistemáticas en salud, la cual es mantenida mediante búsquedas en múltiples fuentes de información, incluyendo MEDLINE, EMBASE, Cochrane, entre otras. Extrajimos los datos desde las revisiones identificadas, reanalizamos los datos de los estudios primarios y preparamos tablas de resumen de los resultados utilizando el método GRADE. RESULTADOS Y CONCLUSIONES Identificamos ocho revisiones sistemáticas que en conjunto incluyen 10 estudios primarios, de los cuales, seis son ensayos aleatorizados. Concluimos que no está claro si los cannabinoides aumentan el apetito o incrementan el peso en el síndrome de wasting en pacientes con VIH, y probablemente los efectos adversos son frecuentes.

  2. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    International Nuclear Information System (INIS)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan; Ondra, Peter; Válka, Ivo; Ševčík, Juraj; Chrastina, Jan; Maier, Vítězslav

    2015-01-01

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry

  3. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    Energy Technology Data Exchange (ETDEWEB)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Ondra, Peter; Válka, Ivo [Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146 (Czech Republic); Ševčík, Juraj [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Chrastina, Jan [Institute of Special Education Studies, Faculty of Education, Palacký University, Žižkovo náměsti 5, Olomouc CZ-77146 (Czech Republic); Maier, Vítězslav, E-mail: vitezslav.maier@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic)

    2015-05-18

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.

  4. Endocannabinoid and cannabinoid-like fatty acid amide levels correlate with pain-related symptoms in patients with IBS-D and IBS-C: a pilot study.

    Directory of Open Access Journals (Sweden)

    Jakub Fichna

    Full Text Available AIMS: Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients. METHODS: AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D and constipation-predominant (IBS-C patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls. RESULTS: Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C. CONCLUSION: IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.

  5. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    Science.gov (United States)

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Determination of Acid and Neutral Cannabinoids in Extracts of Different Strains of Cannabis sativa Using GC-FID.

    Science.gov (United States)

    Ibrahim, Elsayed A; Gul, Waseem; Gul, Shahbaz W; Stamper, Brandon J; Hadad, Ghada M; Abdel Salam, Randa A; Ibrahim, Amany K; Ahmed, Safwat A; Chandra, Suman; Lata, Hemant; Radwan, Mohamed M; ElSohly, Mahmoud A

    2018-03-01

    Cannabis ( Cannabis sativa L.) is an annual herbaceous plant that belongs to the family Cannabaceae. Trans -Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (CBD) are the two major phytocannabinoids accounting for over 40% of the cannabis plant extracts, depending on the variety. At the University of Mississippi, different strains of C. sativa, with different concentration ratios of CBD and Δ 9 -THC, have been tissue cultured via micropropagation and cultivated. A GC-FID method has been developed and validated for the qualitative and quantitative analysis of acid and neutral cannabinoids in C. sativa extracts. The method involves trimethyl silyl derivatization of the extracts. These cannabinoids include tetrahydrocannabivarian, CBD, cannabichromene, trans -Δ 8 -tetrahydrocannabinol, Δ 9 -THC, cannabigerol, cannabinol, cannabidiolic acid, cannabigerolic acid, and Δ 9 -tetrahydrocannabinolic acid-A. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area ratio with R 2  > 0.999 for all 10 cannabinoids. The precision and accuracy of the method were found to be ≤ 15% and ± 5%, respectively. The limit of detection range was 0.11 - 0.19 µg/mL, and the limit of quantitation was 0.34 - 0.56 µg/mL for all 10 cannabinoids. The developed method is simple, sensitive, reproducible, and suitable for the detection and quantitation of acidic and neutral cannabinoids in different extracts of cannabis varieties. The method was applied to the analysis of these cannabinoids in different parts of the micropropagated cannabis plants (buds, leaves, roots, and stems). Georg Thieme Verlag KG Stuttgart · New York.

  7. Clinical pharmacology of cannabinoids in early phase drug development

    NARCIS (Netherlands)

    Zuurman, Hillie Henka

    2008-01-01

    Although cannabis is especially known for its recreational use as a ‘soft drug’, its potential therapeutic properties have been recognized for hundreds of years. Since the isolation of THC from Cannabis sativa L, the discovery of cannabinoid receptors and their natural ligands (endocannabinoids) the

  8. Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy.

    Science.gov (United States)

    Smith, Lesley A; Azariah, Fredric; Lavender, Verna T C; Stoner, Nicola S; Bettiol, Silvana

    2015-11-12

    Cannabis has a long history of medicinal use. Cannabis-based medications (cannabinoids) are based on its active element, delta-9-tetrahydrocannabinol (THC), and have been approved for medical purposes. Cannabinoids may be a useful therapeutic option for people with chemotherapy-induced nausea and vomiting that respond poorly to commonly used anti-emetic agents (anti-sickness drugs). However, unpleasant adverse effects may limit their widespread use. To evaluate the effectiveness and tolerability of cannabis-based medications for chemotherapy-induced nausea and vomiting in adults with cancer. We identified studies by searching the following electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO and LILACS from inception to January 2015. We also searched reference lists of reviews and included studies. We did not restrict the search by language of publication. We included randomised controlled trials (RCTs) that compared a cannabis-based medication with either placebo or with a conventional anti-emetic in adults receiving chemotherapy. At least two review authors independently conducted eligibility and risk of bias assessment, and extracted data. We grouped studies based on control groups for meta-analyses conducted using random effects. We expressed efficacy and tolerability outcomes as risk ratio (RR) with 95% confidence intervals (CI). We included 23 RCTs. Most were of cross-over design, on adults undergoing a variety of chemotherapeutic regimens ranging from moderate to high emetic potential for a variety of cancers. The majority of the studies were at risk of bias due to either lack of allocation concealment or attrition. Trials were conducted between 1975 and 1991. No trials involved comparison with newer anti-emetic drugs such as ondansetron. Comparison with placebo People had more chance of reporting complete absence of vomiting (3 trials; 168 participants; RR 5.7; 95% CI 2.6 to 12.6; low quality evidence

  9. Identification of Putative Precursor Genes for the Biosynthesis of Cannabinoid-Like Compound in Radula marginata

    Directory of Open Access Journals (Sweden)

    Tajammul Hussain

    2018-05-01

    Full Text Available The liverwort Radula marginata belongs to the bryophyte division of land plants and is a prospective alternate source of cannabinoid-like compounds. However, mechanistic insights into the molecular pathways directing the synthesis of these cannabinoid-like compounds have been hindered due to the lack of genetic information. This prompted us to do deep sequencing, de novo assembly and annotation of R. marginata transcriptome, which resulted in the identification and validation of the genes for cannabinoid biosynthetic pathway. In total, we have identified 11,421 putative genes encoding 1,554 enzymes from 145 biosynthetic pathways. Interestingly, we have identified all the upstream genes of the central precursor of cannabinoid biosynthesis, cannabigerolic acid (CBGA, including its two first intermediates, stilbene acid (SA and geranyl diphosphate (GPP. Expression of all these genes was validated using quantitative real-time PCR. We have characterized the protein structure of stilbene synthase (STS, which is considered as a homolog of olivetolic acid in R. marginata. Moreover, the metabolomics approach enabled us to identify CBGA-analogous compounds using electrospray ionization mass spectrometry (ESI-MS/MS and gas chromatography mass spectrometry (GC-MS. Transcriptomic analysis revealed 1085 transcription factors (TF from 39 families. Comparative analysis showed that six TF families have been uniquely predicted in R. marginata. In addition, the bioinformatics analysis predicted a large number of simple sequence repeats (SSRs and non-coding RNAs (ncRNAs. Our results collectively provide mechanistic insights into the putative precursor genes for the biosynthesis of cannabinoid-like compounds and a novel transcriptomic resource for R. marginata. The large-scale transcriptomic resource generated in this study would further serve as a reference transcriptome to explore the Radulaceae family.

  10. Delirium and High Creatine Kinase and Myoglobin Levels Related to Synthetic Cannabinoid Withdrawal

    Directory of Open Access Journals (Sweden)

    Ahmet Bulent Yazici

    2017-01-01

    Full Text Available Synthetic cannabinoids (SCs are included in a group of drugs called new psychoactive substances. Effects of SCs on the central nervous system are similar to other cannabinoids, but 2–100 times more potent than marijuana. Thus, addiction and withdrawal symptoms are more severe than natural cannabinoids. Withdrawal symptoms of SCs were reported in the literature previously. But there is no report about SC withdrawal delirium and its treatment. Several studies reported that agonists of CB1 receptors play a role in GABA and glutamatergic neurotransmission, which is similar to the effects of alcohol on GABA and glutamatergic receptors. Previous studies on alcohol delirium cases suggested that elevated creatine kinase (CK can be a marker of progress. This study reports delirium and high serum CK levels related to SC withdrawal and offers a treatment with benzodiazepine for them. We described two cases treated in our inpatient clinic about SC withdrawal with increase of serum CK level and other laboratory parameters. One of them demonstrated delirium symptoms and the other did not with early rapid treatment.

  11. Cannabis and joints: scientific evidence for the alleviation of osteoarthritis pain by cannabinoids.

    Science.gov (United States)

    O'Brien, Melissa; McDougall, Jason J

    2018-04-07

    Cannabis has been used for millennia to treat a multitude of medical conditions including chronic pain. Osteoarthritis (OA) pain is one of the most common types of pain and patients often turn to medical cannabis to manage their symptoms. While the majority of these reports are anecdotal, there is a growing body of scientific evidence which supports the analgesic potential of cannabinoids to treat OA pain. OA pain manifests as a combination of inflammatory, nociceptive, and neuropathic pain, each requiring modality-specific analgesics. The body's innate endocannabinoid system (ECS) has been shown to ameliorate all of these pain subtypes. This review summarizes the components of the ECS and details the latest research pertaining to plant-based and man-made cannabinoids for the treatment of OA pain. Recent pre-clinical evidence supporting a role for the ECS to control OA pain is described as well as current clinical evidence of the efficacy of cannabinoids for treating OA pain in mixed patient populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The Wide and Unpredictable Scope of Synthetic Cannabinoids Toxicity

    Directory of Open Access Journals (Sweden)

    Jose Orsini

    2015-01-01

    Full Text Available Drug use and abuse continue to be a large public health concern worldwide. Over the past decade, novel or atypical drugs have emerged and become increasingly popular. In the recent past, compounds similar to tetrahydrocannabinoid (THC, the active ingredient of marijuana, have been synthetically produced and offered commercially as legal substances. Since the initial communications of their abuse in 2008, few case reports have been published illustrating the misuse of these substances with signs and symptoms of intoxication. Even though synthetic cannabinoids have been restricted, they are still readily available across USA and their use has been dramatically increasing, with a concomitant increment in reports to poison control centers and emergency department (ED visits. We describe a case of acute hypoxemic/hypercapnic respiratory failure as a consequence of acute congestive heart failure (CHF developed from myocardial stunning resulting from a non-ST-segment elevation myocardial infarction (MI following the consumption of synthetic cannabinoids.

  13. Do cannabinoids constitute a therapeutic alternative for anorexia nervosa?

    Directory of Open Access Journals (Sweden)

    Tania Contreras

    2017-12-01

    Full Text Available Resumen INTRODUCCIÓN Se ha planteado que la estimulación del apetito con cannabinoides podría constituir una alternativa terapéutica en anorexia nerviosa. Sin embargo, su utilidad clínica y seguridad genera controversia. MÉTODOS Para responder esta pregunta utilizamos Epistemonikos, la mayor base de datos de revisiones sistemáticas en salud, la cual es mantenida mediante búsquedas en múltiples fuentes de información, incluyendo MEDLINE, EMBASE, Cochrane, entre otras. Extrajimos los datos desde las revisiones identificadas, reanalizamos los datos de los estudios primarios, preparamos tablas de resumen de los resultados utilizando el método GRADE. RESULTADOS Y CONCLUSIONES: Identificamos cuatro revisiones sistemáticas que en conjunto incluyen dos estudios primarios, ambos correspondientes a ensayos aleatorizados. Concluimos que los cannabinoides podrían no aumentar el peso ni mejorar la sintomatología en la anorexia nerviosa, y se asocian a efectos adversos frecuentes.

  14. Potency of delta 9-THC and other cannabinoids in cannabis in England in 2005: implications for psychoactivity and pharmacology.

    Science.gov (United States)

    Potter, David J; Clark, Peter; Brown, Marc B

    2008-01-01

    Gas chromatography was used to study the cannabinoid content ("potency") of illicit cannabis seized by police in England in 2004/5. Of the four hundred and fifty two samples, indoor-grown unpollinated female cannabis ("sinsemilla") was the most frequent form, followed by resin (hashish) and imported outdoor-grown herbal cannabis (marijuana). The content of the psychoactive cannabinoid delta 9-tetrahydrocannabinol (THC) varied widely. The median THC content of herbal cannabis and resin was 2.1% and 3.5%, respectively. The median 13.9% THC content of sinsemilla was significantly higher than that recorded in the UK in 1996/8. In sinsemilla and imported herbal cannabis, the content of the antipsychotic cannabinoid cannabidiol (CBD) was extremely low. In resin, however, the average CBD content exceeded that of THC, and the relative proportions of the two cannabinoids varied widely between samples. The increases in average THC content and relative popularity of sinsemilla cannabis, combined with the absence of the anti-psychotic cannabinoid CBD, suggest that the current trends in cannabis use pose an increasing risk to those users susceptible to the harmful psychological effects associated with high doses of THC.

  15. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

    Science.gov (United States)

    Citti, Cinzia; Pacchetti, Barbara; Vandelli, Maria Angela; Forni, Flavio; Cannazza, Giuseppe

    2018-02-05

    Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil. Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein. This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils. Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Three fatalities associated with the synthetic cannabinoids 5F-ADB, 5F-PB-22, and AB-CHMINACA.

    Science.gov (United States)

    Angerer, V; Jacobi, S; Franz, F; Auwärter, V; Pietsch, J

    2017-12-01

    The use of synthetic cannabinoids (SC) has been widespread in certain groups of drug users for many years. In the scientific literature many intoxication cases and a number of fatalities after the use of synthetic cannabinoids were reported. In this paper three death cases are described with involvement of the synthetic cannabinoids 5F-PB-22, AB-CHMINACA, and 5F-ADB. The three cases occurred in the eastern region of Germany, which is known as a region of high methamphetamine abuse. All decedents were male, between 25 and 41 years old, and had a known history of drug use. Femoral blood concentrations of the synthetic cannabinoids were measured using a validated LC-MS/MS method. The concentration of 5F-PB-22 in the first case was 0.37ng/mL, the concentration of AB-CHMINACA in the second case was approximately 4.1ng/mL (extrapolated) and the 5F-ADB concentration in the third case was 0.38ng/mL. Compared to other published cases the concentrations in the here presented cases seem to be in the lower range. However, taking into account the scene of death, the results of the forensic autopsy and the full toxicological analysis, the deaths can be explained as a direct consequence of consumption of synthetic cannabinoids, although in case one and two relevant amounts of ethanol were found, and in case three trimipramine and olanzapine were present in non-toxic concentrations. It has to be noted that concentrations of synthetic cannabinoids in femoral blood cannot directly be judged as toxic or lethal due to the possibility of postmortem redistribution and the development of tolerance after frequent use. Therefore, all available information has to be considered carefully before stating SC use as the cause of death. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    hashish and marijuana (--Delta9- tetrahydrocannabinol. They act as true ‘endogenous cannabinoids’ by binding and functionally activating one or both cannabinoid receptor present on nervous and peripheral cell membranes. Enzymes that carry out anandamide oxidation are the same fatty acid oxygenases that are known to act on endogenous arachidonic acid namely, the members of the COX, LOX, and P450 families of enzymes. Recent advances in the biochemistry and pharmacology of the endocannabinoid system, also for its central and peripheral roles in regulating food intake, will offer the development of novel therapeutic agents.

  18. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity.

    Directory of Open Access Journals (Sweden)

    Lisa K Brents

    Full Text Available K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R.JWH-018, five potential monohydroxylated metabolites (M1-M5, and one carboxy metabolite (M6 were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i values that were lower than or equivalent to Δ(9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9

  19. Endogenous fertility and development traps with endogenous lifetime

    OpenAIRE

    Fanti, Luciano; Gori, Luca

    2010-01-01

    We extend the literature on endogenous lifetime and economic growth by Chakraborty (2004) and Bunzel and Qiao (2005) to endogenous fertility. We show that development traps due to underinvestments in health cannot appear when fertility is an economic decision variable and the costs of children are represented by a constant fraction of the parents' income used for their upbringing.

  20. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.

  1. Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.

    Science.gov (United States)

    Kampschmidt, R F; Upchurch, H F; Worthington, M L

    1983-07-01

    It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen.

  2. Adding Spice to the Porridge: The development of a synthetic cannabinoid market in an English prison.

    Science.gov (United States)

    Ralphs, Rob; Williams, Lisa; Askew, Rebecca; Norton, Anna

    2017-02-01

    In 2014, the annual report of the Her Majesty's Chief Inspector of Prisons (HMIP) for England and Wales raised concerns regarding New Psychoactive Substance (NPS) use in custody, specifically the consumption of synthetic cannabinoids. To date, however, the use of these substances in prison populations, and the markets that have emerged to facilitate it, have been under-researched. Our research was conducted in an English adult male prison using multi-method techniques. These included: in-depth interviews and focus groups with prison staff and prisoners; observations of prisoner-led focus groups, workshops and restorative justice circles involving discussion of synthetic cannabinoid use and markets; and analysis of routinely collected prison data measuring drug seizures, incidents of violence and incidents of self-harm. The findings highlight: (1) the scale and nature of synthetic cannabinoid markets in a custodial setting and the motivations for establishing them; (2) the nature and motivations for synthetic cannabinoids use in prison; and (3) the impact synthetic cannabinoid markets in this setting have upon prisoners, the prison system and the wider criminal justice system. The policy implications of the stated motivations for use and reported problems are discussed in relation to both prison and community settings, and the recently implemented Psychoactive Substance Act (2016). The paper concludes that the rise in synthetic cannabinoid use in custody and the size of the drug market are posing significant challenges to the management of offenders; including healthcare, appropriate detection techniques, license recall and sanctions for both use and supply. We argue that the primary motivation for consumption in this setting is the avoidance of drug use detection, and that this is likely to supersede other motivations for consumption in the future. We propose a revision of the use of mandatory drug tests (MDTs) both in prisons and in the management of offenders in

  3. Synthetic cannabinoid JWH-018 and psychosis: an explorative study.

    Science.gov (United States)

    Every-Palmer, Susanna

    2011-09-01

    Aroma, Spice, K2 and Dream are examples of a class of new and increasingly popular recreational drugs. Ostensibly branded "herbal incense", they have been intentionally adulterated with synthetic cannabinoids such as JWH-018 in order to confer on them cannabimimetic psychoactive properties while circumventing drug legislation. JWH-018 is a potent cannabinoid receptor agonist. Little is known about its pharmacology and toxicology in humans. This is the first research considering the effects of JWH-018 on a psychiatric population and exploring the relationship between JWH-018 and psychotic symptoms. This paper presents the results of semi-structured interviews regarding the use and effects of JWH-018 in 15 patients with serious mental illness in a New Zealand forensic and rehabilitative service. All 15 subjects were familiar with a locally available JWH-018 containing product called "Aroma" and 86% reported having used it. They credited the product's potent psychoactivity, legality, ready availability and non-detection in drug testing as reasons for its popularity, with most reporting it had replaced cannabis as their drug of choice. Most patients had assumed the product was "natural" and "safe". Anxiety and psychotic symptoms were common after use, with 69% of users experiencing or exhibiting symptoms consistent with psychotic relapse after smoking JWH-018. Although psychological side effects were common, no one reported becoming physically unwell after using JWH-018. Three subjects described developing some tolerance to the product, but no one reported withdrawal symptoms. It seems likely that JWH-018 can precipitate psychosis in vulnerable individuals. People with risk factors for psychosis should be counseled against using synthetic cannabinoids. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Cannabinoid Receptors: A Novel Target for Therapy for Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2008-01-01

    We have shown that the expression levels of both cannabinoid receptors CB1 and CB2 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (WIN...

  5. Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2007-01-01

    .... We have shown that the expression levels of both cannabinoid receptors CB1 and CB2 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (WIN...

  6. Structure-dependent inhibitory effects of synthetic cannabinoids against 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and skin tumour promotion in mice.

    Science.gov (United States)

    Nakajima, Jun'ichi; Nakae, Dai; Yasukawa, Ken

    2013-08-01

    Whether and how synthetic cannabinoids affect inflammation and carcinogenesis has not been well studied. The present study was thus conducted to assess effects of synthetic cannabinoids on inflammation and carcinogenesis in vivo in mice. Twenty-three analogues of synthetic cannabinoids were isolated from, and identified as adulterants in, illegal drugs distributed in the Tokyo metropolitan area, and were examined for their inhibitory effects on the induction of oedema in mouse ears by 12-O-tetradecanoylphorbol-13-acetate (TPA). Furthermore, selected cannabinoids, JWH-018, -122 and -210, were studied for their effects on carcinogenesis induced in mouse skin initiated with 7,12-dimethylbenz[a]anthracene (DMBA) and promoted by TPA. Among cannabinoids, naphthoylindoles mostly exhibited superior inhibitory effects against TPA-induced ear oedema and, especially, JWH-018, -122 and -210 showed potent activity with 50% inhibitory dose (ID50) values of 168, 346 and 542 nm, respectively (an activity corresponding to that of indometacin (ID50 = 908 nm)). Furthermore these three compounds also markedly suppressed the tumour-promoting activity of TPA. This is the first report indicating the structure-activity relationships for the anti-inflammatory activity of synthetic cannabinoids on TPA-induced inflammation in mice. Naphthoylindoles, JWH-018, -122 and -210, had the most potent anti-inflammatory activity and also markedly inhibited tumour promotion by TPA in the two-stage mouse skin carcinogenesis model. The present results suggest that synthetic cannabinoids, such as JWH-018, -122 and -210, may be used as cancer chemopreventive agents in the future. © 2013 Royal Pharmaceutical Society.

  7. Cannabinoid receptor activation in the rostral ventrolateral medulla oblongata evokes cardiorespiratory effects in anaesthetised rats

    Science.gov (United States)

    Padley, James R; Li, Qun; Pilowsky, Paul M; Goodchild, Ann K

    2003-01-01

    The nature of the cardiorespiratory effects mediated by cannabinoids in the hindbrain is poorly understood. In the present study we investigated whether cannabinoid receptor activation in the rostral ventrolateral medulla oblongata (RVLM) affects cardiovascular and/or respiratory function. Initially, we looked for evidence of CB1 receptor gene expression in rostral and caudal sections of the rat ventrolateral medulla (VLM) using reverse transcription–polymerase chain reaction. Second, the potent cannabinoid receptor agonists WIN55,212-2 (0.05, 0.5 or 5 pmol per 50 nl) and HU-210 (0.5 pmol per 50 nl) or the CB1 receptor antagonist/inverse agonist AM281 (1 pmol per 100 nl) were microinjected into the RVLM of urethane-anaesthetised, immobilised and mechanically ventilated male Sprague–Dawley rats (n=22). Changes in splanchnic nerve activity (sSNA), phrenic nerve activity (PNA), mean arterial pressure (MAP) and heart rate (HR) in response to cannabinoid administration were recorded. The CB1 receptor gene was expressed throughout the VLM. Unilateral microinjection of WIN55,212-2 into the RVLM evoked short-latency, dose-dependent increases in sSNA (0.5 pmol; 175±8%, n=5) and MAP (0.5 pmol; 26±3%, n=8) and abolished PNA (0.5 pmol; duration of apnoea: 5.4±0.4 s, n=8), with little change in HR (P<0.005). HU-210, structurally related to Δ9-tetrahydrocannabinol (THC), evoked similar effects when microinjected into the RVLM (n=4). Surprisingly, prior microinjection of AM281 produced agonist-like effects, as well as significantly attenuated the response to subsequent injection of WIN55,212-2 (0.5 pmol, n=4). The present study reveals CB1 receptor gene expression in the rat VLM and demonstrates sympathoexcitation, hypertension and respiratory inhibition in response to RVLM-administered cannabinoids. These findings suggest a novel link between CB1 receptors in this region of the hindbrain and the central cardiorespiratory effects of cannabinoids. The extent to which these

  8. Oxidative stress and cannabinoid receptor expression in type-2 diabetic rat pancreas following treatment with Δ⁹-THC.

    Science.gov (United States)

    Coskun, Zeynep Mine; Bolkent, Sema

    2014-10-01

    The objectives of study were (a) to determine alteration of feeding, glucose level and oxidative stress and (b) to investigate expression and localization of cannabinoid receptors in type-2 diabetic rat pancreas treated with Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Rats were randomly divided into four groups: control, Δ(9)-THC, diabetes and diabetes + Δ(9)-THC groups. Diabetic rats were treated with a single dose of nicotinamide (85 mg/kg) 15 min before injection of streptozotocin (65 mg/kg). Δ(9)-THC was administered intraperitoneally at 3 mg/kg/day for 7 days. Body weights and blood glucose level of rats in all groups were measured on days 0, 7, 14 and 21. On day 15 after the Δ(9)-THC injections, pancreatic tissues were removed. Blood glucose levels and body weights of diabetic rats treated with Δ(9)-THC did not show statistically significant changes when compared with the diabetic animals on days 7, 14 and 21. Treatment with Δ(9)-THC significantly increased pancreas glutathione levels, enzyme activities of superoxide dismutase and catalase in diabetes compared with non-treatment diabetes group. The cannabinoid 1 receptor was found in islets, whereas the cannabinoid 2 receptor was found in pancreatic ducts. Their localization in cells was both nuclear and cytoplasmic. We can suggest that Δ(9) -THC may be an important agent for the treatment of oxidative damages induced by diabetes. However, it must be supported with anti-hyperglycaemic agents. Furthermore, the present study for the first time emphasizes that Δ(9)-THC may improve pancreatic cells via cannabinoid receptors in diabetes. The aim of present study was to elucidate the effects of Δ(9)-THC, a natural cannabinoid receptor agonist, on the expression and localization of cannabinoid receptors, and oxidative stress statue in type-2 diabetic rat pancreas. Results demonstrate that the cannabinoid receptors are presented in both Langerhans islets and duct regions. The curative effects

  9. Speckle-tracking strain assessment of left ventricular dysfunction in synthetic cannabinoid and heroin users.

    Science.gov (United States)

    Demirkıran, Aykut; Albayrak, Neslihan; Albayrak, Yakup; Zorkun, Cafer Sadık

    2018-06-01

    There is growing evidence regarding the numerous adverse effects of synthetic cannabinoids (SCBs) on the cardiovascular system; however, no studies have shown the cardiovascular effects of opioids using strain echocardiography. This study examines the cardiac structure and function using echocardiographic strain imaging in heroin and synthetic cannabinoid users. This double-blind study included patients who were admitted or referred to a rehabilitation center for heroin (n=31) and synthetic cannabinoid users (n=30). Heroin users and synthetic cannabinoid users were compared with healthy volunteers (n=32) using two-dimensional (2D) speckle-tracking (ST) echocardiography. No differences were found in the baseline characteristics and 2D echocardiography values. The mean global longitudinal strain value was -20.5%±2.4% for SCB users, -22.3%±2.4% for opioid users, and -22.5%±2.2% for healthy volunteers (p=0.024). The mean apical 2-chamber (AP2C) L-strain values were -20.1%±3.1%, -22.4%±3.0%, and -22.3%±2.8% for SCB users, opioid users, and healthy volunteers, respectively (p=0.032). The mean apical 4-chamber (AP4C) L-strain values were -20.7%±2.5% for SCB users, -23.2%±3.2% for opioid users, and -23.8%±3.1% for healthy volunteers (p<0.001). SCBs are potential causes of subclinical left ventricular dysfunction.

  10. Overvej cannabinoid hyperemesis-syndrom ved recidiverende opkastninger

    DEFF Research Database (Denmark)

    Nordholm-Carstensen, Andreas

    2014-01-01

    Cannabinoid hyperemesis syndrome (CHS) is characterised by unrelenting nausea, recurrent vomiting, abdominal pain and compulsive, hot bathing behaviour. The symptoms contrast the traditional effects associated with cannabis use. We report a "textbook example" of a 26-year-old man with CHS. CHS...... is an important differential diagnosis to consider in patients with similar symptoms and the distinctive symptom relief in hot water. Early recognition may prevent extensive, unnecessary medical examinations and frequent hospital admissions....

  11. Targeting multiple cannabinoid anti-tumour pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer.

    Science.gov (United States)

    Murase, Ryuichi; Kawamura, Rumi; Singer, Eric; Pakdel, Arash; Sarma, Pranamee; Judkins, Jonathon; Elwakeel, Eiman; Dayal, Sonali; Martinez-Martinez, Esther; Amere, Mukkanti; Gujjar, Ramesh; Mahadevan, Anu; Desprez, Pierre-Yves; McAllister, Sean D

    2014-10-01

    The psychoactive cannabinoid Δ(9) -tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol (CBD) can both reduce cancer progression, each through distinct anti-tumour pathways. Our goal was to discover a compound that could efficiently target both cannabinoid anti-tumour pathways. To measure breast cancer cell proliferation/viability and invasion, MTT and Boyden chamber assays were used. Modulation of reactive oxygen species (ROS) and apoptosis was measured using dichlorodihydrofluorescein and annexin/propidium iodide, respectively, in combination with cell flow cytometry. Changes in protein levels were evaluated using Western analysis. Orthotopic and i.v. mouse models of breast cancer metastasis were used to test the activity of cannabinoids in vivo. CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogues that could co-target cannabinoid anti-tumour pathways (CBD- and THC-associated) and discovered the compound O-1663. This analogue inhibited Id1, produced a marked stimulation of ROS, up-regulated autophagy and induced apoptosis. Of all the compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo. O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid anti-tumour pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer. © 2014 The British Pharmacological Society.

  12. Effects of cannabinoid CB1 receptor antagonist rimonabant in consolidation and reconsolidation of methamphetamine reward memory in mice.

    Science.gov (United States)

    Yu, Lu-lu; Wang, Xue-yi; Zhao, Mei; Liu, Yu; Li, Yan-qin; Li, Fang-qiong; Wang, Xiaoyi; Xue, Yan-xue; Lu, Lin

    2009-06-01

    Previous studies have shown that cannabinoid CB1 receptors play an important role in specific aspects of learning and memory, yet there has been no systematic study focusing on the involvement of cannabinoid CB1 receptors in methamphetamine-related reward memory. The purpose of this study was to examine whether rimonabant, a cannabinoid CB1 receptor antagonist, would disrupt the consolidation and reconsolidation of methamphetamine-related reward memory, using conditioned place preference paradigm (CPP). Separate groups of male Kunming mice were trained to acquire methamphetamine CPP. Vehicle or rimonabant (1 mg/kg or 3 mg/kg, i.p.) was given at different time points: immediately after each CPP training session (consolidation), 30 min before the reactivation of CPP (retrieval), or immediately after the reactivation of CPP (reconsolidation). Methamphetamine CPP was retested 24 h and 1 and 2 weeks after rimonabant administration. Rimonabant at doses of 1 and 3 mg/kg significantly inhibited the consolidation of methamphetamine CPP. Only high-dose rimonabant (3 mg/kg) disrupted the retrieval and reconsolidation of methamphetamine CPP. Rimonabant had no effect on methamphetamine CPP in the absence of methamphetamine CPP reactivation. Our findings suggest that cannabinoid CB1 receptors play a major role in methamphetamine reward memory, and cannabinoid CB1 receptor antagonists may be a potential pharmacotherapy to manage relapse associated with drug-reward-related memory.

  13. Cannabis and endocannabinoid modulators: Therapeutic promises and challenges

    Science.gov (United States)

    Grant, Igor; Cahn, B. Rael

    2008-01-01

    The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control. PMID:18806886

  14. Synthetic Cannabinoids-Further Evidence Supporting the Relationship Between Cannabinoids and Psychosis.

    Science.gov (United States)

    Fattore, Liana

    2016-04-01

    Consumption of synthetic mind-altering compounds, also known as "new psychoactive substances," is increasing globally at an alarming rate. Synthetic cannabinoids (SCs) are among the most commonly used new psychoactive substances. They are usually purchased as marijuana-like drugs, marketed as herbal blends and perceived as risk-free by inexperienced users. Yet, contrary to Δ(9)-tetrahydrocannabinol, SCs may lead to severe health consequences, including anxiety, tachycardia, hallucinations, violent behavior, and psychosis. This review focuses on the latest (2010-2015) evidence of psychotic symptoms induced by ingestion of products containing SCs. Reports suggesting that SCs may either exacerbate previously stable psychotic symptoms (in vulnerable individuals) or trigger new-onset psychosis (in individuals with no previous history of psychosis) are reviewed. Pharmacology and toxicology of these compounds are discussed, with particular reference to their psychoactive effects. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Sexually-dimorphic effects of cannabinoid compounds on emotion and cognition

    Directory of Open Access Journals (Sweden)

    Tiziana eRubino

    2011-09-01

    Full Text Available This review addresses the issue of sex differences in the response to cannabinoid compounds focusing mainly on behaviours belonging to the cognitive and emotional sphere. Sexual dimorphism exists in the different components of the endocannabinoid system.. Males seem to have higher CB1 receptor binding sites than females, but females seem to possess more efficient CB1 receptors. Differences between sexes have been also observed in the metabolic processing of THC, the main psychoactive ingredient of marijuana. The consistent dimorphism in the endocannabinoid system and THC metabolism may justify at least in part the different sensitivity observed between male and female animals in different behavioural paradigms concerning emotion and cognition after treatment with cannabinoid compounds.On the bases of these observations, we would like to emphasize the need of including females in basic research and to analyze results for sex differences in epidemiological studies.

  16. Identification and quantification of synthetic cannabinoids in "spice-like" herbal mixtures: Update of the German situation for the spring of 2016.

    Science.gov (United States)

    Langer, Nico; Lindigkeit, Rainer; Schiebel, Hans-Martin; Papke, Uli; Ernst, Ludger; Beuerle, Till

    2016-12-01

    In February 2016, nine "spice-like" products from German language internet shops were analyzed. In total, eight different synthetic cannabinoids were identified by gas chromatography-mass spectrometry (GC-MS), namely THJ-018, THJ-2201, MAB-CHMINACA, 5F-ADB, 5Cl-AKB48 (syn.: 5C-AKB48), 4-pentenyl-AKB48, MDMB-CHMICA and 5F-AB-PINACA. For the majority of products only one synthetic cannabinoid was identified as the active ingredient, while two products contained 2 and 5 compounds, respectively. For some of the identified cannabinoids (MAB-CHMINACA, 5Cl-AKB48 and 4-pentenyl-AKB48) no or only insufficient physico-chemical data were available in literature. To our knowledge 5Cl-AKB48 and 4-pentenyl-AKB48 were found for the first time in commercially available products, hence an in-depth characterization of these compounds by NMR, EI-MS, ESI-MS/MS, IR- and UV spectroscopy was conducted. In addition, all synthetic cannabinoids were quantified by a GC-MS method using JWH-018 as internal standard and the corresponding response factors to calculate the total amount of all synthetic cannabinoids in the commercial smoking mixtures. The content of synthetic cannabinoids in the investigated products ranged from 23 to 120mg/g (average: 57mg/g), while individual compounds ranged from 1 to 120mg/g. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. The endocannabinoid system within the dorsal lateral geniculate nucleus of the vervet monkey

    DEFF Research Database (Denmark)

    Javadi, P.; Bouskila, J.; Bouchard, J. -F.

    2015-01-01

    The endocannabinoid system mainly consists of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), their endogenous ligands termed endocannabinoids (eCBs), and the enzymes responsible for the synthesis and degradation of eCBs. These cannabinoid receptors have been well characterized in rodent a...... layers may explain some of the behavioral effects of cannabinoids associated with the integrity of the dorsal visual pathway that plays a role in visual-spatial localization and motion perception....

  18. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health

    Directory of Open Access Journals (Sweden)

    Aviv M. Weinstein

    2017-08-01

    Full Text Available As part of an increasing worldwide use of designer drugs, recent use of compounds containing cathinones and synthetic cannabinoids is especially prevalent. Here, we reviewed current literature on the prevalence, epidemiology, bio-behavioral effects, and detection of these compounds. Gender differences and clinical effects will also be examined. Chronic use of synthetic cathinone compounds can have major effects on the central nervous system and can induce acute psychosis, hypomania, paranoid ideation, and delusions, similar to the effects of other better-known amphetamine-type stimulants. Synthetic cannabinoid products have effects that are somewhat similar to those of natural cannabis but more potent and long-lasting than THC. Some of these compounds are potent and dangerous, having been linked to psychosis, mania, and suicidal ideation. Novel compounds are developed rapidly and new screening techniques are needed to detect them as well as a rigorous regulation and legislation reinforcement to prevent their distribution and use. Given the rapid increase in the use of synthetic cathinones and cannabinoid designer drugs, their potential for dependence and abuse, and harmful medical and psychiatric effects, there is a need for research and education in the areas of prevention and treatment.

  19. New approaches in the management of spasticity in multiple sclerosis patients: role of cannabinoids

    Directory of Open Access Journals (Sweden)

    Paul F Smith

    2010-02-01

    Full Text Available Paul F SmithDepartment of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New ZealandAbstract: Cannabinoids such as Cannabis-based medicinal extracts (CBMEs are increasingly being used in the treatment of spasticity associated with multiple sclerosis (MS. They have been shown to have a beneficial effect on spasticity; however, this evidence is largely based on subjective rating scales. Objective measurements using the Ashworth scale have tended to show no significant effect; however, the validity of this scale has been questioned. The available clinical trial data suggest that the adverse side effects associated with using CBMEs are generally mild, such as dry mouth, dizziness, somnolence, nausea and intoxication. However, most of these trials were run over a period of months and it is possible that other adverse side effects could develop with long-term use. There may be reason to be concerned about the use of therapeutic cannabinoids by adolescents, people predisposed to psychosis and pregnant women.Keywords: multiple sclerosis, spasticity, cannabinoids, Cannabis

  20. Effects of cannabinoid and glutamate receptor antagonists and their interactions on learning and memory in male rats.

    Science.gov (United States)

    Barzegar, Somayeh; Komaki, Alireza; Shahidi, Siamak; Sarihi, Abdolrahman; Mirazi, Naser; Salehi, Iraj

    2015-04-01

    Despite previous findings on the effects of cannabinoid and glutamatergic systems on learning and memory, the effects of the combined stimulation or the simultaneous inactivation of these two systems on learning and memory have not been studied. In addition, it is not clear whether the effects of the cannabinoid system on learning and memory occur through the modulation of glutamatergic synaptic transmission. Hence, in this study, we examined the effects of the simultaneous inactivation of the cannabinoid and glutamatergic systems on learning and memory using a passive avoidance (PA) test in rats. On the test day, AM251, which is a CB1 cannabinoid receptor antagonist; MK-801, which is a glutamate receptor antagonist; or both substances were injected intraperitoneally into male Wistar rats 30min before placing the animal in a shuttle box. A learning test (acquisition) was then performed, and a retrieval test was performed the following day. Learning and memory in the PA test were significantly different among the groups. The CB1 receptor antagonist improved the scores on the PA acquisition and retention tests. However, the glutamatergic receptor antagonist decreased the acquisition and retrieval scores on the PA task. The CB1 receptor antagonist partly decreased the glutamatergic receptor antagonist effects on PA learning and memory. These results indicated that the acute administration of a CB1 antagonist improved cognitive performance on a PA task in normal rats and that a glutamate-related mechanism may underlie the antagonism of cannabinoid by AM251 in learning and memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effects of cannabinoids Δ(9)-tetrahydrocannabinol, Δ(9)-tetrahydrocannabinolic acid and cannabidiol in MPP+ affected murine mesencephalic cultures.

    Science.gov (United States)

    Moldzio, Rudolf; Pacher, Thomas; Krewenka, Christopher; Kranner, Barbara; Novak, Johannes; Duvigneau, Johanna Catharina; Rausch, Wolf-Dieter

    2012-06-15

    Cannabinoids derived from Cannabis sativa demonstrate neuroprotective properties in various cellular and animal models. Mitochondrial impairment and consecutive oxidative stress appear to be major molecular mechanisms of neurodegeneration. Therefore we studied some major cannabinoids, i.e. delta-9-tetrahydrocannabinolic acid (THCA), delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in mice mesencephalic cultures for their protective capacities against 1-methyl-4-phenyl pyridinium (MPP(+)) toxicity. MPP(+) is an established model compound in the research of parkinsonism that acts as a complex I inhibitor of the mitochondrial respiratory chain, resulting in excessive radical formation and cell degeneration. MPP(+) (10 μM) was administered for 48 h at the 9th DIV with or without concomitant cannabinoid treatment at concentrations ranging from 0.01 to 10 μM. All cannabinoids exhibited in vitro antioxidative action ranging from 669 ± 11.1 (THC), 16 ± 3.2 (THCA) to 356 ± 29.5 (CBD) μg Trolox (a vitamin E derivative)/mg substance in the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Cannabinoids were without effect on the morphology of dopaminergic cells stained by tyrosine hydroxylase (TH) immunoreaction. THC caused a dose-dependent increase of cell count up to 17.3% at 10 μM, whereas CBD only had an effect at highest concentrations (decrease of cell count by 10.1-20% at concentrations of 0.01-10 μM). It influenced the viability of the TH immunoreactive neurons significantly, whereas THCA exerts no influence on dopaminergic cell count. Exposure of cultures to 10 μM of MPP(+) for 48 h significantly decreased the number of TH immunoreactive neurons by 44.7%, and shrunken cell bodies and reduced neurite lengths could be observed. Concomitant treatment of cultures with cannabinoids rescued dopaminergic cells. Compared to MPP(+) treated cultures, THC counteracted toxic effects in a dose-dependent manner. THCA and CBD treatment at a concentration of 10

  2. Pharmacological characterization of emerging synthetic cannabinoids in HEK293T cells and hippocampal neurons.

    Science.gov (United States)

    Costain, Willard J; Tauskela, Joseph S; Rasquinha, Ingrid; Comas, Tanya; Hewitt, Melissa; Marleau, Vincent; Soo, Evelyn C

    2016-09-05

    There has been a worldwide proliferation of synthetic cannabinoids that have become marketed as legal alternatives to cannabis (marijuana). Unfortunately, there is a dearth of information about the pharmacological effects of many of these emerging synthetic cannabinoids (ESCs), which presents a challenge for regulatory authorities that need to take such scientific evidence into consideration in order to regulate ECSs as controlled substances. We aimed to characterize the pharmacological properties of ten ESCs using two cell based assays that enabled the determination of potency and efficacy relative to a panel of well-characterized cannabinoids. Agonist-mediated inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live HEK293T cells transfected with human cannabinoid receptor 1 gene (CNR1) and pGloSensor-22F. Pharmacological analysis of this data indicated that all of the ESCs tested were full agonists, with the following rank order of potency: Win 55212-2≈5F-PB-22≈AB-PINACA≈EAM-2201≈MAM-2201>JWH-250≈ PB-22>AKB48 N-(5FP)>AKB-48≈STS-135>XLR-11. Assessment of agonist-stimulated depression of Ca(2+) transients was also used to confirm the efficacy of five ESCs (XLR-11, JWH-250, AB-PINACA, 5F-PB-22, and MAM-2201) in cultured primary hippocampal neurons. This work aims to help inform decisions made by regulatory agencies concerned with the profusion of these poorly characterized recreational drugs. Copyright © 2016. Published by Elsevier B.V.

  3. Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat-an animal model of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Pandolfo, Pablo; Vendruscolo, Leandro F; Sordi, Regina; Takahashi, Reinaldo N

    2009-08-01

    Cannabis preparations are the most widely consumed illicit drugs, and their use typically begins in adolescence. The prevalence of cannabis abuse is higher in patients with attention deficit/hyperactivity disorder (ADHD) than in the general population, yet, knowledge about the motivational properties of cannabinoids in animal models of ADHD are lacking. To compare the motivational effects of the synthetic cannabinoid agonist WIN55,212-2 (WIN) in adolescent and adult spontaneously hypertensive rats (SHR), a validated animal model of ADHD, and Wistar rats, representing a "normal" genetically heterogeneous population. We also asked whether the effects of WIN depended (1) on the activation of the cerebral subtype of cannabinoid receptors, namely, the CB(1) cannabinoid receptor and (2) on putative changes by WIN in blood pressure. WIN was tested under an unbiased conditioned place preference (CPP) paradigm. Blood pressure after WIN administration was also monitored in additional groups of rats. In the Wistar rats, WIN produced place aversion only in the adult but not adolescent rats. In contrast, WIN produced CPP in both adolescent and adult SHR rats. The behavioral effects of WIN were CB(1)-mediated and not related to blood pressure. The contrasting effects of WIN in Wistar and SHR, and the higher resistance of adolescent rats to the aversive and rewarding effects of WIN in these two strains suggests that both adolescence and the ADHD-like profile exhibited by the SHR strain constitute factors that influence the motivational properties of cannabinoids.

  4. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  5. High-throughput phytochemical characterization of non-cannabinoid compounds of cannabis plant and seed, from Pakistan

    International Nuclear Information System (INIS)

    Ahmad, F.; Abbasi, T.; Farman, K.; Akrem, A.; Asif, M.; Mahmood, S.; Iqbal, M.U.

    2018-01-01

    The herbs are the natural resources for the infinite phenolic compounds that are used in pharmaceutical industry. These herbs are of significant importance due to their beneficial usage for the human health. Here, we studied a common herbs Cannabis sativa, an important member of the family Cannabaceae for phytochemical characterization. The methanol extract of whole Cannabis plant and seed was analyzed for the identification of non-cannabinoid compounds through High Performance Liquid Chromatography (HPLC) technique, because the non-cannabinoid compounds have not been much studied in C. sativa. These compounds are very useful in different diseases, used in cosmetics and as antioxidant agent. HPLC analysis revealed the presence of a variety of non-cannabinoid compounds including Quercetin, Gallic acid, p-Coumaric acid, m-Coumaric acid, Caffeic acid, Cinnamic acid, Ferulic acid, Benzoic acid and Kampferol. Furthermore, Quercetin was observed with high concentration in whole plant sample, whereas high Gallic acid and absence of m-coumaric acid was noted in the Cannabis seed. It was also observed that plant samples were with higher concentration of cinnamic acid as compared to seed. The Caffeic acid, Benzoic acid and Ferulic acid were in low concentration in both Cannabis plant and seed samples. Kampferol is another important non-cannabinoid compound that was also quantified in both samples. This research will be providing a foundation for further molecular characterization of Cannabis plant and seed for their beneficial usage. (author)

  6. Mecanismos de la acción neuroprotectora de los cannabinoides en la enfermedad de Alzheimer

    OpenAIRE

    Martín Moreno, Ana María

    2010-01-01

    El papel neuroprotector de los cannabinoides in vivo e in vitro es conocido, pero el mecanismo a través del cual llevan a cabo su acción neuroprotectora, en el contexto de la enfermedad de Alzheimer, no había sido abordado en su conjunto. Los objetivos del presente trabajo son 5: 1. Estudiar el efecto de distintos agonistas cannabinoides, en particular aquellos carentes de efectos psicoactivos, sobre funciones microgliales tales como la generación de nitritos o la migración, que puedan se...

  7. Cannabinoid CB1 receptor agonists do not decrease, but may increase, acoustic trauma-induced tinnitus in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2015-03-01

    Full Text Available Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In the present study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC and cannabidiol (CBD, delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: 1 sham (i.e. no acoustic trauma with vehicle treatment; 2 sham with drug treatment (i.e. delta-9-THC + CBD; 3 acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and 4 acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioural testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.

  8. Proximate composition, phytochemical screening, GC-MS studies of biologically active cannabinoids and antimicrobial activities of Cannabis indica

    Directory of Open Access Journals (Sweden)

    Muhammad Saqib Isahq

    2015-11-01

    Full Text Available Objective: To investigate the proximate composition, minerals analysis, phytochemical screening, gas chromatography-mass spectrometry (GC-MS studies of active cannabinoids and antimicrobial activities of Cannabis indica (C. indica leaves, stems, and seeds. Methods: Standard qualitative protocols of phytochemical screening were accomplished for the identification of biologically active phytochemicals. Minerals in plant samples were analyzed by using atomic absorption spectrophotometer. The resins of C. indica were analyzed for medicinally active cannabinoid compounds by GC-MS. The sample for GC-MS study was mixed with small quantity of n-hexane and 30 mL of acetonitrile solution for the identification of cannabinoids. Agar well diffusion method was used for antibacterial activity. For antifungal activity, the tested fungal strains were sub-cultured on Sabouraud’s dextrose agar at 28 °C. Results: Mineral analysis revealed the presence of sodium, potassium, magnesium and some other minerals in all parts of C. indica. Phytochemical investigation showed the presence of alkaloids, saponins, tannins, flavonoids, sterols and terpenoids. C. indica divulged wide spectrum of antibacterial activities against Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, and Proteus mirabilis. The extracts of plant leaves, seeds and stems showed significant antifungal activities against Aspergillus niger, Aspergillus parasiticus, and Aspergillus oryzae. The biologically active cannabinoids of delta-9-tetrahydrocannabinol (25.040% and cannabidiol (resorcinol, 2-p-mentha-1,8-dien-4-yl-5-pentyl (50.077% were found in Cannabis resin in high percentage. Conclusions: The findings of the study suggested that the existence of biologically active remedial cannabinoids in elevated concentrations and antimicrobial bioassays of C. indica make it a treasured source to be used in herbal preparation for various ailments.

  9. Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2005-01-01

    .... Here we show that expression levels of both cannabinoid receptors CB(sub 1) and CB(sub 2) are significantly higher in CA-HPV-10 and other human prostate cells LNCaP, DUI45, PC3, and CWR22RV1 than in human prostate epithelial and PZ-HPV-7 cells...

  10. Oral Fluid vs. Urine Analysis to Monitor Synthetic Cannabinoids and Classic Drugs Recent Exposure.

    Science.gov (United States)

    Blandino, Vincent; Wetzel, Jillian; Kim, Jiyoung; Haxhi, Petrit; Curtis, Richard; Concheiro, Marta

    2017-01-01

    Urine is a common biological sample to monitor recent drug exposure, and oral fluid is an alternative matrix of increasing interest in clinical and forensic toxicology. Limited data are available about oral fluid vs. urine drug disposition, especially for synthetic cannabinoids. To compare urine and oral fluid as biological matrices to monitor recent drug exposure among HIV-infected homeless individuals. Seventy matched urine and oral fluid samples were collected from 13 participants. Cannabis, amphetamines, benzodiazepines, cocaine and opiates were analyzed in urine by the enzyme-multipliedimmunoassay- technique and in oral fluid by liquid chromatography tandem mass spectrometry (LCMSMS). Eleven synthetic cannabinoids were analyzed in urine and in oral fluid by LC-MSMS. Five oral fluid samples were positive for AB-FUBINACA. In urine, 4 samples tested positive for synthetic cannabinoids PB-22, 5-Fluoro-PB-22, AB-FUBINACA, and metabolites UR-144 5-pentanoic acid and UR-144 4-hydroxypentyl. In only one case, oral fluid and urine results matched, both specimens being AB-FUBINACA positive. For cannabis, 40 samples tested positive in urine and 30 in oral fluid (85.7% match). For cocaine, 37 urine and 52 oral fluid samples were positive (75.7% match). Twenty-four urine samples were positive for opiates, and 25 in oral fluid (81.4% match). For benzodiazepines, 23 samples were positive in urine and 25 in oral fluid (85.7% match). These results offer new information about drugs disposition between urine and oral fluid. Oral fluid is a good alternative matrix to urine for monitoring cannabis, cocaine, opiates and benzodiazepines recent use; however, synthetic cannabinoids showed mixed results. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Attenuating Nicotine Reinforcement and Relapse by Enhancing Endogenous Brain Levels of Kynurenic Acid in Rats and Squirrel Monkeys.

    Science.gov (United States)

    Secci, Maria E; Auber, Alessia; Panlilio, Leigh V; Redhi, Godfrey H; Thorndike, Eric B; Schindler, Charles W; Schwarcz, Robert; Goldberg, Steven R; Justinova, Zuzana

    2017-07-01

    The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors (α7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.

  12. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    2016-01-01

    Full Text Available The expression patterns of the cannabinoid receptor type 1 (CB1R and the cannabinoid receptor type 2 (CB2R are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells and CB2R is exclusively found in the retinal glia (Müller cells. However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp. in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  13. The Endogenous Exposome

    Science.gov (United States)

    Nakamura, Jun; Mutlu, Esra; Sharma, Vyom; Collins, Leonard; Bodnar, Wanda; Yu, Rui; Lai, Yongquan; Moeller, Benjamin; Lu, Kun; Swenberg, James

    2014-01-01

    The concept of the Exposome, is a compilation of diseases and one’s lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the Endogenous Exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions. PMID:24767943

  14. Production of endogenous pyrogen.

    Science.gov (United States)

    Dinarello, C A

    1979-01-01

    The production and release of endogenous pyrogen by the host is the first step in the pathogenesis of fever. Endogenous pyrogen is a low-molecular-weight protein released from phagocytic leukocytes in response to several substances of diverse nature. Some of these agents stimulate production of endogenous pyrogen because they are toxic; others act as antigens and interact with either antibody or sensitized lymphocytes in order to induce its production. Some tumors of macrophage origin produce the molecule spontaneously. Whatever the mechanism involved, endogenous pyrogen is synthesized following transcription of new DNA and translation of mRNA into new protein. Once synthesis is completed, the molecule is released without significant intracellular storage. Recent evidence suggests that following release, molecular aggregates form which are biologically active. In its monomer form, endogenous pyrogen is a potent fever-producing substance and mediates fever by its action on the thermoregulatory center.

  15. Direct antigonadal activity of cannabinoids: suppression of rat granulosa cell functions.

    Science.gov (United States)

    Adashi, E Y; Jones, P B; Hsueh, A J

    1983-02-01

    The direct effects of delta 9-tetrahydrocannabinol (THC) and related cannabinoids on ovarian granulosa cells were studied in vitro. Granulosa cells from immature, hypophysectomized, estrogen-treated rats were cultured for 2 days in an androstenedione-supplemented medium in the presence or absence of follicle-stimulating hormone (FSH) (10 ng/ml) with or without cannabinoids. FSH treatment increased progesterone and estrogen biosynthesis, whereas concomitant treatment with THC led to a dose-dependent inhibition of the FSH-stimulated accumulation of progesterone and estrogen with ED50 values of 3.5 +/- 0.3 X 10(-7) and 1.8 +/- 0.2 X 10(-6) M, respectively. Treatment with related but nonpsychoactive cannabinoids (cannabidiol, cannabinol, cannabigerol, or cannabichromene) was equally effective. The THC-induced inhibition of progesterone production was reversible and was associated with an inhibition of pregnenolone biosynthesis and a decrease of 3 beta-hydroxysteroid dehydrogenase activity. In addition, treatment with THC brought about a dose-dependent inhibition of the FSH-induced increase in luteinizing hormone (LH) receptors. The inhibitory effects of THC were not associated with changes in cell number, protein content, or cell viability. Thus, THC exerts direct inhibitory effects on FSH-dependent functions related to steroidogenesis and the acquisition of LH receptors, all of which are essential to follicular maturation. Because plasma concentrations of THC similar to those used in this study have been reported in human beings, repeated exposure of female users to THC may lead to ovarian dysfunction, due in part, to the direct antigonadal activity to THC.

  16. Estudio preliminar del efecto de los cannabinoides sobre un adenocarcinoma mamario murino: diseño y metodologías del proyecto de investigación en curso

    OpenAIRE

    Riccillo, Fernando L.; Andrini, Laura; Martínez, Marina; Aranda, O.; Andrinolo, Darío; Morante, Marcelo; Inda, Ana María; García, Marcela

    2017-01-01

    Los cannabinoides, compuestos químicos del grupo de los terpenofenoles, ejercen su acción a partir de su asociación con receptores de membrana específicos de tipo GPCRs (CB1 y CB2, otros GPCRs). Se los clasifica en tres grupos: a) los fitocannabinoides (cannabinoides naturales de origen vegetal, provenientes de la planta C.sativa); b) cannabinoides sintéticos y c) cannabinoides endógenos (endocannabinoides) sintetizados en organismos animales incluido el hombre: AEA y 2-AG. Los dos fitocan...

  17. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment.

    Science.gov (United States)

    Richards, John R; Lapoint, Jeff M; Burillo-Putze, Guillermo

    2018-01-01

    Cannabinoid hyperemesis syndrome is a clinical disorder that has become more prevalent with increasing use of cannabis and synthetic cannabinoids, and which is difficult to treat. Standard antiemetics commonly fail to alleviate the severe nausea and vomiting characteristic of the syndrome. Curiously, cannabinoid hyperemesis syndrome patients often report dramatic relief of symptoms with hot showers and baths, and topical capsaicin. In this review, we detail the pharmacokinetics and pharmacodynamics of capsaicin and explore possible mechanisms for its beneficial effect, including activation of transient receptor potential vanilloid 1 and neurohumoral regulation. Putative mechanisms responsible for the benefit of hot water hydrotherapy are also investigated. An extensive search of PubMed, OpenGrey, and Google Scholar from inception to April 2017 was performed to identify known and theoretical thermoregulatory mechanisms associated with the endocannabinoid system. The searches resulted in 2417 articles. These articles were screened for relevant mechanisms behind capsaicin and heat activation having potential antiemetic effects. References from the selected articles were also hand-searched. A total of 137 articles were considered relevant and included. Capsaicin: Topical capsaicin is primarily used for treatment of neuropathic pain, but it has also been used successfully in some 20 cases of cannabinoid hyperemesis syndrome. The pharmacokinetics and pharmacodynamics of capsaicin as a transient receptor potential vanilloid 1 agonist may explain this effect. Topical capsaicin has a longer half-life than oral administration, thus its potential duration of benefit is longer. Capsaicin and transient receptor potential vanilloid 1: Topical capsaicin binds and activates the transient receptor potential vanilloid 1 receptor, triggering influx of calcium and sodium, as well as release of inflammatory neuropeptides leading to transient burning, stinging, and itching. This elicits

  18. Endogenous Locus Reporter Assays.

    Science.gov (United States)

    Liu, Yaping; Hermes, Jeffrey; Li, Jing; Tudor, Matthew

    2018-01-01

    Reporter gene assays are widely used in high-throughput screening (HTS) to identify compounds that modulate gene expression. Traditionally a reporter gene assay is built by cloning an endogenous promoter sequence or synthetic response elements in the regulatory region of a reporter gene to monitor transcriptional activity of a specific biological process (exogenous reporter assay). In contrast, an endogenous locus reporter has a reporter gene inserted in the endogenous gene locus that allows the reporter gene to be expressed under the control of the same regulatory elements as the endogenous gene, thus more accurately reflecting the changes seen in the regulation of the actual gene. In this chapter, we introduce some of the considerations behind building a reporter gene assay for high-throughput compound screening and describe the methods we have utilized to establish 1536-well format endogenous locus reporter and exogenous reporter assays for the screening of compounds that modulate Myc pathway activity.

  19. [Cannabinoid hyperemesis syndrome].

    Science.gov (United States)

    Stuijvenberg, Marleen P; Ramaekers, Guy M G I; Bijpost, Yan

    2011-01-01

    A 22-year-old man was referred to our clinic with a 7-year history of episodes of severe vomiting interspersed with symptom-free periods. We saw another patient, a 22-year-old woman, after she had been admitted for the second time with dehydration and hypokalaemia following severe vomiting. We saw a third patient, a 25-year-old woman with a personality disorder and cannabis addiction, after she had gone to the casualty department following several days of persistent excessive vomiting. All three patients seemed to be suffering from cannabinoid hyperemesis syndrome. This is a rarely described syndrome, characterised by the triad of chronic cannabis abuse, unexplained cyclical excessive vomiting and compulsive taking of hot baths for symptom relief. A subgroup of chronic frequent cannabis users suffer from this syndrome, which can appear for the first time several years after initial cannabis use. The exact mechanism of origin is unknown, though various theories exist. In the case of unexplained chronic symptoms of nausea and vomiting our advice is always to question the patient about substance misuse, and showering and bathing habits.

  20. Examination of the Addictive and Behavioral Properties of Fatty Acid Binding Protein Inhibitor SBFI26

    Directory of Open Access Journals (Sweden)

    Panayotis eThanos

    2016-04-01

    Full Text Available Abstract:The therapeutic properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction, as well as their potential for addiction. Recent research on the natural lipid ligands of cannabinoid receptors, also known as endocannabinoids, have shed light on the mechanisms of intracellular transport of the endocannabinoid anandamide by fatty acid binding proteins (FABPs and subsequent catabolism by fatty acid amide hydrolase (FAAH. These findings facilitated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The goal of this study was to examine this compound for any possible rewarding and addictive properties as well as effects on locomotor activity, working / recognition memory, and propensity for sociability and preference for social novelty given its recently reported anti-inflammatory and analgesic properties. Male C57BL mice were split into four treatment groups and conditioned with 5.0 mg/kg, 20.0 mg/kg, 40.0 mg/kg SBFI26 or vehicle during a conditioned placed preference (CPP paradigm. Following CPP, mice underwent a battery of behavioral tests (open field, novel object recognition (NOR, and social interaction (SI and novelty (SN paired with acute SBFI26 administration. Results showed that SBFI26 did not produce conditioned placed preference or conditioned place aversion regardless of dose, and did not induce any differences in locomotor and exploratory activity during CPP or SBFI26-paired open field activity. We also observed no differences between treatment groups in NOR, SI, and SN. In conclusion, as SBFI26 was shown previously by our group to have significant analgesic and anti-inflammatory properties, here we show that it does not pose a risk of dependence or motor and cognitive impairment under the conditions tested.

  1. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  2. Marijuana and cannabinoid regulation of brain reward circuits

    OpenAIRE

    Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F

    2004-01-01

    The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Δ9-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation o...

  3. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms.

    Science.gov (United States)

    De Petrocellis, Luciano; Ligresti, Alessia; Schiano Moriello, Aniello; Iappelli, Mariagrazia; Verde, Roberta; Stott, Colin G; Cristino, Luigia; Orlando, Pierangelo; Di Marzo, Vincenzo

    2013-01-01

    Cannabinoid receptor activation induces prostate carcinoma cell (PCC) apoptosis, but cannabinoids other than Δ(9) -tetrahydrocannabinol (THC), which lack potency at cannabinoid receptors, have not been investigated. Some of these compounds antagonize transient receptor potential melastatin type-8 (TRPM8) channels, the expression of which is necessary for androgen receptor (AR)-dependent PCC survival. We tested pure cannabinoids and extracts from Cannabis strains enriched in particular cannabinoids (BDS), on AR-positive (LNCaP and 22RV1) and -negative (DU-145 and PC-3) cells, by evaluating cell viability (MTT test), cell cycle arrest and apoptosis induction, by FACS scans, caspase 3/7 assays, DNA fragmentation and TUNEL, and size of xenograft tumours induced by LNCaP and DU-145 cells. Cannabidiol (CBD) significantly inhibited cell viability. Other compounds became effective in cells deprived of serum for 24 h. Several BDS were more potent than the pure compounds in the presence of serum. CBD-BDS (i.p.) potentiated the effects of bicalutamide and docetaxel against LNCaP and DU-145 xenograft tumours and, given alone, reduced LNCaP xenograft size. CBD (1-10 µM) induced apoptosis and induced markers of intrinsic apoptotic pathways (PUMA and CHOP expression and intracellular Ca(2+)). In LNCaP cells, the pro-apoptotic effect of CBD was only partly due to TRPM8 antagonism and was accompanied by down-regulation of AR, p53 activation and elevation of reactive oxygen species. LNCaP cells differentiated to androgen-insensitive neuroendocrine-like cells were more sensitive to CBD-induced apoptosis. These data support the clinical testing of CBD against prostate carcinoma. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  4. Efectos cardiovasculares debido al consumo de cannabinoides

    Directory of Open Access Journals (Sweden)

    Oscar J. León

    2018-05-01

    Full Text Available Resumen: Objetivo: dar a conocer los efectos cardiovasculares secundarios al consumo de marihuana según lo reportado en la literatura médica. Métodos: se realizó una búsqueda con los términos MESH “Cannabis”, “Marijuana smoking” y “adverse effects” en la base de datos PubMed hasta el año 2016. Se obtuvieron 265 referencias. Se excluyeron cartas de editores, protocolos de investigación en proceso, población pediátrica (menores de 18 años, embarazadas, referencias en idiomas diferentes a inglés y español y se escogieron solo referencias relacionadas con efectos cardiovasculares. Resultados: se han establecido dos tipos de receptores de cannabinoides, los CB1 y los CB2, con localizaciones a nivel del sistema nervioso central, endotelial, renal y músculo liso. En la actualidad el consumo de marihuana ha venido en aumento y los médicos poco conocen de sus efectos y los diferentes nombres comerciales para esta sustancia. Existen efectos protectores a nivel vascular con detención de la progresión de la placa aterosclerótica y a la vez múltiples efectos no deseados como taquicardia, hipotensión y bradicardia. Múltiples reportes de caso documentan la relación de la marihuana con el infarto agudo de miocardio con o sin lesión de las arterias coronarias, así como con hemorragia subaracnoidea, pero no existen mecanismos claramente descritos que expliquen una relación directa con estos desenlaces. Conclusiones: se conoce la fisiopatología y los receptores donde actúan los cannabinoides generando efectos tanto protectores como dañinos. Existe fuerte correlación con enfermedad cardiovascular, principalmente síndrome coronario agudo, pero el mecanismo fisiopatológico aún no es claro. Abstract: Objective: To determine the cardiovascular side-effects of smoking marihuana according to that reported in the medical literature. Methods: A search was performed using the MeSH terms, “Cannabis”, “Marijuana smoking” and

  5. Activation of the cannabinoid system in the nucleus accumbens affects effort-based decision making.

    Science.gov (United States)

    Fatahi, Zahra; Haghparast, Abbas

    2018-02-01

    Effort-based decision making addresses how we make an action choice based on an integration of action and goal values. The nucleus accumbens (NAc) is implicated in allowing an animal to overcome effort constraints to obtain greater benefits, and it has been previously shown that cannabis derivatives may affect such processes. Therefore, in this study, we intend to evaluate the involvement of the cannabinoid system in the entire NAc on effort-based decision making. Rats were trained in a T-maze cost-benefit decision making the task in which they could choose either to climb a barrier to obtain a large reward in one arm or run into the other arm without a barrier to obtaining a small reward. Following training, the animals were bilaterally implanted with guide cannulae in the NAc. On test day, rats received cannabinoid agonist (Win 55,212-2; 2, 10 and 50μM) and/or antagonist (AM251; 45μM), afterward percentage of large reward choice and latency of reward attainment were investigated. Results revealed that the administration of cannabinoid agonist led to decrease of large reward choice percentage such that the animals preferred to receive a small reward with low effort instead of receiving a large reward with high effort. The administration of antagonist solely did not affect effort-based decision making, but did attenuate the Win 55,212-2-induced impairments in effort allocation. In agonist-treated animals, the latency of reward collection increased. Moreover, when the effort was equated on both arms, the animals returned to choosing large reward showing that obtained results were not caused by spatial memory impairment. Our finding suggested that activation of the cannabinoid system in the NAc impaired effort-based decision making and led to rats were less willing to invest the physical effort to gain large reward. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    Science.gov (United States)

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. © The Author(s) 2016.

  7. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  8. Endogenous Prospect Theory

    OpenAIRE

    Schmidt, Ulrich; Zank, Horst

    2010-01-01

    In previous models of (cumulative) prospect theory reference-dependence of preferences is imposed beforehand and the location of the reference point is exogenously determined. This paper provides an axiomatization of a new specification of cumulative prospect theory, termed endogenous prospect theory, where reference-dependence is derived from preference conditions and a unique reference point arises endogenously.

  9. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits.

    Science.gov (United States)

    Lau, Benjamin K; Cota, Daniela; Cristino, Luigia; Borgland, Stephanie L

    2017-09-15

    The endocannabinoid system has emerged as a key player in the control of eating. Endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide (AEA), modulate neuronal activity via cannabinoid 1 receptors (CB1Rs) in multiple nuclei of the hypothalamus to induce or inhibit food intake depending on nutritional and hormonal status, suggesting that endocannabinoids may act in the hypothalamus to integrate different types of signals informing about the animal's energy needs. In the mesocorticolimbic system, (endo)cannabinoids modulate synaptic transmission to promote dopamine release in response to palatable food. In addition, (endo)cannabinoids act within the nucleus accumbens to increase food's hedonic impact; although this effect depends on activation of CB1Rs at excitatory, but not inhibitory inputs in the nucleus accumbens. While hyperactivation of the endocannabinoid system is typically associated with overeating and obesity, much evidence has emerged in recent years suggesting a more complicated system than first thought - endocannabinoids promote or suppress feeding depending on cell and input type, or modulation by various neuronal or hormonal signals. This review presents our latest knowledge of the endocannabinoid system in non-homeostatic and homeostatic feeding circuits. In particular, we discuss the functional role and cellular mechanism of action by endocannabinoids within the hypothalamus and mesocorticolimbic system, and how these are modulated by neuropeptide signals related to feeding. In light of recent advances and complexity in the field, we review cannabinoid-based therapeutic strategies for the treatment of obesity and how peripheral restriction of CB1R antagonists may provide a different mechanism of weight loss without the central adverse effects. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology". Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rhabdomyolysis and Renal Insufficiency Due to Synthetic Cannabinoid Intoxication

    Directory of Open Access Journals (Sweden)

    Semiha Orhan

    2017-12-01

    Full Text Available Bonsai is the street name of synthetic marijuana, which is a psychoactive substance. Since synthetic cannabinoids are easily accessible and cheap, their use is becoming widespread day by day. It can cause not only various clinical symptoms but also severe rhabdomyolysis. In this case, with severe rhabdomyolysis, we tried to discuss the treatment challenges of the patient examined in intensive care unit with the history of bonsai use.

  11. Schedules of controlled substances: temporary placement of three synthetic cannabinoids into Schedule I. Final order.

    Science.gov (United States)

    2013-05-16

    The Deputy Administrator of the Drug Enforcement Administration (DEA) is issuing this final order to temporarily schedule three synthetic cannabinoids under the Controlled Substances Act (CSA) pursuant to the temporary scheduling provisions of 21 U.S.C. 811(h). The substances are (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144), [1-(5-fluoro-pentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (5-fluoro-UR-144, XLR11) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA, AKB48). This action is based on a finding by the Deputy Administrator that the placement of these synthetic cannabinoids and their salts, isomers and salts of isomers into Schedule I of the CSA is necessary to avoid an imminent hazard to the public safety. As a result of this order, the full effect of the CSA and the Controlled Substances Import and Export Act (CSIEA) and their implementing regulations including criminal, civil and administrative penalties, sanctions and regulatory controls of Schedule I substances will be imposed on the manufacture, distribution, possession, importation, and exportation of these synthetic cannabinoids.

  12. Effects of ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L

    International Nuclear Information System (INIS)

    Lydon, J.

    1986-01-01

    The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. Δ 9 -Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO 2 assimilation rates from 26 to 32 0 C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of Δ 9 -THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of Δ 9 -THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but Δ 9 -THC and cannabichromene did not

  13. Effects of ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L

    Energy Technology Data Exchange (ETDEWEB)

    Lydon, J.

    1986-01-01

    The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. ..delta../sup 9/-Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO/sub 2/ assimilation rates from 26 to 32/sup 0/C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of ..delta../sup 9/-THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of ..delta../sup 9/-THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but ..delta../sup 9/-THC and cannabichromene did not.

  14. First Characterization of AKB-48 Metabolism, a Novel Synthetic Cannabinoid, Using Human Hepatocytes and High-Resolution Mass Spectrometry

    OpenAIRE

    Gandhi, Adarsh S.; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B.; Liu, Hua-fen; Huestis, Marilyn A.

    2013-01-01

    Since the federal authorities scheduled the first synthetic cannabinoids, JWH-018 and JWH-073, new synthetic cannabinoids were robustly marketed. N-(1-Adamantyl)-1-pentylindazole-3-carboxamide (AKB-48), also known as APINACA, was recently observed in Japanese herbal smoking blends. The National Forensic Laboratory Information System registered 443 reports of AKB-48 cases in the USA from March 2010 to January 2013. In May 2013, the Drug Enforcement Administration listed AKB-48 as a Schedule I ...

  15. Consequences of Adolescent Exposure to the Cannabinoid Receptor Agonist WIN55,212-2 on Working Memory in Female Rats

    OpenAIRE

    Erin K. Kirschmann; Daniel M. McCalley; Caitlyn M. Edwards; Caitlyn M. Edwards; Mary M. Torregrossa; Mary M. Torregrossa

    2017-01-01

    Marijuana is a prevalent illicit substance used by adolescents, and several studies have indicated that adolescent use can lead to long-term cognitive deficits including problems with attention and memory. However, preclinical animal studies that observe cognitive deficits after cannabinoid exposure during adolescence utilize experimenter administration of doses of cannabinoids that may exceed what an organism would choose to take, suggesting that contingency and dose are critical factors tha...

  16. Cannabinoids concentration variability in cannabis olive oil galenic preparations.

    Science.gov (United States)

    Carcieri, Chiara; Tomasello, Cristina; Simiele, Marco; De Nicolò, Amedeo; Avataneo, Valeria; Canzoneri, Luca; Cusato, Jessica; Di Perri, Giovanni; D'Avolio, Antonio

    2018-01-01

    Knowledge of the exact concentration of active compounds in galenic preparations is crucial to be able to ensure their quality and to properly administer the prescribed dose. Currently, the need for titration of extracts is still debated. Considering this, together with the absence of a standard preparation method, the aim of this study was to evaluate cannabinoids concentrations variability in galenic olive oil extracts, to evaluate the interlot and interlaboratory variability in the extraction yield and in the preparation composition. Two hundred and one extracts (123 (61.2%) from Bedrocan ® , 54 (26.9%) from Bediol ® , 11 (5.5%) from Bedrolite ® , and 13 (6.5%) from mixed preparations) were analysed by liquid chromatography coupled with tandem mass spectrometry, quantifying cannabinoids (THC, CBD, THCA, CBDA and CBN) concentrations. The RSD% of THC and CBD concentrations resulted higher than 50%. Specifically for Bedrocan ® , Bediol ® , Bedrolite ® (5 g/50 ml), these were THC 82%, THC 53% and CBD 91%, THC 58% and CBD 59%, respectively. The median extraction yields were greater than 75% for all preparations. Our results highlighted a wide variability in THC and CBD concentrations that justify the need for titration and opens further questions about other pharmaceutical preparations without regulatory indication for this procedure. © 2017 Royal Pharmaceutical Society.

  17. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion.

    Science.gov (United States)

    López-Gallardo, M; López-Rodríguez, A B; Llorente-Berzal, Á; Rotllant, D; Mackie, K; Armario, A; Nadal, R; Viveros, M-P

    2012-03-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9-10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28-42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug "per se" induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. MATERNAL DEPRIVATION AND ADOLESCENT CANNABINOID EXPOSURE IMPACT HIPPOCAMPAL ASTROCYTES, CB1 RECEPTORS AND BRAIN-DERIVED NEUROTROPHIC FACTOR IN A SEXUALLY DIMORPHIC FASHION

    Science.gov (United States)

    LÓPEZ-GALLARDO, M.; LÓPEZ-RODRÍGUEZ, A. B.; LLORENTE-BERZAL, Á.; ROTLLANT, D.; MACKIE, K.; ARMARIO, A.; NADAL, R.; VIVEROS, M.-P.

    2013-01-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9–10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28–42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug “per se” induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments. PMID:22001306

  19. Cannabinoids Reverse the Effects of Early Stress on Neurocognitive Performance in Adulthood

    Science.gov (United States)

    Alteba, Shirley; Korem, Nachshon; Akirav, Irit

    2016-01-01

    Early life stress (ES) significantly increases predisposition to psychopathologies. Cannabinoids may cause cognitive deficits and exacerbate the effects of ES. Nevertheless, the endocannabinoid system has been suggested as a therapeutic target for the treatment of stress- and anxiety-related disorders. Here we examined whether cannabinoids…

  20. Effects of the cannabinoid CB1 receptor agonist CP55,940 and antagonist SR141716A on d-amphetamine-induced behaviours in Cebus monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda; Werge, Thomas

    2006-01-01

    Several clinical studies have shown that alterations in the cannabinoid system in the brain may be associated with schizophrenia. Although evidence points towards an antipsychotic potential for cannabinoid antagonists, experimental studies have shown inconsistent behavioural effects of cannabinoi...

  1. On the origins of endogenous thoughts.

    Science.gov (United States)

    Tillas, Alexandros

    2017-05-01

    Endogenous thoughts are thoughts that we activate in a top-down manner or in the absence of the appropriate stimuli. We use endogenous thoughts to plan or recall past events. In this sense, endogenous thinking is one of the hallmarks of our cognitive lives. In this paper, I investigate how it is that we come to possess endogenous control over our thoughts. Starting from the close relation between language and thinking, I look into speech production-a process motorically controlled by the inferior frontal gyrus (IFG). Interestingly, IFG is also closely related to silent talking, as well as volition. The connection between IFG and volition is important given that endogenous thoughts are or at least greatly resemble voluntary actions. Against this background, I argue that IFG is key to understanding the origins of conscious endogenous thoughts. Furthermore, I look into goal-directed thinking and show that IFG plays a key role also in unconscious endogenous thinking.

  2. Toxic Effects of Cannabis and Cannabinoids: Animal Data

    Directory of Open Access Journals (Sweden)

    Pierre Beaulieu

    2005-01-01

    Full Text Available The present article reviews the main toxic effects of cannabis and cannabinoids in animals. Toxic effects can be separated into acute and chronic classifications. Acute toxicity studies show that it is virtually impossible to die from acute administration of marijuana or tetrahydrocannabinol, the main psychoactive component of cannabis. Chronic toxicity involves lesions of airway and lung tissues, as well as problems of neurotoxicity, tolerance and dependence, and dysregulations in the immune and hormonal systems. Animal toxicity data, however, are difficult to extrapolate to humans.

  3. Cannabinoid and opioid interactions: implications for opiate dependence and withdrawal.

    Science.gov (United States)

    Scavone, J L; Sterling, R C; Van Bockstaele, E J

    2013-09-17

    Withdrawal from opiates, such as heroin or oral narcotics, is characterized by a host of aversive physical and emotional symptoms. High rates of relapse and limited treatment success rates for opiate addiction have prompted a search for new approaches. For many opiate addicts, achieving abstinence may be further complicated by poly-drug use and co-morbid mental disorders. Research over the past decade has shed light on the influence of endocannabinoids (ECs) on the opioid system. Evidence from both animal and clinical studies point toward an interaction between these two systems, and suggest that targeting the EC system may provide novel interventions for managing opiate dependence and withdrawal. This review will summarize the literature surrounding the molecular effects of cannabinoids and opioids on the locus coeruleus-norepinephrine system, a key circuit implicated in the negative sequelae of opiate addiction. A consideration of the trends and effects of marijuana use in those seeking treatment to abstain from opiates in the clinical setting will also be presented. In summary, the present review details how cannabinoid-opioid interactions may inform novel interventions in the management of opiate dependence and withdrawal. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Mechanisms of Broad-Spectrum Antiemetic Efficacy of Cannabinoids against Chemotherapy-Induced Acute and Delayed Vomiting

    Directory of Open Access Journals (Sweden)

    Nissar A. Darmani

    2010-09-01

    Full Text Available Chemotherapy-induced nausea and vomiting (CINV is a complex pathophysiological condition and consists of two phases. The conventional CINV neurotransmitter hypothesis suggests that the immediate phase is mainly due to release of serotonin (5-HT from the enterochromaffin cells in the gastrointestinal tract (GIT, while the delayed phase is a consequence of release of substance P (SP in the brainstem. However, more recent findings argue against this simplistic neurotransmitter and anatomical view of CINV. Revision of the hypothesis advocates a more complex, differential and overlapping involvement of several emetic neurotransmitters/modulators (e.g. dopamine, serotonin, substance P, prostaglandins and related arachidonic acid derived metabolites in both phases of emesis occurring concomitantly in the brainstem and in the GIT enteric nervous system (ENS [1]. No single antiemetic is currently available to completely prevent both phases of CINV. The standard antiemetic regimens include a 5-HT3 antagonist plus dexamethasone for the prevention of acute emetic phase, combined with an NK1 receptor antagonist (e.g. aprepitant for the delayed phase. Although NK1 antagonists behave in animals as broad-spectrum antiemetics against different emetogens including cisplatin-induced acute and delayed vomiting, by themselves they are not very effective against CINV in cancer patients. Cannabinoids such as D9-THC also behave as broad-spectrum antiemetics against diverse emetic stimuli as well as being effective against both phases of CINV in animals and patients. Potential side effects may limit the clinical utility of direct-acting cannabinoid agonists which could be avoided by the use of corresponding indirect-acting agonists. Cannabinoids (both phyto-derived and synthetic behave as agonist antiemetics via the activation of cannabinoid CB1 receptors in both the brainstem and the ENS emetic loci. An endocannabinoid antiemetic tone may exist since inverse CB1

  5. The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice.

    Science.gov (United States)

    Sophocleous, A; Börjesson, A E; Salter, D M; Ralston, S H

    2015-09-01

    Cannabinoid receptors and their ligands have been implicated in the regulation of various physiological processes but their role in osteoarthritis has not been investigated. The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice. We analysed the severity of knee osteoarthritis as assessed by the Osteoarthritis Research Society International (OARSI) scoring system in mice with targeted deletion of Cnr2 (Cnr2(-/-)) and wild type (WT) littermates. Studies were conducted in mice subjected to surgical destabilisation of the medial meniscus (DMM) and in those with spontaneous age-related osteoarthritis (OA). Osteoarthritis was more severe following DMM in the medial compartment of the knee in Cnr2(-/-) compared with WT mice (mean ± sem score = 4.9 ± 0.5 vs 3.6 ± 0.3; P = 0.017). Treatment of WT mice with the CB2-selective agonist HU308 following DMM reduced the severity of OA in the whole joint (HU308 = 8.4 ± 0.2 vs vehicle = 10.4 ± 0.6; P = 0.007). Spontaneous age related osteoarthritis was also more severe in the medial compartment of the knee in 12-month old Cnr2(-/-) mice compared with WT (5.6 ± 0.5 vs 3.5 ± 0.3, P = 0.008). Cultured articular chondrocytes from Cnr2(-/-) mice produced less proteoglycans in vitro than wild type chondrocytes. These studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect. Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. New designer drugs (synthetic cannabinoids and synthetic cathinones): review of literature.

    Science.gov (United States)

    Cottencin, Olivier; Rolland, Benjamin; Karila, Laurent

    2014-01-01

    New designer drugs (synthetic cannabinoids and synthetic cathinones) are new "legal highs" that are sold online for recreational public or private use. Synthetic cannabinoids are psychoactive herbal and chemical products that mimic the effects of cannabis when used. These drugs are available on the Internet or in head shops as incense or air fresheners to circumvent the law. Cathinone is a naturally occurring beta-ketone amphetamine analog found in the leaves of the Catha edulis plant. Synthetic cathinones are phenylalkylamine derivatives that may possess amphetamine-like properties. These drugs are sold online as bath salts. Designer drugs are often labeled as "not for human consumption" to circumvent drug abuse legislation. The absence of legal risks, the ease of obtaining these drugs, the moderate cost, and the availability via the Internet are the main features that attract users, but the number of intoxicated people presenting with emergencies is increasing. There is evidence that negative health and social consequences may affect recreational and chronic users. The addictive potential of designer drugs is not negligible.

  7. Cannabis smoke condensate III: the cannabinoid content of vaporised Cannabis sativa.

    Science.gov (United States)

    Pomahacova, B; Van der Kooy, F; Verpoorte, R

    2009-11-01

    Cannabis sativa is a well-known recreational drug and, as such, a controlled substance of which possession and use are illegal in most countries of the world. Due to the legal constraints on the possession and use of C. sativa, relatively little research on the medicinal qualities of this plant has been conducted. Interest in the medicinal uses of this plant has, however, increased in the last decades. The methods of administration for medicinal purposes are mainly through oral ingestion, smoking, and nowadays also inhalation through vaporization. During this study the commercially available Volcano vaporizing device was compared with cannabis cigarette smoke. The cannabis smoke and vapor (obtained at different temperatures) were quantitatively analyzed by high-performance liquid chromatography (HPLC). In addition, different quantities of cannabis material were also tested with the vaporizer. The cannabinoids:by-products ratio in the vapor obtained at 200 degrees C and 230 degrees C was significantly higher than in the cigarette smoke. The worst ratio of cannabinoids:by-products was obtained from the vaporized cannabis sample at 170 degrees C.

  8. Effects of various cannabinoid ligands on choice behaviour in a rat model of gambling.

    Science.gov (United States)

    Gueye, Aliou B; Trigo, Jose M; Vemuri, Kiran V; Makriyannis, Alexandros; Le Foll, Bernard

    2016-04-01

    It is estimated that 0.6-1% of the population in the USA and Canada fulfil the Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-5) criteria for gambling disorders (GD). To date, there are no approved pharmacological treatments for GD. The rat gambling task (rGT) is a recently developed rodent analogue of the Iowa gambling task in which rats are trained to associate four response holes with different magnitudes and probabilities of food pellet rewards and punishing time-out periods. Similar to healthy human volunteers, most rats adopt the optimal strategies (optimal group). However, a subset of animals show preference for the disadvantageous options (suboptimal group), mimicking the choice pattern of patients with GD. Here, we explored for the first time the effects of various cannabinoid ligands (WIN 55,212-2, AM 4113, AM 630 and URB 597) on the rGT. Administration of the cannabinoid agonist CB1/CB2 WIN 55,212-2 improved choice strategy and increased choice latency in the suboptimal group, but only increased perseverative behaviour, when punished, in the optimal group. Blockade of CB1 or CB2 receptors or inhibition of fatty-acid amide hydrolase did not affect rGT performance. These results suggest that stimulation of cannabinoid receptors could affect gambling choice behaviours differentially in some subgroups of subjects.

  9. Habits, aspirations and endogenous fertility

    OpenAIRE

    Luciano Fanti

    2012-01-01

    Motivated by the increasing literature on endogenous preferences as well as on endogenous fertility, this paper investigates the implications of the interaction of the endogenous determination of the number of children with habit and aspiration formation in an OLG model. In contrast with the previous literature, we show that greater aspirations may lead to higher savings, and more interestingly, always increase the neoclassical economic growth.

  10. Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Pacifici, Roberta; Marchei, Emilia; Salvatore, Francesco; Guandalini, Luca; Busardò, Francesco Paolo; Pichini, Simona

    2017-08-28

    Cannabis has been used since ancient times to relieve neuropathic pain, to lower intraocular pressure, to increase appetite and finally to decrease nausea and vomiting. The combination of the psychoactive cannabis alkaloid Δ9-tetrahydrocannabinol (THC) with the non-psychotropic alkaloids cannabidiol (CBD) and cannabinol (CBN) demonstrated a higher activity than THC alone. The Italian National Institute of Health sought to establish conditions and indications on how to correctly use nationally produced cannabis to guarantee therapeutic continuity in individuals treated with medical cannabis. The evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil was conducted using an easy and fast ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) assay. Extraction efficiency of oil was significantly higher than that of water with respect to the different cannabinoids. This was especially observed in the case of the pharmacologically active THC, CBD and their acidic precursors. Fifteen minutes boiling was sufficient to achieve the highest concentrations of cannabinoids in the cannabis tea solutions. At ambient temperature, a significant THC and CBD decrease to 50% or less of the initial concentration was observed over 3 and 7 days, respectively. When refrigerated at 4 °C, similar decreasing profiles were observed for the two compounds. The cannabinoids profile in cannabis oil obtained after pre-heating the flowering tops at 145 °C for 30 min in a static oven resulted in a complete decarboxylation of cannabinoid acids CBDA and THCA-A. Nevertheless, it was apparent that heat not only decarboxylated acidic compounds, but also significantly increased the final concentrations of cannabinoids in oil. The stability of cannabinoids in oil samples was higher than that in tea samples since the maximum decrease (72% of initial concentration) was observed in THC coming from unheated flowering

  11. Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR.

    Science.gov (United States)

    Happyana, Nizar; Agnolet, Sara; Muntendam, Remco; Van Dam, Annie; Schneider, Bernd; Kayser, Oliver

    2013-03-01

    Trichomes, especially the capitate-stalked glandular hairs, are well known as the main sites of cannabinoid and essential oil production of Cannabis sativa. In this study the distribution and density of various types of Cannabis sativa L. trichomes, have been investigated by scanning electron microscopy (SEM). Furthermore, glandular trichomes were isolated over the flowering period (8 weeks) by laser microdissection (LMD) and the cannabinoid profile analyzed by LCMS. Cannabinoids were detected in extracts of 25-143 collected cells of capitate-sessile and capitate stalked trichomes and separately in the gland (head) and the stem of the latter. Δ(9)-Tetrahydrocannabinolic acid [THCA (1)], cannabidiolic acid [CBDA (2)], and cannabigerolic acid [CBGA (3)] were identified as most-abundant compounds in all analyzed samples while their decarboxylated derivatives, Δ(9)-tetrahydrocannabinol [THC (4)], cannabidiol [CBD (5)], and cannabigerol [CBG (6)], co-detected in all samples, were present at significantly lower levels. Cannabichromene [CBC (8)] along with cannabinol (CBN (9)) were identified as minor compounds only in the samples of intact capitate-stalked trichomes and their heads harvested from 8-week old plants. Cryogenic nuclear magnetic resonance spectroscopy (NMR) was used to confirm the occurrence of major cannabinoids, THCA (1) and CBDA (2), in capitate-stalked and capitate-sessile trichomes. Cryogenic NMR enabled the additional identification of cannabichromenic acid [CBCA (7)] in the dissected trichomes, which was not possible by LCMS as standard was not available. The hereby documented detection of metabolites in the stems of capitate-stalked trichomes indicates a complex biosynthesis and localization over the trichome cells forming the glandular secretion unit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Cannabinoids in attention-deficit/hyperactivity disorder: A randomised-controlled trial.

    Science.gov (United States)

    Cooper, Ruth E; Williams, Emma; Seegobin, Seth; Tye, Charlotte; Kuntsi, Jonna; Asherson, Philip

    2017-08-01

    Adults with ADHD describe self-medicating with cannabis, with some reporting a preference for cannabis over ADHD medications. A small number of psychiatrists in the US prescribe cannabis medication for ADHD, despite there being no evidence from randomised controlled studies. The EMA-C trial (Experimental Medicine in ADHD-Cannabinoids) was a pilot randomised placebo-controlled experimental study of a cannabinoid medication, Sativex Oromucosal Spray, in 30 adults with ADHD. The primary outcome was cognitive performance and activity level using the QbTest. Secondary outcomes included ADHD and emotional lability (EL) symptoms. From 17.07.14 to 18.06.15, 30 participants were randomly assigned to the active (n=15) or placebo (n=15) group. For the primary outcome, no significant difference was found in the ITT analysis although the overall pattern of scores was such that the active group usually had scores that were better than the placebo group (Est=-0.17, 95%CI-0.40 to 0.07, p=0.16, n=15/11 active/placebo). For secondary outcomes Sativex was associated with a nominally significant improvement in hyperactivity/impulsivity (p=0.03) and a cognitive measure of inhibition (p=0.05), and a trend towards improvement for inattention (p=0.10) and EL (p=0.11). Per-protocol effects were higher. Results did not meet significance following adjustment for multiple testing. One serious (muscular seizures/spasms) and three mild adverse events occurred in the active group and one serious (cardiovascular problems) adverse event in the placebo group. Adults with ADHD may represent a subgroup of individuals who experience a reduction of symptoms and no cognitive impairments following cannabinoid use. While not definitive, this study provides preliminary evidence supporting the self-medication theory of cannabis use in ADHD and the need for further studies of the endocannabinoid system in ADHD. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  13. Quantification of Cannabinoids and their Free and Glucuronide Metabolites in Whole Blood by Disposable Pipette Extraction and Liquid Chromatography Tandem Mass Spectrometry

    Science.gov (United States)

    Scheidweiler, Karl B.; Newmeyer, Matthew N.; Barnes, Allan J.; Huestis, Marilyn A.

    2016-01-01

    Identifying recent cannabis intake is confounded by prolonged cannabinoid excretion in chronic frequent cannabis users. We previously observed detection times ≤2.1 h for cannabidiol (CBD) and cannabinol (CBN) and THC-glucuronide in whole blood after smoking, suggesting their applicability for identifying recent intake. However, whole blood collection may not occur for up to 4 h during driving under the influence of drugs investigations, making a recent-use marker with a 6-8 h detection window helpful for improving whole blood cannabinoid interpretation. Other minor cannabinoids cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV), and its metabolite 11-nor-9-carboxy-THCV (THCVCOOH) might also be useful. We developed and validated a sensitive and specific liquid chromatography-tandem mass spectrometry method for quantification of THC, its phase I and glucuronide phase II metabolites, and 5 five minor cannabinoids. Cannabinoids were extracted from 200 μL whole blood via disposable pipette extraction, separated on a C18 column, and detected via electrospray ionization in negative mode with scheduled multiple reaction mass spectrometric monitoring. Linear ranges were 0.5-100 μg/L for THC and THCCOOH; 0.5-50 μg/L for 11-OH-THC, CBD, CBN, and THC-glucuronide; 1-50 μg/L for CBG, THCV, and THCVCOOH; and 5-500 μg/L for THCCOOH-glucuronide. Inter-day accuracy and precision at low, mid and high quality control (QC) concentrations were 95.1-113% and 2.4-8.5%, respectively (n=25). Extraction recoveries and matrix effects at low and high QC concentrations were 54.0-84.4% and −25.8-30.6%, respectively. By simultaneously monitoring multiple cannabinoids and metabolites, identification of recent cannabis administration or discrimination between licit medicinal and illicit recreational cannabis use can be improved. PMID:27236483

  14. Pharmacotherapeutic considerations for use of cannabinoids to relieve pain in patients with malignant diseases

    Directory of Open Access Journals (Sweden)

    Darkovska-Serafimovska M

    2018-04-01

    Full Text Available Marija Darkovska-Serafimovska,1 Tijana Serafimovska,2 Zorica Arsova-Sarafinovska,1 Sasho Stefanoski,3 Zlatko Keskovski,3 Trajan Balkanov4 1Department of Pharmacology, Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia; 2Faculty of Pharmacy, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia; 3NYSK Holdings, Skopje, Republic of Macedonia; 4Department of Pharmacology and Toxicology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia Purpose: The aim of this review was to assess the efficacy of cannabis preparations for relieving pain in patients with malignant diseases, through a systematic review of randomized controlled trials (RCTs, which were predominantly double-blind trials that compared cannabis preparation to a placebo.Methods: An electronic search of all literature published until June 2017 was made in MEDLINE/PubMed, Embase, The Cochrane Controlled Trials Register and specific web pages devoted to cannabis.Results: Fifteen of the 18 trials demonstrated a significant analgesic effect of cannabinoids as compared to placebo. The most commonly reported adverse effects were generally well tolerated, mild to moderate. The main side effects were drowsiness, nausea, vomiting and dry mouth. There is evidence that cannabinoids are safe and modestly effective in neuropathic pain and also for relieving pain in patients with malignant diseases. The proportion of “responders” (patients who at the end of 2 weeks of treatment reported ≥30% reduction in pain intensity on a scale of 0–10, which is considered to be clinically important was 43% in comparison with placebo (21%. Conclusion: The target dose for relieving pain in patients with malignant diseases is most likely about 10 actuations per day, which is about 27 mg tetrahydrocannabinol (THC and 25 mg cannabidiol (CBD, and the highest approved recommended dose is 12 actuations per day (32 mg THC

  15. Addressing the stimulant treatment gap: A call to investigate the therapeutic benefits potential of cannabinoids for crack-cocaine use.

    Science.gov (United States)

    Fischer, Benedikt; Kuganesan, Sharan; Gallassi, Andrea; Malcher-Lopes, Renato; van den Brink, Wim; Wood, Evan

    2015-12-01

    Crack-cocaine use is prevalent in numerous countries, yet concentrated primarily - largely within urban contexts - in the Northern and Southern regions of the Americas. It is associated with a variety of behavioral, physical and mental health and social problems which gravely affect users and their environments. Few evidence-based treatments for crack-cocaine use exist and are available to users in the reality of street drug use. Numerous pharmacological treatments have been investigated but with largely disappointing results. An important therapeutic potential for crack-cocaine use may rest in cannabinoids, which have recently seen a general resurgence for varied possible therapeutic usages for different neurological diseases. Distinct potential therapeutic benefits for crack-cocaine use and common related adverse symptoms may come specifically from cannabidiol (CBD) - one of the numerous cannabinoid components found in cannabis - with its demonstrated anxiolytic, anti-psychotic, anti-convulsant effects and potential benefits for sleep and appetite problems. The possible therapeutic prospects of cannabinoids are corroborated by observational studies from different contexts documenting crack-cocaine users' 'self-medication' efforts towards coping with crack-cocaine-related problems, including withdrawal and craving, impulsivity and paranoia. Cannabinoid therapeutics offer further benefits of being available in multiple formulations, are low in adverse risk potential, and may easily be offered in community-based settings which may add to their feasibility as interventions for - predominantly marginalized - crack-cocaine user populations. Supported by the dearth of current therapeutic options for crack-cocaine use, we are advocating for the implementation of a rigorous research program investigating the potential therapeutic benefits of cannabinoids for crack-cocaine use. Given the high prevalence of this grave substance use problem in the Americas, opportunities for

  16. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    Science.gov (United States)

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids. © 2012 National Research Council of Canada. The Plant Journal © 2012 Blackwell Publishing Ltd.

  17. Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry

    Science.gov (United States)

    Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M.; Wanas, Amira S.; van Antwerp, John; Parcher, Jon F.; ElSohly, Mahmoud A.; Khan, Ikhlas A.

    2016-01-01

    Abstract Introduction: Decarboxylation is an important step for efficient production of the major active components in cannabis, for example, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG). These cannabinoids do not occur in significant concentrations in cannabis but can be formed by decarboxylation of their corresponding acids, the predominant cannabinoids in the plant. Study of the kinetics of decarboxylation is of importance for phytocannabinoid isolation and dosage formulation for medical use. Efficient analytical methods are essential for simultaneous detection of both neutral and acidic cannabinoids. Methods: C. sativa extracts were used for the studies. Decarboxylation conditions were examined at 80°C, 95°C, 110°C, 130°C, and 145°C for different times up to 60 min in a vacuum oven. An ultra-high performance supercritical fluid chromatography/photodiode array-mass spectrometry (UHPSFC/PDA-MS) method was used for the analysis of acidic and neutral cannabinoids before and after decarboxylation. Results: Decarboxylation at different temperatures displayed an exponential relationship between concentration and time indicating a first-order or pseudo-first-order reaction. The rate constants for Δ9-tetrahydrocannabinolic acid-A (THCA-A) were twice those of the cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). Decarboxylation of THCA-A was forthright with no side reactions or by-products. Decarboxylation of CBDA and CBGA was not as straightforward due to the unexplained loss of reactants or products. Conclusion: The reported UHPSFC/PDA-MS method provided consistent and sensitive analysis of phytocannabinoids and their decarboxylation products and degradants. The rate of change of acidic cannabinoid concentrations over time allowed for determination of rate constants. Variations of rate constants with temperature yielded values for reaction energy. PMID:28861498

  18. Host-virus interactions of mammalian endogenous retroviruses

    OpenAIRE

    Farkašová, Helena

    2017-01-01

    Endogenous retroviruses (ERVs) originate by germline infection and subsequent mendelian inheritance of their exogenous counterparts. With notable exceptions, all mammalian ERVs are evolutionarily old and fixed in the population of its host species. Some groups of retroviruses were believed not to be able to form endogenous copies. We discovered an additional endogenous Lentivirus and a first endogenous Deltaretrovirus. Both of these groups were previously considered unable to form endogenous ...

  19. A dual inhibitor of FAAH and TRPV1 channels shows dose-dependent effect on depression-like behaviour in rats.

    Science.gov (United States)

    Kirkedal, Christian; Wegener, Gregers; Moreira, Fabricio; Joca, Sâmia Regiane Lourenco; Liebenberg, Nico

    2017-12-01

    The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models. We investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activation N-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test. Our results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg). A 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.

  20. Endogenous Monetary Policy Regime Change

    OpenAIRE

    Troy Davig; Eric M. Leeper

    2006-01-01

    This paper makes changes in monetary policy rules (or regimes) endogenous. Changes are triggered when certain endogenous variables cross specified thresholds. Rational expectations equilibria are examined in three models of threshold switching to illustrate that (i) expectations formation effects generated by the possibility of regime change can be quantitatively important; (ii) symmetric shocks can have asymmetric effects; (iii) endogenous switching is a natural way to formally model preempt...

  1. Analysis of Cannabis Seizures in NSW, Australia: Cannabis Potency and Cannabinoid Profile

    Science.gov (United States)

    Li, Kong M.; Arnold, Jonathon C.; McGregor, Iain S.

    2013-01-01

    Recent analysis of the cannabinoid content of cannabis plants suggests a shift towards use of high potency plant material with high levels of Δ9-tetrahydrocannabinol (THC) and low levels of other phytocannabinoids, particularly cannabidiol (CBD). Use of this type of cannabis is thought by some to predispose to greater adverse outcomes on mental health and fewer therapeutic benefits. Australia has one of the highest per capita rates of cannabis use in the world yet there has been no previous systematic analysis of the cannabis being used. In the present study we examined the cannabinoid content of 206 cannabis samples that had been confiscated by police from recreational users holding 15 g of cannabis or less, under the New South Wales “Cannabis Cautioning” scheme. A further 26 “Known Provenance” samples were analysed that had been seized by police from larger indoor or outdoor cultivation sites rather than from street level users. An HPLC method was used to determine the content of 9 cannabinoids: THC, CBD, cannabigerol (CBG), and their plant-based carboxylic acid precursors THC-A, CBD-A and CBG-A, as well as cannabichromene (CBC), cannabinol (CBN) and tetrahydrocannabivarin (THC-V). The “Cannabis Cautioning” samples showed high mean THC content (THC+THC-A = 14.88%) and low mean CBD content (CBD+CBD-A = 0.14%). A modest level of CBG was detected (CBG+CBG-A = 1.18%) and very low levels of CBC, CBN and THC-V (cannabis with very low CBD content. The implications for public health outcomes and harm reduction strategies are discussed. PMID:23894589

  2. Cannabis in cancer care.

    Science.gov (United States)

    Abrams, D I; Guzman, M

    2015-06-01

    Cannabis has been used in medicine for thousands of years prior to achieving its current illicit substance status. Cannabinoids, the active components of Cannabis sativa, mimic the effects of the endogenous cannabinoids (endocannabinoids), activating specific cannabinoid receptors, particularly CB1 found predominantly in the central nervous system and CB2 found predominantly in cells involved with immune function. Delta-9-tetrahydrocannabinol, the main bioactive cannabinoid in the plant, has been available as a prescription medication approved for treatment of cancer chemotherapy-induced nausea and vomiting and anorexia associated with the AIDS wasting syndrome. Cannabinoids may be of benefit in the treatment of cancer-related pain, possibly synergistic with opioid analgesics. Cannabinoids have been shown to be of benefit in the treatment of HIV-related peripheral neuropathy, suggesting that they may be worthy of study in patients with other neuropathic symptoms. Cannabinoids have a favorable drug safety profile, but their medical use is predominantly limited by their psychoactive effects and their limited bioavailability. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  3. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses.

    Science.gov (United States)

    Arjan-Odedra, Shetal; Swanson, Chad M; Sherer, Nathan M; Wolinsky, Steven M; Malim, Michael H

    2012-06-22

    The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements. MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing. We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells.

  4. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  5. The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects

    NARCIS (Netherlands)

    van Amsterdam, Jan; Brunt, Tibor; van den Brink, Wim

    2015-01-01

    Cannabis use is associated with an increased risk of psychosis in vulnerable individuals. Cannabis containing high levels of the partial cannabinoid receptor subtype 1 (CB1) agonist tetrahydrocannabinol (THC) is associated with the induction of psychosis in susceptible subjects and with the

  6. Papel del sistema cannabinoide endógeno en el alcoholismo: implicaciones fisiológicas y terapéuticas

    OpenAIRE

    Rubio Gómez, Marina

    2011-01-01

    Numerosas evidencias (genéticas, bioquímicas y farmacológicas) relacionan al sistema cannabinoide en ciertas áreas del cerebro con el desarrollo del alcoholismo. Sin embargo, existen diferentes aspectos de esta relación que no han sido aún completamente esclarecidos. En base a esta idea se ha definido la hipótesis central de esta tesis doctoral, que pretende de forma global profundizar en las bases bioquímicas y farmacológicas que sustentan que el sistema cannabinoide tiene una función en los...

  7. Cannabinoid treatment renders neurons less vulnerable than oligodendrocytes in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Johansen, Flemming Fryd

    2011-01-01

    and demyelination. Furthermore, the cytokines IL-2, IL-6, IL-10, RANTES, and TGF-ß were significantly reduced as were the cellular infiltration with regulatory T cells. We suggest that cannabinoids in low doses are neuroprotective through a reduction in calpain 1 expression. Our study implies that long-term low...

  8. The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra.

    Directory of Open Access Journals (Sweden)

    Margaret I Davis

    Full Text Available Presynaptic cannabinoid-1 receptors (CB1-R bind endogenous and exogenous cannabinoids to modulate neurotransmitter release. CB1-Rs are expressed throughout the basal ganglia, including striatum and substantia nigra, where they play a role in learning and control of motivated actions. However, the pattern of CB1-R expression across different striatal compartments, microcircuits and efferent targets, and the contribution of different CB1-R-expressing neurons to this pattern, are unclear. We use a combination of conventional techniques and novel genetic models to evaluate CB1-R expression in striosome (patch and matrix compartments of the striatum, and in nigral targets of striatal medium spiny projection neurons (MSNs. CB1-R protein and mRNA follow a descending dorsolateral-to-ventromedial intensity gradient in the caudal striatum, with elevated expression in striosomes relative to the surrounding matrix. The lateral predominance of striosome CB1-Rs contrasts with that of the classical striosomal marker, the mu opioid receptor (MOR, which is expressed most prominently in rostromedial striosomes. The dorsolateral-to-ventromedial CB1-R gradient is similar to Drd2 dopamine receptor immunoreactivity and opposite to Substance P. This topology of CB1-R expression is maintained downstream in the globus pallidus and substantia nigra. Dense CB1-R-expressing striatonigral fibers extend dorsally within the substantia nigra pars reticulata, and colocalize with bundles of ventrally extending, striosome-targeted, dendrites of dopamine-containing neurons in the substantia nigra pars compacta (striosome-dendron bouquets. Within striatum, CB1-Rs colocalize with fluorescently labeled MSN collaterals within the striosomes. Cre recombinase-mediated deletion of CB1-Rs from cortical projection neurons or MSNs, and MSN-selective reintroduction of CB1-Rs in knockout mice, demonstrate that the principal source of CB1-Rs in dorsolateral striosomes is local MSN collaterals

  9. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been ….

    Science.gov (United States)

    Baron, Eric P

    2015-06-01

    The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine. Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science. However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research. Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis. Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence. To review the history of medicinal cannabis use, discuss the pharmacology and physiology of the endocannabinoid system and cannabis-derived cannabinoids, perform a comprehensive literature review of the clinical uses of medicinal cannabis and cannabinoids with a focus on migraine and other headache disorders, and outline general clinical practice guidelines. The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache. Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research. Cannabis

  10. Role of cannabis in digestive disorders.

    Science.gov (United States)

    Goyal, Hemant; Singla, Umesh; Gupta, Urvashi; May, Elizabeth

    2017-02-01

    Cannabis sativa, a subspecies of the Cannabis plant, contains aromatic hydrocarbon compounds called cannabinoids. [INCREMENT]-Tetrahydrocannabinol is the most abundant cannabinoid and is the main psychotropic constituent. Cannabinoids activate two types of G-protein-coupled cannabinoid receptors: cannabinoid type 1 receptor and cannabinoid type 2 receptor. There has been ongoing interest and development in research to explore the therapeutic potential of cannabis. [INCREMENT]-Tetrahydrocannabinol exerts biological functions on the gastrointestinal (GI) tract. Cannabis has been used for the treatment of GI disorders such as abdominal pain and diarrhea. The endocannabinoid system (i.e. endogenous circulating cannabinoids) performs protective activities in the GI tract and presents a promising therapeutic target against various GI conditions such as inflammatory bowel disease (especially Crohn's disease), irritable bowel syndrome, and secretion and motility-related disorders. The present review sheds light on the role of cannabis in the gut, liver, and pancreas and also on other GI symptoms, such as nausea and vomiting, cannabinoid hyperemesis syndrome, anorexia, weight loss, and chronic abdominal pain. Although the current literature supports the use of marijuana for the treatment of digestive disorders, the clinical efficacy of cannabis and its constituents for various GI disorders remains unclear.

  11. ENDOGENEITY OF INDONESIAN MONEY SUPPLY

    Directory of Open Access Journals (Sweden)

    Meutia Safrina Rachma

    2011-09-01

    Full Text Available There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5-2010(6, the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not have control power on money supply. The bank is only able to maintain the stability and control the movement of broad money supply. Keywords: Endogenous variable, money supply, vector autoregressionJEL classification numbers: E51, E52, E58

  12. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses

    Science.gov (United States)

    2012-01-01

    Background The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements. Results MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing. Conclusions We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells. PMID:22727223

  13. Endocannabinoids and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  14. REFERENCE MODELS OF ENDOGENOUS ECONOMIC GROWTH

    OpenAIRE

    GEAMĂNU MARINELA

    2012-01-01

    The new endogenous growth theories are a very important research area for shaping the most effective policies and long term sustainable development strategies. Endogenous growth theory has emerged as a reaction to the imperfections of neoclassical theory, by the fact that the economic growth is the endogenous product of an economical system.

  15. ENDOGENEITY OF INDONESIAN MONEY SUPPLY

    OpenAIRE

    Rachma, Meutia Safrina

    2011-01-01

    There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5)-2010(6), the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not hav...

  16. Endogeneity Of Indonesian Money Supply

    OpenAIRE

    Rachma, Meutia Safrina

    2010-01-01

    There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5)-2010(6), the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not hav...

  17. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes.

    Science.gov (United States)

    Aizpurua-Olaizola, Oier; Soydaner, Umut; Öztürk, Ekin; Schibano, Daniele; Simsir, Yilmaz; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-02-26

    The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled conditions. Every week, three plants from each variety were cut and dried, and the leaves and flowers were analyzed separately. Eight major cannabinoids were analyzed via HPLC-DAD, and 28 terpenes were quantified using GC-FID and verified via GC-MS. The chemotypes of the plants, as defined by the tetrahydrocannabinolic acid/cannabidiolic acid (THCA/CBDA) ratio, were clear from the beginning and stable during growth. The concentrations of the major cannabinoids and terpenes were determined, and different patterns were found among the chemotypes. In particular, the plants from chemotypes II and III needed more time to reach peak production of THCA, CBDA, and monoterpenes. Differences in the cannabigerolic acid development among the different chemotypes and between monoterpene and sesquiterpene evolution patterns were also observed. Plants of different chemotypes were clearly differentiated by their terpene content, and characteristic terpenes of each chemotype were identified.

  18. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats.

    Science.gov (United States)

    Shiri, Mariam; Komaki, Alireza; Oryan, Shahrbanoo; Taheri, Masoumeh; Komaki, Hamidreza; Etaee, Farshid

    2017-04-01

    Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212-2, (3) capsaicin, and (4) WIN55,212-2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212-2, a cannabinoid receptor (CB 1 /CB 2 ) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212-2 (CB 1 /CB 2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212-2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats' cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212-2 on learning and memory.

  19. Myocardial infarction associated with use of the synthetic cannabinoid K2.

    Science.gov (United States)

    Mir, Arshid; Obafemi, Adebisi; Young, Amy; Kane, Colin

    2011-12-01

    Designer drugs have been problematic over the years. Products such as K2 and Spice, which contain synthetic cannabinoids, are marketed as incense and are widely available on the Internet and at various specialty shops. The effects are reported as cannabis-like after smoking them. In addition, use of these synthetic cannabinoids will not appear on a routine urine toxicology screen. Recently, K2 became a popular alternative to marijuana among youths. Health implications of these designer drugs are not completely understood. Little has been reported about the harmful effects of K2. We report here the first (to our knowledge) cases of myocardial infarction (MI) after smoking K2. Three patients presented separately to the emergency department complaining of chest pain within days after the use of K2. Acute MI was diagnosed in each case on the basis of electrocardiogram changes and elevated troponin levels. Coronary angiography was performed, and the results were normal for the first 2 patients. The incidence of ST-elevation MI is low among teenagers, and association with drug use should be suspected. Public education and awareness need to be heightened about the possible health implications of K2.

  20. The impact of cannabis and cannabinoids for medical conditions on health-related quality of life: A systematic review and meta-analysis.

    Science.gov (United States)

    Goldenberg, Matthew; Reid, Mark William; IsHak, Waguih William; Danovitch, Itai

    2017-05-01

    The use of cannabis or cannabinoids to treat medical conditions and/or alleviate symptoms is increasingly common. However, the impact of this use on patient reported outcomes, such as health-related quality of life (HRQoL), remains unclear. We conducted a systematic review and meta-analysis, employing guidelines from Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We categorized studies based on design, targeted disease condition, and type of cannabis or cannabinoid used. We scored studies based on quality and risk of bias. After eliminating some studies because of poor quality or insufficient data, we conducted meta-analyses of remaining studies based on design. Twenty studies met our pre-defined selection criteria. Eleven studies were randomized controlled trials (RCTs; 2322 participants); the remaining studies were of cohort and cross-sectional design. Studies of cannabinoids were mostly RCTs of higher design quality than studies of cannabis, which utilized smaller self-selected samples in observational studies. Although we did not uncover a significant association between cannabis and cannabinoids for medical conditions and HRQoL, some patients who used them to treat pain, multiple sclerosis, and inflammatory bower disorders have reported small improvements in HRQoL, whereas some HIV patients have reported reduced HRQoL. The relationship between HRQoL and the use of cannabis or cannabinoids for medical conditions is inconclusive. Some patient populations report improvements whereas others report reductions in HRQoL. In order to inform users, practitioners, and policymakers more clearly, future studies should adhere to stricter research quality guidelines and more clearly report patient outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of cannabis seizures in NSW, Australia: cannabis potency and cannabinoid profile.

    Directory of Open Access Journals (Sweden)

    Wendy Swift

    Full Text Available Recent analysis of the cannabinoid content of cannabis plants suggests a shift towards use of high potency plant material with high levels of Δ(9-tetrahydrocannabinol (THC and low levels of other phytocannabinoids, particularly cannabidiol (CBD. Use of this type of cannabis is thought by some to predispose to greater adverse outcomes on mental health and fewer therapeutic benefits. Australia has one of the highest per capita rates of cannabis use in the world yet there has been no previous systematic analysis of the cannabis being used. In the present study we examined the cannabinoid content of 206 cannabis samples that had been confiscated by police from recreational users holding 15 g of cannabis or less, under the New South Wales "Cannabis Cautioning" scheme. A further 26 "Known Provenance" samples were analysed that had been seized by police from larger indoor or outdoor cultivation sites rather than from street level users. An HPLC method was used to determine the content of 9 cannabinoids: THC, CBD, cannabigerol (CBG, and their plant-based carboxylic acid precursors THC-A, CBD-A and CBG-A, as well as cannabichromene (CBC, cannabinol (CBN and tetrahydrocannabivarin (THC-V. The "Cannabis Cautioning" samples showed high mean THC content (THC+THC-A = 14.88% and low mean CBD content (CBD+CBD-A = 0.14%. A modest level of CBG was detected (CBG+CBG-A = 1.18% and very low levels of CBC, CBN and THC-V (<0.1%. "Known Provenance" samples showed no significant differences in THC content between those seized from indoor versus outdoor cultivation sites. The present analysis echoes trends reported in other countries towards the use of high potency cannabis with very low CBD content. The implications for public health outcomes and harm reduction strategies are discussed.

  2. Retention and Extinction of Delay Eyeblink Conditioning Are Modulated by Central Cannabinoids

    Science.gov (United States)

    Steinmetz, Adam B.; Freeman, John H.

    2011-01-01

    Rats administered the cannabinoid agonist WIN55,212-2 or the antagonist SR141716A exhibit marked deficits during acquisition of delay eyeblink conditioning, as noted by Steinmetz and Freeman in an earlier study. However, the effects of these drugs on retention and extinction of eyeblink conditioning have not been assessed. The present study…

  3. Drug- and cue-induced reinstatement of cannabinoid-seeking behaviour in male and female rats: influence of ovarian hormones.

    Science.gov (United States)

    Fattore, L; Spano, M S; Altea, S; Fadda, P; Fratta, W

    2010-06-01

    Animal and human studies have shown that sex and hormones are key factors in modulating addiction. Previously, we have demonstrated that self-administration of the cannabinoid CB(1) receptor agonist WIN55,212-2 (WIN; 12.5 microg.kg(-1) per infusion) is dependent on sex, intact female rats being more sensitive than males to the reinforcing properties of cannabinoids, and on the oestrous cycle, ovariectomized (OVX) females being less responsive than intact females. This follow-up study investigated whether sex and ovarian function also affect reinstatement of cannabinoid-seeking in rats after exposure to drug or cue priming. After priming with 0.15 or 0.3 mg.kg(-1) WIN, intact female rats exhibited stronger reinstatement than males and OVX females. Responses of intact female rats were higher than those of male and OVX rats even after priming with a drug-associated visual (Light) or auditory (Tone) cue, or a WIN + Light combination. However, latency to the first response did not differ between intact and OVX female rats, and males showed the longest latency to initiate lever-pressing activity. Our study provides compelling evidence for a pivotal role of sex and the oestrous cycle in modulating cannabinoid-seeking, with ovariectomy diminishing drug and cue-induced reinstatement. However, it is possible that sex differences during self-administration training are responsible for sex differences in reinstatement. Finding that not only drug primings but also acute exposure to drug-associated cues can reinstate responding in rats could have significant implications for the development of pharmacological and behavioural treatments of abstinent female and male marijuana smokers.

  4. Consequences of Adolescent Exposure to the Cannabinoid Receptor Agonist WIN55,212-2 on Working Memory in Female Rats

    Directory of Open Access Journals (Sweden)

    Erin K. Kirschmann

    2017-07-01

    Full Text Available Marijuana is a prevalent illicit substance used by adolescents, and several studies have indicated that adolescent use can lead to long-term cognitive deficits including problems with attention and memory. However, preclinical animal studies that observe cognitive deficits after cannabinoid exposure during adolescence utilize experimenter administration of doses of cannabinoids that may exceed what an organism would choose to take, suggesting that contingency and dose are critical factors that need to be addressed in translational models of consequences of cannabinoid exposure. Indeed, we recently developed an adolescent cannabinoid self-administration paradigm in male rats, and found that prior adolescent self-administration of the cannabinoid receptor agonist WIN55,212-2 (WIN resulted in improved working memory performance in adulthood. In addition, the doses self-administered were not as high as those that are found to produce memory deficits. However, given known sex differences in both drug self-administration and learning and memory processes, it is possible that cannabinoid self-administration could have different cognitive consequences in females. Therefore, we aimed to explore the effects of self-administered vs. experimenter-administered WIN in adolescent female rats on adult cognitive function. Female rats were trained to self-administer WIN daily throughout adolescence (postnatal day 34–59. A control group self-administered vehicle solution. The acute effects of adolescent WIN self-administration on memory were determined using a short-term spatial memory test 24 h after final SA session; and the long-term effects on cognitive performance were assessed during protracted abstinence in adulthood using a delayed-match-to-sample working memory task. In a separate experiment, females were given daily intraperitoneal (IP injections of a low or high dose of WIN, corresponding to self-administered and typical experimenter

  5. Consequences of Adolescent Exposure to the Cannabinoid Receptor Agonist WIN55,212-2 on Working Memory in Female Rats.

    Science.gov (United States)

    Kirschmann, Erin K; McCalley, Daniel M; Edwards, Caitlyn M; Torregrossa, Mary M

    2017-01-01

    Marijuana is a prevalent illicit substance used by adolescents, and several studies have indicated that adolescent use can lead to long-term cognitive deficits including problems with attention and memory. However, preclinical animal studies that observe cognitive deficits after cannabinoid exposure during adolescence utilize experimenter administration of doses of cannabinoids that may exceed what an organism would choose to take, suggesting that contingency and dose are critical factors that need to be addressed in translational models of consequences of cannabinoid exposure. Indeed, we recently developed an adolescent cannabinoid self-administration paradigm in male rats, and found that prior adolescent self-administration of the cannabinoid receptor agonist WIN55,212-2 (WIN) resulted in improved working memory performance in adulthood. In addition, the doses self-administered were not as high as those that are found to produce memory deficits. However, given known sex differences in both drug self-administration and learning and memory processes, it is possible that cannabinoid self-administration could have different cognitive consequences in females. Therefore, we aimed to explore the effects of self-administered vs. experimenter-administered WIN in adolescent female rats on adult cognitive function. Female rats were trained to self-administer WIN daily throughout adolescence (postnatal day 34-59). A control group self-administered vehicle solution. The acute effects of adolescent WIN self-administration on memory were determined using a short-term spatial memory test 24 h after final SA session; and the long-term effects on cognitive performance were assessed during protracted abstinence in adulthood using a delayed-match-to-sample working memory task. In a separate experiment, females were given daily intraperitoneal (IP) injections of a low or high dose of WIN, corresponding to self-administered and typical experimenter-administered doses, respectively, or

  6. Cytokines as endogenous pyrogens.

    Science.gov (United States)

    Dinarello, C A

    1999-03-01

    Cytokines are pleiotropic molecules mediating several pathologic processes. Long before the discovery of cytokines as immune system growth factors or as bone marrow stimulants, investigators learned a great deal about cytokines when they studied them as the endogenous mediators of fever. The terms "granulocytic" or "endogenous pyrogen" were used to describe substances with the biologic property of fever induction. Today, we recognize that pyrogenicity is a fundamental biologic property of several cytokines and hence the clinically recognizeable property of fever links host perturbations during disease with fundamental perturbations in cell biology. In this review, the discoveries made on endogenous pyrogens are revisited, with insights into the importance of the earlier work to the present-day understanding of cytokines in health and in disease.

  7. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  8. Amphetamines and cannabinoids testing in hair: Evaluation of results from a two-year period.

    Science.gov (United States)

    Burgueño, María José; Alonso, Amaya; Sánchez, Sergio

    2016-08-01

    This paper presents an overview of a set of amphetamines and cannabinoids tests performed on head hair samples from the Medico-Legal sector at the Madrid Department of the Spanish National Institute of Toxicology and Forensic Sciences during the years 2013 and 2014. The hair samples were tested for five stimulant phenylalkylamine derivatives -amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxy-amphetamine (MDA), and 3,4-methylenedioxy-N-ethylamphetamine (MDEA)- and/or two cannabinoids-Δ(9)-tetrahydrocannabinol (THC) and cannabinol (CBN)- by gas chromatography equipped with mass spectrometry detection in selected-ion monitoring mode, applying a method accredited to ISO/IEC 17025 standards. The test results were interpreted according to the confirmation cut-offs proposed by the Society of Hair Testing (SoHT) to identify chronic drug use. The ratios of positive results were studied in relation to gender, age, hair colour, dyeing and length of the tested samples to assess the independence from these variables or the association with them. Low, medium and high ranges of concentration were also estimated for each drug. 21.94% of the 2954 hair samples tested for phenylalkylamine derivatives were positive for one or more substances. 16.38% of the samples were positive for AP, 12.09% for MDMA and only 0.44% for MA. 6.60% of the tested samples were positive for AP/MDMA combination. A total of 3178 samples were tested for cannabinoids, resulting in 53.40% positive for THC and CBN. Simultaneous tests for phenylalkylamine derivatives and cannabinoids were performed in 2931 of the samples; 14.94% of them were positive for THC, CBN, and one or more amphetamines. According to the results from the statistical analysis, the use of THC and MDMA vary with age and gender among the Medico-Legal sector in an extended area of Spain, while the use of AP appears to be independent of these variables. On the other hand, the results of THC in

  9. Endogenous growth and the environment

    NARCIS (Netherlands)

    Withagen, C.A.A.M.; Vellinga, N.

    2001-01-01

    This paper examines the relationship between environmental policy and growth, from the perspective of endogenous growth theory. In particular three standard endogenous growth models are supplemented with environmental issues, such as pollution and exhaustibility of natural resources. It is found

  10. Endogenous growth and environmental policy

    NARCIS (Netherlands)

    Withagen, C.A.A.M.; Vellinga, N.

    2001-01-01

    This paper examines the relationship between environmental policy and growth, from the perspective of endogenous growth theory. In particular three standard endogenous growth models are supplemented with environmental issues, such as pollution and exhaustibility of natural resources. It is found

  11. Endogenous pyrogen-like substance produced by reptiles.

    Science.gov (United States)

    Bernheim, H A; Kluger, M J

    1977-06-01

    1. Injection of lizards (Dipsosaurus dorsalis) with rabbit endogenous pyrogen led to a fever. Injections with denatured endogenous pyrogen did not affect body temperature. 2. Injection of lizards with lizard endogenous pyrogen led to a fever of short duration, while injection of denatured lizard endogenous pyrogen produced no change in body temperature. 3. These data support the hypothesis that the febrile mechanism observed in the higher vertebrates has its origins in some primitive vertebrate.

  12. Effects of Cannabinoid Exposure during Adolescence on the Conditioned Rewarding Effects of WIN 55212-2 and Cocaine in Mice: Influence of the Novelty-Seeking Trait

    Directory of Open Access Journals (Sweden)

    M. Rodríguez-Arias

    2016-01-01

    Full Text Available Adolescent exposure to cannabinoids enhances the behavioural effects of cocaine, and high novelty-seeking trait predicts greater sensitivity to the conditioned place preference (CPP induced by this drug. Our aim was to evaluate the influence of novelty-seeking on the effects of adolescent cannabinoid exposure. Adolescent male mice were classified as high or low novelty seekers (HNS and LNS in the hole-board test. First, we evaluated the CPP induced by the cannabinoid agonist WIN 55212-2 (0.05 and 0.075 mg/kg, i.p. in HNS and LNS mice. Then, HNS and LNS mice were pretreated i.p. with vehicle, WIN 55212-2 (0.1 mg/kg, or cannabinoid antagonist rimonabant (1 mg/kg and were subsequently conditioned with WIN 55212-2 (0.05 mg/kg, i.p. or cocaine (1 or 6 mg/kg, i.p.. Only HNS mice conditioned with the 0.075 mg/kg dose acquired CPP with WIN 55212-2. Adolescent exposure to this cannabinoid agonist increased the rewarding effects of 1 mg/kg of cocaine in both HNS and LNS mice, and in HNS mice it also increased the reinstating effect of a low dose of cocaine. Our results endorse a role for individual differences such as a higher propensity for sensation-seeking in the development of addiction.

  13. Ultrasound-Assisted Extraction of Cannabinoids from Cannabis Sativa L. Optimized by Response Surface Methodology.

    Science.gov (United States)

    Agarwal, Charu; Máthé, Katalin; Hofmann, Tamás; Csóka, Levente

    2018-03-01

    Ultrasonication was used to extract bioactive compounds from Cannabis sativa L. such as polyphenols, flavonoids, and cannabinoids. The influence of 3 independent factors (time, input power, and methanol concentration) was evaluated on the extraction of total phenols (TPC), flavonoids (TF), ferric reducing ability of plasma (FRAP) and the overall yield. A face-centered central composite design was used for statistical modelling of the response data, followed by regression and analysis of variance in order to determine the significance of the model and factors. Both the solvent composition and the time significantly affected the extraction while the sonication power had no significant impact on the responses. The response predictions obtained at optimum extraction conditions of 15 min time, 130 W power, and 80% methanol were 314.822 mg GAE/g DW of TPC, 28.173 mg QE/g DW of TF, 18.79 mM AAE/g DW of FRAP, and 10.86% of yield. A good correlation was observed between the predicted and experimental values of the responses, which validated the mathematical model. On comparing the ultrasonic process with the control extraction, noticeably higher values were obtained for each of the responses. Additionally, ultrasound considerably improved the extraction of cannabinoids present in Cannabis. Low frequency ultrasound was employed to extract bioactive compounds from the inflorescence part of Cannabis. The responses evaluated were-total phenols, flavonoids, ferric reducing assay and yield. The solvent composition and time significantly influenced the extraction process. Appreciably higher extraction of cannabinoids was achieved on sonication against control. © 2018 Institute of Food Technologists®.

  14. Impact of Cannabinoid Receptor Ligands on Sensitisation to Methamphetamine Effects on Rat Locomotor Behaviour

    Directory of Open Access Journals (Sweden)

    L. Landa

    2008-01-01

    Full Text Available The repeated administration of various drugs of abuse may lead to a gradually increased behavioural response to these substances, particularly an increase in locomotion and stereotypies may occur. This phenomenon is well known and described as behavioural sensitisation. An increased response to the drug tested, elicited by previous repeated administration of another drug is recognised as cross-sensitisation. Based on our earlier experiences with studies on mice, which confirmed sensitisation to methamphetamine and described cross-sensitisation to methamphetamine after pre-treatment with cannabinoid CB1 receptor agonist, we focused the present study on the use of another typical laboratory animal - the rat. A biological validity of the sensitisation phenomenon was expected to be enhanced if the results of both mouse and rat studies were conformable. Similar investigation in rats brought very similar results to those described earlier in mice. However, at least some interspecies differences were noted in the rat susceptibility to the development of sensitisation to methamphetamine effects. Comparing to mice, it was more demanding to titrate a dose of methamphetamine producing behavioural sensitisation. Furthermore, we were not able to provoke cross-sensitisation by repeated administration of cannabinoid CB1 receptor agonist methanandamide and similarly, we did not demonstrate the suppression of cross-sensitisation in rats that were repeatedly given combined pre-treatment with cannabinoid CB1 receptor antagonist AM 251 and methamphetamine. Finally, unlike mice, an alternative behavioural change was registered after repeated methamphetamine treatment instead: the occurrence of stereotypic behaviour (nose rubbing.

  15. Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine.

    Science.gov (United States)

    Fattore, Liana; Piva, Alessandro; Zanda, Mary Tresa; Fumagalli, Guido; Chiamulera, Cristiano

    2018-02-01

    Clinical data with 3,4-methylenedioxymethamphetamine (MDMA) in post-traumatic stress disorder (PTSD) patients recently stimulated interest on the potential therapeutic use of psychedelics in disorders characterized by maladaptive memories, including substance use disorders (SUD). The rationale for the use of MDMA in PTSD and SUD is being extended to a broader beneficial "psychedelic effect," which is supporting further clinical investigations, in spite of the lack of mechanistic hypothesis. Considering that the retrieval of emotional memories reactivates specific brain mechanisms vulnerable to inhibition, interference, or strengthening (i.e., the reconsolidation process), it was proposed that the ability to retrieve and change these maladaptive memories might be a novel intervention for PTSD and SUD. The mechanisms underlying MDMA effects indicate memory reconsolidation modulation as a hypothetical process underlying its efficacy. Mechanistic and clinical studies with other two classes of psychedelic substances, namely cannabinoids and ketamine, are providing data in support of a potential use in PTSD and SUD based on the modulation of traumatic and appetitive memory reconsolidation, respectively. Here, we review preclinical and clinical data on cannabinoids and ketamine effects on biobehavioral processes related to the reconsolidation of maladaptive memories. We report the findings supporting (or not) the working hypothesis linking the potential therapeutic effect of these substances to the underlying reconsolidation process. We also proposed possible approaches for testing the use of these two classes of drugs within the current paradigm of reconsolidation memory inhibition. Metaplasticity may be the process in common between cannabinoids and ketamine/ketamine-like substance effects on the mediation and potential manipulation of maladaptive memories.

  16. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration

    OpenAIRE

    Nabissi, Massimo; Morelli, Maria Beatrice; Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-01-01

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with ?9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggest...

  17. Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Aizpurua-Olaizola, Oier; Omar, Jone; Navarro, Patricia; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz

    2014-11-01

    High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction (SFE). MS conditions were optimized by means of a central composite design (CCD) approach, and the analysis method was fully validated. Six major cannabinoids [tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabigerol (CBG), and cannabinol (CBN)] were quantified (RSD Cannabis sativa L. plant varieties and the principal component analysis (PCA) of the resulting data, a clear difference was observed between outdoor and indoor grown plants, which was attributed to a higher concentration of THC, CBN, and CBD in outdoor grown plants.

  18. Variation in commercial smoking mixtures containing third-generation synthetic cannabinoids.

    Science.gov (United States)

    Frinculescu, Anca; Lyall, Catherine L; Ramsey, John; Miserez, Bram

    2017-02-01

    Variation in ingredients (qualitative variation) and in quantity of active compounds (quantitative variation) in herbal smoking mixtures containing synthetic cannabinoids has been shown for older products. This can be dangerous to the user, as accurate and reproducible dosing is impossible. In this study, 69 packages containing third-generation cannabinoids of seven brands on the UK market in 2014 were analyzed both qualitatively and quantitatively for variation. When comparing the labels to actual active ingredients identified in the sample, only one brand was shown to be correctly labelled. The other six brands contained less, more, or ingredients other than those listed on the label. Only two brands were inconsistent, containing different active ingredients in different samples. Quantitative variation was assessed both within one package and between several packages. Within-package variation was within a 10% range for five of the seven brands, but two brands showed larger variation, up to 25% (Relative Standard Deviation). Variation between packages was significantly higher, with variation up to 38% and maximum concentration up to 2.7 times higher than the minimum concentration. Both qualitative and quantitative variation are common in smoking mixtures and endanger the user, as it is impossible to estimate the dose or to know the compound consumed when smoking commercial mixtures. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Effect of synthetic and natural phospholipids on N-acylphosphatidylethanolamine-hydrolyzing phospholipase D activity

    DEFF Research Database (Denmark)

    Petersen, Gitte; Pedersen, Anders H; Pickering, Darryl S

    2009-01-01

    N-Acylethanolamines (NAEs) constitute a family of endogenous bioactive lipids that includes arachidonoylethanolamide (anandamide), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). These lipids are formed from their respective N-acylated ethanolamine phospholipid (NAPE) precursor by the a...... analogues as well as selected phospholipids and beta-lactamase substrates were tested as potential modifiers of cloned human NAPE-PLD in an enzyme assay involving a (14)C-labeled diether-NAPE substrate. One hit was identified, namely 1,2-dihexanoyl-glycero-N-(3-(tetradecanoylamino...

  20. The use of social networking sites: A risk factor for using alcohol, marijuana, and synthetic cannabinoids?

    Science.gov (United States)

    Gutierrez, Kevin M; Cooper, Theodore V

    2016-06-01

    The use of social networking sites (SNS) has become a central aspect of youth culture allowing individuals to explore and assert their identities. A commonly portrayed online identity is an "alcohol identity," and past research suggests such identities may contribute to one's risk of using alcohol. The present study builds on past research by examining the relationship between alcohol, marijuana, and synthetic cannabinoid use (e.g., Spice, K2) and time spent on SNS in a sample of college students. Six hundred ninety nine undergraduates (62.4% female; Mage=21.0, SD=8.56) were recruited from a university on the U.S./Mexico border for an online study. Participants completed measures assessing demographics, substance use history, and amount of time spent on SNS. Participants reported spending 46h per month on SNS. Seventy-one percent, 14%, and 3% of the sample reported past month use of alcohol, marijuana, and synthetic cannabinoids, respectively. Regression analyses revealed that hours spent on SNS in the past month were significantly associated with frequency of alcohol (psynthetic cannabinoid use (pmarijuana use in the past month (p<0.001 and p<0.001, respectively). These findings suggest that assessment of time spent on SNS is warranted in studies investigating drug use among college students. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Cannabinoid Modulation of Eukaryotic Initiation Factors (eIF2α and eIF2B1 and Behavioral Cross-Sensitization to Cocaine in Adolescent Rats

    Directory of Open Access Journals (Sweden)

    Philippe A. Melas

    2018-03-01

    Full Text Available Summary: Reduced eukaryotic Initiation Factor 2 (eIF2α phosphorylation (p-eIF2α enhances protein synthesis, memory formation, and addiction-like behaviors. However, p-eIF2α has not been examined with regard to psychoactive cannabinoids and cross-sensitization. Here, we find that a cannabinoid receptor agonist (WIN 55,212-2 mesylate [WIN] reduced p-eIF2α in vitro by upregulating GADD34 (PPP1R15A, the recruiter of protein phosphatase 1 (PP1. The induction of GADD34 was linked to ERK/CREB signaling and to CREB-binding protein (CBP-mediated histone hyperacetylation at the Gadd34 locus. In vitro, WIN also upregulated eIF2B1, an eIF2 activator subunit. We next found that WIN administration in vivo reduced p-eIF2α in the nucleus accumbens of adolescent, but not adult, rats. By contrast, WIN increased dorsal striatal levels of eIF2B1 and ΔFosB among both adolescents and adults. In addition, we found cross-sensitization between WIN and cocaine only among adolescents. These findings show that cannabinoids can modulate eukaryotic initiation factors, and they suggest a possible link between p-eIF2α and the gateway drug properties of psychoactive cannabinoids. : Melas et al. show that psychoactive cannabinoids modulate levels of two eukaryotic initiation factors (eIF2α and eIF2B1 known to be involved in protein synthesis, memory formation, and drug sensitivity. Cannabinoid modulation of eIF2α in vivo is only observed in adolescent animals, and is associated with cross-sensitization to cocaine. Keywords: drug use, addiction, cannabis, marijuana, cocaine, epigenetics, eIF2a, CREB, GADD34, gateway drugs

  2. Cannabinoid Hyperemesis Syndrome and the Consulting Psychiatrist: A Case Study of Diagnosis and Treatment for an Emerging Disorder in Psychiatric Practice.

    Science.gov (United States)

    Kast, Kristopher A; Gershengoren, Liliya

    2018-01-01

    The increasing prevalence of cannabis use in the United States requires awareness of cannabis-related disorders and familiarity with treatment options. We present a case of cannabinoid hyperemesis syndrome that required psychiatric consultation for diagnostic clarification and effective treatment with intravenous haloperidol. Literature from emergency medicine, toxicology, and gastroenterology is reviewed, including proposed diagnostic criteria for cannabinoid hyperemesis syndrome and reported off-label treatment options, with a specific focus on clinical questions facing the practicing psychiatrist regarding this emerging disorder.

  3. A synthetic cannabinoid FDU-NNEI, two 2H-indazole isomers of synthetic cannabinoids AB-CHMINACA and NNEI indazole analog (MN-18), a phenethylamine derivative N-OH-EDMA, and a cathinone derivative dimethoxy-α-PHP, newly identified in illegal products.

    Science.gov (United States)

    Uchiyama, Nahoko; Shimokawa, Yoshihiko; Kikura-Hanajiri, Ruri; Demizu, Yosuke; Goda, Yukihiro; Hakamatsuka, Takashi

    Six new psychoactive substances were identified together with two other substances (compounds 1 - 8 ) in illegal products by our ongoing survey in Japan between January and July 2014. A new synthetic cannabinoid, FDU-NNEI [1-(4-fluorobenzyl)- N -(naphthalen-1-yl)-1 H -indole-3-carboxamide, 2 ], was detected with the newly distributed synthetic cannabinoid FDU-PB-22 ( 1 ). Two 2 H -indazole isomers of synthetic cannabinoids, AB-CHMINACA 2 H -indazole analog ( 3 ) and NNEI 2 H -indazole analog ( 4 ), were newly identified with 1 H -indazoles [AB-CHMINACA and NNEI indazole analog (MN-18)]. In addition, 2-methylpropyl N -(naphthalen-1-yl) carbamate ( 5 ) and isobutyl 1-pentyl-1 H -indazole-3-carboxylate ( 6 ) were detected in illegal products. Compound 6 is considered to be a by-product of the preparation of NNEI indazole analog from compound 5 and 1-pentyl-1 H -indazole. A phenethylamine derivative, N -OH-EDMA [ N -hydroxy-3,4-ethylenedioxy- N -methylamphetamine, 7 ], and a cathinone derivative, dimethoxy-α-PHP (dimethoxy-α-pyrrolidinohexanophenone, 8 ), were newly identified in illegal products. Among them, compounds 1 and 8 have been controlled as designated substances (Shitei-Yakubutsu) under the Pharmaceutical Affairs Law in Japan since August and November 2014, respectively.

  4. Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry.

    Science.gov (United States)

    Scheidweiler, Karl B; Jarvis, Michael J Y; Huestis, Marilyn A

    2015-01-01

    Clandestine laboratories constantly produce new synthetic cannabinoids to circumvent legislative scheduling efforts, challenging and complicating toxicological analysis. Sundstrom et al. (Anal Bioanal Chem 405(26):8463-8474, [9]) and Kronstrand et al. (Anal Bioanal Chem 406(15):3599-3609, [10]) published nontargeted liquid chromatography, high-resolution, quadrupole/time-of-flight mass spectrometric (LC-QTOF) assays with validated detection of 18 and 38 urinary synthetic cannabinoid metabolites, respectively. We developed and validated a LC-QTOF urine method for simultaneously identifying the most current 47 synthetic cannabinoid metabolites from 21 synthetic cannabinoid families (5-fluoro AB-PINACA, 5-fluoro-AKB48, 5-fluoro PB-22, AB-PINACA, ADB-PINACA, AKB48, AM2201, JWH-018, JWH-019, JWH-073, JWH-081, JWH-122, JWH-200, JWH-210, JWH-250, JWH-398, MAM2201, PB-22, RCS-4, UR-144, and XLR11). β-Glucuronidase-hydrolyzed urine was extracted with 1-mL Biotage SLE+ columns. Specimens were reconstituted in 150-μL mobile phase consisting of 80% A (0.1% formic acid in water) and 20% B (0.1% formic acid in acetonitrile). Fifty microliters was injected, and SWATH™ MS data were acquired in positive electrospray mode. The LC-QTOF instrument consisted of a Shimadzu UFLCxr system and an ABSciex 5600+ TripleTOF® mass spectrometer. Gradient chromatographic separation was achieved with a Restek Ultra Biphenyl column with a 0.5-mL/min flow rate and an overall run time of 15 min. Identification criteria included molecular ion mass error, isotopic profiles, retention time, and library fit criteria. Limits of detection were 0.25-5 μg/L (N = 10 unique fortified urine samples), except for two PB-22 metabolites with limits of 10 and 20 μg/L. Extraction efficiencies and matrix effects (N = 10) were 55-104 and -65-107%, respectively. We present a highly useful novel LC-QTOF method for simultaneously confirming 47 synthetic cannabinoid metabolites in human urine.

  5. Oral fluid/plasma cannabinoid ratios following controlled oral THC and smoked cannabis administration.

    Science.gov (United States)

    Lee, Dayong; Vandrey, Ryan; Milman, Garry; Bergamaschi, Mateus; Mendu, Damodara R; Murray, Jeannie A; Barnes, Allan J; Huestis, Marilyn A

    2013-09-01

    Oral fluid (OF) is a valuable biological alternative for clinical and forensic drug testing. Evaluating OF to plasma (OF/P) cannabinoid ratios provides important pharmacokinetic data on the disposition of drug and factors influencing partition between matrices. Eleven chronic cannabis smokers resided on a closed research unit for 51 days. There were four 5-day sessions of 0, 30, 60, and 120 mg oral ∆(9)-tetrahydrocannabinol (THC)/day followed by a five-puff smoked cannabis challenge on Day 5. Each session was separated by 9 days ad libitum cannabis smoking. OF and plasma specimens were analyzed for THC and metabolites. During ad libitum smoking, OF/P THC ratios were high (median, 6.1; range, 0.2-348.5) within 1 h after last smoking, decreasing to 0.1-20.7 (median, 2.1) by 13.0-17.1 h. OF/P THC ratios also decreased during 5-days oral THC dosing, and after the smoked cannabis challenge, median OF/P THC ratios decreased from 1.4 to 5.5 (0.04-245.6) at 0.25 h to 0.12 to 0.17 (0.04-5.1) at 10.5 h post-smoking. In other studies, longer exposure to more potent cannabis smoke and oromucosal cannabis spray was associated with increased OF/P THC peak ratios. Median OF/P 11-nor-9-carboxy-THC (THCCOOH) ratios were 0.3-2.5 (range, 0.1-14.7) ng/μg, much more consistent in various dosing conditions over time. OF/P THC, but not THCCOOH, ratios were significantly influenced by oral cavity contamination after smoking or oromucosal spray of cannabinoid products, followed by time-dependent decreases. Establishing relationships between OF and plasma cannabinoid concentrations is essential for making inferences of impairment or other clinical outcomes from OF concentrations.

  6. High levels of N-palmitoylethanolamide and N-stearoylethanolamide in microdialysate samples from myalgic trapezius muscle in women.

    Directory of Open Access Journals (Sweden)

    Nazdar Ghafouri

    Full Text Available BACKGROUND: N-acylethanolamines (NAEs are endogenous compounds that regulate inflammation and pain. These include the cannabinoid ligand anandamide (AEA and the peroxisome proliferator-activated receptor-α ligand palmitoylethanolamide (PEA. Little is known as to the levels of NAEs in pain states in human, particularly in the skeletal muscle. The aim of this study was to investigate the levels of these lipid mediators in muscle dialysate from women with chronic neck-/shoulder pain compared to healthy controls. METHODS: Eleven women with chronic neck-/shoulder pain and eleven healthy women participated in this study. All participants went through microdialysis procedures in the trapezius muscle. Muscle dialysate samples were collected during four hours and analysed by nano liquid chromatography tandem mass spectrometry (nLC-MS/MS. RESULTS: We were able to detect AEA, PEA, N-stearoylethanolamine (SEA and 2-arachidonoylglycerol (2-AG in a single chromatographic run. Of the NAEs studied, PEA and SEA were clearly detectable in the muscle microdialysate samples. The muscle dialysate levels of PEA and SEA were significantly higher in myalgic subjects compared to healthy controls. CONCLUSION: This study demonstrates that microdialysis in combination with mass spectrometry can be used for analysing NAE's in human muscle tissue regularly over time. Furthermore the significant group differences in the concentration of PEA and SEA in this study might fill an important gap in our knowledge of mechanisms in chronic myalgia in humans. In the long run this expanded understanding of nociceptive and anitinociceptive processes in the muscle may provide a base for ameliorating treatment and rehabilitation of pain.

  7. Interaction Between the Cannabinoid and Vanilloid Systems on Anxiety in Male Rats

    Directory of Open Access Journals (Sweden)

    Nafiseh Faraji

    2017-03-01

    Conclusion: Acute neuropharmacological blockade of the TRPV1 receptor or stimulation of the CB1 receptor produced an anxiolytic effect. It seems that antagonism of the vanilloid system modulates cannabinoid outputs that increase the anxiolytic effect. TRPV1 antagonism may alter endocannabinoids production, which in turn enhances anxiolytic effect. These results suggest interaction of two systems or sharing some signaling pathways that affect anxiety expression.

  8. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  9. Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation.

    Directory of Open Access Journals (Sweden)

    András Iring

    Full Text Available Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1 receptor blockade and inhibition of cannabinoid reuptake, respectively on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H.In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v. failed to influence blood pressure (BP, cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v. induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H.Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the

  10. Can oral fluid cannabinoid testing monitor medication compliance and/or cannabis smoking during oral THC and oromucosal Sativex administration?

    Science.gov (United States)

    Lee, Dayong; Karschner, Erin L; Milman, Garry; Barnes, Allan J; Goodwin, Robert S; Huestis, Marilyn A

    2013-06-01

    We characterize cannabinoid disposition in oral fluid (OF) after dronabinol, synthetic oral Δ(9)-tetrahydrocannabinol (THC), and Sativex, a cannabis-extract oromucosal spray, and evaluate whether smoked cannabis relapse or Sativex compliance can be identified with OF cannabinoid monitoring. 5 and 15 mg synthetic oral THC, low (5.4 mg THC, 5.0 mg cannabidiol (CBD)) and high (16.2 mg THC, 15.0 mg CBD) dose Sativex, and placebo were administered in random order (n=14). Oral fluid specimens were collected for 10.5 h after dosing and analyzed for THC, CBD, cannabinol (CBN), and 11-nor-9-carboxy-THC (THCCOOH). After oral THC, OF THC concentrations decreased over time from baseline, reflecting residual THC excretion from previously self-administered smoked cannabis. CBD and CBN also were rarely detected. After Sativex, THC, CBD and CBN increased greatly, peaking at 0.25-1 h. Median CBD/THC and CBN/THC ratios were 0.82-1.34 and 0.04-0.06, respectively, reflecting cannabinoids' composition in Sativex. THCCOOH/THC ratios within 4.5 h post Sativex were ≤ 1.6 pg/ng, always lower than after oral THC and placebo. THCCOOH/THC ratios increased throughout each dosing session. Lack of measurable THC, CBD and CBN in OF following oral THC, and high OF CBD/THC ratios after Sativex distinguish oral and sublingual drug delivery routes from cannabis smoking. Low THCCOOH/THC ratios suggest recent Sativex and smoked cannabis exposure. These data indicate that OF cannabinoid monitoring can document compliance with Sativex pharmacotherapy, and identify relapse to smoked cannabis during oral THC medication but not Sativex treatment, unless samples were collected shortly after smoking. Published by Elsevier Ireland Ltd.

  11. Sensitive Quantification of Cannabinoids in Milk by Alkaline Saponification-Solid Phase Extraction Combined with Isotope Dilution UPLC-MS/MS.

    Science.gov (United States)

    Wei, Binnian; McGuffey, James E; Blount, Benjamin C; Wang, Lanqing

    2016-01-01

    Maternal exposure to marijuana during the lactation period-either active or passive-has prompted concerns about transmission of cannabinoids to breastfed infants and possible subsequent adverse health consequences. Assessing these health risks requires a sensitive analytical approach that is able to quantitatively measure trace-level cannabinoids in breast milk. Here, we describe a saponification-solid phase extraction approach combined with ultra-high-pressure liquid chromatography-tandem mass spectrometry for simultaneously quantifying Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) in breast milk. We demonstrate for the first time that constraints on sensitivity can be overcome by utilizing alkaline saponification of the milk samples. After extensively optimizing the saponification procedure, the validated method exhibited limits of detections of 13, 4, and 66 pg/mL for THC, CBN, and CBD, respectively. Notably, the sensitivity achieved was significantly improved, for instance, the limits of detection for THC is at least 100-fold more sensitive compared to that previously reported in the literature. This is essential for monitoring cannabinoids in breast milk resulting from passive or nonrecent active maternal exposure. Furthermore, we simultaneously acquired multiple reaction monitoring transitions for 12 C- and 13 C-analyte isotopes. This combined analysis largely facilitated data acquisition by reducing the repetitive analysis rate for samples exceeding the linear limits of 12 C-analytes. In addition to high sensitivity and broad quantitation range, this method delivers excellent accuracy (relative error within ±10%), precision (relative standard deviation <10%), and efficient analysis. In future studies, we expect this method to play a critical role in assessing infant exposure to cannabinoids through breastfeeding.

  12. Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids.

    Science.gov (United States)

    Seely, Kathryn A; Lapoint, Jeff; Moran, Jeffery H; Fattore, Liana

    2012-12-03

    "K2" and "Spice" drugs (collectively hereafter referred to as Spice) represent a relatively new class of designer drugs that have recently emerged as popular alternatives to marijuana, otherwise characterized as "legal highs". These drugs are readily available on the Internet and sold in many head shops and convenience stores under the disguise of innocuous products like herbal blends, incense, or air fresheners. Although package labels indicate "not for human consumption", the number of intoxicated people presenting to emergency departments is dramatically increasing. The lack of validated and standardized human testing procedures and an endless supply of potential drugs of abuse are primary reasons why researchers find it difficult to fully characterize clinical consequences associated with Spice. While the exact chemical composition and toxicology of Spice remains to be determined, there is mounting evidence identifying several synthetic cannabinoids as causative agents responsible for psychoactive and adverse physical effects. This review provides updates of the legal status of common synthetic cannabinoids detected in Spice and analytical procedures used to test Spice products and human specimens collected under a variety of clinical circumstances. The pharmacological and toxicological consequences of synthetic cannabinoid abuse are also reviewed to provide a future perspective on potential short- and long-term implications. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    Marina Rubio

    Full Text Available Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716 during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.

  14. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology

    Directory of Open Access Journals (Sweden)

    Justine eRenard

    2014-11-01

    Full Text Available Marijuana is the most widely used illicit drug among adolescents and young adults. Unique cognitive, emotional, and social changes occur during this critical period of development from childhood into adulthood. The adolescent brain is in a state of transition and differs from the adult brain with respect to both anatomy (e.g., neuronal connections and morphology and neurochemistry (e.g., dopamine, GABA, and glutamate. These changes are thought to support the emergence of adult cerebral processes and behaviors. The endocannabinoid system plays an important role in development by acting on synaptic plasticity, neuronal cell proliferation, migration, and differentiation. Delta-9-tetrahydrocanabinol (THC, the principal psychoactive component in marijuana, acts as an agonist of the cannabinoid type 1 receptor (CB1R. Thus, over-activation of the endocannabinoid system by chronic exposure to CB1R agonists (e.g. THC, CP-55,940, and WIN55,212-2 during adolescence can dramatically alter brain maturation and cause long-lasting neurobiological changes that ultimately affect the function and behavior of the adult brain. Indeed, emerging evidence from both human and animal studies demonstrates that early-onset marijuana use has long-lasting consequences on cognition; moreover, in humans, this use is associated with a two-fold increase in the risk of developing a psychotic disorder. Here, we review the relationship between cannabinoid exposure during adolescence and the increased risk of neuropsychiatric disorders, focusing on both clinical and animal studies.

  15. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite

    DEFF Research Database (Denmark)

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-01-01

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has bee...

  16. Cannabinoid receptor-2 immunoreactivity is associated with survival in squamous cell carcinoma of the head and neck.

    Science.gov (United States)

    Klein Nulent, Thomas J W; Van Diest, Paul J; van der Groep, Petra; Leusink, Frank K J; Kruitwagen, Cas L J J; Koole, Ronald; Van Cann, Ellen M

    2013-10-01

    The prediction of progression of individual tumours, prognosis, and survival in squamous cell carcinoma (SCC) of the head and neck is difficult. Cannabinoid-1 (CB1) and cannabinoid-2 (CB2) receptor expression is related to survival in several types of cancer, and the aim of this study was to find out whether the expression of CB1 and CB2 receptors is associated with survival in primary SCC of the head and neck. We made immunohistochemical analyses of the cannabinoid receptors on tissue arrays from 240 patients with the disease. Receptor immunoreactivity was classified as none, weak, moderate, or strong staining. Overall survival and disease-specific survival were plotted using Kaplan-Meier survival curves. A multivariate Cox proportional hazard model was created with all the relevant clinical and pathological features. Strong immunoreactivity of the CB2 receptor was significantly associated with reduced disease-specific survival (p=0.007). Cox-proportional hazard ratio (HR) showed that CB2 receptor immunoreactivity contributed to the prediction of survival (HR 3.6, 95% CI 1.5-8.7, p=0.004). Depth of invasion (HR 2.2, 95% CI 1.2-4.2, p=0.01) and vascular invasion (HR 2.5, 95% CI 1.4-4.5, p=0.001) were also associated with survival. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. (S)Pot on Mitochondria: Cannabinoids Disrupt Cellular Respiration to Limit Neuronal Activity.

    Science.gov (United States)

    Harkany, Tibor; Horvath, Tamas L

    2017-01-10

    Classical views posit G protein-coupled cannabinoid receptor 1s (CB1Rs) at the cell surface with cytosolic Giα-mediated signal transduction. Hebert-Chatelain et al. (2016) instead place CB 1 Rs at mitochondria limiting neuronal respiration by soluble adenylyl cyclase-dependent modulation of complex I activity. Thus, neuronal bioenergetics link to synaptic plasticity and, globally, learning and memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Ciliary neurotrophic factor is an endogenous pyrogen.

    Science.gov (United States)

    Shapiro, L; Zhang, X X; Rupp, R G; Wolff, S M; Dinarello, C A

    1993-09-15

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) following intravenous injection; CNTF fever was blocked by pretreatment with indomethacin. The fever induced by CNTF was not due to contaminating endotoxins. Increasing doses of CNTF resulted in prolongation of the fever, suggesting the subsequent induction of additional endogenous pyrogenic activity. After passive transfer of plasma obtained during CNTF-induced fever, endogenous pyrogen activity was not present in the circulation; CNTF also did not induce the endogenous pyrogens interleukin 1, tumor necrosis factor, or interleukin 6 in vitro. Nevertheless, a second endogenous pyrogen may originate within the central nervous system following the systemic injection of CNTF. Of the four endogenous pyrogens described to date (interleukin 1, tumor necrosis factor, interferon, and interleukin 6), CNTF, like interleukin 6, utilizes the cell-surface gp 130 signal-transduction apparatus.

  19. Precipitated withdrawal counters the adverse effects of subchronic cannabinoid administration on male rat sexual behavior.

    Science.gov (United States)

    Riebe, Caitlin J; Lee, Tiffany T; Hill, Matthew N; Gorzalka, Boris B

    2010-03-26

    In the present study, sexual behavior of male rats was assessed following prolonged treatment with the CB(1) receptor agonist, HU-210 (0.1mg/mg/day for 10 days) under conditions of drug maintenance, spontaneous withdrawal and precipitated withdrawal (induced via administration of the CB(1) receptor antagonist AM251; 1mg/kg). Following subchronic cannabinoid treatment, sexual activity in male rats was impaired under both the drug maintenance and spontaneous withdrawal conditions, as revealed by a reduction in frequency of both intromissions and ejaculations. Notably, the induction of precipitated drug withdrawal reversed the negative effects of subchronic HU-210 treatment on sexual activity as seen by a reversal of the suppression of ejaculations. These data illustrate that, contrary to expectations, the impairments in male sexual activity following protracted cannabinoid administration are not due to drug withdrawal, per se, but are likely mediated by neuroadaptive changes provoked by repeated drug exposure. 2010 Elsevier Ireland Ltd. All rights reserved.

  20. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor.

    Science.gov (United States)

    Rinaldi-Carmona, M; Barth, F; Millan, J; Derocq, J M; Casellas, P; Congy, C; Oustric, D; Sarran, M; Bouaboula, M; Calandra, B; Portier, M; Shire, D; Brelière, J C; Le Fur, G L

    1998-02-01

    Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.

  1. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2013-07-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.

  2. Stabilization of functional recombinant cannabinoid receptor CB(2 in detergent micelles and lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Krishna Vukoti

    Full Text Available Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB(2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB(2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB(2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of (2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB(2 in dodecyl maltoside (DDM/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB(2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at

  3. Müller cells express the cannabinoid CB2 receptor in the vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    The presence of the cannabinoid receptor type 1 (CB1R) has been largely documented in the rodent and primate retinae in recent years. There is, however, some controversy concerning the presence of the CB2 receptor (CB2R) within the central nervous system. Only recently, CB2R has been found in the...

  4. The endocannabinoid system: emotion, learning and addiction.

    Science.gov (United States)

    Moreira, Fabrício A; Lutz, Beat

    2008-06-01

    The identification of the cannabinoid receptor type 1 (CB1 receptor) was the milestone discovery in the elucidation of the behavioural and emotional responses induced by the Cannabis sativa constituent Delta(9)-tetrahydrocannabinol. The subsequent years have established the existence of the endocannabinoid system. The early view relating this system to emotional responses is reflected by the fact that N-arachidonoyl ethanolamine, the pioneer endocannabinoid, was named anandamide after the Sanskrit word 'ananda', meaning 'bliss'. However, the emotional responses to cannabinoids are not always pleasant and delightful. Rather, anxiety and panic may also occur after activation of CB1 receptors. The present review discusses three properties of the endocannabinoid system as an attempt to understand these diverse effects. First, this system typically functions 'on-demand', depending on environmental stimuli and on the emotional state of the organism. Second, it has a wide neuro-anatomical distribution, modulating brain regions with different functions in responses to aversive stimuli. Third, endocannabinoids regulate the release of other neurotransmitters that may have even opposing functions, such as GABA and glutamate. Further understanding of the temporal, spatial and functional characteristics of this system is necessary to clarify its role in emotional responses and will promote advances in its therapeutic exploitation.

  5. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system.

    Science.gov (United States)

    McPartland, John M; Guy, Geoffrey W; Di Marzo, Vincenzo

    2014-01-01

    The "classic" endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the "eCB deficiency syndrome" as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system--ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as "complementary and alternative medicine" also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances--alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.

  6. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging with the Novel Radiotracer [11C]CURB

    Science.gov (United States)

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F.; Huestis, Marilyn A.; Payer, Doris E.; Wilson, Alan A.; Houle, Sylvain; Kish, Stephen J.; Tong, Junchao

    2016-01-01

    Background One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH) and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Methods Brain FAAH binding was measured with positron emission tomography and [11C]CURB in 22 healthy control subjects and ten chronic, frequent cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine and hair levels of cannabinoids and metabolites were determined. Results In cannabis users FAAH binding was significantly lower by 14–20% across the brain regions examined as compared to matched control subjects (overall Cohen’s d=0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Conclusions Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. PMID:27345297

  7. Dynamic changes to the endocannabinoid system in models of chronic pain

    Science.gov (United States)

    Rani Sagar, Devi; Burston, James J.; Woodhams, Stephen G.; Chapman, Victoria

    2012-01-01

    The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established. However, the side-effect profile of CB1 receptor ligands has necessitated the search for alternative cannabinoid-based approaches to analgesia. Herein, we review the current literature describing the impact of chronic pain states on the key components of the endocannabinoid receptor system, in terms of regionally restricted changes in receptor expression and levels of key metabolic enzymes that influence the local levels of the endocannabinoids. The evidence that spinal CB2 receptors have a novel role in the modulation of nociceptive processing in models of neuropathic pain, as well as in models of cancer pain and arthritis is discussed. Recent advances in our understanding of the spinal location of the key enzymes that regulate the levels of the endocannabinoid 2-AG are discussed alongside the outcomes of recent studies of the effects of inhibiting the catabolism of 2-AG in models of pain. The complexities of the enzymes capable of metabolizing both anandamide (AEA) and 2-AG have become increasingly apparent. More recently, it has come to light that some of the metabolites of AEA and 2-AG generated by cyclooxygenase-2, lipoxygenases and cytochrome P450 are biologically active and can either exacerbate or inhibit nociceptive signalling. PMID:23108548

  8. Traditional marijuana, high-potency cannabis and synthetic cannabinoids: increasing risk for psychosis.

    Science.gov (United States)

    Murray, Robin M; Quigley, Harriet; Quattrone, Diego; Englund, Amir; Di Forti, Marta

    2016-10-01

    Epidemiological evidence demonstrates that cannabis use is associated with an increased risk of psychotic outcomes, and confirms a dose-response relationship between the level of use and the risk of later psychosis. High-potency cannabis and synthetic cannabinoids carry the greatest risk. Experimental administration of tetrahydrocannabinol, the active ingredient of cannabis, induces transient psychosis in normal subjects, but this effect can be ameliorated by co-administration of cannabidiol. This latter is a constituent of traditional hashish, but is largely absent from modern high-potency forms of cannabis. Argument continues over the extent to which genetic predisposition is correlated to, or interacts with, cannabis use, and what proportion of psychosis could be prevented by minimizing heavy use. As yet, there is not convincing evidence that cannabis use increases risk of other psychiatric disorders, but there are no such doubts concerning its detrimental effect on cognitive function. All of the negative aspects are magnified if use starts in early adolescence. Irrespective of whether use of cannabis is decriminalized or legalized, the evidence that it is a component cause of psychosis is now sufficient for public health messages outlining the risk, especially of regular use of high-potency cannabis and synthetic cannabinoids. © 2016 World Psychiatric Association.

  9. Traditional marijuana, high‐potency cannabis and synthetic cannabinoids: increasing risk for psychosis

    Science.gov (United States)

    Murray, Robin M.; Quigley, Harriet; Quattrone, Diego; Englund, Amir; Di Forti, Marta

    2016-01-01

    Epidemiological evidence demonstrates that cannabis use is associated with an increased risk of psychotic outcomes, and confirms a dose‐response relationship between the level of use and the risk of later psychosis. High‐potency cannabis and synthetic cannabinoids carry the greatest risk. Experimental administration of tetrahydrocannabinol, the active ingredient of cannabis, induces transient psychosis in normal subjects, but this effect can be ameliorated by co‐administration of cannabidiol. This latter is a constituent of traditional hashish, but is largely absent from modern high‐potency forms of cannabis. Argument continues over the extent to which genetic predisposition is correlated to, or interacts with, cannabis use, and what proportion of psychosis could be prevented by minimizing heavy use. As yet, there is not convincing evidence that cannabis use increases risk of other psychiatric disorders, but there are no such doubts concerning its detrimental effect on cognitive function. All of the negative aspects are magnified if use starts in early adolescence. Irrespective of whether use of cannabis is decriminalized or legalized, the evidence that it is a component cause of psychosis is now sufficient for public health messages outlining the risk, especially of regular use of high‐potency cannabis and synthetic cannabinoids. PMID:27717258

  10. Are cannabinoids effective for the management of chemotherapy induced nausea and vomiting?

    Directory of Open Access Journals (Sweden)

    Mariaignacia Morales

    2017-12-01

    Full Text Available Resumen INTRODUCCIÓN El tratamiento de las náuseas y vómitos inducidos por quimioterapia podría mejorar la calidad de vida de los pacientes oncológicos; para lograrlo se ha propuesto la adición de cannabinoides a los esquemas de antieméticos habituales. MÉTODOS Para responder esta pregunta utilizamos Epistemonikos, la mayor base de datos de revisiones sistemáticas en salud, la cual es mantenida mediante búsquedas en múltiples fuentes de información, incluyendo MEDLINE, EMBASE, Cochrane, entre otras. Extrajimos los datos desde las revisiones identificadas, reanalizamos los datos de los estudios primarios, realizamos un metanálisis y preparamos tablas de resumen de los resultados utilizando el método GRADE. RESULTADOS Y CONCLUSIONES Identificamos 16 revisiones sistemáticas que en conjunto incluyen 61 estudios primarios, de los cuales cuatro son ensayos aleatorizados que responden a la pregunta de interés. Concluimos que no hay claridad respecto a si los cannabinoides otorgan un beneficio al añadirlos a esquemas antieméticos habituales para el control de náuseas y vómitos inducidos por quimioterapia, porque la certeza de la evidencia es muy baja. Probablemente aumentan los efectos adversos de manera sustantiva.

  11. Intoxication from the novel synthetic cannabinoids AB-PINACA and ADB-PINACA: A case series and review of the literature.

    Science.gov (United States)

    Armenian, Patil; Darracq, Michael; Gevorkyan, Jirair; Clark, Shane; Kaye, Bryan; Brandehoff, Nicklaus P

    2018-05-15

    Synthetic cannabinoids (SC), are a novel class of designer drugs which emerged as a drug of abuse in the late 2000's. We report a case series of 6 patients who may have smoked a synthetic cannabinoid product in a remote wilderness setting. They presented with varying degrees of altered mental status, agitation, and seizures. Two were confirmed to have AB-PINACA, ADB-PINACA and their respective pentanoic acid metabolites in biological specimens via liquid chromatography time-of-flight mass spectrometry (LC-TOF/MS). Both compounds had DEA Schedule I classification at the time of case presentation, and 22 SCs are currently temporary or permanent DEA Schedule I. More than 150 SCs are known to date, and new compounds are appearing at a rapid rate on darknet and surface web e-commerce websites, marketed as "research chemicals" or "legal highs." The scale and rapidity of SC evolution make legal control and analytical detection difficult. Nontargeted testing with liquid chromatography high resolution mass spectrometry (LC-HRMS), examining both parent compounds and metabolites, is the ideal method for novel SC identification and confirmation. Due to full agonism at the cannabinoid receptors CB1 and CB2, clinical effects are more severe than marijuana, which is a partial cannabinoid receptor agonist. They include agitated delirium, lethargy and coma, seizures, tachycardia, hypertension, and hallucinations, among other findings. Treatment is primarily symptomatic and aimed at airway protection and control of agitation and seizures. SCs do not appear to be abating anytime soon and require the cooperation of law enforcement, analytical scientists, and clinicians to adequately control. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The cannabinoid receptor type 2 as mediator of mesenchymal stromal cell immunosuppressive properties.

    Directory of Open Access Journals (Sweden)

    Francesca Rossi

    Full Text Available Mesenchymal stromal cells are non-hematopoietic, multipotent progenitor cells producing cytokines, chemokines, and extracellular matrix proteins that support hematopoietic stem cell survival and engraftment, influence immune effector cell development, maturation, and function, and inhibit alloreactive T-cell responses. The immunosuppressive properties of human mesenchymal stromal cells have attracted much attention from immunologists, stem cell biologists and clinicians. Recently, the presence of the endocannabinoid system in hematopoietic and neural stem cells has been demonstrated. Endocannabinoids, mainly acting through the cannabinoid receptor subtype 2, are able to modulate cytokine release and to act as immunosuppressant when added to activated T lymphocytes. In the present study, we have investigated, through a multidisciplinary approach, the involvement of the endocannabinoids in migration, viability and cytokine release of human mesenchymal stromal cells. We show, for the first time, that cultures of human mesenchymal stromal cells express all of the components of the endocannabinoid system, suggesting a potential role for the cannabinoid CB2 receptor as a mediator of anti-inflammatory properties of human mesenchymal stromal cells, as well as of their survival pathways and their capability to home and migrate towards endocannabinoid sources.

  13. Are cannabinoids an alternative for cachexia-anorexia syndrome in patients with advanced cancer?

    Directory of Open Access Journals (Sweden)

    Claudia Cabeza

    2018-12-01

    Full Text Available Resumen INTRODUCCIÓN La caquexia y la anorexia se encuentran dentro de los síntomas más frecuentes en los pacientes oncológicos. Los cannabinoides han sido propuestos para su manejo en los pacientes con cáncer avanzado, sin embargo, su rol es controvertido. MÉTODOS Para responder esta pregunta utilizamos Epistemonikos, la mayor base de datos de revisiones sistemáticas en salud a nivel mundial, la cual es mantenida mediante búsquedas en múltiples fuentes de información, incluyendo MEDLINE, EMBASE, Cochrane, entre otras. Extrajimos los datos desde las revisiones identificadas, reanalizamos los datos de los estudios primarios y preparamos una tabla de resumen de los resultados utilizando el método GRADE. RESULTADOS Y CONCLUSIONES Identificamos diez revisiones sistemáticas, que en conjunto incluyen tres estudios, entre ellos dos ensayos aleatorizados. Concluimos que no está claro si los cannabinoides logran o no un aumento de peso en pacientes con anorexia-caquexia porque la certeza de la evidencia es muy baja, podrían no tener tampoco efecto sobre el apetito, y probablemente se asocian a efectos adversos frecuentes.

  14. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence.

    Science.gov (United States)

    Abboussi, Oualid; Said, Nadia; Fifel, Karim; Lakehayli, Sara; Tazi, Abdelouahhab; El Ganouni, Soumaya

    2016-04-01

    Chronic exposure to cannabinoids during adolescence results in long-lasting behavioral deficits that match some symptomatologic aspects of schizophrenia. The aim of this study was to investigate the reversibility of the emotional and the cognitive effects of chronic exposure to cannabinoids during adolescence, via subsequent modulation of the serotoninergic 5-HT4 and dopaminergic D3 receptors. RS67333 as a 5-HT4 agonist and U-99194A as a D3 antagonist were administered separately at 1 mg/kg and 20 mg/kg, and in combination at 0.5 mg/kg and 10 mg/kg to adult animals undergoing chronic treatment with the synthetic cannabinoid receptor agonist WIN55,212-2 (1 mg/kg) during adolescence. Animals were tested for anxiety-like behavior and episodic-like memory in the open field and novel object recognition tests respectively 30 minutes after the last drug administration. Chronic WIN55,212-2 treated animals exhibited a lasting disruption of episodic memory and increased anxiety levels. The effect on episodic-like memory were partially restored by acute administration of RS67333 and U-99194A and completely by administration of both drugs in combination at lower doses. However, only RS67333 (20 mg/kg) improved the anxiogenic-like effect of WIN55,212-2. These findings give further support that chronic exposure to cannabinoids during adolescence may be used as an animal model for schizophrenia, and highlight D3 and 5-HT4 receptors as potential targets for an enhanced treatment of the cognitive aspect of this disease.

  15. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine.

    Science.gov (United States)

    Battal, Dilek; Akgönüllü, Semra; Yalcin, M Serkan; Yavuz, Handan; Denizli, Adil

    2018-07-15

    Herein, we prepared a novel quartz crystal microbalance (QCM) sensor for synthetic cannabinoids (JWH-073, JWH-073 butanoic acid, JWH-018 and JWH-018 pentanoic acid,) detection. Firstly, the synthetic cannabinoid (SCs) imprinted (MIP) and non-imprinted (NIP) nanoparticles were synthesized by mini-emulsion polymerization system. The SCs-imprinted nanoparticles were first characterized by SEM, TEM, zeta-size and FTIR-ATR analysis and then were dropped onto the gold QCM surface. The SCs-imprinted QCM sensor was characterized by an ellipsometer, contact angle, and AFM. The limit of detection was found as 0.3, 0.45, 0.4, 0.2 pg/mL JWH-018, JWH-073, JWH-018 pentanoic acid and JWH-073 butanoic acid, respectively. The selectivity of the SCs-imprinted QCM sensor was shown by using JWH-018, JWH-018 pentanoic acid, JWH-073 and JWH-073 butanoic acid. According to the results, the SCs-imprinted QCM sensors show highly selective and sensitive in a broad range of synthetic cannabinoid concentrations (0.0005-1.0 ng/mL) in both aqueous and synthetic urine solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Interaction between endogenous and exogenous orienting in crossmodal attention.

    Science.gov (United States)

    Chen, Xiaoxi; Chen, Qi; Gao, Dingguo; Yue, Zhenzhu

    2012-08-01

    Using a cue-target paradigm, we investigated the interaction between endogenous and exogenous orienting in cross-modal attention. A peripheral (exogenous) cue was presented after a central (endogenous) cue with a variable time interval. The endogenous and exogenous cues were presented in one sensory modality (auditory in Experiment 1 and visual in Experiment 2) whereas the target was presented in another modality. Both experiments showed a significant endogenous cuing effect (longer reaction times in the invalid condition than in the valid condition). However, exogenous cuing produced a facilitatory effect in both experiments in response to the target when endogenous cuing was valid, but it elicited a facilitatory effect in Experiment 1 and an inhibitory effect in Experiment 2 when endogenous cuing was invalid. These findings indicate that endogenous and exogenous cuing can co-operate in orienting attention to the crossmodal target. Moreover, the interaction between endogenous and exogenous orienting of attention is modulated by the modality between the cue and the target. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  17. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function

    NARCIS (Netherlands)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CBI

  18. Cannabinoid Disposition After Human Intraperitoneal Use: An Insight Into Intraperitoneal Pharmacokinetic Properties in Metastatic Cancer.

    Science.gov (United States)

    Lucas, Catherine J; Galettis, Peter; Song, Shuzhen; Solowij, Nadia; Reuter, Stephanie E; Schneider, Jennifer; Martin, Jennifer H

    2018-01-06

    Medicinal cannabis is prescribed under the provision of a controlled drug in the Australian Poisons Standard. However, multiple laws must be navigated in order for patients to obtain access and imported products can be expensive. Dose-response information for both efficacy and toxicity pertaining to medicinal cannabis is lacking. The pharmacokinetic properties of cannabis administered by traditional routes has been described but to date, there is no literature on the pharmacokinetic properties of an intraperitoneal cannabinoid emulsion. A cachectic 56-year-old female with stage IV ovarian cancer and peritoneal metastases presented to hospital with fevers, abdominal distension and severe pain, vomiting, anorexia, dehydration and confusion. The patient reported receiving an intraperitoneal injection, purported to contain 12 g of mixed cannabinoid (administered by a deregistered medical practitioner) two days prior to presentation. Additionally, cannabis oil oral capsules were administered in the hours prior to hospital admission. THC concentrations were consistent with the clinical state but not with the known pharmacokinetic properties of cannabis nor of intraperitoneal absorption. THC concentrations at the time of presentation were predicted to be ~60 ng/mL. Evidence suggests that blood THC concentrations >5 ng/mL are associated with substantial cognitive and psychomotor impairment. The predicted time for concentrations to drop <5 ng/mL was 49 days after administration. The unusual pharmacokinetic properties of the case suggest that there is a large amount unknown about cannabis pharmacokinetic properties. The pharmacokinetic properties of a large amount of a lipid soluble compound given intraperitoneally gave insights into the absorption and distribution of cannabinoids, particularly in the setting of metastatic malignancy. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  19. Effects of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and Working Memory.

    Science.gov (United States)

    Kirschmann, Erin K; Pollock, Michael W; Nagarajan, Vidhya; Torregrossa, Mary M

    2017-04-01

    Use of marijuana (Cannabis sativa) often begins in adolescence, and heavy adolescent marijuana use is often associated with impaired cognitive function in adulthood. However, clinical reports of long-lasting cognitive deficits, particularly in subjects who discontinue use in adulthood, are mixed. Moreover, dissociating innate differences in cognitive function from cannabis-induced deficits is challenging. Therefore, the current study sought to develop a rodent model of adolescent cannabinoid self-administration (SA), using the synthetic cannabinoid receptor agonist WIN55,212-2 (WIN), in order to assess measures of relapse/reinstatement of drug seeking and long-term effects on cognitive function assessed in a delay-match-to-sample working memory task and a spatial recognition task. Adolescent male rats readily self-administered WIN in 2-h or 6-h sessions/day, but did not demonstrate an escalation of intake with 6-h access. Rats exhibited significant cue-induced reinstatement of WIN seeking that increased with 21 days of abstinence (ie, 'incubation of craving'). Cognitive testing occurred in adulthood under drug-free conditions. Both 2-h and 6-h adolescent WIN SA groups exhibited significantly better working memory performance in adulthood relative to sucrose SA controls, and performance was associated with altered expression of proteins regulating GABAergic and glutamatergic signaling in the prefrontal cortex. Self-administered WIN did not produce either acute or chronic effects on short-term memory, but experimenter administration of WIN in adolescence, at doses previously reported in the literature, produced acute deficits in short-term memory that recovered with abstinence. Thus, SA of a rewarding cannabinoid in adolescence does not produce long-term cognitive dysfunction.

  20. Are human endogenous retroviruses triggers of autoimmune diseases?

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Villesen, Palle; Nissen, Kari K

    2016-01-01

    factors. Viruses including human endogenous retroviruses have long been linked to the occurrence of autoimmunity, but never proven to be causative factors. Endogenous viruses are retroviral sequences embedded in the host germline DNA and transmitted vertically through successive generations in a Mendelian...... manner. In this study by means of genetic epidemiology, we have searched for the involvement of endogenous retroviruses in three selected autoimmune diseases: multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. We found that at least one human endogenous retroviral locus...