WorldWideScience

Sample records for end-range spinal movements

  1. Bimanual reach to grasp movements after cervical spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Laura Britten

    Full Text Available Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing functional independence and quality of life. To date little research has been undertaken to investigate control strategies of arm/hand movements following cervical spinal cord injury (cSCI. This study aimed to investigate unimanual and bimanual coordination in patients with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp actions with one hand, or with both hands together (symmetrical task, and compare this to the movement patterns of uninjured younger and older adults. Eighteen adults with a cSCI (mean 61.61 years with lesions at C4-C8, with an American Spinal Injury Association (ASIA grade B to D and 16 uninjured younger adults (mean 23.68 years and sixteen uninjured older adults (mean 70.92 years were recruited. Participants with a cSCI produced reach-to-grasp actions which took longer, were slower, and had longer deceleration phases than uninjured participants. These differences were exacerbated during bimanual reach-to-grasp tasks. Maximal grasp aperture was no different between groups, but reached earlier by people with cSCI. Participants with a cSCI were less synchronous than younger and older adults but all groups used the deceleration phase for error correction to end the movement in a synchronous fashion. Overall, this study suggests that after cSCI a level of bimanual coordination is retained. While there seems to be a greater reliance on feedback to produce both the reach to grasp, we observed minimal disruption of the more impaired limb on the less impaired limb. This suggests that bimanual movements should be integrated into therapy.

  2. The effect of spinal manipulative therapy on spinal range of motion

    DEFF Research Database (Denmark)

    Millan, Mario; Leboeuf-Yde, Charlotte; Budgell, Brian

    2012-01-01

    Spinal manipulative therapy (SMT) has been shown to have an effect on spine-related pain, both clinically and in experimentally induced pain. However, it is unclear if it has an immediate noticeable biomechanical effect on spinal motion that can be measured in terms of an increased range of motion...

  3. Asymmetrical trunk movement during walking improved to normal range at 3 months after corrective posterior spinal fusion in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Wong-Chung, Daniel A C F; Schimmel, Janneke J P; de Kleuver, Marinus; Keijsers, Noël L W

    2018-02-01

    To investigate the effects of posterior spinal fusion (PSF) and curve type on upper body movements in Adolescent Idiopathic Scoliosis (AIS) patients during gait. Twenty-four girls (12-18 years) with AIS underwent PSF. 3D-Gait-analyses were performed preoperatively, at 3 months and 1 year postoperatively. Mean position (0° represents symmetry) and range of motion (ROM) of the trunk (thorax-relative-to-pelvis) in all planes were assessed. Lower body kinematics and spatiotemporal parameters were also evaluated. Mean trunk position improved from 7.0° to 2.9° in transversal plane and from 5.0° to - 0.8° in frontal plane at 3 months postoperative (p maintenance of normal gait can explain the rapid recovery and well functioning in daily life of AIS patients, despite undergoing a fusion of large parts of their spine.

  4. Lower Limb Voluntary Movement Improvement Following a Robot-Assisted Locomotor Training in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mirbagheri Mehdi

    2011-12-01

    Full Text Available Individuals with spinal cord injury (SCI suffer from severe impairments in voluntary movements. Literature reports a reduction in major kinematic and kinetic parameters of lower limbs’ joints. A body weight support treadmill training with robotic assistance has been widely used to improve lower-extremity function and locomotion in persons with SCI. Our objective was to explore the effects of 4-weeks robot-assisted locomotor training on voluntary movement of the ankle musculature in patients with incomplete SCI. In particular, we aimed to characterize the therapeutic effects of Lokomat training on kinematic measures (range of motion, velocity, smoothness during a dorsiflexion movement. We hypothesized that training would improve these measures. Preliminary results show an improvement of kinematic parameters during ankle dorsiflexion voluntary movement after a 4-weeks training in the major part of our participants. Complementary investigations are in progress to confirm these results and understand underlying mechanisms associated with the recovery.

  5. Brain Computer Interface: Assessment of Spinal Cord Injury Patient towards Motor Movement through EEG application

    Directory of Open Access Journals (Sweden)

    Syam Syahrull Hi-Fi

    2017-01-01

    Full Text Available Electroencephalography (EEG associated with motor task have been comprehensively investigated and it can also describe the brain activities while spinal cord injury (SCI patient with para/tetraplegia performing movement with their limbs. This paper reviews on conducted research regarding application of brain computer interface (BCI that offer alternative for neural impairments community such as spinal cord injury patient (SCI which include the experimental design, signal analysis of EEG band signal and data processing methods. The findings claim that the EEG signals of SCI patients associated with movement tasks can be stimulated through mental and motor task. Other than that EEG signal component such as alpha and beta frequency bands indicate significance for analysing the brain activity of subjects with SCI during movements.

  6. Spinal circuits can accommodate interaction torques during multijoint limb movements.

    Science.gov (United States)

    Buhrmann, Thomas; Di Paolo, Ezequiel A

    2014-01-01

    The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

  7. Spinal circuits can accommodate interaction torques during multijoint limb movements

    Directory of Open Access Journals (Sweden)

    Thomas eBuhrmann

    2014-11-01

    Full Text Available The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

  8. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones.

    Science.gov (United States)

    McLean, David L; Fetcho, Joseph R

    2009-10-28

    Studies of neuronal networks have revealed few general principles that link patterns of development with later functional roles. While investigating the neural control of movements, we recently discovered a topographic map in the spinal cord of larval zebrafish that relates the position of motoneurons and interneurons to their order of recruitment during swimming. Here, we show that the map reflects an orderly pattern of differentiation of neurons driving different movements. First, we use high-speed filming to show that large-amplitude swimming movements with bending along much of the body appear first, with smaller, regional swimming movements emerging later. Next, using whole-cell patch recordings, we demonstrate that the excitatory circuits that drive large-amplitude, fast swimming movements at larval stages are present and functional early on in embryos. Finally, we systematically assess the orderly emergence of spinal circuits according to swimming speed using transgenic fish expressing the photoconvertible protein Kaede to track neuronal differentiation in vivo. We conclude that a simple principle governs the development of spinal networks in which the neurons driving the fastest, most powerful swimming in larvae develop first with ones that drive increasingly weaker and slower larval movements layered on over time. Because the neurons are arranged by time of differentiation in the spinal cord, the result is a topographic map that represents the speed/strength of movements at which neurons are recruited and the temporal emergence of networks. This pattern may represent a general feature of neuronal network development throughout the brain and spinal cord.

  9. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.

    Science.gov (United States)

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-03-31

    In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient's maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. The improvements of the kinematic and kinetic parameters of the ankle voluntary movement

  10. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    OpenAIRE

    Harvie, Daniel S.; Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer

    2017-01-01

    Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothe...

  11. Both movement-end and task-end are critical for error feedback in visuomotor adaptation: a behavioral experiment.

    Directory of Open Access Journals (Sweden)

    Takumi Ishikawa

    Full Text Available An important issue in motor learning/adaptation research is how the brain accepts the error information necessary for maintaining and improving task performance in a changing environment. The present study focuses on the effect of timing of error feedback. Previous research has demonstrated that adaptation to displacement of the visual field by prisms in a manual reaching task is significantly slowed by delayed visual feedback of the endpoint, suggesting that error feedback is most effective when given at the end of a movement. To further elucidate the brain mechanism by which error information is accepted in visuomotor adaptation, we tested whether error acceptance is linked to the end of a given task or to the end of an executed movement. We conducted a behavioral experiment using a virtual shooting task in which subjects controlled their wrist movements to meet a target with a cursor as accurately as possible. We manipulated the timing of visual feedback of the impact position so that it occurred either ahead of or behind the true time of impact. In another condition, the impact timing was explicitly indicated by an additional cue. The magnitude of the aftereffect significantly varied depending on the timing of feedback (p < 0.05, Friedman's Test. Interestingly, two distinct peaks of aftereffect were observed around movement-end and around task-end, irrespective of the existence of the timing cue. However, the peak around task-end was sharper when the timing cue was given. Our results demonstrate that the brain efficiently accepts error information at both movement-end and task-end, suggesting that two different learning mechanisms may underlie visuomotor transformation.

  12. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion.

    Science.gov (United States)

    Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer

    2017-01-01

    Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50 o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50 o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360 o immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback ( p  = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and

  13. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    Directory of Open Access Journals (Sweden)

    Daniel S. Harvie

    2017-02-01

    Full Text Available Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17. That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The Mo

  14. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study.

    Directory of Open Access Journals (Sweden)

    Urs Keller

    Full Text Available Robotic assistance is increasingly used in neurological rehabilitation for enhanced training. Furthermore, therapy robots have the potential for accurate assessment of motor function in order to diagnose the patient status, to measure therapy progress or to feedback the movement performance to the patient and therapist in real time. We investigated whether a set of robot-based assessments that encompasses kinematic, kinetic and timing metrics is applicable, safe, reliable and comparable to clinical metrics for measurement of arm motor function. Twenty-four healthy subjects and five patients after spinal cord injury underwent robot-based assessments using the exoskeleton robot ARMin. Five different tasks were performed with aid of a visual display. Ten kinematic, kinetic and timing assessment parameters were extracted on joint- and end-effector level (active and passive range of motion, cubic reaching volume, movement time, distance-path ratio, precision, smoothness, reaction time, joint torques and joint stiffness. For cubic volume, joint torques and the range of motion for most joints, good inter- and intra-rater reliability were found whereas precision, movement time, distance-path ratio and smoothness showed weak to moderate reliability. A comparison with clinical scores revealed good correlations between robot-based joint torques and the Manual Muscle Test. Reaction time and distance-path ratio showed good correlation with the "Graded and Redefined Assessment of Strength, Sensibility and Prehension" (GRASSP and the Van Lieshout Test (VLT for movements towards a predefined position in the center of the frontal plane. In conclusion, the therapy robot ARMin provides a comprehensive set of assessments that are applicable and safe. The first results with spinal cord injured patients and healthy subjects suggest that the measurements are widely reliable and comparable to clinical scales for arm motor function. The methods applied and results can

  15. End-task versus in-task feedback to increase procedural learning retention during spinal anaesthesia training of novices.

    Science.gov (United States)

    Lean, Lyn Li; Hong, Ryan Yee Shiun; Ti, Lian Kah

    2017-08-01

    Communication of feedback during teaching of practical procedures is a fine balance of structure and timing. We investigate if continuous in-task (IT) or end-task feedback (ET) is more effective in teaching spinal anaesthesia to medical students. End-task feedback was hypothesized to improve both short-term and long-term procedural learning retention as experiential learning promotes active learning after encountering errors during practice. Upon exposure to a 5-min instructional video, students randomized to IT or ET feedbacks were trained using a spinal simulator mannequin. A blinded expert tested the students using a spinal anaesthesia checklist in the short term (immediate) and long-term (average 4 months). Sixty-five students completed the training and testing. There were no differences in demographics of age or gender within IT or ET distributions. Both short-term and long-term learning retention of spinal anaesthesia ET feedback proved to be better (P feedback. The time taken for ET students was shorter at long-term testing. End-task feedback improves both short-term and long-term procedural learning retention.

  16. Evolution of density-dependent movement during experimental range expansions.

    Science.gov (United States)

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Incidence and Prognosis of Spinal Hemangioblastoma: A Surveillance Epidemiology and End Results Study.

    Science.gov (United States)

    Westwick, Harrison J; Giguère, Jean-François; Shamji, Mohammed F

    2016-01-01

    Intradural spinal hemangioblastoma are infrequent, vascular, pathologically benign tumors occurring either sporadically or in association with von Hippel-Lindau disease along the neural axis. Described in fewer than 1,000 cases, literature is variable with respect to epidemiological factors associated with spinal hemangioblastoma and their treatment. The objective of this study was to evaluate the epidemiology of intradural spinal hemangioblastoma with the Surveillance, Epidemiology and End Results (SEER) database while also presenting an illustrative case. The SEER database was queried for cases of spinal hemangioblastoma between 2000 and 2010 with the use of SEER*Stat software. Incidence was evaluated as a function of age, sex and race. Survival was evaluated with the Cox proportionate hazards ratio using IBM SPSS software evaluating age, sex, location, treatment modality, pathology and number of primaries (p = 0.05). Descriptive statistics of the same factors were also calculated. The case of a 43-year-old patient with a surgical upper cervical intramedullary hemangioblastoma is also presented. In the data set between 2000 and 2010, there were 133 cases with an age-adjusted incidence of 0.014 (0.012-0.017) per 100,000 to the standard USA population. Hemangioblastoma was the tenth most common intradural spinal tumor type representing 2.1% (133 of 6,156) of all spinal tumors. There was no difference in incidence between men and women with an female:male rate ratio of 1.05 (0.73-1.50) with p = 0.86. The average age of patients was 48.0 (45.2-50.9) years, and a lower incidence was noted in patients incidence amongst the different races. Treatment included surgical resection in 106 (79.7%) cases, radiation with surgery in 7 (5.3%) cases, and radiation alone was used in only 1 (0.8%) case, and no treatment was performed in 17 (12.8%) cases. Mortality was noted in 12 (9%) cases, and median survival of 27.5 months (range 1-66 months) over the 10-year period. Mortality

  18. Feasibility of Using Microsoft Kinect to Assess Upper Limb Movement in Type III Spinal Muscular Atrophy Patients.

    Directory of Open Access Journals (Sweden)

    Xing Chen

    Full Text Available Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA, sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials.

  19. Tissue loading created during spinal manipulation in comparison to loading created by passive spinal movements.

    Science.gov (United States)

    Funabashi, Martha; Kawchuk, Gregory N; Vette, Albert H; Goldsmith, Peter; Prasad, Narasimha

    2016-12-01

    Spinal manipulative therapy (SMT) creates health benefits for some while for others, no benefit or even adverse events. Understanding these differential responses is important to optimize patient care and safety. Toward this, characterizing how loads created by SMT relate to those created by typical motions is fundamental. Using robotic testing, it is now possible to make these comparisons to determine if SMT generates unique loading scenarios. In 12 porcine cadavers, SMT and passive motions were applied to the L3/L4 segment and the resulting kinematics tracked. The L3/L4 segment was removed, mounted in a parallel robot and kinematics of SMT and passive movements replayed robotically. The resulting forces experienced by L3/L4 were collected. Overall, SMT created both significantly greater and smaller loads compared to passive motions, with SMT generating greater anterioposterior peak force (the direction of force application) compared to all passive motions. In some comparisons, SMT did not create significantly different loads in the intact specimen, but did so in specific spinal tissues. Despite methodological differences between studies, SMT forces and loading rates fell below published injury values. Future studies are warranted to understand if loading scenarios unique to SMT confer its differential therapeutic effects.

  20. A Workflow-based Intelligent Network Data Movement Advisor with End-to-end Performance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Michelle M. [Southern Illinois Univ., Carbondale, IL (United States); Wu, Chase Q. [Univ. of Memphis, TN (United States)

    2013-11-07

    Next-generation eScience applications often generate large amounts of simulation, experimental, or observational data that must be shared and managed by collaborative organizations. Advanced networking technologies and services have been rapidly developed and deployed to facilitate such massive data transfer. However, these technologies and services have not been fully utilized mainly because their use typically requires significant domain knowledge and in many cases application users are even not aware of their existence. By leveraging the functionalities of an existing Network-Aware Data Movement Advisor (NADMA) utility, we propose a new Workflow-based Intelligent Network Data Movement Advisor (WINDMA) with end-to-end performance optimization for this DOE funded project. This WINDMA system integrates three major components: resource discovery, data movement, and status monitoring, and supports the sharing of common data movement workflows through account and database management. This system provides a web interface and interacts with existing data/space management and discovery services such as Storage Resource Management, transport methods such as GridFTP and GlobusOnline, and network resource provisioning brokers such as ION and OSCARS. We demonstrate the efficacy of the proposed transport-support workflow system in several use cases based on its implementation and deployment in DOE wide-area networks.

  1. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    Science.gov (United States)

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... play_arrow What are the chances of regaining feeling and mobility after a spinal cord injury? play_arrow How long does it usually take for feeling and movement to return after a spinal cord ...

  3. Movement is the glue connecting home ranges and habitat selection.

    Science.gov (United States)

    Van Moorter, Bram; Rolandsen, Christer M; Basille, Mathieu; Gaillard, Jean-Michel

    2016-01-01

    Animal space use has been studied by focusing either on geographic (e.g. home ranges, species' distribution) or on environmental (e.g. habitat use and selection) space. However, all patterns of space use emerge from individual movements, which are the primary means by which animals change their environment. Individuals increase their use of a given area by adjusting two key movement components: the duration of their visit and/or the frequency of revisits. Thus, in spatially heterogeneous environments, animals exploit known, high-quality resource areas by increasing their residence time (RT) in and/or decreasing their time to return (TtoR) to these areas. We expected that spatial variation in these two movement properties should lead to observed patterns of space use in both geographic and environmental spaces. We derived a set of nine predictions linking spatial distribution of movement properties to emerging space-use patterns. We predicted that, at a given scale, high variation in RT and TtoR among habitats leads to strong habitat selection and that long RT and short TtoR result in a small home range size. We tested these predictions using moose (Alces alces) GPS tracking data. We first modelled the relationship between landscape characteristics and movement properties. Then, we investigated how the spatial distribution of predicted movement properties (i.e. spatial autocorrelation, mean, and variance of RT and TtoR) influences home range size and hierarchical habitat selection. In landscapes with high spatial autocorrelation of RT and TtoR, a high variation in both RT and TtoR occurred in home ranges. As expected, home range location was highly selective in such landscapes (i.e. second-order habitat selection); RT was higher and TtoR lower within the selected home range than outside, and moose home ranges were small. Within home ranges, a higher variation in both RT and TtoR was associated with higher selectivity among habitat types (i.e. third-order habitat

  4. Does the application site of spinal manipulative therapy alter spinal tissues loading?

    Science.gov (United States)

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N

    2018-01-31

    Previous studies found that the intervertebral disc (IVD) experiences the greatest loads during spinal manipulation therapy (SMT). Based on that, this study aimed to determine if loads experienced by spinal tissues are significantly altered when the application site of SMT is changed. A biomechanical robotic serial dissection study. Thirteen porcine cadaveric motion segments. Forces experienced by lumbar spinal tissues. A servo-controlled linear actuator provided standardized 300 N SMT simulations to six different cutaneous locations of the porcine lumbar spine: L2-L3 and L3-L4 facet joints (FJ), L3 and L4 transverse processes (TVP), and the space between the FJs and the TVPs (BTW). Vertebral kinematics were tracked optically using indwelling bone pins; the motion segment was removed and mounted in a parallel robot equipped with a six-axis load cell. Movements of each SMT application at each site were replayed by the robot with the intact specimen and following the sequential removal of spinal ligaments, FJs and IVD. Forces induced by SMT were recorded, and specific axes were analyzed using linear mixed models. Analyses yielded a significant difference (p<.05) in spinal structures loads as a function of the application site. Spinal manipulative therapy application at the L3 vertebra caused vertebral movements and forces between L3 and L4 spinal segment in the opposite direction to when SMT was applied at L4 vertebra. Additionally, SMT applications over the soft tissue between adjacent vertebrae significantly decreased spinal structure loads. Applying SMT with a constant force at different spinal levels creates different relative kinetics of the spinal segments and load spinal tissues in significantly different magnitudes. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Open-Ended Measurement of Whole-Body Movement: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Finn, Michael T. M.

    2018-02-01

    Full Text Available As the importance of embodiment emerges for psychology, there is a need to advance methodology for measuring the dynamics of movement in an open-ended fashion. Such a tool should be versatile across contexts and track spontaneous and natural movement with minimal constraints. We test the feasibility of a method for measuring whole-body movement over time that attempts to meet this need. We use a motion capture system comprised of two Microsoft Kinect version 2.0 cameras and iPiSoft Motion Capture software, and compare its estimates of magnitude rotational velocity and whole-body movement complexity (multivariate multiscale sample entropy; MMSE to that of a gold standard motion capture system across a variety of movement sequences. The candidate system satisfactorily estimated the instantaneous velocity of 13 body segments in agreement with the gold standard system across movement sequences demonstrating initial feasibility of this process. Summary calculations of velocity by sequence and MMSE calculations were also in high agreement with the gold standard, crucially suggesting that the candidate system could pick up on the complex dynamics of movement over time. The candidate system was feasible and demonstrates preliminary validity for general use in the tracking of continuous human movement for clinical and experimental psychology. We also provide R code and sample data for the importing and processing of movement data exported from iPiSoft Motion Capture Studio.

  6. Genetics Home Reference: spinal muscular atrophy

    Science.gov (United States)

    ... difficulty breathing. Children with this type often have joint deformities (contractures) that impair movement. In severe cases, ... Proximal spinal muscular atrophy Washington University, St. Louis: Neuromuscular Disease Center: Spinal Muscular Atrophy Patient Support and ...

  7. Changes in spinal range of motion after a flexibility training program in elderly women

    Directory of Open Access Journals (Sweden)

    Battaglia G

    2014-04-01

    Full Text Available Giuseppe Battaglia,1,2 Marianna Bellafiore,1,2 Giovanni Caramazza,2 Antonio Paoli,3 Antonino Bianco,1,2 Antonio Palma1,2 1Department of Law, Society, and Sport Sciences, University of Palermo, Palermo, Italy; 2Sicilian Regional Sports School of Italian National Olympic Committee (CONI, Sicily, Italy; 3Department of Biomedical Sciences, University of Padova, Padova, Italy Background: Aging-related reduced spinal mobility can interfere with the execution of important functional skills and activities in elderly women. Although several studies have shown positive outcomes in response to spinal flexibility training programs, little is known about the management of sets and repetitions in training protocols. The purpose of this study was to investigate the effects of an 8-week specific and standardized flexibility training program on the range of spinal motion in elderly women. Methods: Participants were recruited in a senior center of Palermo and randomly assigned in two groups: trained group (TG and control group (CG, which included 19 and 18 women, respectively. TG was trained for 8 weeks at two sessions/week. In particular, every session included three phases: warm up (~10 minutes, central period (~50 minutes, and cool down (~10 minutes. CG did not perform any physical activity during the experimental period. Spinal ranges of motion (ROM were measured from neutral standing position to maximum bending position and from neutral standing position to maximum extension position before and after the experimental period, using a SpinalMouse® device (Idiag, Volkerswill, Switzerland. Results: After the training period, TG showed an increase in spinal inclination by 16.4% (P<0.05, in sacral/hip ROM by 29.2% (P<0.05, and in thoracic ROM by 22.5% (P>0.05 compared with CG from maximum extension position to maximum bending position. We did not observe any significant difference in TG's lumbar ROM compared with CG after the training period (P>0.05. Conclusion

  8. The dynamic evaluation of the cervical spinal canal and spinal cord by magnetic resonance imaging during movement

    International Nuclear Information System (INIS)

    Koschorek, F.; Jensen, H.P.; Terwey, B.

    1987-01-01

    The authors present results of in vivo measurements of the cervical canal and spinal cord. They indicate that tension in the spinal cord increases during flexion. They conclude that, as the dorsal approach avoids this increased tension of the spinal cord, the surgical treatment in chronic cervical myelopathy using this route seems to be preferable

  9. Assessing the clinical utility of combined movement examination in symptomatic degenerative lumbar spondylosis.

    Science.gov (United States)

    Monie, A P; Price, R I; Lind, C R P; Singer, K P

    2015-07-01

    The aim of this study is to report the development and validation of a low back computer-aided combined movement examination protocol in normal individuals and record treatment outcomes of cases with symptomatic degenerative lumbar spondylosis. Test-retest, following intervention. Self-report assessments and combined movement examination were used to record composite spinal motion, before and following neurosurgical and pain medicine interventions. 151 normal individuals aged from 20 years to 69 years were assessed using combined movement examination between L1 and S1 spinal levels to establish a reference range. Cases with degenerative low back pain and sciatica were assessed before and after therapeutic interventions with combined movement examination and a battery of self-report pain and disability questionnaires. Change scores for combined movement examination and all outcome measures were derived. Computer-aided combined movement examination validation and intraclass correlation coefficient with 95% confidence interval and least significant change scores indicated acceptable reliability of combined movement examination when recording lumbar movement in normal subjects. In both clinical cases lumbar spine movement restrictions corresponded with self-report scores for pain and disability. Post-intervention outcomes all showed significant improvement, particularly in the most restricted combined movement examination direction. This study provides normative reference data for combined movement examination that may inform future clinical studies of the technique as a convenient objective surrogate for important clinical outcomes in lumbar degenerative spondylosis. It can be used with good reliability, may be well tolerated by individuals in pain and appears to change in concert with validated measures of lumbar spinal pain, functional limitation and quality of life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biomechanics of the spine. Part I: Spinal stability

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, Roberto, E-mail: roberto1766@interfree.it [Neuroradiology Department, “A. Cardarelli” Hospital, Napoli (Italy); Guarnieri, Gianluigi, E-mail: gianluigiguarnieri@hotmail.it [Neuroradiology Department, “A. Cardarelli” Hospital, Napoli (Italy); Guglielmi, Giuseppe, E-mail: g.gugliemi@unifg.it [Department of Radiology, University of Foggia, Foggia (Italy); Muto, Mario, E-mail: mutomar@tiscali.it [Neuroradiology Department, “A. Cardarelli” Hospital, Napoli (Italy)

    2013-01-15

    Biomechanics, the application of mechanical principles to living organisms, helps us to understand how all the bony and soft spinal components contribute individually and together to ensure spinal stability, and how traumas, tumours and degenerative disorders exert destabilizing effects. Spine stability is the basic requirement to protect nervous structures and prevent the early mechanical deterioration of spinal components. The literature reports a number of biomechanical and clinical definitions of spinal stability, but a consensus definition is lacking. Any vertebra in each spinal motion segment, the smallest functional unit of the spine, can perform various combinations of the main and coupled movements during which a number of bony and soft restraints maintain spine stability. Bones, disks and ligaments contribute by playing a structural role and by acting as transducers through their mechanoreceptors. Mechanoreceptors send proprioceptive impulses to the central nervous system which coordinates muscle tone, movement and reflexes. Damage to any spinal structure gives rise to some degree of instability. Instability is classically considered as a global increase in the movements associated with the occurrence of back and/or nerve root pain. The assessment of spinal instability remains a major challenge for diagnostic imaging experts. Knowledge of biomechanics is essential in view of the increasing involvement of radiologists and neuroradiologists in spinal interventional procedures and the ongoing development of new techniques and devices. Bioengineers and surgeons are currently focusing on mobile stabilization systems. These systems represent a new frontier in the treatment of painful degenerative spine and aim to neutralize noxious forces, restore the normal function of spinal segments and protect the adjacent segments. This review discusses the current concepts of spine stability.

  11. Biomechanics of the spine. Part I: Spinal stability

    International Nuclear Information System (INIS)

    Izzo, Roberto; Guarnieri, Gianluigi; Guglielmi, Giuseppe; Muto, Mario

    2013-01-01

    Biomechanics, the application of mechanical principles to living organisms, helps us to understand how all the bony and soft spinal components contribute individually and together to ensure spinal stability, and how traumas, tumours and degenerative disorders exert destabilizing effects. Spine stability is the basic requirement to protect nervous structures and prevent the early mechanical deterioration of spinal components. The literature reports a number of biomechanical and clinical definitions of spinal stability, but a consensus definition is lacking. Any vertebra in each spinal motion segment, the smallest functional unit of the spine, can perform various combinations of the main and coupled movements during which a number of bony and soft restraints maintain spine stability. Bones, disks and ligaments contribute by playing a structural role and by acting as transducers through their mechanoreceptors. Mechanoreceptors send proprioceptive impulses to the central nervous system which coordinates muscle tone, movement and reflexes. Damage to any spinal structure gives rise to some degree of instability. Instability is classically considered as a global increase in the movements associated with the occurrence of back and/or nerve root pain. The assessment of spinal instability remains a major challenge for diagnostic imaging experts. Knowledge of biomechanics is essential in view of the increasing involvement of radiologists and neuroradiologists in spinal interventional procedures and the ongoing development of new techniques and devices. Bioengineers and surgeons are currently focusing on mobile stabilization systems. These systems represent a new frontier in the treatment of painful degenerative spine and aim to neutralize noxious forces, restore the normal function of spinal segments and protect the adjacent segments. This review discusses the current concepts of spine stability

  12. Regional differences in lumbar spinal posture and the influence of low back pain

    Directory of Open Access Journals (Sweden)

    Burnett Angus F

    2008-11-01

    Full Text Available Abstract Background Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP. Methods One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx, Upper lumbar (ULx and total lumbar (TLx spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks. Results Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638, but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p Conclusion This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load.

  13. The Explanatory Range of Movement

    DEFF Research Database (Denmark)

    Thrane, Torben

    2005-01-01

    Drawing a distinction between systemic and functional explanations of movement in general, I shall argue that the Chomskyan view of movement in language is originally functional. With the advent of the Minimimalist Program, however, it has become systemic, but no argument for this change has been...... forthcoming. I'll then present data (from Danish) to sustain the view that only functional type explanations of movement can be empirically motivated, and these only if movement is reinterpreted as transition states between representations of different kinds....

  14. Range and Precision of Formant Movement in Pediatric Dysarthria.

    Science.gov (United States)

    Allison, Kristen M; Annear, Lucas; Policicchio, Marisa; Hustad, Katherine C

    2017-07-12

    This study aimed to improve understanding of speech characteristics associated with dysarthria in children with cerebral palsy by analyzing segmental and global formant measures in single-word and sentence contexts. Ten 5-year-old children with cerebral palsy and dysarthria and 10 age-matched, typically developing children participated in this study. Vowel space area and second formant interquartile range were measured from children's elicited productions of single words and sentences. Results showed that the children with dysarthria had significantly smaller vowel space areas than typically developing children in both word and sentence contexts; however, overall ranges of second formant movement did not differ between groups in word or sentence contexts. Additional analysis of single words revealed that, compared to typical children, children with dysarthria had smaller second formant interquartile ranges in single words with phonetic contexts requiring large changes in vocal tract configuration, but not in single words with monophthongs. Results of this study suggest that children with dysarthria may not have globally reduced ranges of articulatory movement compared to typically developing peers; however, they do exhibit reduced precision in producing phonetic targets.

  15. Spinal movement and dural sac compression during airway management in a cadaveric model with atlanto-occipital instability.

    Science.gov (United States)

    Liao, Shiyao; Schneider, Niko R E; Weilbacher, Frank; Stehr, Anne; Matschke, Stefan; Grützner, Paul A; Popp, Erik; Kreinest, Michael

    2017-12-01

    To analyze the compression of the dural sac and the cervical spinal movement during performing different airway interventions in case of atlanto-occipital dislocation. In six fresh cadavers, atlanto-occipital dislocation was performed by distracting the opened atlanto-occipital joint capsule and sectioning the tectorial membrane. Airway management was done using three airway devices (direct laryngoscopy, video laryngoscopy, and insertion of a laryngeal tube). The change of dural sac's width and intervertebral angulation in stable and unstable atlanto-occipital conditions were recorded by video fluoroscopy with myelography. Three-dimensional overall movement of cervical spine was measured in a wireless human motion track system. Compared with a mean dural sac compression of - 0.5 mm (- 0.7 to - 0.3 mm) in stable condition, direct laryngoscopy caused an increased dural sac compression of - 1.6 mm (- 1.9 to - 0.6 mm, p = 0.028) in the unstable atlanto-occipital condition. No increased compression on dural sac was found using video laryngoscopy or the laryngeal tube. Moreover, direct laryngoscopy caused greater overall extension and rotation of cervical spine than laryngeal tube insertion in both stable and unstable conditions. Among three procedures, the insertion of a laryngeal tube took the shortest time. In case of atlanto-occipital dislocation, intubation using direct laryngoscopy exacerbates dural sac compression and may cause damage to the spinal cord.

  16. The effects of McKenzie and Brunkow exercise program on spinal mobility comparative study

    Directory of Open Access Journals (Sweden)

    Emela Mujić Skikić

    2004-02-01

    Full Text Available This study encompassed 64 participants with symptoms of low back pain, 33 in McKenzie group and 31 in Brunkow group. Patients attended exercise program daily and they were asked to do the same exercise at home--five times a day in series of 5 to 10 repetition each time, depending of stage of disease and pain intensity. All patients were assessed for the spinal motion, before and after the treatment. All parameters for spinal movements showed improvement after exercising McKenzie program for lower back pain with a significant difference of p<0.01 for all motions. Also, in Brunkow group, all of the parameters showed statistically significant improvement at the end of treatment in relation to pre-treatment values, with significant difference of p<0.01 for all motions. Statistically comparison between McKenzie and Brunkow difference in score at the end of the treatment showed statistically significant improvement in McKenzie group, for extension, right and left side flexion, while flexion score didn't show statistically significant difference. McKenzie exercises seemed to be more effective than Brunkow exercises for improvement in spinal motion. Both, McKenzie and Brunkow exercises can be used for spinal mobility improvement in patients with lower back pain, but is preferable to use McKenzie exercises first, to decrease the pain and increase spinal mobility, and then Brunkow exercises to strengthen the paravertebral muscles.

  17. Pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis: a cross-sectional study.

    Science.gov (United States)

    Kierkegaard, Signe; Jørgensen, Peter Bo; Dalgas, Ulrik; Søballe, Kjeld; Mechlenburg, Inger

    2015-09-01

    During movement tasks, patients with medial compartment knee osteoarthritis use compensatory strategies to minimise the joint load of the affected leg. Movement strategies of the knees and trunk have been investigated, but less is known about movement strategies of the pelvis during advancing functional tasks, and how these strategies are associated with leg extension power. The aim of the study was to investigate pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis compared with controls. 57 patients (mean age 65.6 years) scheduled for medial uni-compartmental knee arthroplasty, and 29 age and gender matched controls were included in this cross-sectional study. Leg extension power was tested with the Nottingham Leg Extension Power-Rig. Pelvic range of motion was derived from an inertia-based measurement unit placed over the sacrum bone during walking, stair climbing and stepping. Patients had lower leg extension power than controls (20-39 %, P 0.06). Furthermore, an inverse association (coefficient: -0.03 to -0.04; R (2) = 13-22 %) between leg extension power and pelvic range of motion during stair and step descending was found in the patients. Compared to controls, patients with medial compartment knee osteoarthritis use greater pelvic movements during advanced functional performance tests, particularly when these involve descending tasks. Further studies should investigate if it is possible to alter these movement strategies by an intervention aimed at increasing strength and power for the patients.

  18. Spinal deformity in patients with Sotos syndrome (cerebral gigantism).

    Science.gov (United States)

    Tsirikos, Athanasios I; Demosthenous, Nestor; McMaster, Michael J

    2009-04-01

    Retrospective review of a case series. To present the clinical characteristics and progression of spinal deformity in patients with Sotos syndrome. There is limited information on the development of spinal deformity and the need for treatment in this condition. The medical records and spinal radiographs of 5 consecutive patients were reviewed. All patients were followed to skeletal maturity (mean follow-up: 6.6 y). The mean age at diagnosis of spinal deformity was 11.9 years (range: 5.8 to 14.5) with 4 patients presenting in adolescence. The type of deformity was not uniform. Two patients presented in adolescence with relatively small and nonprogressive thoracolumbar and lumbar scoliosis, which required observation but no treatment until the end of spinal growth. Three patients underwent spinal deformity correction at a mean age of 11.7 years (range: 6 to 15.4). The first patient developed a double structural thoracic and lumbar scoliosis and underwent a posterior spinal arthrodesis extending from T3 to L4. Five years later, she developed marked degenerative changes at the L4/L5 level causing symptomatic bilateral lateral recess stenosis and affecting the L5 nerve roots. She underwent spinal decompression at L4/L5 and L5/S1 levels followed by extension of the fusion to the sacrum. The second patient developed a severe thoracic kyphosis and underwent a posterior spinal arthrodesis. The remaining patient presented at the age of 5.9 years with a severe thoracic kyphoscoliosis and underwent a 2-stage antero-posterior spinal arthrodesis. The development of spinal deformity is a common finding in children with Sotos syndrome and in our series it occurred in adolescence in 4 out of 5 patients. There is significant variability on the pattern of spine deformity, ranging from a scoliosis through kyphoscoliosis to a pure kyphosis, and also the age at presentation and need for treatment.

  19. Linking seasonal home range size with habitat selection and movement in a mountain ungulate.

    Science.gov (United States)

    Viana, Duarte S; Granados, José Enrique; Fandos, Paulino; Pérez, Jesús M; Cano-Manuel, Francisco Javier; Burón, Daniel; Fandos, Guillermo; Aguado, María Ángeles Párraga; Figuerola, Jordi; Soriguer, Ramón C

    2018-01-01

    Space use by animals is determined by the interplay between movement and the environment, and is thus mediated by habitat selection, biotic interactions and intrinsic factors of moving individuals. These processes ultimately determine home range size, but their relative contributions and dynamic nature remain less explored. We investigated the role of habitat selection, movement unrelated to habitat selection and intrinsic factors related to sex in driving space use and home range size in Iberian ibex, Capra pyrenaica . We used GPS collars to track ibex across the year in two different geographical areas of Sierra Nevada, Spain, and measured habitat variables related to forage and roost availability. By using integrated step selection analysis (iSSA), we show that habitat selection was important to explain space use by ibex. As a consequence, movement was constrained by habitat selection, as observed displacement rate was shorter than expected under null selection. Selection-independent movement, selection strength and resource availability were important drivers of seasonal home range size. Both displacement rate and directional persistence had a positive relationship with home range size while accounting for habitat selection, suggesting that individual characteristics and state may also affect home range size. Ibex living at higher altitudes, where resource availability shows stronger altitudinal gradients across the year, had larger home ranges. Home range size was larger in spring and autumn, when ibex ascend and descend back, and smaller in summer and winter, when resources are more stable. Therefore, home range size decreased with resource availability. Finally, males had larger home ranges than females, which might be explained by differences in body size and reproductive behaviour. Movement, selection strength, resource availability and intrinsic factors related to sex determined home range size of Iberian ibex. Our results highlight the need to integrate

  20. Effects of sex on the incidence and prognosis of spinal meningiomas: a Surveillance, Epidemiology, and End Results study.

    Science.gov (United States)

    Westwick, Harrison J; Shamji, Mohammed F

    2015-09-01

    Most spinal meningiomas are intradural lesions in the thoracic spine that present with both local pain and myelopathy. By using the large prospective Surveillance, Epidemiology, and End Results (SEER) database, the authors studied the incidence of spinal meningiomas and examined demographic and treatment factors predictive of death. Using SEER*Stat software, the authors queried the SEER database for cases of spinal meningioma between 2000 and 2010. From the results, tumor incidence and demographic statistics were computed; incidence was analyzed as a function of tumor location, pathology, age, sex, and malignancy code. Survival was analyzed by using a Cox proportional hazards ratio in SPSS for age, sex, marital status, primary site, size quartile, treatment modality, and malignancy code. In this analysis, significance was set at a p value of 0.05. The 1709 spinal meningiomas reported in the SEER database represented 30.7% of all primary intradural spinal tumors and 7.9% of all meningiomas. These meningiomas occurred at an age-adjusted incidence of 0.193 (95% CI 0.183-0.202) per 100,000 population and were closely related to sex (337 [19.7%] male patients and 1372 [80.3%] female patients). The Cox hazard function for mortality in males was higher (2.4 [95% CI1.7-3.5]) and statistically significant, despite the lower lesion incidence in males. All-cause survival was lowest in patients older than 80 years. Primary site and treatment modality were not significant predictors of mortality. Spinal meningiomas represent a significant fraction of all primary intradural spinal tumors and of all meningiomas. The results of this study establish the association of lesion incidence and survival with sex, with a less frequent incidence in but greater mortality among males.

  1. Movement coordination and differential kinematics of the cervical and thoracic spines in people with chronic neck pain.

    Science.gov (United States)

    Tsang, Sharon M H; Szeto, Grace P Y; Lee, Raymond Y W

    2013-07-01

    Research on the kinematics and inter-regional coordination of movements between the cervical and thoracic spines in motion adds to our understanding of the performance and interplay of these spinal regions. The purpose of this study was to examine the effects of chronic neck pain on the three-dimensional kinematics and coordination of the cervical and thoracic spines during active movements of the neck. Three-dimensional spinal kinematics and movement coordination between the cervical, upper thoracic, and lower thoracic spines were examined by electromagnetic motion sensors in thirty-four individuals with chronic neck pain and thirty-four age- and gender-matched asymptomatic subjects. All subjects performed a set of free active neck movements in three anatomical planes in sitting position and at their own pace. Spinal kinematic variables (angular displacement, velocity, and acceleration) of the three defined regions, and movement coordination between regions were determined and compared between the two groups. Subjects with chronic neck pain exhibited significantly decreased cervical angular velocity and acceleration of neck movement. Cross-correlation analysis revealed consistently lower degrees of coordination between the cervical and upper thoracic spines in the neck pain group. The loss of coordination was most apparent in angular velocity and acceleration of the spine. Assessment of the range of motion of the neck is not sufficient to reveal movement dysfunctions in chronic neck pain subjects. Evaluation of angular velocity and acceleration and movement coordination should be included to help develop clinical intervention strategies to promote restoration of differential kinematics and movement coordination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Radiation effects in brain and spinal cord

    International Nuclear Information System (INIS)

    Franke, H.D.; Lierse, W.

    1978-01-01

    Radiation sensitivity of both the brain and spinal cord in prenatal and postnatal stages, in infancy and adult age is represented also in consideration of a combined treatment with methotrexate. In adults, application of important doses of high-energy radiation increases the risk of injurious effects to the central nervous system. If the spinal cord is involved, more than 60% of the radiolesions have a progredient course ending with death. The pathogenesis and disposing factors are referred to, and the incidence of radiation necrosis with regard to age and sex, the degrees of injury and their frequence within different ranges of dosage are analyzed on the basis of data from universal literature. An examination of 'tolerance doses' for the spinal cord is made by means of Strandquist-diagrams and of the Ellis-formula. The slopes of regression lines are reported for various 'degrees of response' in skin, brain and spinal cord following radiation therapy. In the Strandquist-diagram, slopes of regression lines are dependent on the 'degree of response', flattening if skin and spinal cord are affected by radiation in the same degree, necroses having the same slope for both the organs. (orig./MG) [de

  3. Restoration of Central Programmed Movement Pattern by Temporal Electrical Stimulation-Assisted Training in Patients with Spinal Cerebellar Atrophy.

    Science.gov (United States)

    Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju

    2015-01-01

    Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).

  4. Optogenetics of the Spinal Cord: Use of Channelrhodopsin Proteins for Interrogation of Spinal Cord Circuits.

    Science.gov (United States)

    Rahman, Habibur; Nam, Youngpyo; Kim, Jae-Hong; Lee, Won-Ha; Suk, Kyoungho

    2017-12-29

    Spinal cord circuits play a key role in receiving and transmitting somatosensory information from the body and the brain. They also contribute to the timing and coordination of complex patterns of movement. Under disease conditions, such as spinal cord injury and neuropathic pain, spinal cord circuits receive pain signals from peripheral nerves, and are involved in pain development via neurotransmitters and inflammatory mediators released from neurons and glial cells. Despite the importance of spinal cord circuits in sensory and motor functions, many questions remain regarding the relationship between activation of specific cells and behavioral responses. Optogenetics offers the possibility of understanding the complex cellular activity and mechanisms of spinal cord circuits, as well as having therapeutic potential for addressing spinal cord-related disorders. In this review, we discuss recent findings in optogenetic research employing the channelrhodopsin protein to assess the function of specific neurons and glia in spinal cord circuits ex vivo and in vivo. We also explore the possibilities and challenges of employing optogenetics technology in future therapeutic strategies for the treatment of spinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A state-space model for estimating detailed movements and home range from acoustic receiver data

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Weng, Kevin

    2013-01-01

    We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function of dista......We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... that the location error scales log-linearly with detection range and movement speed. This result can be used as guideline for designing network layout when species movement capacity and acoustic environment are known or can be estimated prior to network deployment. Finally, as an example, the state-space model...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....

  6. The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment

    Directory of Open Access Journals (Sweden)

    Hawes Martha C

    2006-03-01

    potential to cause symptoms throughout life. Research to define patient-specific mechanics of spinal loading may allow quantification of a critical threshold at which curvature establishment and progression become inevitable, and thereby yield strategies to prevent development of spinal deformity. Even within the normal spine there is considerable flexibility with the possibility of producing many types of curves that can be altered during the course of normal movements. To create these curves during normal movement simply requires an imbalance of forces along the spine and, extending this concept a little further, a scoliotic curve is produced simply by a small but sustained imbalance of forces along the spine. In fact I would argue that no matter what you believe to be the cause of AIS, ultimately the problem can be reduced to the production of an imbalance of forces along the spine 1.

  7. Home range utilisation and long-range movement of estuarine crocodiles during the breeding and nesting season.

    Directory of Open Access Journals (Sweden)

    Hamish A Campbell

    Full Text Available The estuarine crocodile (Crocodylus porosus is the apex-predator in waterways and coastlines throughout south-east Asia and Australasia. C. porosus pose a potential risk to humans, and management strategies are implemented to control their movement and distribution. Here we used GPS-based telemetry to accurately record geographical location of adult C. porosus during the breeding and nesting season. The purpose of the study was to assess how C. porosus movement and distribution may be influenced by localised social conditions. During breeding, the females (2.92 ± 0.013 metres total length (TL, mean ± S.E., n = 4 occupied an area<1 km length of river, but to nest they travelled up to 54 km away from the breeding area. All tagged male C. porosus sustained high rates of movement (6.49 ± 0.9 km d(-1; n = 8 during the breeding and nesting period. The orientation of the daily movements differed between individuals revealing two discontinuous behavioural strategies. Five tagged male C. porosus (4.17 ± 0.14 m TL exhibited a 'site-fidelic' strategy and moved within well-defined zones around the female home range areas. In contrast, three males (3.81 ± 0.08 m TL exhibited 'nomadic' behaviour where they travelled continually throughout hundreds of kilometres of waterway. We argue that the 'site-fidelic' males patrolled territories around the female home ranges to maximise reproductive success, whilst the 'nomadic' males were subordinate animals that were forced to range over a far greater area in search of unguarded females. We conclude that C. porosus are highly mobile animals existing within a complex social system, and mate/con-specific interactions are likely to have a profound effect upon population density and distribution, and an individual's travel potential. We recommend that impacts on socio-spatial behaviour are considered prior to the implementation of management interventions.

  8. Extraction of motor activity from the cervical spinal cord of behaving rats

    Science.gov (United States)

    Prasad, Abhishek; Sahin, Mesut

    2006-12-01

    Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements.

  9. Reliability of the American Medical Association guides' model for measuring spinal range of motion. Its implication for whole-person impairment rating.

    Science.gov (United States)

    Nitschke, J E; Nattrass, C L; Disler, P B; Chou, M J; Ooi, K T

    1999-02-01

    Repeated measures design for intra- and interrater reliability. To determine the intra- and interrater reliability of the lumbar spine range of motion measured with a dual inclinometer, and the thoracolumbar spine range of motion measured with a long-arm goniometer, as recommended in the American Medical Association Guides. The American Medical Association Guides (2nd and 4th editions) recommend using measurements of thoracolumbar and lumbar range of movement, respectively, to estimate the percentage of permanent impairment in patients with chronic low back pain. However, the reliability of this method of estimating impairment has not been determined. In all, 34 subjects participated in the study, 21 women with a mean age of 40.1 years (SD, +/- 11.1) and 13 men with a mean age of 47.7 years (SD, +/- 12.1). Measures of thoracolumbar flexion, extension, lateral flexion, and rotation were obtained with a long-arm goniometer. Lumbar flexion, extension, and lateral flexion were measured with a dual inclinometer. Measurements were taken by two examiners on one occasion and by one examiner on two occasions approximately 1 week apart. The results showed poor intra- and interrater reliability for all measurements taken with both instruments. Measurement error expressed in degrees showed that measurements taken by different raters exhibited systematic as well as random differences. As a result, subjects measured by two different examiners on the same day, with either instrument, could give impairment ratings ranging between 0% and 18% of the whole person (excluding rotation), in which percentage impairment is calculated using the average range of motion and the average systematic and random error in degrees for the group for each movement (flexion, extension, and lateral flexion). The poor reliability of the American Medical Association Guides' spinal range of motion model can result in marked variation in the percentage of whole-body impairment. These findings have

  10. Spinal Ischemia in Thoracic Aortic Procedures: Impact of Radiculomedullary Artery Distribution.

    Science.gov (United States)

    Kari, Fabian A; Wittmann, Karin; Krause, Sonja; Saravi, Babak; Puttfarcken, Luisa; Förster, Katharina; Rylski, Bartosz; Maier, Sven; Göbel, Ulrich; Siepe, Matthias; Czerny, Martin; Beyersdorf, Friedhelm

    2017-12-01

    The aim of this study was to assess the influence of thoracic anterior radiculomedullary artery (tARMA) distribution on spinal cord perfusion in a thoracic aortic surgical model. Twenty-six pigs (34 ± 3 kg; study group, n = 20; sham group, n = 6) underwent ligation of the left subclavian artery and thoracic segmental arteries. End points were spinal cord perfusion pressure (SCPP), regional spinal cord blood flow (SCBF), and neurologic outcome with an observation time of 3 hours. tARMA distribution patterns tested for an effect on end points included (1) maximum distance between any 2 tARMAs within the treated aortic segment (0 or 1 segment = small-distance group; >1 segment = large-distance group) and (2) distance between the end of the treated aortic segment and the first distal tARMA (at the level of the distal simulated stent-graft end = group 0; gap of 1 or more segments = group ≥1). The number of tARMA ranged from 3 to 13 (mean, 8). In the large-distance group, SCBF dropped from 0.48 ± 0.16 mL/g/min to 0.3 ± 0.08 mL/g/min (p distribution patterns of tARMAs correlate with the degree of SCBF drop and insufficient reactive parenchymal hyperemia in aortic procedures. Individual ARMA distribution patterns along the treated aortic segment could help us predict the individual risk of spinal ischemia. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis

    DEFF Research Database (Denmark)

    Kierkegaard, Signe; Jørgensen, Peter Bo; Dalgas, Ulrik

    2015-01-01

    advancing functional tasks, and how these strategies are associated with leg extension power. The aim of the study was to investigate pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis compared with controls. MATERIALS AND METHODS: 57...... patients (mean age 65.6 years) scheduled for medial uni-compartmental knee arthroplasty, and 29 age and gender matched controls were included in this cross-sectional study. Leg extension power was tested with the Nottingham Leg Extension Power-Rig. Pelvic range of motion was derived from an inertia......-based measurement unit placed over the sacrum bone during walking, stair climbing and stepping. RESULTS: Patients had lower leg extension power than controls (20-39 %, P

  12. A Neuromotor Device for Reducing Phantom Limb Pain in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Cui Lei

    2016-01-01

    Full Text Available Phantom Limb Pain is a disorder that can be experienced by individuals after amputation or spinal cord injury. In spinal cord injury the paralysis or paresis is often bilateral, thus limiting the application of apparent movement as a therapeutic model for phantom limb pain. This project aimed to develop a robotic rehabilitation device that replicated apparent movement to apply the same therapeutic principles with individuals with lower limb phantom pain that have bilateral paralysis of paresis. The proposed device achieved lower limb planar motion of the knee by a six-bar linkage of a single degree of freedom (DOF. It is driven by a linear actuator while the ankle motion is achieved by a gear motor, reaching an effective 70° range of motion for both joints. The system features closed loop control using feedback from surface electromyography sensors, limit switches and position sensors with an Arduino microcontroller as the control unit. This device will be used to further our understanding of the disorder and create opportunities for robot aided treatment for individuals with phantom limb pain as a result of spinal cord injury.

  13. Research on the co-movement between high-end talent and economic growth: A complex network approach

    Science.gov (United States)

    Zhang, Zhen; Wang, Minggang; Xu, Hua; Zhang, Wenbin; Tian, Lixin

    2018-02-01

    The major goal of this paper is to focus on the co-movement between high-end talent and economic growth by a complex network approach. Firstly, the national high-end talent development efficiency from 1990 to 2015 is taken as the quantitative index to measure the development of high-end talent. The added values of the primary industry, secondary industry, tertiary industry are selected as economic growth indexes, and all the selected sample data are standardized by the mean value processing method. Secondly, let seven months as the length of the sliding window, and one month as the sliding step, then the grey correlation degrees between systems are measured using the slope correlation degrees, and the grey correlation degree sequence is mapped into the symbol series composed by three symbols { Y , O , N } based on the coarse graining method. Let three characters as a mode, the nodes are obtained by the modes according to the time sequence. Let the transformation between the modal be the edge, and the times of the transformation be weight, then the co-movement networks between national high-end talent development efficiency and the added values of the primary industry, secondary industry, tertiary industry are built respectively. Finally, the dynamic characteristics of the networks are analysed by the node strength, strength distribution, weighted clustering coefficient, conversion cycle of the modes and the transition between the co-movement modes. The results indicate that there are mutual influence and promotion relations between the national high-end talent development efficiency and the added values of the primary, secondary and tertiary industry.

  14. MR imaging of spinal factors and compression of the spinal cord in cervical myelopathy

    International Nuclear Information System (INIS)

    Kokubun, Shoichi; Ozawa, Hiroshi; Sakurai, Minoru; Ishii, Sukenobu; Tani, Shotaro; Sato, Tetsuaki.

    1992-01-01

    Magnetic resonance (MR) images of surgical 109 patients with cervical spondylotic myelopathy were retrospectively reviewed to examine whether MR imaging would replace conventional radiological procedures in determining spinal factors and spinal cord compression in this disease. MR imaging was useful in determining spondylotic herniation, continuous type of ossification of posterior longitudinal ligament, and calcification of yellow ligament, probably replacing CT myelography, discography, and CT discography. When total defect of the subarachnoid space on T2-weighted images and block on myelograms were compared in determining spinal cord compression, the spinal cord was affected more extensively by 1.3 intervertebral distance (IVD) on T2-weighted images. When indentation of one third or more in anterior and posterior diameter of the spinal cord was used as spinal cord compression, the difference in the affected extension between myelography and MR imaging was 0.2 IVD on T1-weighted images and 0.6 IVD on T2-weighted images. However, when block was seen in 3 or more IVD on myelograms, the range of spinal cord compression tended to be larger on T1-weighted images. For a small range of spinal cord compression, T1-weighted imaging seems to be helpful in determining the range of decompression. When using T2-weighted imaging, the range of decompression becomes large, frequently including posterior decompression. (N.K.)

  15. Neuronal Population Activity in Spinal Motor Circuits

    DEFF Research Database (Denmark)

    Berg, Rune W.

    2017-01-01

    The core elements of stereotypical movements such as locomotion, scratching and breathing are generated by networks in the lower brainstem and the spinal cord. Ensemble activities in spinal motor networks had until recently been merely a black box, but with the emergence of ultra-thin Silicon multi......-electrode technology it was possible to reveal the spiking activity of larger parts of the network. A series of experiments revealed unexpected features of spinal networks, such as multiple spiking regimes and lognormal firing rate distributions. The lognormality renders the widespread idea of a typical firing rate...

  16. Hypobaric spinal anaesthesia with bupivacaine (0.1%) gives selective sensory block for ano-rectal surgery.

    Science.gov (United States)

    Maroof, M; Khan, R M; Siddique, M; Tariq, M

    1995-08-01

    Twenty adult male patients undergoing anorectal surgery in the jackknife position under spinal anaesthesia were studied for the anaesthetic properties of 5 ml hypobaric 0.1% bupivacaine. The patients were positioned in the prone, jack-knife position with a pillow under the hips and with an operating table break angulation of 30 degrees with head down tilt of 20 degrees. In this position a 25-gauge Quincke spinal needle was inserted intrathecally through L3-4 and 5 ml solution, prepared by mixing 1 ml bupivacaine 0.5% with 4 ml of distilled water with a specific gravity of 1.001 at 20 degrees C, was given over 15-20 sec. Onset time, progression and upper level of sensory blockade evaluated by pin prick, and the extent of motor block (1 = full motor movement at ankle and knee joint, 2 = restricted motor movements, 3 = full motor block, no movements) were measured at one minute intervals for the first five minutes, then every five minutes for 30 min. The number of dermatomes blocked was also noted. The median level of cephalad sensory blockage was of L1, with a range from T10-L3. On average, nine dermatomes were blocked (range 7-12). Motor blockade was not observed in any patient. Changes in heart rate and blood pressure were minimal. The average duration of postoperative analgesia was 339.5 +/- 182.9 min. Post-spinal headache was not observed in any patients. In conclusion, 5 ml intrathecal hypobaric bupivacaine, 0.1%, provided excellent perioperative analgesia without motor blockade and haemodynamic stability in patients undergoing anorectal surgery in jackknife position.

  17. Mutagenic effects of carbon ions near the range end in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@jaea.go.jp [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Ryouhei; Nozawa, Shigeki; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-03-01

    To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425 keV/{mu}m) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113 keV/{mu}m). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113 keV/{mu}m carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>{approx}30 kb) were six times more frequently induced by carbon ions near the range end. When 352 keV/{mu}m neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113 keV/{mu}m carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.

  18. Movement and Home Range of Nile Crocodiles in Ndumo Game Reserve, South Africa

    Directory of Open Access Journals (Sweden)

    Peter M. Calverley

    2015-09-01

    Full Text Available The study of movement patterns and home range is fundamental in understanding the spatial requirements of animals and is important in generating information for the conservation and management of threatened species. Ndumo Game Reserve, in north-eastern KwaZulu-Natal, bordering Mozambique, has the third largest Nile crocodile (Crocodylus niloticus population in South Africa. Movement patterns of 50 Nile crocodiles with a total length of between 202 cm and 472 cm were followed over a period of 18 months, using mark-resight, radio and satellite telemetry. The duration of radio transmitter attachment (131 ± 11.4 days was significantly and negatively related to total length and reproductive status. Satellite transmitters failed after an average of 15 ± 12.5 days. Home range was calculated for individuals with 10 or more radio locations, spanning a period of at least 6 months. There was a significant relationship between home range size and total length, with sub-adults (1.5 m – 2.5 m occupying smaller, more localised home ranges than adults (> 2.5 m. The largest home ranges were for adults (> 2.5 m. Home ranges overlapped extensively, suggesting that territoriality, if present, does not result in spatially discrete home ranges of Nile crocodiles in Ndumo Game Reserve during the dry season. Larger crocodiles moved farther and more frequently than smaller crocodiles. The reserve acts as a winter refuge and spring breeding site for an estimated 846 crocodiles, which also inhabit the Rio Maputo during the summer months. Nile crocodile movement out of the reserve and into the Rio Maputo starts in November and crocodiles return to the reserve as water levels in the floodplain recede in May. Conservation implications: Movement patterns of Nile crocodiles show the important role the reserve plays in the conservation of Nile crocodile populations within the greater Ndumo Game Reserve–Rio Maputo area.

  19. Towards free 3D end-point control for robotic-assisted human reaching using binocular eye tracking.

    Science.gov (United States)

    Maimon-Dror, Roni O; Fernandez-Quesada, Jorge; Zito, Giuseppe A; Konnaris, Charalambos; Dziemian, Sabine; Faisal, A Aldo

    2017-07-01

    Eye-movements are the only directly observable behavioural signals that are highly correlated with actions at the task level, and proactive of body movements and thus reflect action intentions. Moreover, eye movements are preserved in many movement disorders leading to paralysis (or amputees) from stroke, spinal cord injury, Parkinson's disease, multiple sclerosis, and muscular dystrophy among others. Despite this benefit, eye tracking is not widely used as control interface for robotic interfaces in movement impaired patients due to poor human-robot interfaces. We demonstrate here how combining 3D gaze tracking using our GT3D binocular eye tracker with custom designed 3D head tracking system and calibration method enables continuous 3D end-point control of a robotic arm support system. The users can move their own hand to any location of the workspace by simple looking at the target and winking once. This purely eye tracking based system enables the end-user to retain free head movement and yet achieves high spatial end point accuracy in the order of 6 cm RMSE error in each dimension and standard deviation of 4 cm. 3D calibration is achieved by moving the robot along a 3 dimensional space filling Peano curve while the user is tracking it with their eyes. This results in a fully automated calibration procedure that yields several thousand calibration points versus standard approaches using a dozen points, resulting in beyond state-of-the-art 3D accuracy and precision.

  20. Dissociating movement from movement timing in the rat primary motor cortex.

    Science.gov (United States)

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  1. An End-to-End Model of Plant Pheromone Channel for Long Range Molecular Communication.

    Science.gov (United States)

    Unluturk, Bige D; Akyildiz, Ian F

    2017-01-01

    A new track in molecular communication is using pheromones which can scale up the range of diffusion-based communication from μm meters to meters and enable new applications requiring long range. Pheromone communication is the emission of molecules in the air which trigger behavioral or physiological responses in receiving organisms. The objective of this paper is to introduce a new end-to-end model which incorporates pheromone behavior with communication theory for plants. The proposed model includes both the transmission and reception processes as well as the propagation channel. The transmission process is the emission of pheromones from the leaves of plants. The dispersion of pheromones by the flow of wind constitutes the propagation process. The reception process is the sensing of pheromones by the pheromone receptors of plants. The major difference of pheromone communication from other molecular communication techniques is the dispersion channel acting under the laws of turbulent diffusion. In this paper, the pheromone channel is modeled as a Gaussian puff, i.e., a cloud of pheromone released instantaneously from the source whose dispersion follows a Gaussian distribution. Numerical results on the performance of the overall end-to-end pheromone channel in terms of normalized gain and delay are provided.

  2. Spinal myoclonus following a peripheral nerve injury: a case report

    Directory of Open Access Journals (Sweden)

    Erkol Gokhan

    2008-08-01

    Full Text Available Abstract Spinal myoclonus is a rare disorder characterized by myoclonic movements in muscles that originate from several segments of the spinal cord and usually associated with laminectomy, spinal cord injury, post-operative, lumbosacral radiculopathy, spinal extradural block, myelopathy due to demyelination, cervical spondylosis and many other diseases. On rare occasions, it can originate from the peripheral nerve lesions and be mistaken for peripheral myoclonus. Careful history taking and electrophysiological evaluation is important in differential diagnosis. The aim of this report is to evaluate the clinical and electrophysiological characteristics and treatment results of a case with spinal myoclonus following a peripheral nerve injury without any structural lesion.

  3. Scaphoid and lunate movement in different ranges of carpal radioulnar deviation.

    Science.gov (United States)

    Tang, Jin Bo; Xu, Jing; Xie, Ren Guo

    2011-01-01

    We aimed to investigate scaphoid and lunate movement in radial deviation and in slight and moderate ulnar deviation ranges in vivo. We obtained computed tomography scans of the right wrists from 20° radial deviation to 40° ulnar deviation in 20° increments in 6 volunteers. The 3-dimensional bony structures of the wrist, including the distal radius and ulna, were reconstructed with customized software. The changes in position of the scaphoid and lunate along flexion-extension motion (FEM), radioulnar deviation (RUD), and supination-pronation axes in 3 parts--radial deviation and slight and moderate ulnar deviation--of the carpal RUD were calculated and analyzed. During carpal RUD, scaphoid and lunate motion along 3 axes--FEM, RUD, and supination-pronation--were the greatest in the middle third of the measured RUD (from neutral position to 20° ulnar deviation) and the smallest in radial deviation. Scaphoid motion along the FEM, RUD, and supination-pronation axes in the middle third was about half that in the entire motion range. In the middle motion range, lunate movement along the FEM and RUD axes was also the greatest. During carpal RUD, the greatest scaphoid and lunate movement occurs in the middle of the arc--slight ulnar deviation--which the wrist frequently adopts to accomplish major hand actions. At radial deviation, scaphoid and lunate motion is the smallest. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  4. The specificity of memory for a highly trained finger movement sequence: Change the ending, change all.

    Science.gov (United States)

    Rozanov, Simon; Keren, Ofer; Karni, Avi

    2010-05-17

    How are highly trained movement sequences represented in long-term memory? Here we show that the gains attained in the performance of a well-trained sequence of finger movements can be expressed only when the order of the movements is exactly as practiced. Ten young adults were trained to perform a given 5-element sequence of finger-to-thumb opposition movements with their left hand. Movements were analyzed using video based tracking. Three weeks of training resulted, along with improved accuracy, in robustly shortened movement times as well as shorter finger-to-thumb touch times. However, there was little transfer of these gains in speed to the execution of the same component movements arranged in a new order. Moreover, even when the only change was the omission of the one before final movement of the trained sequence (Omit sequence), the initial movements of the sequence were significantly slowed down, although these movements were identical to the initial movements of the trained sequence. Our results support the notion that a well-trained sequence of finger movements can be represented, in the adult motor system, as a singular, co-articulated, unit of movement, in which even the initial component movements are contingent on the subsequent, anticipated, ones. Because of co-articulation related anticipatory effects, gains in fluency and accuracy acquired in training on a specific movement sequence cannot be expressed in full in the execution of the trained component movements or of a full segment of the trained sequence, if followed by a different ending segment. Copyright 2010. Published by Elsevier B.V.

  5. Effects of corridors on home range sizes and interpatch movements of three small mammal species.

    Energy Technology Data Exchange (ETDEWEB)

    Mabry, Karen, E.; Barrett, Gary, W.

    2002-04-30

    Mabry, K.E., and G.W. Barrett. 2002. Effects of corridors on home range sizes and interpatch movements of three small mammal species. Landscape Ecol. 17:629-636. Corridors are predicted to benefit populations in patchy habitats by promoting movement, which should increase population densities, gene flow, and recolonization of extinct patch populations. However, few investigators have considered use of the total landscape, particularly the possibility of interpatch movement through matrix habitat, by small mammals. This study compares home range sizes of 3 species of small mammals, the cotton mouse, old field mouse and cotton rat between patches with and without corridors. Corridor presence did not have a statistically significant influence on average home range size. Habitat specialization and sex influenced the probability of an individual moving between 2 patches without corridors. The results of this study suggest that small mammals may be more capable of interpatch movement without corridors than is frequently assumed.

  6. Diagnosis and surgical treatment of terminal syringomyelia within spinal cord combined with tethered cord syndrome

    Directory of Open Access Journals (Sweden)

    Jing-cheng XIE

    2016-04-01

    Full Text Available Objective To summarize the clinical manifestations, imaging characteristics and experience of surgical treatment of spinal cord terminal syringomyelia with tethered cord syndrome (TCS.  Methods and Results Clinical data of 10 patients with spinal cord syringomyelia combined with TCS surgically treated under microscope from January 1999 to March 2014 in our hospital were retrospectively analyzed. There were 3 males and 7 females with average age of 15.06 years old (ranged from 2 to 35 years old. The course of disease ranged from 3 months to 20 years (average 42.17 months. Among those patients, one patient presented hydromyelia, 8 patients suffered from meningeal cyst within the sacral canal, and one patient were concurrent with sacral dermal sinus. The weakness of lower extremities, especially distal limbs, was the main clinical manifestation. Five patients were accompanied with bowel and bladder dysfunction and 5 patients with sensory disturbance below the level of syringomyelia, especially hypesthesia. Preoperative MRI showed conus medullaris disappeared at the end of spinal cord, and there was fluid signal in the lower spinal cord with hypo-intensity signal in T1WI and hyper-intensity signal in T2WI without enhancement. All patients underwent surgical procedures. Under microscope, filum terminale was cut off, drainage was performed, meningeal cyst within the sacral canal was removed, and tethered cord was released. The success rate of operations was 100%. The duration of surgery ranged from 1.52 to 3.07 h (average 2.15 h, with average intraoperative blood loss 220 ml (ranged from 100 to 410 ml. The tethering filum had been totally resected and histological examination showed typical filum tissue in all cases. No operative complication was found. Visual Analogue Scale (VAS score was decreased, and the lower limbs weakness as well as bowel and bladder dysfunction was gradually relieved after operation. The period of follow-up was ranged from 6

  7. Body-Machine Interface Enables People With Cervical Spinal Cord Injury to Control Devices With Available Body Movements: Proof of Concept.

    Science.gov (United States)

    Abdollahi, Farnaz; Farshchiansadegh, Ali; Pierella, Camilla; Seáñez-González, Ismael; Thorp, Elias; Lee, Mei-Hua; Ranganathan, Rajiv; Pedersen, Jessica; Chen, David; Roth, Elliot; Casadio, Maura; Mussa-Ivaldi, Ferdinando

    2017-05-01

    This study tested the use of a customized body-machine interface (BoMI) for enhancing functional capabilities in persons with cervical spinal cord injury (cSCI). The interface allows people with cSCI to operate external devices by reorganizing their residual movements. This was a proof-of-concept phase 0 interventional nonrandomized clinical trial. Eight cSCI participants wore a custom-made garment with motion sensors placed on the shoulders. Signals derived from the sensors controlled a computer cursor. A standard algorithm extracted the combinations of sensor signals that best captured each participant's capacity for controlling a computer cursor. Participants practiced with the BoMI for 24 sessions over 12 weeks performing 3 tasks: reaching, typing, and game playing. Learning and performance were evaluated by the evolution of movement time, errors, smoothness, and performance metrics specific to each task. Through practice, participants were able to reduce the movement time and the distance from the target at the 1-second mark in the reaching task. They also made straighter and smoother movements while reaching to different targets. All participants became faster in the typing task and more skilled in game playing, as the pong hit rate increased significantly with practice. The results provide proof-of-concept for the customized BoMI as a means for people with absent or severely impaired hand movements to control assistive devices that otherwise would be manually operated.

  8. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  9. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    Science.gov (United States)

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  10. An end-to-end assessment of range uncertainty in proton therapy using animal tissues

    Science.gov (United States)

    Zheng, Yuanshui; Kang, Yixiu; Zeidan, Omar; Schreuder, Niek

    2016-11-01

    Accurate assessment of range uncertainty is critical in proton therapy. However, there is a lack of data and consensus on how to evaluate the appropriate amount of uncertainty. The purpose of this study is to quantify the range uncertainty in various treatment conditions in proton therapy, using transmission measurements through various animal tissues. Animal tissues, including a pig head, beef steak, and lamb leg, were used in this study. For each tissue, an end-to-end test closely imitating patient treatments was performed. This included CT scan simulation, treatment planning, image-guided alignment, and beam delivery. Radio-chromic films were placed at various depths in the distal dose falloff region to measure depth dose. Comparisons between measured and calculated doses were used to evaluate range differences. The dose difference at the distal falloff between measurement and calculation depends on tissue type and treatment conditions. The estimated range difference was up to 5, 6 and 4 mm for the pig head, beef steak, and lamb leg irradiation, respectively. Our study shows that the TPS was able to calculate proton range within about 1.5% plus 1.5 mm. Accurate assessment of range uncertainty in treatment planning would allow better optimization of proton beam treatment, thus fully achieving proton beams’ superior dose advantage over conventional photon-based radiation therapy.

  11. Transient killer whale range - Satellite tagging of West Coast transient killer whales to determine range and movement patterns

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Transient killers whales inhabit the West Coast of the United States. Their range and movement patterns are difficult to ascertain, but are vital to understanding...

  12. Assessment of shoulder external rotation range-of-motion on throwing athletes: the effects of testing end-range determination (active versus passive).

    Science.gov (United States)

    Ribeiro, A; Pascoal, A

    2015-07-01

    The purpose of this study was to compare the effects of active or passive end-range determination (supine position) for external rotation range of motion (ROM) in overhead throwing athletes and verify if athletes' ROM is similar to non-athletes. Kinematic data from the dominant shoulder of 24 healthy male subjects, divided into two groups (12 athletes and 12 non-athletes) were recorded at end-range external rotation, thoracohumeral and glenohumeral external rotation angles were compared and a 2-way repeated-measures ANOVA was used to calculate the effects of end-range determination (passive versus active) across groups (athlete and non-athlete). A significant main effect (p external end-range angles was observed while the highest end-range determination values were associated with passive motion. No differences were observed between the athletic or non-athletic groups for either thoracohumeral (p = 0.784) or glenohumeral (p = 0.364) motion.

  13. Epidural spinal cord stimulation for recovery from spinal cord injury: its place in therapy

    Directory of Open Access Journals (Sweden)

    Jacques L

    2016-09-01

    Full Text Available Line Jacques, Michael Safaee Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA Abstract: This paper is a review of some of the current research focused on using existing epidural spinal cord stimulation technologies in establishing the effectiveness in the recovery of independent standing, ambulation, or intentional movement of spinal cord injury patients. From a clinician’s perspective, the results have been intriguing, from a restorative perspective they are promising, and from a patient’s perspective they are hopeful. The outcomes, although still in the experimental phase, show some proof of theory and support further research. From a high volume university based clinician’s perspective, the resources needed to integrate this type of restorative care into a busy clinical practice are highly challenging without a well-structured and resource rich institutional restorative program. Patient selection is profoundly critical due to the extraordinary resources needed, and the level of motivation required to participate in such an intense and arduous rehabilitation process. Establishing an algorithmic approach to patient selection and treatment will be paramount to effectively utilize scarce resources and optimize outcomes. Further research is warranted, and the development of dedicated technological hardware and software for this therapeutic treatment versus using traditional spinal cord stimulation devices may yield more robust and efficacious outcomes. Keywords: independent standing, ambulation, intentional movement, recovery, rehabilitation, locomotion

  14. Long-term health care utilisation and costs after spinal fusion in elderly patients

    DEFF Research Database (Denmark)

    Andersen, Thomas; Bünger, Cody; Søgaard, Rikke

    2012-01-01

    PURPOSE: Spinal fusion surgery rates in the elderly are increasing. Cost effectiveness analyses with relatively short-length follow-up have been performed. But the long-term effects in terms of health care use are largely unknown. The aim of the present study was to describe the long......-term consequences of spinal fusion surgery in elderly patients on health care use and costs using a health care system perspective. METHODS: 194 patients undergoing spinal fusion between 2001 and 2005 (70 men, 124 women) with a mean age of 70 years (range 59-88) at surgery were included. Average length of follow......-up was 6.2 years (range 0.3-9.0 years). Data on resource utilisation and costs were obtained from national registers providing complete coverage of all reimbursed contacts with primary- and secondary health care providers. Data were available from 3 years prior fusion surgery until the end of 2009. RESULTS...

  15. Changes in neuronal properties and spinal reflexes during development of spasticity following spinal cord lesions and stroke: studies in animal models and patients.

    Science.gov (United States)

    Hultborn, Hans

    2003-05-01

    It is a well-known fact that spinal reflexes may gradually change and often become enhanced following spinal cord lesions. Although these phenomena are known, the underlying mechanisms are still unknown and under investigation, mainly in animal models. Over the last twenty years, new methods have been developed that can reliably estimate the activity of specific spinal pathways in humans at rest and during voluntary movement. These methods now make it possible to describe components of the spinal pathophysiology in spasticity in humans following spinal lesions or stroke. We now know that spinal networks are capable of generating the basic pattern of locomotion in a large number of vertebrates, including the monkey--and in all likelihood, humans. Although spinal networks are capable of generating locomotor-like activity in the absence of afferent signals, functional gait is not possible without sensory feedback. The results of animal studies on the sensory control of and the transmitter systems involved in the spinal locomotor centers are now being used to improve rehabilitation of walking in persons with spinal cord injury and hemiplegia.

  16. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator.

    Science.gov (United States)

    Fleming, C H; Fagan, W F; Mueller, T; Olson, K A; Leimgruber, P; Calabrese, J M

    2015-05-01

    Quantifying animals' home ranges is a key problem in ecology and has important conservation and wildlife management applications. Kernel density estimation (KDE) is a workhorse technique for range delineation problems that is both statistically efficient and nonparametric. KDE assumes that the data are independent and identically distributed (IID). However, animal tracking data, which are routinely used as inputs to KDEs, are inherently autocorrelated and violate this key assumption. As we demonstrate, using realistically autocorrelated data in conventional KDEs results in grossly underestimated home ranges. We further show that the performance of conventional KDEs actually degrades as data quality improves, because autocorrelation strength increases as movement paths become more finely resolved. To remedy these flaws with the traditional KDE method, we derive an autocorrelated KDE (AKDE) from first principles to use autocorrelated data, making it perfectly suited for movement data sets. We illustrate the vastly improved performance of AKDE using analytical arguments, relocation data from Mongolian gazelles, and simulations based upon the gazelle's observed movement process. By yielding better minimum area estimates for threatened wildlife populations, we believe that future widespread use of AKDE will have significant impact on ecology and conservation biology.

  17. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity

    Directory of Open Access Journals (Sweden)

    Jessica Maria D'Amico

    2014-05-01

    Full Text Available The state of areflexia and muscle weakness that immediately follows a spinal cord injury is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of descending and movement-induced sensory inputs and the eventual impact on the muscle. We discuss how replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord below an injury with spared descending and/or peripheral functional synaptic activation, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after spinal cord injury.

  18. Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W

    2017-09-01

    Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Functional range of movement of the hand: declination angles to reachable space.

    Science.gov (United States)

    Pham, Hai Trieu; Pathirana, Pubudu N; Caelli, Terry

    2014-01-01

    The measurement of the range of hand joint movement is an essential part of clinical practice and rehabilitation. Current methods use three finger joint declination angles of the metacarpophalangeal, proximal interphalangeal and distal interphalangeal joints. In this paper we propose an alternate form of measurement for the finger movement. Using the notion of reachable space instead of declination angles has significant advantages. Firstly, it provides a visual and quantifiable method that therapists, insurance companies and patients can easily use to understand the functional capabilities of the hand. Secondly, it eliminates the redundant declination angle constraints. Finally, reachable space, defined by a set of reachable fingertip positions, can be measured and constructed by using a modern camera such as Creative Senz3D or built-in hand gesture sensors such as the Leap Motion Controller. Use of cameras or optical-type sensors for this purpose have considerable benefits such as eliminating and minimal involvement of therapist errors, non-contact measurement in addition to valuable time saving for the clinician. A comparison between using declination angles and reachable space were made based on Hume's experiment on functional range of movement to prove the efficiency of this new approach.

  20. Using demography and movement behavior to predict range expansion of the southern sea otter.

    Science.gov (United States)

    Tinker, M.T.; Doak, D.F.; Estes, J.A.

    2008-01-01

    In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutris nereis) as a case study, we utilized integro-difference equations in combination with a stage-structured projection matrix that incorporated spatial variation in dispersal and demography to make forecasts of population recovery and range recolonization. In addition to these basic predictions, we emphasize how to make these modeling predictions useful in a management context through the inclusion of parameter uncertainty and sensitivity analysis. Our models resulted in hind-cast (1989–2003) predictions of net population growth and range expansion that closely matched observed patterns. We next made projections of future range expansion and population growth, incorporating uncertainty in all model parameters, and explored the sensitivity of model predictions to variation in spatially explicit survival and dispersal rates. The predicted rate of southward range expansion (median = 5.2 km/yr) was sensitive to both dispersal and survival rates; elasticity analysis indicated that changes in adult survival would have the greatest potential effect on the rate of range expansion, while perturbation analysis showed that variation in subadult dispersal contributed most to variance in model predictions. Variation in survival and dispersal of females at the south end of the range contributed most of the variance in predicted southward range expansion. Our approach provides guidance for the acquisition of further data and a means of forecasting the consequence of specific management actions. Similar methods could aid in the management of other recovering populations.

  1. Boomerang deformity of cervical spinal cord migrating between split laminae after laminoplasty.

    Science.gov (United States)

    Kimura, S; Gomibuchi, F; Shimoda, H; Ikezawa, Y; Segawa, H; Kaneko, F; Uchiyama, S; Homma, T

    2000-04-01

    Patients with cervical compression myelopathy were studied to elucidate the mechanism underlying boomerang deformity, which results from the migration of the cervical spinal cord between split laminae after laminoplasty with median splitting of the spinous processes (boomerang sign). Thirty-nine cases, comprising 25 patients with cervical spondylotic myelopathy, 8 patients with ossification of the posterior longitudinal ligament, and 6 patients with cervical disc herniation with developmental canal stenosis, were examined. The clinical and radiological findings were retrospectively compared between patients with (B group, 8 cases) and without (C group, 31 cases) boomerang sign. Moderate increase of the grade of this deformity resulted in no clinical recovery, although there was no difference in clinical recovery between the two groups. Most boomerang signs developed at the C4/5 and/or C5/6 level, where maximal posterior movement of the spinal cord was achieved. Widths between lateral hinges and between split laminae in the B group were smaller than in the C group. Flatness of the spinal cord in the B group was more severe than in the C group. In conclusion, the boomerang sign was caused by posterior movement of the spinal cord, narrower enlargement of the spinal canal and flatness of the spinal cord.

  2. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice.

    Science.gov (United States)

    Illien-Jünger, Svenja; Lu, Young; Qureshi, Sheeraz A; Hecht, Andrew C; Cai, Weijing; Vlassara, Helen; Striker, Gary E; Iatridis, James C

    2015-01-01

    Intervertebral disc (IVD) degeneration and pathological spinal changes are major causes of back pain, which is the top cause of global disability. Obese and diabetic individuals are at increased risk for back pain and musculoskeletal complications. Modern diets contain high levels of advanced glycation end products (AGEs), cyto-toxic components which are known contributors to obesity, diabetes and accelerated aging pathologies. There is little information about potential effects of AGE rich diet on spinal pathology, which may be a contributing cause for back pain which is common in obese and diabetic individuals. This study investigated the role of specific AGE precursors (e.g. methylglyoxal-derivatives (MG)) on IVD and vertebral pathologies in aging C57BL6 mice that were fed isocaloric diets with standard (dMG+) or reduced amounts of MG derivatives (dMG-; containing 60-70% less dMG). dMG+ mice exhibited a pre-diabetic phenotype, as they were insulin resistant but not hyperglycemic. Vertebrae of dMG+ mice displayed increased cortical-thickness and cortical-area, greater MG-AGE accumulation and ectopic calcification in vertebral endplates. IVD morphology of dMG+ mice exhibited ectopic calcification, hypertrophic differentiation and glycosaminoglycan loss relative to dMG- mice. Overall, chronic exposure to dietary AGEs promoted age-accelerated IVD degeneration and vertebral alterations involving ectopic calcification which occurred in parallel with insulin resistance, and which were prevented with dMG- diet. This study described a new mouse model for diet-induced spinal degeneration, and results were in support of the hypothesis that chronic AGE ingestion could be a factor contributing to a pre-diabetic state, ectopic calcifications in spinal tissues, and musculoskeletal complications that are more generally known to occur with chronic diabetic conditions.

  3. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice.

    Directory of Open Access Journals (Sweden)

    Svenja Illien-Jünger

    Full Text Available Intervertebral disc (IVD degeneration and pathological spinal changes are major causes of back pain, which is the top cause of global disability. Obese and diabetic individuals are at increased risk for back pain and musculoskeletal complications. Modern diets contain high levels of advanced glycation end products (AGEs, cyto-toxic components which are known contributors to obesity, diabetes and accelerated aging pathologies. There is little information about potential effects of AGE rich diet on spinal pathology, which may be a contributing cause for back pain which is common in obese and diabetic individuals. This study investigated the role of specific AGE precursors (e.g. methylglyoxal-derivatives (MG on IVD and vertebral pathologies in aging C57BL6 mice that were fed isocaloric diets with standard (dMG+ or reduced amounts of MG derivatives (dMG-; containing 60-70% less dMG. dMG+ mice exhibited a pre-diabetic phenotype, as they were insulin resistant but not hyperglycemic. Vertebrae of dMG+ mice displayed increased cortical-thickness and cortical-area, greater MG-AGE accumulation and ectopic calcification in vertebral endplates. IVD morphology of dMG+ mice exhibited ectopic calcification, hypertrophic differentiation and glycosaminoglycan loss relative to dMG- mice. Overall, chronic exposure to dietary AGEs promoted age-accelerated IVD degeneration and vertebral alterations involving ectopic calcification which occurred in parallel with insulin resistance, and which were prevented with dMG- diet. This study described a new mouse model for diet-induced spinal degeneration, and results were in support of the hypothesis that chronic AGE ingestion could be a factor contributing to a pre-diabetic state, ectopic calcifications in spinal tissues, and musculoskeletal complications that are more generally known to occur with chronic diabetic conditions.

  4. Movement rehabilitation after spinal cord injuries: emerging concepts and future directions.

    Science.gov (United States)

    Marsh, Barnaby C; Astill, Sarah L; Utley, Andrea; Ichiyama, Ronaldo M

    2011-03-10

    Considerable inroads are being made into developing new treatments for spinal cord injury (SCI) which aim to facilitate functional recovery, including locomotion. Research on rehabilitative strategies following SCI using animal models has demonstrated that regaining and maintaining motor function, such as standing or stepping, is governed by principles of skill acquisition. Mechanisms key to learning motor tasks, including retention and transfer of skill, feedback and conditions of practice, all have examples in the SCI animal literature, although the importance of many concepts may often be overlooked. Combinatorial strategies which include physical rehabilitation are beginning to yield promising results. However, the effects of molecular-cellular interventions including chondroitinaseABC, anti-NogoA, foetal stem cell transplantation, etc., are still poorly understood with reference to the changes made to spinal plasticity by training and exercise. Studies that investigate the interplay between rehabilitation and other treatments have had mixed results; it appears likely that precise timings of different interventions will help to maximize recovery of function. Understanding how the time-course of injury and different rehabilitative and treatment modalities might factor into spinal plasticity will be critical in future therapeutic interventions. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.

    Science.gov (United States)

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2004-05-01

    Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies

  6. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.

    Science.gov (United States)

    Pirondini, Elvira; Coscia, Martina; Marcheschi, Simone; Roas, Gianluca; Salsedo, Fabio; Frisoli, Antonio; Bergamasco, Massimo; Micera, Silvestro

    2016-01-23

    Exoskeletons for lower and upper extremities have been introduced in neurorehabilitation because they can guide the patient's limb following its anatomy, covering many degrees of freedom and most of its natural workspace, and allowing the control of the articular joints. The aims of this study were to evaluate the possible use of a novel exoskeleton, the Arm Light Exoskeleton (ALEx), for robot-aided neurorehabilitation and to investigate the effects of some rehabilitative strategies adopted in robot-assisted training. We studied movement execution and muscle activities of 16 upper limb muscles in six healthy subjects, focusing on end-effector and joint kinematics, muscle synergies, and spinal maps. The subjects performed three dimensional point-to-point reaching movements, without and with the exoskeleton in different assistive modalities and control strategies. The results showed that ALEx supported the upper limb in all modalities and control strategies: it reduced the muscular activity of the shoulder's abductors and it increased the activity of the elbow flexors. The different assistive modalities favored kinematics and muscle coordination similar to natural movements, but the muscle activity during the movements assisted by the exoskeleton was reduced with respect to the movements actively performed by the subjects. Moreover, natural trajectories recorded from the movements actively performed by the subjects seemed to promote an activity of muscles and spinal circuitries more similar to the natural one. The preliminary analysis on healthy subjects supported the use of ALEx for post-stroke upper limb robotic assisted rehabilitation, and it provided clues on the effects of different rehabilitative strategies on movement and muscle coordination.

  7. Correlation of shoulder range of motion limitations at discharge with limitations in activities and participation one year later in persons with spinal cord injury.

    Science.gov (United States)

    Eriks-Hoogland, Inge E; de Groot, Sonja; Post, Marcel W M; van der Woude, Lucas H V

    2011-02-01

    To study the correlation between limited shoulder range of motion in persons with spinal cord injury at discharge and the performance of activities, wheeling performance, transfers and participation one year later. Multicentre prospective cohort study. A total of 146 newly injured subjects with spinal cord injury. Shoulder range of motion was measured at discharge. One year later, Functional Independence Measure (FIM), transfer ability, wheelchair circuit and Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) were assessed. Corrections were made for possible confounding factors (age, gender, level and completeness of injury, time since injury and shoulder pain). All subjects with limited shoulder range of motion at discharge had a lower FIM motor score and were less likely (total group 5 times, and subjects with tetraplegia 10 times less likely) to be able to perform an independent transfer one year later. Subjects with limited shoulder range of motion in the total group needed more time to complete the wheelchair circuit. No significant associations with the PASIPD were found in either group. Persons with spinal cord injury and limited shoulder range of motion at discharge are more limited in their activities one year later than those without limited shoulder range of motion.

  8. Development of a non-invasive, multifunctional grasp neuroprosthesis and its evaluation in an individual with a high spinal cord injury.

    Science.gov (United States)

    Rupp, Rüdiger; Kreilinger, Alex; Rohm, Martin; Kaiser, Vera; Müller-Putz, Gernot R

    2012-01-01

    Over the last decade the improvement of a missing hand function by application of neuroprostheses in particular the implantable Freehand system has been successfully shown in high spinal cord injured individuals. The clinically proven advantages of the Freehand system is its ease of use, the reproducible generation of two distinct functional grasp patterns and an analog control scheme based on movements of the contralateral shoulder. However, after the Freehand system is not commercially available for more than ten years, alternative grasp neuroprosthesis with a comparable functionality are still missing. Therefore, the aim of this study was to develop a non-invasive neuroprosthesis and to show that a degree of functional restoration can be provided to end users comparable to implanted devices. By introduction of an easy to handle forearm electrode sleeve the reproducible generation of two grasp patterns has been achieved. Generated grasp forces of the palmar grasp are in the range of the implanted system. Though pinch force of the lateral grasp is significantly lower, it can effectively used by a tetraplegic subject to perform functional tasks. The non-invasive grasp neuroprosthesis developed in this work may serve as an easy to apply and inexpensive way to restore a missing hand and finger function at any time after spinal cord injury.

  9. Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract

    DEFF Research Database (Denmark)

    Stecina, Katinka; Fedirchuk, Brent; Hultborn, Hans

    2013-01-01

    of peripheral sensory input to the cerebellum in general, and during rhythmic movements such as locomotion and scratch. In contrast, the VSCT was seen as conveying a copy of the output of spinal neuronal circuitry, including those circuits generating rhythmic motor activity (the spinal central pattern generator...

  10. Free boundary models for mosquito range movement driven by climate warming.

    Science.gov (United States)

    Bao, Wendi; Du, Yihong; Lin, Zhigui; Zhu, Huaiping

    2018-03-01

    As vectors, mosquitoes transmit numerous mosquito-borne diseases. Among the many factors affecting the distribution and density of mosquitoes, climate change and warming have been increasingly recognized as major ones. In this paper, we make use of three diffusive logistic models with free boundary in one space dimension to explore the impact of climate warming on the movement of mosquito range. First, a general model incorporating temperature change with location and time is introduced. In order to gain insights of the model, a simplified version of the model with the change of temperature depending only on location is analyzed theoretically, for which the dynamical behavior is completely determined and presented. The general model can be modified into a more realistic one of seasonal succession type, to take into account of the seasonal changes of mosquito movements during each year, where the general model applies only for the time period of the warm seasons of the year, and during the cold season, the mosquito range is fixed and the population is assumed to be in a hibernating status. For both the general model and the seasonal succession model, our numerical simulations indicate that the long-time dynamical behavior is qualitatively similar to the simplified model, and the effect of climate warming on the movement of mosquitoes can be easily captured. Moreover, our analysis reveals that hibernating enhances the chances of survival and successful spreading of the mosquitoes, but it slows down the spreading speed.

  11. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats

    Science.gov (United States)

    Borrell, Jordan A.; Frost, Shawn B.; Peterson, Jeremy; Nudo, Randolph J.

    2017-02-01

    Objective. Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach. Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. Main results. Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance. The derived motor map provides insight into the parameters needed for future neuromodulatory devices.

  12. A THREE-DIMENSIONAL MAP OF THE HINDLIMB MOTOR REPRESENTATION IN THE LUMBAR SPINAL CORD IN SPRAGUE DAWLEY RATS

    Science.gov (United States)

    Borrell, Jordan A.; Frost, Shawn; Peterson, Jeremy; Nudo, Randolph J.

    2016-01-01

    Objective Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282,000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a three-dimensional (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and EMG activity. Via fine wire electromyographic (EMG) electrodes, Stimulus-Triggered Averaging (StTA) was used on rectified EMG data to determine response latency. Main results Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance The derived motor map provides insight into the parameters needed for future neuromodulatory devices. PMID:27934789

  13. Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape

    Science.gov (United States)

    Poessel, Sharon A; Boydston, Erin E.; Lyren, Lisa M.; Fisher, Robert N.; Burdett, Christopher L.; Alonso, Robert S.; Crooks, Kevin R.

    2014-01-01

    Roads in urbanized areas can impact carnivore populations by constraining their movements and increasing mortality. Bobcats (Lynx rufus) are felids capable of living in urban environments, but are sensitive to habitat fragmentation and, thus, useful indicators of landscape connectivity; in particular, bobcat habitat selection, movement, and mortality may be affected by roads. We analyzed movement patterns of 52 bobcats in southern California in three study sites and investigated: (1) how bobcats responded to two types of roads within their home ranges; (2) how they placed their home ranges with respect to roads within the study area; and (3) whether male and female bobcats differed in their behavioral responses to roads. Within home ranges, primary and secondary roads did not influence movements, but bobcats more frequently crossed secondary roads when road densities were higher within their home ranges, thus increasing mortality risk. However, road densities within each study site were several times higher than road densities within home ranges, suggesting bobcats selected against roaded areas in home-range placement. Male home ranges bordering roads were smaller than home ranges for other males, but male home ranges containing roads were larger than those without roads. Male bobcats also were more likely to cross roads than females, potentially reflecting larger male home range sizes. Our results suggest roads have important impacts on urban bobcats, with stronger effects on males than females, and continued efforts to mitigate the effects of roads on carnivores and other fragmentation-sensitive species would help promote connectivity conservation in urban systems.

  14. Spinal Metaplasticity in Respiratory Motor Control

    Directory of Open Access Journals (Sweden)

    Gordon S Mitchell

    2015-02-01

    Full Text Available A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (ie. plastic plasticity. Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury.

  15. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    Science.gov (United States)

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Methods for evaluating cervical range of motion in trauma settings

    Directory of Open Access Journals (Sweden)

    Voss Sarah

    2012-08-01

    Full Text Available Abstract Immobilisation of the cervical spine is a common procedure following traumatic injury. This is often precautionary as the actual incidence of spinal injury is low. Nonetheless, stabilisation of the head and neck is an important part of pre-hospital care due to the catastrophic damage that may follow if further unrestricted movement occurs in the presence of an unstable spinal injury. Currently available collars are limited by the potential for inadequate immobilisation and complications caused by pressure on the patient’s skin, restricted airway access and compression of the jugular vein. Alternative approaches to cervical spine immobilisation are being considered, and the investigation of these new methods requires a standardised approach to the evaluation of neck movement. This review summarises the research methods and scientific technology that have been used to assess and measure cervical range of motion, and which are likely to underpin future research in this field. A systematic search of international literature was conducted to evaluate the methodologies used to assess the extremes of movement that can be achieved in six domains. 34 papers were included in the review. These studies used a range of methodologies, but study quality was generally low. Laboratory investigations and biomechanical studies have gradually given way to methods that more accurately reflect the real-life situations in which cervical spine immobilisation occurs. Latterly, new approaches using virtual reality and simulation have been developed. Coupled with modern electromagnetic tracking technology this has considerable potential for effective application in future research. However, use of these technologies in real life settings can be problematic and more research is needed.

  17. Pediatric spinal infections

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2014-01-01

    Full Text Available The infections of the spinal axis in children are rare when compared with adults. They encompass a large spectrum of diseases ranging from relatively benign diskitis to spinal osteomyleitis and to the rapidly progressive, rare, and potentially devastating spinal epidural, subdural, and intramedullary spinal cord infections. We present a comprehensive review of the literature pertaining to these uncommon entities, in light of our experience from northern India. The most prevalent pediatric spinal infection in Indian scenario is tuberculosis, where an extradural involvement is more common than intradural. The craniovertebral junction is not an uncommon site of involvement in children of our milieu. The majority of pyogenic infections of pediatric spine are associated with congenital neuro-ectodermal defects such as congenital dermal sinus. The clinico-radiological findings of various spinal infections commonly overlap. Hence the endemicity of certain pathogens should be given due consideration, while considering the differential diagnosis. However, early suspicion, rapid diagnosis, and prompt treatment are the key factors in avoiding neurological morbidity and deformity in a growing child.

  18. Sliding mode closed-Loop control of FES: controlling the shank movement

    NARCIS (Netherlands)

    Jezernik, Saso; Wassink, R.G.V.; Keller, Thierry

    2004-01-01

    Functional electrical stimulation (FES) enables restoration of movement in individuals with spinal cord injury. FES-based devices use electric current pulses to stimulate and excite the intact peripheral nerves. They produce muscle contractions, generate joint torques, and thus, joint movements.

  19. Impact of severe climate variability on lion home range and movement patterns in the Amboseli ecosystem, Kenya

    Directory of Open Access Journals (Sweden)

    J.H. Tuqa

    2014-12-01

    Full Text Available In this study, we were interested in understanding if droughts influence the home range of predators such as lions, and if it does, in what ways the droughts influenced lions to adjust their home range, in response to prey availability. We monitored movements of ten lions fitted with GPS-GSM collars in order to analyze their home range and movement patterns over a six year period (2007–2012. We assessed the impact of a severe drought on the lion home range and movement patterns in the Amboseli ecosystem. There was a strong positive correlation between the home range size and distance moved in 24 h before and during the drought (2007–2009, while after the drought there was a significant negative correlation. A weak positive correlation was evident between the lion home range and rainfall amounts (2010–2012. The male and female home ranges varied over the study period. The home range size and movement patterns coincided with permanent swamps and areas of high prey density inside the protected area. Over the course of the dry season and following the drought, the ranges initially shrank and then expanded in response to decreasing prey densities. The lions spent considerable time outside the park boundaries, particularly after severe the drought. We conclude that under conditions of fragmented habitats, severe climate conditions create new challenges for lion conservation due to effects on prey availability and subsequent influences on carnivore species ranging patterns. Stochastic weather patterns can force wide-ranging species beyond current reserve boundaries, into areas where there will be greater conflicts with humans. Keywords: Climate change, African lion, Panthera leo

  20. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles

    Directory of Open Access Journals (Sweden)

    Ari Berkowitz

    2010-06-01

    Full Text Available The hindbrain and spinal cord can produce multiple forms of locomotion, escape, and withdrawal behaviors and (in limbed vertebrates site-specific scratching. Until recently, the prevailing view was that the same classes of CNS neurons generate multiple kinds of movements, either through reconfiguration of a single, shared network or through an increase in the number of neurons recruited within each class. The mechanisms involved in selecting and generating different motor patterns have recently been explored in detail in some non-mammalian, vertebrate model systems. Work on the hatchling Xenopus tadpole, the larval zebrafish, and the adult turtle has now revealed that distinct kinds of motor patterns are actually selected and generated by combinations of multifunctional and specialized spinal interneurons. Multifunctional interneurons may form a core, multipurpose circuit that generates elements of coordinated motor output utilized in multiple behaviors, such as left-right alternation. But, in addition, specialized spinal interneurons including separate glutamatergic and glycinergic classes are selectively activated during specific patterns: escape-withdrawal, swimming and struggling in tadpoles and zebrafish, and limb withdrawal and scratching in turtles. These specialized neurons can contribute by changing the way central pattern generator (CPG activity is initiated and by altering CPG composition and operation. The combined use of multifunctional and specialized neurons is now established as a principle of organization across a range of vertebrates. Future research may reveal common patterns of multifunctionality and specialization among interneurons controlling diverse movements and whether similar mechanisms exist in higher-order brain circuits that select among a wider array of complex movements.

  1. An intermediate animal model of spinal cord stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Guiho

    2016-06-01

    Full Text Available Spinal cord injuries (SCI result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self- catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session.

  2. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape.

    Science.gov (United States)

    Chynoweth, Mark W; Lepczyk, Christopher A; Litton, Creighton M; Hess, Steven C; Kellner, James R; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world's most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  3. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape

    Science.gov (United States)

    Chynoweth, Mark W.; Lepczyk, Christopher A.; Litton, Creighton M.; Hess, Steve; Kellner, James; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  4. Expanding Panjabi's stability model to express movement: a theoretical model.

    Science.gov (United States)

    Hoffman, J; Gabel, P

    2013-06-01

    Novel theoretical models of movement have historically inspired the creation of new methods for the application of human movement. The landmark theoretical model of spinal stability by Panjabi in 1992 led to the creation of an exercise approach to spinal stability. This approach however was later challenged, most significantly due to a lack of favourable clinical effect. The concepts explored in this paper address and consider the deficiencies of Panjabi's model then propose an evolution and expansion from a special model of stability to a general one of movement. It is proposed that two body-wide symbiotic elements are present within all movement systems, stability and mobility. The justification for this is derived from the observable clinical environment. It is clinically recognised that these two elements are present and identifiable throughout the body in different joints and muscles, and the neural conduction system. In order to generalise the Panjabi model of stability to include and illustrate movement, a matching parallel mobility system with the same subsystems was conceptually created. In this expanded theoretical model, the new mobility system is placed beside the existing stability system and subsystems. The ability of both stability and mobility systems to work in harmony will subsequently determine the quality of movement. Conversely, malfunction of either system, or their subsystems, will deleteriously affect all other subsystems and consequently overall movement quality. For this reason, in the rehabilitation exercise environment, focus should be placed on the simultaneous involvement of both the stability and mobility systems. It is suggested that the individual's relevant functional harmonious movements should be challenged at the highest possible level without pain or discomfort. It is anticipated that this conceptual expansion of the theoretical model of stability to one with the symbiotic inclusion of mobility, will provide new understandings

  5. THE EFFECTS OF BACK EXTENSION TRAINING ON BACK MUSCLE STRENGTH AND SPINAL RANGE OF MOTION IN YOUNG FEMALES

    Directory of Open Access Journals (Sweden)

    Yıldız Yaprak

    2013-04-01

    Full Text Available The objective of this study was to determine the effects of a 10-week dynamic back extension training programme and its effects on back muscle strength, back muscle endurance and spinal range of motion (ROM for healthy young females. Seventy-three young females (age: 19.32±1.80 years, height: 158.89±4.71 cm, body weight: 55.67±6.30 kg volunteered for the study. Prior to the training period, all participants completed anthropometric measurements, back muscle strength and endurance test, lateral bending and spinal ROM measurements. After measurements, the participants were divided into two groups. The exercise group (N:35 performed the dynamic back extension exercise 3 days per week for 10 weeks. The control group (N:38 did not participate in any type of exercise. The mixed design ANOVA (group x time was used to determine the difference in pre- and post-training values. The present findings show that there were significant differences between pre-training and post-training values for back muscle strength and spinal ROM in the exercise group. Following the dynamic strength training programme, back muscle strength and spine ROM values except flexion of the lumbar 5-sacrum 1 (L5-S1 segment of the exercise group showed a significant increase when compared with the pre test values. The control group did not show any significant changes when compared with the pre-training values. The results demonstrate that the 10-week dynamic strength training programme was effective for spinal extension ROM and back muscle strength, but there was no change in back muscle endurance. In this context, this programme could potentially be used to prevent the decrease of spinal ROM as well as provide an increase in the fitness parameters of healthy individuals.

  6. Apparatus and method for applying an end plug to a fuel rod tube end

    International Nuclear Information System (INIS)

    Rieben, S.L.; Wylie, M.E.

    1987-01-01

    An apparatus is described for applying an end plug to a hollow end of a nuclear fuel rod tube, comprising: support means mounted for reciprocal movement between remote and adjacent positions relative to a nuclear fuel rod tube end to which an end plug is to be applied; guide means supported on the support means for movement; and drive means coupled to the support means and being actuatable for movement between retracted and extended positions for reciprocally moving the support means between its respective remote and adjacent positions. A method for applying an end plug to a hollow end of a nuclear fuel rod tube is also described

  7. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study

    OpenAIRE

    Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2011-01-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. ...

  8. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    International Nuclear Information System (INIS)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon; Bae, Sang Jin

    2004-01-01

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance (ρ > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury

  9. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Bae, Sang Jin [Sanggyepaik Hospital, Inje University, Seoul (Korea, Republic of)

    2004-12-15

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance ({rho} > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury.

  10. Development and functional organization of spinal locomotor circuits

    DEFF Research Database (Denmark)

    Kiehn, Ole

    2011-01-01

    The coordination and timing of muscle activities during rhythmic movements, like walking and swimming, are generated by intrinsic spinal motor circuits. Such locomotor networks are operational early in development and are found in all vertebrates. This review outlines and compares recent advances...

  11. Movement amplitude on the Functional Re-adaptive Exercise Device: deep spinal muscle activity and movement control.

    Science.gov (United States)

    Winnard, A; Debuse, D; Wilkinson, M; Samson, L; Weber, T; Caplan, Nick

    2017-08-01

    Lumbar multifidus (LM) and transversus abdominis (TrA) show altered motor control, and LM is atrophied, in people with low-back pain (LBP). The Functional Re-adaptive Exercise Device (FRED) involves cyclical lower-limb movement against minimal resistance in an upright posture. It has been shown to recruit LM and TrA automatically, and may have potential as an intervention for non-specific LBP. However, no studies have yet investigated the effects of changes in FRED movement amplitude on the activity of these muscles. This study aimed to assess the effects of different FRED movement amplitudes on LM and TrA muscle thickness and movement variability, to inform an evidence-based exercise prescription. Lumbar multifidus and TrA thickness of eight healthy male volunteers were examined using ultrasound imaging during FRED exercise, normalised to rest at four different movement amplitudes. Movement variability was also measured. Magnitude-based inferences were used to compare each amplitude. Exercise at all amplitudes recruited LM and TrA more than rest, with thickness increases of approximately 5 and 1 mm, respectively. Larger amplitudes also caused increased TrA thickness, LM and TrA muscle thickness variability and movement variability. The data suggests that all amplitudes are useful for recruiting LM and TrA. A progressive training protocol should start in the smallest amplitude, increasing the setting once participants can maintain a consistent movement speed, to continue to challenge the motor control system.

  12. Spinal Cord Independence Measure, version III: applicability to the UK spinal cord injured population.

    Science.gov (United States)

    Glass, Clive A; Tesio, Luigi; Itzkovich, Malka; Soni, Bakul M; Silva, Pedro; Mecci, Munawar; Chadwick, Raymond; el Masry, Waghi; Osman, Aheed; Savic, Gordana; Gardner, Brian; Bergström, Ebba; Catz, Amiram

    2009-09-01

    To examine the validity, reliability and usefulness of the Spinal Cord Independence Measure for the UK spinal cord injury population. Multi-centre cohort study. Four UK regional spinal cord injury centres. Eighty-six people with spinal cord injury. Spinal Cord Independence Measure and Functional Independence Measure on admission analysed using inferential statistics, and Rasch analysis of Spinal Cord Independence Measure. Internal consistency, inter-rater reliability, discriminant validity; Spinal Cord Independence Measure subscale match between distribution of item difficulty and patient ability measurements; reliability of patient ability measures; fit of data to Rasch model; unidimensionality of subscales; hierarchical ordering of categories within items; differential item functioning across patient groups. Scale reliability (kappa coefficients range 0.491-0.835; (p Spinal Cord Independence Measure subscales compatible with stringent Rasch requirements; mean infit indices high; distinct strata of abilities identified; most thresholds ordered; item hierarchy stable across clinical groups and centres. Misfit and differences in item hierarchy identified. Difficulties assessing central cord injuries highlighted. Conventional statistical and Rasch analyses justify the use of the Spinal Cord Independence Measure in clinical practice and research in the UK. Cross-cultural validity may be further improved.

  13. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Karen K Y Ling

    2010-11-01

    Full Text Available Spinal muscular atrophy (SMA is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7. In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.

  14. Spinal cord stimulation therapy for gait dysfunction in advanced Parkinson's disease patients.

    Science.gov (United States)

    Samotus, Olivia; Parrent, Andrew; Jog, Mandar

    2018-02-14

    Benefits of dopaminergic therapy and deep brain stimulation are limited and unpredictable for axial symptoms in Parkinson's disease. Dorsal spinal cord stimulation may be a new therapeutic approach. The objective of this study was to investigate the therapeutic effect of spinal cord stimulation on gait including freezing of gait in advanced PD patients. Five male PD participants with significant gait disturbances and freezing of gait underwent midthoracic spinal cord stimulation. Spinal cord stimulation combinations (200-500 μs/30-130 Hz) at suprathreshold intensity were tested over a 1- to 4-month period, and the effects of spinal cord stimulation were studied 6 months after spinal cord stimulation surgery. Protokinetics Walkway measured gait parameters. Z scores per gait variable established each participant's best spinal cord stimulation setting. Timed sit-to-stand and automated freezing-of-gait detection using foot pressures were analyzed. Freezing of Gait Questionnaire (FOG-Q), UPDRS motor items, and activities-specific balance confidence scale were completed at each study visit. Spinal cord stimulation setting combinations of 300-400 μs/30-130 Hz provided gait improvements. Although on-medication/on-stimulation at 6 months, mean step length, stride velocity, and sit-to-stand improved by 38.8%, 42.3%, and 50.3%, respectively, mean UPDRS, Freezing of Gait Questionnaire, and activities-specific balance confidence scale scores improved by 33.5%, 26.8%, and 71.4%, respectively. The mean number of freezing-of-gait episodes reduced significantly from 16 presurgery to 0 at 6 months while patients were on levodopa and off stimulation. By using objective measures to detect dynamic gait characteristics, the therapeutic potential of spinal cord stimulation was optimized to each participant's characteristics. This pilot study demonstrated the safety and significant therapeutic outcome of spinal cord stimulation in advanced PD patients, and thus a larger and longer

  15. How to make spinal motor neurons.

    Science.gov (United States)

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  16. The effects of creep and recovery on the in vitro biomechanical characteristics of human multi-level thoracolumbar spinal segments.

    Science.gov (United States)

    Busscher, Iris; van Dieën, Jaap H; van der Veen, Albert J; Kingma, Idsart; Meijer, Gerdine J M; Verkerke, Gijsbertus J; Veldhuizen, Albert G

    2011-06-01

    Several physiological and pathological conditions in daily life cause sustained static bending or torsion loads on the spine resulting in creep of spinal segments. The objective of this study was to determine the effects of creep and recovery on the range of motion, neutral zone, and neutral zone stiffness of thoracolumbar multi-level spinal segments in flexion, extension, lateral bending and axial rotation. Six human cadaveric spines (age at time of death 55-84 years) were sectioned in T1-T4, T5-T8, T9-T12, and L1-L4 segments and prepared for testing. Moments were applied of +4 to -4 N m in flexion-extension, lateral bending, and axial rotation. This was repeated after 30 min of creep loading at 2 N m in the tested direction and after 30 min of recovery. Displacement of individual motion segments was measured using a 3D optical movement registration system. The range of motion, neutral zone, and neutral zone stiffness of the middle motion segments were calculated from the moment-angular displacement data. The range of motion increased significantly after creep in extension, lateral bending and axial rotation (Pcreep showed an increasing trend as well, and the neutral zone after flexion creep increased by on average 36% (Pcreep in axial rotation (Pcreep loading. This higher flexibility of the spinal segments may be a risk factor for potential spinal instability or injury. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. End points of planar reaching movements are disrupted by small force pulses: an evaluation of the hypothesis of equifinality.

    Science.gov (United States)

    Popescu, F C; Rymer, W Z

    2000-11-01

    A single force pulse was applied unexpectedly to the arms of five normal human subjects during nonvisually guided planar reaching movements of 10-cm amplitude. The pulse was applied by a powered manipulandum in a direction perpendicular to the motion of the hand, which gripped the manipulandum via a handle at the beginning, at the middle, or toward the end the movement. It was small and brief (10 N, 10 ms), so that it was barely perceptible. We found that the end points of the perturbed motions were systematically different from those of the unperturbed movements. This difference, dubbed "terminal error," averaged 14.4 +/- 9.8% (mean +/- SD) of the movement distance. The terminal error was not necessarily in the direction of the perturbation, although it was affected by it, and it did not decrease significantly with practice. For example, while perturbations involving elbow extension resulted in a statistically significant shift in mean end-point and target-acquisition frequency, the flexion perturbations were not clearly affected. We argue that this error distribution is inconsistent with the "equilibrium point hypothesis" (EPH), which predicts minimal terminal error is determined primarily by the variance in the command signal itself, a property referred to as "equifinality." This property reputedly derives from the "spring-like" properties of muscle and is enhanced by reflexes. To ensure that terminal errors were not due to mid-course voluntary corrections, we only accepted trials in which the final position was already established before such a voluntary response to the perturbation could have begun, that is, in a time interval shorter than the minimum reaction time (RT) for that subject. This RT was estimated for each subject in supplementary experiments in which the subject was instructed to move to a new target if perturbed and to the old target if no perturbation was detected. These RT movements were found to either stop or slow greatly at the original

  18. Closed-loop control of spinal cord stimulation to restore hand function after paralysis

    Directory of Open Access Journals (Sweden)

    Jonas B Zimmermann

    2014-05-01

    Full Text Available As yet, no cure exists for upper-limb paralysis resulting from the damage to motor pathways after spinal cord injury or stroke. Recently, neural activity from the motor cortex of paralyzed individuals has been used to control the movements of a robot arm but restoring function to patients’ actual limbs remains a considerable challenge. Previously we have shown that electrical stimulation of the cervical spinal cord in anesthetized monkeys can elicit functional upper-limb movements like reaching and grasping. Here we show that stimulation can be controlled using cortical activity in awake animals to bypass disruption of the corticospinal system, restoring their ability to perform a simple upper-limb task. Monkeys were trained to grasp and pull a spring-loaded handle. After temporary paralysis of the hand was induced by reversible inactivation of primary motor cortex using muscimol, grasp-related single-unit activity from the ventral premotor cortex was converted into stimulation patterns delivered in real-time to the cervical spinal grey matter. During periods of closed-loop stimulation, task-modulated electromyogram, movement amplitude and task success rate were improved relative to interleaved control periods without stimulation. In some sessions, single motor unit activity from weakly active muscles was also used successfully to control stimulation. These results are the first use of a neural prosthesis to improve the hand function of primates after motor cortex disruption, and demonstrate the potential for closed-loop cortical control of spinal cord stimulation to reanimate paralyzed limbs.

  19. Development and aging of human spinal cord circuitries

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Willerslev-Olsen, Maria; Lorentzen, Jakob

    2017-01-01

    development and to what extent they are shaped according to the demands of the body that they control and the environment that the body has to interact with. We also discuss how ageing processes and physiological changes in our body are reflected in adaptations of activity in the spinal cord motor circuitries....... The complex, multi-facetted connectivity of the spinal cord motor circuitries allow that they can be used to generate vastly different movements and that their activity can be adapted to meet new challenges imposed by bodily changes or a changing environment. There are thus plenty of possibilities...

  20. Outcome of a posterior spinal fusion technique using spinous ...

    African Journals Online (AJOL)

    haemangioma of the body of T5. ... is not reliable in preventing rotational movement because of its closeness to the midline. It is perhaps good for preventing motion in the saggital plane. An .... of using rigid vertical strut and spinal process wire.

  1. SPINAL CORD- A CADAVERIC STUDY

    Directory of Open Access Journals (Sweden)

    Vijayamma K. N

    2018-01-01

    Full Text Available BACKGROUND Spinal cord is situated within the vertebral canal extending from the lower end of the medulla oblongata at the upper border of first cervical vertebra. In early foetal life, it extends throughout the length of the vertebral canal, and at the time of birth, it reaches the level of third lumbar vertebra. In adult, it ends at the lower border of first lumbar vertebra and thereafter continued as filum terminale, which gets attached to tip of coccyx. Spinal cord is covered by three protective membranes called spinal meninges, diameter, arachnoid and pia mater. The diameter and arachnoid mater extent up to second sacral vertebra and the pia mater forms filum terminale and extend at the tip of coccyx. MATERIALS AND METHODS Forty spinal cord cadaveric specimen were studied by dissection method after exposing the vertebral canal. The roots of spinal nerve were sectioned on both sides and the cord is released along with its coverings. The dura and arachnoid mater were incised longitudinally and the subarachnoid space, blood vessels, nerve roots, ligament denticulata, cervical and lumbar enlargements were observed. The blood vessels including radicular arteries were also studied photographed. RESULTS The spinal cord is a highly vascular structure situated within the vertebral canal, covered by diameter, arachnoid mater and pia mater. Spinal dura is thicker anteriorly than posteriorly. The pia mater forms linea splendens, which extend along the whole length of the cord in front of the anterior median fissure. The average length of the cord is 38 cm. The length and breadth of cervical enlargement was more compared to lumbar enlargement. The number of rootlets in both dorsal and ventral roots accounts more in cervical compared to other regions of the cord. The ligament denticulata is a thin transparent bands of pia mater attached on either sides of the cord between the dorsal and ventral roots of spinal nerves. The tooth like extensions are well

  2. Syrinx of the Spinal Cord and Brain Stem

    Science.gov (United States)

    ... and problems with eye movements, taste, and speech. Magnetic resonance imaging can detect a syrinx. Surgery to drain the syrinx may be done, but ... young child or teenager who has typical symptoms. Magnetic resonance imaging (MRI) of the entire spinal cord and ... of the cause when possible A neurosurgeon ...

  3. Sonographic findings of normal newborn spinal cord

    International Nuclear Information System (INIS)

    Park, Chan Sup; Kim, Dong Gyu

    1988-01-01

    The authors performed spinal cord ultrasonography of 21 healthy newborn infants in Gyeongsang National University Hospital. Normal spinal cord revealed low echogenecity at that of cerebrospinal fluid and was demarcated by intense reflections from its dorsal and ventral surfaces. The central canal was routinely seen as a thin linear reflection in the center of the cord. The nerve roots making up the cauda equina formed a poorly defined collection of intense linear echoes extending from the conus. On real time image, the normal spinal cord exhibited rather slow and rhythmical anteroposterior movement within the subarachnoid fluid. A distinct and rapid vascular pulsation of the spinal cord was usually recognizable. The approximate level of vertebral bodies was determined as follows; most ventrally located vertebral body was thought to be L5 and S1 was seen slightly posterior to the L5 directed inferoposteriorly. According to the above criteria terminal portions of spinal cord were seen around the L2 body in 5 MHz and pointed termination of conus medullaris was clearly seen at L2-3 junction and in upper body of L3 by 7.5 MHz. So it would be better to examine by 5 MHz for spatial orientation and then by 7.5 MHz for more accurate examination. High-resolution, real-time ultrasonography was a safe, rapid screening technique for evaluation of the spinal cord in infants. Additional applications of spinal sonography may be possible in the evaluation of neonatal syringohydromyelia and meningocele as well as intraspinal cyst localization for possible percutaneous puncture by ultrasound guidance

  4. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.

    Science.gov (United States)

    Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo

    2017-07-01

    The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.

  5. Improving outcome of sensorimotor functions after traumatic spinal cord injury [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Volker Dietz

    2016-05-01

    Full Text Available In the rehabilitation of a patient suffering a spinal cord injury (SCI, the exploitation of neuroplasticity is well established. It can be facilitated through the training of functional movements with technical assistance as needed and can improve outcome after an SCI. The success of such training in individuals with incomplete SCI critically depends on the presence of physiological proprioceptive input to the spinal cord leading to meaningful muscle activations during movement performances. Some actual preclinical approaches to restore function by compensating for the loss of descending input to spinal networks following complete/incomplete SCI are critically discussed in this report. Electrical and pharmacological stimulation of spinal neural networks is still in the experimental stage, and despite promising repair studies in animal models, translations to humans up to now have not been convincing. It is possible that a combination of techniques targeting the promotion of axonal regeneration is necessary to advance the restoration of function. In the future, refinement of animal models according to clinical conditions and requirements may contribute to greater translational success.

  6. Receptor for Advanced Glycation End Products (RAGE and Its Ligands: Focus on Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2014-07-01

    Full Text Available Spinal cord injury (SCI results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in functional loss below the site of injury accompanied by neuronal cell body’s damage. Consequently, reducing inflammation and promoting axonal regeneration after SCI is a worthy therapeutic goal. The receptor for advanced glycation end products (RAGE is a transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is implicated in inflammation and neurodegeneration. Several recent studies demonstrated an association between RAGE and central nervous system disorders through various mechanisms. However, the relationship between RAGE and SCI has not been shown. It is imperative to elucidate the association between RAGE and SCI, considering that RAGE relates to inflammation and axonal degeneration following SCI. Hence, the present review highlights recent research regarding RAGE as a compelling target for the treatment of SCI.

  7. The normal range of condylar movement

    International Nuclear Information System (INIS)

    Choe, Han Up; Park, Tae Won

    1978-01-01

    The purpose of this study was to investigate the normal range of condylar movement of normal adults. The author gas observed roentgenographic images of four serial positions of condylar head taken by modified transcranial lateral oblique projection. The serial positions are centric occlusion, rest position, 1 inch open position and maximal open position. The results were obtained as follow; 1. Inter-incisal distance was 46.85 mm in maximal open position. 2. The length between the deepest point of glenoid fossa and summit of condylar head in rest position was wider than that in centric occlusion by 0.8 mm. 3. In 1 inch open position, condylar head moved forward from the standard line in 12.64 mm of horizontal direction and moved downwards from the standard line in 1.84 mm of vertical direction. 4. In maximal open position, condylar head moved forward from the standard line in 19.06 mm of horizontal direction and moved downwards from the standard line in 0.4 mm of vertical direction. 5. In centric occlusion, the width between glenoid fossa and margin of condylar head was greater in the posterior portion than in the anterior portion by 0.4 mm. 6. Except for estimated figures of 1 inch open position, all of the estimated figures was greater in male than in female.

  8. Restoring voluntary control of locomotion after paralyzing spinal cord injury

    NARCIS (Netherlands)

    van den Brand, Rubia; Heutschi, Janine; Barraud, Quentin; DiGiovanna, Jack; Bartholdi, Kay; Huerlimann, Michèle; Friedli, Lucia; Vollenweider, Isabel; Moraud, Eduardo Martin; Duis, Simone; Dominici, Nadia; Micera, Silvestro; Musienko, Pavel; Courtine, Grégoire

    2012-01-01

    Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the

  9. Alternative input medium development for wheelchair user with severe spinal cord injury

    Science.gov (United States)

    Ihsan, Izzat Aqmar; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    Quadriplegia or tetraplegia patients have restricted four limbs as well as torso movement caused by severe spinal cord injury. Undoubtedly, these patients face difficulties when operating their powered electric wheelchair since they are unable to control the wheelchair by means of a standard joystick. Due to total loss of both sensory and motor function of the four limbs and torso, an alternative input medium for the wheelchair will be developed to assist the user in operating the wheelchair. In this framework, the direction of the wheelchair movement is determined by the user's conscious intent through a brain control interface (BCI) based on Electroencephalogram (EEG) signal. A laser range finder (LFR) is used to perceive environment information for determining a safety distance of the wheelchair's surrounding. Local path planning algorithm will be developed to provide navigation planner along with user's input to prevent collision during control operation.

  10. Home range and local movement of small mammals on the Radioactive Waste Management Complex Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Groves, C.R.

    1978-01-01

    In April 1978, a study of local movement of small mammals on the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) was undertaken in conjunction with a study of rodent dispersal. Live trapping in May and June revealed a strong potential for the detection of local movement of at least four species of rodents. Information on this movement is important as each species, during burrowing, may transport radioactive waste from the point of interment to the surface. The area over which contamination may be spread, as fecal deposits or as metabolically incorporated elements, is a function of the daily movement of each animal. At least eight factors may effect size and shape of home range. These factors are discussed, techniques employed in the calculation of home range are outlined, and problems associated with live trapping and studying local movement of small mammals are considered

  11. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    Science.gov (United States)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  12. Canadian 24-hour movement guidelines for the early years (0-4 years): exploring the perceptions of stakeholders and end users regarding their acceptability, barriers to uptake, and dissemination.

    Science.gov (United States)

    Riazi, Negin; Ramanathan, Subha; O'Neill, Meghan; Tremblay, Mark S; Faulkner, Guy

    2017-11-20

    It is important to engage stakeholders and end users in the development of guidelines for knowledge translation purposes. The aim of this study was to examine stakeholders' (experts in pediatric and family medicine, physical activity knowledge translation, and research) and end users' (parents and early childhood educators) perceptions of the Canadian 24-Hour Movement Guidelines for the Early Years (0-4 years). Stakeholders (n = 10) engaged in telephone interviews and end users (n = 92) participated in focus groups (n = 14) to discuss perceived clarity and need for the guidelines, potential barriers to implementation, identification of credible messengers, and methods for dissemination of the guidelines. A thematic analysis was conducted. The proposed guidelines were very well received by both stakeholders and end users. A clear need for such guidelines was identified, and most believed the guidelines were achievable. Stakeholders and end users identified several potential barriers to uptake, including low awareness of current guidelines; 'daily challenges' such as allure of screen time, lack of time, and competing priorities; and challenges in the context of shifting social norms. A range of methods and messengers of dissemination were identified. Medical and child care settings were the most frequently cited places for dissemination, and physicians and early childhood educators were the most common suggestions for messengers. There was consistent support for the Canadian 24-Hour Movement Guidelines for the Early Years (0-4 years) from both stakeholders and end users. Moving forward, it is important to dedicate appropriate support and funding toward dissemination efforts in order to reach end users, particularly parents and early childhood educators.

  13. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  14. The relationship between general measures of fitness, passive range of motion and whole-body movement quality.

    Science.gov (United States)

    Frost, David; Andersen, Jordan; Lam, Thomas; Finlay, Tim; Darby, Kevin; McGill, Stuart

    2013-01-01

    The goal of this study was to establish relationships between fitness (torso endurance, grip strength and pull-ups), hip range of motion (ROM) (extension, flexion, internal and external rotation) and movement quality in an occupational group with physical work demands. Fifty-three men from the emergency task force of a major city police force were investigated. The movement screen comprised standing and seated posture, gait, segmental spine motion and 14 tasks designed to challenge whole-body coordination. Relationships were established between each whole-body movement task, the measures of strength, endurance and ROM. In general, fitness and ROM were not strongly related to the movement quality of any task. This has implications for worker training, in that strategies developed to improve ROM or strength about a joint may not enhance movement quality. Worker-centered injury prevention can be described as fitting workers to tasks by improving fitness and modifying movement patterns; however, the current results show weak correlations between strength, endurance and ROM, and the way individuals move. Therefore, the development of occupation-specific injury prevention strategies may require both fitness and movement-oriented objectives.

  15. The Protective Effect of Spinal Cord Stimulation Postconditioning Against Spinal Cord Ischemia/Reperfusion Injury in Rabbits.

    Science.gov (United States)

    Li, Huixian; Dong, Xiuhua; Jin, Mu; Cheng, Weiping

    2018-01-18

    Delayed paraplegia due to spinal cord ischemia/reperfusion injury (IRI) remains one of the most severe complications of thoracoabdominal aneurysm surgery, for which effective prevention and treatment is still lacking. The current study investigates whether spinal cord stimulation (SCS) postconditioning has neuroprotective effects against spinal cord IRI. Ninety-six New Zealand white male rabbits were randomly divided into four groups as follows: a sham group and three experimental groups (C group, 2 Hz group, and 50 Hz group) n = 24/group. Spinal cord ischemia was induced by transient infrarenal aortic balloon occlusion for 28 min, after which rabbits in group C underwent no additional intervention, while rabbits in the other two experimental groups underwent 2 Hz or 50 Hz epidural SCS for 30 min at the onset of reperfusion and then daily until sacrifice. Hind limb neurologic function of rabbits was assessed using Jacob scale. Lumbar spinal cords were harvested immediately after sacrifice for histological examination and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. The number of viable α-motor neurons in ventral horn was counted and TUNEL-positive rate of α-motor neurons was calculated. Spinal cord IRI was caused by transient infrarenal aorta occlusion for 28 min. Both 2 Hz and 50 Hz SCS postconditioning had neuroprotective effects, particularly the 2 Hz SCS postconditioning. Comparing to C group and 50 Hz group, rabbits in the 2 Hz group demonstrated better hind limb motor function and a lower rate of TUNEL-positive α-motor neuron after eight hours, one day, three days, and seven days of spinal cord reperfusion. More viable α-motor neurons were preserved after one and three days of spinal cord reperfusion in 2 Hz group rabbits than in C group and 50 Hz group rabbits. SCS postconditioning at 2 Hz protected the spinal cord from IRI. © 2018 International Neuromodulation Society.

  16. Neural basis for hand muscle synergies in the primate spinal cord.

    Science.gov (United States)

    Takei, Tomohiko; Confais, Joachim; Tomatsu, Saeka; Oya, Tomomichi; Seki, Kazuhiko

    2017-08-08

    Grasping is a highly complex movement that requires the coordination of multiple hand joints and muscles. Muscle synergies have been proposed to be the functional building blocks that coordinate such complex motor behaviors, but little is known about how they are implemented in the central nervous system. Here we demonstrate that premotor interneurons (PreM-INs) in the primate cervical spinal cord underlie the spatiotemporal patterns of hand muscle synergies during a voluntary grasping task. Using spike-triggered averaging of hand muscle activity, we found that the muscle fields of PreM-INs were not uniformly distributed across hand muscles but rather distributed as clusters corresponding to muscle synergies. Moreover, although individual PreM-INs have divergent activation patterns, the population activity of PreM-INs reflects the temporal activation of muscle synergies. These findings demonstrate that spinal PreM-INs underlie the muscle coordination required for voluntary hand movements in primates. Given the evolution of neural control of primate hand functions, we suggest that spinal premotor circuits provide the fundamental coordination of multiple joints and muscles upon which more fractionated control is achieved by superimposed, phylogenetically newer, pathways.

  17. Effect of Spinal Manipulation of Upper Cervical Vertebrae on Blood Pressure: Results of a Pilot Sham-Controlled Trial.

    Science.gov (United States)

    Goertz, Christine M; Salsbury, Stacie A; Vining, Robert D; Long, Cynthia R; Pohlman, Katherine A; Weeks, William B; Lamas, Gervasio A

    2016-06-01

    The purpose of this pilot sham-controlled clinical trial was to estimate the treatment effect and safety of toggle recoil spinal manipulation for blood pressure management. Fifty-one participants with prehypertension or stage 1 hypertension (systolic blood pressure ranging from 135 to 159 mm Hg or diastolic blood pressure ranging from 85 to 99 mm Hg) were allocated by an adaptive design to 2 treatments: toggle recoil spinal manipulation or a sham procedure. Participants were seen by a doctor of chiropractic twice weekly for 6 weeks and remained on their antihypertensive medications, as prescribed, throughout the trial. Blood pressure was assessed at baseline and after study visits 1, 6 (week 3), and 12 (week 6), with the primary end point at week 6. Analysis of covariance was used to compare mean blood pressure changes from baseline between groups at each end point, controlling for sex, age, body mass index, and baseline blood pressure. Adjusted mean change from baseline to week 6 was greater in the sham group (systolic, -4.2 mm Hg; diastolic, -1.6 mm Hg) than in the spinal manipulation group (systolic, 0.6 mm Hg; diastolic, 0.7 mm Hg), but the difference was not statistically significant. No serious and few adverse events were noted. Six weeks of toggle recoil spinal manipulation did not lower systolic or diastolic blood pressure when compared with a sham procedure. No serious adverse events from either treatment were reported. Our results do not support a larger clinical trial. Further research to understand the potential mechanisms of action involving upper cervical manipulation on blood pressure is warranted before additional clinical investigations are conducted. Copyright © 2016. Published by Elsevier Inc.

  18. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.

    Science.gov (United States)

    Rohm, Martin; Schneiders, Matthias; Müller, Constantin; Kreilinger, Alex; Kaiser, Vera; Müller-Putz, Gernot R; Rupp, Rüdiger

    2013-10-01

    The bilateral loss of the grasp function associated with a lesion of the cervical spinal cord severely limits the affected individuals' ability to live independently and return to gainful employment after sustaining a spinal cord injury (SCI). Any improvement in lost or limited grasp function is highly desirable. With current neuroprostheses, relevant improvements can be achieved in end users with preserved shoulder and elbow, but missing hand function. The aim of this single case study is to show that (1) with the support of hybrid neuroprostheses combining functional electrical stimulation (FES) with orthoses, restoration of hand, finger and elbow function is possible in users with high-level SCI and (2) shared control principles can be effectively used to allow for a brain-computer interface (BCI) control, even if only moderate BCI performance is achieved after extensive training. The individual in this study is a right-handed 41-year-old man who sustained a traumatic SCI in 2009 and has a complete motor and sensory lesion at the level of C4. He is unable to generate functionally relevant movements of the elbow, hand and fingers on either side. He underwent extensive FES training (30-45min, 2-3 times per week for 6 months) and motor imagery (MI) BCI training (415 runs in 43 sessions over 12 months). To meet individual needs, the system was designed in a modular fashion including an intelligent control approach encompassing two input modalities, namely an MI-BCI and shoulder movements. After one year of training, the end user's MI-BCI performance ranged from 50% to 93% (average: 70.5%). The performance of the hybrid system was evaluated with different functional assessments. The user was able to transfer objects of the grasp-and-release-test and he succeeded in eating a pretzel stick, signing a document and eating an ice cream cone, which he was unable to do without the system. This proof-of-concept study has demonstrated that with the support of hybrid FES

  19. Home range and movements of Feral cats on Mauna Kea, Hawai'i

    Science.gov (United States)

    Goltz, Dan M.; Hess, S.C.; Brinck, K.W.; Banko, P.C.; Danner, R.M.

    2008-01-01

    Feral cats Felis catus in dry subalpine woodland of Mauna Kea, Hawai'i, live in low density and exhibit some of the largest reported home ranges in the literature. While 95% fixed kemel home range estimates for three females averaged 772 ha, four males averaged 1 418 ha, and one male maintained a home range of 2 050 ha. Mean daily movement rates between sexes overlapped widely and did not differ significantly (P = 0.083). Log-transformed 95% kernel home ranges for males were significantly larger than those of females (P = 0.024), but 25% kernel home ranges for females were larger than those of males (P = 0.017). Moreover, log-transformed home ranges of males were also significantly larger than those of females in this and seven other studies from the Pacific region (P = 0.044). Feral cats present a major threat to endangered Hawaiian birds, but knowledge of their ecology can be used for management by optimizing trap spacing and creating buffer zones around conservation areas.

  20. Stimulation of 5-HT2A receptors recovers sensory responsiveness in acute spinal neonatal rats.

    Science.gov (United States)

    Swann, Hillary E; Kauer, Sierra D; Allmond, Jacob T; Brumley, Michele R

    2017-02-01

    Quipazine is a 5-HT 2A -receptor agonist that has been used to induce motor activity and promote recovery of function after spinal cord injury in neonatal and adult rodents. Sensory stimulation also activates sensory and motor circuits and promotes recovery after spinal cord injury. In rats, tail pinching is an effective and robust method of sacrocaudal sensory afferent stimulation that induces motor activity, including alternating stepping. In this study, responsiveness to a tail pinch following treatment with quipazine (or saline vehicle control) was examined in spinal cord transected (at midthoracic level) and intact neonatal rats. Rat pups were secured in the supine posture with limbs unrestricted. Quipazine or saline was administered intraperitoneally and after a 10-min period, a tail pinch was administered. A 1-min baseline period prior to tail-pinch administration and a 1-min response period postpinch was observed and hind-limb motor activity, including locomotor-like stepping behavior, was recorded and analyzed. Neonatal rats showed an immediate and robust response to sensory stimulation induced by the tail pinch. Quipazine recovered hind-limb movement and step frequency in spinal rats back to intact levels, suggesting a synergistic, additive effect of 5-HT-receptor and sensory stimulation in spinal rats. Although levels of activity in spinal rats were restored with quipazine, movement quality (high vs. low amplitude) was only partially restored. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Science.gov (United States)

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  2. SEXUALITY OF PEOPLE WITH SPINAL CORD INJURY: AN ISSUE OF HEALTH EDUCATION

    Directory of Open Access Journals (Sweden)

    L. R. Cruz

    2016-02-01

    Full Text Available The spinal cord injury causes loss of sensation and movement below the level of injury, damaging some important functions in the body such as motor function, bladder control, bowel and sexual dysfunction. In general, affect mainly young males and its main cause is given by stab wound (SW, injury by firearms (IF, high falls, car accident, diving in shallow water, infectious and degenerative diseases. Spinal cord injury brings drastic changes in the lives not only of the person who suffered spinal cord injury, but also for the entire family. Health education focused on sexual rehabilitation is able to expand individual and collective knowledge, aiding in sexual adjustment. The purpose of this article is to describe the importance of health education for people with spinal cord injury. Through a structured questionnaire can appreciate the difficulties of people with spinal cord injury on sexuality and prove that the health education contributes to improving the quality of life of people

  3. Needle puncture in rabbit functional spinal units alters rotational biomechanics.

    Science.gov (United States)

    Hartman, Robert A; Bell, Kevin M; Quan, Bichun; Nuzhao, Yao; Sowa, Gwendolyn A; Kang, James D

    2015-04-01

    An in vitro biomechanical study for rabbit lumbar functional spinal units (FSUs) using a robot-based spine testing system. To elucidate the effect of annular puncture with a 16 G needle on mechanical properties in flexion/extension, axial rotation, and lateral bending. Needle puncture of the intervertebral disk has been shown to alter mechanical properties of the disk in compression, torsion, and bending. The effect of needle puncture in FSUs, where intact spinal ligaments and facet joints may mitigate or amplify these changes in the disk, on spinal motion segment stability subject to physiological rotations remains unknown. Rabbit FSUs were tested using a robot testing system whose force/moment and position precision were assessed to demonstrate system capability. Flexibility testing methods were developed by load-to-failure testing in flexion/extension, axial rotation, and lateral bending. Subsequent testing methods were used to examine a 16 G needle disk puncture and No. 11 blade disk stab (positive control for mechanical disruption). Flexibility testing was used to assess segmental range-of-motion (degrees), neutral zone stiffness (N m/degrees) and width (degrees and N m), and elastic zone stiffness before and after annular injury. The robot-based system was capable of performing flexibility testing on FSUs-mean precision of force/moment measurements and robot system movements were elastic zone stiffness in flexion and lateral bending. These findings suggest that disk puncture and stab can destabilize FSUs in primary rotations.

  4. Movement Patterns, Home Range Size and Habitat Selection of an Endangered Resource Tracking Species, the Black-Throated Finch (Poephila cincta cincta).

    Science.gov (United States)

    Rechetelo, Juliana; Grice, Anthony; Reside, April Elizabeth; Hardesty, Britta Denise; Moloney, James

    2016-01-01

    Understanding movement patterns and home range of species is paramount in ecology; it is particularly important for threatened taxa as it can provide valuable information for conservation management. To address this knowledge gap for a range-restricted endangered bird, we estimated home range size, daily movement patterns and habitat use of a granivorous subspecies in northeast Australia, the black-throated finch (Poephila cincta cincta; BTF) using radio-tracking and re-sighting of colour banded birds. Little is known about basic aspects of its ecology including movement patterns and home range sizes. From 2011-2014 we colour-banded 102 BTF and radio-tracked 15 birds. We generated home ranges (calculated using kernel and Minimum Convex Polygons techniques of the 15 tracked BTF). More than 50% of the re-sightings occurred within 200 m of the banding site (n = 51 out of 93 events) and within 100 days of capture. Mean home-range estimates with kernel (50%, 95% probability) and Minimum Convex Polygons were 10.59 ha, 50.79 ha and 46.27 ha, respectively. Home range size differed between two capture sites but no seasonal differences were observed. BTF home ranges overlapped four habitat types among eight available. Habitat selection was different from random at Site 1 (χ2 = 373.41, df = 42, pmovements may be related to resource bottleneck periods. Daily movement patterns differed between sites, which is likely linked to the fact that the sites differ in the spatial distribution of resources. The work provides information about home range sizes and local movement of BTF that will be valuable for targeting effective management and conservation strategies for this endangered granivore.

  5. Encounter success of free-ranging marine predator movements across a dynamic prey landscape.

    Science.gov (United States)

    Sims, David W; Witt, Matthew J; Richardson, Anthony J; Southall, Emily J; Metcalfe, Julian D

    2006-05-22

    Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of 'model' sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754 km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.

  6. Flat ended steel wires, backscattering targets for calibrating over a large dynamic range

    NARCIS (Netherlands)

    Lubbers, Jaap; Graaff, Reindert

    2006-01-01

    A series of flat ended stainless steel wires was constructed and experimentally evaluated as point targets giving a calibrated backscattering over a large range (up to 72 dB) for ultrasound frequencies in the range 2 to 10 MHz. Over a range of 36 dB, theory was strictly followed (within 1 dB),

  7. Plasma iron levels appraised 15 days after spinal cord injury in a limb movement animal model.

    Science.gov (United States)

    Reis, F M; Esteves, A M; Tufik, S; de Mello, M T

    2011-03-01

    Experimental, controlled trial. The purpose of this study was to evaluate plasma iron and transferrin levels in a limb movement animal model with spinal cord injury (SCI). Universidade Federal de São Paulo, Departamento de Psicobiologia. In all, 72 male Wistar rats aged 90 days were divided into four groups: (1) acute SCI (1 day, SCI1), (2) 3 days post-SCI (SCI3), (3) 7 days post-SCI (SCI7) and (4) 15 days post-SCI (SCI15). Each of these groups had corresponding control (CTRL) and SHAM groups. Plasma iron and transferrin levels of the different groups were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's test. We found a significant reduction in iron plasma levels after SCI compared with the CTRL group: SCI1 (CTRL: 175±10.58 μg dl(-1); SCI: 108.28±11.7 μg dl(-1)), SCI3 (CTRL: 195.5±11.00 μg dl(-1); SCI: 127.88±12.63 μg dl(-1)), SCI7 (CTRL: 186±2.97 μg dl(-1); SCI: 89.2±15.39 μg dl(-1)) and SCI15 (CTRL: 163±5.48 μg dl(-1); SCI: 124.44±10.30 μg dl(-1)) (P<0.05; ANOVA). The SHAM1 group demonstrated a reduction in iron plasma after acute SCI (CTRL: 175±10.58 μg dl(-1); SHAM: 114.60±7.81 μg dl(-1)) (P<0.05; ANOVA). Reduced iron metabolism after SCI may be one of the mechanisms involved in the pathogenesis of sleep-related movement disorders.

  8. Assessment of movement distribution in the lumbar spine using the instantaneous axis of rotation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Won [Trine University, Angola (Indonesia)

    2014-12-15

    The position of the torso and the magnitude of exertion are thought to influence the distribution pattern of intervertebral movements within the lumbar spine. Abnormal intervertebral movements have been correlated with the risk of spine injuries. Since the capability to measure movement distribution within the lumbar spine noninvasively is limited, a convenient method to diagnose joint motion function was proposed. The goal of this research was to test the efficacy of the instantaneous axis of rotation for assessment of the distribution of movement within the lumbar spine. The proposed method was evaluated in the bio mechanical model. The results showed that the location of instantaneous axis of rotation lowered with increased trunk exertion force, and slightly moved higher with increased trunk angle. Recognizing that abnormal location of the instantaneous axis of rotation correlated with spinal pain, these results suggest potential the location of the instantaneous axis of rotation relates to the risk of low back pain on distributed spinal kinematics.

  9. Illusory sensation of movement induced by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, Jesper; Grey, Michael James

    2010-01-01

    Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement...... and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was assessed following trains of high-frequency repetitive transcranial magnetic stimulation applied over...... premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement....

  10. Coordination of head movements and speech in first encounter dialogues

    DEFF Research Database (Denmark)

    Paggio, Patrizia

    2015-01-01

    This paper presents an analysis of the temporal alignment be- tween head movements and associated speech segments in the NOMCO corpus of first encounter dialogues [1]. Our results show that head movements tend to start slightly before the onset of the corresponding speech sequence and to end...... slightly after, but also that there are delays in both directions in the range of -/+ 1s. Various factors that may influence delay duration are investigated. Correlations are found between delay length and the duration of the speech sequences associated with the head movements. Effects due to the different...

  11. Different corticospinal control between discrete and rhythmic movement of the ankle

    OpenAIRE

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of t...

  12. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape

    Science.gov (United States)

    Mark W. Chynoweth; Christopher A. Lepczyk; Creighton M. Litton; Steven C. Hess; James R. Kellner; Susan Cordell; Lalit Kumar

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the...

  13. Focal Anterior Displacement of the Thoracic Spinal Cord without Evidence of Spinal Cord Herniation or an Intradural Mass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Yoon; Lee, Joon Woo; Lee, Guen Young; Kang, Heung Sik [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of)

    2014-07-01

    We report magnetic resonance imaging (MRI) findings on focal anterior displacement of the thoracic spinal cord in asymptomatic patients without a spinal cord herniation or intradural mass. We identified 12 patients (male:female = 6:6; mean age, 51.7; range, 15-83 years) between 2007 and 2011, with focal anterior displacement of the spinal cord and without evidence of an intradural mass or spinal cord herniation. Two radiologists retrospectively reviewed the MRI findings in consensus. An asymmetric spinal cord deformity with a focal dented appearance was seen on the posterior surface of the spinal cord in all patients, and it involved a length of 1 or 2 vertebral segments in the upper thoracic spine (thoracic vertebrae 1-6). Moreover, a focal widening of the posterior subarachnoid space was also observed in all cases. None of the patients had myelopathy symptoms, and they showed no focal T2-hyperintensity in the spinal cord with the exception of one patient. In addition, cerebrospinal fluid (CSF) flow artifacts were seen in the posterior subarachnoid space of the affected spinal cord level. Computed tomography myelography revealed preserved CSF flow in the two available patients. Focal anterior spinal cord indentation can be found in the upper thoracic level of asymptomatic patients without a spinal cord herniation or intradural mass.

  14. Focal Anterior Displacement of the Thoracic Spinal Cord without Evidence of Spinal Cord Herniation or an Intradural Mass

    International Nuclear Information System (INIS)

    Lee, Jong Yoon; Lee, Joon Woo; Lee, Guen Young; Kang, Heung Sik

    2014-01-01

    We report magnetic resonance imaging (MRI) findings on focal anterior displacement of the thoracic spinal cord in asymptomatic patients without a spinal cord herniation or intradural mass. We identified 12 patients (male:female = 6:6; mean age, 51.7; range, 15-83 years) between 2007 and 2011, with focal anterior displacement of the spinal cord and without evidence of an intradural mass or spinal cord herniation. Two radiologists retrospectively reviewed the MRI findings in consensus. An asymmetric spinal cord deformity with a focal dented appearance was seen on the posterior surface of the spinal cord in all patients, and it involved a length of 1 or 2 vertebral segments in the upper thoracic spine (thoracic vertebrae 1-6). Moreover, a focal widening of the posterior subarachnoid space was also observed in all cases. None of the patients had myelopathy symptoms, and they showed no focal T2-hyperintensity in the spinal cord with the exception of one patient. In addition, cerebrospinal fluid (CSF) flow artifacts were seen in the posterior subarachnoid space of the affected spinal cord level. Computed tomography myelography revealed preserved CSF flow in the two available patients. Focal anterior spinal cord indentation can be found in the upper thoracic level of asymptomatic patients without a spinal cord herniation or intradural mass

  15. Spine kinematics exhibited during the stop-jump by physically active individuals with adolescent idiopathic scoliosis and spinal fusion.

    Science.gov (United States)

    Kakar, Rumit Singh; Li, Yumeng; Brown, Cathleen N; Kim, Seock-Ho; Oswald, Timothy S; Simpson, Kathy J

    2018-01-01

    Individuals with adolescent idiopathic scoliosis post spinal fusion often return to exercise and sport. However, the movements that individuals with spinal fusion for adolescent idiopathic scoliosis (SF-AIS) use to compensate for the loss of spinal flexibility during high-effort tasks are not known. The objective of this study was to compare the spinal kinematics of the trunk segments displayed during the stop-jump, a maximal effort task, between SF-AIS and healthy control groups. The study used a case-controlled design. Ten SF-AIS (physically active, posterior-approach spinal fusion: 11.2±1.9 fused segments, postop time: 2±.6 years) and nine control individuals, pair matched for gender, age (17.4±1.3 years and 20.6±1.5 years, respectively), mass (63.50±12.2 kg and 66. 40±10.9 kg), height (1.69±.09 m and 1.72±.08 m), and level of physical activity, participated in the study. Individuals with spinal fusion for adolescent idiopathic scoliosis and controls (CON) performed five acceptable trials of the stop-jump task. Spatial locations of 21 retroreflective trunk and pelvis markers were recorded via high-speed motion capture methodology. Mean differences and analysis of covariance (jump height=covariate, pjump height and RelAng were detected in the three phases of stop-jump. Individuals with spinal fusion for adolescent idiopathic scoliosis displayed 3.2° greater transverse plane RelAng of LT compared with CON (p=.059) in the stance phase. Group differences for RelAng ranged from 0° to 15.3°. For SegAng in the stance phase, LT demonstrated greater SegAng in the sagittal and frontal planes (mean difference: 3.2°-6.2°), whereas SegAng for MT was 5.1° greater in the sagittal plane and had a tendency of 2° greater displacement in the frontal plane (p=.070). In the vertical flight phase, greater LT displacement in the frontal plane was observed for SF-AIS than CON. In the flight phase, LT had a tendency for greater SegAng for SF-AIS than for CON

  16. Home-range use patterns and movements of the Siberian flying squirrel in urban forests: Effects of habitat composition and connectivity.

    Science.gov (United States)

    Mäkeläinen, Sanna; de Knegt, Henrik J; Ovaskainen, Otso; Hanski, Ilpo K

    2016-01-01

    Urbanization causes modification, fragmentation and loss of native habitats. Such landscape changes threaten many arboreal and gliding mammals by limiting their movements through treeless parts of a landscape and by making the landscape surrounding suitable habitat patches more inhospitable. Here, we investigate the effects of landscape structure and habitat availability on the home-range use and movement patterns of the Siberian flying squirrel (Pteromys volans) at different spatial and temporal scales. We followed radio-tagged individuals in a partly urbanized study area in Eastern Finland, and analysed how landscape composition and connectivity affected the length and speed of movement bursts, distances moved during one night, and habitat and nest-site use. The presence of urban habitat on movement paths increased both movement lengths and speed whereas nightly distances travelled by males decreased with increasing amount of urban habitat within the home range. The probability of switching from the present nest site to another nest site decreased with increasing distance among the nest sites, but whether the nest sites were connected or unconnected by forests did not have a clear effect on nest switching. Flying squirrels preferred to use mature forests for their movements at night. Our results suggest that the proximity to urban habitats modifies animal movements, possibly because animals try to avoid such habitats by moving faster through them. Urbanization at the scale of an entire home range can restrict their movements. Thus, maintaining a large enough amount of mature forests around inhabited landscape fragments will help protect forest specialists in urban landscapes. The effect of forested connections remains unclear, highlighting the difficulty of measuring and preserving connectivity in a species-specific way.

  17. Influence of spinal sagittal alignment, body balance, muscle strength, and physical ability on falling of middle-aged and elderly males.

    Science.gov (United States)

    Imagama, Shiro; Ito, Zenya; Wakao, Norimitsu; Seki, Taisuke; Hirano, Kenichi; Muramoto, Akio; Sakai, Yoshihito; Matsuyama, Yukihiro; Hamajima, Nobuyuki; Ishiguro, Naoki; Hasegawa, Yukiharu

    2013-06-01

    Risk factors for falling in elderly people remain uncertain, and the effects of spinal factors and physical ability on body balance and falling have not been examined. The objective of this study was to investigate how factors such as spinal sagittal alignment, spinal range of motion, body balance, muscle strength, and gait speed influence falling in the prospective cohort study. The subjects were 100 males who underwent a basic health checkup. Balance, SpinalMouse(®) data, grip strength, back muscle strength, 10-m gait time, lumbar lateral standing radiographs, body mass index, and fall history over the previous year were examined. Platform measurements of balance included the distance of movement of the center of pressure (COP) per second (LNG/TIME), the envelopment area traced by movement of the COP (E AREA), and the LNG/E AREA ratio. The thoracic/lumbar angle ratio (T/L ratio) and sagittal vertical axis (SVA) were used as an index of sagittal balance. LNG/TIME and E AREA showed significant positive correlations with age, T/L ratio, SVA, and 10-m gait time; and significant negative correlations with lumbar lordosis angle, sacral inclination angle, grip strength and back muscle strength. Multiple regression analysis showed significant differences for LNG/TIME and E AREA with T/L ratio, SVA, lumbar lordosis angle and sacral inclination angle (R (2) = 0.399). Twelve subjects (12 %) had experienced a fall over the past year. Age, T/L ratio, SVA, lumbar lordosis angle, sacral inclination angle, grip strength, back muscle strength, 10-m gait time, height of the intervertebral disc, osteophyte formation in radiographs and LNG/E AREA differed significantly between fallers and non-fallers. The group with SVA > 40 mm (n = 18) had a significant higher number of subjects with a single fall (6 single fallers/18: p = 0.0075) and with multiple falls (4 multiple fallers/18: p = 0.0095). Good spinal sagittal alignment, muscle strength and 10-m gait speed improve body balance

  18. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  19. Olivier Messiaen's quartet for the end of time, secret of form: Movement VI

    Directory of Open Access Journals (Sweden)

    Maksimović Svetlana

    2005-01-01

    Full Text Available Knowing that Messiaen's early period, especially The Quartet for the End of Time, got so many written comments and discussions and from renowned critics, musicologists and composers it is hard to believe that anything different could possibly come out about the structure, form or concept in his work. Still, another look at these works would be valuable, since the concept of form is far from explored. The focal point of this text is the sixth movement from the Quartet and its concept of form. It unveils the relation between Messiaen's music ideas and the ancient Greek tragedy and the depth of the influence that Greek art had on his concept of form. The influence goes as far as the "suggestion of ring composition".

  20. V1 spinal neurons regulate the speed of vertebrate locomotor outputs

    DEFF Research Database (Denmark)

    Gosgnach, Simon; Lanuza, Guillermo M.; Butt, Simon J B

    2006-01-01

    The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord1-3. These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs...... for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements....

  1. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain that is refractory to other treatment. Originally described by Shealy et al. in 1967(1), it is used to treat a range of conditions such as complex regional pain syndrome (CRPS I)(2), angina pectoris(3), radicular...... pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more...

  2. The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations

    International Nuclear Information System (INIS)

    Gao Sijia; Zhang Mengwei; Liu Xiping; Zh Yushen; Liu Jinghong; Wang Zhonghui; Zang Peizhuo; Shi Qiang; Wang Qiang; Liang Chuansheng; Xu Ke

    2009-01-01

    Background and purpose: To explore the value of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Methods: Seventeen patients with initial MR and clinical findings suggestive of spinal vascular diseases underwent CT spinal angiography. Among these, 14 patients took DSA examination within 1 week after CT scan, 7 patients underwent surgical treatment, and 6 patients underwent vascular intervention embolotheraphy. CT protocol: TOSHIBA Aquilion 64 Slice CT scanner, 0.5 mm thickness, 0.5 s/r, 120 kV and 350 mA, positioned at the aortic arch level, and applied with 'sure start' technique with CT threshold of 180 Hu. Contrast agent Iohexol (370 mg I/ml) was injected at 6 ml/s velocity with total volume of 80 ml. The post-processing procedures included MPR, CPR, MIP, VR, etc. Among the 17 patients, four patients underwent fast dynamic contrast-enhanced 3D MR angiography imaging. CT spinal angiography and three-dimensional contrast-enhanced MR angiography (3D CE-MRA) images were compared and evaluated with DSA and operation results based on disease type, lesion range, feeding arteries, fistulas, draining veins of vascular malformation by three experienced neuroradiologists independently, using double blind method. The data were analyzed using SPSS analytic software with χ 2 -test. We compared the results with DSA and operation results. Results: The statistical analysis of the diagnostic results by the three experienced neuroradiologists had no statistical difference (P > 0.05). All of the 17 patients showed clearly the abnormality of spinal cord vessels and the range of lesions by CT spinal angiography. Among them, one patient was diagnosed as arteriovenous fistulas (AVF) by MRI and CT spinal angiography, which was verified by surgical operation. DSA of the same patient, however, did not visualize the lesion. One case was diagnosed as AVM complicated with AVF by DSA, but CT spinal angiography could only show AVM not AVF. The

  3. The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Gao Sijia [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China)], E-mail: scarlettgao@126.com; Zhang Mengwei; Liu Xiping; Zh Yushen; Liu Jinghong; Wang Zhonghui [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Zang Peizhuo [Department of Neurosurgery, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Shi Qiang; Wang Qiang [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Liang Chuansheng [Department of Neurosurgery, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Xu Ke [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China)

    2009-07-15

    Background and purpose: To explore the value of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Methods: Seventeen patients with initial MR and clinical findings suggestive of spinal vascular diseases underwent CT spinal angiography. Among these, 14 patients took DSA examination within 1 week after CT scan, 7 patients underwent surgical treatment, and 6 patients underwent vascular intervention embolotheraphy. CT protocol: TOSHIBA Aquilion 64 Slice CT scanner, 0.5 mm thickness, 0.5 s/r, 120 kV and 350 mA, positioned at the aortic arch level, and applied with 'sure start' technique with CT threshold of 180 Hu. Contrast agent Iohexol (370 mg I/ml) was injected at 6 ml/s velocity with total volume of 80 ml. The post-processing procedures included MPR, CPR, MIP, VR, etc. Among the 17 patients, four patients underwent fast dynamic contrast-enhanced 3D MR angiography imaging. CT spinal angiography and three-dimensional contrast-enhanced MR angiography (3D CE-MRA) images were compared and evaluated with DSA and operation results based on disease type, lesion range, feeding arteries, fistulas, draining veins of vascular malformation by three experienced neuroradiologists independently, using double blind method. The data were analyzed using SPSS analytic software with {chi}{sup 2}-test. We compared the results with DSA and operation results. Results: The statistical analysis of the diagnostic results by the three experienced neuroradiologists had no statistical difference (P > 0.05). All of the 17 patients showed clearly the abnormality of spinal cord vessels and the range of lesions by CT spinal angiography. Among them, one patient was diagnosed as arteriovenous fistulas (AVF) by MRI and CT spinal angiography, which was verified by surgical operation. DSA of the same patient, however, did not visualize the lesion. One case was diagnosed as AVM complicated with AVF by DSA, but CT spinal angiography could only show

  4. A RARE CASE OF QUADRIPLEGIA DUE TO SPINAL EPIDURAL HAEMATOMA FOLLOWING SPINAL ANAESTHESIA

    Directory of Open Access Journals (Sweden)

    Meher Kumar

    2015-03-01

    Full Text Available Quadriplegia following spinal anaesthesia due to spinal epidural haematoma is a rare but critical complication that usually occurs within 24 hours to a few days of the procedure. I report a case of a 32 year old male who underwent Uretero - Renal Scopy (URS and double ‘J’ (DJ stenting for right ureteric calculus under spinal anaesthesia. The patient was on nonsteroidal anti - inflammatory agents (NSAIDS and oral Prednisolone for sero - negative rheumatoid arthritis. The preoperative investigations were normal. About four hours after surgery, the patient developed paraesthesia of lower limbs, a little later paraplegia and gradually quadriplegia within 12 to 15 hours of surgery. Magnetic Resonance Imaging (MRI revealed an extensive spinal epidural haematoma and cord oedema extending from C2 to L5 vertebrae. In consultation with neuro - surgeon, the patient was treated conservatively, while awaiting for the results of coagulation profile, which proved to be Haemophilia. By the end of 2nd and 3rd postoperative day, the upper limbs showed signs of recovery and within a week’s time, both the upper limbs regained normal power and tone. The lower limbs showed sensory as well as motor recovery by 3 rd week and about total recovery to normalcy by 6 weeks. Residual paresis remained in left lower limb. The patient was sent for physiotherapy and he recovered completely by 9 months

  5. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  6. Head movements evoked in alert rhesus monkey by vestibular prosthesis stimulation: implications for postural and gaze stabilization.

    Directory of Open Access Journals (Sweden)

    Diana E Mitchell

    Full Text Available The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR play an essential role in stabilizing the visual axis (gaze, while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1 quantify vestibularly-driven head movements in primates, and 2 assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100 ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.

  7. Pain relief by Cyberknife radiosurgery for spinal metastasis.

    Science.gov (United States)

    Lee, Sunyoung; Chun, Mison

    2012-01-01

    To report pain relief effect in patients with spinal metastases treated with Cyberknife® and to analyze the factors associated with pain relapse after initial pain relief. We retrospectively analyzed patients with spinal metastasis treated with stereotactic body radiosurgery between April 2007 and June 2009. A total of 57 patients with 73 lesions were available for analysis with a median follow-up of 6.8 months (range, 1-30). Pain was assessed by a verbal/visual analogue scale at each visit: from 0 to 10. Pain relief was defined as a decrease of at least three levels of the pain score without an increase in analgesic use. Complete relief was defined as no analgesics or a score 0 or 1. Pain relief was achieved in 88% of the lesions, with complete relief in 51% within 7 days from the start of radiosurgery. The median duration of pain relief was 3.2 months (range, 1-30). Pain reappeared in 16 patients (27%). Spinal cord compression (P = 0.001) and performance status (P = 0.01) were predictive of pain relapse by multivariate Cox analysis. All 6 patients treated with solitary spinal metastasis experienced pain relief; 5 of them were alive without evidence of disease at a median of 16 months (range, 7-30). As previous studies have shown, our study confirms that pain relief with spinal radiosurgery is around 90%. In particular, long-term pain relief and disease control was observed in patients with solitary spinal metastasis.

  8. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury

    Science.gov (United States)

    Hofstoetter, Ursula S.; McKay, William B.; Tansey, Keith E.; Mayr, Winfried; Kern, Helmut; Minassian, Karen

    2014-01-01

    Context/objective To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. Design Interventional pilot study to produce preliminary data. Setting Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. Participants Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. Interventions Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. Outcome measures The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. Results The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. Conclusion These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted. PMID:24090290

  9. Quantitative analysis of velopharyngeal movement using a stereoendoscope: accuracy and reliability of range images.

    Science.gov (United States)

    Nakano, Asuka; Mishima, Katsuaki; Shiraishi, Ruriko; Ueyama, Yoshiya

    2015-01-01

    We developed a novel method of producing accurate range images of the velopharynx using a three-dimensional (3D) endoscope to obtain detailed measurements of velopharyngeal movements. The purpose of the present study was to determine the relationship between the distance from the endoscope to an object, elucidate the measurement accuracy along the temporal axes, and determine the degree of blurring when using a jig to fix the endoscope. An endoscopic measuring system was developed in which a pattern projection system was incorporated into a commercially available 3D endoscope. After correcting the distortion of the camera images, range images were produced using pattern projection to achieve stereo matching. Graph paper was used to measure the appropriate distance from the camera to an object, the mesial buccal cusp of the right maxillary first molar was measured to clarify the range image stability, and an electric actuator was used to evaluate the measurement accuracy along the temporal axes. The measurement error was substantial when the distance from the camera to the subject was >6.5 cm. The standard error of the 3D coordinate value produced from 30 frames was within 0.1 mm (range, 0.01-0.08 mm). The measurement error of the temporal axes was 9.16% in the horizontal direction and 9.27% in the vertical direction. The optimal distance from the camera to an object is movements.

  10. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey

    Science.gov (United States)

    Parker, David

    2017-01-01

    Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where

  11. Are existing outcome instruments suitable for assessment of spinal trauma patients?

    Science.gov (United States)

    Stadhouder, Agnita; Buckens, Constantinus F M; Holtslag, Herman R; Oner, F Cumhur

    2010-11-01

    Valid outcome assessment tools specific for spinal trauma patients are necessary to establish the efficacy of different treatment options. So far, no validated specific outcome measures are available for this patient population. The purpose of this study was to assess the current state of outcome measurement in spinal trauma patients and to address the question of whether this group is adequately served by current disease-specific and generic health-related quality-of-life instruments. A number of widely used outcome measures deemed most appropriate were reviewed, and their applicability to spinal trauma outcome discussed. An overview of recent movements in the theoretical foundations of outcome assessment, as it pertains to spinal trauma patients has been attempted, along with a discussion of domains important for spinal trauma. Commonly used outcome measures that are recommended for use in trauma patients were reviewed from the perspective of spinal trauma. The authors further sought to select a number of spine trauma-relevant domains from the WHO's comprehensive International Classification of Functioning, Disability and Health (ICF) as a benchmark for assessing the content coverage of the commonly used outcome measurements reviewed. The study showed that there are no psychometrically validated outcome measurements for the spinal trauma population and there are no commonly used outcome measures that provide adequate content coverage for spinal trauma domains. Spinal trauma patients are currently followed either as a subset of the polytrauma population in the acute and early postacute setting or as a subset of neurological injury in the long-term revalidation medicine setting.

  12. Central nociceptive sensitization vs. spinal cord training: Opposing forms of plasticity that dictate function after complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI field indicates that the lumbar spinal cord demonstrates several other forms of plasticity, including formal learning and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by delivering stimulation to the hindleg when the leg is extended. In the presence of this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a flexed position, a centrally mediated effect that meets the formal criteria for instrumental (response-outcome learning. Instrumental flexion training produces a central change in spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral leg. However, if stimulation is given in a response-independent manner, the spinal cord develops central maladaptive plasticity that undermines future spinal learning on both legs. The present paper tests for interactions between spinal cord training and central nociceptive sensitization after complete spinal cord transection. We found that spinal training alters future central sensitization by intradermal formalin (24 h post-training. Conversely intradermal formalin impaired future spinal learning (24 h post-injection. Because the NMDA receptor has been implicated in formalin-induced central sensitization, we tested whether pretreatment with NMDA affects spinal learning. We found intrathecal NMDA impaired learning in a dose-dependent fashion, and that this effect endures for at least 24h. These data provide strong evidence for an

  13. Correlation of shoulder range of motion limitations at discharge with limitations in activities and participation one year later in persons with spinal cord injury

    NARCIS (Netherlands)

    Eriks-Hoogland, Inge E.; de Groot, Sonja; Post, Marcel W. M.; van der Woude, Lucas H. V.

    Objective: To study the correlation between limited shoulder range of motion in persons with spinal cord injury at discharge and the performance of activities, wheeling performance, transfers and participation one year later. Design: Multicentre prospective cohort study. Subjects: A total of 146

  14. Cervical spinal canal narrowing and cervical neurologi-cal injuries

    Directory of Open Access Journals (Sweden)

    ZHANG Ling

    2012-04-01

    Full Text Available 【Abstract】Cervical spinal canal narrowing can lead to injury of the spinal cord and neurological symptoms in-cluding neck pain, headache, weakness and parasthesisas. According to previous and recent clinical researches, we investigated the geometric parameters of normal cervical spinal canal including the sagittal and transverse diameters as well as Torg ratio. The mean sagittal diameter of cervical spinal canal at C 1 to C 7 ranges from 15.33 mm to 20.46 mm, the mean transverse diameter at the same levels ranges from 24.45 mm to 27.00 mm and the mean value of Torg ratio is 0.96. With respect to narrow cervical spinal canal, the following charaterstics are found: firstly, extension of the cervical spine results in statistically significant stenosis as compared with the flexed or neutral positions; secondly, females sustain cervical spinal canal narrowing more easily than males; finally, the consistent narrowest cervical canal level is at C 4 for all ethnicity, but there is a slight variation in the sagittal diameter of cervical spinal stenosis (≤14 mm in Whites, ≤ 12 mm in Japanese, ≤13.7 mm in Chinese. Narrow sagittal cervical canal diameter brings about an increased risk of neurological injuries in traumatic, degenerative and inflam-matory conditions and is related with extension of cervical spine, gender, as well as ethnicity. It is hoped that this re-view will be helpful in diagnosing spinal cord and neuro-logical injuries with the geometric parameters of cervical spine in the future. Key words: Spinal cord injuries; Spinal stenosis; Trauma, nervous system

  15. Spinal Cord Injury and Pressure Ulcer Prevention: Using Functional Activity in Pressure Relief

    OpenAIRE

    Stinson, May; Schofield, Rachel; Gillan, Cathy; Morton, Julie; Gardner, Evie; Sprigle, Stephen; Porter-Armstrong, Alison

    2013-01-01

    Background. People with spinal cord injury (SCI) are at increased risk of pressure ulcers due to prolonged periods of sitting. Concordance with pressure relieving movements is poor amongst this population, and one potential alternative to improve this would be to integrate pressure relieving movements into everyday functional activities. Objectives. To investigate both the current pressure relieving behaviours of SCI individuals during computer use and the application of an ergonomically adap...

  16. Comparison of transversus abdominis plane block vs spinal morphine for pain relief after Caesarean section.

    LENUS (Irish Health Repository)

    McMorrow, R C N

    2012-02-01

    BACKGROUND: Transversus abdominis plane (TAP) block is an alternative to spinal morphine for analgesia after Caesarean section but there are few data on its comparative efficacy. We compared the analgesic efficacy of the TAP block with and without spinal morphine after Caesarean section in a prospective, randomized, double-blinded placebo-controlled trial. METHODS: Eighty patients were randomized to one of four groups to receive (in addition to spinal anaesthesia) either spinal morphine 100 microg (S(M)) or saline (S(S)) and a postoperative bilateral TAP block with either bupivacaine (T(LA)) 2 mg kg(-1) or saline (T(S)). RESULTS: Pain on movement and early morphine consumption were lowest in groups receiving spinal morphine and was not improved by TAP block. The rank order of median pain scores on movement at 6 h was: S(M)T(LA) (20 mm)Spinal morphine-but not TAP block-improved analgesia after Caesarean section. The addition of TAP block with bupivacaine 2 mg kg(-1) to spinal morphine did not further improve analgesia.

  17. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    Science.gov (United States)

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  18. Twiddler's syndrome in spinal cord stimulation.

    Science.gov (United States)

    Al-Mahfoudh, Rafid; Chan, Yuen; Chong, Hsu Pheen; Farah, Jibril Osman

    2016-01-01

    The aims are to present a case series of Twiddler's syndrome in spinal cord stimulators with analysis of the possible mechanism of this syndrome and discuss how this phenomenon can be prevented. Data were collected retrospectively between 2007 and 2013 for all patients presenting with failure of spinal cord stimulators. The diagnostic criterion for Twiddler's syndrome is radiological evidence of twisting of wires in the presence of failure of spinal cord stimulation. Our unit implants on average 110 spinal cord stimulators a year. Over the 5-year study period, all consecutive cases of spinal cord stimulation failure were studied. Three patients with Twiddler's syndrome were identified. Presentation ranged from 4 to 228 weeks after implantation. Imaging revealed repeated rotations and twisting of the wires of the spinal cord stimulators leading to hardware failure. To the best of our knowledge this is the first reported series of Twiddler's syndrome with implantable pulse generators (IPGs) for spinal cord stimulation. Hardware failure is not uncommon in spinal cord stimulation. Awareness and identification of Twiddler's syndrome may help prevent its occurrence and further revisions. This may be achieved by implanting the IPG in the lumbar region subcutaneously above the belt line. Psychological intervention may have a preventative role for those who are deemed at high risk of Twiddler's syndrome from initial psychological screening.

  19. Spinal Cord Subependymoma Surgery : A Multi-Institutional Experience.

    Science.gov (United States)

    Yuh, Woon Tak; Chung, Chun Kee; Park, Sung-Hye; Kim, Ki-Jeong; Lee, Sun-Ho; Kim, Kyoung-Tae

    2018-03-01

    A spinal cord subependymoma is an uncommon, indolent, benign spinal cord tumor. It is radiologically similar to a spinal cord ependymoma, but surgical findings and outcomes differ. Gross total resection of the tumor is not always feasible. The present study was done to determine the clinical, radiological and pathological characteristics of spinal cord subependymomas. We retrospectively reviewed the medical records of ten spinal cord subependymoma patients (M : F=4 : 6; median 38 years; range, 21-77) from four institutions. The most common symptoms were sensory changes and/or pain in eight patients, followed by motor weakness in six. The median duration of symptoms was 9.5 months. Preoperative radiological diagnosis was ependymoma in seven and astrocytoma in three. The tumors were located eccentrically in six and were not enhanced in six. Gross total resection of the tumor was achieved in five patients, whereas subtotal or partial resection was inevitable in the other five patients due to a poor dissection plane. Adjuvant radiotherapy was performed in two patients. Neurological deterioration occurred in two patients; transient weakness in one after subtotal resection and permanent weakness after gross total resection in the other. Recurrence or regrowth of the tumor was not observed during the median 31.5 months follow-up period (range, 8-89). Spinal cord subependymoma should be considered when the tumor is located eccentrically and is not dissected easily from the spinal cord. Considering the rather indolent nature of spinal cord subependymomas, subtotal removal without the risk of neurological deficit is another option.

  20. Achondroplasia manifesting as enchondromatosis and ossification of the spinal ligaments: a case report

    Directory of Open Access Journals (Sweden)

    Al Kaissi Ali

    2008-08-01

    Full Text Available Abstract Introduction A girl presented with achondroplasia manifested as mild knee pain associated with stiffness of her back. A skeletal survey showed enchondroma-like metaphyseal dysplasia and ossification of the spinal ligaments. Magnetic resonance imaging of the spine further clarified the pathological composites. Case presentation A 7-year-old girl presented with the classical phenotypic features of achondroplasia. Radiographic documentation showed the co-existence of metaphyseal enchondromatosis and development of spinal bony ankylosis. Magnetic resonance imaging showed extensive ossification of the anterior and posterior spinal ligaments. Additional features revealed by magnetic resonance imaging included calcification of the peripheral vertebral bodies associated with anterior end-plate irregularities. Conclusion Enchondromas are metabolically active and may continue to grow and evolve throughout the patient's lifetime; thus, progressive calcification over a period of years is not unusual. Ossification of the spinal ligaments has a specific site of predilection and often occurs in combination with senile ankylosing vertebral hyperostosis. Nevertheless, ossification of the spinal ligaments has been encountered in children with syndromic malformation complex. It is a multifactorial disease in which complex genetic and environmental factors interact, potentially leading to chronic pressure on the spinal cord and nerve roots with subsequent development of myeloradiculopathy. Our patient presented with a combination of achondroplasia, enchondroma-like metaphyseal dysplasia and calcification of the spinal ligaments. We suggest that the development of heterotopic bone formation along the spinal ligaments had occurred through an abnormal ossified enchondral mechanism. We postulate that ossification of the spinal ligaments and metaphyseal enchondromatous changes are related to each other and represent impaired terminal differentiation of

  1. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury.

    Science.gov (United States)

    Vuckovic, Aleksandra; Hasan, Muhammad A; Fraser, Matthew; Conway, Bernard A; Nasseroleslami, Bahman; Allan, David B

    2014-06-01

    Central neuropathic pain (CNP) is believed to be accompanied by increased activation of the sensorimotor cortex. Our knowledge of this interaction is based mainly on functional magnetic resonance imaging studies, but there is little direct evidence on how these changes manifest in terms of dynamic neuronal activity. This study reports on the presence of transient electroencephalography (EEG)-based measures of brain activity during motor imagery in spinal cord-injured patients with CNP. We analyzed dynamic EEG responses during imaginary movements of arms and legs in 3 groups of 10 volunteers each, comprising able-bodied people, paraplegic patients with CNP (lower abdomen and legs), and paraplegic patients without CNP. Paraplegic patients with CNP had increased event-related desynchronization in the theta, alpha, and beta bands (16-24 Hz) during imagination of movement of both nonpainful (arms) and painful limbs (legs). Compared to patients with CNP, paraplegics with no pain showed a much reduced power in relaxed state and reduced event-related desynchronization during imagination of movement. Understanding these complex dynamic, frequency-specific activations in CNP in the absence of nociceptive stimuli could inform the design of interventional therapies for patients with CNP and possibly further understanding of the mechanisms involved. This study compares the EEG activity of spinal cord-injured patients with CNP to that of spinal cord-injured patients with no pain and also to that of able-bodied people. The study shows that the presence of CNP itself leads to frequency-specific EEG signatures that could be used to monitor CNP and inform neuromodulatory treatments of this type of pain. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Nuclear movement in fungi.

    Science.gov (United States)

    Xiang, Xin

    2017-12-11

    Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle. Published by Elsevier Ltd.

  3. Tolerance of the Spinal Cord to Stereotactic Radiosurgery: Insights From Hemangioblastomas

    International Nuclear Information System (INIS)

    Daly, Megan E.; Choi, Clara Y.H.; Gibbs, Iris C.; Adler, John R.; Chang, Steven D.; Lieberson, Robert E.; Soltys, Scott G.

    2011-01-01

    Purpose: To evaluate spinal cord dose-volume effects, we present a retrospective review of stereotactic radiosurgery (SRS) treatments for spinal cord hemangioblastomas. Methods and Materials: From November 2001 to July 2008, 27 spinal hemangioblastomas were treated in 19 patients with SRS. Seventeen tumors received a single fraction with a median dose of 20 Gy (range, 18-30 Gy). Ten lesions were treated using 18-25 Gy in two to three sessions. Cord volumes receiving 8, 10, 12, 14, 16, 18, 20, 22, and 24 Gy and dose to 10, 100, 250, 500, 1000, and 2000 mm 3 of cord were determined. Multisession treatments were converted to single-fraction biologically effective dose (SFBED). Results: Single-fraction median cord D max was 22.7 Gy (range, 17.8-30.9 Gy). Median V10 was 454 mm 3 (range, 226-3543 mm 3 ). Median dose to 500 mm 3 cord was 9.5 Gy (range, 5.3-22.5 Gy). Fractionated median SFBED 3 cord D max was 14.1 Gy 3 (range, 12.3-19.4 Gy 3 ). Potential toxicities included a Grade 2 unilateral foot drop 5 months after SRS and 2 cases of Grade 1 sensory deficits. The actuarial 3-year local tumor control estimate was 86%. Conclusions: Despite exceeding commonly cited spinal cord dose constraints, SRS for spinal hemangioblastomas is safe and effective. Consistent with animal experiments, these data support a partial-volume tolerance model for the human spinal cord. Because irradiated cord volumes were generally small, application of these data to other clinical scenarios should be made cautiously. Further prospective studies of spinal radiosurgery are needed.

  4. Re-irradiation of the human spinal cord

    International Nuclear Information System (INIS)

    Sminia, P.; Oldenburger, F.; Hulshof, M.C.C.M.; Slotman, B.J.; Schneider, J.J.

    2002-01-01

    Purpose: Experimental animal data give evidence of long-term recovery of the spinal cord after irradiation. By extrapolation of these data, re-irradiation regimes were designed for eight patients who required palliative radiotherapy. As a consequence of reirradiation, their spinal cords were exposed to cumulative doses exceeding the tolerance dose. Radiobiological and clinical data are presented. Patients and method: Eight patients were re-irradiated on the cervical (n=1), thoracic (n=5) and lumbar (n=2) spinal cord. The time interval between the initial and re-treatment ranged from 4 months to 12.7 years (median: 2.5 years). (Re-)treatment schemes were designed and analyzed on basis of the biologically effective dose (BED) according to the linear-quadratic model. The repair capacity (α/β ratio) for the cervico-thoracic and lumbar spinal cord was assumed to be 2 Gy and 4 Gy, with a BED tolerance of 100 Gy and 84 Gy, respectively. Results: The cumulative irradiation dose applied to the spinal cord varied between 125 and 172% of the BED tolerance . During follow-up, ranging from 33 days to >4.5 years (median: 370 days) none of the patients developed neurological complications. Seven patients died from tumor progression, and one patient is still alive. Conclusion: Long-term recovery of the spinal cord from radiation injury, which has been demonstrated in rodents and primates, may also occur in humans. (orig.) [de

  5. The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process.

    Science.gov (United States)

    Wei, Fang; Zhang, Cui; Xue, Rong; Shan, Lidong; Gong, Shan; Wang, Guoqing; Tao, Jin; Xu, Guangyin; Zhang, Guoxing; Wang, Linhui

    2017-08-01

    It has been proved that cerebrospinal fluid (CSF) in the subarachnoid space could reenter the brain parenchyma via the perivascular space. The present study was designed to explore the pathway of subarachnoid CSF flux into the spinal cord and the potential role of aquaporin-4 (AQP4) in this process. Fluorescently tagged cadaverine, for the first time, was used to study CSF movement in mice. Following intracisternal infusion of CSF tracers, the cervical spinal cord was sliced and prepared for fluorescence imaging. Some sections were subject with immunostaining in order to observe tracer distribution and AQP4 expression. Fluorescently tagged cadaverine rapidly entered the spinal cord. Tracer influx into the spinal parenchyma was time dependent. At 10min post-infusion, cadaverine was largely distributed in the superficial tissue adjacent to the pial surface. At 70min post-infusion, cadaverine was distributed in the whole cord and especially concentrated in the gray matter. Furthermore, fluorescent tracer could enter the spinal parenchyma either along the perivascular space or across the pial surface. AQP4 was observed highly expressed in the astrocytic endfeet surrounding blood vessels and the pial surface. Blocking AQP4 by its specific inhibitor TGN-020 strikingly reduced the inflow of CSF tracers into the spinal cord. Subarachnoid CSF could flow into the spinal cord along the perivascular space or across the pial surface, in which AQP4 is involved. Our observation provides a basis for the study on CSF movement in the spinal cord when some neurological diseases occur. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    Science.gov (United States)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; hide

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  7. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    Science.gov (United States)

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The profile of spinal injuries in the elderly population

    OpenAIRE

    Teixeira,Glaciéle de Oliveira; Oliveira,Thais Fonseca de; Frison,Verônica Baptista; Resende,Thais de Lima

    2014-01-01

    This retrospective cross-sectional study sought to: describe the profile of the elderly population who suffered spinal injury (SI) between 2005 and 2010 in Porto Alegre (RS), Brazil; compare the trauma mechanism and type of SI prevalence in both sexes; and compare the trauma mechanism in the sample's age groups. To this end, medical records were reviewed for the following data: age, sex, main mechanisms of injury and spinal levels affected. Out of 1.320 records analyzed, 370 belonged to elder...

  9. Useful properties of spinal circuits for learning and performing planar reaches

    Science.gov (United States)

    Tsianos, George A.; Goodner, Jared; Loeb, Gerald E.

    2014-10-01

    Objective. We developed a detailed model of the spinal circuitry plus musculoskeletal system (SC + MS) for the primate arm and investigated its role in sensorimotor control, learning and storing of movement repertoires. Approach. Recently developed models of spinal circuit connectivity, neurons and muscle force/energetics were integrated and in some cases refined to construct the most comprehensive model of the SC + MS to date. The SC + MS’s potential contributions to center-out reaching movement were assessed by employing an extremely simple model of the brain that issued only step commands. Main results. The SC + MS was able to generate physiological muscle dynamics underlying reaching across different directions, distances, speeds, and even in the midst of strong dynamic perturbations (i.e. viscous curl field). For each task, there were many different combinations of brain inputs that generated physiological performance. Natural patterns of recruitment and low metabolic cost emerged for about half of the learning trials when a purely kinematic cost function was used and for all of the trials when an estimate of metabolic energy consumption was added to the cost function. Solutions for different tasks could be interpolated to generate intermediate movement and the range over which interpolation was successful was consistent with experimental reports. Significance. This is the first demonstration that a realistic model of the SC + MS is capable of generating the required dynamics of center-out reaching. The interpolability observed is important for the feasibility of storing motor programs in memory rather than computing them from internal models of the musculoskeletal plant. Successful interpolation of command programs required them to have similar muscle recruitment patterns, which are thought by many to arise from hard-wired muscle synergies rather than learned as in our model system. These properties of the SC + MS along with its tendency to generate

  10. Study of the efficiency of transplantation of human neural stem cells to rats with spinal trauma: the use of functional load tests and BBB test.

    Science.gov (United States)

    Lebedev, S V; Karasev, A V; Chekhonin, V P; Savchenko, E A; Viktorov, I V; Chelyshev, Yu A; Shaimardanova, G F

    2010-09-01

    Human ensheating neural stem cells of the olfactory epithelium were transplanted to adult male rats immediately after contusion trauma of the spinal cord at T9 level rostrally and caudally to the injury. Voluntary movements (by a 21-point BBB scale), rota-rod performance, and walking along a narrowing beam were monitored weekly over 60 days. In rats receiving cell transplantation, the mean BBB score significantly increased by 11% by the end of the experiment. The mean parameters of load tests also regularly surpassed the corresponding parameters in controls. The efficiency of transplantation (percent of animals with motor function recovery parameters surpassing the corresponding mean values in the control groups) was 62% by the state of voluntary motions, 37% by the rota-rod test, and 32% by the narrowing beam test. Morphometry revealed considerable shrinking of the zone of traumatic damage in the spinal cord and activation of posttraumatic remyelination in animals receiving transplantation of human neural stem cells.

  11. The Spinal Curvature of Three Different Sitting Positions Analysed in an Open MRI Scanner

    Directory of Open Access Journals (Sweden)

    Daniel Baumgartner

    2012-01-01

    Full Text Available Sitting is the most frequently performed posture of everyday life. Biomechanical interactions with office chairs have therefore a long-term effect on our musculoskeletal system and ultimately on our health and wellbeing. This paper highlights the kinematic effect of office chairs on the spinal column and its single segments. Novel chair concepts with multiple degrees of freedom provide enhanced spinal mobility. The angular changes of the spinal column in the sagittal plane in three different sitting positions (forward inclined, reclined, and upright for six healthy subjects (aged 23 to 45 years were determined using an open magnetic resonance imaging (MRI scanner. An MRI-compatible and commercially available office chair was adapted for use in the scanner. The midpoint coordinates of the vertebral bodies, the wedge angles of the intervertebral discs, and the lumbar lordotic angle were analysed. The mean lordotic angles were 16.0±8.5∘ (mean ± standard deviation in a forward inclined position, 24.7±8.3∘ in an upright position, and 28.7±8.1∘ in a reclined position. All segments from T10-T11 to L5-S1 were involved in movement during positional changes, whereas the range of motion in the lower lumbar segments was increased in comparison to the upper segments.

  12. Cervical spinal cord injury during cerebral angiography with MRI confirmation: case report

    Energy Technology Data Exchange (ETDEWEB)

    Bejjani, G.K.; Rizkallah, R.G.; Tzortidis, F. [Department of Neurosurgery, George Washington University Medical Center, Washington, DC (United States); Mark, A.S. [Department of Neuroradiology, Washington Hospital Center, Washington, DC (United States)

    1998-01-01

    We report the first case of MRI-documented cervical spinal cord injury during cerebral angiography. A 54-year-old woman underwent an angiogram for subarachnoid hemorrhage. Her head was secured in a plastic head-holder. At the end of the procedure, she was found to have a left hemiparesis. MRI revealed high signal in the cervical spinal cord. The etiology may have been mechanical due to patient positioning, or toxic, from contrast medium injection in the vessels feeding the spinal cord, or a combination of both. (orig.) With 3 figs., 26 refs.

  13. Fine-scale movements of rural free-ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile

    Science.gov (United States)

    Sepulveda, Maximiliano; Pelican, Katherine; Cross, Paul C.; Eguren, Antonieta; Singer, Randall S.

    2015-01-01

    Domestic dogs can play a variety of important roles for farmers. However, when in proximity to conservation areas, the presence of rural free-ranging dogs can be problematic due to the potential for predation of, competition with, or transmission of infectious disease to local threatened fauna. We used a frequent location radio tracking technology to study rural free-ranging dog movements and habitat use into sensitive conservation habitats. To achieve a better understanding of foray behaviors in dogs we monitored dogs (n = 14) in rural households located in an isolated area between the Valdivian Coastal Reserve and the Alerce Costero National Park in southern Chile. Dogs were mostly located near households (habitat compared to forest habitat including protected lands. Foraying dogs rarely used forest habitat and, when entered, trails and/or roads were selected for movement. Our study provides important information about how dogs interact in a fine-scale with wildlife habitat, and, in particular, protected lands, providing insight into how dog behavior might drive wildlife interactions, and, in turn, how an understanding of dog behavior can be used to manage these interactions.

  14. Incidence and related factors for intraoperative failed spinal anaesthesia for lower limb arthroplasty

    DEFF Research Database (Denmark)

    Aasvang, E K; Laursen, M B; Madsen, J

    2018-01-01

    include the risk for intraoperative failed spinal anaesthesia with associated pain, discomfort and suboptimal settings for airway management. Small-scale studies suggest incidences from 1 to 17%; however, no multi-institutional large data exists on failed spinal incidence and related factors during THA....../TKA, hindering evidence-based information and potential anaesthesia stratification. METHODS: In a sub-analysis, data from a prospective study on spinal anaesthesia for THA/TKA were examined for incidence of intraoperative conversion to general anaesthesia. Potential perioperative factors (age, gender, American...... Society of Anaesthesiologist (ASA) score, height, weight, BMI, procedure, bupivacaine dosage and duration of time from spinal administration until end of surgery) were analysed with logistic regression for relation to failed spinal anaesthesia. RESULTS: In all, 1451 patients were included for analysis...

  15. Protest movements

    International Nuclear Information System (INIS)

    Rucht, D.

    1989-01-01

    The author describes the development of protest movements in postwar Germay and outlines two essential overlapping 'flow cycles'. The first of these was characterised by the restaurative postwar years. It culminated and ended in the students' revolt. This revolt is at the same time the start of a second cycle of protest which encompasses all subsequent individual movement and is initated by an economic, political and sociocultural procrastination of modernisation. This cycle culminates in the late 70s and early 80s and clearly lost momentum over the last few years. The follwoing phases and themes are described profoundly: against restauration and armament in the 1950; the revolutionary impatience of the students' movement, politisation of everyday life by the womens' movement and citizens' action groups, antinuclear- and ecological movement, differentiation and stabilisation of the movement in the 70s and 80s; break-up and continuity in the German protest behaviour. The paper contains a detailed chronicle of protest activities since 1945. (orig.) [de

  16. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A functionally relevant tool for the body following spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Mariella Pazzaglia

    Full Text Available A tool such as a prosthetic device that extends or restores movement may become part of the identity of the person to whom it belongs. For example, some individuals with spinal cord injury (SCI adapt their body and action representation to incorporate their wheelchairs. However, it remains unclear whether the bodily assimilation of a relevant external tool develops as a consequence of altered sensory and motor inputs from the body or of prolonged confinement sitting or lying in the wheelchair. To explore such relationships, we used a principal component analysis (PCA on collected structured reports detailing introspective experiences of wheelchair use in 55 wheelchair-bound individuals with SCI. Among all patients, the regular use of a wheelchair induced the perception that the body's edges are not fixed, but are instead plastic and flexible to include the wheelchair. The PCA revealed the presence of three major components. In particular, the functional aspect of the sense of embodiment concerning the wheelchair appeared to be modulated by disconnected body segments. Neither an effect of time since injury nor an effect of exposure to/experience of was detected. Patients with lesions in the lower spinal cord and with loss of movement and sensation in the legs but who retained upper body movement showed a higher degree of functional embodiment than those with lesions in the upper spinal cord and impairment in the entire body. In essence, the tool did not become an extension of the immobile limbs; rather, it became an actual tangible substitution of the functionality of the affected body part. These findings suggest that the brain can incorporate relevant artificial tools into the body schema via the natural process of continuously updating bodily signals. The ability to embody new essential objects extends the potentiality of physically impaired persons and can be used for their rehabilitation.

  18. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  19. Response of spinal myoclonus to a combination therapy of autogenic training and biofeedback.

    Science.gov (United States)

    Sugimoto, Koreaki; Theoharides, Theoharis C; Kempuraj, Duraisamy; Conti, Pio

    2007-10-12

    Clinical evidence indicates that certain types of movement disorders are due to psychosomatic factors. Patients with myoclonic movements are usually treated by a variety of therapeutic agents. Autogenic training (AT), a recognized form of psychosomatic therapies, is suitable for certain types of neurological diseases. We describe a patient with myoclonus who failed to respond to conventional medical therapy. His symptoms were exaggerated by psychogenic factors, especially anger. A 42-year-old man was admitted to our hospital, Preventive Welfare Clinic, for severe paroxysmal axial myoclonus of the left shoulder and abdominal muscles. The initial diagnosis was "combination of spinal segmental myoclonus and propriospinal myoclonus". The myoclonic movements did not occur during sleep but were aggravated by bathing, alcohol drinking, and anger. Psychological examination indicated hostile attribution. Although considered not to be a case of psychogenic myoclonus, a "psychogenic factor" was definitely involved in the induction of the organic myoclonus. The final diagnosis was "combination of spinal segmental myoclonus and propriospinal myoclonus accompanied by features of psychosomatic disorders". The patient underwent psychosomatic therapy including AT and surface electromyography (EMG)-biofeedback therapy and treatment with clonazepam and carbamazepine. AT and EMG-biofeedback resulted in shortening the duration and reducing the amplitude and frequency of the myoclonic discharges. Psychosomatic therapy with AT and surface EMG-biofeedback produced excellent improvement of myoclonic movements and allowed the reduction of the dosage of conventional medications.

  20. Spinal Cord Injury and Pressure Ulcer Prevention: Using Functional Activity in Pressure Relief

    Directory of Open Access Journals (Sweden)

    May Stinson

    2013-01-01

    Full Text Available Background. People with spinal cord injury (SCI are at increased risk of pressure ulcers due to prolonged periods of sitting. Concordance with pressure relieving movements is poor amongst this population, and one potential alternative to improve this would be to integrate pressure relieving movements into everyday functional activities. Objectives. To investigate both the current pressure relieving behaviours of SCI individuals during computer use and the application of an ergonomically adapted computer-based activity to reduce interface pressure. Design. Observational and repeated measures design. Setting. Regional Spinal Cord Injury Unit. Participants. Fourteen subjects diagnosed with SCI (12 male, 2 female. Intervention.Comparing normal sitting to seated movements and induced forward reaching positions. Main Outcome Measures. Interface pressure measurements: dispersion index (DI, peak pressure index (PPI, and total contact area (CA. The angle of trunk tilt was also measured. Results. The majority of movements yielded less than 25% reduction in interface pressure compared to normal sitting. Reaching forward by 150% of arm length during an adapted computer activity significantly reduced DI (P<0.05, angle of trunk tilt (p<0.05, and PPI for both ischial tuberosity regions (P<0.001 compared to normal sitting. Conclusion. Reaching forward significantly redistributed pressure at the seating interface, as evidenced by the change in interface pressures compared to upright sitting.

  1. Factors associated with myelopathy in spinal tuberculosis

    International Nuclear Information System (INIS)

    Kitada, Yuki; Izawa, Kazutaka; Imoto, Kazuhiko; Yonenobu, Kazuo

    2009-01-01

    To identity factors associated with Pott's disease, 49 spinal tuberculosis patients were classified into a group of 22 patients with a neurological deficit and a group of 27 patients with no neurological deficits, and their clinical findings (gender, age, pulmonary tuberculosis, antituberculous chemotherapy, C reactive protein (CRP), nutritional status, and duration of disease) and radiographic findings (degree of canal encroachment, pathology and level of dural compression, number of affected vertebral bodies, range of paravertebral abscesses, signals in the spinal cord on MRI, kyphotic angle, and spinal instability) were compared. The results showed that malnutrition, severe canal encroachment, and abnormal signal within the spinal cord on MRI were associated with neurological complications. Factors associated with the degree of neurological deficit were unclear because the study population was too small. (author)

  2. Topical Ketamine 10% for Neuropathic Pain in Spinal Cord Injury Patients: An Open-Label Trial.

    Science.gov (United States)

    Rabi, Joseph; Minori, Joshua; Abad, Hasan; Lee, Ray; Gittler, Michelle

    2016-01-01

    Topical ketamine, an N-methyl-D-aspartate antagonist, has been shown to be effective in certain neuropathic pain syndromes. The objective of this study was to determine the efficacy of topical ketamine in spinal cord injury patients with neuropathic pain. An open label trial enrolled five subjects at an outpatient rehabilitation hospital with traumatic spinal cord injuries who had neuropathic pain at or below the level of injury. Subjects applied topical ketamine 10% three times a day for a two-week duration. Subjects recorded their numerical pain score-ranging from 0 to 10, with 0 representing "no pain, 5 representing "moderate pain," and 10 being described as "worst possible pain"-in a journal at the time of application of topical ketamine and one hour after application. Using a numerical pain scale allows for something as subjective as pain to be given an objective quantification. Subjects also recorded any occurrence of adverse events and level of satisfaction. All five subjects had a decrease in their numerical pain scale by the end of two weeks, ranging from 14% to 63%. The duration ranged from one hour in one subject to the next application in other subjects. There were no adverse effects. Overall, four out of the five subjects stated they were satisfied. Topical ketamine 10% is an effective neuropathic pain medicine in patients with spinal cord injuries; however, further studies need to be done with a placebo and larger sample size. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  3. Detection of Abnormal Muscle Activations during Walking Following Spinal Cord Injury (SCI)

    Science.gov (United States)

    Wang, Ping; Low, K. H.; McGregor, Alison H.; Tow, Adela

    2013-01-01

    In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI…

  4. Prevention of pectus excavatum for children with spinal muscular atrophy type 1.

    Science.gov (United States)

    Bach, John R; Bianchi, Carlo

    2003-10-01

    To demonstrate the elimination of pectus excavatum and promotion of more normal lung growth and chest wall development by the use of high-span positive inspiratory pressure plus positive end-expiratory pressure (PIP+PEEP), patients with spinal muscular atrophy type 1 with paradoxical breathing were placed on high-span PIP+PEEP when sleeping from the point of diagnosis of spinal muscular atrophy. Although the appearance of pectus excavatum is ubiquitous in untreated infants with spinal muscular atrophy type 1, after institution of high-span PIP+PEEP, pectus resolves and lungs and chest walls grow more normally. High-span PIP+PEEP is indicated for all infants diagnosed with spinal muscular atrophy who demonstrate paradoxical breathing for the purpose of promoting more normal lung and chest development.

  5. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  6. Changes in spinal mobility with increasing age in women.

    Science.gov (United States)

    Einkauf, D K; Gohdes, M L; Jensen, G M; Jewell, M J

    1987-03-01

    The purpose of our study was to determine changes in spinal mobility for women aged 20 to 84 years. Anterior flexion, right and left lateral flexion, and extension were measured on 109 healthy women. The modified Schober method was used to measure anterior flexion. Standard goniometry was used to measure lateral flexion and extension. The results of the study indicated that spinal mobility decreases with advancing age. The most significant (p less than .05) differences occurred between the two youngest and the two oldest age categories. Data gathered in this study indicate that physical therapists should consider the effects of age on spinal mobility when assessing spinal range of motion. A simple, objective method for measuring spinal mobility is presented. Suggestions for future research are given.

  7. Brain abscess as a manifestation of spinal dermal sinus

    Directory of Open Access Journals (Sweden)

    Parisa Emami-Naeini

    2008-09-01

    Full Text Available Parisa Emami-Naeini, Ali Mahdavi, Hamed Ahmadi, Nima Baradaran, Farideh NejatDepartment of Neurosurgery, Children’s Hospital Medical Center, Medical Sciences/University of Tehran, Tehran, IranAbstract: Dermal sinuses have been associated with a wide spectrum of clinical manifestations ranging from asymptomatic to drainage of purulent material from the sinus tract, inclusion tumors, meningitis, and spinal abscess. To date, there has been no documented report of brain abscess as a complication of spinal dermal sinus. Here, we report an 8-month-old girl who was presented initially with a brain abscess at early infancy but lumbar dermal sinus and associated spinal abscess were discovered afterwards. The probable mechanisms of this rare association have been discussed.Keywords: brain abscess, spinal dermal sinus, spinal abscess

  8. Modeling discrete and rhythmic movements through motor primitives: a review.

    Science.gov (United States)

    Degallier, Sarah; Ijspeert, Auke

    2010-10-01

    Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.

  9. Functional organization of V2a-related locomotor circuits in the rodent spinal cord

    DEFF Research Database (Denmark)

    Dougherty, Kimberly J.; Kiehn, Ole

    2010-01-01

    Studies of mammalian locomotion have been greatly facilitated by the use of the isolated rodent spinal cord preparation that retains the locomotor circuits needed to execute the movement. Physiological and molecular genetic experiments in this preparation have started to unravel the basic circuit...

  10. Computational movement analysis

    CERN Document Server

    Laube, Patrick

    2014-01-01

    This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understanding of movement processes (with a focus on data mining for movement patterns), and using decentralized spatial computing methods in movement analysis. The author presents Computational Movement Analysis as an interdisciplinary umbrella for analyzing movement processes with methods from a range of fi

  11. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-01

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  12. Short-range movement of major agricultural pests

    Science.gov (United States)

    Vansteenwyk, R.

    1979-01-01

    Visual observations of population fluctuations which cannot be accounted for by either mortality or natality are presented. Lygus bugs in the westside of the San Joaquin Valley of California are used as an example. The dispersal of most agricultural pests in one of the less known facets of their biology is discussed. Results indicate a better understanding of insect movement is needed to develop a sound pest management program.

  13. Spinal motor control system incorporates an internal model of limb dynamics.

    Science.gov (United States)

    Shimansky, Y P

    2000-10-01

    The existence and utilization of an internal representation of the controlled object is one of the most important features of the functioning of neural motor control systems. This study demonstrates that this property already exists at the level of the spinal motor control system (SMCS), which is capable of generating motor patterns for reflex rhythmic movements, such as locomotion and scratching, without the aid of the peripheral afferent feedback, but substantially modifies the generated activity in response to peripheral afferent stimuli. The SMCS is presented as an optimal control system whose optimality requires that it incorporate an internal model (IM) of the controlled object's dynamics. A novel functional mechanism for the integration of peripheral sensory signals with the corresponding predictive output from the IM, the summation of information precision (SIP) is proposed. In contrast to other models in which the correction of the internal representation of the controlled object's state is based on the calculation of a mismatch between the internal and external information sources, the SIP mechanism merges the information from these sources in order to optimize the precision of the controlled object's state estimate. It is demonstrated, based on scratching in decerebrate cats as an example of the spinal control of goal-directed movements, that the results of computer modeling agree with the experimental observations related to the SMCS's reactions to phasic and tonic peripheral afferent stimuli. It is also shown that the functional requirements imposed by the mathematical model of the SMCS comply with the current knowledge about the related properties of spinal neuronal circuitry. The crucial role of the spinal presynaptic inhibition mechanism in the neuronal implementation of SIP is elucidated. Important differences between the IM and a state predictor employed for compensating for a neural reflex time delay are discussed.

  14. Comparison between dopaminergic agents and physical exercise as treatment for periodic limb movements in patients with spinal cord injury.

    Science.gov (United States)

    De Mello, M T; Esteves, A M; Tufik, S

    2004-04-01

    Randomized controlled trial of physical exercise and dopaminergic agonist in persons with spinal cord injury and periodic leg movement (PLM). The objective of the present study was to compare the effectiveness of physical exercise and of a dopaminergic agonist in reducing the frequency of PLM. Centro de Estudos em Psicobiologia e Exercício. Universidade Federal de São Paulo, Brazil. A total of 13 volunteers (mean age: 31.6+/-8.3 years) received L-DOPA (200 mg) and benserazide (50 mg) 1 h before sleeping time for 30 days and were then submitted to a physical exercise program on a manual bicycle ergometer for 45 days (3 times a week). Both L-DOPA administration (35.11-19.87 PLM/h, P<0.03) and physical exercise (35.11-18.53 PLM/h, P<0.012) significantly reduced PLM; however, no significant difference was observed between the two types of treatment. The two types of treatment were found to be effective in the reduction of PLM; however, physical exercise is indicated as the first treatment approach, while dopaminergic agonists or other drugs should only be recommended for patients who do not respond to this type of treatment.

  15. Trunk muscle activation in a person with clinically complete thoracic spinal cord injury.

    Science.gov (United States)

    Bjerkefors, Anna; Carpenter, Mark G; Cresswell, Andrew G; Thorstensson, Alf

    2009-04-01

    The aim of this study was to assess if, and how, upper body muscles are activated in a person with high thoracic spinal cord injury, clinically classified as complete, during maximal voluntary contractions and in response to balance perturbations. Data from one person with spinal cord injury (T3 level) and one able-bodied person were recorded with electromyography from 4 abdominal muscles using indwelling fine-wire electrodes and from erector spinae and 3 upper trunk muscles with surface electrodes. Balance perturbations were carried out as forward or backward support surface translations. The person with spinal cord injury was able to activate all trunk muscles, even those below the injury level, both in voluntary efforts and in reaction to balance perturbations. Trunk movements were qualitatively similar in both participants, but the pattern and timing of muscle responses differed: upper trunk muscle involvement and occurrence of co-activation of ventral and dorsal muscles were more frequent in the person with spinal cord injury. These findings prompt further investigation into trunk muscle function in paraplegics, and highlight the importance of including motor tests for trunk muscles in persons with thoracic spinal cord injury, in relation to injury classification, prognosis and rehabilitation.

  16. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    Science.gov (United States)

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, David P; Kiskinis, Evangelos

    2017-01-01

    Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.

  18. Regulatory effect of neuroglobin in the recovery of spinal cord injury.

    Science.gov (United States)

    Dai, Ji-Lin; Lin, Yun; Yuan, Yong-Jian; Xing, Shi-Tong; Xu, Yi; Zhang, Qiang-Hua; Min, Ji-Kang

    2017-11-16

    The present study was aimed to investigate the therapeutic potential of neuroglobin in the recovery of spinal cord injury. The male albino Wistar strain rats were used as an experimental model, and adeno associated virus (AAV) was administered in the T12 section of spinal cord ten days prior to the injury. Basso Beattie Bresnahan (BBB) locomotor rating scale was used to determine the recovery of the hind limb during four weeks post-operation. Malondialdehyde (MDA), catalase and superoxide dismutase (SOD) were determined in the spinal cord tissues. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was carried out to determine the presence of apoptotic cells. Immunofluorescence analysis was carried out to determine the neuroglobin expression. Western blot analysis was carried out to determine the protein expressions of caspase-3, cytochrome c, bax and bcl-2 in the spinal cord tissues. Experimental results showed that rats were recovered from the spinal cord injury due to increased neuroglobin expression. Lipid peroxidation was reduced, whereas catalase and SOD activity were increased in the spinal cord tissues. Apoptosis and lesions were significantly reduced in the spinal cord tissues. Caspase-3, cytochrome c and bax levels were significantly reduced, whereas bcl-2 expression was reduced in the spinal cord tissues. Taking all these data together, it is suggested that the increased neuroglobin expression could improve the locomotor function.

  19. Evaluation of pre and post-operative spinal plain CT and CT-myelography

    International Nuclear Information System (INIS)

    Nagase, Joji; Inoue, Shunichi; Miyasaka, Hitoshi; Kamata, Sakae; Shinohara, Hiroyasu.

    1983-01-01

    Confirmation of the level of scan slices is essential for the CT diagnosis of spinal and spinal-cord diseases. Pre- and postoperative comparison should be made on the same level. For reading of plain CT and CTM, window levels should be identical pre- and postoperatively. Both methods demonstrated the spinal canal, morphology of the spinal cord, and three-Fdimensional pathologic pictures inside and outside the spinal cord. Preoperative CT contributed useful information on the pathologic conditions and selection of surgical procedures and routes. Postoperative plain CT confirmed surgical results, and CTM revealed the spinal cord and the subarachnoid space, as well as the range and degree of decompression from the spinal cord. (Chiba, N.)

  20. Ambulatory surgery with chloroprocaine spinal anesthesia: a review

    Directory of Open Access Journals (Sweden)

    Ghisi D

    2015-11-01

    Full Text Available Daniela Ghisi, Stefano Bonarelli Department of Anaesthesia and Postoperative Intensive Care, Istituto Ortopedico Rizzoli, Bologna, Italy Abstract: Spinal anesthesia is a reliable and safe technique for procedures of the lower extremities. Nevertheless, some of its characteristics may limit its use for ambulatory surgery, including delayed ambulation, risk of urinary retention, and pain after block regression. The current availability of short-acting local anesthetics has renewed interest for this technique also in the context of short- and ultra-short procedures. Chloroprocaine (CP is an amino-ester local anesthetic with a very short half-life. It was introduced and has been successfully used for spinal anesthesia since 1952. Sodium bisulfite was then added as a preservative after 1956. The drug was then abandoned in the 1980s for several reports of neurological deficits in patients receiving accidentally high doses of intrathecal CP during epidural labor analgesia. Animal studies have proven the safety of the preservative-free formulation, which has been extensively evaluated in volunteer studies as well as in clinical practice with a favorable profile in terms of both safety and efficacy. In comparison with bupivacaine, 2-chloroprocaine (2-CP showed faster offset times to end of anesthesia, unassisted ambulation, and discharge from hospital. These findings suggests that 2-CP may be a suitable alternative to low doses of long-acting local anesthetics in ambulatory surgery. Its safety profile also suggests that 2-CP could be a valid substitute for intrathecal short- and intermediate-acting local anesthetics, such as lidocaine and mepivacaine – often causes of transient neurological symptoms. In this context, literature suggests a dose ranging between 30 and 60 mg of 2-CP for procedures lasting 60 minutes or less, while 10 mg is considered the no-effect dose. The present review describes recent evidence about 2-CP as an anesthetic agent for

  1. "Do Not Follow the Tail": A Practical Approach to Remove a Sheared Lumbar Catheter Fragment Avoiding Its Migration into the Spinal Canal.

    Science.gov (United States)

    Oshino, Satoru; Kishima, Haruhiko; Ohnishi, Yu-ichiro; Iwatsuki, Koichi; Saitoh, Youichi

    2016-03-01

    Catheter shearing is one of the most common complications of various neurosurgical modalities that use an intrathecal lumbar catheter. The sheared catheter fragment often can spontaneously migrate into the spinal canal; however, in some cases, the end of the fragment will remain outside the spinal canal. In this situation, the consulting neurosurgeons may try to retrieve the catheter fragment by approaching it directly through the catheter tract. This simple maneuver, however, can cause the fragment to slip into the spinal canal before it is secured, as we experienced recently in 2 cases. Because the fragment of the sheared catheter slipped while manipulating it within the catheter tract, we suggest that surgeons not approach the fragment along the tract to prevent it from migrating downward. Using the operative findings of an illustrative case, we describe how to avoid downward migration of the catheter fragment when retrieving a sheared lumbar catheter. We found that the sheared catheter of a lumbar-peritoneal shunt was slowly slipping along with the pulsatile movement of cerebrospinal fluid within the catheter tract. We successfully retrieved the fragment by approaching it from outside the catheter tract. We propose that surgeons approach the fragment from outside of the catheter tract. One should keep in mind a simple phrase, 'Do not follow the tail', when retrieving the sheared lumbar catheter fragment. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Development and regulation of response properties in spinal cord motoneurons

    DEFF Research Database (Denmark)

    Perrier, J F; Hounsgaard, J

    2000-01-01

    vertebrates in terms of both phylogeny and ontogeny. Spinal motoneurons in adults are remarkably similar in many respects ranging from the resting membrane potential to pacemaker properties. Apart from the axolotls, spinal motoneurons from all species investigated have latent intrinsic response properties...

  3. Factors associated with upper extremity contractures after cervical spinal cord injury: A pilot study.

    Science.gov (United States)

    Hardwick, Dustin; Bryden, Anne; Kubec, Gina; Kilgore, Kevin

    2018-05-01

    To examine the prevalence of joint contractures in the upper limb and association with voluntary strength, innervation status, functional status, and demographics in a convenience sample of individuals with cervical spinal cord injury to inform future prospective studies. Cross-sectional convenience sampled pilot study. Department of Veterans Affairs Research Laboratory. Thirty-eight participants with cervical level spinal cord injury. Not applicable. Contractures were measured with goniometric passive range of motion. Every joint in the upper extremity was evaluated bilaterally. Muscle strength was measured with manual muscle testing. Innervation status was determined clinically with surface electrical stimulation. Functional independence was measured with the Spinal Cord Independence Measure III (SCIM-III). Every participant tested had multiple joints with contractures and, on average, participants were unable to achieve the normative values of passive movement in 52% of the joints tested. Contractures were most common in the shoulder and hand. There was a weak negative relationship between percentage of contractures and time post-injury and a moderate positive relationship between percentage of contractures and age. There was a strong negative correlation between SCIM-III score and percentage of contractures. Joint contractures were noted in over half of the joints tested. These joint contractures were associated with decreased functional ability as measured by the SCIM-III. This highlights the need the need for detailed evaluation of the arm and hand early after injury as well as continued monitoring of joint characteristics throughout the life course of the individual with tetraplegia.

  4. Guiding Device for Precision Grafting of Peripheral Nerves in Complete Thoracic Spinal Cord Injury: Design and Sizing for Clinical Trial

    Directory of Open Access Journals (Sweden)

    Arvid Frostell

    2018-05-01

    Full Text Available BackgroundIn an effort to translate preclinical success in achieving spinal cord regeneration through peripheral nerve grafts, this study details the design and sizing of a guiding device for precision grafting of peripheral nerves for use in a clinical trial in complete (AIS-A thoracic spinal cord injury (SCI. The device’s design and sizing are compared to a simulation of human spinal cord sizes based on the best available data.MethodsSpinal cord segmental sizes were generated by computer simulation based on data from a meta-analysis recently published by our group. Thoracic segments T2–T12 were plotted, and seven elliptical shapes were positioned across the center of the distribution of sizes. Geometrical measures of error-of-fit were calculated. CAD modeling was used to create cranial and caudal interfaces for the human spinal cord, aiming to guide descending white matter tracts to gray matter at the caudal end of the device and ascending white matter tracts to gray matter at the cranial end of the device. The interfaces were compared qualitatively to the simulated spinal cord sizes and gray-to-white matter delineations.ResultsThe mean error-of-fit comparing simulated spinal cord segments T2–T12 to the best elliptical shape was 0.41 and 0.36 mm, and the 95th percentile was found at 1.3 and 0.98 mm for transverse and anteroposterior diameter, respectively. A guiding device design was reached for capturing the majority of corticospinal axons at the cranial end of the device and guiding them obliquely to gray matter at the caudal end of the device. Based on qualitative comparison, the vast majority of spinal cord sizes generated indicate an excellent fit to the device’s interfaces.ConclusionA set of SCI guiding devices of seven sizes can cover the variability of human thoracic spinal cord segments T2–T12 with an acceptable error-of-fit for the elliptical shape as well as guiding channels. The computational framework developed can

  5. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia.

    Science.gov (United States)

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R Shane; Moisi, Marc

    2017-02-16

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation.

  6. Image-guided robotic radiosurgery for spinal metastases

    International Nuclear Information System (INIS)

    Gibbs, Iris C.; Kamnerdsupaphon, Pimkhuan; Ryu, Mi-Ryeong; Dodd, Robert; Kiernan, Michaela; Chang, Steven D.; Adler, John R.

    2007-01-01

    Background and Purpose: To determine the effectiveness and safety of image-guided robotic radiosurgery for spinal metastases. Materials/Methods: From 1996 to 2005, 74 patients with 102 spinal metastases were treated using the CyberKnife TM at Stanford University. Sixty-two (84%) patients were symptomatic. Seventy-four percent (50/68) of previously treated patients had prior radiation. Using the CyberKnife TM , 16-25 Gy in 1-5 fractions was delivered. Patients were followed clinically and radiographically for at least 3 months or until death. Results: With mean follow-up of 9 months (range 0-33 months), 36 patients were alive and 38 were dead at last follow-up. No death was treatment related. Eighty-four (84%) percent of symptomatic patients experienced improvement or resolution of symptoms after treatment. Three patients developed treatment-related spinal injury. Analysis of dose-volume parameters and clinical parameters failed to identify predictors of spinal cord injury. Conclusions: Robotic radiosurgery is effective and generally safe for spinal metastases even in previously irradiated patients

  7. Directly measuring spinal cord blood flow and spinal cord perfusion pressure via the collateral network: correlations with changes in systemic blood pressure.

    Science.gov (United States)

    Kise, Yuya; Kuniyoshi, Yukio; Inafuku, Hitoshi; Nagano, Takaaki; Hirayasu, Tsuneo; Yamashiro, Satoshi

    2015-01-01

    During thoracoabdominal surgery in which segmental arteries are sacrificed over a large area, blood supply routes from collateral networks have received attention as a means of avoiding spinal cord injury. The aim of this study was to investigate spinal cord blood supply through a collateral network by directly measuring spinal cord blood flow and spinal cord perfusion pressure experimentally. In beagle dogs (n = 8), the thoracoabdominal aorta and segmental arteries L1-L7 were exposed, and a temporary bypass was created for distal perfusion. Next, a laser blood flow meter was placed on the spinal dura mater in the L5 region to measure the spinal cord blood flow. The following were measured simultaneously when the direct blood supply from segmental arteries L2-L7 to the spinal cord was stopped: mean systemic blood pressure, spinal cord perfusion pressure (blood pressure within the aortic clamp site), and spinal cord blood flow supplied via the collateral network. These variables were then investigated for evidence of correlations. Positive correlations were observed between mean systemic blood pressure and spinal cord blood flow during interruption of segmental artery flow both with (r = 0.844, P flow with and without distal perfusion (r = 0.803, P network from outside the interrupted segmental arteries, and high systemic blood pressure (∼1.33-fold higher) was needed to obtain the preclamping spinal cord blood flow, whereas 1.68-fold higher systemic blood pressure was needed when distal perfusion was halted. Spinal cord blood flow is positively correlated with mean systemic blood pressure and spinal cord perfusion pressure under spinal cord ischemia caused by clamping a wide range of segmental arteries. In open and endovascular thoracic and thoracoabdominal surgery, elevating mean systemic blood pressure is a simple and effective means of increasing spinal cord blood flow, and measuring spinal cord perfusion pressure seems to be useful for monitoring

  8. Spinal cord contusion.

    Science.gov (United States)

    Ju, Gong; Wang, Jian; Wang, Yazhou; Zhao, Xianghui

    2014-04-15

    Spinal cord injury is a major cause of disability with devastating neurological outcomes and limited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.

  9. Radiographic Predictors for Mechanical Failure After Adult Spinal Deformity Surgery

    DEFF Research Database (Denmark)

    Hallager, Dennis W; Karstensen, Sven; Bukhari, Naeem

    2017-01-01

    spinal deformity surgery range 12% to 37% in literature. Although the importance of spinal and spino-pelvic alignment is well documented for surgical outcome and ideal alignment has been proposed as sagittal vertical axis (SVA) lordosis (LL) = pelvic incidence ± 9...

  10. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury

    OpenAIRE

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-01-01

    Background In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities—characterized by increases in the over-ground walking speed and endurance—is generally observed in patients. To better understand the mechanisms underlying these improvements, we...

  11. Response of spinal myoclonus to a combination therapy of autogenic training and biofeedback

    Directory of Open Access Journals (Sweden)

    Kempuraj Duraisamy

    2007-10-01

    Full Text Available Abstract Introduction Clinical evidence indicates that certain types of movement disorders are due to psychosomatic factors. Patients with myoclonic movements are usually treated by a variety of therapeutic agents. Autogenic training (AT, a recognized form of psychosomatic therapies, is suitable for certain types of neurological diseases. We describe a patient with myoclonus who failed to respond to conventional medical therapy. His symptoms were exaggerated by psychogenic factors, especially anger. Case presentation A 42-year-old man was admitted to our hospital, Preventive Welfare Clinic, for severe paroxysmal axial myoclonus of the left shoulder and abdominal muscles. The initial diagnosis was "combination of spinal segmental myoclonus and propriospinal myoclonus". The myoclonic movements did not occur during sleep but were aggravated by bathing, alcohol drinking, and anger. Psychological examination indicated hostile attribution. Although considered not to be a case of psychogenic myoclonus, a "psychogenic factor" was definitely involved in the induction of the organic myoclonus. The final diagnosis was "combination of spinal segmental myoclonus and propriospinal myoclonus accompanied by features of psychosomatic disorders". The patient underwent psychosomatic therapy including AT and surface electromyography (EMG-biofeedback therapy and treatment with clonazepam and carbamazepine. Results AT and EMG-biofeedback resulted in shortening the duration and reducing the amplitude and frequency of the myoclonic discharges. Conclusion Psychosomatic therapy with AT and surface EMG-biofeedback produced excellent improvement of myoclonic movements and allowed the reduction of the dosage of conventional medications.

  12. Exercise recommendations for individuals with spinal cord injury.

    Science.gov (United States)

    Jacobs, Patrick L; Nash, Mark S

    2004-01-01

    within the paralysed tissues. The recommendations for endurance and strength training in persons with SCI do not vary dramatically from the advice offered to the general population. Systems of functional electrical stimulation activate muscular contractions within the paralysed muscles of some persons with SCI. Coordinated patterns of stimulation allows purposeful exercise movements including recumbent cycling, rowing and upright ambulation. Exercise activity in persons with SCI is not without risks, with increased risks related to systemic dysfunction following the spinal injury. These individuals may exhibit an autonomic dysreflexia, significantly reduced bone density below the spinal lesion, joint contractures and/or thermal dysregulation. Persons with SCI can benefit greatly by participation in exercise activities, but those benefits can be enhanced and the relative risks may be reduced with accurate classification of the spinal injury.

  13. CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications

    CERN Document Server

    Aznar, Francisco; Calvo Lopez, Belén

    2013-01-01

    This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints.  These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip.  The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length.  This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...

  14. Predictive Value of Upper Limb Muscles and Grasp Patterns on Functional Outcome in Cervical Spinal Cord Injury.

    Science.gov (United States)

    Velstra, Inge-Marie; Bolliger, Marc; Krebs, Jörg; Rietman, Johan S; Curt, Armin

    2016-05-01

    To determine which single or combined upper limb muscles as defined by the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI); upper extremity motor score (UEMS) and the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), best predict upper limb function and independence in activities of daily living (ADLs) and to assess the predictive value of qualitative grasp movements (QlG) on upper limb function in individuals with acute tetraplegia. As part of a Europe-wide, prospective, longitudinal, multicenter study ISNCSCI, GRASSP, and Spinal Cord Independence Measure (SCIM III) scores were recorded at 1 and 6 months after SCI. For prediction of upper limb function and ADLs, a logistic regression model and unbiased recursive partitioning conditional inference tree (URP-CTREE) were used. Results: Logistic regression and URP-CTREE revealed that a combination of ISNCSCI and GRASSP muscles (to a maximum of 4) demonstrated the best prediction (specificity and sensitivity ranged from 81.8% to 96.0%) of upper limb function and identified homogenous outcome cohorts at 6 months. The URP-CTREE model with the QlG predictors for upper limb function showed similar results. Prediction of upper limb function can be achieved through a combination of defined, specific upper limb muscles assessed in the ISNCSCI and GRASSP. A combination of a limited number of proximal and distal muscles along with an assessment of grasping movements can be applied for clinical decision making for rehabilitation interventions and clinical trials. © The Author(s) 2015.

  15. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Streeter, K A; Baker-Herman, T L

    2014-06-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs.

    Science.gov (United States)

    Abu Baker, Mohammad A; Reeve, Nigel; Conkey, April A T; Macdonald, David W; Yamaguchi, Nobuyuki

    2017-01-01

    Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀) and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀). Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g) in comparison to the natural desert area (376.37±12.71SE g). Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE) for males and 42 ha (±11SE) for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE) for males and 150 ha (±29 SE) for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters) influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats), whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle East where

  17. Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs.

    Directory of Open Access Journals (Sweden)

    Mohammad A Abu Baker

    Full Text Available Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀ and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀. Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g in comparison to the natural desert area (376.37±12.71SE g. Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE for males and 42 ha (±11SE for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE for males and 150 ha (±29 SE for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats, whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle

  18. Nuclear magnetic imaging for MTRA. Spinal canal and spinal cord

    International Nuclear Information System (INIS)

    Fritzsch, Dominik; Hoffmann, Karl-Titus

    2011-01-01

    The booklet covers the following topics: (1) Clinical indications for NMR imaging of spinal cord and spinal canal; (2) Methodic requirements: magnets and coils, image processing, contrast media: (3) Examination technology: examination conditions, sequences, examination protocols; (4) Disease pattern and indications: diseases of the myelin, the spinal nerves and the spinal canal (infections, tumors, injuries, ischemia and bleedings, malformations); diseases of the spinal cord and the intervertebral disks (degenerative changes, infections, injuries, tumors, malformations).

  19. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  20. Bipedal locomotion of bonnet macaques after spinal cord injury.

    Science.gov (United States)

    Babu, Rangasamy Suresh; Anand, P; Jeraud, Mathew; Periasamy, P; Namasivayam, A

    2007-10-01

    Experimental studies concerning the analysis of locomotor behavior in spinal cord injury research are widely performed in rodent models. The purpose of this study was to quantitatively evaluate the degree of functional recovery in reflex components and bipedal locomotor behavior of bonnet macaques (Macaca radiata) after spinal contusive injury. Six monkeys were tested for various reflex components (grasping, righting, hopping, extension withdrawal) and were trained preoperatively to walk in bipedal fashion on the simple and complex locomotor runways (narrow beam, grid, inclined plane, treadmill) of this investigation. The overall performance of the animals'motor behavior and the functional status of limb movements during bipedal locomotion were graded by the Combined Behavioral Score (CBS) system. Using the simple Allen weight-drop technique, a contusive injury was produced by dropping a 13-g weight from a height of 30 cm to the exposed spinal cord at the T12-L1 vertebral level of the trained monkeys. All the monkeys showed significant impairments in every reflex activity and in walking behavior during the early part of the postoperative period. In subsequent periods, the animals displayed mild alterations in certain reflex responses, such as grasping, extension withdrawal, and placing reflexes, which persisted through a 1-year follow-up. The contused animals traversed locomotor runways--narrow beam, incline plane, and grid runways--with more steps and few errors, as evaluated with the CBS system. Eventually, the behavioral performance of all spinal-contused monkeys recovered to near-preoperative level by the fifth postoperative month. The findings of this study reveal the recovery time course of various reflex components and bipedal locomotor behavior of spinal-contused macaques on runways for a postoperative period of up to 1 year. Our spinal cord research in primates is advantageous in understanding the characteristics of hind limb functions only, which possibly

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  3. Stereotactic Body Radiation Therapy in Spinal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Kamran A. [Mayo Medical School, College of Medicine, Mayo Clinic, Rochester, MN (United States); Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Rose, Peter S. [Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (United States); Olivier, Kenneth R. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Brinkmann, Debra H. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Laack, Nadia N., E-mail: laack.nadia@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States)

    2012-04-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 {+-} 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10-40 Gy) in a median of three fractions (range, 1-5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18-30 Gy) in a median of three fractions (range, 1-5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  4. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  5. The dynamic behavior of bacterial macrofibers growing with one end prevented from rotating: variation in shaft rotation along the fiber's length, and supercoil movement on a solid surface toward the constrained end

    Directory of Open Access Journals (Sweden)

    Chen Liling

    2003-08-01

    Full Text Available Abstract Background Bacterial macrofibers twist as they grow, writhe, supercoil and wind up into plectonemic structures (helical forms the individual filaments of which cannot be taken apart without unwinding that eventually carry loops at both of their ends. Terminal loops rotate about the axis of a fiber's shaft in contrary directions at increasing rate as the shaft elongates. Theory suggests that rotation rates should vary linearly along the length of a fiber ranging from maxima at the loop ends to zero at an intermediate point. Blocking rotation at one end of a fiber should lead to a single gradient: zero at the blocked end to maximum at the free end. We tested this conclusion by measuring directly the rotation at various distances along fiber length from the blocked end. The movement of supercoils over a solid surface was also measured in tethered macrofibers. Results Macrofibers that hung down from a floating wire inserted through a terminal loop grew vertically and produced small plectonemic structures by supercoiling along their length. Using these as markers for shaft rotation we observed a uniform gradient of initial rotation rates with slopes of 25.6°/min. mm. and 36.2°/min. mm. in two different fibers. Measurements of the distal tip rotation in a third fiber as a function of length showed increases proportional to increases in length with constant of proportionality 79.2 rad/mm. Another fiber tethered to the floor grew horizontally with a length-doubling time of 74 min, made contact periodically with the floor and supercoiled repeatedly. The supercoils moved over the floor toward the tether at approximately 0.06 mm/min, 4 times faster than the fiber growth rate. Over a period of 800 minutes the fiber grew to 23 mm in length and was entirely retracted back to the tether by a process involving 29 supercoils. Conclusions The rate at which growing bacterial macrofibers rotated about the axis of the fiber shaft measured at various

  6. Does inter-vertebral range of motion increase after spinal manipulation? A prospective cohort study.

    Science.gov (United States)

    Branney, Jonathan; Breen, Alan C

    2014-01-01

    Spinal manipulation for nonspecific neck pain is thought to work in part by improving inter-vertebral range of motion (IV-RoM), but it is difficult to measure this or determine whether it is related to clinical outcomes. This study undertook to determine whether cervical spine flexion and extension IV-RoM increases after a course of spinal manipulation, to explore relationships between any IV-RoM increases and clinical outcomes and to compare palpation with objective measurement in the detection of hypo-mobile segments. Thirty patients with nonspecific neck pain and 30 healthy controls matched for age and gender received quantitative fluoroscopy (QF) screenings to measure flexion and extension IV-RoM (C1-C6) at baseline and 4-week follow-up between September 2012-13. Patients received up to 12 neck manipulations and completed NRS, NDI and Euroqol 5D-5L at baseline, plus PGIC and satisfaction questionnaires at follow-up. IV-RoM accuracy, repeatability and hypo-mobility cut-offs were determined. Minimal detectable changes (MDC) over 4 weeks were calculated from controls. Patients and control IV-RoMs were compared at baseline as well as changes in patients over 4 weeks. Correlations between outcomes and the number of manipulations received and the agreement (Kappa) between palpated and QF-detected of hypo-mobile segments were calculated. QF had high accuracy (worst RMS error 0.5o) and repeatability (highest SEM 1.1o, lowest ICC 0.90) for IV-RoM measurement. Hypo-mobility cut offs ranged from 0.8o to 3.5o. No outcome was significantly correlated with increased IV-RoM above MDC and there was no significant difference between the number of hypo-mobile segments in patients and controls at baseline or significant increases in IV-RoMs in patients. However, there was a modest and significant correlation between the number of manipulations received and the number of levels and directions whose IV-RoM increased beyond MDC (Rho=0.39, p=0.043). There was also no agreement

  7. Mini-open spinal column shortening for the treatment of adult tethered cord syndrome.

    Science.gov (United States)

    Safaee, Michael M; Winkler, Ethan A; Chou, Dean

    2017-10-01

    Tethered cord syndrome (TCS) is a challenging entity characterized by adhesions at the caudal spinal cord that prevent upward movement during growth and result in stretching of the cord with a concomitant constellation of neurologic symptoms. Although growth in height stops in adulthood, some patients still develop progressive symptoms; many underwent detethering as a child or adolescent, resulting in significant scar tissue and re-tethering. Recent strategies have focused on spinal column shortening to reduce tension on the spinal cord without exposing the previous de-tethering site. Mini-open and minimally invasive approaches avoid the large dissection and exposure associated with traditional approaches and are associated with reduced blood loss, shorter hospital stay, and similar outcomes when compared to conventional open approaches. We describe a technique for mini-open spinal column shortening. Using intraoperative navigation pedicle screws were placed at T10, T11, L1, and L2. A mini-open 3-column "egg shell" decancellation osteotomy of T12 was performed through a transpedicular approach with preservation of the superior and inferior endplates. This procedure was performed on a 28year old male with recurrent TCS and neurogenic bladder. Postoperative imaging showed a reduction in spinal column length of 1.5cm and evidence of decreased tension on the spinal cord. At last follow-up he was recovering well with improved urinary function. Spinal column shortening for adult TCS can be safely achieved through a mini-open approach. Future studies should compare the efficacy of this technique to both traditional de-tethering and open spinal column shortening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients

    Directory of Open Access Journals (Sweden)

    Pierre eGuertin

    2014-05-01

    Full Text Available Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs - from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS networks that are involved in the control of ambulation and other stereotyped motor patterns - specifically Central Pattern Generators (CPGs that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of SCI should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic spinal cord-injured patients.

  9. Delayed spinal extradural hematoma following thoracic spine surgery and resulting in paraplegia: a case report

    Directory of Open Access Journals (Sweden)

    Parthiban Chandra JKB

    2008-05-01

    Full Text Available Abstract Introduction Postoperative spinal extradural hematomas are rare. Most of the cases that have been reported occured within 3 days of surgery. Their occurrence in a delayed form, that is, more than 72 hours after surgery, is very rare. This case is being reported to enhance awareness of delayed postoperative spinal extradural hematomas. Case presentation We report a case of acute onset dorsal spinal extradural hematoma from a paraspinal muscular arterial bleed, producing paraplegia 72 hours following surgery for excision of a spinal cord tumor at T8 level. The triggering mechanism was an episode of violent twisting movement by the patient. Fresh blood in the postoperative drain tube provided suspicion of this complication. Emergency evacuation of the clot helped in regaining normal motor and sensory function. The need to avoid straining of the paraspinal muscles in the postoperative period is emphasized. Conclusion Most cases of postoperative spinal extradural hematomas occur as a result of venous bleeding. However, an arterial source of bleeding from paraspinal muscular branches causing extradural hematoma and subsequent neurological deficit is underreported. Undue straining of paraspinal muscles in the postoperative period after major spinal surgery should be avoided for at least a few days.

  10. [Cortical Areas for Controlling Voluntary Movements].

    Science.gov (United States)

    Nakayama, Yoshihisa; Hoshi, Eiji

    2017-04-01

    The primary motor cortex is located in Brodmann area 4 at the most posterior part of the frontal lobe. The primary motor cortex corresponds to an output stage of motor signals, sending motor commands to the brain stem and spinal cord. Brodmann area 6 is rostral to Brodmann area 4, where multiple higher-order motor areas are located. The premotor area, which is located in the lateral part, is involved in planning and executing action based on sensory signals. The premotor area contributes to the reaching for and grasping of an object to achieve a behavioral goal. The supplementary motor area, which occupies the mesial aspect, is involved in planning and executing actions based on internalized or memorized signals. The supplementary motor area plays a central role in bimanual movements, organizing multiple movements, and switching from a routine to a controlled behavior. Thus, Brodmann areas 4 and 6 are considered as central motor areas in the cerebral cortex, in which the idea of an action is transformed to an actual movement in a variety of contexts.

  11. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord.

    Science.gov (United States)

    Pinzon, A; Calancie, B; Oudega, M; Noga, B R

    2001-06-01

    Central nervous system axons regenerate into a Schwann cell implant placed in the transected thoracic spinal cord of an adult rat. The present study was designed to test whether these regenerated axons are capable of conducting action potentials. Following the transection and removal of a 4- to 5-mm segment of the thoracic spinal cord (T8-T9), a polymer guidance channel filled with a mixture of adult rat Schwann cells and Matrigel was grafted into a 4- to 5-mm-long gap in the transected thoracic spinal cord. The two cut ends of the spinal cord were eased into the guidance channel openings. Transected control animals received a channel containing Matrigel only. Three months after implantation, electrophysiological studies were performed. Tungsten microelectrodes were used for monopolar stimulation of regenerated axons within the Schwann cell graft. Glass microelectrodes were used to record responses in the spinal cord rostral to the stimulation site. Evoked responses to electrical stimulation of the axon cable were found in two out of nine Schwann cell-grafted animals. These responses had approximate latencies in the range of those of myelinated axons. No responses were seen in any of the Matrigel-grafted animals. Histological analysis revealed that the two cases that showed evoked potentials had the largest number of myelinated axons present in the cable. This study demonstrates that axons regenerating through Schwann cell grafts in the complete transected spinal cord can produce measurable evoked responses following electrical stimulation. Copyright 2001 Wiley-Liss, Inc.

  12. Comparison of a Padded Patient Litter and Long Spine Board for Spinal Immobilization in Air Medical Transport.

    Science.gov (United States)

    Weber, Steven R; Rauscher, Patrick; Winsett, Rebecca P

    2015-01-01

    The long spinal board is the immobilization standard during prehospital transport. The flat surface of the board increases the pressure placed on both the thoracic kyphosis and the sacrum and increases the risk for pressure ulcers. This study compared patient stability and comfort between a padded litter system used in air medical transport and the long spine board. The study was completed at a large 350-bed Magnet Recognized nonteaching hospital. The hospital owns and operates an air medical transport service. Subjects were secured to a padded litter and a long spinal board with a cervical collar and head blocks and 3 straps. Laser pointers were used to mark neutral at points on the subject's head, sternum, and pelvis. The subject was tilted 45 degrees left and right with movement measured in inches. Comfort level was measured before and after. Paired t-tests were used to detect differences in movement. No statistical difference in movement was found between devices for the head; however, there was statistically significant greater movement on the padded litter for the sternum and pelvis. The padded litter did not immobilize as tightly as the long board although the effect of the differences was small. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  13. Tolerance of the human spinal cord to single dose radiosurgery

    International Nuclear Information System (INIS)

    Ryu, S.; Zhu, G.; Yin, F.-F.; Ajlouni, M.; Kim, J.H.

    2003-01-01

    Tolerance of the spinal cord to the single dose of radiation is not well defined. Although there are cases of human spinal cord tolerance from re-irradiation to the same cord level, the information about the tolerance of human spinal cord to single large dose of radiosurgery is not available. We carried out spinal radiosurgery to treat spinal metastasis and studied the single dose tolerance of the human spinal cord in an ongoing dose escalation paradigm. A total of 39 patients with 48 lesions of spinal metastasis were treated with single dose radiosurgery at Henry Ford Hospital. The radiosurgery dose was escalated from 8 Gy to 16 Gy at 2 Gy increment. The radiation dose was prescribed to periphery of the spinal tumor. The radiation dose to the spinal cord was estimated by computerized dosimetry. The median follow-up time was 10 months (range 6-18 months) from the radiosurgery. The endpoint of the study was to demonstrate the efficacy of the spinal radiosurgery and to determine the tolerance of human spinal cord to single dose radiosurgery. The dose to the spinal cord was generally less than 50 % of the prescribed radiation dose. The volume of the spinal cord that received higher than this dose was less than 20 % of the anterior portion of the spinal cord. Maximum single dose of 8 Gy was delivered to the anterior 20 % of the spinal cord in this dose escalation study. The dose volume histogram will be presented. There was no acute or subacute radiation toxicity detected clinically and radiologically during the maximum follow-up of 20 months. Further dose escalation is in progress. The single tolerance dose of the human spinal cord appears to be at least 8 Gy when it was given to the 20 % of the cord volume, although the duration of follow up is not long enough to detect severe late cord toxicity. This study offers a valuable radiobiological basis of the normal spinal cord tolerance, and opens spinal radiosurgery as a safe treatment for spinal metastasis

  14. Computed tomography of the spinal canal for the cervical spine and spinal cord injury

    International Nuclear Information System (INIS)

    Kimura, Isao; Niimiya, Hikosuke; Nasu, Kichiro; Shioya, Akihide; Ohhama, Mitsuru

    1983-01-01

    The cervical spinal canal and cervical spinal cord were measured in normal cases and 34 cases of spinal or spinal cord injury. The anteroposterior diameter and area of the normal cervical spinal canal showed a high correlation. The area ratio of the normal cervical spinal canal to the cervical spinal cord showed that the proportion of the cervical spinal cord in the spinal canal was 1/3 - 1/5, Csub(4,5) showing a particularly large proportion. In acute and subacute spinal or spinal cord injury, CT visualized in more details of the spinal canal in cases that x-ray showed definite bone injuries. Computer assisted myelography visualized more clearly the condition of the spinal cord in cases without definite findings bone injuries on x-ray. Demonstrating the morphology of spinal injury in more details, CT is useful for selection of therapy for injured spines. (Chiba, N.)

  15. Different corticospinal control between discrete and rhythmic movement of the ankle.

    Science.gov (United States)

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  17. Induction of spinal cord paralysis by negative pi-mesons

    International Nuclear Information System (INIS)

    Amols, H.I.; Yuhas, J.M.

    1981-01-01

    As part of an investigation on late non-neoplastic injury induced by negative pi-mesons (pions), a series of studies have been performed using pion beams for the induction of spinal cord paralysis in the Fisher 344 rat. Groups of rats were exposed to 1, 5 or 15 daily doses of peak pions or X rays. Paralysis appeared earlier after treatment with pions than after X-rays even in a comparison of groups with similar final incidences. A single dose RBE for spinal cord paralysis of 1.3 was found. The RBE rises to a value of 3.2 if the total dose is given as a series of 15 daily exposures. These RBEs are far larger than those observed using other late injury end-points, such as tubular degeneration in the kidney or fibrosis and sclerosis in the support structures of the colon for which the single dose RBE is less than 1.2. The biological and/or physical basis for the high sensitivity of the spinal cord to peak pions has not yet been resolved, but these data have suggested caution in exposing the spinal cord to peak pions in clinical trials. (author)

  18. The Relationship Between Postural and Movement Stability.

    Science.gov (United States)

    Feldman, Anatol G

    2016-01-01

    Postural stabilization is provided by stretch reflexes, intermuscular reflexes, and intrinsic muscle properties. Taken together, these posture-stabilizing mechanisms resist deflections from the posture at which balance of muscle and external forces is maintained. Empirical findings suggest that for each muscle, these mechanisms become functional at a specific, spatial threshold-the muscle length or respective joint angle at which motor units begin to be recruited. Empirical data suggest that spinal and supraspinal centers can shift the spatial thresholds for a group of muscles that stabilized the initial posture. As a consequence, the same stabilizing mechanisms, instead of resisting motion from the initial posture, drive the body to another stable posture. In other words by shifting spatial thresholds, the nervous system converts movement resisting to movement-producing mechanisms. It is illustrated that, contrary to conventional view, this control strategy allows the system to transfer body balance to produce locomotion and other actions without loosing stability at any point of them. It also helps orient posture and movement with the direction of gravity. It is concluded that postural and movement stability is provided by a common mechanism.

  19. A Somatic Movement Approach to Fostering Emotional Resiliency through Laban Movement Analysis

    Directory of Open Access Journals (Sweden)

    Rachelle P. Tsachor

    2017-09-01

    Full Text Available Although movement has long been recognized as expressing emotion and as an agent of change for emotional state, there was a dearth of scientific evidence specifying which aspects of movement influence specific emotions. The recent identification of clusters of Laban movement components which elicit and enhance the basic emotions of anger, fear, sadness and happiness indicates which types of movements can affect these emotions (Shafir et al., 2016, but not how best to apply this knowledge. This perspective paper lays out a conceptual groundwork for how to effectively use these new findings to support emotional resiliency through voluntary choice of one's posture and movements. We suggest that three theoretical principles from Laban Movement Analysis (LMA can guide the gradual change in movement components in one's daily movements to somatically support shift in affective state: (A Introduce new movement components in developmental order; (B Use LMA affinities-among-components to guide the expansion of expressive movement range and (C Sequence change among components based on Laban's Space Harmony theory to support the gradual integration of that new range. The methods postulated in this article have potential to foster resiliency and provide resources for self-efficacy by expanding our capacity to adapt emotionally to challenges through modulating our movement responses.

  20. 5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons

    Directory of Open Access Journals (Sweden)

    Urszula eSlawinska

    2014-08-01

    Full Text Available There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-OHDPAT (acting on 5-HT1A/7 receptors and quipazine (acting on 5-HT2 receptors, to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor CPG. Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.

  1. Comparisons of MR findings of the spinal metastasis and the spinal tuberculosis

    International Nuclear Information System (INIS)

    Hong, Myung Sun; Lee, Kil Woo; Kang, Ik Won; Yun, Ku Sub; Choi, Chul Sun; Bae, Sang Hoon

    1994-01-01

    MR findings of the spinal metastasis and the tuberculosis are well known, but sometimes it might be difficult to differentiate these lesions. Therefore we reviewed and analyzed the MR findings which would be useful for the differentiation. T1- and T2- weighted spin echo images and gadolinium-enhanced T1- weighted images were obtained with 1.5 T and 1.0 T superconductive MR imager. We reviewed MR findings in 16 cases of spinal metastases and 24 cases of spinal tuberculosis in terms of signal intensity, contrast enhancement pattern, disc space involvement, spinal canal compressing feature and paraspinal soft tissue mass. The signal intensities of both lesions were hypointense on T1WI and hyperintense on T2WI except those of the metastatic lesions from the prostatic carcinoma. Heterogeneous enhancement was noted in 63% of metastasis, whereas peripheral rim enhancement was noted 83% of spinal tuberculosis(p < .001). Spinal canal compression by collapsed vertebra was only noted in spinal metastasis, and that by paraspinal soft tissue was noted in both spinal metastasis and tuberculosis(p<.001). Disc space invasion was noted in 19% of spinal metastasis and 88% of spinal tuberculosis. Spinal tuberculosis was common at lower thoracic spine(T10) and typically involved two or more adjacent vertebral bodies(96%). The important differential point between spinal metastasis and tuberculosis was the enhancement pattern, involvement of two or more contiguous vertebral bodies and the feature of spinal canal compressing. The secondary importance was the disc space involvement pattern

  2. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation.

    Science.gov (United States)

    Pehlivan, Ali Utku; Celik, Ozkan; O'Malley, Marcia K

    2011-01-01

    Robotic rehabilitation has gained significant traction in recent years, due to the clinical demonstration of its efficacy in restoring function for upper extremity movements and locomotor skills, demonstrated primarily in stroke populations. In this paper, we present the design of MAHI Exo II, a robotic exoskeleton for the rehabilitation of upper extremity after stroke, spinal cord injury, or other brain injuries. The five degree-of-freedom robot enables elbow flexion-extension, forearm pronation-supination, wrist flexion-extension, and radial-ulnar deviation. The device offers several significant design improvements compared to its predecessor, MAHI Exo I. Specifically, issues with backlash and singularities in the wrist mechanism have been resolved, torque output has been increased in the forearm and elbow joints, a passive degree of freedom has been added to allow shoulder abduction thereby improving alignment especially for users who are wheelchair-bound, and the hardware now enables simplified and fast swapping of treatment side. These modifications are discussed in the paper, and results for the range of motion and maximum torque output capabilities of the new design and its predecessor are presented. The efficacy of the MAHI Exo II will soon be validated in a series of clinical evaluations with both stroke and spinal cord injury patients. © 2011 IEEE

  3. End-range mobilization techniques in adhesive capsulitis of the shoulder joint: a multiple-subject case report.

    NARCIS (Netherlands)

    Vermeulen, H.M.; Obermann, W.R.; Burger, B.J.; Kok, G.J.; Rozing, P.M.; Ende, C.H.M. van den

    2000-01-01

    BACKGROUND AND PURPOSE: The purpose of this case report is to describe the use of end-range mobilization techniques in the management of patients with adhesive capsulitis. CASE DESCRIPTION: Four men and 3 women (mean age=50.2 years, SD=6.0, range=41-65) with adhesive capsulitis of the glenohumeral

  4. Gastrocnemius muscle contracture after spinal cord injury: a longitudinal study.

    Science.gov (United States)

    Diong, Joanna; Harvey, Lisa A; Kwah, Li Khim; Clarke, Jillian L; Bilston, Lynne E; Gandevia, Simon C; Herbert, Robert D

    2013-07-01

    The aim of this study was to examine changes in passive length and stiffness of the gastrocnemius muscle-tendon unit in people after spinal cord injury. In a prospective longitudinal study, eight wheelchair-dependent participants with severe paralysis were assessed 3 and 12 mos after spinal cord injury. Passive torque-angle data were obtained as the ankle was slowly rotated through range at six knee angles. Differences in passive ankle torque-angle data recorded at different knee angles were used to derive passive length-tension curves of the gastrocnemius muscle-tendon unit. Ultrasound imaging was used to determine fascicle and tendon contributions to the muscle-tendon unit length-tension curves. The participants had ankle contractures (mean [SD] maximum passive ankle dorsiflexion angle, 88 [9] degrees) 3 mos after spinal cord injury. Ankle range did not worsen significantly during the subsequent 9 mos (mean change, -5 degrees; 95% confidence interval, -16 to 6 degrees). There were no changes in the mean slack length or the stiffness of the gastrocnemius muscle-tendon unit or in the slack lengths of the fascicles or the tendon between 3 and 12 mos after spinal cord injury. There were no consistent patterns of the change in slack length or stiffness with the changes in ankle range in the data from the individual participants. This study, the first longitudinal study of muscle length and stiffness after spinal cord injury, showed that the length and the stiffness of the gastrocnemius did not change substantially between 3 and 12 mos after injury.

  5. Distinct timing mechanisms produce discrete and continuous movements.

    Directory of Open Access Journals (Sweden)

    Raoul Huys

    2008-04-01

    Full Text Available The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems to accomplish varying behavioral functions such as speed constraints.

  6. Smartphone apps for spinal surgery: is technology good or evil?

    Science.gov (United States)

    Robertson, Greg A J; Wong, Seng Juong; Brady, Richard R; Subramanian, Ashok S

    2016-05-01

    The increased utilization of smartphones together with their downloadable applications (apps) provides opportunity for doctors, including spinal surgeons, to integrate such technology into clinical practice. However, the clinical reliability of the medical app sector remains questionable. We reviewed available apps themed specifically towards spinal surgery and related conditions and assessed the level of medical professional involvement in their design and content. The most popular smartphone app stores (Android, Apple, Blackberry, Windows, Samsung, Nokia) were searched for spinal surgery-themed apps, using the disease terms Spinal Surgery, Back Surgery, Spine, Disc Prolapse, Sciatica, Radiculopathy, Spinal Stenosis, Scoliosis, Spinal Fracture and Spondylolisthesis. A total of 78 individual spinal surgery themed apps were identified, of which there were six duplicates (N = 72). According to app store classifications, there were 57 (79 %) medical themed apps, 11 (15 %) health and fitness themed apps, 1 (1 %) business and 3 (4 %) education themed apps. Forty-five (63 %) apps were available for download free of charge. For those that charged access, the prices ranged from £0.62 to £47.99. Only 44 % of spinal surgery apps had customer satisfaction ratings and 56 % had named medical professional involvement in their development or content. This is the first study to specifically address the characteristics of apps related to spinal surgery. We found that nearly half of spinal surgery apps had no named medical professional involvement, raising concerns over app content and evidence base for their use. We recommend increased regulation of spinal surgical apps to improve the accountability of app content.

  7. Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord.

    Science.gov (United States)

    Steventon, Ben; Martinez Arias, Alfonso

    2017-12-01

    The formation of the spinal cord during early embryonic development in vertebrate embryos is a continuous process that begins at gastrulation and continues through to the completion of somitogenesis. Despite the conserved usage of patterning mechanisms and gene regulatory networks that act to generate specific spinal cord progenitors, there now exists two seemingly disparate models to account for their action. In the first, a posteriorly localized signalling source transforms previously anterior-specified neural plate into the spinal cord. In the second, a population of bipotent stem cells undergo continuous self-renewal and differentiation to progressively lay down the spinal cord and axial mesoderm by posterior growth. Whether this represents fundamental differences between the experimental model organisms utilised in the generation of these models remains to be addressed. Here we review lineage studies across four key vertebrate models: mouse, chicken, Xenopus and zebrafish and relate them to the underlying gene regulatory networks that are known to be required for spinal cord formation. We propose that by applying a dynamical systems approach to understanding how distinct neural and mesodermal fates arise from a bipotent progenitor pool, it is possible to begin to understand how differences in the dynamical cell behaviours such as proliferation rates and cell movements can map onto conserved regulatory networks to generate diversity in the timing of tissue generation and patterning during development. Copyright © 2017. Published by Elsevier Inc.

  8. Developing Behavioral Fluency with Movement Cycles Using SAFMEDS

    Science.gov (United States)

    Kubina, Richard M., Jr.; Yurich, Kirsten K. L.; Durica, Krina C.; Healy, Nora M.

    2016-01-01

    The Precision Teaching term "movement cycle" refers to a behavior with a clearly observable movement and a distinct beginning and end. The present experiment examined whether behavior analysts and special education teachers could become fluent identifying movement cycles. A frequency-building intervention called SAFMEDS, an acronym for…

  9. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Kenta, E-mail: takashima-k@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Sendai (Japan); University of Tokyo, Tokyo (Japan); Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto [SPring-8, Hyogo (Japan); Matsuda, Shojiro [Gunze Limited, Shiga (Japan); Nakahira, Atsushi [Osaka Prefecture University, Osaka (Japan); Osumi, Noriko; Kohzuki, Masahiro [Tohoku University Graduate School of Medicine, Sendai (Japan); Onodera, Hiroshi [University of Tokyo, Tokyo (Japan)

    2015-01-01

    X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described, and the way it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord is shown. Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies.

  10. Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis.

    Science.gov (United States)

    Burwell, R Geoffrey; Dangerfield, Peter H; Freeman, Brian J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). Encouraging advances thought to be related to AIS pathogenesis have recently been made in several fields including anthropometry of bone growth, bone mass, spinal growth modulation, extra-spinal left-right skeletal length asymmetries and disproportions, magnetic resonance imaging of vertebral column, spinal cord, brain, skull, and molecular pathogenesis. These advances are leading to the evaluation of new treatments including attempts at minimally invasive surgery on the spine and peri-apical ribs. Several concepts of AIS are outlined indicating their clinical applications but not their research potential. The concepts, by derivation morphological, molecular and mathematical, are addressed in 15 sections: 1) initiating and progressive factors; 2) relative anterior spinal overgrowth; 3) dorsal shear forces that create axial rotational instability; 4) rotational preconstraint; 5) uncoupled, or asynchronous, spinal neuro-osseous growth; 6) brain, nervous system and skull; 7) a novel neuro-osseous escalator concept based on a putative abnormality of two normal polarized processes namely, a) increasing skeletal dimensions, and b) the CNS body schema - both contained within a neuro-osseous timing of maturation (NOTOM) concept; 8) transverse plane pelvic rotation, skeletal asymmetries and developmental theory; 9) thoraco-spinal concept; 10) origin in contracture at the hips; 11) osteopenia; 12) melatonin deficiency; 13) systemic melatonin-signaling pathway dysfunction; 14) platelet calmodulin dysfunction; and 15) biomechanical spinal growth modulation. From these concepts, a collective model for AIS pathogenesis is formulated. The central concept of this model includes the body schema of the neural systems, widely-studied in adults, that control normal posture and coordinated movements with frames of reference in the posterior parietal cortex. The escalator concept

  11. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis.

    Science.gov (United States)

    Dunhill, Alexander M; Wills, Matthew A

    2015-08-11

    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind.

  12. Differential diagnoses of spinal tumors; Differenzialdiagnose spinaler Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2011-12-15

    A wide variety of degenerative, inflammatory and vascular diseases can resemble the clinical presentation and imaging findings of spinal tumors. This article provides an overview of the most frequent diseases which are important to recognize for diagnostic imaging of the spine. (orig.) [German] Eine Vielzahl degenerativer, entzuendlicher und vaskulaerer Erkrankungen kann das klinische Bild und radiologische Befunde spinaler Tumoren imitieren. Dieser Artikel dient der Uebersicht ueber die haeufigsten dieser Erkrankungen, deren Kenntnis wichtig fuer die spinale Bildgebung ist. (orig.)

  13. Care of post-traumatic spinal cord injury patients in India: An analysis

    Directory of Open Access Journals (Sweden)

    Pandey V

    2007-01-01

    Full Text Available Background: The spinal cord injured patients if congregated early in spinal units where better facilities and dedicated expert care exist the outcome of treatment and rehabilitation, can be improved. The objective of this study is to find out the various factors responsible for a delay in the presentation of spinal injury patients to the specialized spinal trauma units and to suggest steps to improve the quality of care of the spinal trauma patients in the Indian setup. Materials and Methods: Sixty patients of traumatic spinal cord injury admitted for rehabilitation between August 2005 and May 2006 were enrolled into the study and their data was analyzed. Results: Eighty-five per cent of the spinal cord injured patients were males and the mean age was 34 years (range 13-56 years. Twenty-nine (48.33% of the spinal injuries occurred due to fall from height. There was an average of 45 days (range 0-188 days of delay in presentation to a specialized spinal unit and most of the time the cause for the delay was unawareness on the part of patients and/or doctors regarding specialized spinal units. In 38 (62.5% cases the mode of transportation of the spinal cord injured patient to the first visited hospital was by their own conveyance and the attendants of the patients did not have any idea about precautions essential to prevent neurological deterioration. Seventeen (28.33% patients were given injection solumedrol with conservative treatment, 35 (60% patients were given only conservative treatment and seven patients were operated (11.66% upon at initially visited hospital. Of the seven patients operated five were fixed with posterior Harrington instrumentation (71.42% and two (28.57% were operated by short segment posterior pedicle screw fixation. None of the patients were subjected to physiotherapy-assisted transfers or wheel chair skills or even basic postural training, proper bladder/ bowel training program and sitting balance. Conclusion: Awareness

  14. Stereotactic Body Radiation Therapy in Spinal Metastases

    International Nuclear Information System (INIS)

    Ahmed, Kamran A.; Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J.; Rose, Peter S.; Olivier, Kenneth R.; Brown, Paul D.; Brinkmann, Debra H.; Laack, Nadia N.

    2012-01-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 ± 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10–40 Gy) in a median of three fractions (range, 1–5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18–30 Gy) in a median of three fractions (range, 1–5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  15. Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Sandeep Gupta

    2018-02-01

    Full Text Available Summary: Cellular replacement therapies for neurological conditions use human embryonic stem cell (hESC- or induced pluripotent stem cell (hiPSC-derived neurons to replace damaged or diseased populations of neurons. For the spinal cord, significant progress has been made generating the in-vitro-derived motor neurons required to restore coordinated movement. However, there is as yet no protocol to generate in-vitro-derived sensory interneurons (INs, which permit perception of the environment. Here, we report on the development of a directed differentiation protocol to derive sensory INs for both hESCs and hiPSCs. Two developmentally relevant factors, retinoic acid in combination with bone morphogenetic protein 4, can be used to generate three classes of sensory INs: the proprioceptive dI1s, the dI2s, and mechanosensory dI3s. Critical to this protocol is the competence state of the neural progenitors, which changes over time. This protocol will facilitate developing cellular replacement therapies to reestablish sensory connections in injured patients. : In this article, Gupta and colleagues describe a robust protocol to derive spinal dorsal sensory interneurons from human pluripotent stem cells using the sequential addition of RA and BMP4. They find that neural progenitors must be in the correct competence state to respond to RA/BMP4 as dorsalizing signals. This competence state changes over time and determines the efficiency of the protocol. Keywords: spinal cord, neurons, sensory interneurons, proprioception, mechanosensation, human embryonic stem cells, induced pluripotent stem cells, directed differentiation, primate spinal cord, mouse spinal cord

  16. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.

    Science.gov (United States)

    Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying

    2017-11-08

    Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.

  17. Chronic spinal subdural hematoma; Spinales chronisches subdurales Haematom

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, T.; Lensch, T. [Radiologengemeinschaft, Augsburg (Germany)

    2008-10-15

    Compared with spinal epidural hematomas, spinal subdural hematomas are rare; chronic forms are even more uncommon. These hematomas are associated not only with lumbar puncture and spinal trauma, but also with coagulopathies, vascular malformations and tumors. Compression of the spinal cord and the cauda equina means that the patients develop increasing back or radicular pain, followed by paraparesis and bladder and bowel paralysis, so that in most cases surgical decompression is carried out. On magnetic resonance imaging these hematomas present as thoracic or lumbar subdural masses, their signal intensity varying with the age of the hematoma. We report the clinical course and the findings revealed by imaging that led to the diagnosis in three cases of chronic spinal subdural hematoma. (orig.) [German] Spinale subdurale Haematome sind im Vergleich zu epiduralen Haematomen selten, chronische Verlaufsformen noch seltener. Ursaechlich sind neben Lumbalpunktionen und traumatischen Verletzungen auch Blutgerinnungsstoerungen, Gefaessmalformationen und Tumoren. Aufgrund der Kompression von Myelon und Cauda equina kommt es zu zunehmenden Ruecken- oder radikulaeren Schmerzen mit anschliessender Paraparese sowie einer Darm- und Blasenstoerung, weshalb in den meisten Faellen eine operative Entlastung durchgefuehrt wird. Magnetresonanztomographisch stellen sich die Haematome meist als thorakale bzw. lumbale subdurale Raumforderungen dar, die Signalintensitaet variiert mit dem Blutungsalter. Wir berichten ueber den klinischen Verlauf und die bildgebende Diagnostik von 3 Patienten mit spinalen chronischen subduralen Haematomen. (orig.)

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  20. Gain control mechanisms in spinal motoneurons

    Directory of Open Access Journals (Sweden)

    Michael David Johnson

    2014-07-01

    Full Text Available Motoneurons provide the only conduit for motor commands to reach muscles. For many years, motoneurons were in fact considered to be little more than passive wires. Systematic studies in the past 25 years however have clearly demonstrated that the intrinsic electrical properties of motoneurons are under strong neuromodulatory control via multiple sources. The discovery of potent neuromodulation from the brainstem and its ability to change the gain of motoneurons shows that the passive view of the motor output stage is no longer tenable. A mechanism for gain control at the motor output stage makes good functional sense considering our capability of generating an enormous range of forces, from very delicate (e.g. putting in a contact lens to highly forceful (emergency reactions. Just as sensory systems need gain control to deal with a wide dynamic range of inputs, so to might motor output need gain control to deal with the wide dynamic range of the normal movement repertoire. Two problems emerge from the potential use of the brainstem monoaminergic projection to motoneurons for gain control. First, the projection is highly diffuse anatomically, so that independent control of the gains of different motor pools is not feasible. In fact, the system is so diffuse that gain for all the motor pools in a limb likely increases in concert. Second, if there is a system that increases gain, probably a system to reduce gain is also needed. In this review, we summarize recent studies that show local inhibitory circuits within the spinal cord, especially reciprocal and recurrent inhibition, have the potential to solve both of these problems as well as constitute another source of gain modulation.

  1. Spinal Cord Diseases

    Science.gov (United States)

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such ...

  2. A Best-Evidence Systematic Appraisal of the Diagnostic Accuracy and Utility of Facet (Zygapophysial) Joint Injections in Chronic Spinal Pain.

    Science.gov (United States)

    Boswell, Mark V; Manchikanti, Laxmaiah; Kaye, Alan D; Bakshi, Sanjay; Gharibo, Christopher G; Gupta, Sanjeeva; Jha, Sachin Sunny; Nampiaparampil, Devi E; Simopoulos, Thomas T; Hirsch, Joshua A

    2015-01-01

    Spinal zygapophysial, or facet, joints are a source of axial spinal pain and referred pain in the extremities. Conventional clinical features and other noninvasive diagnostic modalities are unreliable in diagnosing zygapophysial joint pain. A systematic review of the diagnostic accuracy of spinal facet joint nerve blocks. To determine the diagnostic accuracy of spinal facet joint nerve blocks in chronic spinal pain. A methodological quality assessment of included studies was performed using Quality Appraisal of Reliability Studies (QAREL). Only diagnostic accuracy studies meeting at least 50% of the designated inclusion criteria were utilized for analysis. The level of evidence was classified as Level I to V based on the grading of evidence utilizing best evidence synthesis. Data sources included relevant literature identified through searches of PubMed and other electronic searches published from 1966 through March 2015, Cochrane reviews, and manual searches of the bibliographies of known primary and review articles. Studies must have been performed utilizing controlled local anesthetic blocks. The criterion standard must have been at least 50% pain relief from baseline scores and the ability to perform previously painful movements. The available evidence is Level I for lumbar facet joint nerve blocks with the inclusion of a total of 17 studies with dual diagnostic blocks, with at least 75% pain relief with an average prevalence of 16% to 41% and false-positive rates of 25% to 44%. The evidence for diagnosis of cervical facet joint pain with cervical facet joint nerve blocks is Level II based on a total of 11 controlled diagnostic accuracy studies, with significant variability among the prevalence in a heterogenous population with internal inconsistency. The prevalence rates ranged from 36% to 67% with at least 80% pain relief as the criterion standard and a false-positive rate of 27% to 63%. The level of evidence for the diagnostic accuracy of thoracic facet

  3. Radiographic normal range of condylar movement of mandible

    International Nuclear Information System (INIS)

    Choi, Byung Ihn; Lee, Jae Mun; Kim, Myung Jin

    1981-01-01

    It is the purpose of this article to determine various normal anatomic measurements of temporomandibular joint and normal range of condylar movement using relatively simple X-ray equipment and radiographic technique in consideration of popular clinical application. Author's cases consisted of 100 clinically normal adult males and temporomandibular joint radiographs of 3 serial positions of condylar head were taken by transcranial oblique lateral projection in each case. The serial positions are centric occlusion, 1 inch opening and maximal opening position. The results were as follows; 1. In centric occlusion, the length between the condylar head and glenoid fossa was 2.23 ± 0.58 mm in anterior part, 3.55 ± 0.80 mm in upper part and 2.76 ± 0.72 mm in posterior part. 2. In centric occlusion, the angle (α) between the horizontal standard line (AB) and anterior slope (BC) was 37.22 ± 3.87 .deg. . 3. In 1 inch opening position, the distance between the summit of condylar head from the standard point of articular eminence (B) was -0.64 ± 3.53 mm in horizontal direction and -1.07 ± 1.00 mm in vertical direction. 4. In maximal opening position, the distance between the summit of condylar head from the standard point of articular eminence (B) was 5.83 ± 3.05 mm in horizontal direction and +0.29 ± 1.58 mm in vertical direction. 5. In positional relationship between the condylar head and the standard point of articular eminence (B), the condyles were found to be at the eminences or anterior to them in 51% with 1 inch opening and 95% with maximal opening

  4. Spinal segmental dysgenesis

    Directory of Open Access Journals (Sweden)

    N Mahomed

    2009-06-01

    Full Text Available Spinal segmental dysgenesis is a rare congenital spinal abnormality , seen in neonates and infants in which a segment of the spine and spinal cord fails to develop normally . The condition is segmental with normal vertebrae above and below the malformation. This condition is commonly associated with various abnormalities that affect the heart, genitourinary, gastrointestinal tract and skeletal system. We report two cases of spinal segmental dysgenesis and the associated abnormalities.

  5. Hyperacute spinal subdural haematoma as a complication of lumbar spinal anaesthesia: MRI

    International Nuclear Information System (INIS)

    Pedraza Gutierrez, S.; Suescun, M.; Rovira Canellas, A.; Coll Masfarre, S.; Castano Duque, C.H.

    1999-01-01

    We report two cases of hyperacute spinal subdural haematoma secondary to lumbar spinal anaesthesia, identified with MRI. Prompt diagnosis of this infrequent, potentially serious complication of spinal anaesthesia is essential, as early surgical evacuation may be needed. Suggestive MRI findings in this early phase include diffuse occupation filling of the spinal canal with poor delineation of the spinal cord on T1-weighted images, and a poorly-defined high-signal lesion with a low-signal rim on T2-weighted images. (orig.)

  6. Neuroprotection and its molecular mechanism following spinal cord injury☆

    Science.gov (United States)

    Liu, Nai-Kui; Xu, Xiao-Ming

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed ‘secondary injury’, which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury. PMID:25624837

  7. Spinal cord excitability is not influenced by elevated blood lactate levels.

    Science.gov (United States)

    Coco, Marinella; Alagona, Giovanna; Perciavalle, Valentina; Cicirata, Valentina; Perciavalle, Vincenzo

    2011-01-01

    The aim of the present study was to examine the association of high blood lactate levels, induced with a maximal cycling or with an intravenous infusion, with spinal cord excitability. The study was carried out on 17 male athletes; all the subjects performed a maximal cycling test on a mechanically braked cycloergometer, while 6 of them were submitted to the intravenous infusion of a lactate solution (3 mg/kg in 1 min). Before the exercise or the injection, also at the end as well as 5 and 10 min after the conclusion, venous blood lactate was measured and excitability of the spinal α-motoneurons was evaluated by using the H reflex technique. In both experimental conditions, it has been observed that an exhaustive exercise is associated with a strong increase of blood lactate (but not of blood glucose) and with a significant reduction of spinal excitability. Since a similar augment of blood lactate induced by an intravenous infusion, in subjects not performing any exercise, is not associated with significant changes of spinal excitability, it can be concluded that the increase of blood lactate levels during a maximal exercise is not per se capable of modifying the excitability of spinal α-motoneurons.

  8. MRI findings of spinal visceral larva migrans of Toxocara canis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Ho, E-mail: leeinho1974@hanmail.ne [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Department of Radiology, Chungnam National University Hospital, 33 Munhwa-ro, Jung-gu, Daejeon 301-721 (Korea, Republic of); Kim, Sung Tae, E-mail: st7.kim@hotmail.co [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Oh, Dae Kun, E-mail: odk6464@nate.co [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Kim, Hyung-Jin, E-mail: hyungkim@skku.ed [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Kim, Keon Ha, E-mail: somatom@skku.ed [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Jeon, Pyoung, E-mail: drpjeon@gmail.co [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Byun, Hong Sik, E-mail: byun5474@skku.ed [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2010-08-15

    Purpose: The purpose of this study is to investigate the MRI findings of visceral larva migrans (VLS) of Toxocara canis in spinal cord. Materials and methods: We retrospectively reviewed spinal MRI findings in eight patients with serologically proven Toxocara canis between 2005 and 2008. We evaluated the location, length, extent and migration of the lesion, MR signal intensity (SI), enhancement pattern, and swelling of the spinal cord. We evaluated clinical features including presenting symptoms and signs and treatment response. Results: Total 8 patients (M = 8; age range 36-79 years) were included. The lesions were located in the cervical or thoracic spinal cord in all patients. All lesions showed high SI and minimal or mild swelling of involved spinal cord on T2WI and focal nodular enhancement on posterior or posterolateral segment of spinal cord. The length of involved lesion was relatively short in most patients. There was a migration of lesion in one patient. In spite of albendazole or steroid treatment, neurological symptoms or signs were not significantly improved in all patients. Conclusion: Although all lesions show non-specific imaging findings like non-tumorous myelopathy mimicking transverse myelitis, single lesion, focal nodular enhancement on posterior or posterolateral segment of spinal cord, relatively short segmental involvement and migration of lesion may be characteristic findings of spinal VLM of Toxocara canis. In addition, the reluctant response to the treatment may be characteristic of spinal VLM of Toxocara canis.

  9. MRI findings of spinal visceral larva migrans of Toxocara canis

    International Nuclear Information System (INIS)

    Lee, In Ho; Kim, Sung Tae; Oh, Dae Kun; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik

    2010-01-01

    Purpose: The purpose of this study is to investigate the MRI findings of visceral larva migrans (VLS) of Toxocara canis in spinal cord. Materials and methods: We retrospectively reviewed spinal MRI findings in eight patients with serologically proven Toxocara canis between 2005 and 2008. We evaluated the location, length, extent and migration of the lesion, MR signal intensity (SI), enhancement pattern, and swelling of the spinal cord. We evaluated clinical features including presenting symptoms and signs and treatment response. Results: Total 8 patients (M = 8; age range 36-79 years) were included. The lesions were located in the cervical or thoracic spinal cord in all patients. All lesions showed high SI and minimal or mild swelling of involved spinal cord on T2WI and focal nodular enhancement on posterior or posterolateral segment of spinal cord. The length of involved lesion was relatively short in most patients. There was a migration of lesion in one patient. In spite of albendazole or steroid treatment, neurological symptoms or signs were not significantly improved in all patients. Conclusion: Although all lesions show non-specific imaging findings like non-tumorous myelopathy mimicking transverse myelitis, single lesion, focal nodular enhancement on posterior or posterolateral segment of spinal cord, relatively short segmental involvement and migration of lesion may be characteristic findings of spinal VLM of Toxocara canis. In addition, the reluctant response to the treatment may be characteristic of spinal VLM of Toxocara canis.

  10. 5-HT₂ and 5-HT₇ receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons.

    Science.gov (United States)

    Sławińska, Urszula; Miazga, Krzysztof; Jordan, Larry M

    2014-01-01

    There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT) (acting on 5-HT1A/7 receptors) and quipazine (acting on 5-HT2 receptors), to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor central pattern generator (CPG). Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the

  11. MULTIPLE SPINAL CANAL MENINGIOMAS

    Directory of Open Access Journals (Sweden)

    Nandigama Pratap Kumar

    2016-10-01

    Full Text Available BACKGROUND Meningiomas of the spinal canal are common tumours with the incidence of 25 percent of all spinal cord tumours. But multiple spinal canal meningiomas are rare in compare to solitary lesions and account for 2 to 3.5% of all spinal meningiomas. Most of the reported cases are both intra cranial and spinal. Exclusive involvement of the spinal canal by multiple meningiomas are very rare. We could find only sixteen cases in the literature to the best of our knowledge. Exclusive multiple spinal canal meningiomas occurring in the first two decades of life are seldom reported in the literature. We are presenting a case of multiple spinal canal meningiomas in a young patient of 17 years, who was earlier operated for single lesion. We analysed the literature, with illustration of our case. MATERIALS AND METHODS In September 2016, we performed a literature search for multiple spinal canal meningiomas involving exclusively the spinal canal with no limitation for language and publication date. The search was conducted through http://pubmed.com, a wellknown worldwide internet medical address. To the best of our knowledge, we could find only sixteen cases of multiple meningiomas exclusively confined to the spinal canal. Exclusive multiple spinal canal meningiomas occurring in the first two decades of life are seldom reported in the literature. We are presenting a case of multiple spinal canal meningiomas in a young patient of 17 years, who was earlier operated for solitary intradural extra medullary spinal canal meningioma at D4-D6 level, again presented with spastic quadriparesis of two years duration and MRI whole spine demonstrated multiple intradural extra medullary lesions, which were excised completely and the histopathological diagnosis was transitional meningioma. RESULTS Patient recovered from his weakness and sensory symptoms gradually and bladder and bowel symptoms improved gradually over a period of two to three weeks. CONCLUSION Multiple

  12. Evaluation of head movement periodicity and irregularity during locomotion of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Ryuzo eShingai

    2013-03-01

    Full Text Available Caenorhabditis elegans is suitable for studying the nervous system, which controls behavior. C. elegans shows sinusoidal locomotion on an agar plate. The head moves not only sinusoidally but also more complexly, which reflects regulation of the head muscles by the nervous system. The head movement becomes more irregular with senescence. To date, the head movement complexity has not been quantitatively analyzed. We propose two simple methods for evaluation of the head movement regularity on an agar plate using image analysis. The methods calculate metrics that are a measure of how the head end movement is correlated with body movement. In the first method, the length along the trace of the head end on the agar plate between adjacent intersecting points of the head trace and the quasi-midline of the head trace, which was made by sliding an averaging window of 1/2 the body wavelength, was obtained. Histograms of the lengths showed periodic movement of the head and deviation from it. In the second method, the intersections between the trace of the head end and the trace of the 5 (near the pharynx or 50% (the mid-body point from the head end in the centerline length of the worm image were marked. The length of the head trace between adjacent intersections was measured, and a histogram of the lengths was produced. The histogram for the 5% point showed deviation of the head end movement from the movement near the pharynx. The histogram for the 50% point showed deviation of the head movement from the sinusoidal movement of the body center. Application of these methods to wild type and several mutant strains enabled evaluation of their head movement periodicity and irregularity, and revealed a difference in the age-dependence of head movement irregularity between the strains. A set of five parameters obtained from the histograms reliably identifies differences in head movement between strains.

  13. Trunk muscle activity increases with unstable squat movements.

    Science.gov (United States)

    Anderson, Kenneth; Behm, David G

    2005-02-01

    The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL).

  14. Development and regulation of response properties in spinal cord motoneurons

    DEFF Research Database (Denmark)

    Perrier, J F; Hounsgaard, J

    2000-01-01

    The intrinsic response properties of spinal motoneurons determine how converging premotor neuronal input is translated into the final motor command transmitted to muscles. From the patchy data available it seems that these properties and their underlying currents are highly conserved in terrestrial...... vertebrates in terms of both phylogeny and ontogeny. Spinal motoneurons in adults are remarkably similar in many respects ranging from the resting membrane potential to pacemaker properties. Apart from the axolotls, spinal motoneurons from all species investigated have latent intrinsic response properties...... mediated by L-type Ca2+ channels. This mature phenotype is reached gradually during development through phases in which A-type potassium channels and T-type calcium channels are transiently expressed. The intrinsic response properties of mature spinal motoneurons are subject to short-term adjustments via...

  15. Spinal Cord Injuries

    Science.gov (United States)

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  16. Quantitative anatomical and behavioral analyses of regeneration and collateral sprouting following spinal cord transection in the nurse shark (ginglymostoma cirratum).

    Science.gov (United States)

    Gelderd, J B

    1979-01-01

    The spinal cord was transected at the mid-thoracic level in 32 nurse sharks. Four animals per group were sacrificed at intervals of 10, 20, 30, 40, 60 and 90 days postoperative. Two groups of fish underwent a subsequent spinla1 cord retransection at the same site at 90 days and were sacrificed 10 and 20 days later. Three sections of spinal cord were removed from each shark for histological analysis. Behaviorally, timed trials for swimming speed and a strength test for axial musculature contraction caudal to the lesion site were performed at 5 day postoperative intervals. Histological analysis showed little regeneration (9-13 percent) of two descending tracts 90 days following the lesion and no return of rostrally controlled movements caudal to the lesion. However, synaptic readjustment did occur caudal to the lesion. This phenomenon was attributed to local segmental sprouting of adjacent, intact nerve fibers. A close correlation was shown between this synaptic readjustment and the strength of uncontrollable undulatory movements seen caudal to the lesion site following spinal cord transection. The relationship of regeneration and collateral sprouting to quantitative behavioral changes is discussed.

  17. Does Motor Development in Infancy Predict Spinal Pain in Later Childhood?

    DEFF Research Database (Denmark)

    Kamper, Steven J; Williams, Christopher M; Hestbaek, Lise

    2017-01-01

    Study Design Longitudinal cohort study. Background Spinal pain is responsible for a huge personal and societal burden but the aetiology remains unclear. Deficits in motor control have been implicated with spinal pain in adults, and delayed motor development is associated with a range of health...... a child first sits or walks without support does not influence the likelihood that they will experience spinal pain in later childhood. Level of Evidence Etiology 2b. J Orthop Sports Phys Ther, Epub 15 Sep 2017. doi:10.2519/jospt.2017.7484....

  18. QUANTITATIVE SIZE ASSESSMENT OF THE LUMBAR SPINAL CANAL BY COMPUTED TOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    M. Midia Z. Miabi

    2007-08-01

    Full Text Available By determining normal ranges of spinal canal diameters we can make early diagnosis in persons who have lower diameters of spinal canal. These persons are predisposed to spinal canal stenosis that is a major cause of spinal radiculopathies. In different studies performed in several countries, minimum and maximum ranges of spinal canal diameters were different for each population. In this study, we tried to determine the mean values of normal spinal canal diameters and areas in Tabriz and its suburb. 39 healthy, young to mid-age cases were selected. Our study was focused on L3-L4 and L4-L5. The following parameters were measured: the area of cross-section of the vertebral body, the area of cross-section of the dural sac, interarticular diameter, interligamentous diameter, antero-posterior diameter of the lumbar canal, inter-pedicular diameter, and the area of cross-section of the vertebral canal. A correlation between the parameters studied and the height of subjects was significant for interligamentous diameter (for L3/L4 and L4/L5 and interarticular diameter (only at L3/L4, cross-section area of the vertebrae (both L3 and L4, cross-section area of vertebral canal (only at L5 level, area of dural sac (at L3/L4 and L4. It was suggested that these diameters and areas should be interpreted as a unction of height of the subject. Most of diameters studied had smaller means than those in previous studies. This can be attributed to differences between populations and it can be interpreted as predisposition to spinal canal stenosis in our population.

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Abuse and Spinal Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal ... What is a spinal cord injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a ...

  20. Radiation tolerance of the cervical spinal cord

    International Nuclear Information System (INIS)

    McCunniff, A.J.; Liang, M.J.

    1989-01-01

    The incidence of permanent injury to the spinal cord as a complication of radiation therapy generally correlates positively with total radiation dosage. However, several reports in the literature have indicated that fraction size is also an important factor in the development or nondevelopment of late injuries in normal tissue. To determine the effect of fraction size on the incidence of radiation-induced spinal cord injuries, we reviewed 144 cases of head and neck cancer treated at our institution between 1971 and 1980 with radiation greater than 5600 cGy to a portion of the cervical spinal cord. Most of these patients received greater than or equal to 6000 cGy, with fraction sizes ranging from 133 cGy to 200 cGy. Fifty-three of the 144 patients have been followed up for 2 years or more. Nearly half of these (26 patients) received greater than 6000 cGy with fraction sizes of 133 cGy to 180 cGy. Only 1 of the 53 (1.9%) has sustained permanent spinal cord injury; 20 months after completion of radiation treatments he developed Brown-Sequard syndrome. Our experience suggests that radiation injuries to the spinal cord correlate not only with total radiation dosage, but also with fraction size; low fraction sizes appear to decrease the incidence of such injuries

  1. End Ordovician extinctions

    DEFF Research Database (Denmark)

    Harper, David A. T.; Hammarlund, Emma; Rasmussen, Christian M. Ø.

    2014-01-01

    -global anoxia associated with a marked transgression during the Late Hirnantian. Most recently, however, new drivers for the extinctions have been proposed, including widespread euxinia together with habitat destruction caused by plate tectonic movements, suggesting that the end Ordovician mass extinctions were...

  2. Recovery in stroke rehabilitation through the rotation of preferred directions induced by bimanual movements: a computational study.

    Directory of Open Access Journals (Sweden)

    Ken Takiyama

    Full Text Available Stroke patients recover more effectively when they are rehabilitated with bimanual movement rather than with unimanual movement; however, it remains unclear why bimanual movement is more effective for stroke recovery. Using a computational model of stroke recovery, this study suggests that bimanual movement facilitates the reorganization of a damaged motor cortex because this movement induces rotations in the preferred directions (PDs of motor cortex neurons. Although the tuning curves of these neurons differ during unimanual and bimanual movement, changes in PD, but not changes in modulation depth, facilitate such reorganization. In addition, this reorganization was facilitated only when encoding PDs are rotated, but decoding PDs are not rotated. Bimanual movement facilitates reorganization because this movement changes neural activities through inter-hemispheric inhibition without changing cortical-spinal-muscle connections. Furthermore, stronger inter-hemispheric inhibition between motor cortices results in more effective reorganization. Thus, this study suggests that bimanual movement is effective for stroke rehabilitation because this movement rotates the encoding PDs of motor cortex neurons.

  3. Role of allografts in spinal surgery

    International Nuclear Information System (INIS)

    Aziz Nather

    1999-01-01

    With development of more tissue banks in the region and internationally, allografts are increasingly being used in orthopaedic surgery including spinal surgery. Two groups of patients will particularly benefit from the use of allografts. The first group is young children in whom iliac crest is cartilaginous and cannot provide sufficient quantity of autografts. The second is the elderly where bones from iliac crest are porotic and fatty. Allografts are used to fulfill two distinct functions in Spinal Surgery. One is to act as a buttress for anterior spinal surgery using cortical allografts. The other is to enhance fusion for posterior spinal surgery. Up to December 1997, 71 transplantations have been performed using allografts from NUH Tissue Bank. Anterior Spinal Surgery has been performed in 15 cases. The indications are mainly Trauma-Burst Fractures and Spinal Secondaries to the Spine. All cases are in thoracic and thoracolumbar region. Allografts used are deep frozen and freeze-dried cortical allografts. Femur is used for thoraco-lumbar region and humerus for upper thoracic region. Instrumentation used ranged from anterior devices (Canada, DCP, Synergy etc) to posterior devices (ISOLA). Deep frozen allografts and more recently freeze-dried allografts are preferred especially for osteoporotic spines. Cortical allografts are packed with autografts from ribs in the medullary canal. Allograft-autograft composites are always used to ensure better incorporation. Postero-lateral fusion has been performed for 56 cases. The indications include congenital and idiopathic scoliosis, degenerative stenosis, degenerative spondylolisthesis, spondylolytic spondylolisthesis, fracture-dislocation, osteoporotic burst fracture, spinal secondaries with cord compression and traumatic spondylolisthesis. Deep frozen bone allografts are used in combination with patient's own autografts from spinous processes to provide a 50% mix. Instrumentation used include Hartshill, Steffee, Isola

  4. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G

    2015-01-01

    STUDY DESIGN: Survey of expert opinion, feedback and final consensus. OBJECTIVE: To describe the development and the variables included in the International Spinal Cord Injury (SCI) Spinal Interventions and Surgical Procedures Basic Data set. SETTING: International working group. METHODS......: A committee of experts was established to select and define data elements. The data set was then disseminated to the appropriate committees and organizations for comments. All suggested revisions were considered and both the International Spinal Cord Society and the American Spinal Injury Association endorsed...... spinal intervention and procedure is coded (variables 1 through 7) and the spinal segment level is described (variables 8 and 9). Sample clinical cases were developed to illustrate how to complete it. CONCLUSION: The International SCI Spinal Interventions and Surgical Procedures Basic Data Set...

  5. Representing tools as hand movements: early and somatotopic visuomotor transformations.

    Science.gov (United States)

    Bartoli, Eleonora; Maffongelli, Laura; Jacono, Marco; D'Ausilio, Alessandro

    2014-08-01

    The term affordance defines a property of objects, which relates to the possible interactions that an agent can carry out on that object. In monkeys, canonical neurons encode both the visual and the motor properties of objects with high specificity. However, it is not clear if in humans exists a similarly fine-grained description of these visuomotor transformations. In particular, it has not yet been proven that the processing of visual features related to specific affordances induces both specific and early visuomotor transformations, given that complete specificity has been reported to emerge quite late (300-450ms). In this study, we applied an adaptation-stimulation paradigm to investigate early cortico-spinal facilitation and hand movements׳ synergies evoked by the observation of tools. We adapted, through passive observation of finger movements, neuronal populations coding either for precision or power grip actions. We then presented the picture of one tool affording one of the two grasps types and applied single-pulse Transcranial Magnetic Stimulation (TMS) to the hand primary motor cortex, 150ms after image onset. Cortico-spinal excitability of the Abductor Digiti Minimi and Abductor Pollicis Brevis showed a detailed pattern of modulations, matching tools׳ affordances. Similarly, TMS-induced hand movements showed a pattern of grip-specific whole hand synergies. These results offer a direct proof of the emergence of an early visuomotor transformation when tools are observed, that maintains the same amount of synergistic motor details as the actions we can perform on them. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. ATPase Cycle of the Nonmotile Kinesin NOD Allows Microtubule End Tracking and Drives Chromosome Movement

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Sindelar, C; Mulko, N; Collins, K; Kong, S; Hawley, R; Kull, F

    2009-01-01

    Segregation of nonexchange chromosomes during Drosophila melanogaster meiosis requires the proper function of NOD, a nonmotile kinesin-10. We have determined the X-ray crystal structure of the NOD catalytic domain in the ADP- and AMPPNP-bound states. These structures reveal an alternate conformation of the microtubule binding region as well as a nucleotide-sensitive relay of hydrogen bonds at the active site. Additionally, a cryo-electron microscopy reconstruction of the nucleotide-free microtubule-NOD complex shows an atypical binding orientation. Thermodynamic studies show that NOD binds tightly to microtubules in the nucleotide-free state, yet other nucleotide states, including AMPPNP, are weakened. Our pre-steady-state kinetic analysis demonstrates that NOD interaction with microtubules occurs slowly with weak activation of ADP product release. Upon rapid substrate binding, NOD detaches from the microtubule prior to the rate-limiting step of ATP hydrolysis, which is also atypical for a kinesin. We propose a model for NOD's microtubule plus-end tracking that drives chromosome movement.

  7. Addition of adenosine to hyperbaric bupivacaine in spinal ...

    African Journals Online (AJOL)

    2011-04-17

    Apr 17, 2011 ... cause sedation, hypotension and bradycardia. Intrathecal neostigmine may ... in spinal anaesthesia does not prolong postoperative analgesia in vaginal .... Values are mean ± standard deviation (range). Number of patients.

  8. Spinal cysts. Diagnostic workup and therapy; Spinale Zysten. Diagnostik und Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Simgen, A. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2018-02-15

    Spinal cysts can be classified as meningeal, not meningeal, and tumor-associated cysts. Due to the widespread availability of high-resolution computed tomography and magnet resonance imaging, spinal cysts can be detected with high sensitivity these days. Concerning the variety of potential cystic differential diagnoses, a precise classification is difficult and can often only be realized after surgical inspection or histological examination. Spinal cysts are generally incidental findings during a routine diagnostic workup and need no further therapy. Surgical treatment can be necessary if the spinal cyst reaches a certain size and causes neurological symptoms due to the compression of the spinal cord or the nerve root. (orig.) [German] Spinale Zysten koennen in meningeale, nichtmeningeale und tumorassoziierte Zysten eingeteilt werden. Durch die weite Verbreitung von hochaufloesenden Computer- und Magnetresonanztomographen koennen spinale Zysten heutzutage mit einer hohen Sensitivitaet erkannt werden. Eine genaue Klassifikation kann sich unter der Vielzahl der moeglichen zystischen Differenzialdiagnosen schwierig gestalten und ist haeufig nur durch eine chirurgische Inspektion oder die histologische Untersuchung moeglich. Meistens werden spinale Zysten bei der Routinediagnostik als Zufallsbefunde entdeckt und benoetigen keine weitere Therapie. Erreichen sie allerdings eine gewisse Groesse, koennen sie raumfordernd auf das Myelon oder einzelne Nervenwurzeln wirken und somit ausgepraegte neurologische Symptome verursachen. In solchen Faellen ist ein chirurgisches Vorgehen zur Resektion einer spinalen Zyste notwendig. (orig.)

  9. Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles

    Directory of Open Access Journals (Sweden)

    Heidi Haavik

    2016-12-01

    Full Text Available This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP amplitudes. In experiment one, transcranial magnetic stimulation input–output (TMS I/O curves for an upper limb muscle (abductor pollicus brevis; APB were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP, late bereitschafts potential (LBP and also for peak negativity (PN. The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input–output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle

  10. The end-state comfort effect in bimanual grip selection.

    Science.gov (United States)

    Fischman, Mark G; Stodden, David F; Lehman, Davana M

    2003-03-01

    During a unimanual grip selection task in which people pick up a lightweight dowel and place one end against targets at variable heights, the choice of hand grip (overhand vs. underhand) typically depends on the perception of how comfortable the arm will be at the end of the movement: an end-state comfort effect. The two experiments reported here extend this work to bimanual tasks. In each experiment, 26 right-handed participants used their left and right hands to simultaneously pick up two wooden dowels and place either the right or left end against a series of 14 targets ranging from 14 to 210 cm above the floor. These tasks were performed in systematic ascending and descending orders in Experiment 1 and in random order in Expiment 2. Results were generally consistent with predictions of end-state comfort in that, for the extreme highest and lowest targets, participants tended to select opposite grips with each hand. Taken together, our findings are consistent with the concept of constraint hierarchies within a posture-based motion-planning model.

  11. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    Science.gov (United States)

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  12. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    Science.gov (United States)

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  13. Modern spinal instrumentation. Part 1: Normal spinal implants

    International Nuclear Information System (INIS)

    Davis, W.; Allouni, A.K.; Mankad, K.; Prezzi, D.; Elias, T.; Rankine, J.; Davagnanam, I.

    2013-01-01

    The general radiologist frequently encounters studies demonstrating spinal instrumentation, either as part of the patient's postoperative evaluation or as incidental to a study performed for another purpose. There are various surgical approaches and devices used in spinal surgery with an increased understanding of spinal and spinal implant biomechanics drives development of modern fixation devices. It is, therefore, important that the radiologist can recognize commonly used devices and identify their potential complications demonstrated on imaging. The aim of part 1 of this review is to familiarize the reader with terms used to describe surgical approaches to the spine, review the function and normal appearances of commonly used instrumentations, and understand the importance of the different fixation techniques. The second part of this review will concentrate on the roles that the different imaging techniques play in assessing the instrumented spine and the recognition of complications that can potentially occur.

  14. Sensation of Movement

    DEFF Research Database (Denmark)

    Sensation of Movement will discuss the role of sensation in the control of action, bodily self-recognition, and sense of agency. Sensing movement is dependent on a range of information received by the brain, from signalling in the peripheral sensory organs to the establishment of higher order goals....... This volume will question whether one type of information is more relevant for the ability to sense and control movements, and demonstrate the importance of integrating neuroscientific knowledge with philosophical perspectives, in order to arrive at new insights into how sensation of movement can be studied...

  15. Glioblastoma with spinal seeding

    International Nuclear Information System (INIS)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  16. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  17. Targeting the Full Length of the Motor End Plate Regions in the Mouse Forelimb Increases the Uptake of Fluoro-Gold into Corresponding Spinal Cord Motor Neurons

    Directory of Open Access Journals (Sweden)

    Andrew Paul Tosolini

    2013-05-01

    Full Text Available Lower motor neuron dysfunction is one of the most debilitating motor conditions. In this regard, transgenic mouse models of various lower motor neuron dysfunctions provide insight into the mechanisms underlying these pathologies and can also aid the development of new therapies. Viral-mediated gene therapy can take advantage of the muscle-motor neuron topographical relationship to shuttle therapeutic genes into specific populations of motor neurons in these mouse models. In this context, motor end plates (MEPs are highly specialised regions on the skeletal musculature that offer direct access to the pre-synaptic nerve terminals, henceforth to the spinal cord motor neurons. The aim of this study was two-folded. First it was to characterise the exact position of the MEP regions for several muscles of the mouse forelimb using acetylcholinesterase histochemistry. This MEP-muscle map was then used to guide a series of intramuscular injections of Fluoro-Gold (FG in order to characterise the distribution of the innervating motor neurons. This analysis revealed that the MEPs are typically organised in an orthogonal fashion across the muscle fibres and extending throughout the full width of each muscle. Furthermore, targeting the full length of the MEP regions gave rise to a seemingly greater number of labelled motor neurons that are organised into columns spanning through more spinal cord segments than previously reported. The present analysis suggests that targeting the full width of the muscles’ MEP regions with FG increases the somatic availability of the tracer. This process ensures a greater uptake of the tracer by the pre-synaptic nerve terminals, hence maximising the labelling in spinal cord motor neurons. This investigation should have positive implications for future studies involving the somatic delivery of therapeutic genes into motor neurons for the treatment of various motor dysfunctions.

  18. Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury.

    Science.gov (United States)

    Pierella, C; De Luca, A; Tasso, E; Cervetto, F; Gamba, S; Losio, L; Quinland, E; Venegoni, A; Mandraccia, S; Muller, I; Massone, A; Mussa-Ivaldi, F A; Casadio, M

    2017-07-01

    Body machine interfaces (BMIs) are used by people with severe motor disabilities to control external devices, but they also offer the opportunity to focus on rehabilitative goals. In this study we introduced in a clinical setting a BMI that was integrated by the therapists in the rehabilitative treatments of 2 spinal cord injured (SCI) subjects for 5 weeks. The BMI mapped the user's residual upper body mobility onto the two coordinates of a cursor on a screen. By controlling the cursor, the user engaged in playing computer games. The BMI allowed the mapping between body and cursor spaces to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change our subjects' behavior, who initially used almost exclusively their proximal upper body-shoulders and arms - for using the BMI. By the end of training, cursor control was shifted toward more distal body regions - forearms instead of upper arms - with an increase of mobility and strength of all the degrees of freedom involved in the control. The clinical tests and the electromyographic signals from the main muscles of the upper body confirmed the positive effect of the training. Encouraging the subjects to explore different and sometimes unusual movement combinations was beneficial for recovering distal arm functions and for increasing their overall mobility.

  19. Clinical Outcome of Dose-Escalated Image-Guided Radiotherapy for Spinal Metastases

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Goebel, Joachim; Wilbert, Juergen; Baier, Kurt; Richter, Anne; Sweeney, Reinhart A.; Bratengeier, Klaus; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the outcomes after dose-escalated radiotherapy (RT) for spinal metastases and paraspinal tumors. Methods and Materials: A total of 14 patients, 12 with spinal metastases and a long life expectancy and 2 with paraspinal tumors, were treated for 16 lesions with intensity-modulated, image-guided RT. A median biologic effective dose of 74 Gy 10 (range, 55-86) in a median of 20 fractions (range, 3-34) was prescribed to the target volume. The spinal canal was treated to 40 Gy in 20 fractions using a second intensity-modulated RT dose level in the case of epidural involvement. Results: After median follow-up of 17 months, one local recurrence was observed, for an actuarial local control rate of 88% after 2 years. Local control was associated with rapid and long-term pain relief. Of 11 patients treated for a solitary spinal metastasis, 6 developed systemic disease progression. The actuarial overall survival rate for metastatic patients was 85% and 63% after 1 and 2 years, respectively. Acute Grade 2-3 skin toxicity was seen in 2 patients with no late toxicity greater than Grade 2. No radiation-induced myelopathy was observed. Conclusion: Dose-escalated irradiation of spinal metastases was safe and resulted in excellent local control. Oligometastatic patients with a long life expectancy and epidural involvement are considered to benefit the most from fractionated RT.

  20. A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV

    International Nuclear Information System (INIS)

    Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng

    2013-01-01

    A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)

  1. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  2. Cervical spondylosis with spinal cord encroachment: should preventive surgery be recommended?

    Directory of Open Access Journals (Sweden)

    Murphy Donald R

    2009-08-01

    Full Text Available Abstract Background It has been stated that individuals who have spondylotic encroachment on the cervical spinal cord without myelopathy are at increased risk of spinal cord injury if they experience minor trauma. Preventive decompression surgery has been recommended for these individuals. The purpose of this paper is to provide the non-surgical spine specialist with information upon which to base advice to patients. The evidence behind claims of increased risk is investigated as well as the evidence regarding the risk of decompression surgery. Methods A literature search was conducted on the risk of spinal cord injury in individuals with asymptomatic cord encroachment and the risk and benefit of preventive decompression surgery. Results Three studies on the risk of spinal cord injury in this population met the inclusion criteria. All reported increased risk. However, none were prospective cohort studies or case-control studies, so the designs did not allow firm conclusions to be drawn. A number of studies and reviews of the risks and benefits of decompression surgery in patients with cervical myelopathy were found, but no studies were found that addressed surgery in asymptomatic individuals thought to be at risk. The complications of decompression surgery range from transient hoarseness to spinal cord injury, with rates ranging from 0.3% to 60%. Conclusion There is insufficient evidence that individuals with spondylotic spinal cord encroachment are at increased risk of spinal cord injury from minor trauma. Prospective cohort or case-control studies are needed to assess this risk. There is no evidence that prophylactic decompression surgery is helpful in this patient population. Decompression surgery appears to be helpful in patients with cervical myelopathy, but the significant risks may outweigh the unknown benefit in asymptomatic individuals. Thus, broad recommendations for decompression surgery in suspected at-risk individuals cannot be made

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 ...

  4. Spinal tumors

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  5. Does the nervous system use equilibrium-point control to guide single and multiple joint movements?

    Science.gov (United States)

    Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S

    1992-12-01

    The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.

  6. Horizontal movements of Atlantic blue marlin (Makaira nigricans) in the Gulf of Mexico

    Science.gov (United States)

    Kraus, R.T.; Wells, R.J.D.; Rooker, J.R.

    2011-01-01

    We examined movements of Atlantic blue marlin (Makaira nigricans) from the Gulf of Mexico based upon 42 pop-up archival transmitting (PAT) tags. Long deployments (including one 334-day track) revealed diverse movement patterns within the Gulf of Mexico. North-south seasonal changes in blue marlin distribution showed strong correspondence with established seasonal patterns of sea surface temperature and primary production. During the summer spawning season, blue marlin utilized outer shelf and shelf edge waters in the northern Gulf of Mexico, and longer duration tracks indicated overwintering habitats in the Bay of Campeche. Egress occurred throughout the year and was difficult to determine because some tracks ended in the Straits of Florida (n = 3) while other tracks recorded movement through it or the Yucatan Channel (n = 4). Our results indicate that Atlantic blue marlin have a more restricted geographic range of habitats than previously recognized and that the Gulf of Mexico provides spatially dynamic suitable habitat that is utilized year-round through seasonal movements. ?? 2011 Springer-Verlag.

  7. MRI study on spinal canal content in Western Maharashtrian population

    Directory of Open Access Journals (Sweden)

    Khanapurkar SV, Kulkarni DO, Bahetee BH, Vahane MI

    2014-07-01

    Full Text Available The morphology of the spinal canal content has been studied since the invention of myelography. However, most studies have measured the diameters of the spinal cord only, not the size of the subarachnoid space. The present study complements the current data on the morphology of the spinal contents, and in particular, the spinal subarachnoid space, by analyzing MRI images. Objective: To study morphology of the dural sac, spinal cord & subarachnoid space using MRI. To define the inner geometrical dimensions of spinal canal content that confine the maneuver of an endoscope inserted in cervical spine. 3. To have comprehensive knowledge of the anatomy of cervical spinal canal. Method: Based on MRI images of the spine from 60 normal patients of age between 25-60 years, the dimensions of spinal cord, dural sac & subarachnoid space were measured at mid-vertebral & intervertebral level from C1-C7 vertebrae. The parameters measured were transverse, sagittal diameter of spinal cord & dural sac. The subarachnoid space was measured as anterior, posterior, right, left distance between spinal cord and dura mater. Results: It was found that at each selected transverse level, the subarachnoid space tends to be symmetrical on the right and left sides of the cord, and measures 3.38 mm on an average. However, the anterior and posterior segment, measured on the mid-sagittal plane are generally asymmetric & varies greatly in size ranging 1mm to 6mm with mean 2.57 of anterior & 2.59 of posterior. These measurements match those found in previous studies. The coefficient of variance for the dimensions of the subarachnoid space is as high as 36.16%, while that for the dimensions of the spinal cord (transverse & sagittal are11.08%&13.28%respectively. Conclusion: The findings presented here, expand our knowledge of morphology of spinal canal and show that a thecaloscope must be smaller than 3.38 mm in diameter.

  8. Source analysis of beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography.

    Directory of Open Access Journals (Sweden)

    Muthuraman Muthuraman

    Full Text Available We hypothesized that post-movement beta synchronization (PMBS and cortico-muscular coherence (CMC during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena.We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated.High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and

  9. Source analysis of beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography.

    Science.gov (United States)

    Muthuraman, Muthuraman; Tamás, Gertrúd; Hellriegel, Helge; Deuschl, Günther; Raethjen, Jan

    2012-01-01

    We hypothesized that post-movement beta synchronization (PMBS) and cortico-muscular coherence (CMC) during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena.We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated.High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and spinal systems.

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 David ...

  11. Laparoscopic Cholecystectomy under Segmental Thoracic Spinal Anesthesia: A Feasible Economical Alternative.

    Science.gov (United States)

    Kejriwal, Aditya Kumar; Begum, Shaheen; Krishan, Gopal; Agrawal, Richa

    2017-01-01

    Laparoscopic surgery is normally performed under general anesthesia, but regional techniques like thoracic epidural and lumbar spinal have been emerging and found beneficial. We performed a clinical case study of segmental thoracic spinal anaesthesia in a healthy patient. We selected an ASA grade I patient undergoing elective laparoscopic cholecystectomy and gave spinal anesthetic in T10-11 interspace using 1 ml of bupivacaine 5 mg ml -1 mixed with 0.5 ml of fentanyl 50 μg ml -1 . Other drugs were only given (systemically) to manage patient anxiety, pain, nausea, hypotension, or pruritus during or after surgery. The patient was reviewed 2 days postoperatively in ward. The thoracic spinal anesthetia was performed easily in the patient. Some discomfort which was readily treated with 1mg midazolam and 20 mg ketamine intravenously. There was no neurological deficit and hemodynamic parameters were in normal range intra and post-operatively and recovery was uneventful. We used a narrow gauze (26G) spinal needle which minimized the trauma to the patient and the chances of PDPH, which was more if 16 or 18G epidural needle had been used and could have increased further if there have been accidental dura puncture. Also using spinal anesthesia was economical although it should be done cautiously as we are giving spinal anesthesia above the level of termination of spinal cord.

  12. Rabbit System. Low cost, high reliability front end electronics featuring 16 bit dynamic range

    International Nuclear Information System (INIS)

    Drake, G.; Droege, T.F.; Nelson, C.A. Jr.; Turner, K.J.; Ohska, T.K.

    1985-10-01

    A new crate-based front end system has been built which features low cost, compact packaging, command capability, 16 bit dynamic range digitization, and a high degree of redundancy. The crate can contain a variety of instrumentation modules, and is designed to be situated close to the detector. The system is suitable for readout of a large number of channels via parallel multiprocessor data acquisition

  13. MR determination of neonatal spinal canal depth.

    Science.gov (United States)

    Arthurs, Owen; Thayyil, Sudhin; Wade, Angie; Chong, W K Kling; Sebire, Neil J; Taylor, Andrew M

    2012-08-01

    Lumbar punctures (LPs) are frequently performed in neonates and often result in traumatic haemorrhagic taps. Knowledge of the distance from the skin to the middle of the spinal canal (mid-spinal canal depth - MSCD) may reduce the incidence of traumatic taps, but there is little data in extremely premature or low birth weight neonates. Here, we determined the spinal canal depth at post-mortem in perinatal deaths using magnetic resonance imaging (MRI). Spinal canal depth was measured in 78 post-mortem foetuses and perinatal cases (mean gestation 26 weeks; mean weight 1.04kg) at the L3/L4 inter-vertebral space at post-mortem MRI. Both anterior (ASCD) and posterior (PSCD) spinal canal depth were measured; MSCD was calculated and modelled against weight and gestational age. ASCD and PSCD (mm) correlated significantly with weight and gestational age (all r>0.8). A simple linear model MSCD (mm)=3×Weight (kg)+5 was the best fit, identifying an SCD value within the correct range for 87.2% (68/78) (95% CI (78.0, 92.9%)) cases. Gestational age did not add significantly to the predictive value of the model. There is a significant correlation between MSCD and body weight at post-mortem MRI in foetuses and perinatal deaths. If this association holds in preterm neonates, use of the formula MSCD (mm)=3×Weight (kg)+5 could result in fewer traumatic LPs in this population. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. MR determination of neonatal spinal canal depth

    Energy Technology Data Exchange (ETDEWEB)

    Arthurs, Owen, E-mail: owenarthurs@uk2.net [Centre for Cardiovascular MR, Great Ormond Street Hospital for Children, London WC1N 3JH (United Kingdom); Thayyil, Sudhin, E-mail: s.thayyil@ucl.ac.uk [Academic Neonatology, Institute for Women' s Health, London WC1E 6AU (United Kingdom); Wade, Angie, E-mail: a.wade@ucl.ac.uk [Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, London (United Kingdom); Chong, W.K., E-mail: Kling.Chong@gosh.nhs.uk [Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London (United Kingdom); Sebire, Neil J., E-mail: Neil.Sebire@gosh.nhs.uk [Histopathology, Great Ormond Street Hospital for Children, London WC1E 6AU (United Kingdom); Taylor, Andrew M., E-mail: a.taylor76@ucl.ac.uk [Centre for Cardiovascular MR, Cardiorespiratory Unit, Great Ormond Street Hospital for Children and UCL Institute of Cardiovascular Science, London WC1E 6AU (United Kingdom)

    2012-08-15

    Objectives: Lumbar punctures (LPs) are frequently performed in neonates and often result in traumatic haemorrhagic taps. Knowledge of the distance from the skin to the middle of the spinal canal (mid-spinal canal depth - MSCD) may reduce the incidence of traumatic taps, but there is little data in extremely premature or low birth weight neonates. Here, we determined the spinal canal depth at post-mortem in perinatal deaths using magnetic resonance imaging (MRI). Patients and methods: Spinal canal depth was measured in 78 post-mortem foetuses and perinatal cases (mean gestation 26 weeks; mean weight 1.04 kg) at the L3/L4 inter-vertebral space at post-mortem MRI. Both anterior (ASCD) and posterior (PSCD) spinal canal depth were measured; MSCD was calculated and modelled against weight and gestational age. Results: ASCD and PSCD (mm) correlated significantly with weight and gestational age (all r > 0.8). A simple linear model MSCD (mm) = 3 Multiplication-Sign Weight (kg) + 5 was the best fit, identifying an SCD value within the correct range for 87.2% (68/78) (95% CI (78.0, 92.9%)) cases. Gestational age did not add significantly to the predictive value of the model. Conclusion: There is a significant correlation between MSCD and body weight at post-mortem MRI in foetuses and perinatal deaths. If this association holds in preterm neonates, use of the formula MSCD (mm) = 3 Multiplication-Sign Weight (kg) + 5 could result in fewer traumatic LPs in this population.

  15. Testing times: A nuclear weapons laboratory at the end of the Cold War

    International Nuclear Information System (INIS)

    Gusterson, H.

    1992-01-01

    This dissertation focuses on the role of discursive and other practices in the construction of two alternative regimes of truth in regard to nuclear weapons, and in the cultural production of persons at the Livermore Laboratory and in the local anti-nuclear movement. In the 1980s the scientists' regime of truth was challenged by a heterogeneous anti-nuclear movement recruited largely from the humanistic middle class - a class fragment profoundly hostile to the policies of the Reagan Administration. The movement attacked the Laboratory in a number of ways, ranging from local ballot initiatives and lobbying in Washington to civil disobedience at the Laboratory. By the end of the 1980s this movement, in combination with Gorbachev's reforms in the Soviet Union and a decade of internal scandals at the Laboratory, left the Laboratory weakened - though Laboratory scientists and managers are currently working to adapt the system of ideas and practices evolved during the Cold War to legitimate continued weapons work in a post-Cold War environment

  16. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  17. Plane of vertebral movement eliciting muscle lengthening history in the low back influences the decrease in muscle spindle responsiveness of the cat.

    Science.gov (United States)

    Ge, Weiqing; Cao, Dong-Yuan; Long, Cynthia R; Pickar, Joel G

    2011-12-01

    Proprioceptive feedback is thought to play a significant role in controlling both lumbopelvic and intervertebral orientations. In the lumbar spine, a vertebra's positional history along the dorsal-ventral axis has been shown to alter the position, movement, and velocity sensitivity of muscle spindles in the multifidus and longissimus muscles. These effects appear due to muscle history. Because spinal motion segments have up to 6 degrees of freedom for movement, we were interested in whether the axis along which the history is applied differentially affects paraspinal muscle spindles. We tested the null hypothesis that the loading axis, which creates a vertebra's positional history, has no effect on a lumbar muscle spindle's subsequent response to vertebral position or movement. Identical displacements were applied along three orthogonal axes directly at the L(6) spinous process using a feedback motor system under displacement control. Single-unit nerve activity was recorded from 60 muscle spindle afferents in teased filaments from L(6) dorsal rootlets innervating intact longissimus or multifidus muscles of deeply anesthetized cats. Muscle lengthening histories along the caudal-cranial and dorsal-ventral axis, compared with the left-right axis, produced significantly greater reductions in spindle responses to vertebral position and movement. The spinal anatomy suggested that the effect of a lengthening history is greatest when that history had occurred along an axis lying within the anatomical plane of the facet joint. Speculation is made that the interaction between normal spinal mechanics and the inherent thixotropic property of muscle spindles poses a challenge for feedback and feedforward motor control of the lumbar spine.

  18. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis

    Directory of Open Access Journals (Sweden)

    Zhong-jun Hou

    2015-01-01

    Full Text Available Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI and T2-weighted imaging (T2WI scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L 3 to S 1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49% and abruption in 17 lumbosacral spinal nerve roots (23%. Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  19. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis.

    Science.gov (United States)

    Hou, Zhong-Jun; Huang, Yong; Fan, Zi-Wen; Li, Xin-Chun; Cao, Bing-Yi

    2015-11-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L3 to S1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49%) and abruption in 17 lumbosacral spinal nerve roots (23%). Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  20. Case series of two patients with Fibrocartilaginous Embolism mimicking Transverse Myelitis of the Spinal Cord.

    Science.gov (United States)

    AbdelRazek, Mahmoud; Elsadek, Rabab; Elsadek, Lobna

    2017-06-01

    Fibrocartilaginous Embolism (FCE) refers to the extrusion of some of the fibro-cartilaginous nucleus pulposus material from within the inter-vertebral disc to eventually embolize into one of the spinal cord vessels with resultant spinal cord infarction. According to a 2016 review, AbdelRazek et al. (2106) [1] there are 41 pathologically confirmed and 26 clinically suspected cases in the literature till the end of 2015. We add two more clinically diagnosed cases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Obesity is independently associated with spinal anesthesia outcomes: a prospective observational study.

    Directory of Open Access Journals (Sweden)

    Hyo-Jin Kim

    Full Text Available The influence of body-mass index (BMI on spinal anesthesia is still controversial, with discrepant results reported in previous studies. To compare spinal anesthesia in obese and non-obese subjects, the anesthesia profiles in patients who underwent spinal anesthesia using intrathecal hyperbaric bupivacaine were compared. A total of 209 patients undergoing elective total knee replacement arthroplasty (TKRA surgery under spinal anesthesia were divided into an NO (non-obese group (BMI < 30 kg/m2, n = 141 and an O (obese group (BMI ≥ 30 kg/m2, n = 68. Anesthesia was deemed successful if a bilateral T12 sensory block occurred within 15 minutes of intrathecal drug administration, and if the level of sensory block was higher than T12 when the surgery ended. Logistic regression analysis with multiple variables known to influence spinal anesthesia was performed to identify which parameters independently determined the spinal anesthesia outcome. Similar doses of bupivacaine were administered to the NO and O groups. The incidence of anesthesia failure was significantly lower in the O group [n = 43 (30.5% in the NO group vs. n = 10 (18.9% in the O group, p = 0.014]. The independent predictors for successful anesthesia in all patients were dose of hyperbaric bupivacaine [odds ratio (OR 2.12, 95% CI: 1.64-2.73] and obese status (BMI ≥ 30 kg/m2, OR 2.86, 95% CI: 1.25-6.52. Time to first report of postoperative pain and time to first self-void were significantly longer in the O group. These results suggest that the duration of block with hyperbaric bupivacaine is prolonged in obese patients and obesity is independently associated with spinal anesthesia outcomes, as is bupivacaine dosage. A further study enrolling patients with morbid obesity and using a fixed bupivacaine dosage is required to confirm the effect of obesity on spinal anesthesia.

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, ... Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injury? play_arrow What kind of surgery is common after a spinal cord injury? play_ ... How soon after a spinal cord injury should surgery be performed? play_arrow Is it common to ...

  4. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control.

    Science.gov (United States)

    Zhang, Tianhe C; Janik, John J; Peters, Ryan V; Chen, Gang; Ji, Ru-Rong; Grill, Warren M

    2015-07-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. Copyright © 2015 the American Physiological Society.

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury ... Jennifer Piatt, PhD David Chen, MD Read Bio Medical Director, Spinal Cord Injury Rehabilitation Program, Rehabilitation Institute ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... L Sarah Harrison, OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury ... a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising ...

  8. Intra-population variation in activity ranges, diel patterns, movement rates, and habitat use of American alligators in a subtropical estuary

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael; Jeffery, Brian M.

    2013-12-01

    Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intra-population variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.

  9. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    Directory of Open Access Journals (Sweden)

    Euler Moraes Penha

    2014-01-01

    Full Text Available The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.

  10. Radiation therapy for primary spinal cord tumors in adults

    International Nuclear Information System (INIS)

    Jeremic, B.; Grujicic, D.; Jovanovic, D.; Djuric, L.; Mijatovic, L.

    1990-01-01

    This paper evaluates the role of radiation therapy in management of primary spinal cord tumors in adults. Records of 21 patients with primary spinal cord tumors treated with radiation therapy after surgery were retrospectively reviewed. Histologic examination showed two diffuse and 10 localized ependymomas, six low-grade gliomas, and three malignant gliomas. Surgery consisted of gross tumor resection in six patients, subtotal resection in three patients, and biopsy in 12 patients. Three patients also received chemotherapy. Radiation dose range from 45 to 55 Cy

  11. Trauma: Spinal Cord Injury.

    Science.gov (United States)

    Eckert, Matthew J; Martin, Matthew J

    2017-10-01

    Injuries to the spinal column and spinal cord frequently occur after high-energy mechanisms of injury, or with lower-energy mechanisms, in select patient populations like the elderly. A focused yet complete neurologic examination during the initial evaluation will guide subsequent diagnostic procedures and early supportive measures to help prevent further injury. For patients with injury to bone and/or ligaments, the initial focus should be spinal immobilization and prevention of inducing injury to the spinal cord. Spinal cord injury is associated with numerous life-threatening complications during the acute and long-term phases of care that all acute care surgeons must recognize. Published by Elsevier Inc.

  12. MOTOR UNIT FIRING RATES DURING SPASMS IN THENAR MUSCLES OF SPINAL CORD INJURED SUBJECTS

    Directory of Open Access Journals (Sweden)

    Inge eZijdewind

    2014-11-01

    Full Text Available Abstract Involuntary contractions of paralyzed muscles (spasms commonly disrupt daily activities and rehabilitation after human spinal cord injury. Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical spinal cord injury. Intramuscular electromyographic activity (EMG, surface EMG, and force were recorded during thenar muscle spasms that occurred spontaneously or that were triggered by movement of a shoulder or leg. Most spasms were submaximal (mean: 39%, SD: 33 of the force evoked by median nerve stimulation at 50 Hz with strong relationships between EMG and force (R2>0.69. Unit recruitment occurred over a wide force range (0.2-103% of 50 Hz force. Significant unit rate modulation occurred during spasms (frequency at 25% maximal force: 8.8 Hz, 3.3 SD; at maximal force: 16.1 Hz, 4.1 SD. Mean recruitment frequency (7.1 Hz, 3.2 SD was significantly higher than derecruitment frequency (5.4 Hz, 2.4 SD. Coactive unit pairs that fired for more than 4 s showed high (R2>0.7, n=4 or low (R2:0.3-0.7, n=12 rate-rate correlations, and derecruitment reversals (21 pairs, 29%. Later recruited units had higher or lower maximal firing rates than lower threshold units. These discrepant data show that coactive motoneurons are driven by both common inputs and by synaptic inputs from different sources during muscle spasms. Further, thenar motoneurons can still fire at high rates in response to various peripheral inputs after spinal cord injury, supporting the idea that low maximal voluntary firing rates and forces in thenar muscles result from reduced descending drive.

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  14. Characterizing the location of spinal and vertebral levels in the human cervical spinal cord.

    Science.gov (United States)

    Cadotte, D W; Cadotte, A; Cohen-Adad, J; Fleet, D; Livne, M; Wilson, J R; Mikulis, D; Nugaeva, N; Fehlings, M G

    2015-04-01

    Advanced MR imaging techniques are critical to understanding the pathophysiology of conditions involving the spinal cord. We provide a novel, quantitative solution to map vertebral and spinal cord levels accounting for anatomic variability within the human spinal cord. For the first time, we report a population distribution of the segmental anatomy of the cervical spinal cord that has direct implications for the interpretation of advanced imaging studies most often conducted across groups of subjects. Twenty healthy volunteers underwent a T2-weighted, 3T MRI of the cervical spinal cord. Two experts marked the C3-C8 cervical nerve rootlets, C3-C7 vertebral bodies, and pontomedullary junction. A semiautomated algorithm was used to locate the centerline of the spinal cord and measure rostral-caudal distances from a fixed point in the brain stem, the pontomedullary junction, to each of the spinal rootlets and vertebral bodies. Distances to each location were compared across subjects. Six volunteers had 2 additional scans in neck flexion and extension to measure the effects of patient positioning in the scanner. We demonstrated that substantial variation exists in the rostral-caudal position of spinal cord segments among individuals and that prior methods of predicting spinal segments are imprecise. We also show that neck flexion or extension has little effect on the relative location of vertebral-versus-spinal levels. Accounting for spinal level variation is lacking in existing imaging studies. Future studies should account for this variation for accurate interpretation of the neuroanatomic origin of acquired MR signals. © 2015 by American Journal of Neuroradiology.

  15. Effect of classic back massage on spinal pain in a woman with large breasts - case report

    Directory of Open Access Journals (Sweden)

    Natalia Zielińska

    2017-07-01

    Full Text Available Introduction. The most common ailment of the motion system is spinal pain. For one of the main reasons, it consider a sedentary lifestyle that weakens the musculo-skeletal system, obesity that increases spine load, sleep disorders resulting from unsettled positions during rest or sleep, and chronic stress. The use of massage can reduce the painful pain of the spine, by loosening the excessively tight spine muscles, the articular joints of the joints and the relaxation of the body. Objective. An assessment of the effect of classical spine massage on spinal pain in a woman with large breasts. Material and methods. 10 massage treatments of the classical ridge using olive oil were performed. Sessions took place 2-3 times a week after 30-50 minutes. Before and after intervention were measured: linear measurements of upper and lower limbs; Measurement of the first and short long and short for the upper and lower limbs for the upper and lower extremities; Measurement of the range of mobility of individual segments of the spine; Measurement of muscle strength of the cervical, thoracic and lumbar musculature of the upper limbs; Assessment of deviation from the symmetry of body posture. Also tested was the Cross Stroke Challenge, finger-to-floor test, lumbar vertebrae overtaxis test, Laseque test, Scherer test and Gilett test. Results. The difference in the range of motion, ie the flexion of the thorax and lumbar spine and the finger-to-floor examination, was statistically significantly different. After intervention the silhouette of the body was positioned closer to the vertical axis. The Laseque test for both lower limbs turned out to be negative. The difference in linear and limb length measurements and the Schober test was not statistically significant. The test of cross-provocation, the overtaking test for the lumbar spine movement and the Gillet test did not show deviations before or after intervention. Conclusions. Therapeutic massage of the

  16. Disorders of spinal blood circulation

    OpenAIRE

    Hevyak, O.M.; Kuzminskyy, A.P.

    2017-01-01

    Spinal strokes are rare. The most common causes of the haemorrhage are spinal cord trauma, vasculitis with signs of haemorrhagic diathesis, spinal vascular congenital anomalies (malformations) and haemangioma. By localization, haemorrhagic strokes are divided into three groups: haematomyelia, spinal subarachnoid haemorrhage, epidural hematoma. Most cavernous malformations are localized at the cervical level, fewer — at thoracic and lumbar levels of the spinal cord. The clinical case of diagno...

  17. Spontaneous Spinal Epidural Hematoma as a Potentially Important Stroke Mimic

    Directory of Open Access Journals (Sweden)

    Tetsu Akimoto

    2014-01-01

    Full Text Available Hemiparesis develops in response to a wide range of neurological disorders, such as stroke, neoplasms and several inflammatory processes. Occasionally, it may also occur due to a lesion located in the high cervical spinal cord. In this concise review, we describe the features of spontaneous spinal epidural hematoma, which should be included in the large list of stroke mimics. Various concerns regarding the diagnostic and therapeutic conundrums relating to the condition are also discussed.

  18. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  19. The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery.

    Science.gov (United States)

    Mummaneni, Praveen V; Shaffrey, Christopher I; Lenke, Lawrence G; Park, Paul; Wang, Michael Y; La Marca, Frank; Smith, Justin S; Mundis, Gregory M; Okonkwo, David O; Moal, Bertrand; Fessler, Richard G; Anand, Neel; Uribe, Juan S; Kanter, Adam S; Akbarnia, Behrooz; Fu, Kai-Ming G

    2014-05-01

    Minimally invasive surgery (MIS) is an alternative to open deformity surgery for the treatment of patients with adult spinal deformity. However, at this time MIS techniques are not as versatile as open deformity techniques, and MIS techniques have been reported to result in suboptimal sagittal plane correction or pseudarthrosis when used for severe deformities. The minimally invasive spinal deformity surgery (MISDEF) algorithm was created to provide a framework for rational decision making for surgeons who are considering MIS versus open spine surgery. A team of experienced spinal deformity surgeons developed the MISDEF algorithm that incorporates a patient's preoperative radiographic parameters and leads to one of 3 general plans ranging from MIS direct or indirect decompression to open deformity surgery with osteotomies. The authors surveyed fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 20 cases to establish interobserver reliability. They then resurveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and tabulated. Fleiss' analysis was performed using MATLAB software. Over a 3-month period, 11 surgeons completed the surveys. Responses for MISDEF algorithm case review demonstrated an interobserver kappa of 0.58 for the first round of surveys and an interobserver kappa of 0.69 for the second round of surveys, consistent with substantial agreement. In at least 10 cases there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.86 ± 0.15 (± SD) and ranged from 0.62 to 1. The use of the MISDEF algorithm provides consistent and straightforward guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity. The MISDEF algorithm was found to have substantial inter- and

  20. In Vivo MRI Measurement of Spinal Cord Displacement in the Thoracolumbar Region of Asymptomatic Subjects with Unilateral and Sham Straight Leg Raise Tests.

    Directory of Open Access Journals (Sweden)

    M Rade

    Full Text Available Normal displacement of the conus medullaris with unilateral and bilateral SLR has been quantified and the "principle of linear dependence" has been described.Explore whether previously recorded movements of conus medullaris with SLRs are i primarily due to transmission of tensile forces transmitted through the neural tissues during SLR or ii the result of reciprocal movements between vertebrae and nerves.Controlled radiologic study.Ten asymptomatic volunteers were scanned with a 1.5T magnetic resonance (MR scanner using T2 weighted spc 3D scanning sequences and a device that permits greater ranges of SLR. Displacement of the conus medullaris during the unilateral and sham SLR was quantified reliably with a randomized procedure. Conus displacement in response to unilateral and sham SLRs was quantified and the results compared.The conus displaced caudally in the spinal canal by 3.54±0.87 mm (mean±SD with unilateral (p≤.001 and proximally by 0.32±1.6 mm with sham SLR (p≤.542. Pearson correlations were higher than 0.99 for both intra- and inter-observer reliability and the observed power was 1 for unilateral SLRs and 0.054 and 0.149 for left and right sham SLR respectively.Four relevant points emerge from the presented data: i reciprocal movements between the spinal cord and the surrounding vertebrae are likely to occur during SLR in asymptomatic subjects, ii conus medullaris displacement in the vertebral canal with SLR is primarily due to transmission of tensile forces through the neural tissues, iii when tensile forces are transmitted through the neural system as in the clinical SLR, the magnitude of conus medullaris displacement prevails over the amount of bone adjustment.

  1. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study.

    Science.gov (United States)

    Danner, Simon M; Hofstoetter, Ursula S; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2011-03-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation, and movement. The human lumbar cord has become a target for modification of motor control by epidural and, more recently, by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large-diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are coactivated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Cerebral Vasospasm with Ischemia following a Spontaneous Spinal Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Sophia F. Shakur

    2013-01-01

    Full Text Available Cerebral vasospasm is a well-known consequence of aneurysmal subarachnoid hemorrhage (SAH triggered by blood breakdown products. Here, we present the first case of cerebral vasospasm with ischemia following a spontaneous spinal SAH. A 67-year-old woman, who was on Coumadin for atrial fibrillation, presented with chest pain radiating to the back accompanied by headache and leg paresthesias. The international normalized ratio (INR was 4.5. Ten hours after presentation, she developed loss of movement in both legs and lack of sensation below the umbilicus. Spine MRI showed intradural hemorrhage. Her coagulopathy was reversed, and she underwent T2 to T12 laminectomies. A large subarachnoid hematoma was evacuated. Given her complaint of headache preoperatively and the intraoperative finding of spinal SAH, a head CT was done postoperatively that displayed SAH in peripheral sulci. On postoperative day 5, she became obtunded. Brain MRI demonstrated focal restricted diffusion in the left frontoparietal area. Formal angiography revealed vasospasm in anterior cerebral arteries bilaterally and right middle cerebral artery. Vasospasm was treated, and she returned to baseline within 48 hours. Spontaneous spinal SAH can result in the same sequelae typically associated with aneurysmal SAH, and the clinician must have a degree of suspicion in such patients. The pathophysiological mechanisms underlying cerebral vasospasm may explain this unique case.

  3. Spinal cord injuries among paragliders in Norway.

    Science.gov (United States)

    Rekand, T; Schaanning, E E; Varga, V; Schattel, U; Gronning, M

    2008-06-01

    A national retrospective descriptive study. To study the clinical effects of spinal cord injuries (SCIs) caused by paragliding accidents in Norway. Spinal cord units at Haukeland University Hospital, Sunnaas Rehabilitation Hospital and St Olav Hospital in Norway. We studied the medical files for nine patients with SCI caused by paragliding accidents to evaluate the circumstances of the accidents, and clinical effects of injury. We obtained the data from hospital patient files at all three spinal units in Norway and crosschecked them through the Norwegian Paragliding Association's voluntary registry for injuries. All patients were hospitalized from 1997 to 2006, eight men and one woman, with mean age 30.7 years. The causes of the accidents were landing problems combined with unexpected wind whirls, technical problems and limited experience with unexpected events. All patients contracted fractures in the thoracolumbal junction of the spine, most commonly at the L1 level. At clinical follow-up, all patients presented clinically incomplete SCI (American Spinal Injury Association impairment scores B-D). Their main health problems differed widely, ranging from urinary and sexual disturbances to neuropathic pain and loss of motor functioning. Only three patients returned to full-time employment after rehabilitation. Paragliding accidents cause spinal fractures predominantly in the thoracolumbal junction with subsequent SCIs and increased morbidity. All patients experienced permanent health problems that influenced daily activities and required long-time clinical follow-up and medical intervention. Better education in landing techniques and understanding of aerodynamics may reduce the risk of paragliding accidents.

  4. Radiological evaluation of the cervical spinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Bae, W. K.; Koh, B. H.; Hahm, C. K.; Kim, J. J. [School of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1983-03-15

    Acute injuries of the cervical spine are the most common causes of severe disability following trauma, yet the diagnosis of these injuries are often delayed and the treatment, inadequate. Traumatic injuries of the cervical spine are diagnosed by radiological examinations. And complete evaluations of bony structures and soft tissue changes on conventional radiograms are very important for determining the therapeutic plans and prognoses of the injuries patients. During the period of 5 years from June 1976 to May 1981, the radiological and clinical evaluation had been made on 38 patients suffered from acute cervical spinal injuries which were confirmed by the radiological examinations. The results were as follows. 1. Age distribution of total 38 patients was broad ranging from 19 years to 72 years. 2. The most common cause of injury was traffic accident, next fall down, other accident respectively. 3. Levels of the cervical spinal injuries were as follows: Upper cervical spine in 15.8%, lower cervical spine in 84.2%, and the most common injuries level was C 5. Most of the lower cervical spinal injuries were located in the vertebral body and spinous process. 4. Anatomical sites of the cervical spinal injuries were as follows; vertebral body in 55.5%, spinous process in 23.7%, neural arch in 15.8%, and locked facet in 18.4%, etc. 5. Most of the patients with severe mental changes were injuries in upper cervical spine rather than lower. And most of the patients with quadriplegia or paraplegia were shown marked disruption of spinal canal.

  5. Radiological evaluation of the cervical spinal trauma

    International Nuclear Information System (INIS)

    Bae, W. K.; Koh, B. H.; Hahm, C. K.; Kim, J. J.

    1983-01-01

    Acute injuries of the cervical spine are the most common causes of severe disability following trauma, yet the diagnosis of these injuries are often delayed and the treatment, inadequate. Traumatic injuries of the cervical spine are diagnosed by radiological examinations. And complete evaluations of bony structures and soft tissue changes on conventional radiograms are very important for determining the therapeutic plans and prognoses of the injuries patients. During the period of 5 years from June 1976 to May 1981, the radiological and clinical evaluation had been made on 38 patients suffered from acute cervical spinal injuries which were confirmed by the radiological examinations. The results were as follows. 1. Age distribution of total 38 patients was broad ranging from 19 years to 72 years. 2. The most common cause of injury was traffic accident, next fall down, other accident respectively. 3. Levels of the cervical spinal injuries were as follows: Upper cervical spine in 15.8%, lower cervical spine in 84.2%, and the most common injuries level was C 5. Most of the lower cervical spinal injuries were located in the vertebral body and spinous process. 4. Anatomical sites of the cervical spinal injuries were as follows; vertebral body in 55.5%, spinous process in 23.7%, neural arch in 15.8%, and locked facet in 18.4%, etc. 5. Most of the patients with severe mental changes were injuries in upper cervical spine rather than lower. And most of the patients with quadriplegia or paraplegia were shown marked disruption of spinal canal

  6. Relative shortening and functional tethering of spinal cord in adolescent scoliosis - Result of asynchronous neuro-osseous growth, summary of an electronic focus group debate of the IBSE.

    Science.gov (United States)

    Chu, Winnie Cw; Lam, Wynnie Mw; Ng, Bobby Kw; Tze-Ping, Lam; Lee, Kwong-Man; Guo, Xia; Cheng, Jack Cy; Burwell, R Geoffrey; Dangerfield, Peter H; Jaspan, Tim

    2008-06-27

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The Statement for this debate was written by Dr WCW Chu and colleagues who examine the spinal cord to vertebral growth interaction during adolescence in scoliosis. Using the multi-planar reconstruction technique of magnetic resonance imaging they investigated the relative length of spinal cord to vertebral column including ratios in 28 girls with AIS (mainly thoracic or double major curves) and 14 age-matched normal girls. Also evaluated were cerebellar tonsillar position, somatosensory evoked potentials (SSEPs), and clinical neurological examination. In severe AIS compared with normal controls, the vertebral column is significantly longer without detectable spinal cord lengthening. They speculate that anterior spinal column overgrowth relative to a normal length spinal cord exerts a stretching tethering force between the two ends, cranially and caudally leading to the initiation and progression of thoracic AIS. They support and develop the Roth-Porter concept of uncoupled neuro-osseous growth in the pathogenesis of AIS which now they prefer to term 'asynchronous neuro-osseous growth'. Morphological evidence about the curve apex suggests that the spinal cord is also affected, and a 'double pathology' is suggested. AIS is viewed as a disorder with a wide spectrum and a common neuroanatomical abnormality namely, a spinal cord of normal length but short relative to an abnormally lengthened anterior vertebral column. Neuroanatomical changes and/or abnormal neural function may be expressed only in severe cases. This asynchronous neuro-osseous growth concept is regarded as

  7. The timing of control signals underlying fast point-to-point arm movements.

    Science.gov (United States)

    Ghafouri, M; Feldman, A G

    2001-04-01

    It is known that proprioceptive feedback induces muscle activation when the facilitation of appropriate motoneurons exceeds their threshold. In the suprathreshold range, the muscle-reflex system produces torques depending on the position and velocity of the joint segment(s) that the muscle spans. The static component of the torque-position relationship is referred to as the invariant characteristic (IC). According to the equilibrium-point (EP) hypothesis, control systems produce movements by changing the activation thresholds and thus shifting the IC of the appropriate muscles in joint space. This control process upsets the balance between muscle and external torques at the initial limb configuration and, to regain the balance, the limb is forced to establish a new configuration or, if the movement is prevented, a new level of static torques. Taken together, the joint angles and the muscle torques generated at an equilibrium configuration define a single variable called the EP. Thus by shifting the IC, control systems reset the EP. Muscle activation and movement emerge following the EP resetting because of the natural physical tendency of the system to reach equilibrium. Empirical and simulation studies support the notion that the control IC shifts and the resulting EP shifts underlying fast point-to-point arm movements are gradual rather than step-like. However, controversies exist about the duration of these shifts. Some studies suggest that the IC shifts cease with the movement offset. Other studies propose that the IC shifts end early in comparison to the movement duration (approximately, at peak velocity). The purpose of this study was to evaluate the duration of the IC shifts underlying fast point-to-point arm movements. Subjects made fast (hand peak velocity about 1.3 m/s) planar arm movements toward different targets while grasping a handle. Hand forces applied to the handle and shoulder/elbow torques were, respectively, measured from a force sensor placed

  8. Management of Penetrating Spinal Cord Injuries in a Non Spinal ...

    African Journals Online (AJOL)

    Management of Penetrating Spinal Cord Injuries in a Non Spinal Centre: Experience at Enugu, Nigeria. ... The thoracic spine{9(41%)}was most often involved. ... Five (23%) patients with injury at cervical level died from respiratory failure.

  9. Spinal stenosis

    Science.gov (United States)

    ... in the spine that was present from birth Narrow spinal canal that the person was born with Herniated or slipped disk, which ... when you sit down or lean forward. Most people with spinal stenosis cannot walk for a long ... During a physical exam, your health care provider will try to ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising new treatments for spinal cord injuries? play_arrow What are the latest developments in the use of electrical stimulation for spinal cord injuries? play_arrow ...

  11. Health conditions in people with spinal cord injury: Contemporary evidence from a population-based community survey in Switzerland.

    Science.gov (United States)

    Brinkhof, Martin W G; Al-Khodairy, Abdul; Eriks-Hoogland, Inge; Fekete, Christine; Hinrichs, Timo; Hund-Georgiadis, Margret; Meier, Sonja; Scheel-Sailer, Anke; Schubert, Martin; Reinhardt, Jan D

    2016-02-01

    Health conditions in people with spinal cord injury are major determinants for disability, reduced well-being, and mortality. However, population-based evidence on the prevalence and treatment of health conditions in people with spinal cord injury is scarce. To investigate health conditions in Swiss residents with spinal cord injury, specifically to analyse their prevalence, severity, co-occurrence, and treatment. Cross-sectional data (n = 1,549) from the community survey of the Swiss Spinal Cord Injury (SwiSCI) cohort study, including Swiss residents with spinal cord injury aged over 16 years, were analysed. Nineteen health conditions and their self-reported treatment were assessed with the spinal cord injury Secondary Conditions Scale and the Self-Administered Comorbidity Questionnaire. Prevalence and severity were compared across demographics and spinal cord injury characteristics. Co-occurrence of health conditions was examined using a binary non-metric dissimilarity measure and multi-dimensional scaling. Treatment rates were also examined. Number of concurrent health conditions was high (median 7; interquartile range 4-9; most frequent: spasticity, chronic pain, sexual dysfunction). Prevalence of health conditions increased with age and was higher in non-traumatic compared with traumatic spinal cord injury. Spinal cord injury specific conditions co-occurred. Relative frequencies of treatment were low (median 44%, interquartile range 25-64%), even for significant or chronic problems. A high prevalence of multimorbidity was found in community-dwelling persons with spinal cord injury. Treatment for some highly prevalent health conditions was infrequent.

  12. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study

    Science.gov (United States)

    Fernandes, Sofia R.; Salvador, Ricardo; Wenger, Cornelia; de Carvalho, Mamede; Miranda, Pedro C.

    2018-06-01

    Objective. Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. Approach. A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. Main results. The average E-field magnitude was predicted to be above 0.15 V m-1 in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m-1). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. Significance. Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.

  13. Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection.

    Science.gov (United States)

    Falci, Scott; Indeck, Charlotte; Barnkow, Dave

    2018-06-01

    OBJECTIVE Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators. METHODS Three unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords-only cephalad to the level of spinal cord transection-with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years. RESULTS All 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators. CONCLUSIONS The results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique

  14. Spinal cord stimulation: Background and clinical application

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    a number of contacts capable of delivering a weak electrical current to the spinal cord, evoking a feeling of peripheral paresthesia. With correct indication and if implanted by an experienced implanter, success rates generally are in the range of about 50–75%. Common indications include complex regional...

  15. Non osseous intra-spinal tumors in children and adolescents: spinal column deformity (in french)

    International Nuclear Information System (INIS)

    Ghanem, I.; Zeller, R.; Dubousset, J.

    1997-01-01

    Purpose of the study. The delay in diagnosis of spinal tumors is not rare. The chief complaint may include pain, walking disability and spinal or limb deformities. The purpose of our study is to analyze the spinal deformities associated with non osseous intra-spinal tumors, to assess the complications of treatment, and to set out a preventive protocol. Methods. The incidence and pattern of spinal deformity was assessed before tumor treatment and ultimately after laminectomy or osteoplastic laminotomy (or lamino-plasty). Results. Among the 9 cases with preexisting spinal deformity, the curve magnitude increased after laminectomy in 4. A kyphotic, kyphoscoliotic or scoliotic deformity developed in 18 cases after surgery for tumor resection. Among these 18 patients, only one had bad an adequate osteoplastic laminotomy. The treatment of spinal deformities was surgical in 12 cases, and done by either posterior or anterior and posterior combined arthrodesis. Discussion. Spinal deformity may be the main complaint of a patient who has intraspinal tumor. Prevention of post-laminectomy spinal deformity is mandatory, and could be done by osteoplastic laminotomy and the use of a brace during a minimum period of 4 to 6 months after surgery. Conclusion. Diagnosis of intraspinal tumors in children and adolescents should be done early, and lamino-arthrectomy should be replaced by osteoplastic laminotomy. (authors)

  16. Body-Machine Interfaces after Spinal Cord Injury: Rehabilitation and Brain Plasticity

    Directory of Open Access Journals (Sweden)

    Ismael Seáñez-González

    2016-12-01

    Full Text Available The purpose of this study was to identify rehabilitative effects and changes in white matter microstructure in people with high-level spinal cord injury following bilateral upper-extremity motor skill training. Five subjects with high-level (C5–C6 spinal cord injury (SCI performed five visuo-spatial motor training tasks over 12 sessions (2–3 sessions per week. Subjects controlled a two-dimensional cursor with bilateral simultaneous movements of the shoulders using a non-invasive inertial measurement unit-based body-machine interface. Subjects’ upper-body ability was evaluated before the start, in the middle and a day after the completion of training. MR imaging data were acquired before the start and within two days of the completion of training. Subjects learned to use upper-body movements that survived the injury to control the body-machine interface and improved their performance with practice. Motor training increased Manual Muscle Test scores and the isometric force of subjects’ shoulders and upper arms. Moreover, motor training increased fractional anisotropy (FA values in the cingulum of the left hemisphere by 6.02% on average, indicating localized white matter microstructure changes induced by activity-dependent modulation of axon diameter, myelin thickness or axon number. This body-machine interface may serve as a platform to develop a new generation of assistive-rehabilitative devices that promote the use of, and that re-strengthen, the motor and sensory functions that survived the injury.

  17. Chronic spinal subdural hematoma

    International Nuclear Information System (INIS)

    Hagen, T.; Lensch, T.

    2008-01-01

    Compared with spinal epidural hematomas, spinal subdural hematomas are rare; chronic forms are even more uncommon. These hematomas are associated not only with lumbar puncture and spinal trauma, but also with coagulopathies, vascular malformations and tumors. Compression of the spinal cord and the cauda equina means that the patients develop increasing back or radicular pain, followed by paraparesis and bladder and bowel paralysis, so that in most cases surgical decompression is carried out. On magnetic resonance imaging these hematomas present as thoracic or lumbar subdural masses, their signal intensity varying with the age of the hematoma. We report the clinical course and the findings revealed by imaging that led to the diagnosis in three cases of chronic spinal subdural hematoma. (orig.) [de

  18. A very rare spinal cord tumor primary spinal oligodendroglioma: A review of sixty cases in the literature

    Directory of Open Access Journals (Sweden)

    Askin Esen Hasturk

    2017-01-01

    Full Text Available Literature review. In this study, we evaluated a case of primary spinal oligodendroglioma (PSO with a rare localization between L3 and S2, and also examined sixty cases in the literature in terms of demographic characteristics, clinical, radiological, and histopathological characteristics, and treatment planning. A case of PSO has been presented, and the relevant literature between 1931 and 2016 was reviewed. A total of 57 papers regarding PSO were found and utilized in this review. The main treatment options include radical surgical excision with neuromonitoring, followed by radiotherapy. Despite these treatment protocols, the relapse rate is high, and treatment does not significantly prolong survival. Oligodendrogliomas are rare among the primary spinal cord tumors. Oligodendrogliomas are predominantly found in the cervical spinal cord, thoracic spinal cord, or junctions during childhood and adulthood. Extension to the sacral region, inferior to the Conus, is very rare. Furthermore, of the sixty cases in the literature, the case we present here is the first to be reported in this particular age group. These localizations usually occur in the pediatric age group and after relapses. While for a limited number of cases the oligodendroglioma initiates in the thoracic region and reaches as far as L2, we encountered a case of an oligodendroglioma within the range of L3 to S2. Clinical findings are observed in accordance with location, and magnetic resonance imaging is the gold standard for diagnosis.

  19. Imaging procedures in spinal infectious diseases

    International Nuclear Information System (INIS)

    Rodiek, S.O.

    2001-01-01

    A targeted successful treatment of spinal infectious diseases requires clinical and laboratory data that are completed by the contribution of imaging procedures. Neuroimaging only provides essential informations on the correct topography, localisation, acuity and differential diagnosis of spinal infectious lesions. MRI with its sensitivity concerning soft tissue lesions is a useful tool in detecting infectious alterations of spinal bone marrow, intervertebral disks, leptomeninges and the spinal cord itself. Crucial imaging patterns of typical spinal infections are displayed and illustrated by clinical case studies. We present pyogenic, granulomatous and postoperative variants of spondylodicitis, spinal epidural abscess, spinal meningitis and spinal cord infections. The importance of intravenous contrastmedia application is pointed out. (orig.) [de

  20. Approach to the irradiation of extensive cervical and upper thoracic spinal astrocytoma

    International Nuclear Information System (INIS)

    Dvorak, E.

    1981-01-01

    Intramedullary spinal cord tumors are relatively rare, especially to the extent presented in this report. A 31-year-old woman had been diagnosed as having an inoperable astrocytoma, grade I-II, involving the entire cervical spinal cord and two upper thoracic segments. After decompressive laminectomy, she was referred for a radical course of radiation therapy. An irradiation technique was devised which allowed treatment of a single cylindrical volume of tissue encompassing the known tumor. Field fractionation with undesirable gaps and/or excessive dose to overlying normal structures was avoided. To the cervical spinal cord she received 5590 cGy in 29 fractions over 42 days. By this schedule she received at the same time 4820 cGy to the medulla oblongata and 4880 cGy to the upper thoracic cord. Partial neurological improvement occurred at the end of the treatment. The treatment approach is discussed in the background of the literature data. (orig.) [de

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... the spinal cord work? play_arrow Why is the level of a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  2. Long-range movement of humpback whales and their overlap with anthropogenic activity in the South Atlantic Ocean.

    Science.gov (United States)

    Rosenbaum, Howard C; Maxwell, Sara M; Kershaw, Francine; Mate, Bruce

    2014-04-01

    Humpback whales (Megaptera novaeangliae) are managed by the International Whaling Commission as 7 primary populations that breed in the tropics and migrate to 6 feeding areas around the Antarctic. There is little information on individual movements within breeding areas or migratory connections to feeding grounds. We sought to better understand humpback whale habitat use and movements at breeding areas off West Africa, and during the annual migration to Antarctic feeding areas. We also assessed potential overlap between whale habitat and anthropogenic activities. We used Argos satellite-monitored radio tags to collect data on 13 animals off Gabon, a primary humpback whale breeding area. We quantified habitat use for 3 cohorts of whales and used a state-space model to determine transitions in the movement behavior of individuals. We developed a spatial metric of overlap between whale habitat and models of cumulative human activities, including oil platforms, toxicants, and shipping. We detected strong heterogeneity in movement behavior over time that is consistent with previous genetic evidence of multiple populations in the region. Breeding areas for humpback whales in the eastern Atlantic were extensive and extended north of Gabon late in the breeding season. We also observed, for the first time, direct migration between West Africa and sub-Antarctic feeding areas. Potential overlap of whale habitat with human activities was the highest in exclusive economic zones close to shore, particularly in areas used by both individual whales and the hydrocarbon industry. Whales potentially overlapped with different activities during each stage of their migration, which makes it difficult to implement mitigation measures over their entire range. Our results and existing population-level data may inform delimitation of populations and actions to mitigate potential threats to whales as part of local, regional, and international management of highly migratory marine species.

  3. Physically coupling two objects in a bimanual task alters kinematics but not end-state comfort.

    Science.gov (United States)

    Hughes, Charmayne M L; Haddad, Jeffrey M; Franz, Elizabeth A; Zelaznik, Howard N; Ryu, Joong Hyun

    2011-06-01

    People often grasp objects with an awkward grip to ensure a comfortable hand posture at the end of the movement. This end-state comfort effect is a predominant constraint during unimanual movements. However, during bimanual movements the tendency for both hands to satisfy end-state comfort is affected by factors such as end-orientation congruency and task context. Although bimanual end-state comfort has been examined when the hands manipulate two independent objects, no research has examined end-state comfort when the hands are required to manipulate two physically-coupled objects. In the present experiment, kinematics and grasp behavior during a unimanual and bimanual reaching and placing tasks were examined, when the hands manipulate two physically-connected objects. Forty-five participants were assigned to one of three groups; unimanual, bimanual no-spring (the objects were not physically connected), and bimanual spring (the objects were connected by a spring), and instructed to grasp and place objects in various end-orientations, depending on condition. Physically connecting the objects did not affect end-state comfort prevalence. However, it resulted in decreased interlimb coupling. This finding supports the notion of a flexible constraint hierarchy, in which action goals guide the selection of lower level action features (i.e., hand grip used for grasping), and the particular movements used to accomplish that goal (i.e., interlimb coupling) are controlled throughout the movement.

  4. Spinal CT scan, 1

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi

    1982-01-01

    Methods of CT of the cervical and thoracic spines were explained, and normal CT pictures of them were described. Spinal CT was evaluated in comparison with other methods in various spinal diseases. Plain CT revealed stenosis due to spondylosis or ossification of posterior longitudinal ligament and hernia of intervertebral disc. CT took an important role in the diagnosis of spinal cord tumors with calcification and destruction of the bone. CT scan in combination with other methods was also useful for the diagnosis of spinal injuries, congenital anomalies and infections. (Ueda, J.)

  5. Spinal injury in sport

    Energy Technology Data Exchange (ETDEWEB)

    Barile, Antonio [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy)]. E-mail: antonio.barile@cc.univaq.it; Limbucci, Nicola [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Splendiani, Alessandra [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Gallucci, Massimo [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Masciocchi, Carlo [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy)

    2007-04-15

    Spinal injuries are very common among professional or amateur athletes. Spinal sport lesions can be classified in overuse and acute injuries. Overuse injuries can be found after years of repetitive spinal load during sport activity; however specific overuse injuries can also be found in adolescents. Acute traumas are common in contact sports. Most of the acute injuries are minor and self-healing, but severe and catastrophic events are possible. The aim of this article is to review the wide spectrum of spinal injuries related to sport activity, with special regard to imaging finding.

  6. Spinal injury in sport

    International Nuclear Information System (INIS)

    Barile, Antonio; Limbucci, Nicola; Splendiani, Alessandra; Gallucci, Massimo; Masciocchi, Carlo

    2007-01-01

    Spinal injuries are very common among professional or amateur athletes. Spinal sport lesions can be classified in overuse and acute injuries. Overuse injuries can be found after years of repetitive spinal load during sport activity; however specific overuse injuries can also be found in adolescents. Acute traumas are common in contact sports. Most of the acute injuries are minor and self-healing, but severe and catastrophic events are possible. The aim of this article is to review the wide spectrum of spinal injuries related to sport activity, with special regard to imaging finding

  7. Spinal cord stimulation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007560.htm Spinal cord stimulation To use the sharing features on this page, please enable JavaScript. Spinal cord stimulation is a treatment for pain that uses ...

  8. Relative shortening and functional tethering of spinal cord in adolescent scoliosis – Result of asynchronous neuro-osseous growth, summary of an electronic focus group debate of the IBSE

    Directory of Open Access Journals (Sweden)

    Burwell R Geoffrey

    2008-06-01

    Full Text Available Abstract There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS. As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE introduced the electronic focus group (EFG as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The Statement for this debate was written by Dr WCW Chu and colleagues who examine the spinal cord to vertebral growth interaction during adolescence in scoliosis. Using the multi-planar reconstruction technique of magnetic resonance imaging they investigated the relative length of spinal cord to vertebral column including ratios in 28 girls with AIS (mainly thoracic or double major curves and 14 age-matched normal girls. Also evaluated were cerebellar tonsillar position, somatosensory evoked potentials (SSEPs, and clinical neurological examination. In severe AIS compared with normal controls, the vertebral column is significantly longer without detectable spinal cord lengthening. They speculate that anterior spinal column overgrowth relative to a normal length spinal cord exerts a stretching tethering force between the two ends, cranially and caudally leading to the initiation and progression of thoracic AIS. They support and develop the Roth-Porter concept of uncoupled neuro-osseous growth in the pathogenesis of AIS which now they prefer to term 'asynchronous neuro-osseous growth'. Morphological evidence about the curve apex suggests that the spinal cord is also affected, and a 'double pathology' is suggested. AIS is viewed as a disorder with a wide spectrum and a common neuroanatomical abnormality namely, a spinal cord of normal length but short relative to an abnormally lengthened anterior vertebral column. Neuroanatomical changes and/or abnormal neural function may be expressed only in severe cases. This asynchronous neuro-osseous growth

  9. Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats.

    Science.gov (United States)

    Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-01-01

    This study examined the role of β-adrenergic and opioid receptors in spinal reflex bladder activity and in the inhibition induced by pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS). Spinal reflex bladder contractions were induced by intravesical infusion of 0.25% acetic acid in α-chloralose-anesthetized cats after an acute spinal cord transection (SCT) at the thoracic T9/T10 level. PNS or TNS at 5 Hz was applied to inhibit these spinal reflex contractions at 2 and 4 times the threshold intensity (T) for inducing anal or toe twitch, respectively. During a cystrometrogram (CMG), PNS at 2T and 4T significantly (P reflex bladder contractions. After administering propranolol (3 mg/kg iv, a β₁/β₂-adrenergic receptor antagonist), the effects of 2T and 4T PNS on bladder capacity were significantly (P reflex bladder contractions or PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P reflex bladder contractions. This study indicates an important role of β₁/β₂-adrenergic receptors in pudendal inhibition and spinal reflex bladder activity. Copyright © 2015 the American Physiological Society.

  10. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  11. Comparison of Path Length and Ranges of Movement of the Center of Pressure and Reaction Time and Between Paired-Play and Solo-Play of a Virtual Reality Game.

    Science.gov (United States)

    Portnoy, Sigal; Hersch, Ayelet; Sofer, Tal; Tresser, Sarit

    2017-06-01

    To test whether paired-play will induce longer path length and ranges of movement of the center of pressure (COP), which reflects on balance performance and stability, compared to solo-play and to test the difference in the path length and ranges of movement of the COP while playing the virtual reality (VR) game with the dominant hand compared to playing it with the nondominant hand. In this cross-sectional study 20 children (age 6.1 ± 0.7 years old) played an arm movement controlled VR game alone and with a peer while each of them stood on a pressure measuring pad to track the path length and ranges of movement of the COP. The total COP path was significantly higher during the paired-play (median 295.8 cm) compared to the COP path during the solo-play (median 189.2 cm). No significant differences were found in the reaction time and the mediolateral and anterior-posterior COP ranges between solo-play and paired-play. No significant differences were found between the parameters extracted during paired-play with the dominant or nondominant hand. Our findings imply that the paired-play is advantageous compared to solo-play since it induces a greater movement for the child, during which, higher COP velocities are reached that may contribute to improving the balance control of the child. Apart from the positive social benefits of paired-play, this positive effect on the COP path length is a noteworthy added value in the clinical setting when treating children with balance disorder.

  12. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    Science.gov (United States)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.

    2013-08-01

    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  14. Organization of projections from the spinal trigeminal subnucleus oralis to the spinal cord in the rat: a neuroanatomical substrate for reciprocal orofacial-cervical interactions.

    Science.gov (United States)

    Devoize, Laurent; Doméjean, Sophie; Melin, Céline; Raboisson, Patrick; Artola, Alain; Dallel, Radhouane

    2010-07-09

    The organization of efferent projections from the spinal trigeminal nucleus oralis (Sp5O) to the spinal cord in the rat was studied using the anterograde tracer Phaseolus vulgaris leucoagglutinin. Sp5O projections to the spinal cord are restricted to the cervical cord. No labeled terminal can be detected in the thoracic and lumbar cord. The organization of these projections happens to critically depend on the dorso-ventral location of the injection site. On the one hand, the dorsal part of the Sp5O projects to the medial part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the ipsilateral one. Ipsilateral labeled terminals are distributed throughout laminae VII to IX but tend to cluster around the dorso-medial motor nuclei, especially at C3-C5 levels. Within the contralateral ventral horn, label terminals are found particularly in the region of the ventro-medial motor nucleus. This projection extends as far caudally as C3 or C4 level. On the other hand, the ventral part of the Sp5O projects to the lateral part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the contralateral one. Contralateral labeled terminals are distributed within the region of the dorso- and ventro-medial motor nuclei at C1-C4 levels whereas they are restricted to the dorso-medial motor nucleus at C5-C8 levels. These findings suggest that Sp5O is involved in the coordination of neck movements and in the modulation of incoming sensory information at the cervical spinal cord. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. [Conscious sedation and amnesic effect of intravenous low-dose midazolam prior to spinal anesthesia].

    Science.gov (United States)

    Koyama, Shinichi; Ohashi, Naotsugu; Kurita, Satoshi; Nakatani, Keiji; Nagata, Noboru; Toyoda, Yoshiroh

    2008-06-01

    The pain associated with spinal puncture is severe, and the memory of this uncomfortable procedure often deters patients from undergoing the procedure again. Therefore, it is important to make the patient as comfortable as possible when this procedure is performed. We administrated a low-dose (1-2.5 mg) of midazolam intravenously several minutes before conducting a spinal-tap in 200 patients undergoing elective surgery of the lower limb. The dose of midazolam used was based on the patient's age and weight, and we investigated remaining of a memory concerning the spinal-tap procedure and side effects of midazolam at the end of surgery. Memory of the spinal-tap procedure remained in 14.0%, 1.9%, and 32.7% of the patients who had received benzodiazepine preoperatively and in 25.0%, 40.0%, and 60.9% of the patients who hadn't received benzodiazepine preoperatively in the age group or =70 years, respectively. No patient experienced severe respiratory depression, but an excessive sedation or restlessness was experienced in 1.6%, 4.8%, and 5.2% of the patients. In the patients aged memory concerning the spinal-tap procedure; however, it is important to note that the number of side effects associated with this procedure increases in patients aged > or =60 years.

  16. Radiographic Incidence of Spinal Osteopathologies in Captive Rhesus Monkeys (Macaca mulatta)

    OpenAIRE

    Hernández-Godínez, Braulio; Ibáñez-Contreras, Alejandra; Perdigón-Castañeda, Gerardo; Galván-Montaño, Alfonso; de Oca, Guadalupe García-Montes; Zapata-Valdez, Carinthia; Tena-Betancourt, Eduardo

    2010-01-01

    Degenerative spinal disease is a leading cause of chronic disability both in humans and animals. Although widely seen as a normal occurrence of aging, degenerative spinal disease can be caused by various genetic, iatrogenic, inflammatory, and congenital factors. The objective of this study was to characterize the degenerative spine-related diseases and the age at onset in a random subpopulation of 20 captive rhesus monkeys (Macaca mulatta; male, 13; female, 7; age: range, 4 to 27 y; median, 1...

  17. Perforation and bacterial contamination of microscope covers in lumbar spinal decompressive surgery.

    Science.gov (United States)

    Osterhoff, Georg; Spirig, José; Klasen, Jürgen; Kuster, Stefan P; Zinkernagel, Annelies S; Sax, Hugo; Min, Kan

    2014-01-01

    To determine the integrity of microscope covers and bacterial contamination at the end of lumbar spinal decompressive surgery. A prospective study of 25 consecutive lumbar spinal decompressions with the use of a surgical microscope was performed. For detection of perforations, the microscope covers were filled with water at the end of surgery and the presence of water leakage in 3 zones (objective, ocular and control panel) was examined. For detection of bacterial contamination, swabs were taken from the covers at the same locations before and after surgery. Among the 25 covers, 1 (4%) perforation was observed and no association between perforation and bacterial contamination was seen; 3 (4%) of 75 smears from the 25 covers showed post-operative bacterial contamination, i.e. 2 in the ocular zone and 1 in the optical zone, without a cover perforation. The incidence of microscope cover perforation was very low and was not shown to be associated with bacterial contamination. External sources of bacterial contamination seem to outweigh the problem of contamination due to failure of cover integrity. © 2014 S. Karger AG, Basel.

  18. Human preference for air movement

    DEFF Research Database (Denmark)

    Toftum, Jørn; Melikov, Arsen Krikor; Tynel, A.

    2002-01-01

    Human preference for air movement was studied at slightly cool, neutral, and slightly warm overall thermal sensations and at temperatures ranging from 18 deg.C to 28 deg.C. Air movement preference depended on both thermal sensation and temperature, but large inter-individual differences existed...... between subjects. Preference for less air movement was linearly correlated with draught discomfort, but the percentage of subjects who felt draught was lower than the percentage who preferred less air movement....

  19. Re-irradiation of the human spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Sminia, P [VU University Medical Center, Amsterdam (Netherlands); Academic Medical Center, Amsterdam (Netherlands); Oldenburger, F; Hulshof, M C.C.M. [Academic Medical Center, Amsterdam (Netherlands); Slotman, B J [VU University Medical Center, Amsterdam (Netherlands); Schneider, J J [Academic Medical Center, Amsterdam (Netherlands); Netherlands Cancer Inst./Antoni van Leeuwenhoek Hospital, Amsterdam (Germany)

    2002-08-01

    Purpose: Experimental animal data give evidence of long-term recovery of the spinal cord after irradiation. By extrapolation of these data, re-irradiation regimes were designed for eight patients who required palliative radiotherapy. As a consequence of reirradiation, their spinal cords were exposed to cumulative doses exceeding the tolerance dose. Radiobiological and clinical data are presented. Patients and method: Eight patients were re-irradiated on the cervical (n=1), thoracic (n=5) and lumbar (n=2) spinal cord. The time interval between the initial and re-treatment ranged from 4 months to 12.7 years (median: 2.5 years). (Re-)treatment schemes were designed and analyzed on basis of the biologically effective dose (BED) according to the linear-quadratic model. The repair capacity ({alpha}/{beta} ratio) for the cervico-thoracic and lumbar spinal cord was assumed to be 2 Gy and 4 Gy, with a BED{sub tolerance} of 100 Gy and 84 Gy, respectively. Results: The cumulative irradiation dose applied to the spinal cord varied between 125 and 172% of the BED{sub tolerance}. During follow-up, ranging from 33 days to >4.5 years (median: 370 days) none of the patients developed neurological complications. Seven patients died from tumor progression, and one patient is still alive. Conclusion: Long-term recovery of the spinal cord from radiation injury, which has been demonstrated in rodents and primates, may also occur in humans. (orig.) [German] Gegenstand: Tierversuchsdaten belegen eine Langzeiterholung des Rueckenmarks nach Bestrahlung. Nach Extrapolation dieser Daten wurden Wiederbestrahlungsregimes fuer acht Patienten, die eine palliative Radiotherapie benoetigten, entworfen. Als Konsequenz wurde das Rueckenmark dieser Patienten einer kumulativen Dosis ausgesetzt, die die Rueckenmarkstoleranzdosis ueberschritt. Radiobiologische und klinische Daten werden praesentiert. Patienten und Methodik: Bei acht Patienten wurden das zervikale (n=1), thorakale (n=5) und das lumbale (n

  20. Spinal cord involvement in tuberculous meningitis.

    Science.gov (United States)

    Garg, R K; Malhotra, H S; Gupta, R

    2015-09-01

    To summarize the incidence and spectrum of spinal cord-related complications in patients of tuberculous meningitis. Reports from multiple countries were included. An extensive review of the literature, published in English, was carried out using Scopus, PubMed and Google Scholar databases. Tuberculous meningitis frequently affects the spinal cord and nerve roots. Initial evidence of spinal cord involvement came from post-mortem examination. Subsequent advancement in neuroimaging like conventional lumbar myelography, computed tomographic myelography and gadolinium-enhanced magnetic resonance-myelography have contributed immensely. Spinal involvement manifests in several forms, like tuberculous radiculomyelitis, spinal tuberculoma, myelitis, syringomyelia, vertebral tuberculosis and very rarely spinal tuberculous abscess. Frequently, tuberculous spinal arachnoiditis develops paradoxically. Infrequently, spinal cord involvement may even be asymptomatic. Spinal cord and spinal nerve involvement is demonstrated by diffuse enhancement of cord parenchyma, nerve roots and meninges on contrast-enhanced magnetic resonance imaging. High cerebrospinal fluid protein content is often a risk factor for arachnoiditis. The most important differential diagnosis of tuberculous arachnoiditis is meningeal carcinomatosis. Anti-tuberculosis therapy is the main stay of treatment for tuberculous meningitis. Higher doses of corticosteroids have been found effective. Surgery should be considered only when pathological confirmation is needed or there is significant spinal cord compression. The outcome in these patients has been unpredictable. Some reports observed excellent recovery and some reported unfavorable outcomes after surgical decompression and debridement. Tuberculous meningitis is frequently associated with disabling spinal cord and radicular complications. Available treatment options are far from satisfactory.

  1. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    Science.gov (United States)

    Wheaton, Benjamin J; Noor, Natassya M; Whish, Sophie C; Truettner, Jessie S; Dietrich, W Dalton; Zhang, Moses; Crack, Peter J; Dziegielewska, Katarzyna M; Saunders, Norman R

    2013-01-01

    Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although

  2. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    Directory of Open Access Journals (Sweden)

    Benjamin J Wheaton

    Full Text Available Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating

  3. Anxiolytics may promote locomotor function recovery in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Pierre A Guertin

    2008-09-01

    Full Text Available Pierre A GuertinNeuroscience Unit, Laval University Medical Center (CHUL, Quebec City, CanadaAbstract: Recent findings in animal models of paraplegia suggest that specific nonbenzodiazepine anxiolytics may temporarily restore locomotor functions after spinal cord injury (SCI. Experiments using in vitro models have revealed, indeed, that selective serotonin receptor (5-HTR ligands such as 5-HTR1A agonists, known as relatively safe anxiolytics, can acutely elicit episodes of rhythmic neuronal activity refered to as fictive locomotion in isolated spinal cord preparations. Along the same line, in vivo studies have recently shown that this subclass of anxiolytics can induce, shortly after systemic administration (eg, orally or subcutaneously, some locomotor-like hindlimb movements during 45–60 minutes in completely spinal cord-transected (Tx rodents. Using ‘knock-out’ mice (eg, 5-HTR7-/- and selective antagonists, it has been clearly established that both 5-HTR1A and 5-HTR7 were critically involved in mediating the pro-locomotor effects induced by 8-OH-DPAT (typically referred to as a 5-HTR1A agonist in Tx animals. Taken together, these in vitro and in vivo data strongly support the idea that 5-HTR1A agonists may eventually become constitutive elements of a novel first-in-class combinatorial treatment aimed at periodically inducing short episodes of treadmill stepping in SCI patients.Keywords: 5-HT agonists, anxiolytics, locomotion, SCI

  4. Spinal Meninges and Their Role in Spinal Cord Injury: A Neuroanatomical Review.

    Science.gov (United States)

    Grassner, Lukas; Grillhösl, Andreas; Griessenauer, Christoph J; Thomé, Claudius; Bühren, Volker; Strowitzki, Martin; Winkler, Peter A

    2018-02-01

    Current recommendations support early surgical decompression and blood pressure augmentation after traumatic spinal cord injury (SCI). Elevated intraspinal pressure (ISP), however, has probably been underestimated in the pathophysiology of SCI. Recent studies provide some evidence that ISP measurements and durotomy may be beneficial for individuals suffering from SCI. Compression of the spinal cord against the meninges in SCI patients causes a "compartment-like" syndrome. In such cases, intentional durotomy with augmentative duroplasty to reduce ISP and improve spinal cord perfusion pressure (SCPP) may be indicated. Prior to performing these procedures routinely, profound knowledge of the spinal meninges is essential. Here, we provide an in-depth review of relevant literature along with neuroanatomical illustrations and imaging correlates.

  5. MR imaging and spinal cord injury

    International Nuclear Information System (INIS)

    Azar-Kia, B.; Fine, M.; Naheedy, M.; Elias, D.

    1987-01-01

    MR imaging has significantly improved diagnostic capability of spinal cord injuries. Other available diagnostic modalities such as plain films, myelography, CT, and post-CT myelography have failed to consistently show the secific evidence of spinal cord injuries and their true extent. The authors are presenting our experiences with MR imaging in spinal column injury. They have found MR imaging to be the procedure of choice for prognostic evaluation of spinal cord trauma. They are showing examples of recent and old spinal cord injury such as hematomyelia, myelomalacia, transection, spinal cord edema, and cavitation

  6. Histological identification of phrenic afferent projections to the spinal cord.

    Science.gov (United States)

    Nair, Jayakrishnan; Bezdudnaya, Tatiana; Zholudeva, Lyandysha V; Detloff, Megan R; Reier, Paul J; Lane, Michael A; Fuller, David D

    2017-02-01

    Limited data are available regarding the spinal projections of afferent fibers in the phrenic nerve. We describe a method that robustly labels phrenic afferent spinal projections in adult rats. The proximal end of the cut phrenic nerve was secured in a microtube filled with a transganglionic tracer (cholera toxin β-subunit, CT-β, or Cascade Blue) and tissues harvested 96-h later. Robust CT-β labeling occurred in C3-C5 dorsal root ganglia cell bodies and phrenic afferent projections were identified in the mid-cervical dorsal horn (laminae I-III), intermediate grey matter (laminae IV, VII) and near the central canal (laminae X). Afferent fiber labeling was reduced or absent when CT-β was delivered to the intrapleural space or directly to the hemidiaphragm. Soaking the phrenic nerve with Cascade Blue also produced robust labeling of mid-cervical dorsal root ganglia cells bodies, and primary afferent fibers were observed in spinal grey matter and dorsal white matter. Our results show that the 'nerve soak' method effectively labels both phrenic motoneurons and phrenic afferent projections, and show that primary afferents project throughout the ipsilateral mid-cervical gray matter. Copyright © 2016. Published by Elsevier B.V.

  7. Trans-spinal direct current stimulation for the modulation of the lumbar spinal motor networks

    NARCIS (Netherlands)

    Kuck, Alexander

    2018-01-01

    Trans-spinal Direct Current Stimulation (tsDCS) is a noninvasive neuromodulatory tool for the modulation of the spinal neurocircuitry. Initial studies have shown that tsDCS is able to induce a significant and lasting change in spinal-reflex- and corticospinal information processing. It is therefore

  8. Anterior spinal cord syndrome of unknown etiology

    OpenAIRE

    Klakeel, Merrine; Thompson, Justin; Srinivasan, Rajashree; McDonald, Frank

    2015-01-01

    A spinal cord injury encompasses a physical insult to the spinal cord. In the case of anterior spinal cord syndrome, the insult is a vascular lesion at the anterior spinal artery. We present the cases of two 13-year-old boys with anterior spinal cord syndrome, along with a review of the anatomy and vasculature of the spinal cord and an explanation of how a lesion in the cord corresponds to anterior spinal cord syndrome.

  9. Comparison of cutting and pencil-point spinal needle in spinal anesthesia regarding postdural puncture headache

    Science.gov (United States)

    Xu, Hong; Liu, Yang; Song, WenYe; Kan, ShunLi; Liu, FeiFei; Zhang, Di; Ning, GuangZhi; Feng, ShiQing

    2017-01-01

    Abstract Background: Postdural puncture headache (PDPH), mainly resulting from the loss of cerebral spinal fluid (CSF), is a well-known iatrogenic complication of spinal anesthesia and diagnostic lumbar puncture. Spinal needles have been modified to minimize complications. Modifiable risk factors of PDPH mainly included needle size and needle shape. However, whether the incidence of PDPH is significantly different between cutting-point and pencil-point needles was controversial. Then we did a meta-analysis to assess the incidence of PDPH of cutting spinal needle and pencil-point spinal needle. Methods: We included all randomly designed trials, assessing the clinical outcomes in patients given elective spinal anesthesia or diagnostic lumbar puncture with either cutting or pencil-point spinal needle as eligible studies. All selected studies and the risk of bias of them were assessed by 2 investigators. Clinical outcomes including success rates, frequency of PDPH, reported severe PDPH, and the use of epidural blood patch (EBP) were recorded as primary results. Results were evaluated using risk ratio (RR) with 95% confidence interval (CI) for dichotomous variables. Rev Man software (version 5.3) was used to analyze all appropriate data. Results: Twenty-five randomized controlled trials (RCTs) were included in our study. The analysis result revealed that pencil-point spinal needle would result in lower rate of PDPH (RR 2.50; 95% CI [1.96, 3.19]; P < 0.00001) and severe PDPH (RR 3.27; 95% CI [2.15, 4.96]; P < 0.00001). Furthermore, EBP was less used in pencil-point spine needle group (RR 3.69; 95% CI [1.96, 6.95]; P < 0.0001). Conclusions: Current evidences suggest that pencil-point spinal needle was significantly superior compared with cutting spinal needle regarding the frequency of PDPH, PDPH severity, and the use of EBP. In view of this, we recommend the use of pencil-point spinal needle in spinal anesthesia and lumbar puncture. PMID:28383416

  10. Application of Color Transformation Techniques in Pediatric Spinal Cord MR Images: Typically Developing and Spinal Cord Injury Population.

    Science.gov (United States)

    Alizadeh, Mahdi; Shah, Pallav; Conklin, Chris J; Middleton, Devon M; Saksena, Sona; Flanders, Adam E; Krisa, Laura; Mulcahey, M J; Faro, Scott H; Mohamed, Feroze B

    2018-01-16

    The purpose of this study was to evaluate an improved and reliable visualization method for pediatric spinal cord MR images in healthy subjects and patients with spinal cord injury (SCI). A total of 15 pediatric volunteers (10 healthy subjects and 5 subjects with cervical SCI) with a mean age of 11.41 years (range 8-16 years) were recruited and scanned using a 3.0T Siemens Verio MR scanner. T2-weighted axial images were acquired covering entire cervical spinal cord level C1 to C7. These gray-scale images were then converted to color images by using five different techniques including hue-saturation-value (HSV), rainbow, red-green-blue (RGB), and two enhanced RGB techniques using automated contrast stretching and intensity inhomogeneity correction. Performance of these techniques was scored visually by two neuroradiologists within three selected cervical spinal cord intervertebral disk levels (C2-C3, C4-C5, and C6-C7) and quantified using signal to noise ratio (SNR) and contrast to noise ratio (CNR). Qualitative and quantitative evaluation of the color images shows consistent improvement across all the healthy and SCI subjects over conventional gray-scale T2-weighted gradient echo (GRE) images. Inter-observer reliability test showed moderate to strong intra-class correlation (ICC) coefficients in the proposed techniques (ICC > 0.73). The results suggest that the color images could be used for quantification and enhanced visualization of the spinal cord structures in addition to the conventional gray-scale images. This would immensely help towards improved delineation of the gray/white and CSF structures and further aid towards accurate manual or automatic drawings of region of interests (ROIs).

  11. Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury.

    Science.gov (United States)

    Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A

    2017-09-01

    Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.

  12. Quantification of the gravity-dependent change in the C-arm image center for image compensation in fluoroscopic spinal neuronavigation.

    Science.gov (United States)

    Hariri, S; Abbasi, H R; Chin, S; Steinberg, G; Shahidi, R

    2001-01-01

    In the quest to develop a viable, frameless spinal navigation system, many researchers are utilizing the C-arm fluoroscope. However, there is a significant problem with the C-arm that must be quantified: the gravity-dependent sag effect resulting from the geometry of the C-arm and aggravated by the inequity of weight at each end of the C-arm. This study quantified the C-arm sag effect, giving researchers the protocol and data needed to develop a program that accounts for this distortion. The development of spinal navigation algorithms that account for the C-arm sag effect should produce a more accurate spinal navigation system.

  13. Drug distribution in spinal cord during administration with spinal loop dialysis probes in anaesthetized rats

    DEFF Research Database (Denmark)

    Uustalu, Maria; Abelson, Klas S P

    2007-01-01

    The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H]Epibatid......The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H...... intraspinal administration of substances through the spinal loop dialysis probe....

  14. Lumbar spinal stenosis

    DEFF Research Database (Denmark)

    Lønne, Greger; Fritzell, Peter; Hägg, Olle

    2018-01-01

    BACKGROUND: Decompression surgery for lumbar spinal stenosis (LSS) is the most common spinal procedure in the elderly. To avoid persisting low back pain, adding arthrodesis has been recommended, especially if there is a coexisting degenerative spondylolisthesis. However, this strategy remains con...

  15. Transcutaneous spinal stimulation as a therapeutic strategy for spinal cord injury: state of the art

    Directory of Open Access Journals (Sweden)

    Grecco LH

    2015-03-01

    Full Text Available Leandro H Grecco,1,3,4,* Shasha Li,1,5,* Sarah Michel,1,6,* Laura Castillo-Saavedra,1 Andoni Mourdoukoutas,7 Marom Bikson,7 Felipe Fregni1,21Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, 2Spaulding-Harvard Spinal Cord Injury Model System, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA; 3Special Laboratory of Pain and Signaling, Butantan Institute, 4Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; 5Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; 6Department of Pharmacy and Biomedical Sciences, University of Namur, Belgium; 7Department of Biomedical Engineering, The City College of New York, New York, NY, USA*These authors contributed equally to this workAbstract: Treatments for spinal cord injury (SCI still have limited effects. Electrical stimulation might facilitate plastic changes in affected spinal circuitries that may be beneficial in improving motor function and spasticity or SCI-related neuropathic pain. Based on available animal and clinical evidence, we critically reviewed the physiological basis and therapeutic action of transcutaneous spinal cord stimulation in SCI. We analyzed the literature published on PubMed to date, looking for the role of three main noninvasive stimulation techniques in the recovery process of SCI and focusing mainly on transcutaneous spinal stimulation. This review discusses the main clinical applications, latest advances, and limitations of noninvasive electrical stimulation of the spinal cord. Although most recent research in this topic has focused on transcutaneous spinal direct current stimulation (tsDCS, we also reviewed the technique of transcutaneous electric nerve stimulation (TENS and neuromuscular electrical stimulation (NMES as potential methods to modulate spinal cord

  16. Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits

    Directory of Open Access Journals (Sweden)

    Shan Le-qun

    2010-08-01

    Full Text Available Abstract Background Hydroxysafflor Yellow A (HSYA, which is one of the most important active ingredients of the Chinese herb Carthamus tinctorius L, is widely used in the treatment of cerebrovascular and cardiovascular diseases. However, the potential protective effect of HSYA in spinal cord ischemia/reperfusion (I/R injury is still unknown. Methods Thirty-nine rabbits were randomly divided into three groups: sham group, I/R group and HSYA group. All animals were sacrificed after neurological evaluation with modified Tarlov criteria at the 48th hour after reperfusion, and the spinal cord segments (L4-6 were harvested for histopathological examination, biochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL staining. Results Neurological outcomes in HSYA group were slightly improved compared with those in I/R group. Histopathological analysis revealed that HSYA treatment attenuated I/R induced necrosis in spinal cords. Similarly, alleviated oxidative stress was indicated by decreased malondialdehyde (MDA level and increased superoxide dismutase (SOD activity after HSYA treatment. Moreover, as seen from TUNEL results, HSYA also protected neurons from I/R-induced apoptosis in rabbits. Conclusions These findings suggest that HSYA may protect spinal cords from I/R injury by alleviating oxidative stress and reducing neuronal apoptosis in rabbits.

  17. Skull traction for cervical spinal injury in Enugu: A 5‑year ...

    African Journals Online (AJOL)

    Forty‑one had the American Spinal Injury Association (ASIA) Grade A whereas 64 had incomplete cord injury of ASIA Grades B–E. Forty‑eight had Crutchfield traction whereas 57 had Gardner‑Wells traction. At the end of treatment, no patient improved among those with ASIA Grades A and B. All the 12 cases of mortality ...

  18. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.

    Science.gov (United States)

    Kadivar, Z; Sullivan, J L; Eng, D P; Pehlivan, A U; O'Malley, M K; Yozbatiran, N; Francisco, G E

    2011-01-01

    Regaining upper extremity function is the primary concern of persons with tetraplegia caused by spinal cord injury (SCI). Robotic rehabilitation has been inadequately tested and underutilized in rehabilitation of the upper extremity in the SCI population. Given the acceptance of robotic training in stroke rehabilitation and SCI gait training, coupled with recent evidence that the spinal cord, like the brain, demonstrates plasticity that can be catalyzed by repetitive movement training such as that available with robotic devices, it is probable that robotic upper-extremity training of persons with SCI could be clinically beneficial. The primary goal of this pilot study was to test the feasibility of using a novel robotic device for the upper extremity (RiceWrist) and to evaluate robotic rehabilitation using the RiceWrist in a tetraplegic person with incomplete SCI. A 24-year-old male with incomplete SCI participated in 10 sessions of robot-assisted therapy involving intensive upper limb training. The subject successfully completed all training sessions and showed improvements in movement smoothness, as well as in the hand function. Results from this study provide valuable information for further developments of robotic devices for upper limb rehabilitation in persons with SCI. © 2011 IEEE

  19. The association of visually-assessed quality of movement during jump-landing with ankle dorsiflexion range-of-motion and hip abductor muscle strength among healthy female athletes.

    Science.gov (United States)

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-05-01

    To explore the association between ankle dorsiflexion (DF) range of motion (ROM), and hip abductor muscle strength, to visually-assessed quality of movement during jump-landing. Cross-sectional. Gymnasium of participating teams. 37 female volleyball players. Quality of movement in the frontal-plane, sagittal-plane, and overall (both planes) was visually rated as "good/moderate" or "poor". Weight-bearing Ankle DF ROM and hip abductor muscle strength were compared between participants with differing quality of movement. Weight-bearing DF ROM on both sides was decreased among participants with "poor" sagittal-plane quality of movement (dominant side: 50.8° versus 43.6°, P = .02; non-dominant side: 54.6° versus 45.9°, P = .01), as well as among participants with an overall "poor" quality of movement (dominant side: 51.8° versus 44.0°, P movement (53.9° versus 46.0°, P = .02). No differences in hip abductor muscle strength were noted between participants with differing quality of movement. Visual assessment of jump-landing can detect differences in quality of movement that are associated with ankle DF ROM. Clinicians observing a poor quality of movement may wish to assess ankle DF ROM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Cervical radiofrequency neurotomy reduces central hyperexcitability and improves neck movement in individuals with chronic whiplash.

    Science.gov (United States)

    Smith, Ashley Dean; Jull, Gwendolen; Schneider, Geoff; Frizzell, Bevan; Hooper, Robert Allen; Sterling, Michele

    2014-01-01

    This study aims to determine if cervical medial branch radiofrequency neurotomy reduces psychophysical indicators of augmented central pain processing and improves motor function in individuals with chronic whiplash symptoms. Prospective observational study of consecutive patients with healthy control comparison. Tertiary spinal intervention centre in Calgary, Alberta, Canada. Fifty-three individuals with chronic whiplash associated disorder symptoms (Grade 2); 30 healthy controls. Measures were made at four time points: two prior to radiofrequency neurotomy, and 1- and 3-months post-radiofrequency neurotomy. Measures included: comprehensive quantitative sensory testing (including brachial plexus provocation test), nociceptive flexion reflex, and motor function (cervical range of movement, superficial neck flexor activity during the craniocervical flexion test). Self-report pain and disability measures were also collected. One-way repeated measures analysis of variance and Friedman's tests were performed to investigate the effect of time on the earlier measures. Differences between the whiplash and healthy control groups were investigated with two-tailed independent samples t-test or Mann-Whitney tests. Following cervical radiofrequency neurotomy, there were significant early (within 1 month) and sustained (3 months) improvements in pain, disability, local and widespread hyperalgesia to pressure and thermal stimuli, nociceptive flexor reflex threshold, and brachial plexus provocation test responses as well as increased neck range of motion (all P  0.13) was measured. Attenuation of psychophysical measures of augmented central pain processing and improved cervical movement imply that these processes are maintained by peripheral nociceptive input. Wiley Periodicals, Inc.

  1. [In the America of mountain ranges, the brief summer of Indian agrarian movements (1970-1991)].

    Science.gov (United States)

    Le Bot, Y

    1991-01-01

    Important rural Indian movements appeared almost simultaneously in the early 1970s in 3 countries, Ecuador, Bolivia, and Guatemala, which had the distinction of remaining the most rural and the most Indian countries of Latin America. A similar movement with similar characteristics arose in a rural and Indian region of Colombia, a largely urban and mestizo country. Each movement constituted a particular response to the same problems in different contexts. This work provides a comparative analysis of the historical context, development, constitution, and functioning of Bolivian katarisme, the Ecuarrunari movement in Ecuador, the Regional Committee of the Indigenous of Cauca (CRIC) in Colombia, and the Committee of Peasant Unity (CUC) in Guatemala. The indigenous peasant movements were defined in relation to national-populist models of development and integration: limitations and failures of national-populism in Bolivia and to some extent also in Ecuador, marginalization of the Indian populations vis a vis modernization processes in Ecuador and Colombia, or a crisis caused by blockage of participation in the sociopolitical system in Guatemala. The movements appeared in the context of strong peasant communities left at the margin of processes of integration, but also in contexts where the social dynamics were reinforced by reforms and modernization during a long period of precarious reconstitution of communities sometimes dating back to the 1930s. Another contributing factor in some cases was the dissolution of peonage and other forms of servitude on the great estates. An Indian elite whose emergence was related to modernization of the communities is present in all the movements. It is composed of educated and partially urbanized young people who have maintained ties to the communities, of leaders trained in cooperative or union activity, of promoters of new religious currents, and others affected by change. The leaders belong to modern organizations that wish to make

  2. Spinal injuries in professional rugby union: a prospective cohort study.

    Science.gov (United States)

    Fuller, Colin W; Brooks, John H M; Kemp, Simon P T

    2007-01-01

    To determine the incidence, severity, nature, and causes of cervical, thoracic, and lumbar spine injuries sustained during competition and training in professional rugby union. A 2 season prospective cohort design. Twelve English Premiership rugby union clubs. Five hundred and forty-six male rugby union players of whom 296 were involved in both seasons. Location, diagnosis, severity (number of days unavailable for training and matches), and cause of injury: incidence of match and training injuries (injuries/1000 player-hours). Player age, body mass, stature, playing position, use of headgear, and activity and period of season. The incidences of spinal injuries were 10.90 (9.43 to 12.60) per 1000 player match-hours and 0.37 (0.29 to 0.47) per 1000 player training-hours. No player sustained a catastrophic spinal injury, but 3 players sustained career-ending injuries. Overall, players were more likely to sustain a cervical injury during matches and a lumbar injury during training. Forwards were significantly more likely to sustain a spinal injury than backs during both matches (P accounting for 926 days (23%) and cervical nerve root injuries sustained during matches for 621 days (15%). During matches, more injuries were caused by tackles (37%), and during training more injuries were caused by weight-training (33%). The results showed that rugby union players were exposed to a high risk of noncatastrophic spinal injury during tackling, scrummaging, and weight-training activities; injury prevention strategies, therefore, should be focused on these activities.

  3. Spinal cord lesions in Bangladesh: an epidemiological study 1994 - 1995.

    Science.gov (United States)

    Hoque, M F; Grangeon, C; Reed, K

    1999-12-01

    Spinal Cord Lesions are a major public health problem in Bangladesh. This epidemiological study was undertaken in order to identify the causes of spinal cord lesions and thus to allow prevention and control programs to be developed. The records of 247 patients with spinal cord lesions admitted to The Centre for the Rehabilitation of the Paralysed (CRP), Savar, Dhaka from January 1994 to June 1995 were reviewed retrospectively. Comparisons were made with the reports of studies from other countries, both developing and developed. The most common cause of traumatic lesions was a fall from a height followed by falling when carrying a heavy weight on the head and road traffic accidents. Most of the patients were between 20 - 40 years old and the overall age group ranged from 10 - 70 years. The male:female ratio was 7.5 : 1.0. Among the traumatic spinal cord lesions, 60% were paraplegics and 40% tetraplegics. Among the non-traumatic spinal cord lesions cases 84% were paraplegics and 16% tetraplegics. The leading cause of death resulted from respiratory complications and these deaths occurred in the very early period of admission. From the results it can be deduced that the high incidence of spinal cord lesion as a result from falls from a height, and from falling when carrying a heavy weight on the head, can be explained by the mainly agricultural based economy of Bangladesh. The most common age group (10 - 40 years) of patients reflects the socio-economic conditions of Bangladesh. The male:female ratio (7.5 : 1.0) of patients with a spinal cord lesion is due to the socio-economic status and to the traditional culture of the society.

  4. Neuroradiology of the spinal canal

    International Nuclear Information System (INIS)

    Lehmann, R.; Molsen, H.P.

    1985-01-01

    Radiodiagnostics of the vertebral column and of the spinal cord under normal conditions and under different pathological alterations are elaborated. Especially cervical and thoracal myelography, lumbosacral myeloradiculography, spinal arteriography and phlebography as well as spinal computerized tomography are discussed in detail

  5. Morphological analysis of the cervical spinal canal, dural tube and spinal cord in normal individuals using CT myelography

    International Nuclear Information System (INIS)

    Inoue, H.; Ohmori, K.; Takatsu, T.; Teramoto, T.; Ishida, Y.; Suzuki, K.

    1996-01-01

    To verify the conventional concept of ''developmental stenosis of the cervical spinal canal'', we performed a morphological analysis of the relations of the cervical spinal canal, dural tube and spinal cord in normal individuals. The sagittal diameter, area and circularity of the three structures, and the dispersion of each parameter, were examined on axial sections of CT myelograms of 36 normal subjects. The spinal canal was narrowest at C4, followed by C5, while the spinal cord was largest at C4/5. The area and circularity of the cervical spinal cord were not significantly correlated with any parameter of the spinal canal nor with the sagittal diameter and area of the dural tube at any level examined, and the spinal cord showed less individual variation than the bony canal. Compression of the spinal cord might be expected whenever the sagittal diameter of the spinal canal is below the lower limit of normal, that is about 12 mm on plain radiographs. Thus, we concluded that the concept of ''developmental stenosis of the cervical spinal canal'' was reasonable and acceptable. (orig.). With 2 figs., 3 tabs

  6. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    Science.gov (United States)

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  7. THE INFLUENCE OF LOWER LIMB MOVEMENT ON UPPER LIMB MOVEMENT SYMMETRY WHILE SWIMMING THE BREASTSTROKE

    OpenAIRE

    M. Jaszczak

    2011-01-01

    This study 1) examined the influence of lower limb movement on upper limb movement symmetry, 2) determined the part of the propulsion phase displaying the greatest hand movement asymmetry, 3) diagnosed the range of upper limb propulsion phase which is the most prone to the influence of the lower limbs while swimming the breaststroke. Twenty-four participants took part in two tests. Half of them performed an asymmetrical leg movement. The propulsion in the first test was generated by four limb...

  8. [The investigation of control mechanisms of stepping rhythm in human in the air-stepping conditions during passive and voluntary leg movements].

    Science.gov (United States)

    Solopova, I A; Selionon, V A; Grishin, A A

    2010-01-01

    In unloading condition the degree of activation of the central stepping program was investigated during passive leg movements in healthy subjects, as well as the excitability of spinal motoneurons during passive and voluntary stepping movement. Passive stepping movements with characteristics maximally approximated to those during voluntary stepping were accomplished by experimenter. The comparison of the muscle activity bursts during voluntary and imposed movements was made. In addition to that the influence of artificially created loading onto the foot to the leg movement characteristics was analyzed. Spinal motoneuron excitability was estimated by means of evaluation of amplitude modulation of the soleus H-reflex. The changes of H-reflexes under the fixation of knee or hip joints were also studied. In majority of subjects the passive movements were accompanied by bursts of EMG activity of hip muscles (and sometimes of knee muscles), which timing during step cycle was coincided with burst timing of voluntary step cycle. In many cases the bursts of EMG activity during passive movements exceeded activity in homonymous muscles during voluntary stepping. The foot loading imitation exerted essential influence on distal parts of moving extremity during voluntary as well passive movements, that was expressed in the appearance of movements in the ankle joint and accompanied by emergence and increasing of phasic EMG activity of shank muscles. The excitability of motoneurons during passive movements was greater then during voluntary ones. The changes and modulation of H-reflex throughout the step cycle without restriction of joint mobility and during exclusion of hip joint mobility were similar. The knee joint fixation exerted the greater influence. It is supposed that imposed movements activate the same mechanisms of rhythm generation as a supraspinal commands during voluntary movements. In the conditions of passive movements the presynaptic inhibition depend on afferent

  9. Spinal trauma: new guidelines for assessment and management in the out-of-hospital environment.

    Science.gov (United States)

    Mattera, C J

    1998-12-01

    The keys to appropriate management of patients with spinal trauma lie in attending to life-threatening injuries, avoiding unnecessary movement of the spinal column, and carefully documenting patient reliability, MOI, history, physical examination findings, interventions, and responses to interventions. Who should be immobilized? Any victim of trauma complaining of neck or back pain, any patient with neurologic symptoms compatible with a spinal cord injury, and any patient who has an altered mental status or distracting injury should be immobilized. Given that not a single survivor of an SCI from World War I was alive by the start of World War II, one can appreciate the advances that have been made in the care of patients with spinal cord injuries. Exciting research is being conducted to explore the possibility of spinal cord regeneration by implanting tissue over which axons would regrow and make the appropriate connections, and pharmaceutical companies are spending millions to find an agent that will successfully salvage cells in human trials; however, a cure still seems elusive. Despite the marvels of modern research, prevention is still the key, including public education relative to wearing seat belts, instructing parents in the use of child restraint devices, encouraging people to jump rather than to dive when testing the depth of water (first time, feet first), enforcing driving under the influence laws, and outlawing such practices as spear tackling in football. In the meantime, EMS and ED personnel have a phenomenal opportunity to truly act as patient advocates by becoming familiar with new immobilization guidelines, honing their assessment skills, and providing anticipatory, compassionate care to those with neurologic deficits.

  10. Potentialities of spinal liquor scanography

    International Nuclear Information System (INIS)

    Vlakhov, N.; Vylkanov, P.

    1986-01-01

    It is shown that spinal liquor scanography is a harmless and informative method for the examination of patients, permitting to detect injury foci for spinal cord tumours in 90% cases, for acute injuries of the vertebral column and spinal cord in 89.5% cases, for herniation of nucleus pulposus in 81% cases. The method of spinal liquor scanography can be used in neurology and neurosurgery to select the method of treatment and to evaluate its efficiency

  11. Spinal canal stenosis; Spinalkanalstenose

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Boutchakova, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany)

    2014-11-15

    Spinal stenosis is a narrowing of the spinal canal by a combination of bone and soft tissues, which can lead to mechanical compression of spinal nerve roots or the dural sac. The lumbal spinal compression of these nerve roots can be symptomatic, resulting in weakness, reflex alterations, gait disturbances, bowel or bladder dysfunction, motor and sensory changes, radicular pain or atypical leg pain and neurogenic claudication. The anatomical presence of spinal canal stenosis is confirmed radiologically with computerized tomography, myelography or magnetic resonance imaging and play a decisive role in optimal patient-oriented therapy decision-making. (orig.) [German] Die Spinalkanalstenose ist eine umschriebene, knoechern-ligamentaer bedingte Einengung des Spinalkanals, die zur Kompression der Nervenwurzeln oder des Duralsacks fuehren kann. Die lumbale Spinalkanalstenose manifestiert sich klinisch als Komplex aus Rueckenschmerzen sowie sensiblen und motorischen neurologischen Ausfaellen, die in der Regel belastungsabhaengig sind (Claudicatio spinalis). Die bildgebende Diagnostik mittels Magnetresonanztomographie, Computertomographie und Myelographie spielt eine entscheidende Rolle bei der optimalen patientenbezogenen Therapieentscheidung. (orig.)

  12. A Review of the Segmental Diameter of the Healthy Human Spinal Cord.

    Science.gov (United States)

    Frostell, Arvid; Hakim, Ramil; Thelin, Eric Peter; Mattsson, Per; Svensson, Mikael

    2016-01-01

    Knowledge of the average size and variability of the human spinal cord can be of importance when treating pathological conditions in the spinal cord. Data on healthy human spinal cord morphometrics have been published for more than a century using different techniques of measurements, but unfortunately, comparison of results from different studies is difficult because of the different anatomical landmarks used as reference points along the craniocaudal axis for the measurements. The aim of this review was to compute population estimates of the transverse and anteroposterior diameter of the human spinal cord by comparing and combining previously published data on a normalized craniocaudal axis. We included 11 studies presenting measurements of spinal cord cross-sectional diameters, with a combined sample size ranging from 15 to 488 subjects, depending on spinal cord level. Based on five published studies presenting data on the lengths of the segments of the spinal cord and vertebral column, we calculated the relative positions of all spinal cord neuronal segments and vertebral bony segments and mapped measurements of spinal cord size to a normalized craniocaudal axis. This mapping resulted in better alignment between studies and allowed the calculation of weighted averages and standard deviations (SDs) along the spinal cord. These weighted averages were smoothed using a generalized additive model to yield continuous population estimates for transverse and anteroposterior diameter and associated SDs. The spinal cord had the largest transverse diameter at spinal cord neuronal segment C5 (13.3 ± 2.2), decreased to segment T8 (8.3 ± 2.1), and increased slightly again to 9.4 ± 1.5 at L3. The anteroposterior diameter showed less variation in size along the spinal cord at C5 (7.4 ± 1.6), T8 (6.3 ± 2.0), and L3 (7.5 ± 1.6). All estimates are presented in millimeters ± 2 SDs. We conclude that segmental transverse and anteroposterior

  13. Spinal infections

    International Nuclear Information System (INIS)

    Tali, E. Turgut; Gueltekin, Serap

    2005-01-01

    Spinal infections have an increasing prevalence among the general population. Definitive diagnosis based solely on clinical grounds is usually not possible and radiological imaging is used in almost all patients. The primary aim of the authors is to present an overview of spinal infections located in epidural, intradural and intramedullary compartments and to provide diagnostic clues regarding different imaging modalities, particularly MRI, to the practicing physicians and radiologists. (orig.)

  14. Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings

    Science.gov (United States)

    Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I.; Friston, Karl; Brown, Peter

    2012-01-01

    Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson’s disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those above 30 Hz is particularly unclear. Do they improve movement and, if so, in what way? We acquired simultaneously magnetoencephalography (MEG) and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power over 60-90 Hz and 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity over 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronisation over 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity, as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronisation over 60-90 Hz in the basal ganglia cortical network is prokinetic, but likely through a modulatory effect rather than any involvement in explicit motor processing. PMID:22855804

  15. Monitoring of crustal movements in the San Andreas fault zone by a satellite-borne ranging system. Ph.D. Thesis

    Science.gov (United States)

    Kumar, M.

    1976-01-01

    The Close Grid Geodynamic Measurement System is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0 to 30 km), which are projected to be of low cost (maintenance free and unattended), and which will permit the saturation of a local area to obtain data useful to monitor crustal movements in the San Andreas fault zone. The system includes a station network of 75 stations covering an area between 36 deg N and 38 deg N latitudes, and 237 deg E and 239 deg E longitudes, with roughly half of the stations on either side of the faults. In addition, the simulation of crustal movements through the introduction of changes in the relative positions between grid stations, weather effect for intervisibility between satellite and station and loss of observations thereof, and comparative evaluation of various observational scheme-patterns have been critically studied.

  16. Spinal Cord Tolerance in the Age of Spinal Radiosurgery: Lessons From Preclinical Studies

    International Nuclear Information System (INIS)

    Medin, Paul M.; Boike, Thomas P.

    2011-01-01

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat has demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.

  17. Postoperative spinal infection mimicking systemic vasculitis with titanium-spinal implants

    Directory of Open Access Journals (Sweden)

    Stathopoulos Konstantinos

    2011-09-01

    Full Text Available Abstract Background Secondary systemic vasculitis after posterior spinal fusion surgery is rare. It is usually related to over-reaction of immune-system, to genetic factors, toxicity, infection or metal allergies. Case Description A 14 year-old girl with a history of extended posterior spinal fusion due to idiopathic scoliosis presented to our department with diffuse erythema and nephritis (macroscopic hemuresis and proteinuria 5 months post surgery. The surgical trauma had no signs of inflammation or infection. The blood markers ESR and CRP were increased. Skin tests were positive for nickel allergy, which is a content of titanium alloy. The patient received corticosteroids systematically (hydrocortisone 10 mg for 6 months, leading to total recess of skin and systemic reaction. However, a palpable mass close to the surgical wound raised the suspicion of a late infection. The patient had a second surgery consisting of surgical debridement and one stage revision of posterior spinal instrumentation. Intraoperative cultures were positive to Staphylococcus aureus. Intravenous antibiotics were administered. The patient is now free of symptoms 24 months post revision surgery without any signs of recurrence of either vasculitis or infection. Literature Review Systemic vasculitis after spinal surgery is exceptionally rare. Causative factors are broad and sometimes controversial. In general, it is associated with allergy to metal ions. This is usually addressed with metal on metal total hip bearings. In spinal surgery, titanium implants are considered to be inert and only few reports have presented cases with systemic vasculitides. Therefore, other etiologies of immune over-reaction should always be considered, such as drug toxicity, infection, or genetic predisposition. Purposes and Clinical Relevance Our purpose was to highlight the difficulties during the diagnostic work-up for systemic vasculitis and management in cases of posterior spinal surgery.

  18. Iatrogenic Spinal Cord Injury Resulting From Cervical Spine Surgery.

    Science.gov (United States)

    Daniels, Alan H; Hart, Robert A; Hilibrand, Alan S; Fish, David E; Wang, Jeffrey C; Lord, Elizabeth L; Buser, Zorica; Tortolani, P Justin; Stroh, D Alex; Nassr, Ahmad; Currier, Bradford L; Sebastian, Arjun S; Arnold, Paul M; Fehlings, Michael G; Mroz, Thomas E; Riew, K Daniel

    2017-04-01

    Retrospective cohort study of prospectively collected data. To examine the incidence of iatrogenic spinal cord injury following elective cervical spine surgery. A retrospective multicenter case series study involving 21 high-volume surgical centers from the AOSpine North America Clinical Research Network was conducted. Medical records for 17 625 patients who received cervical spine surgery (levels from C2 to C7) between January 1, 2005, and December 31, 2011, were reviewed to identify occurrence of iatrogenic spinal cord injury. In total, 3 cases of iatrogenic spinal cord injury following cervical spine surgery were identified. Institutional incidence rates ranged from 0.0% to 0.24%. Of the 3 patients with quadriplegia, one underwent anterior-only surgery with 2-level cervical corpectomy, one underwent anterior surgery with corpectomy in addition to posterior surgery, and one underwent posterior decompression and fusion surgery alone. One patient had complete neurologic recovery, one partially recovered, and one did not recover motor function. Iatrogenic spinal cord injury following cervical spine surgery is a rare and devastating adverse event. No standard protocol exists that can guarantee prevention of this complication, and there is a lack of consensus regarding evaluation and treatment when it does occur. Emergent imaging with magnetic resonance imaging or computed tomography myelography to evaluate for compressive etiology or malpositioned instrumentation and avoidance of hypotension should be performed in cases of intraoperative and postoperative spinal cord injury.

  19. CERN's eagle-eyed movement hunters in action

    CERN Multimedia

    2007-01-01

    Vibrations, movements, strains - nothing escapes the eagle eyes of CERN's Mechanical Measurements Laboratory, which helps groups needing mechanical testing and delicate transport operations. Graphical representation of the natural mode shape of one of the end-caps of the ATLAS inner detector, determined through experimentation.After installation of sensors on one of the end-caps of the ATLAS inner detector, CERN's Mechanical Measurements team performs remote checks to ensure the sensors are working properly before transport. They are on the look-out for anything that moves, shakes or changes shape. The slightest movement, however minute, will attract their attention. The Mechanical Measurements team, which is part of the Installation Coordination Group (TS-IC), specialises in all kinds of vibration studies, for design projects as well as for the transport of fragile objects. The Mechanical Measurements Laboratory was created in 1973 and, after a lull at the end of the century, was given a new lease of life ...

  20. Continuous spinal anesthesia.

    Science.gov (United States)

    Moore, James M

    2009-01-01

    Continuous spinal anesthesia (CSA) is an underutilized technique in modern anesthesia practice. Compared with other techniques of neuraxial anesthesia, CSA allows incremental dosing of an intrathecal local anesthetic for an indefinite duration, whereas traditional single-shot spinal anesthesia usually involves larger doses, a finite, unpredictable duration, and greater potential for detrimental hemodynamic effects including hypotension, and epidural anesthesia via a catheter may produce lesser motor block and suboptimal anesthesia in sacral nerve root distributions. This review compares CSA with other anesthetic techniques and also describes the history of CSA, its clinical applications, concerns regarding neurotoxicity, and other pharmacologic implications of its use. CSA has seen a waxing and waning of its popularity in clinical practice since its initial description in 1907. After case reports of cauda equina syndrome were reported with the use of spinal microcatheters for CSA, these microcatheters were withdrawn from clinical practice in the United States but continued to be used in Europe with no further neurologic sequelae. Because only large-bore catheters may be used in the United States, CSA is usually reserved for elderly patients out of concern for the risk of postdural puncture headache in younger patients. However, even in younger patients, sometimes the unique clinical benefits and hemodynamic stability involved in CSA outweigh concerns regarding postdural puncture headache. Clinical scenarios in which CSA may be of particular benefit include patients with severe aortic stenosis undergoing lower extremity surgery and obstetric patients with complex heart disease. CSA is an underutilized technique in modern anesthesia practice. Perhaps more accurately termed fractional spinal anesthesia, CSA involves intermittent dosing of local anesthetic solution via an intrathecal catheter. Where traditional spinal anesthesia involves a single injection with a

  1. Arterial Blood Supply to the Spinal Cord in Animal Models of Spinal Cord Injury. A Review.

    Science.gov (United States)

    Mazensky, David; Flesarova, Slavka; Sulla, Igor

    2017-12-01

    Animal models are used to examine the results of experimental spinal cord injury. Alterations in spinal cord blood supply caused by complex spinal cord injuries contribute significantly to the diversity and severity of the spinal cord damage, particularly ischemic changes. However, the literature has not completely clarified our knowledge of anatomy of the complex three-dimensional arterial system of the spinal cord in experimental animals, which can impede the translation of experimental results to human clinical applications. As the literary sources dealing with the spinal cord arterial blood supply in experimental animals are limited and scattered, the authors performed a review of the anatomy of the arterial blood supply to the spinal cord in several experimental animals, including pigs, dogs, cats, rabbits, guinea pigs, rats, and mice and created a coherent format discussing the interspecies differences. This provides researchers with a valuable tool for the selection of the most suitable animal model for their experiments in the study of spinal cord ischemia and provides clinicians with a basis for the appropriate translation of research work to their clinical applications. Anat Rec, 300:2091-2106, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Imaging of Spinal Metastatic Disease

    Directory of Open Access Journals (Sweden)

    Lubdha M. Shah

    2011-01-01

    Full Text Available Metastases to the spine can involve the bone, epidural space, leptomeninges, and spinal cord. The spine is the third most common site for metastatic disease, following the lung and the liver. Approximately 60–70% of patients with systemic cancer will have spinal metastasis. Materials/Methods. This is a review of the imaging techniques and typical imaging appearances of spinal metastatic disease. Conclusions. Awareness of the different manifestations of spinal metastatic disease is essential as the spine is the most common site of osseous metastatic disease. Imaging modalities have complimentary roles in the evaluation of spinal metastatic disease. CT best delineates osseous integrity, while MRI is better at assessing soft tissue involvement. Physiologic properties, particularly in treated disease, can be evaluated with other imaging modalities such as FDG PET and advanced MRI sequences. Imaging plays a fundamental role in not only diagnosis but also treatment planning of spinal metastatic disease.

  3. Spinal Trauma is Never without Sin: A Tetraplegia Patient Presented Without any Symptoms

    OpenAIRE

    EFEOGLU, Melis; AKOGLU, Haldun; AKOGLU, Tayfun; EROGLU, Serkan Emre; ONUR, Ozge Ecmel; DENIZBASI, Arzu

    2016-01-01

    SUMMARY: Spinal cord injuries are amongst the most dangerous injuries, leading to high mortality and morbidity. Injured patients are occasionally faced with life-threatening complications and quality-of-life changing neurological deficits. Thoracic and cervical spinal segments are the most effected sites of injury and a wide range of complications including paraplegia, respiratory and cardiovascular compromise secondary to autonomic dysfunction or tetraplegia may ensue. We aim to draw attenti...

  4. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents.

    Directory of Open Access Journals (Sweden)

    Femke Streijger

    Full Text Available High fat, low carbohydrate ketogenic diets (KD are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1 expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited.

  5. MRI of anterior spinal artery syndrome of the cervical spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Yamada, T. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Ishii, K. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Saito, H. (Dept. of Neurology, Tohoku Univ. School of Medicine, Sendai (Japan)); Tanji, H. (Dept. of Neurology, Tohoku Univ. School of Medicine, Sendai (Japan)); Kobayashi, T. (Inst. of Rehabilitation Medicine, Tohoku Univ. School of Medicine, Miyagi (Japan)); Soma, Y. (Div. of Neurology, Takeda Hospital, Aizuwakamatsu (Japan)); Sakamoto, K. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan))

    1992-12-01

    Cervical spinal cord lesions in the anterior spinal artery syndrome were delineated on magnetic resonance images (MRI) in four patients. The lesion was always seen anteriorly in the cervical cord. On T2-weighted images, the lesions appeared hyperintense relative to the normal spinal cord, while on T1-weighted images, two chronic lesions appeared hypointense, with local atrophy of the cord. In one case, repeated T1-weighted images showed no signal abnormality 4 days after the ictus, but the lesion became hypointense 18 days later, when contrast enhancement was also recognized after injection of Gd-DTPA; this sequence of intensity changes was similar to that of cerebral infarction. The extent of the lesion seen MRI correlated closely with neurological findings in all cases. Although the findings may not be specific, MRI is now the modality of choice for confirming the diagnosis in patients suspected of having an anterior spinal artery syndrome. (orig.)

  6. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  7. Early neonatal loss of inhibitory synaptic input to the spinal motor neurons confers spina bifida-like leg dysfunction in a chicken model

    Directory of Open Access Journals (Sweden)

    Md. Sakirul Islam Khan

    2017-12-01

    Full Text Available Spina bifida aperta (SBA, one of the most common congenital malformations, causes lifelong neurological complications, particularly in terms of motor dysfunction. Fetuses with SBA exhibit voluntary leg movements in utero and during early neonatal life, but these disappear within the first few weeks after birth. However, the pathophysiological sequence underlying such motor dysfunction remains unclear. Additionally, because important insights have yet to be obtained from human cases, an appropriate animal model is essential. Here, we investigated the neuropathological mechanisms of progression of SBA-like motor dysfunctions in a neural tube surgery-induced chicken model of SBA at different pathogenesis points ranging from embryonic to posthatch ages. We found that chicks with SBA-like features lose voluntary leg movements and subsequently exhibit lower-limb paralysis within the first 2 weeks after hatching, coinciding with the synaptic change-induced disruption of spinal motor networks at the site of the SBA lesion in the lumbosacral region. Such synaptic changes reduced the ratio of inhibitory-to-excitatory inputs to motor neurons and were associated with a drastic loss of γ-aminobutyric acid (GABAergic inputs and upregulation of the cholinergic activities of motor neurons. Furthermore, most of the neurons in ventral horns, which appeared to be suffering from excitotoxicity during the early postnatal days, underwent apoptosis. However, the triggers of cellular abnormalization and neurodegenerative signaling were evident in the middle- to late-gestational stages, probably attributable to the amniotic fluid-induced in ovo milieu. In conclusion, we found that early neonatal loss of neurons in the ventral horn of exposed spinal cord affords novel insights into the pathophysiology of SBA-like leg dysfunction.

  8. Spinal cord swelling and candidiasis

    International Nuclear Information System (INIS)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-01-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was cauused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunsupporessed cancer patient. (orig.)

  9. Post spinal meningitis and asepsis.

    Science.gov (United States)

    Videira, Rogerio L R; Ruiz-Neto, P P; Brandao Neto, M

    2002-07-01

    Post spinal meningitis (PSM) is a complication still currently being reported. After two PSM cases in our hospital an epidemiological study was initiated, which included a survey of techniques for asepsis that are applied in our department. Cases defined as PSM comprised meningitis within a week after spinal anesthesia. Anesthesia records, anesthesia complication files and the records of the Hospital Commission for Infection Control from 1997 to 2000 were reviewed. Asepsis techniques applied were surveyed by a questionnaire answered by all our department's anesthesiologists. The equipment and procedures for spinal anesthesia were listed. Current anesthesia textbooks were reviewed for recommendations regarding asepsis techniques in conjunction with spinal anesthesia. Three cases of PSM were identified following 38,128 spinal anesthesias whereas none was observed in 12,822 patients subjected to other types of regional or general anesthesia (P>0.05). Culture of cerebrospinal fluid yielded Streptococcus in two patients and was negative in the other patient. The asepsis technique applied by the anesthesiologists varied considerably. The literature review showed that aspects on asepsis for spinal anesthesia are poorly covered. The incidence of meningitis was similar in patients subjected to spinal anesthesia and in those subjected to other anesthetic techniques. Asepsis techniques were found to differ considerably among our staff members, reflecting the lack of well-defined published standards for this procedure. We recommend that asepsis for spinal anesthesia should not be less rigorous than for surgical asepsis.

  10. Congenital spinal malformations; Kongenitale spinale Malformationen

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, B.B.; Reiser, M.F. [Klinikum Grosshadern, Ludwig-Maximilians-Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2001-12-01

    Congenital spinal malformations form a complex and heterogeneous group of disorders whose pathogenesis is best explained embryologically. Radiologically, it is important to formulate a diagnosis when the disorder first becomes symptomatic. However, it is also crucial to detect complications of the disorder or of the respective therapeutic interventions in the further course of the disease such as hydromyelia or re-tethering after repair of a meningomyelocele. Moreover, once a congenital spinal malformation is diagnosed, associated malformations should be sought after. A possible syndromal classification such as in OEIS- or VACTERL-syndromes should also be considered. (orig.) [German] Kongenitale spinale Malformationen stellen eine komplexe Gruppe an Stoerungen dar, deren Genese sich am einfachsten aus der Embryologie heraus erklaeren laesst. Bei der klinisch-radiologischen Begutachtung ist zunaechst ihre korrekte Klassifikation im Rahmen der Erstdiagnose wichtig. Im weiteren Verlauf ist es jedoch zudem entscheidend, moegliche Komplikationen wie beispielsweise eine Hydromyelie oder ein Wiederanheften des Myelons nach Operation einer Spina bifida aperta zu erkennen. Zudem sollte bei der Diagnosestellung einer kongenitalen spinalen Malformation immer auch auf assoziierte Fehlbildungen, wie z.B. die Diastematomyelie oder das intraspinale Lipom bei der Spina bifida aperta, sowie auf eine moegliche syndromale Einordnung wie beispielsweise beim OEIS-oder VACTERL-Syndrom geachtet werden. (orig.)

  11. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice.

    Science.gov (United States)

    Miyazaki, Kazunori; Masamoto, Kazuto; Morimoto, Nobutoshi; Kurata, Tomoko; Mimoto, Takahumi; Obata, Takayuki; Kanno, Iwao; Abe, Koji

    2012-03-01

    The exact mechanism of selective motor neuron death in amyotrophic lateral sclerosis (ALS) remains still unclear. In the present study, we performed in vivo capillary imaging, directly measured spinal blood flow (SBF) and glucose metabolism, and analyzed whether if a possible flow-metabolism coupling is disturbed in motor neuron degeneration of ALS model mice. In vivo capillary imaging showed progressive decrease of capillary diameter, capillary density, and red blood cell speed during the disease course. Spinal blood flow was progressively decreased in the anterior gray matter (GM) from presymptomatic stage to 0.80-fold of wild-type (WT) mice, 0.61 at early-symptomatic, and 0.49 at end stage of the disease. Local spinal glucose utilization (LSGU) was transiently increased to 1.19-fold in anterior GM at presymptomatic stage, which in turn progressively decreased to 0.84 and 0.60 at early-symptomatic and end stage of the disease. The LSGU/SBF ratio representing flow-metabolism uncoupling (FMU) preceded the sequential pathological changes in the spinal cord of ALS mice and was preferentially found in the affected region of ALS. The present study suggests that this early and progressive FMU could profoundly involve in the whole disease process as a vascular factor of ALS pathology, and could also be a potential target for therapeutic intervention of ALS.

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences ...

  13. CT diagnosis of acute spinal injury

    International Nuclear Information System (INIS)

    Ohhama, Mitsuru; Niimiya, Hikosuke; Kimura, Ko; Yamazaki, Gyoji; Nasu, Yoshiro; Shioya, Akihide

    1982-01-01

    CT pictures of 22 acute spinal injuries with damage of the spinal cord were evaluated. In the cases of spinal cord damage with bone injury, changes in the vertebral canal were fully observed by CT. In some of spinal cord damages without bone injury, narrowing of the vertebral canal was demonstrated by CT combined with CT myelography and reconstruction. Evaluation of CT number showed a high density area in damaged spinal cord in some cases. CT was thus considered to be useful as an adjunct diagnostic aid. (Ueda, J.)

  14. Embolization of spinal arteriovenous malformations

    International Nuclear Information System (INIS)

    Son, Mi Young; Kim, Sun Yong; Park, Bok Hwan

    1990-01-01

    Recently, therapeutic embolization has been advocated as the treatment of choice for spinal AVM(arteriovenous malformations). The authors review our experience with two cases of spinal AVM treated by embolization using coaxial Tracker-18 microcatheter with Latvian. The patients included a 10 year old male with glomus type and a 14 year old female with juvenile type spinal AVM revealed recanalization 5 month later. Embolization provides curative or temporary treatment for spinal AVM. After embolic occlusion, delayed reassessment with arteriography is indicated, particularly if symptoms persist or recur

  15. [Studies on the standardization of parameters for jaw movement analysis--6 degree-of-freedom jaw movements analysis].

    Science.gov (United States)

    Takeuchi, Hisahiro; Bando, Eiichi; Abe, Susumu

    2008-07-01

    To establish standardized evaluating methods for jaw movements analysis. In this paper, we investigated evaluating parameters for 6 degree-of-freedom jaw movements data. Recorded data of jaw border movements from 20 male adults were employed as basic samples. The main parameters were as follows: 1. The displacement of an intercondylar midpoint: the length of a straight line between 2 positions of this point, the intercuspal position and other jaw position. 2. The angle of intercondylar axes: the angle between 2 position of the intercondylar axis, the intercuspal position and other jaw position. 3. The angle of incisal-condylar planes: the angle between 2 position of the plane, the intercuspal position and other jaw position (this plane was defined with the incisal point and condylar points of both sides 4. The mandibular motion range index: quantitative values calculated with 2 of 3 parameters described above. The mandibular motion range index showed a close correlation with respective projected areas of the incisal paths, with the projected area of sagittal border movements on the sagittal plane r = 0.82 (p movements on the frontal plane: left lateral border movements r = 0.92 (p movements r = 0.84 (p movements data and relative relationship between the intercuspal position and other jaw position. They were independent of reference coordinate systems and could measure jaw movement quantitatively.

  16. MR imaging of spinal trauma

    International Nuclear Information System (INIS)

    Buchberger, W.; Springer, P.; Birbamer, G.; Judmaier, W.; Kathrein, A.; Daniaux, H.

    1995-01-01

    To assess the value of MR imaging in the acute and chronic stages of spinal trauma. 126 MR examinations of 120 patients were evaluated retrospectively. In 15 cases of acute spinal cord injury, correlation of MR findings with the degree of neurological deficit and eventual recovery was undertaken. Cord anomalies in the acute stage were seen in 16 patients. Intramedullary haemorrhage (n=6) and cord transection (n=2) were associated with complete injuries and poor prognosis, whereas patients with cord oedema (n=7) had incomplete injuries and recovered significant neurological function. In the chronic stage, MR findings included persistent cord compression in 8 patients, syringomyelia or post-traumatic cyst in 12, myelomalacia in 6, cord atrophy in 9, and cord transection in 7 patients. In acute spinal trauma, MR proved useful in assessing spinal cord compression and instability. In addition, direct visualisation and characterisation of posttraumatic changes within the spinal cord may offer new possibilities in establishing the prognosis for neurological recovery. In the later stages, potentially remediable causes of persistent or progressive symptoms, such as chronic spinal cord compression or syringomyelia can be distinguished from other sequelae of spinal trauma, such as myelomalacia, cord transection or atrophy. (orig.) [de

  17. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  18. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.

    Science.gov (United States)

    Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S

    2016-04-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.

  19. A bipedal mammalian model for spinal cord injury research: The tammar wallaby [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2017-06-01

    Full Text Available Background: Most animal studies of spinal cord injury are conducted in quadrupeds, usually rodents. It is unclear to what extent functional results from such studies can be translated to bipedal species such as humans because bipedal and quadrupedal locomotion involve very different patterns of spinal control of muscle coordination. Bipedalism requires upright trunk stability and coordinated postural muscle control; it has been suggested that peripheral sensory input is less important in humans than quadrupeds for recovery of locomotion following spinal injury. Methods: We used an Australian macropod marsupial, the tammar wallaby (Macropus eugenii, because tammars exhibit an upright trunk posture, human-like alternating hindlimb movement when swimming and bipedal over-ground locomotion. Regulation of their muscle movements is more similar to humans than quadrupeds. At different postnatal (P days (P7–60 tammars received a complete mid-thoracic spinal cord transection. Morphological repair, as well as functional use of hind limbs, was studied up to the time of their pouch exit. Results: Growth of axons across the lesion restored supraspinal innervation in animals injured up to 3 weeks of age but not in animals injured after 6 weeks of age. At initial pouch exit (P180, the young injured at P7-21 were able to hop on their hind limbs similar to age-matched controls and to swim albeit with a different stroke. Those animals injured at P40-45 appeared to be incapable of normal use of hind limbs even while still in the pouch. Conclusions: Data indicate that the characteristic over-ground locomotion of tammars provides a model in which regrowth of supraspinal connections across the site of injury can be studied in a bipedal animal. Forelimb weight-bearing motion and peripheral sensory input appear not to compensate for lack of hindlimb control, as occurs in quadrupeds. Tammars may be a more appropriate model for studies of therapeutic interventions

  20. Biomechanical implications of lumbar spinal ligament transection.

    Science.gov (United States)

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  1. 2.5 Gbit/s Optical Receiver Front-End Circuit with High Sensitivity and Wide Dynamic Range

    Science.gov (United States)

    Zhu, Tiezhu; Mo, Taishan; Ye, Tianchun

    2017-12-01

    An optical receiver front-end circuit is designed for passive optical network and fabricated in a 0.18 um CMOS technology. The whole circuit consists of a transimpedance amplifier (TIA), a single-ended to differential amplifier and an output driver. The TIA employs a cascode stage as the input stage and auxiliary amplifier to reduce the miller effect. Current injecting technique is employed to enlarge the input transistor's transconductance, optimize the noise performance and overcome the lack of voltage headroom. To achieve a wide dynamic range, an automatic gain control circuit with self-adaptive function is proposed. Experiment results show an optical sensitivity of -28 dBm for a bit error rate of 10-10 at 2.5 Gbit/s and a maxim input optical power of 2 dBm using an external photodiode. The chip occupies an area of 1×0.9 mm2 and consumes around 30 mW from single 1.8 V supply. The front-end circuit can be used in various optical receivers.

  2. Is the Current Management of Patients Presenting With Spinal Trauma to District General Hospitals Fit for Purpose? Our Experience of Delivering a Spinal Service Using an Electronic Referral Platform in a Large District General Teaching Hospital Without Onsite Spinal Services.

    Science.gov (United States)

    Hill, Daniel S; Marynissen, Hans

    2018-04-12

    A retrospective cross-sectional analysis. To describe the provision of a spinal service using an electronic platform to direct management from an external spinal unit, and quantify time taken to obtain definitive management plans whilst under prescribed spinal immobilization. Most attending district general hospitals following spinal trauma will have stable injuries and normal neurology, with only a small proportion requiring urgent transfer to a specialist centre. A retrospective review of 104 patients admitted following vertebral during a 12-month period. The British Orthopaedic Association Standards for Trauma consensus that "spinal immobilisation is not recommended for more than 48 hours" was the standard of care measured against. 100 patients occupied a total of 975 hospital inpatient bed days. 117 radiological investigations were requested after the point of external referral (47 CT-scans, 37 MRI-scans, and 33 weight bearing radiographs). The period between initial referral to the regional spinal service and then receiving a definitive final management had a median value of 72 hours and a range of 0 - 33 days. Patients will have been under some form of prescribed spinal immobilisation until the definitive management plan was communicated. 34 patients (34% of the overall cohort) had a definitive management plan in place within 48 hours. 80 patients had vertebral injuries (73 stable, 6 unstable), 3 patients had prolapsed intervertebral disks, 1 had metastatic disease, and 17 had not evidence of an acute injury following evaluation. Patients are being placed under prescribed immobilisation for longer than is recommended. Delays in obtaining radiological imaging were an important factor, together with the time taken to receive a definitive management plan. Limitations in social care provision and delays in arranging this were additional barriers to hospital discharge following the final management plan. 4.

  3. Imaging in spine and spinal cord malformations

    International Nuclear Information System (INIS)

    Rossi, Andrea; Biancheri, Roberta; Cama, Armando; Piatelli, Gianluca; Ravegnani, Marcello; Tortori-Donati, Paolo

    2004-01-01

    Spinal and spinal cord malformations are collectively named spinal dysraphisms. They arise from defects occurring in the early embryological stages of gastrulation (weeks 2-3), primary neurulation (weeks 3-4), and secondary neurulation (weeks 5-6). Spinal dysraphisms are categorized into open spinal dysraphisms (OSDs), in which there is exposure of abnormal nervous tissues through a skin defect, and closed spinal dysraphisms (CSD), in which there is a continuous skin coverage to the underlying malformation. Open spinal dysraphisms basically include myelomeningocele and other rare abnormalities such as myelocele and hemimyelo(meningo)cele. Closed spinal dysraphisms are further categorized based on the association with low-back subcutaneous masses. Closed spinal dysraphisms with mass are represented by lipomyelocele, lipomyelomeningocele, meningocele, and myelocystocele. Closed spinal dysraphisms without mass comprise simple dysraphic states (tight filum terminale, filar and intradural lipomas, persistent terminal ventricle, and dermal sinuses) and complex dysraphic states. The latter category further comprises defects of midline notochordal integration (basically represented by diastematomyelia) and defects of segmental notochordal formation (represented by caudal agenesis and spinal segmental dysgenesis). Magnetic resonance imaging (MRI) is the preferred modality for imaging these complex abnormalities. The use of the aforementioned classification scheme is greatly helpful to make the diagnosis

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  5. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    Science.gov (United States)

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P control cells by 50% (P neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats.

    Science.gov (United States)

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-04-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.

  7. Rooted in Movement

    DEFF Research Database (Denmark)

    The result of the synergy between four doctoral projects and an advanced MA-level course on Bronze Age Europe, this integrated assemblage of articles represents a variety of different subjects united by a single theme: movement. Ranging from theoretical discussion of the various responses to and ...... period of European prehistory. In so doing, the text not only addresses transmission and reception, but also the conceptualization of mobility within a world which was literally Rooted in Movement....

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  9. Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-01-01

    Full Text Available Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of NeuN-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.

  10. Presentation and outcome of traumatic spinal fractures

    Directory of Open Access Journals (Sweden)

    Ahmed El-Faramawy

    2012-01-01

    Full Text Available Background: Motor vehicle crashes and falls account for most of the spine fractures with subsequent serious disability. Aim: To define the incidence, causes, and outcome of spinal fractures. Materials and Methods: Data were collected retrospectively from trauma registry database of all traumatic spinal injuries admitted to the section of trauma surgery in Qatar from November 2007 to December 2009. Results: Among 3712 patients who were admitted to the section of trauma surgery, 442 (12% injured patients had spinal fractures with a mean age of 33.2 ± 12 years. The male to female ratio was 11.6:1. Motor vehicle crashes (36.5% and falls from height (19.3% were the leading causes of cervical injury (P = 0.001. The injury severity score ranged between 4 and 75. Nineteen percent of cases with cervical injury had thoracic injury as well (P = 0.04. Lumber injury was associated with thoracic injury in 27% of cases (P < 0.001. Combined thoracic and lumber injuries were associated with cervical injury in 33% of cases (P < 0.001. The total percent of injuries associated with neurological deficit was 5.4%. Fifty-three cases were managed surgically for spine fractures; 14 of them had associated neurological deficits. Overall mortalityrate was 5%. Conclusions: Spine fractures are not uncommon in Qatar. Cervical and thoracic spine injuries carry the highest incidence of associated neurological deficit and injuries at other spinal levels. Young males are the most exposed population that deserves more emphasis on injury prevention programs in the working sites and in enforcement of traffic laws.

  11. Assessing attitudes toward spinal immobilization.

    Science.gov (United States)

    Bouland, Andrew J; Jenkins, J Lee; Levy, Matthew J

    2013-10-01

    Prospective studies have improved knowledge of prehospital spinal immobilization. The opinion of Emergency Medical Services (EMS) providers regarding spinal immobilization is unknown, as is their knowledge of recent research advances. To examine the attitudes, knowledge, and comfort of prehospital and Emergency Department (ED) EMS providers regarding spinal immobilization performed under a non-selective protocol. An online survey was conducted from May to July of 2011. Participants were drawn from the Howard County Department of Fire and Rescue Services and the Howard County General Hospital ED. The survey included multiple choice questions and responses on a modified Likert scale. Correlation analysis and descriptive data were used to analyze results. Comfort using the Kendrick Extrication Device was low among ED providers. Experienced providers were more likely to indicate comfort using this device. Respondents often believed that spinal immobilization is appropriate in the management of penetrating trauma to the chest and abdomen. Reported use of padding decreased along with the frequency with which providers practice and encounter immobilized patients. Respondents often indicated that they perform spinal immobilization due solely to mechanism of injury. Providers who feel as if spinal immobilization is often performed unnecessarily were more likely to agree that immobilization causes an unnecessary delay in patient care. The results demonstrate the need for improved EMS education in the use of the Kendrick Extrication Device, backboard padding, and spinal immobilization in the management of penetrating trauma. The attitudes highlighted in this study are relevant to the implementation of a selective spinal immobilization protocol. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Normal morphology of the cervical spinal cord and spinal canal using MRI in Japanese

    International Nuclear Information System (INIS)

    Kato, Fumihiko; Yukawa, Yasutsugu; Suda, Kota; Yamagata, Masatsune; Ueta, Takayoshi

    2010-01-01

    The purpose of this study was to establish standard MRI values for the cervical spinal canal, dural tube, and spinal cord in healthy Japanese subjects and to define developmental stenosis of the cervical spinal canal based on MRI data. To establish standard values for ''finger grip and release in 10 seconds (G and R test)'' and ''10 second step test'' in healthy Japanese subjects. There were approximately 100 volunteers representing each gender and generation, including persons aged in their 20s to 70s. The sagittal diameter of the spinal canal, and the sagittal diameter and axial area of the dural tube and spinal cord were measured on MRIs of 1,211 subjects. From this data, we calculated the spinal cord occupation rate in the dural tube for defining developmental stenosis of the cervical spinal canal. ''Finger grip and release in 10 seconds (G and R test)'' and ''10 second step test'' were also examined on 1,211 subjects. The spinal canal diameter in sagittal images for all ages at the C5/6 intervertebral disc level was 11.7±1.6 mm in males and 11.6±1.5 mm in females, while that at the C5 vertebral body level was 12.9±1.4 mm in males and 12.5±1.3 mm in females. Dural tube diameter in sagittal images for all ages at the C5/6 intervertebral disc level was 9.5±1.8 mm in males and 9.6±1.6 mm in females, while that at the C5 vertebral body level was 11.2±1.4 mm in males and 11.1±1.4 mm in females. Dural tube area in axial images for all ages at the C5/6 intervertebral disc level was 155.7±32.1 mm 2 in males and 149.6±29.0 mm 2 in females, while that at the C5 vertebral body level was 187.4±32.6 mm 2 in males and 177.0±32.7 mm 2 in females. Spinal cord diameter in sagittal images for all ages at the C5/6 intervertebral disc level was 5.9±1.0 mm in males and 5.8±0.9 mm in females, while that at the C5 vertebral body level was 6.5±0.7 mm in males and 6.4±0.7 mm in females. Spinal cord area in axial images for all ages at the C5/6 intervertebral disc level

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... About Media Donate Spinal Cord Injury Medical Expert Videos ... Home Kim Eberhardt Muir, MS Coping with a New Injury Robin Dorman, PsyD Sex and Fertility After Spinal Cord Injury Diane M. ...

  14. 9 CFR 82.12 - Other interstate movements and special permits.

    Science.gov (United States)

    2010-01-01

    ..., or cleaning and disinfection may be carried out. (1) For an interstate movement, the special permit... interstate; and (iv) The reason for the interstate movement. (2) For destruction or cleaning and disinfection... END, in a manner other than is specifically prescribed in this subpart, and for cleaning and...

  15. Do changes in spinal reflex excitability elicited by transcranial magnetic stimulation differ based on the site of cerebellar stimulation?

    Science.gov (United States)

    Matsugi, Akiyoshi

    2018-05-06

    The present study aimed to investigate whether spinal reflex excitability is influenced by the site of cerebellar transcranial magnetic stimulation (C-TMS). Fourteen healthy volunteers (mean age: 24.6 ± 6.6 years [11 men]) participated. Participants lay on a bed in the prone position, with both ankle joints fixed to prevent unwanted movement. Right tibial nerve stimulation was provided to elicit the H-reflex in the right soleus muscle. Conditioning transcranial magnetic stimulation (TMS) was delivered at one of the following sites 110 ms prior to tibial stimulation: right, central, or left cerebellum; midline parietal (Pz) region; or sham stimulation. A total of 10 test trials were included for each condition, in random order. The unconditioned and conditioned H-reflexes were measured during random inter-test trials, and the cerebellar spinal facilitation (CSpF) ratios for each site were calculated (the ratio of conditioned to unconditioned H-reflexes). CSpF ratios were compared among TMS sites. CSpF ratios were significantly higher at cerebellar sites than at the Pz site or during sham stimulation. However, there was no significant difference in CSpF ratio among cerebellar sites. TMS conditioning over any part of the cerebellum facilitated the excitability of the spinal motoneuron pool. Facilitation of the H-reflex due to C-TMS may involve the effects of the bilateral descending tract of the spinal cord on the spinal motoneuron pool. Alternatively, direct brainstem stimulation may have activated portions of the bilateral descending tract of the spinal cord.

  16. Primary vertebral and spinal epidural non-Hodgkin's lymphoma with spinal cord compression

    International Nuclear Information System (INIS)

    Boukobza, M.; Mazel, C.; Touboul, E.

    1996-01-01

    We examined eight patients with primary spinal epidural non-Hodgkin's lymphoma presenting with spinal cord compression and proven histologically after laminectomy (7 cases) or biopsy (1 case) by MRI. The most common findings were an isointense or low signal relative to the spinal cord on T1-weighted images (T1WI) and high signal on T2-weighted images (T2WI). Spinal cord compression, vertebral bone marrow and paravertebral extension were assessed. Contrast enhancement was intense in seven of the eight cases and homogeneous in all of them. T2WI (performed in 2 cases) may be useful to distinguish metastatic carcinomas and sarcomas. T1WI demonstrated the full extent of the epidural lesion, which was well-delineated in all cases. When the paravertebral extension is not well-defined, a study with contrast medium should be performed. (orig.). With 3 figs., 1 tab

  17. Overland movement in African clawed frogs (Xenopus laevis: empirical dispersal data from within their native range

    Directory of Open Access Journals (Sweden)

    F. André De Villiers

    2017-11-01

    Full Text Available Dispersal forms are an important component of the ecology of many animals, and reach particular importance for predicting ranges of invasive species. African clawed frogs (Xenopus laevis move overland between water bodies, but all empirical studies are from invasive populations with none from their native southern Africa. Here we report on incidents of overland movement found through a capture-recapture study carried out over a three year period in Overstrand, South Africa. The maximum distance moved was 2.4 km with most of the 91 animals, representing 5% of the population, moving ∼150 m. We found no differences in distances moved by males and females, despite the former being smaller. Fewer males moved overland, but this was no different from the sex bias found in the population. In laboratory performance trials, we found that males outperformed females, in both distance moved and time to exhaustion, when corrected for size. Overland movement occurred throughout the year, but reached peaks in spring and early summer when temporary water bodies were drying. Despite permanent impoundments being located within the study area, we found no evidence for migrations of animals between temporary and permanent water bodies. Our study provides the first dispersal kernel for X. laevis and suggests that it is similar to many non-pipid anurans with respect to dispersal.

  18. Spinal cord injury arising in anaesthesia practice.

    Science.gov (United States)

    Hewson, D W; Bedforth, N M; Hardman, J G

    2018-01-01

    Spinal cord injury arising during anaesthetic practice is a rare event, but one that carries a significant burden in terms of morbidity and mortality. In this article, we will review the pathophysiology of spinal cord injury. We will then discuss injuries relating to patient position, spinal cord hypoperfusion and neuraxial techniques. The most serious causes of spinal cord injury - vertebral canal haematoma, spinal epidural abscess, meningitis and adhesive arachnoiditis - will be discussed in turn. For each condition, we draw attention to practical, evidence-based measures clinicians can undertake to reduce their incidence, or mitigate their severity. Finally, we will discuss transient neurological symptoms. Some cases of spinal cord injury during anaesthesia can be ascribed to anaesthesia itself, arising as a direct consequence of its conduct. The injury to a spinal nerve root by inaccurate and/or incautious needling during spinal anaesthesia is an obvious example. But in many cases, spinal cord injury during anaesthesia is not caused by, related to, or even associated with, the conduct of the anaesthetic. Surgical factors, whether direct (e.g. spinal nerve root damage due to incorrect pedicle screw placement) or indirect (e.g. cord ischaemia following aortic surgery) are responsible for a significant proportion of spinal cord injuries that occur concurrently with the delivery of regional or general anaesthesia. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  19. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis

    OpenAIRE

    Zhong-jun Hou; Yong Huang; Zi-wen Fan; Xin-chun Li; Bing-yi Cao

    2015-01-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy v...

  20. Spinal cysticercosis

    International Nuclear Information System (INIS)

    Goedert, A.V.; Silva, S.H.F.

    1990-01-01

    Spinal cysticercosis is an extremely uncommon condition. We have examined four patients with complaints that resembled nervous root compression by disk herniation. Myelography was shown to be an efficient method to evaluate spinal involvement, that was characterized by findings of multiple filling defect images (cysts) plus signs of adhesive arachnoiditis. One cyst was found to be mobile. Because of the recent development of medical treatment, a quick and precise diagnosis is of high importance to determine the prognosis of this condition. (author)

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite ... play_arrow What are the latest developments in the use of electrical stimulation for spinal ...

  2. Reducing risk of spinal haematoma from spinal and epidural pain procedures.

    Science.gov (United States)

    Breivik, Harald; Norum, Hilde; Fenger-Eriksen, Christian; Alahuhta, Seppo; Vigfússon, Gísli; Thomas, Owain; Lagerkranser, Michael

    2018-04-25

    Central neuraxial blocks (CNB: epidural, spinal and their combinations) and other spinal pain procedures can cause serious harm to the spinal cord in patients on antihaemostatic drugs or who have other risk-factors for bleeding in the spinal canal. The purpose of this narrative review is to provide a practise advisory on how to reduce risk of spinal cord injury from spinal haematoma (SH) during CNBs and other spinal pain procedures. Scandinavian guidelines from 2010 are part of the background for this practise advisory. We searched recent guidelines, PubMed (MEDLINE), SCOPUS and EMBASE for new and relevant randomised controlled trials (RCT), case-reports and original articles concerning benefits of neuraxial blocks, risks of SH due to anti-haemostatic drugs, patient-related risk factors, especially renal impairment with delayed excretion of antihaemostatic drugs, and specific risk factors related to the neuraxial pain procedures. Epidural and spinal analgesic techniques, as well as their combination provide superior analgesia and reduce the risk of postoperative and obstetric morbidity and mortality. Spinal pain procedure can be highly effective for cancer patients, less so for chronic non-cancer patients. We did not identify any RCT with SH as outcome. We evaluated risks and recommend precautions for SH when patients are treated with antiplatelet, anticoagulant, or fibrinolytic drugs, when patients' comorbidities may increase risks, and when procedure-specific risk factors are present. Inserting and withdrawing epidural catheters appear to have similar risks for initiating a SH. Invasive neuraxial pain procedures, e.g. spinal cord stimulation, have higher risks of bleeding than traditional neuraxial blocks. We recommend robust monitoring routines and treatment protocol to ensure early diagnosis and effective treatment of SH should this rare but potentially serious complication occur. When neuraxial analgesia is considered for a patient on anti

  3. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration.

    Science.gov (United States)

    Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong

    2017-10-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.

  4. Spinal and para spinal tumors treated by Cyberknife: feasibility and efficacy

    International Nuclear Information System (INIS)

    Castelli, J.; Thariat, J.; Benezery, K.; Courdi, A.; Doyen, J.; Mammar, H.; Bondiau, P.Y.; Chanalet, S.; Paquis, P.; Frenay, M.

    2010-01-01

    Purpose Stereotactic radiotherapy using the Cyberknife has become a key treatment in the multidisciplinary management of secondary tumours, as well as primary benign or malignant tumours located within or adjacent to vertebral bodies and the spinal cord. The aim of this treatment is to improve local control and clinical response, including previously irradiated cases. Patients and methods In this study, we present the first patients treated with Cyberknife between December 2006 and December 2007 for spinal or para spinal tumours. The primary aim was to assess the feasibility and tolerance of stereotactic radiotherapy using the Cyberknife. Secondary aims were to establish the short-term local control, to calculate the local progression-free survival and overall survival. Clinical examination and imaging procedures were performed every three months. Response was assessed according to RECIST criteria. Results During that period, 16 patients were treated with Cyberknife. Thirteen patients had been pre-treated, three of whom had received spinal cord doses considered to be maximal. Three patients did not receive previous irradiation. The median age was 59 (36-74). The most frequent symptoms were pain (n = 8) and motor weakness (n = 4). The median dose was 30 Gy (16-50). The median number of fractions was 3 (1-5). No patient developed acute myelitis. Three patients developed acute reaction. Overall survival at 18 months was 72.4%, with a mean survival of 18.2 months (95% CI: 15.4-20.9). Local progression-free survival at 18 months was 58.4%, with a mean value of 16.9 months (95% CI: 13.6-20.2). Conclusion The use of stereotactic radiotherapy with Cyberknife represents a major progress in the management of para spinal tumours. The main advantages are better sparing of the spinal cord and the possibility of increasing the dose to the tumour target volume. (authors)

  5. Vestibulo-tactile interactions regarding motion perception and eye movements in yaw

    NARCIS (Netherlands)

    Bos, J.E.; Erp, J.B.F. van; Groen, E.L.; Veen, H.J. van

    2005-01-01

    This paper shows that tactile stimulation can override vestibular information regarding spinning sensations and eye movements. However, we conclude that the current data do not support the hypothesis that tactile stimulation controls eye movements directly. To this end, twenty-four subjects were

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of Spinal Cord Injury Rehabilitation Kristine Cichowski, MS Occupational Therapy after Spinal Cord Injury Katie Powell, OT ... does not provide medical advice, recommend or endorse health care products or services, or control the information ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Resources Peer Counseling Blog About Media Donate close search Understanding Spinal Cord Injury What is a Spinal ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding Spinal ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ... a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? ...

  12. Does Motor Development in Infancy Predict Spinal Pain in Later Childhood?

    DEFF Research Database (Denmark)

    Kamper, Steven J; Williams, Christopher M; Hestbaek, Lise

    2017-01-01

    first sat, and first walked without support. Predictors were measured by parent-report when the children were aged 6, and 18 months, along with a comprehensive list of covariates, including; child sex, birthweight and cognitive development, socioeconomic indicators, and parental health variables......Study Design Longitudinal cohort study. Background Spinal pain is responsible for a huge personal and societal burden but the aetiology remains unclear. Deficits in motor control have been implicated with spinal pain in adults, and delayed motor development is associated with a range of health...... problems and risks in children. Objectives To assess whether there is an independent relationship between the age at which infants first sit and walk without support, and spinal pain at age 11 years. Methods Data from the Danish National Birth Cohort were analysed. Predictors were age at which the child...

  13. Head and Arm Tremor in X-linked Spinal and Bulbar Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Irene Aicua

    2014-10-01

    Full Text Available Background: X‐linked spinal and bulbar muscular atrophy (SBMA is a rare adult‐onset neuronopathy. Although tremor is known to occur in this disease, the number of reported cases of SBMA with tremor is rare, and the number with videotaped documentation is exceedingly rare. Our aim was to describe/document the characteristic signs of tremor in spinal and bulbar muscular atrophy.Case Report: We report a case of a 58‐year‐old male with a positive family history of tremor. On examination, the patient had jaw and hand tremors but he also exhibited gynecomastia, progressive bulbar paresis, and wasting and weakness primarily in the proximal limb muscles. The laboratory tests revealed an elevated creatine phosphokinase. Genetic testing was positive for X‐SBMA, with 42 CAG repeats.Discussion: Essential tremor is one of the most common movement disorders, yet it is important for clinicians to be aware of the presence of other distinguishing features that point to alternative diagnoses. The presence of action tremor associated with muscle atrophy and gynecomastia should lead to a suspicion of SBMA.

  14. Lake Sturgeon, Acipenser fulvescens, movements in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake, Minnesota-Ontario, contains a native population of Lake Sturgeon (Acipenser fulvescens) that has gone largely unstudied. The objective of this descriptive study was to summarize generalized Lake Sturgeon movement patterns through the use of biotelemetry. Telemetry data reinforced the high utilization of the Squirrel Falls geographic location by Lake Sturgeon, with 37% of the re-locations occurring in that area. Other spring aggregations occurred in areas associated with Kettle Falls, the Pipestone River, and the Rat River, which could indicate spawning activity. Movement of Lake Sturgeon between the Seine River and the South Arm of Rainy Lake indicates the likelihood of one integrated population on the east end of the South Arm. The lack of re-locations in the Seine River during the months of September and October may have been due to Lake Sturgeon moving into deeper water areas of the Seine River and out of the range of radio telemetry gear or simply moving back into the South Arm. Due to the movements between Minnesota and Ontario, coordination of management efforts among provincial, state, and federal agencies will be important.

  15. Imaging in spinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, J.W.M. van [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium); Algemeen Ziekenhuis Maria Middelares, Department of Radiology, Sint-Niklaas (Belgium); Maes, Menno; Oezsarlak, Oezkan; Hauwe, Luc van den; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium)

    2005-03-01

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  16. Imaging in spinal trauma

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Maes, Menno; Oezsarlak, Oezkan; Hauwe, Luc van den; Parizel, Paul M.

    2005-01-01

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  17. Therapeutic approaches for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2012-10-01

    Full Text Available This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal ... injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Guy W. Fried, MD Substance Abuse and Spinal Cord Injury Allen Heinemann, PhD How ... arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation ... Rogers, PT Recreational Therapy after Spinal Cord Injury Jennifer Piatt, PhD David Chen, MD Read Bio Medical ...