WorldWideScience

Sample records for encoding membrane proteins

  1. SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Avram, D; Bakalinsky, A T

    1997-01-01

    The Saccharomyces cerevisiae SSU1 gene was isolated based on its ability to complement a mutation causing sensitivity to sulfite, a methionine intermediate. SSU1 encodes a deduced protein of 458 amino acids containing 9 or 10 membrane-spanning domains but has no significant similarity to other proteins in public databases. An Ssu1p-GEP fusion protein was localized to the plasma membrane. Multicopy suppression analysis, undertaken to explore relationships among genes previously implicated in sulfite metabolism, suggests a regulatory pathway in which SSU1 acts downstream of FZF1 and SSU3, which in turn act downstream of GRR1. PMID:9294463

  2. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Beliaev, A S; Saffarini, D A

    1998-12-01

    Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.

  3. MBA1 encodes a mitochondrial membrane-associated protein required for biogenesis of the respiratory chain.

    Science.gov (United States)

    Rep, M; Grivell, L A

    1996-06-17

    The yeast MBA 1 gene (Multi-copy Bypass of AFG3) is one of three genes whose overexpression suppresses afg3-null and rca1-null mutations. Bypass of AFG3 and RCA1, whose products are essential for assembly of mitochondrial inner membrane enzyme complexes, suggests a related role for MBA1. The predicted translation product is a 30 kDa hydrophilic protein with a putative mitochondrial targeting sequence and no homology to any sequence in protein or EST databases. Gene disruption leads to a partial respiratory growth defect, which is more pronounced at temperatures above 30 degrees C. Concomitantly, amounts of cytochromes b and aa3 are reduced. A C-terminal c-myc-tagged MBA1 gene product is functional and is found associated with the mitochondrial inner membrane, from which it can he extracted by carbonate, but not by high salt. These observations give further support to a role of MBA1 in assembly of the respiratory chain.

  4. Cloning and Characterization of Multigenes Encoding the Immunodominant 30-Kilodalton Major Outer Membrane Proteins of Ehrlichia canis and Application of the Recombinant Protein for Serodiagnosis

    Science.gov (United States)

    Ohashi, Norio; Unver, Ahmet; Zhi, Ning; Rikihisa, Yasuko

    1998-01-01

    is a suitable antigen for serodiagnosis of canine ehrlichiosis, the immunoreactions between rP30 and the whole purified E. canis antigen were compared in the dot immunoblot assay. Dot reactions of both antigens with IFA-positive dog plasma specimens were clearly distinguishable by the naked eye from those with IFA-negative plasma specimens. By densitometry with a total of 42 IFA-positive and -negative plasma specimens, both antigens produced results similar in sensitivity and specificity. These findings suggest that the rP30 antigen provides a simple, consistent, and rapid serodiagnosis for canine ehrlichiosis. Cloning of multigenes encoding the 30-kDa major outer membrane proteins of E. canis will greatly facilitate understanding pathogenesis and immunologic study of canine ehrlichosis and provide a useful tool for phylogenetic analysis. PMID:9705412

  5. Identification and Comparative Analysis of Genes Encoding Outer Membrane Proteins P2 and P5 in Haemophilus parsuis

    Science.gov (United States)

    Haemophilus parasuis is a serious swine pathogen but little is known about how it causes disease. A related human pathogen, Haemophilus influenzae, has been better studied and many of its virulence factors have been identified. Two of these, outer membrane proteins P2 and P5, have been shown to ha...

  6. Peptide Signals Encode Protein Localization▿

    OpenAIRE

    Russell, Jay H.; Keiler, Kenneth C.

    2007-01-01

    Many bacterial proteins are localized to precise intracellular locations, but in most cases the mechanism for encoding localization information is not known. Screening libraries of peptides fused to green fluorescent protein identified sequences that directed the protein to helical structures or to midcell. These peptides indicate that protein localization can be encoded in 20-amino-acid peptides instead of complex protein-protein interactions and raise the possibility that the location of a ...

  7. Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles

    DEFF Research Database (Denmark)

    Hummel, R; Nørgaard, P; Andreasen, P H

    1992-01-01

    The F-antigen is a prominent liver protein which has been extensively used in studies on natural and induced immunological tolerance. However, its intracellular localization and biological function have remained elusive. It has generally been assumed that the F-antigen is confined phylogenetically...... of the TF-ag protein, however, declined only moderately during prolonged periods of starvation demonstrating that extensive release of the TF-ag did not take place. In combination these results suggest that the TF-ag protein is a recycled constituent of the intracellular membrane network in T. thermophila...... to vertebrates. Now we have cloned and characterized a gene from the ciliated protozoan Tetrahymena thermophila encoding a protein which clearly is homologous with the rat F-antigen. The coding region of the Tetrahymena F-antigen (TF-ag) gene specifies a 46,051 M(r) protein and is interrupted by three introns...

  8. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  10. Consideration of Epstein-Barr Virus-Encoded Noncoding RNAs EBER1 and EBER2 as a Functional Backup of Viral Oncoprotein Latent Membrane Protein 1

    Directory of Open Access Journals (Sweden)

    Kristina M. Herbert

    2016-03-01

    Full Text Available The Epstein-Barr virus (EBV-encoded noncoding RNAs EBER1 and EBER2 are highly abundant through all four latency stages of EBV infection (III-II-I-0 and have been associated with an oncogenic phenotype when expressed in cell lines cultured in vitro. In vivo, EBV-infected B cells derived from freshly isolated lymphocytes show that EBER1/2 deletion does not impair viral latency. Based on published quantitative proteomics data from BJAB cells expressing EBER1 and EBER2, we propose that the EBERs, through their activation of AKT in a B-cell-specific manner, are a functionally redundant backup of latent membrane protein 1 (LMP1—an essential oncoprotein in EBV-associated malignancies, with a main role in AKT activation. Our proposed model may explain the lack of effect on viral latency establishment in EBER-minus EBV infection.

  11. Eukaryotic membrane protein overproduction in Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Chan, Ka Wai; Slotboom, Dirk Jan; Floyd, Suzanne; O’Connor, Rosemary; Monné, Magnus

    2005-01-01

    Eukaryotic membrane proteins play many vital roles in the cell and are important drug targets. Approximately 25% of all genes identified in the genome are known to encode membrane proteins, but the vast majority have no assigned function. Although the generation of structures of soluble proteins has

  12. Secondary structure estimation of recombinant psbH, encoding a photosynthetic membrane protein of cyanobacterium Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Štys, Dalibor

    2005-01-01

    Roč. 43, č. 3 (2005), s. 421-424 ISSN 0300-3604 Institutional research plan: CEZ:AV0Z60870520; MSM6007665808 Keywords : protein Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.810, year: 2005

  13. The SlZRT1 Gene Encodes a Plasma Membrane-Located ZIP (Zrt-, Irt-Like Protein Transporter in the Ectomycorrhizal Fungus Suillus luteus

    Directory of Open Access Journals (Sweden)

    Laura Coninx

    2017-11-01

    Full Text Available Zinc (Zn is an essential micronutrient but may become toxic when present in excess. In Zn-contaminated environments, trees can be protected from Zn toxicity by their root-associated micro-organisms, in particular ectomycorrhizal fungi. The mechanisms of cellular Zn homeostasis in ectomycorrhizal fungi and their contribution to the host tree’s Zn status are however not yet fully understood. The aim of this study was to identify and characterize transporters involved in Zn uptake in the ectomycorrhizal fungus Suillus luteus, a cosmopolitan pine mycobiont. Zn uptake in fungi is known to be predominantly governed by members of the ZIP (Zrt/IrtT-like protein family of Zn transporters. Four ZIP transporter encoding genes were identified in the S. luteus genome. By in silico and phylogenetic analysis, one of these proteins, SlZRT1, was predicted to be a plasma membrane located Zn importer. Heterologous expression in yeast confirmed the predicted function and localization of the protein. A gene expression analysis via RT-qPCR was performed in S. luteus to establish whether SlZRT1 expression is affected by external Zn concentrations. SlZRT1 transcripts accumulated almost immediately, though transiently upon growth in the absence of Zn. Exposure to elevated concentrations of Zn resulted in a significant reduction of SlZRT1 transcripts within the first hour after initiation of the exposure. Altogether, the data support a role as cellular Zn importer for SlZRT1 and indicate a key role in cellular Zn uptake of S. luteus. Further research is needed to understand the eventual contribution of SlZRT1 to the Zn status of the host plant.

  14. Epstein-Barr virus-encoded latent membrane protein 1 impairs G2 checkpoint in human nasopharyngeal epithelial cells through defective Chk1 activation.

    Directory of Open Access Journals (Sweden)

    Wen Deng

    Full Text Available Nasopharyngeal carcinoma (NPC is a common cancer in Southeast Asia, particularly in southern regions of China. EBV infection is closely associated with NPC and has long been postulated to play an etiological role in the development of NPC. However, the role of EBV in malignant transformation of nasopharyngeal epithelial cells remains enigmatic. The current hypothesis of NPC development is that premalignant nasopharyngeal epithelial cells harboring genetic alterations support EBV infection and expression of EBV genes induces further genomic instability to facilitate the development of NPC. The latent membrane protein 1 (LMP1 is a well-documented EBV-encoded oncogene. The involvement of LMP1 in human epithelial malignancies has been implicated, but the mechanisms of oncogenic actions of LMP1, particularly in nasopharyngeal cells, are unclear. Here we observed that LMP1 expression in nasopharyngeal epithelial cells impaired G2 checkpoint, leading to formation of unrepaired chromatid breaks in metaphases after γ-ray irradiation. We further found that defective Chk1 activation was involved in the induction of G2 checkpoint defect in LMP1-expressing nasopharyngeal epithelial cells. Impairment of G2 checkpoint could result in loss of the acentrically broken chromatids and propagation of broken centric chromatids in daughter cells exiting mitosis, which facilitates chromosome instability. Our findings suggest that LMP1 expression facilitates genomic instability in cells under genotoxic stress. Elucidation of the mechanisms involved in LMP1-induced genomic instability in nasopharyngeal epithelial cells will shed lights on the understanding of role of EBV infection in NPC development.

  15. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  16. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...... oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins....

  17. Membrane bending by protein-protein crowding.

    Science.gov (United States)

    Stachowiak, Jeanne C; Schmid, Eva M; Ryan, Christopher J; Ann, Hyoung Sook; Sasaki, Darryl Y; Sherman, Michael B; Geissler, Phillip L; Fletcher, Daniel A; Hayden, Carl C

    2012-09-01

    Curved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation. Thus, at present, we lack a sufficient physical explanation of how protein attachment bends membranes efficiently. On the basis of studies of epsin1 and AP180, proteins involved in clathrin-mediated endocytosis, we propose a third general mechanism for bending fluid cellular membranes: protein-protein crowding. By correlating membrane tubulation with measurements of protein densities on membrane surfaces, we demonstrate that lateral pressure generated by collisions between bound proteins drives bending. Whether proteins attach by inserting a helix or by binding lipid heads with an engineered tag, protein coverage above ~20% is sufficient to bend membranes. Consistent with this crowding mechanism, we find that even proteins unrelated to membrane curvature, such as green fluorescent protein (GFP), can bend membranes when sufficiently concentrated. These findings demonstrate a highly efficient mechanism by which the crowded protein environment on the surface of cellular membranes can contribute to membrane shape change.

  18. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes.

    Directory of Open Access Journals (Sweden)

    Bhavi P Modi

    Full Text Available Preterm premature rupture of membranes (PPROM is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES on neonatal DNA derived from pregnancies complicated by PPROM (49 cases and healthy term deliveries (20 controls to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225 of damaging/potentially damaging rare variants was identified in the genes of interest-fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans.

  19. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes.

    Science.gov (United States)

    Modi, Bhavi P; Teves, Maria E; Pearson, Laurel N; Parikh, Hardik I; Chaemsaithong, Piya; Sheth, Nihar U; York, Timothy P; Romero, Roberto; Strauss, Jerome F

    2017-01-01

    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest-fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans.

  20. Membrane fission by protein crowding.

    Science.gov (United States)

    Snead, Wilton T; Hayden, Carl C; Gadok, Avinash K; Zhao, Chi; Lafer, Eileen M; Rangamani, Padmini; Stachowiak, Jeanne C

    2017-04-18

    Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.

  1. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  2. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  3. Membrane protein expression triggers chromosomal locus repositioning in bacteria

    Science.gov (United States)

    Libby, Elizabeth A.; Roggiani, Manuela; Goulian, Mark

    2012-01-01

    It has long been hypothesized that subcellular positioning of chromosomal loci in bacteria may be influenced by gene function and expression state. Here we provide direct evidence that membrane protein expression affects the position of chromosomal loci in Escherichia coli. For two different membrane proteins, we observed a dramatic shift of their genetic loci toward the membrane upon induction. In related systems in which a cytoplasmic protein was produced, or translation was eliminated by mutating the start codon, a shift was not observed. Antibiotics that block transcription and translation similarly prevented locus repositioning toward the membrane. We also found that repositioning is relatively rapid and can be detected at positions that are a considerable distance on the chromosome from the gene encoding the membrane protein (>90 kb). Given that membrane protein-encoding genes are distributed throughout the chromosome, their expression may be an important mechanism for maintaining the bacterial chromosome in an expanded and dynamic state. PMID:22529375

  4. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    -like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...... of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes...

  5. Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles

    DEFF Research Database (Denmark)

    Hummel, R; Nørgaard, P; Andreasen, P H

    1992-01-01

    of the Golgi apparatus and transport vesicles pointing to a role of TF-ag in membrane trafficking. Transcription of the TF-ag gene, as determined by run-on analyses, was only detectable in growing cells, and following transfer to starvation condition pre-existing TF-ag mRNA was rapidly degraded. The abundance...

  6. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...

  7. Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague.

    Science.gov (United States)

    Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K

    2015-04-01

    Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a

  8. Combinational Deletion of Three Membrane Protein-Encoding Genes Highly Attenuates Yersinia pestis while Retaining Immunogenicity in a Mouse Model of Pneumonic Plague

    Science.gov (United States)

    Tiner, Bethany L.; Kirtley, Michelle L.; Erova, Tatiana E.; Popov, Vsevolod L.; Baze, Wallace B.; van Lier, Christina J.; Ponnusamy, Duraisamy; Andersson, Jourdan A.; Motin, Vladimir L.; Chauhan, Sadhana

    2015-01-01

    Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a

  9. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available The latent membrane protein 1 (LMP1, which is encoded by the Epstein-Barr virus (EBV, is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC, a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1, an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.

  10. A framework for protein and membrane interactions

    Directory of Open Access Journals (Sweden)

    Giorgio Bacci

    2009-11-01

    Full Text Available We introduce the BioBeta Framework, a meta-model for both protein-level and membrane-level interactions of living cells. This formalism aims to provide a formal setting where to encode, compare and merge models at different abstraction levels; in particular, higher-level (e.g. membrane activities can be given a formal biological justification in terms of low-level (i.e., protein interactions. A BioBeta specification provides a protein signature together a set of protein reactions, in the spirit of the kappa-calculus. Moreover, the specification describes when a protein configuration triggers one of the only two membrane interaction allowed, that is "pinch" and "fuse". In this paper we define the syntax and semantics of BioBeta, analyse its properties, give it an interpretation as biobigraphical reactive systems, and discuss its expressivity by comparing with kappa-calculus and modelling significant examples. Notably, BioBeta has been designed after a bigraphical metamodel for the same purposes. Hence, each instance of the calculus corresponds to a bigraphical reactive system, and vice versa (almost. Therefore, we can inherith the rich theory of bigraphs, such as the automatic construction of labelled transition systems and behavioural congruences.

  11. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  12. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  13. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  14. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins

    Directory of Open Access Journals (Sweden)

    Obed Ramírez-Sánchez

    2016-12-01

    Full Text Available Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa, average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81 aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt]. Streptophyta have on average only ∼5.7 exons of medium size (∼230 nt. Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400 nt. Among subcellular compartments, membrane proteins are the largest (∼520 aa, whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240 aa. Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes.

  15. Biopores/membrane proteins in synthetic polymer membranes.

    Science.gov (United States)

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  16. Epstein-Barr Viruses (EBVs) Deficient in EBV-Encoded RNAs Have Higher Levels of Latent Membrane Protein 2 RNA Expression in Lymphoblastoid Cell Lines and Efficiently Establish Persistent Infections in Humanized Mice.

    Science.gov (United States)

    Gregorovic, Goran; Boulden, Elizabeth A; Bosshard, Rachel; Elgueta Karstegl, Claudio; Skalsky, Rebecca; Cullen, Bryan R; Gujer, Cornelia; Rämer, Patrick; Münz, Christian; Farrell, Paul J

    2015-11-01

    Functions of Epstein-Barr virus (EBV)-encoded RNAs (EBERs) were tested in lymphoblastoid cell lines containing EBER mutants of EBV. Binding of EBER1 to ribosomal protein L22 (RPL22) was confirmed. Deletion of EBER1 or EBER2 correlated with increased levels of cytoplasmic EBV LMP2 RNA and with small effects on specific cellular microRNA (miRNA) levels, but protein levels of LMP1 and LMP2A were not affected. Wild-type EBV and EBER deletion EBV had approximately equal abilities to infect immunodeficient mice reconstituted with a human hematopoietic system. Copyright © 2015, Gregorovic et al.

  17. Transport proteins of the plant plasma membrane

    Science.gov (United States)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  18. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...

  19. Nucleic acid compositions and the encoding proteins

    Science.gov (United States)

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  20. Artificial membranes for membrane protein purification, functionality and structure studies.

    Science.gov (United States)

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Science.gov (United States)

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  2. Isomeric Detergent Comparison for Membrane Protein Stability

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.

    2016-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope...... and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta....../stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane...

  3. Novel Tripod Amphiphiles for Membrane Protein Analysis

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Kruse, Andrew C; Gotfryd, Kamil

    2013-01-01

    . The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules. Here, we introduce new tripod amphiphiles displaying favourable......Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution...

  4. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    interactions between proteins and lipids. First, interactions of soluble proteins with membranes and specific lipids were studied, using two proteins: Annexin V and Tma1. The protein was first subjected to a lipid/protein overlay assay to identify candidate interaction partners in a fast and efficient way...

  5. Genetic and biochemical characterization of ISP6, a small mitochondrial outer membrane protein associated with the protein translocation complex.

    OpenAIRE

    Kassenbrock, C K; Cao, W; Douglas, M G

    1993-01-01

    To search genetically for additional components of the protein translocation apparatus of mitochondria, we have used low fidelity PCR mutagenesis to generate temperature-sensitive mutants in the outer membrane translocation pore component ISP42. A high copy number suppressor of temperature-sensitive isp42 has been isolated and sequenced. This novel gene, denoted ISP6, encodes a 61 amino acid integral membrane protein of the mitochondrial outer membrane, which is oriented with its amino-termin...

  6. Outer membrane protein antigens of Moraxella bovis.

    Science.gov (United States)

    Ostle, A G; Rosenbusch, R F

    1986-07-01

    Outer membranes were isolated from bovine isolates and type strains of Moraxella bovis, M phenylpyruvica, M lacunata, and M ovis by sodium N lauroyl sarcosinate extraction and differential centrifugation. Analysis of outer membranes from these organisms by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis revealed that all M bovis isolates shared a common polypeptide pattern that was readily distinguishable from other Moraxella spp. Nine major outer membrane protein bands were identified by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis analysis of M bovis. Immunoblotting of protein antigens of M bovis revealed several outer membrane proteins that seemed to be common antigens of all M bovis isolates.

  7. Lipid Directed Intrinsic Membrane Protein Segregation

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Thompson, James R.; Helix Nielsen, Claus

    2013-01-01

    We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily h...

  8. Outer membrane proteins of pathogenic spirochetes

    OpenAIRE

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2004-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning bi...

  9. Integral Membrane Proteins and Bilayer Proteomics

    OpenAIRE

    Whitelegge, Julian P.

    2013-01-01

    Integral membrane proteins reside within the bilayer membranes that surround cells and organelles, playing critical roles in movement of molecules across them and the transduction of energy and signals. While their extreme amphipathicity presents technical challenges, biological mass spectrometry has been applied to all aspects of membrane protein chemistry and biology, including analysis of primary, secondary, tertiary and quaternary structure, as well as the dynamics that accompany function...

  10. Integral membrane proteins and bilayer proteomics.

    Science.gov (United States)

    Whitelegge, Julian P

    2013-03-05

    Integral membrane proteins reside within the bilayer membranes that surround cells and organelles, playing critical roles in movement of molecules across them and the transduction of energy and signals. While their extreme amphipathicity presents technical challenges, biological mass spectrometry has been applied to all aspects of membrane protein chemistry and biology, including analysis of primary, secondary, tertiary, and quaternary structures as well as the dynamics that accompany functional cycles and catalysis.

  11. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  12. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  13. Characterising antimicrobial protein-membrane complexes

    International Nuclear Information System (INIS)

    Xun, Gloria; Dingley, Andrew; Tremouilhac, Pierre

    2009-01-01

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13 C /15 N -enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  14. Cloning and Characterization of a Gene (mspA) Encoding the Major Sheath Protein of Treponema maltophilum ATCC 51939T

    Science.gov (United States)

    Heuner, Klaus; Choi, Bong-Kyu; Schade, Rüdiger; Moter, Annette; Otto, Albrecht; Göbel, Ulf B.

    1999-01-01

    The major sheath protein-encoding gene (mspA) of the oral spirochete Treponema maltophilum ATCC 51939T was cloned by screening a genomic library with an anti-outer membrane fraction antibody. The mspA gene encodes a precursor protein of 575 amino acids with a predicted molecular mass of 62.3 kDa, including a signal peptide of 19 amino acids. The native MspA formed a heat-modifiable, detergent- and trypsin-stable complex which is associated with the outer membrane. Hybridization with an mspA-specific probe showed no cross-reactivity with the msp gene from Treponema denticola. PMID:9922270

  15. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Agrobacterium T-DNA-encoded protein Atu6002 interferes with the host auxin response

    Science.gov (United States)

    Lacroix, Benoît; Gizatullina, Diana I.; Babst, Benjamin A.; Gifford, Andrew N.; Citovsky, Vitaly

    2013-01-01

    Summary Several genes in the Agrobacterium tumefaciens transferred (T) DNA encode proteins that are involved in developmental alterations leading to the formation of tumors in infected plants. We investigated the role of the protein encoded by the Atu6002 gene, the function of which is completely unknown. The Atu6002 expression occurs in Agrobacterium-induced tumors, and is also activated upon activation of plant cell division by growth hormones. Within the expressing plant cells, the Atu6002 protein is targeted to the plasma membrane. Interestingly, constitutive ectopic expression of Atu6002 in transgenic tobacco plants lead to a severe developmental phenotype characterized by stunted growth, shorter internodes, lanceolate leaves, increased branching, and modified flower morphology. These Atu6002-expressing plants also displayed impaired response to auxin. However, auxin cellular uptake and polar transport were not significantly inhibited in these plants, suggesting that Atu6002 interferes with auxin perception or signaling pathways. PMID:24128370

  17. Oncoprotein AEG-1 is an Endoplasmic Reticulum RNA Binding Protein Whose Interactome is Enriched In Organelle Resident Protein-Encoding mRNAs.

    Science.gov (United States)

    Hsu, Jack C-C; Reid, David W; Hoffman, Alyson M; Sarkar, Devanand; Nicchitta, Christopher V

    2018-02-07

    Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence > 5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream of encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Revolutionizing membrane protein overexpression in bacteria

    NARCIS (Netherlands)

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickstrom, David; Slotboom, Dirk Jan; de Gier, Jan-Willem; Wickström, David

    The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory,

  19. Membrane Shape Instability Induced by Protein Crowding.

    Science.gov (United States)

    Chen, Zhiming; Atefi, Ehsan; Baumgart, Tobias

    2016-11-01

    Peripheral proteins can bend membranes through several different mechanisms, including scaffolding, wedging, oligomerization, and crowding. The crowding effect in particular has received considerable attention recently, in part because it is a colligative mechanism-implying that it could, in principle, be explored by any peripheral protein. Here we sought to clarify to what extent this mechanism is exploited by endocytic accessory proteins. We quantitatively investigate membrane curvature generation by means of a GUV shape stability assay. We found that the amount of crowding required to induce membrane curvature is correlated with membrane tension. Importantly, we also revealed that at the same membrane tension, the crowding mechanism requires far higher protein coverage to induce curvature changes compared to those observed for the endophilin BAR domain, serving here as an example of an endocytic accessory protein. Our results are important for the design of membrane-targeted biosensors as well as the understanding of mechanisms of biological membrane shaping. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. A New Strain Collection for Improved Expression of Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Ina Meuskens

    2017-11-01

    Full Text Available Almost all integral membrane proteins found in the outer membranes of Gram-negative bacteria belong to the transmembrane β-barrel family. These proteins are not only important for nutrient uptake and homeostasis, but are also involved in such processes as adhesion, protein secretion, biofilm formation, and virulence. As surface exposed molecules, outer membrane β-barrel proteins are also potential drug and vaccine targets. High production levels of heterologously expressed proteins are desirable for biochemical and especially structural studies, but over-expression and subsequent purification of membrane proteins, including outer membrane proteins, can be challenging. Here, we present a set of deletion mutants derived from E. coli BL21(DE3 designed for the over-expression of recombinant outer membrane proteins. These strains harbor deletions of four genes encoding abundant β-barrel proteins in the outer membrane (OmpA, OmpC, OmpF, and LamB, both single and in all combinations of double, triple, and quadruple knock-outs. The sequences encoding these outer membrane proteins were deleted completely, leaving only a minimal scar sequence, thus preventing the possibility of genetic reversion. Expression tests in the quadruple mutant strain with four test proteins, including a small outer membrane β-barrel protein and variants thereof as well as two virulence-related autotransporters, showed significantly improved expression and better quality of the produced proteins over the parent strain. Differences in growth behavior and aggregation in the presence of high salt were observed, but these phenomena did not negatively influence the expression in the quadruple mutant strain when handled as we recommend. The strains produced in this study can be used for outer membrane protein production and purification, but are also uniquely useful for labeling experiments for biophysical measurements in the native membrane environment.

  1. Alternative mRNA splicing creates transcripts encoding soluble proteins from most LILR genes.

    Science.gov (United States)

    Jones, Des C; Roghanian, Ali; Brown, Damien P; Chang, Chiwen; Allen, Rachel L; Trowsdale, John; Young, Neil T

    2009-11-01

    Leucocyte Ig-like receptors (LILR) are a family of innate immune receptors expressed on myeloid and lymphoid cells that influence adaptive immune responses. We identified a common mechanism of alternative mRNA splicing, which generates transcripts that encode soluble protein isoforms of the majority of human LILR. These alternative splice variants lack transmembrane and cytoplasmic encoding regions, due to the transcription of a cryptic stop codon present in an intron 5' of the transmembrane encoding exon. The alternative LILR transcripts were detected in cell types that express their membrane-associated isoforms. Expression of the alternative LILRB1 transcript in transfected cells resulted in the release of a soluble approximately 65 Kd LILRB1 protein into culture supernatants. Soluble LILRB1 protein was also detected in the culture supernatants of monocyte-derived DC. In vitro assays suggested that soluble LILRB1 could block the interaction between membrane-associated LILRB1 and HLA-class I. Soluble LILRB1 may act as a dominant negative regulator of HLA-class I-mediated LILRB1 inhibition. Soluble isoforms of the other LILR may function in a comparable way.

  2. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  3. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector; Metzler, R.; Vattulainen, I.

    2017-01-01

    Roč. 8, č. 17 (2017), s. 4308-4313 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : giant unilamellar vesicles * single-molecule tracking * lipid bilayer membranes Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.353, year: 2016

  4. Exhaustive search of linear information encoding protein-peptide recognition.

    Science.gov (United States)

    Kelil, Abdellali; Dubreuil, Benjamin; Levy, Emmanuel D; Michnick, Stephen W

    2017-04-01

    High-throughput in vitro methods have been extensively applied to identify linear information that encodes peptide recognition. However, these methods are limited in number of peptides, sequence variation, and length of peptides that can be explored, and often produce solutions that are not found in the cell. Despite the large number of methods developed to attempt addressing these issues, the exhaustive search of linear information encoding protein-peptide recognition has been so far physically unfeasible. Here, we describe a strategy, called DALEL, for the exhaustive search of linear sequence information encoded in proteins that bind to a common partner. We applied DALEL to explore binding specificity of SH3 domains in the budding yeast Saccharomyces cerevisiae. Using only the polypeptide sequences of SH3 domain binding proteins, we succeeded in identifying the majority of known SH3 binding sites previously discovered either in vitro or in vivo. Moreover, we discovered a number of sites with both non-canonical sequences and distinct properties that may serve ancillary roles in peptide recognition. We compared DALEL to a variety of state-of-the-art algorithms in the blind identification of known binding sites of the human Grb2 SH3 domain. We also benchmarked DALEL on curated biological motifs derived from the ELM database to evaluate the effect of increasing/decreasing the enrichment of the motifs. Our strategy can be applied in conjunction with experimental data of proteins interacting with a common partner to identify binding sites among them. Yet, our strategy can also be applied to any group of proteins of interest to identify enriched linear motifs or to exhaustively explore the space of linear information encoded in a polypeptide sequence. Finally, we have developed a webserver located at http://michnick.bcm.umontreal.ca/dalel, offering user-friendly interface and providing different scenarios utilizing DALEL.

  5. Single channel analysis of membrane proteins in artificial bilayer membranes.

    Science.gov (United States)

    Bartsch, Philipp; Harsman, Anke; Wagner, Richard

    2013-01-01

    The planar lipid bilayer technique is a powerful experimental approach for electrical single channel recordings of pore-forming membrane proteins in a chemically well-defined and easily modifiable environment. Here we provide a general survey of the basic materials and procedures required to set up a robust bilayer system and perform electrophysiological single channel recordings of reconstituted proteins suitable for the in-depth characterization of their functional properties.

  6. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Murray, T; Popham, D L

    1998-01-01

    The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated...... and sporulated identically to wild-type cells, and dacC and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression of dacC in Escherichia coli showed that this gene encodes an approximately 59-kDa membrane-associated penicillin-binding protein which...

  7. Identification of membrane proteins by tandem mass spectrometry of protein ions

    Science.gov (United States)

    Carroll, Joe; Altman, Matthew C.; Fearnley, Ian M.; Walker, John E.

    2007-01-01

    The most common way of identifying proteins in proteomic analyses is to use short segments of sequence (“tags”) determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning α-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1–4 transmembrane α-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5–18 transmembrane α-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase. PMID:17720804

  8. Efficient preparation and analysis of membrane and membrane protein systems

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector

    2016-01-01

    Roč. 1858, č. 10 (2016), s. 2468-2482 ISSN 0005-2736 Institutional support: RVO:61388963 Keywords : tools and software * membrane building * protein insertion * molecular dynamics * lipid bilayer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  9. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  10. Overcoming barriers to membrane protein structure determination

    NARCIS (Netherlands)

    Bill, Roslyn M.; Henderson, Peter J. F.; Iwata, So; Kunji, Edmund R. S.; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G.; Vogel, Horst

    After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new

  11. Intrinsically disordered proteins drive membrane curvature.

    Science.gov (United States)

    Busch, David J; Houser, Justin R; Hayden, Carl C; Sherman, Michael B; Lafer, Eileen M; Stachowiak, Jeanne C

    2015-07-24

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  12. Proteins of the kidney microvillar membrane

    International Nuclear Information System (INIS)

    Booth, A.G.; Kenny, A.J.

    1980-01-01

    Two methods were used to label pig kidney microvillar membrane proteins from the luminal and cytoplasmic surfaces of closed membrane vesicles. The first method was lactoperoxidase-catalysed radioiodination. Lactoperoxidase and glucose oxidase were positioned inside or outside the vesicles, iodination being initiated by adding glucose and 125 I. After electrophoresis of the proteins, asymmetric labelling patterns on radioautographs were observed. However the major disadvantage of this method was the high degree of intramembrane labelling of the fatty acid chains of membrane lipids. The second method overcame this disadvantage. A new hydophilic photoreagent, 3,5-di( 125 I)iodo-4-azidobenzenesulphonate, was transported by a Na + -dependent system into microvillar vesicles, thus permitting labelling from either side of the membrane when the vesicles were photolysed. The activity of several microvillar peptidases survived the labelling reaction and they could be identified in the immunoprecipitates after resolution of the detergent-solubilized membrane proteins by crossed-immunoelectrophoresis. Treatment with papain converted the detergent-solubilized form of susceptible enzymes into the proteinase-solubilized form. Radioautography established that aminopeptidases M and A, dipeptidyl peptidase IV and neutral endopeptidase were transmembrane proteins. This novel approach may be applicable to the topological investigation of other complex membranes. (author)

  13. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor...... or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix...... will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make...

  14. Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    OpenAIRE

    Hicks, M R; Gill, A C; Bath, I K; Rullay, A K; Sylvester, I D; Crout, D H; Pinheiro, T J T

    2006-01-01

    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of...

  15. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... it sufficiently stable in a final application. Here, I specifically discuss the feasibility of developing osmotic biomimetic MIP membranes, but the technical issues are of general concern in the design of biomimetic membranes capable of supporting selective transmembrane fluxes....

  16. Transmembrane protein sorting driven by membrane curvature

    Science.gov (United States)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  17. Membrane alterations induced by nonstructural proteins of human norovirus.

    Directory of Open Access Journals (Sweden)

    Sylvie Y Doerflinger

    2017-10-01

    Full Text Available Human noroviruses (huNoV are the most frequent cause of non-bacterial acute gastroenteritis worldwide, particularly genogroup II genotype 4 (GII.4 variants. The viral nonstructural (NS proteins encoded by the ORF1 polyprotein induce vesical clusters harboring the viral replication sites. Little is known so far about the ultrastructure of these replication organelles or the contribution of individual NS proteins to their biogenesis. We compared the ultrastructural changes induced by expression of norovirus ORF1 polyproteins with those induced upon infection with murine norovirus (MNV. Characteristic membrane alterations induced by ORF1 expression resembled those found in MNV infected cells, consisting of vesicle accumulations likely built from the endoplasmic reticulum (ER which included single membrane vesicles (SMVs, double membrane vesicles (DMVs and multi membrane vesicles (MMVs. In-depth analysis using electron tomography suggested that MMVs originate through the enwrapping of SMVs with tubular structures similar to mechanisms reported for picornaviruses. Expression of GII.4 NS1-2, NS3 and NS4 fused to GFP revealed distinct membrane alterations when analyzed by correlative light and electron microscopy. Expression of NS1-2 induced proliferation of smooth ER membranes forming long tubular structures that were affected by mutations in the active center of the putative NS1-2 hydrolase domain. NS3 was associated with ER membranes around lipid droplets (LDs and induced the formation of convoluted membranes, which were even more pronounced in case of NS4. Interestingly, NS4 was the only GII.4 protein capable of inducing SMV and DMV formation when expressed individually. Our work provides the first ultrastructural analysis of norovirus GII.4 induced vesicle clusters and suggests that their morphology and biogenesis is most similar to picornaviruses. We further identified NS4 as a key factor in the formation of membrane alterations of huNoV and

  18. Detergent-Mediated Reconstitution of Membrane Proteins

    NARCIS (Netherlands)

    Knol, J; Sjollema, K.A; Poolman, B.

    1998-01-01

    The efficiency of reconstitution of the lactose transport protein (LacS) of Streptococcus thermophilus is markedly higher with Triton X-100 than with other detergents commonly employed to mediate the membrane insertion. To rationalize these differences, the lipid/detergent structures that are formed

  19. A new heterogeneous family of telomerically encoded Cryptosporidium proteins

    Science.gov (United States)

    Bouzid, Maha; Hunter, Paul R; McDonald, Vincent; Elwin, Kristin; Chalmers, Rachel M; Tyler, Kevin M

    2013-01-01

    Cryptosporidiosis is predominantly caused by two closely related species of protozoan parasites the zoonotic Cryptosporidium parvum and anthroponotic Cryptosporidium hominis which diverge phenotypically in respect to host range and virulence. Using comparative genomics we identified two genes displaying overt heterogeneity between species. Although initial work suggested both were species specific, Cops-1 for C. parvum and Chos-1 for C. hominis, subsequent study identified an abridged ortholog of Cops-1 in C. hominis. Cops-1 and Chos-1 showed limited, but significant, similarity to each other and share common features: (i) telomeric location: Cops-1 is the last gene on chromosome 2, whilst Chos-1 is the first gene on chromosome 5, (ii) encode circa 50-kDa secreted proteins with isoelectric points above 10, (iii) are serine rich, and (iv) contain internal nucleotide repeats. Importantly, Cops-1 sequence contains specific SNPs with good discriminatory power useful epidemiologically. C. parvum-infected patient sera recognized a 50-kDa protein in antigen preparations of C. parvum but not C. hominis, consistent with Cops-1 being antigenic for patients. Interestingly, anti-Cops-1 monoclonal antibody (9E1) stained oocyst content and sporozoite surface of C. parvum only. This study provides a new example of protozoan telomeres as rapidly evolving contingency loci encoding putative virulence factors. PMID:23467513

  20. Properties of virion transactivator proteins encoded by primate cytomegaloviruses

    Directory of Open Access Journals (Sweden)

    Barry Peter A

    2009-05-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1 genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV, strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All

  1. Ion transport across the biological membrane by computational protein design

    Science.gov (United States)

    Grigoryan, Gevorg

    The cellular membrane is impermeable to most of the chemicals the cell needs to take in or discard to survive. Therefore, transporters-a class of transmembrane proteins tasked with shuttling cargo chemicals in and out of the cell-are essential to all cellular life. From existing crystal structures, we know transporters to be complex machines, exquisitely tuned for specificity and controllability. But how could membrane-bound life have evolved if it needed such complex machines to exist first? To shed light onto this question, we considered the task of designing a transporter de novo. As our guiding principle, we took the ``alternating-access model''-a conceptual mechanism stating that transporters work by rocking between two conformations, each exposing the cargo-binding site to either the intra- or the extra-cellular environment. A computational design framework was developed to encode an anti-parallel four-helix bundle that rocked between two alternative states to orchestrate the movement of Zn(II) ions across the membrane. The ensemble nature of both states was accounted for using a free energy-based approach, and sequences were chosen based on predicted formation of the targeted topology in the membrane and bi-stability. A single sequence was prepared experimentally and shown to function as a Zn(II) transporter in lipid vesicles. Further, transport was specific to Zn(II) ions and several control peptides supported the underlying design principles. This included a mutant designed to retain all properties but with reduced rocking, which showed greatly depressed transport ability. These results suggest that early transporters could have evolved in the context of simple topologies, to be later tuned by evolution for improved properties and controllability. Our study also serves as an important advance in computational protein design, showing the feasibility of designing functional membrane proteins and of tuning conformational landscapes for desired function

  2. Engineering Lipid Bilayer Membranes for Protein Studies

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton

    2013-01-01

    Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908

  3. Chemically Stable Lipids for Membrane Protein Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ishchenko, Andrii; Peng, Lingling; Zinovev, Egor; Vlasov, Alexey; Lee, Sung Chang; Kuklin, Alexander; Mishin, Alexey; Borshchevskiy, Valentin; Zhang, Qinghai; Cherezov, Vadim (MIPT); (USC); (Scripps)

    2017-05-01

    The lipidic cubic phase (LCP) has been widely recognized as a promising membrane-mimicking matrix for biophysical studies of membrane proteins and their crystallization in a lipidic environment. Application of this material to a wide variety of membrane proteins, however, is hindered due to a limited number of available host lipids, mostly monoacylglycerols (MAGs). Here, we designed, synthesized, and characterized a series of chemically stable lipids resistant to hydrolysis, with properties complementary to the widely used MAGs. In order to assess their potential to serve as host lipids for crystallization, we characterized the phase properties and lattice parameters of mesophases made of two most promising lipids at a variety of different conditions by polarized light microscopy and small-angle X-ray scattering. Both lipids showed remarkable chemical stability and an extended LCP region in the phase diagram covering a wide range of temperatures down to 4 °C. One of these lipids has been used for crystallization and structure determination of a prototypical membrane protein bacteriorhodopsin at 4 and 20 °C.

  4. TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Mutai Hideki

    2003-06-01

    Full Text Available Abstract Background Mutations in the transmembrane cochlear expressed gene 1 (TMC1 cause deafness in human and mouse. Mutations in two homologous genes, EVER1 and EVER2 increase the susceptibility to infection with certain human papillomaviruses resulting in high risk of skin carcinoma. Here we report that TMC1, EVER1 and EVER2 (now TMC6 and TMC8 belong to a larger novel gene family, which is named TMC for trans membrane channel-like gene family. Results Using a combination of iterative database searches and reverse transcriptase-polymerase chain reaction (RT-PCR experiments we assembled contigs for cDNA encoding human, murine, puffer fish, and invertebrate TMC proteins. TMC proteins of individual species can be grouped into three subfamilies A, B, and C. Vertebrates have eight TMC genes. The majority of murine TMC transcripts are expressed in most organs; some transcripts, however, in particular the three subfamily A members are rare and more restrictively expressed. Conclusion The eight vertebrate TMC genes are evolutionary conserved and encode proteins that form three subfamilies. Invertebrate TMC proteins can also be categorized into these three subfamilies. All TMC genes encode transmembrane proteins with intracellular amino- and carboxyl-termini and at least eight membrane-spanning domains. We speculate that the TMC proteins constitute a novel group of ion channels, transporters, or modifiers of such.

  5. Direct Pathogenic Effects of HERV-encoded Proteins

    DEFF Research Database (Denmark)

    Hansen, Dorte Tranberg; Møller-Larsen, Anné; Petersen, Thor

    in increased amounts on B cells from MS patients. Furthermore, the amount of anti-HERV antibodies in serum and cerebrospinal fluid from patients with MS is increased when compared with healthy controls. Aim: The overall aim of this project is to investigate the potential role of HERVs in the development of MS......Background: Multiple sclerosis (MS) is a demyelinating, inflammatory disease of the central nervous system (CNS). MS is mediated by the immune system but the etiology of the disease remains unknown. Retroviral envelope (Env) proteins, encoded by human endogenous retroviruses (HERVs), are expressed...... of Env-induced apoptosis/necrosis in CNS cells will be performed by both DNA fragmentation ELISA and qPCR. Furthermore, the cellular localization of HERV-antigens on cells from patients with MS will be determined by confocal microscopy. A flow cytometric/confocal method has been optimized...

  6. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study

    DEFF Research Database (Denmark)

    Sadaf, Aiman; Du, Yang; Santillan, Claudia

    2017-01-01

    The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein...... alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6...

  7. Outer membrane proteins of pathogenic spirochetes.

    Science.gov (United States)

    Cullen, Paul A; Haake, David A; Adler, Ben

    2004-06-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.

  8. Serial Millisecond Crystallography of Membrane Proteins.

    Science.gov (United States)

    Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.

  9. Peripheral myelin protein 22 alters membrane architecture

    Science.gov (United States)

    Mittendorf, Kathleen F.; Marinko, Justin T.; Hampton, Cheri M.; Ke, Zunlong; Hadziselimovic, Arina; Schlebach, Jonathan P.; Law, Cheryl L.; Li, Jun; Wright, Elizabeth R.; Sanders, Charles R.; Ohi, Melanie D.

    2017-01-01

    Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin. PMID:28695207

  10. Stochastic single-molecule dynamics of synaptic membrane protein domains

    Science.gov (United States)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  11. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.

    Science.gov (United States)

    Lee, M M; Schiefelbein, J

    2001-05-01

    The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.

  12. Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins

    Science.gov (United States)

    Carroll, Joe; Fearnley, Ian M.; Walker, John E.

    2006-01-01

    The covalent structure of a protein is incompletely defined by its gene sequence, and mass spectrometric analysis of the intact protein is needed to detect the presence of any posttranslational modifications. Because most membrane proteins are purified in detergents that are incompatible with mass spectrometric ionization techniques, this essential measurement has not been made on many hydrophobic proteins, and so proteomic data are incomplete. We have extracted membrane proteins from bovine mitochondria and detergent-purified NADH:ubiquinone oxidoreductase (complex I) with organic solvents, fractionated the mixtures by hydrophilic interaction chromatography, and measured the molecular masses of the intact membrane proteins, including those of six subunits of complex I that are encoded in mitochondrial DNA. These measurements resolve long-standing uncertainties about the interpretation of the mitochondrial genome, and they contribute significantly to the definition of the covalent composition of complex I. PMID:17060615

  13. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.

    Science.gov (United States)

    Guo, Jinya; Miao, Yansong; Cai, Yi

    2017-01-01

    Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.

  14. Quantification of detergent using colorimetric methods in membrane protein crystallography.

    Science.gov (United States)

    Prince, Chelsy; Jia, Zongchao

    2015-01-01

    Membrane protein crystallography has the potential to greatly aid our understanding of membrane protein biology. Yet, membrane protein crystals remain challenging to produce. Although robust methods for the expression and purification of membrane proteins continue to be developed, the detergent component of membrane protein samples is equally important to crystallization efforts. This chapter describes the development of three colorimetric assays for the quantitation of detergent in membrane protein samples and provides detailed protocols. All of these techniques use small sample volumes and have potential applications in crystallography. The application of these techniques in crystallization prescreening, detergent concentration modification, and detergent exchange experiments is demonstrated. It has been observed that the concentration of detergent in a membrane protein sample can be just as important as the protein concentration when attempting to reproduce crystallization lead conditions. © 2015 Elsevier Inc. All rights reserved.

  15. Molecular characterization of a cold-induced plasma membrane protein gene from wheat.

    Science.gov (United States)

    Koike, Michiya; Sutoh, Keita; Kawakami, Akira; Torada, Atsushi; Oono, Kiyoharu; Imai, Ryozo

    2005-12-01

    As a means to study the function of plasma membrane proteins during cold acclimation, we have isolated a cDNA clone for wpi6 which encodes a putative plasma membrane protein from cold-acclimated winter wheat. The wpi6 gene encodes a putative 5.9 kDa polypeptide with two predicted membrane-spanning domains, the sequence of which shows high sequence similarity with BLT101-family proteins from plants and yeast. Strong induction of wpi6 mRNA was observed during an early stage of cold acclimation in root and shoot tissues of both winter and spring wheat cultivars. In contrast to blt101 in barley, wpi6 mRNA was also induced by drought and salinity stresses, and exogenous application of ABA. Expression of wpi6 in a Deltapmp3 mutant of Saccharomyces cerevisiae, which is disturbed in plasma membrane potential due to the lack of a BLT101-family protein, partially complemented NaCl sensitivity of the mutant. Transient expression analysis of a WPI6::GFP fusion protein in onion epidermal cells revealed that WPI6 is localized in the plasma membrane. Taken together, these data suggested that WPI6 may have a protective role in maintaining plasma membrane function during cold acclimation in wheat.

  16. Ne2 encodes protein(s) and the altered RuBisCO could be the ...

    Indian Academy of Sciences (India)

    Si Rui Pan

    2017-06-17

    Jun 17, 2017 ... [Pan S. R., Pan X. L., Pan Q. Y., Shi Y. H., Zhang L., Fan Y. and Xue Y. R. 2017 Ne2 encodes protein(s) and the altered RuBisCO could be the proteomics leader of hybrid necrosis in wheat (Triticum aestivum L.). J. Genet. 96, 261–271]. Introduction. The world is facing the challenge of producing more wheat.

  17. Atomic-level Analysis of Membrane Protein Structure

    OpenAIRE

    Hendrickson, Wayne A.

    2016-01-01

    Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly under-represented in structural databases. Recently, as a consequence of focused attention by consortium efforts and advances in methodology, the pace has accelerated for atomic-level structure determination of membrane proteins. Enabling advances have come in methods for protein production, for crystallographic analysis, and for cryo-EM ...

  18. Amphipathic agents for membrane protein study.

    Science.gov (United States)

    Sadaf, Aiman; Cho, Kyung Ho; Byrne, Bernadette; Chae, Pil Seok

    2015-01-01

    Membrane proteins (MPs) are insoluble in aqueous media as a result of incompatibility between the hydrophilic property of the solvent molecules and the hydrophobic nature of MP surfaces, normally associated with lipid membranes. Amphipathic compounds are necessary for extraction of these macromolecules from the native membranes and their maintenance in solution. The amphipathic agents surround the hydrophobic segments of MPs, thus serving as a membrane mimetic system. Of the available amphipathic agents, detergents are most widely used for MP manipulation. However, MPs encapsulated by conventional detergent micelles have a tendency to undergo structural degradation, hampering MP advance, and necessitating the development of novel detergents with enhanced efficacy for MP study. In this chapter, we will introduce both conventional and novel classes of detergents and discuss about the chemical structures, design principles, and efficacies of these compounds for MP solubilization and stabilization. The behaviors of those agents toward MP crystallization will be a primary topic in our discussion. This discussion highlights the common features of popular conventional/novel detergents essential for successful MP structural study. The conclusions reached by this discussion would not only enable MP scientists to rationally select a set of detergent candidates among a large number of detergents but also provide detergent inventors with useful guidelines in designing novel amphipathic systems. © 2015 Elsevier Inc. All rights reserved.

  19. Fluorescent proteins as genetically encoded FRET biosensors in life sciences.

    Science.gov (United States)

    Hochreiter, Bernhard; Garcia, Alan Pardo; Schmid, Johannes A

    2015-10-16

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  20. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    Directory of Open Access Journals (Sweden)

    Bernhard Hochreiter

    2015-10-01

    Full Text Available Fluorescence- or Förster resonance energy transfer (FRET is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a cleavage; (b conformational-change; (c mechanical force and (d changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  1. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat......New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self...

  2. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    Directory of Open Access Journals (Sweden)

    Elisabeth Stuerner

    Full Text Available Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs, but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS. A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.

  3. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Generation of H9 T-cells stably expressing a membrane-bound form of the cytoplasmic tail of the Env-glycoprotein: lack of transcomplementation of defective HIV-1 virions encoding C-terminally truncated Env

    OpenAIRE

    Bosch Valerie; Pfeiffer Tanya; Holtkotte Denise

    2006-01-01

    Abstract H9-T-cells do not support the replication of mutant HIV-1 encoding Env protein lacking its long cytoplasmic C-terminal domain (Env-CT). Here we describe the generation of a H9-T-cell population constitutively expressing the HIV-1 Env-CT protein domain anchored in the cellular membrane by it homologous membrane-spanning domain (TMD). We confirmed that the Env-TMD-CT protein was associated with cellular membranes, that its expression did not have any obvious cytotoxic effects on the ce...

  5. Proteolytic cleavage of the Chlamydia pneumoniae major outer membrane protein in the absence of Pmp10

    DEFF Research Database (Denmark)

    Juul, Nicolai Stefan; Timmerman, E; Gevaert, K

    2007-01-01

    The genome of the obligate intracellular bacteria Chlamydia pneumoniae contains 21 genes encoding polymorphic membrane proteins (Pmp). While no function has yet been attributed to the Pmps, they may be involved in an antigenic variation of the Chlamydia surface. It has previously been demonstrated...... that Pmp10 is differentially expressed in the C. pneumoniae CWL029 isolate. To evaluate whether the absence of Pmp10 in the outer membrane causes further changes to the C. pneumoniae protein profile, we subcloned the CWL029 isolate and selected a clone with minimal Pmp10 expression. Subsequently, we...

  6. The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes

    Science.gov (United States)

    Peiró, Ana; Martínez-Gil, Luis; Tamborero, Silvia; Pallás, Vicente

    2014-01-01

    ABSTRACT Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport

  7. NMR-based screening of membrane protein ligands

    NARCIS (Netherlands)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-01-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  8. Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies

    DEFF Research Database (Denmark)

    Ehsan, Muhammad; Du, Yang; Scull, Nicola J

    2016-01-01

    Detergents are essential tools for membrane protein manipulation. Micelles formed by detergent molecules have the ability to encapsulate the hydrophobic domains of membrane proteins. The resulting protein-detergent complexes (PDCs) are compatible with the polar environments of aqueous media, maki...

  9. Membrane-mediated interaction between strongly anisotropic protein scaffolds.

    Directory of Open Access Journals (Sweden)

    Yonatan Schweitzer

    2015-02-01

    Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.

  10. Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide.

    Science.gov (United States)

    Hanson, Joshua M; Gettel, Douglas L; Tabaei, Seyed R; Jackman, Joshua; Kim, Min Chul; Sasaki, Darryl Y; Groves, Jay T; Liedberg, Bo; Cho, Nam-Joon; Parikh, Atul N

    2016-01-05

    The α-helical (AH) domain of the hepatitis C virus nonstructural protein NS5A, anchored at the cytoplasmic leaflet of the endoplasmic reticulum, plays a role in viral replication. However, the peptides derived from this domain also exhibit remarkably broad-spectrum virocidal activity, raising questions about their modes of membrane association. Here, using giant lipid vesicles, we show that the AH peptide discriminates between membrane compositions. In cholesterol-containing membranes, peptide binding induces microdomain formation. By contrast, cholesterol-depleted membranes undergo global softening at elevated peptide concentrations. Furthermore, in mixed populations, the presence of ∼100 nm vesicles of viral dimensions suppresses these peptide-induced perturbations in giant unilamellar vesicles, suggesting size-dependent membrane association. These synergistic composition- and size-dependent interactions explain, in part, how the AH domain might on the one hand segregate molecules needed for viral assembly and on the other hand furnish peptides that exhibit broad-spectrum virocidal activity. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Membrane protein expression triggers chromosomal locus repositioning in bacteria

    OpenAIRE

    Libby, Elizabeth A.; Roggiani, Manuela; Goulian, Mark

    2012-01-01

    It has long been hypothesized that subcellular positioning of chromosomal loci in bacteria may be influenced by gene function and expression state. Here we provide direct evidence that membrane protein expression affects the position of chromosomal loci in Escherichia coli. For two different membrane proteins, we observed a dramatic shift of their genetic loci toward the membrane upon induction. In related systems in which a cytoplasmic protein was produced, or translation was eliminated by m...

  13. Membrane Protein Production in Lactococcus lactis for Functional Studies.

    Science.gov (United States)

    Seigneurin-Berny, Daphne; King, Martin S; Sautron, Emiline; Moyet, Lucas; Catty, Patrice; André, François; Rolland, Norbert; Kunji, Edmund R S; Frelet-Barrand, Annie

    2016-01-01

    Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

  14. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Science.gov (United States)

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  16. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.

    Science.gov (United States)

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra

    2014-10-21

    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  17. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers.

    Science.gov (United States)

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-11-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level.

  18. The ER membrane protein complex is a transmembrane domain insertase

    Science.gov (United States)

    Guna, Alina; Volkmar, Norbert; Christianson, John C.; Hegde, Ramanujan S.

    2018-01-01

    Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here, we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms. PMID:29242231

  19. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  20. Bilayer-thickness-mediated interactions between integral membrane proteins.

    Science.gov (United States)

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  1. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  2. Bacteriophage membrane protein P9 as a fusion partner for the efficient expression of membrane proteins in Escherichia coli.

    Science.gov (United States)

    Jung, Yuna; Jung, Hyeim; Lim, Dongbin

    2015-12-01

    Despite their important roles and economic values, studies of membrane proteins have been hampered by the difficulties associated with obtaining sufficient amounts of protein. Here, we report a novel membrane protein expression system that uses the major envelope protein (P9) of phage φ6 as an N-terminal fusion partner. Phage membrane protein P9 facilitated the synthesis of target proteins and their integration into the Escherichia coli cell membrane. This system was used to produce various multi-pass transmembrane proteins, including G-protein-coupled receptors, transporters, and ion channels of human origin. Green fluorescent protein fusion was used to confirm the correct folding of the expressed proteins. Of the 14 membrane proteins tested, eight were highly expressed, three were moderately expressed, and three were barely expressed in E. coli. Seven of the eight highly expressed proteins could be purified after extraction with the mild detergent lauryldimethylamine-oxide. Although a few proteins have previously been developed as fusion partners to augment membrane protein production, we believe that the major envelope protein P9 described here is better suited to the efficient expression of eukaryotic transmembrane proteins in E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Engineering Escherichia coli for Functional Expression of Membrane Proteins

    NARCIS (Netherlands)

    Ho, Franz Y; Poolman, Bert

    2015-01-01

    A major bottleneck in the characterization of membrane proteins is low yield of functional protein in recombinant expression. Microorganisms are widely used for recombinant protein production, because of ease of cultivation and high protein yield. However, the target proteins do not always obtain

  4. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    Science.gov (United States)

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  5. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  6. Studying Membrane Protein Structure and Function Using Nanodiscs

    DEFF Research Database (Denmark)

    Huda, Pie

    The structure and dynamic of membrane proteins can provide valuable information about general functions, diseases and effects of various drugs. Studying membrane proteins are a challenge as an amphiphilic environment is necessary to stabilise the protein in a functionally and structurally relevant...... form. This is most typically achieved through the use of detergent based reconstitution systems. However, time and again such systems fail to provide a suitable environment causing aggregation and inactivation. Nanodiscs are self-assembled lipoproteins containing two membrane scaffold proteins...... and a lipid bilayer in defined nanometer size, which can act as a stabiliser for membrane proteins. This enables both functional and structural investigation of membrane proteins in a detergent free environment which is closer to the native situation. Understanding the self-assembly of nanodiscs is important...

  7. A cDNA Immunization Strategy to Generate Nanobodies against Membrane Proteins in Native Conformation

    Directory of Open Access Journals (Sweden)

    Thomas Eden

    2018-01-01

    Full Text Available Nanobodies (Nbs are soluble, versatile, single-domain binding modules derived from the VHH variable domain of heavy-chain antibodies naturally occurring in camelids. Nbs hold huge promise as novel therapeutic biologics. Membrane proteins are among the most interesting targets for therapeutic Nbs because they are accessible to systemically injected biologics. In order to be effective, therapeutic Nbs must recognize their target membrane protein in native conformation. However, raising Nbs against membrane proteins in native conformation can pose a formidable challenge since membrane proteins typically contain one or more hydrophobic transmembrane regions and, therefore, are difficult to purify in native conformation. Here, we describe a highly efficient genetic immunization strategy that circumvents these difficulties by driving expression of the target membrane protein in native conformation by cells of the immunized camelid. The strategy encompasses ballistic transfection of skin cells with cDNA expression plasmids encoding one or more orthologs of the membrane protein of interest and, optionally, other costimulatory proteins. The plasmid is coated onto 1 µm gold particles that are then injected into the shaved and depilated skin of the camelid. A gene gun delivers a helium pulse that accelerates the DNA-coated particles to a velocity sufficient to penetrate through multiple layers of cells in the skin. This results in the exposure of the extracellular domains of the membrane protein on the cell surface of transfected cells. Repeated immunization drives somatic hypermutation and affinity maturation of target-specific heavy-chain antibodies. The VHH/Nb coding region is PCR-amplified from B cells obtained from peripheral blood or a lymph node biopsy. Specific Nbs are selected by phage display or by screening of Nb-based heavy-chain antibodies expressed as secretory proteins in transfected HEK cells. Using this strategy, we have successfully

  8. A cDNA Immunization Strategy to Generate Nanobodies against Membrane Proteins in Native Conformation

    Science.gov (United States)

    Eden, Thomas; Menzel, Stephan; Wesolowski, Janusz; Bergmann, Philine; Nissen, Marion; Dubberke, Gudrun; Seyfried, Fabienne; Albrecht, Birte; Haag, Friedrich; Koch-Nolte, Friedrich

    2018-01-01

    Nanobodies (Nbs) are soluble, versatile, single-domain binding modules derived from the VHH variable domain of heavy-chain antibodies naturally occurring in camelids. Nbs hold huge promise as novel therapeutic biologics. Membrane proteins are among the most interesting targets for therapeutic Nbs because they are accessible to systemically injected biologics. In order to be effective, therapeutic Nbs must recognize their target membrane protein in native conformation. However, raising Nbs against membrane proteins in native conformation can pose a formidable challenge since membrane proteins typically contain one or more hydrophobic transmembrane regions and, therefore, are difficult to purify in native conformation. Here, we describe a highly efficient genetic immunization strategy that circumvents these difficulties by driving expression of the target membrane protein in native conformation by cells of the immunized camelid. The strategy encompasses ballistic transfection of skin cells with cDNA expression plasmids encoding one or more orthologs of the membrane protein of interest and, optionally, other costimulatory proteins. The plasmid is coated onto 1 µm gold particles that are then injected into the shaved and depilated skin of the camelid. A gene gun delivers a helium pulse that accelerates the DNA-coated particles to a velocity sufficient to penetrate through multiple layers of cells in the skin. This results in the exposure of the extracellular domains of the membrane protein on the cell surface of transfected cells. Repeated immunization drives somatic hypermutation and affinity maturation of target-specific heavy-chain antibodies. The VHH/Nb coding region is PCR-amplified from B cells obtained from peripheral blood or a lymph node biopsy. Specific Nbs are selected by phage display or by screening of Nb-based heavy-chain antibodies expressed as secretory proteins in transfected HEK cells. Using this strategy, we have successfully generated agonistic

  9. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  10. Static light scattering to characterize membrane proteins in detergent solution

    NARCIS (Netherlands)

    Slotboom, Dirk Jan; Duurkens, Ria H.; Olieman, Kees; Erkens, Guus B.

    2008-01-01

    Determination of the oligomeric state or the subunit stoichiometry of integral membrane proteins in detergent solution is notoriously difficult, because the amount of detergent (and lipid) associated with the proteins is usually not known. Only two classical methods (sedimentation equilibrium

  11. In silicio search for genes encoding peroxisomal proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kal, A J; Hettema, E H; van den Berg, M; Koerkamp, M G; van Ijlst, L; Distel, B; Tabak, H F

    2000-01-01

    The biogenesis of peroxisomes involves the synthesis of new proteins that after, completion of translation, are targeted to the organelle by virtue of peroxisomal targeting signals (PTS). Two types of PTSs have been well characterized for import of matrix proteins (PTS1 and PTS2). Induction of the genes encoding these matrix proteins takes place in oleate-containing medium and is mediated via an oleate response element (ORE) present in the region preceding these genes. The authors have searched the yeast genome for OREs preceding open reading frames (ORFs), and for ORFs that contain either a PTS1 or PTS2. Of the ORFs containing an ORE, as well as either a PTS1 or a PTS2, many were known to encode bona fide peroxisomal matrix proteins. In addition, candidate genes were identified as encoding putative new peroxisomal proteins. For one case, subcellular location studies validated the in silicio prediction. This gene encodes a new peroxisomal thioesterase.

  12. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  13. Consequences of membrane protein overexpression in Escherichia coli.

    Science.gov (United States)

    Wagner, Samuel; Baars, Louise; Ytterberg, A Jimmy; Klussmeier, Anja; Wagner, Claudia S; Nord, Olof; Nygren, Per-Ake; van Wijk, Klaas J; de Gier, Jan-Willem

    2007-09-01

    Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. An understanding of the physiological response to overexpression is needed to improve such yields. Therefore, we analyzed the consequences of overexpression of three different membrane proteins (YidC, YedZ, and LepI) fused to green fluorescent protein (GFP) in the bacterium Escherichia coli and compared this with overexpression of a soluble protein, GST-GFP. Proteomes of total lysates, purified aggregates, and cytoplasmic membranes were analyzed by one- and two-dimensional gel electrophoresis and mass spectrometry complemented with flow cytometry, microscopy, Western blotting, and pulse labeling experiments. Composition and accumulation levels of protein complexes in the cytoplasmic membrane were analyzed with improved two-dimensional blue native PAGE. Overexpression of the three membrane proteins, but not soluble GST-GFP, resulted in accumulation of cytoplasmic aggregates containing the overexpressed proteins, chaperones (DnaK/J and GroEL/S), and soluble proteases (HslUV and ClpXP) as well as many precursors of periplasmic and outer membrane proteins. This was consistent with lowered accumulation levels of secreted proteins in the three membrane protein overexpressors and is likely to be a direct consequence of saturation of the cytoplasmic membrane protein translocation machinery. Importantly accumulation levels of respiratory chain complexes in the cytoplasmic membrane were strongly reduced. Induction of the acetate-phosphotransacetylase pathway for ATP production and a down-regulated tricarboxylic acid cycle indicated the activation of the Arc two-component system, which mediates adaptive responses to changing respiratory states. This study provides a basis for designing rational strategies to improve yields of membrane protein overexpression in E. coli.

  14. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  15. Role of membrane contact sites in protein import into mitochondria.

    Science.gov (United States)

    Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus

    2015-03-01

    Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture. © 2014 The Protein Society.

  16. Scaffolding proteins in membrane trafficking : the role of ELKS

    NARCIS (Netherlands)

    Yu, K.L.

    2015-01-01

    Intracellular membrane trafficking is an essential cellular process that involves cooperation of many factors such as scaffolding proteins, GTPases and SNAREs. These proteins work together to ensure proper delivery of different membrane-enclosed cargoes to specific cellular destinations. In this

  17. Identification and characterization of stable membrane protein complexes

    NARCIS (Netherlands)

    Spelbrink, R.E.J.

    2007-01-01

    Many membrane proteins exist as oligomers. Such oligomers play an important role in a broad variety of cellular processes such as ion transport, energy transduction, osmosensing and cell wall synthesis. We developed an electrophoresis-based method of identifying oligomeric membrane proteins that are

  18. Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model.

    Science.gov (United States)

    Tanizaki, Seiichiro; Feig, Michael

    2006-01-12

    The heterogeneous dielectric generalized Born (HDGB) methodology is an the extension of the GBMV model for the simulation of integral membrane proteins with an implicit membrane environment. Three large integral membrane proteins, the bacteriorhodopsin monomer and trimer and the BtuCD protein, were simulated with the HDGB model in order to evaluate how well thermodynamic and dynamic properties are reproduced. Effects of the truncation of electrostatic interactions were examined. For all proteins, the HDGB model was able to generate stable trajectories that remained close to the starting experimental structures, in excellent agreement with explicit membrane simulations. Dynamic properties evaluated through a comparison of B-factors are also in good agreement with experiment and explicit membrane simulations. However, overall flexibility was slightly underestimated with the HDGB model unless a very large electrostatic cutoff is employed. Results with the HDGB model are further compared with equivalent simulations in implicit aqueous solvent, demonstrating that the membrane environment leads to more realistic simulations.

  19. Genome segment S8 of grass carp hemorrhage virus encodes a virion protein.

    Science.gov (United States)

    Qiu, T; Zhang, J; Lu, R; Zhu, Z

    2001-01-01

    The complete nucleotide sequence of the genome segment S8 of grass carp hemorrhage virus (GCHV) was determined from cDNA corresponding to the viral genomic RNA. It is 1,287 nucleotides in length and contains a large open reading frame that could encode a protein of 409 amino acids with a predicted molecular mass of 44 kD. The S8 was expressed using the pET fusion protein vector and detected by Western blotting analysis using the chicken egg IgY against intact GCHV particles, indicating that S8 encodes a virion protein. Amino acid sequence comparisons revealed that the protein encoded by S8 is closely related to protein sigma2 of mammalian reovirus, suggesting that the deduced protein of S8 is an inner capsid protein. Copyright 2001 S. Karger AG, Basel

  20. The role of antioxidant-protein interactions in biological membrane

    International Nuclear Information System (INIS)

    McGillivray, Duncan J; Singh, Rachna; Melton, Laurence D.; Worcester, David L.; Gilbert, Elliot P.

    2009-01-01

    Full text: Oxidative damage of cellular membranes has been linked to a variety of disease pathologies, including cardiac disease, Alzheimer's and complications due to diabetes. The oxidation of unsaturated and polyunsaturated fatty acid chains found in cellular membranes leads to significant alteration in membrane physical properties, including lipid orientation and membrane permeability, which ultimately affect biological function. Polyphenols are naturally occurring phytochemicals present in a number of fruit and vegetables that are of interest for their anti-oxidative powers. These polyphenols inhibit lipid oxidation in cellular membrane surfaces, although the mechanism of this inhibition is not entirely clear. Moreover, the polyphenols have significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes Significantly, in the presence of casein proteins the oxidation inhibition the polyphenols in the membrane is significantly enhanced (as assessed by Lipid Peroxidation Inhibition Capacity assays). Thus the antioxidant pathway appears to involve these protein/polyphenol complexes, as well as direct antioxidant action by the polyphenol. Here we discuss neutron and x-ray scattering results from phospholipid membranes, looking at the positioning of two examples of polyphenolic antioxidants in phospholipid membranes, quercetin and phloretin, the antioxidants' impact on the membrane organisation, and the interaction between antioxidant and extra-membranous protein. This information sheds light on the mechanism of antioxidant protection in these systems, which may be used to understand biological responses to oxidative stress.

  1. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  2. Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton.

    Science.gov (United States)

    Tian, Guilian; Zhou, Yun; Hajkova, Dagmar; Miyagi, Masaru; Dinculescu, Astra; Hauswirth, William W; Palczewski, Krzysztof; Geng, Ruishuang; Alagramam, Kumar N; Isosomppi, Juha; Sankila, Eeva-Marja; Flannery, John G; Imanishi, Yoshikazu

    2009-07-10

    Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1(-/-) mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.

  3. Membrane's Eleven: heavy-atom derivatives of membrane-protein crystals

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Sørensen, Thomas Lykke-Møller; Nissen, Poul

    2006-01-01

    A database has been assembled of heavy-atom derivatives used in the structure determination of membrane proteins. The database can serve as a guide to the design of experiments in the search for heavy-atom derivatives of new membrane-protein crystals. The database pinpoints organomercurials, plat...

  4. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    Science.gov (United States)

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  5. Identification of a conserved cluster of skin-specific genes encoding secreted proteins.

    Science.gov (United States)

    Moffatt, Pierre; Salois, Patrick; St-Amant, Natalie; Gaumond, Marie-Hélène; Lanctôt, Christian

    2004-06-09

    Terminal differentiation of keratinocytes results in the formation of a cornified layer composed of cross-linked intracellular and extracellular material. Using a signal trap expression screening strategy, we have identified four cDNAs encoding secreted proteins potentially involved in this process. One of the cDNAs is identical to the short isoform of suprabasin, a recently described epidermis-specific protein, which is shown here to contain a functional secretory signal. The second cDNA, sk89, encodes a protein of 493 amino acids, rich in glycine and serine residues. The third cDNA encodes a C-terminal fragment of SK89 (amino acids 410-493). It comprises exons 13 to 18 of the sk89 locus but transcription starts at an isoform-specific exon encoding a distinct secretory signal. The fourth cDNA encodes keratinocyte differentiation-associated protein (KDAP), a precursor protein of 102 amino acids. Subcellular localization by immunofluorescence and detection of the tagged proteins by Western blotting confirmed that the four proteins are secreted. Northern analysis and in situ hybridization revealed that expression of the corresponding genes was restricted to the suprabasal keratinocytes of the epidermis. These genes encoding epidermis-specific secreted products are found in a conserved cluster on human chromosome 19q13.12 and on mouse chromosome 7A3.

  6. Pattern formation by curvature-inducing proteins on spherical membranes

    Science.gov (United States)

    Agudo-Canalejo, Jaime; Golestanian, Ramin

    2017-12-01

    Spatial organisation is a hallmark of all living cells, and recreating it in model systems is a necessary step in the creation of synthetic cells. It is therefore of both fundamental and practical interest to better understand the basic mechanisms underlying spatial organisation in cells. In this work, we use a continuum model of membrane and protein dynamics to study the behaviour of curvature-inducing proteins on membranes of spherical shape, such as living cells or lipid vesicles. We show that the interplay between curvature energy, entropic forces, and the geometric constraints on the membrane can result in the formation of patterns of highly-curved/protein-rich and weakly-curved/protein-poor domains on the membrane. The spontaneous formation of such patterns can be triggered either by an increase in the average density of curvature-inducing proteins, or by a relaxation of the geometric constraints on the membrane imposed by the membrane tension or by the tethering of the membrane to a rigid cell wall or cortex. These parameters can also be tuned to select the size and number of the protein-rich domains that arise upon pattern formation. The very general mechanism presented here could be related to protein self-organisation in many biological processes, ranging from (proto)cell division to the formation of membrane rafts.

  7. Effect of salt stress on genes encoding translation-associated proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Omidbakhshfard, Mohammad Amin; Omranian, Nooshin; Ahmadi, Farajollah Shahriari; Nikoloski, Zoran; Mueller-Roeber, Bernd

    2012-09-01

    Salinity negatively affects plant growth and disturbs chloroplast integrity. Here, we aimed at identifying salt-responsive translation-related genes in Arabidopsis thaliana with an emphasis on those encoding plastid-located proteins. We used quantitative real-time PCR to test the expression of 170 genes after short-term salt stress (up to 24 h) and identified several genes affected by the stress including: PRPL11, encoding plastid ribosomal protein L11, ATAB2, encoding a chloroplast-located RNA-binding protein presumably functioning as an activator of translation, and PDF1B, encoding a peptide deformylase involved in N-formyl group removal from nascent proteins synthesized in chloroplasts. These genes were previously shown to have important functions in chloroplast biology and may therefore represent new targets for biotechnological optimization of salinity tolerance.

  8. The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus

    NARCIS (Netherlands)

    Boot, H.J.; Kolen, C.P.A.M.; Pot, B.; Kersters, K.; Pouwels, P.H.

    1996-01-01

    Previously we have shown that the type strain of Lactobacillus acidophilus possesses two S-protein-encoding genes, one of which is silent, on a chromosomal segment of 6 kb. The S-protein-encoding gene in the expression site can be exchanged for the silent S-protein-encoding gene by inversion of this

  9. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  10. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins.

    Science.gov (United States)

    Baines, Anthony J; Lu, Hui-Chun; Bennett, Pauline M

    2014-02-01

    Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and

  11. Nanodisc-based Co-immunoprecipitation for Mass Spectrometric Identification of Membrane-interacting Proteins

    DEFF Research Database (Denmark)

    Borch-Jensen, Jonas; Roepstorff, Peter; Møller-Jensen, Jakob

    2011-01-01

    Proteomic identification of protein interactions with membrane associated molecules in their native membrane environment pose a challenge because of technical problems of membrane handling. We investigate the possibility of employing membrane nanodiscs for harboring the membrane associated molecu...

  12. Folding Membrane Proteins by Deep Transfer Learning

    KAUST Repository

    Wang, Sheng

    2017-08-29

    Computational elucidation of membrane protein (MP) structures is challenging partially due to lack of sufficient solved structures for homology modeling. Here, we describe a high-throughput deep transfer learning method that first predicts MP contacts by learning from non-MPs and then predicts 3D structure models using the predicted contacts as distance restraints. Tested on 510 non-redundant MPs, our method has contact prediction accuracy at least 0.18 better than existing methods, predicts correct folds for 218 MPs, and generates 3D models with root-mean-square deviation (RMSD) less than 4 and 5 Å for 57 and 108 MPs, respectively. A rigorous blind test in the continuous automated model evaluation project shows that our method predicted high-resolution 3D models for two recent test MPs of 210 residues with RMSD ∼2 Å. We estimated that our method could predict correct folds for 1,345–1,871 reviewed human multi-pass MPs including a few hundred new folds, which shall facilitate the discovery of drugs targeting at MPs.

  13. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    Science.gov (United States)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  14. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins

    DEFF Research Database (Denmark)

    Schwacke, Rainer; Schneider, Anja; van der Graaff, Eric

    2003-01-01

    A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs......, putative integral membrane proteins were identified among the approximately 25,500 proteins in the Arabidopsis genome DBs. By averaging the predictions from seven programs, approximately 6,500 proteins were classified as transmembrane (TM) candidate proteins. Some 1,800 of these contain at least four TM...

  15. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C; Wright, Graham D; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-07-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in DZIP1L, which encodes DAZ interacting protein 1-like, in patients with ARPKD. We further validated these findings through loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and to the distal ends of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. In agreement with a defect in the diffusion barrier, we found that the ciliary-membrane translocation of the PKD proteins polycystin-1 and polycystin-2 is compromised in DZIP1L-mutant cells. Together, these data provide what is, to our knowledge, the first conclusive evidence that ARPKD is not a homogeneous disorder and further establish DZIP1L as a second gene involved in ARPKD pathogenesis.

  16. Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization.

    Science.gov (United States)

    Hansen, Debra T; Robida, Mark D; Craciunescu, Felicia M; Loskutov, Andrey V; Dörner, Katerina; Rodenberry, John-Charles; Wang, Xiao; Olson, Tien L; Patel, Hetal; Fromme, Petra; Sykes, Kathryn F

    2016-02-24

    Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins.

  17. Self-assembling peptide and protein nanodiscs for studies of membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi

    investigations of membrane proteins by traditional X-ray crystallography have proved a difficult challenge, and a surprisingly small amount of membrane proteins has been crystalized so far. This implies that development of lipoproteins as a platform for studying membrane proteins is much needed. In this thesis......Particles containing both lipids and proteins (so-called lipoproteins) are vital to study. They are selfassembling particles that, in the human body, are responsible for the transport of lipids and cholesterol. Due to the increasing problems of obesity and related illnesses in the world, obtaining...... for working with lipoprotein particles are their potential in the study membrane proteins. Membrane proteins are responsible for most of the transport in and out of cells and signaling between cells. As an example G-protein coupled receptors, a class of membrane proteins, are the third largest class...

  18. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.

    Science.gov (United States)

    Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim

    2014-01-01

    Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.

  19. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  20. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  1. High-yield membrane protein expression from E. coli using an engineered outer membrane protein F fusion.

    Science.gov (United States)

    Su, Pin-Chuan; Si, William; Baker, Deidre L; Berger, Bryan W

    2013-04-01

    Obtaining high yields of membrane proteins necessary to perform detailed structural study is difficult due to poor solubility and variability in yields from heterologous expression systems. To address this issue, an Escherichia coli-based membrane protein overexpression system utilizing an engineered bacterial outer membrane protein F (pOmpF) fusion has been developed. Full-length human receptor activity-modifying protein 1 (RAMP1) was expressed using pOmpF, solubilized in FC15 and purified to homogeneity. Using circular dichroism and fluorescence spectroscopy, purified full-length RAMP1 is composed of approximately 90% α-helix, and retains its solubility and structure in FC15 over a wide range of temperatures (20-60°C). Thus, our approach provides a useful, complementary approach to achieve high-yield, full-length membrane protein overexpression for biophysical studies. Copyright © 2013 The Protein Society.

  2. Molecular quantification of genes encoding for green-fluorescent proteins

    DEFF Research Database (Denmark)

    Felske, A; Vandieken, V; Pauling, B V

    2003-01-01

    A quantitative PCR approach is presented to analyze the amount of recombinant green fluorescent protein (gfp) genes in environmental DNA samples. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification...

  3. Hierarchical, domain type-specific acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 in Tanzanian children

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Turner, Louise; Kurtis, Jonathan D

    2010-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60 diffe...

  4. Comparison of the gene encoding, and the predicted amino acid composition of, platelet membrane receptor subunit glycoprotein Ibα in members of the family Felidae.

    Science.gov (United States)

    Boudreaux, Mary K; Christopherson, Pete W; Blair, Cori

    2016-03-01

    There is minimal information regarding platelet receptors in the family Felidae. Comparative studies assist with identifying amino acids critical for protein structure and function. The purpose of the study was to compare the gene encoding, and the predicted amino acid composition of, platelet membrane receptor subunit GPIbα in Felidae family members. Genomic DNA samples isolated from whole blood of 13 domestic cats and 50 big cats representing 8 different species were subjected to PCR using primers designed to flank the coding region of GPIbα in overlapping fashion. PCR products were separated via electrophoresis on agarose gels, and extracted products were submitted for sequencing. DNA sequences were used to predict the length and amino acid composition of the protein. Varying protein lengths were predicted in Felidae family members which were primarily due to polymorphisms in the variable number of tandem repeats region encoding the macroglycopeptide region of GPIbα. Other areas of the gene and predicted amino acid compositions were fairly conserved when compared to human sequences and between Felidae family members. Various polymorphisms within GPIbα, including length variants encoding the macroglycopeptide region, were identified in members of the family Felidae. More studies are needed to determine if a correlation exists between various polymorphisms and predisposition for hemorrhage or thrombosis as suggested in people. © 2016 American Society for Veterinary Clinical Pathology.

  5. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  6. Tuning membrane protein mobility by confinement into nanodomains

    Science.gov (United States)

    Karner, Andreas; Nimmervoll, Benedikt; Plochberger, Birgit; Klotzsch, Enrico; Horner, Andreas; Knyazev, Denis G.; Kuttner, Roland; Winkler, Klemens; Winter, Lukas; Siligan, Christine; Ollinger, Nicole; Pohl, Peter; Preiner, Johannes

    2017-03-01

    High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.

  7. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  8. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. How curved membranes recruit amphipathic helices and protein anchoring motifs.

    Science.gov (United States)

    Hatzakis, Nikos S; Bhatia, Vikram K; Larsen, Jannik; Madsen, Kenneth L; Bolinger, Pierre-Yves; Kunding, Andreas H; Castillo, John; Gether, Ulrik; Hedegård, Per; Stamou, Dimitrios

    2009-11-01

    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity. We proposed a model based on curvature-induced defects in lipid packing that related these findings to lipid sorting and accurately predicted the existence of a new ubiquitous class of curvature sensors: membrane-anchored proteins. The fact that unrelated structural motifs such as alpha-helices and alkyl chains sense MC led us to propose that MC sensing is a generic property of curved membranes rather than a property of the anchoring molecules. We therefore anticipate that MC will promote the redistribution of proteins that are anchored in membranes through other types of hydrophobic moieties.

  10. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  11. On the Spatial Organization of mRNA, Plasmids, and Ribosomes in a Bacterial Host Overexpressing Membrane Proteins.

    Directory of Open Access Journals (Sweden)

    Lieke A van Gijtenbeek

    2016-12-01

    Full Text Available By using fluorescence imaging, we provide a time-resolved single-cell view on coupled defects in transcription, translation, and growth during expression of heterologous membrane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane proteins accumulate in mRNA-dense bodies at the cell poles, whereas transcripts of a well-expressed homologous membrane protein show membrane-proximal localization in a translation-dependent fashion. The presence of the aberrant polar mRNA foci correlates with cessation of cell division, which is restored once these bodies are cleared. In addition, activation of the heat-shock response and a loss of nucleoid-occluded ribosomes are observed. We show that the presence of a native-like N-terminal domain is key to SRP-dependent membrane localization and successful production of membrane proteins. The work presented gives new insights and detailed understanding of aberrant membrane protein biogenesis, which can be used for strategies to optimize membrane protein production.

  12. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  13. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

    Science.gov (United States)

    Itel, Fabian; Najer, Adrian; Palivan, Cornelia G; Meier, Wolfgang

    2015-06-10

    The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

  14. Lactococcus lactis as host for overproduction of functional membrane proteins

    NARCIS (Netherlands)

    Kunji, ERS; Slotboom, DJ; Poolman, B

    2003-01-01

    Lactococcus lactis has many properties that are ideal for enhanced expression of membrane proteins. The organism is easy and inexpensive to culture, has a single membrane and relatively mild proteolytic activity. Methods for genetic manipulation are fully established and a tightly controlled

  15. Mnemons: encoding memory by protein super-assembly

    Directory of Open Access Journals (Sweden)

    Fabrice Caudron

    2015-02-01

    Full Text Available Memory is mainly understood as the recollection of past events. The human brain and its simplest unit, the synapse, belong to the places in which such memories are physically stored. From an experimental point of view, memory can be tested in humans by recall. However, in other organisms, memory is reflected in its use by individuals to learn about and adapt their behavior to their environment. Under this criterion, even unicellular organisms are able to learn from their environments and show the ability to adapt their responses to repeating stimuli. This indicates that they are able to keep track of their histories and use these traces to elaborate adapted responses, making these traces akin to memory encodings. Understanding these phenomena may even help us to dissect part of the rather complex molecular orchestration happening in our synapses. When exposed unsuccessfully to mating pheromone, i.e. when mating does not happen, budding yeast cells become refractory to the mating signal. This refractory state is restricted to the mother cell and not inherited by the daughter cells, even though it is stable for most if not the entire life span of the mother cell. Interestingly, both stability and asymmetric segregation of the acquired state are explained by the molecular mechanism underlying its establishment, which shows important analogies and distinctions to prions. Here we discuss these similarities and differences

  16. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    International Nuclear Information System (INIS)

    Baker, Lindsay A.; Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR

  17. Chemical synthesis and biophysical applications of membrane proteins.

    Science.gov (United States)

    Zuo, Chao; Tang, Shan; Zheng, Ji-Shen

    2015-07-01

    Chemical synthesis or semi-synthesis of membrane proteins can provide unique molecular tools, such as site-specific isotope labeling or post-translationally modified membrane proteins to gain insight into their biophysical and functional characteristics. However, during preparation, purification, and ligation of transmembrane peptides, tremendous challenges are encountered owing to their hydrophobic nature. This review focuses on the recent advances in chemical synthesis strategies of membrane proteins. These strategies help to solubilize the hydrophobic transmembrane peptide sequences under standard purification and chemical ligation conditions to improve their handling properties. Biophysical and functional studies of synthetic membrane proteins are reviewed as well. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  18. Defining thermostability of membrane proteins by western blotting.

    Science.gov (United States)

    Ashok, Y; Nanekar, R; Jaakola, V-P

    2015-12-01

    Membrane proteins are relatively challenging targets for structural and other biophysical studies. Insufficient expression in various expression systems, inherent flexibility, and instability in the detergents that are required for membrane extraction are the main reasons for this limited success. Therefore, identification of suitable conditions and membrane protein variants that can help stabilize functional protein for extended periods of time is critical for structural studies. Here, we describe a western blot-based assay that simplifies identification of thermostabilizing conditions for membrane proteins. We show successful testing of a variety of parameters such as additive lipids, ligands and detergents. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  20. Isolation of Protein Storage Vacuoles and Their Membranes.

    Science.gov (United States)

    Shimada, Tomoo; Hara-Nishimura, Ikuko

    2017-01-01

    Protein-storage vacuoles (PSVs) are specialized vacuoles that sequester large amounts of storage proteins. During seed development, PSVs are formed de novo and/or from preexisting lytic vacuoles. Seed PSVs can be subdivided into four distinct compartments: membrane, globoid, matrix, and crystalloid. In this chapter, we introduce easy methods for isolation of PSVs and their membranes from pumpkin seeds. These methods facilitate the identification and characterization of PSV components.

  1. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG.

    Science.gov (United States)

    Zhang, Zhe; Kuipers, Grietje; Niemiec, Łukasz; Baumgarten, Thomas; Slotboom, Dirk Jan; de Gier, Jan-Willem; Hjelm, Anna

    2015-09-16

    For membrane protein production, the Escherichia coli T7 RNA polymerase (T7 RNAP)-based protein production strain BL21(DE3) in combination with T7-promoter based expression vectors is widely used. Cells are routinely cultured in Lysogeny broth (LB medium) and expression of the chromosomally localized t7rnap gene is governed by the isopropyl-β-D-1-thiogalactopyranoside (IPTG) inducible lacUV5 promoter. The T7 RNAP drives the expression of the plasmid borne gene encoding the recombinant membrane protein. Production of membrane proteins in the cytoplasmic membrane rather than in inclusion bodies in a misfolded state is usually preferred, but often hampered due to saturation of the capacity of the Sec-translocon, resulting in low yields. Contrary to expectation we observed that omission of IPTG from BL21(DE3) cells cultured in LB medium can lead to significantly higher membrane protein production yields than when IPTG is added. In the complete absence of IPTG cultures stably produce membrane proteins in the cytoplasmic membrane, whereas upon the addition of IPTG membrane proteins aggregate in the cytoplasm and non-producing clones are selected for. Furthermore, in the absence of IPTG, membrane proteins are produced at a lower rate than in the presence of IPTG. These observations indicate that in the absence of IPTG the Sec-translocon capacity is not/hardly saturated, leading to enhanced membrane protein production yields in the cytoplasmic membrane. Importantly, for more than half of the targets tested the yields obtained using un-induced BL21(DE3) cells were higher than the yields obtained in the widely used membrane protein production strains C41(DE3) and C43(DE3). Since most secretory proteins reach the periplasm via the Sec-translocon, we also monitored the production of three secretory recombinant proteins in the periplasm of BL21(DE3) cells in the presence and absence of IPTG. For all three targets tested omitting IPTG led to the highest production levels in the

  2. Detergent selection for enhanced extraction of membrane proteins.

    Science.gov (United States)

    Arachea, Buenafe T; Sun, Zhen; Potente, Nina; Malik, Radhika; Isailovic, Dragan; Viola, Ronald E

    2012-11-01

    Generating stable conditions for membrane proteins after extraction from their lipid bilayer environment is essential for subsequent characterization. Detergents are the most widely used means to obtain this stable environment; however, different types of membrane proteins have been found to require detergents with varying properties for optimal extraction efficiency and stability after extraction. The extraction profiles of several detergent types have been examined for membranes isolated from bacteria and yeast, and for a set of recombinant target proteins. The extraction efficiencies of these detergents increase at higher concentrations, and were shown to correlate with their respective CMC values. Two alkyl sugar detergents, octyl-β-d-glucoside (OG) and 5-cyclohexyl-1-pentyl-β-d-maltoside (Cymal-5), and a zwitterionic surfactant, N-decylphosphocholine (Fos-choline-10), were generally effective in the extraction of a broad range of membrane proteins. However, certain detergents were more effective than others in the extraction of specific classes of integral membrane proteins, offering guidelines for initial detergent selection. The differences in extraction efficiencies among this small set of detergents supports the value of detergent screening and optimization to increase the yields of targeted membrane proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Phytochemicals perturb membranes and promiscuously alter protein function.

    Science.gov (United States)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  4. Optimal separation of jojoba protein using membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Nabetani, Hiroshi; Abbott, T.P.; Kleiman, R. [National Center for Agricultural Utilization Research, Peoria, IL (United States)

    1995-05-01

    The efficiency of a pilot-scale membrane system for purifying and concentrating jojoba protein was estimated. In this system, a jojoba extract was first clarified with a microfiltration membrane. The clarified extract was diafiltrated and the protein was purified with an ultrafiltration membrane. Then the protein solution was concentrated with the ultrafiltration membrane. Permeate flux during microfiltration was essentially independent of solids concentration in the feed, in contrast with the permeate flux during ultrafiltration which was a function of protein concentration. Based on these results, a mathematical model which describes the batchwise concentration process with ultrafiltration membranes was developed. Using this model, the combination of batchwise concentration with diafiltration was optimized, and an industrial-scale process was designed. The effect of ethylenediaminetetraacetic acid (EDTA) on the performance of the membrane system was also investigated. The addition of EDTA increased the concentration of protein in the extract and improved the recovery of protein in the final products. The quality of the final product (color and solubility) was also improved. However, EDTA decreased permeate flux during ultrafiltration.

  5. Molecular quantification of genes encoding for green-fluorescent proteins

    DEFF Research Database (Denmark)

    Felske, A; Vandieken, V; Pauling, B V

    2003-01-01

    A quantitative PCR approach is presented to analyze the amount of recombinant green fluorescent protein (gfp) genes in environmental DNA samples. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification...... is provided by a competitively coamplified DNA standard constructed by point mutation PCR. A single base difference was introduced to achieve a suitable migration difference in TGGE between the original target DNA and the modified standard without altering the PCR amplification efficiency. This competitive...... PCR strategy is a highly specific and sensitive way to monitor recombinant DNA in environments like the efflux of a biotechnological plant....

  6. Gardenia jasminoides Encodes an Inhibitor-2 Protein for Protein Phosphatase Type 1

    Science.gov (United States)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Protein phosphatase-1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. Inhibitor-2 (I-2) can inhibit the activity of PP1 and has been found in diverse organisms. In this work, a Gardenia jasminoides fruit cDNA library was constructed, and the GjI-2 cDNA was isolated from the cDNA library by sequencing method. The GjI-2 cDNA contains a predicted 543 bp open reading frame that encodes 180 amino acids. The bioinformatics analysis suggested that the GjI-2 has conserved PP1c binding motif, and contains a conserved phosphorylation site, which is important in regulation of its activity. The three-dimensional model structure of GjI-2 was buite, its similar with the structure of I-2 from mouse. The results suggest that GjI-2 has relatively conserved RVxF, FxxR/KxR/K and HYNE motif, and these motifs are involved in interaction with PP1.

  7. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Michael N [Benicia, CA; Forte, Trudy M [Berkeley, CA

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  8. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    Science.gov (United States)

    Oda, Michael N [Benicia, CA; Forte, Trudy M [Berkeley, CA

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  9. Multigene Family Encoding 3′,5′-Cyclic-GMP-Dependent Protein Kinases in Paramecium tetraurelia Cells

    Science.gov (United States)

    Kissmehl, Roland; Krüger, Tim P.; Treptau, Tilman; Froissard, Marine; Plattner, Helmut

    2006-01-01

    In the ciliate Paramecium tetraurelia, 3′,5′-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation. PMID:16400170

  10. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins.

    Directory of Open Access Journals (Sweden)

    Kohila Mahadevan

    Full Text Available In higher eukaryotes, most mRNAs that encode secreted or membrane-bound proteins contain elements that promote an alternative mRNA nuclear export (ALREX pathway. Here we report that ALREX-promoting elements also potentiate translation in the presence of upstream nuclear factors. These RNA elements interact directly with, and likely co-evolved with, the zinc finger repeats of RanBP2/Nup358, which is present on the cytoplasmic face of the nuclear pore. Finally we show that RanBP2/Nup358 is not only required for the stimulation of translation by ALREX-promoting elements, but is also required for the efficient global synthesis of proteins targeted to the endoplasmic reticulum (ER and likely the mitochondria. Thus upon the completion of export, mRNAs containing ALREX-elements likely interact with RanBP2/Nup358, and this step is required for the efficient translation of these mRNAs in the cytoplasm. ALREX-elements thus act as nucleotide platforms to coordinate various steps of post-transcriptional regulation for the majority of mRNAs that encode secreted proteins.

  12. An overview of membrane transport proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Andre, B

    1995-12-01

    All eukaryotic cells contain a wide variety of proteins embedded in the plasma and internal membranes, which ensure transmembrane solute transport. It is now established that a large proportion of these transport proteins can be grouped into families apparently conserved throughout organisms. This article presents the data of an in silicio analysis aimed at establishing a preliminary classification of membrane transport proteins in Saccharomyces cerevisiae. This analysis was conducted at a time when about 65% of all yeast genes were available in public databases. In addition to approximately 60 transport proteins whose function was at least partially known, approximately 100 deduced protein sequences of unknown function display significant sequence similarity to membrane transport proteins characterized in yeast and/or other organisms. While some protein families have been well characterized by classical genetic experimental approaches, others have largely if not totally escaped characterization. The proteins revealed by this in silicio analysis also include a putative K+ channel, proteins similar to aquaporins of plant and animal origin, proteins similar to Na+-solute symporters, a protein very similar to electroneural cation-chloride cotransporters, and a putative Na+-H+ antiporter. A new research area is anticipated: the functional analysis of many transport proteins whose existence was revealed by genome sequencing.

  13. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.

    Science.gov (United States)

    Ernst, Antonia M; Jekat, Stephan B; Zielonka, Sascia; Müller, Boje; Neumann, Ulla; Rüping, Boris; Twyman, Richard M; Krzyzanek, Vladislav; Prüfer, Dirk; Noll, Gundula A

    2012-07-10

    The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.

  14. Alignment of helical membrane protein sequences using AlignMe.

    Directory of Open Access Journals (Sweden)

    Marcus Stamm

    Full Text Available Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S matching was combined with evolutionary information (using a position-specific substitution matrix (P, in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T, in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set.

  15. Fast and efficient protein purification using membrane adsorber systems.

    Science.gov (United States)

    Suck, Kirstin; Walter, Johanna; Menzel, Frauke; Tappe, Alexander; Kasper, Cornelia; Naumann, Claudia; Zeidler, Robert; Scheper, Thomas

    2006-02-10

    The purification of proteins from complex cell culture samples is an essential step in proteomic research. Traditional chromatographic methods often require several steps resulting in time consuming and costly procedures. In contrast, protein purification via membrane adsorbers offers the advantage of fast and gentle but still effective isolation. In this work, we present a new method for purification of proteins from crude cell extracts via membrane adsorber based devices. This isolation procedure utilises the membranes favourable pore structure allowing high flow rates without causing high back pressure. Therefore, shear stress to fragile structures is avoided. In addition, mass transfer takes place through convection rather than diffusion, thus allowing very rapid separation processes. Based on this membrane adsorber technology the separation of two model proteins, human serum albumin (HSA) and immungluboline G (IgG) is shown. The isolation of human growth hormone (hGH) from chinese hamster ovary (CHO) cell culture supernatant was performed using a cation exchange membrane. The isolation of the enzyme penicillin acylase from the crude Escherichia coli supernatant was achieved using an anion exchange spin column within one step at a considerable purity. In summary, the membrane adsorber devices have proven to be suitable tools for the purification of proteins from different complex cell culture samples.

  16. Structural adaptations of proteins to different biological membranes

    Science.gov (United States)

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  17. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications.

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-12-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.

  18. Learning from Bacteriophages - Advantages and Limitations of Phage and Phage-Encoded Protein Applications

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grażyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-01-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application. PMID:23305359

  19. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  20. Variation in genes encoding eosinophil granule proteins in atopic dermatitis patients from Germany

    Directory of Open Access Journals (Sweden)

    Epplen Jörg T

    2008-11-01

    Full Text Available Abstract Background Atopic dermatitis (AD is believed to result from complex interactions between genetic and environmental factors. A main feature of AD as well as other allergic disorders is serum and tissue eosinophilia. Human eosinophils contain high amounts of cationic granule proteins, including eosinophil cationic protein (ECP, eosinophil-derived neurotoxin (EDN, eosinophil peroxidase (EPO and major basic protein (MBP. Recently, variation in genes encoding eosinophil granule proteins has been suggested to play a role in the pathogenesis of allergic disorders. We therefore genotyped selected single nucleotide polymorphisms within the ECP, EDN, EPO and MBP genes in a cohort of 361 German AD patients and 325 healthy controls. Results Genotype and allele frequencies did not differ between patients and controls for all polymorphisms investigated in this study. Haplotype analysis did not reveal any additional information. Conclusion We did not find evidence to support an influence of variation in genes encoding eosinophil granule proteins for AD pathogenesis in this German cohort.

  1. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.

    2006-01-01

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNA is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions

  2. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains.

    Science.gov (United States)

    Brueggeman, R; Druka, A; Nirmala, J; Cavileer, T; Drader, T; Rostoks, N; Mirlohi, A; Bennypaul, H; Gill, U; Kudrna, D; Whitelaw, C; Kilian, A; Han, F; Sun, Y; Gill, K; Steffenson, B; Kleinhofs, A

    2008-09-30

    We isolated the barley stem rust resistance genes Rpg5 and rpg4 by map-based cloning. These genes are colocalized on a 70-kb genomic region that was delimited by recombination. The Rpg5 gene consists of an unusual structure encoding three typical plant disease resistance protein domains: nucleotide-binding site, leucine-rich repeat, and serine threonine protein kinase. The predicted RPG5 protein has two putative transmembrane sites possibly involved in membrane binding. The gene is expressed at low but detectable levels. Posttranscriptional gene silencing using VIGS resulted in a compatible reaction with a normally incompatible stem rust pathogen. Allele sequencing also validated the candidate Rpg5 gene. Allele and recombinant sequencing suggested that the probable rpg4 gene encoded an actin depolymerizing factor-like protein. Involvement of actin depolymerizing factor genes in nonhost resistance has been documented, but discovery of their role in gene-for-gene interaction would be novel and needs to be further substantiated.

  3. Lipopolysaccharide Membranes and Membrane Proteins of Pseudomonas aeruginosa Studied by Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP

    2006-12-01

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is also a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid

  4. Current strategies for protein production and purification enabling membrane protein structural biology.

    Science.gov (United States)

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  5. Biophysical characterization of membrane protein-small molecule interactions

    NARCIS (Netherlands)

    Chen, Dan

    2015-01-01

    Membrane proteins are account for up to two thirds of known druggable targets. Traditionally, new drugs against this class of proteins have been discovered through HTS. However, not all GPCRs are amenable to traditional screening methods. Recently, fragment-based drug discovery (FBDD) has emerged as

  6. Identification of outer membrane proteins of Yersinia pestis through biotinylation

    NARCIS (Netherlands)

    Smither, S.J.; Hill, J.; Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Titball, R.W.

    2007-01-01

    The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with

  7. Denaturation of membrane proteins and hyperthermic cell killing

    NARCIS (Netherlands)

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  8. In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae.

    Science.gov (United States)

    Caro, L H; Tettelin, H; Vossen, J H; Ram, A F; van den Ende, H; Klis, F M

    1997-12-01

    Use of the Von Heijne algorithm allowed the identification of 686 open reading frames (ORFs) in the genome of Saccharomyces cerevisiae that encode proteins with a potential N-terminal signal sequence for entering the secretory pathway. On further analysis, 51 of these proteins contain a potential glycosyl-phosphatidylinositol (GPI)-attachment signal. Seven additional ORFs were found to belong to this group. Upon examination of the possible GPI-attachment sites, it was found that in yeast the most probable amino acids for GPI-attachment as asparagine and glycine. In yeast, GPI-proteins are found at the cell surface, either attached to the plasma-membrane or as an intrinsic part of the cell wall. It was noted that plasma-membrane GPI-proteins possess a dibasic residue motif just before their predicted GPI-attachment site. Based on this, and on homologies between proteins, families of plasma-membrane and cell wall proteins were assigned, revealing 20 potential plasma-membrane and 38 potential cell wall proteins. For members of three plasma-membrane protein families, a function has been described. On the other hand, most of the cell wall proteins seem to be structural components of the wall, responsive to different growth conditions. The GPI-attachment site of yeast slightly differs from mammalian cells. This might be of use in the development of anti-fungal drugs.

  9. Ultrafast permeation of water through protein-based membranes.

    Science.gov (United States)

    Peng, Xinsheng; Jin, Jian; Nakamura, Yoshimichi; Ohno, Takahisa; Ichinose, Izumi

    2009-06-01

    Pressure-driven filtration by porous membranes is widely used in the production of drinking water from ground and surface water. Permeation theory predicts that filtration rate is proportional to the pressure difference across the filtration membrane and inversely proportional to the thickness of the membrane. However, these membranes need to be able to withstand high water fluxes and pressures, which means that the active separation layers in commercial filtration systems typically have a thickness of a few tens to several hundreds of nanometres. Filtration performance might be improved by the use of ultrathin porous silicon membranes or carbon nanotubes immobilized in silicon nitride or polymer films, but these structures are difficult to fabricate. Here, we report a new type of filtration membrane made of crosslinked proteins that are mechanically robust and contain channels with diameters of less than 2.2 nm. We find that a 60-nm-thick membrane can concentrate aqueous dyes from fluxes up to 9,000 l h(-1) m(-2) bar(-1), which is approximately 1,000 times higher than the fluxes that can be withstood by commercial filtration membranes with similar rejection properties. Based on these results and molecular dynamics simulations, we propose that protein-surrounded channels with effective lengths of less than 5.8 nm can separate dye molecules while allowing the ultrafast permeation of water at applied pressures of less than 1 bar.

  10. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  11. Polyunsaturation in cell membranes and lipid bilayers and its effects on membrane proteins.

    Science.gov (United States)

    Slater, S J; Kelly, M B; Yeager, M D; Larkin, J; Ho, C; Stubbs, C D

    1996-03-01

    The effect of variation of the degree of cis-unsaturation on cell membrane protein functioning was investigated using a model lipid bilayer system and protein kinase C (PKC). This protein is a key element of signal transduction. Furthermore it is representative of a class of extrinsic membrane proteins that show lipid dependent interactions with cell membranes. To test for dependence of activity on the phospholipid unsaturation, experiments were devised using a vesicle assay system consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) in which the unsaturation was systematically varied. Highly purified PKC alpha and epsilon were obtained using the baculovirus-insect cell expression system. It was shown that increased PC unsaturation elevated the activity of PKC alpha. By contrast, increasing the unsaturation of PS decreased the activity of PKC alpha, and to a lesser extent PKC epsilon. This result immediately rules out any single lipid bilayer physical parameter, such as lipid order, underlying the effect. It is proposed that while PC unsaturation effects are explainable on the basis of a contribution to membrane surface curvature stress, the effects of PS unsaturation may be due to specific protein-lipid interactions. Overall, the results indicate that altered phospholipid unsaturation in cell membranes that occurs in certain disease states such as chronic alcoholism, or by dietary manipulations, are likely to have profound effects on signal transduction pathways involving PKC and similar proteins.

  12. Protein expression profiling of nuclear membrane protein reveals potential biomarker of human hepatocellular carcinoma

    OpenAIRE

    Khan, Rizma; Zahid, Saadia; Wan, Yu-Jui; Forster, Jameson; Karim, A-Bashar; Nawabi, Atta M; Azhar, Abid; Rahman, M; Ahmed, Nikhat

    2013-01-01

    Abstract Background Complex molecular events lead to development and progression of liver cirrhosis to HCC. Differentially expressed nuclear membrane associated proteins are responsible for the functional and structural alteration during the progression from cirrhosis to carcinoma. Although alterations/ post translational modifications in protein expression have been extensively quantified, complementary analysis of nuclear membrane proteome changes h...

  13. Topology of membrane proteins-predictions, limitations and variations.

    Science.gov (United States)

    Tsirigos, Konstantinos D; Govindarajan, Sudha; Bassot, Claudio; Västermark, Åke; Lamb, John; Shu, Nanjiang; Elofsson, Arne

    2017-10-26

    Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  15. Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anticomplement proteins.

    Science.gov (United States)

    Daix, V; Schroeder, H; Praet, N; Georgin, J-P; Chiappino, I; Gillet, L; de Fays, K; Decrem, Y; Leboulle, G; Godfroid, E; Bollen, A; Pastoret, P-P; Gern, L; Sharp, P M; Vanderplasschen, A

    2007-04-01

    The alternative pathway of complement is an important innate defence against pathogens including ticks. This component of the immune system has selected for pathogens that have evolved countermeasures. Recently, a salivary protein able to inhibit the alternative pathway was cloned from the American tick Ixodes scapularis (Valenzuela et al., 2000; J. Biol. Chem. 275, 18717-18723). Here, we isolated two different sequences, similar to Isac, from the transcriptome of I. ricinus salivary glands. Expression of these sequences revealed that they both encode secreted proteins able to inhibit the complement alternative pathway. These proteins, called I. ricinus anticomplement (IRAC) protein I and II, are coexpressed constitutively in I. ricinus salivary glands and are upregulated during blood feeding. Also, we demonstrated that they are the products of different genes and not of alleles of the same locus. Finally, phylogenetic analyses demonstrate that ticks belonging to the Ixodes ricinus complex encode a family of relatively small anticomplement molecules undergoing diversification by positive Darwinian selection.

  16. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    Science.gov (United States)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  17. The exception proves the rule? Dual targeting of nuclear-encoded proteins into endosymbiotic organelles.

    Science.gov (United States)

    Baudisch, Bianca; Langner, Uwe; Garz, Ingo; Klösgen, Ralf Bernd

    2014-01-01

    Plant cells harbor two types of endosymbiotic organelle: mitochondria and chloroplasts. As a consequence of endosymbiotic gene transfer, the majority of their proteins are encoded in the nucleus and post-translationally 're'-imported into the respective target organelle. The corresponding transport signals are usually selective for a single organelle, but several proteins are transported into both the mitochondria and chloroplasts. To estimate the number of proteins with such dual targeting properties in Arabidopsis, we classified the proteins encoded by nuclear genes of endosymbiotic origin according to the respective targeting specificity of their N-terminal transport signals as predicted by the TargetP software package. Selected examples of the resulting protein classes were subsequently analyzed by transient transformation assays as well as by in organello protein transport experiments. It was found that most proteins with high prediction values for both organelles show dual targeting with both experimental approaches. Unexpectedly, however, dual targeting was even found among those proteins that are predicted to be localized solely in one of the two endosymbiotic organelles. In total, among the 16 candidate proteins analyzed, we identified 10 proteins with dual targeting properties. This unexpectedly high proportion suggests that such transport properties are much more abundant than anticipated. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis.

    NARCIS (Netherlands)

    Hollander, A.I. den; Koenekoop, R.K.; Mohamed, M.D.; Arts, H.H.; Boldt, K.; Towns, K.V.; Sedmak, T.; Beer, M. de; Nagel-Wolfrum, K.; McKibbin, M.; Dharmaraj, S.; Lopez, I.; Ivings, L.; Williams, G.A.; Springell, K.; Woods, C.G.; Jafri, H.; Rashid, Y.; Strom, T.M.; Zwaag, B. van der; Gosens, I.; Kersten, F.F.J.; Wijk, E. van; Veltman, J.A.; Zonneveld, M.N.; Beersum, S.E.C. van; Maumenee, I.H.; Wolfrum, U.; Cheetham, M.E.; Ueffing, M.; Cremers, F.P.M.; Inglehearn, C.F.; Roepman, R.

    2007-01-01

    Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We

  19. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors

    NARCIS (Netherlands)

    de Munnik, Sabrina M.; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show

  20. SNARE-fusion mediated insertion of membrane proteins into native and artificial membranes.

    Science.gov (United States)

    Nordlund, Gustav; Brzezinski, Peter; von Ballmoos, Christoph

    2014-07-02

    Membrane proteins carry out functions such as nutrient uptake, ATP synthesis or transmembrane signal transduction. An increasing number of reports indicate that cellular processes are underpinned by regulated interactions between these proteins. Consequently, functional studies of these networks at a molecular level require co-reconstitution of the interacting components. Here, we report a SNARE protein-based method for incorporation of multiple membrane proteins into artificial membrane vesicles of well-defined composition, and for delivery of large water-soluble substrates into these vesicles. The approach is used for in vitro reconstruction of a fully functional bacterial respiratory chain from purified components. Furthermore, the method is used for functional incorporation of the entire F1F0 ATP synthase complex into native bacterial membranes from which this component had been genetically removed. The novel methodology offers a tool to investigate complex interaction networks between membrane-bound proteins at a molecular level, which is expected to generate functional insights into key cellular functions.

  1. Analysis of a Mycoplasma hominis membrane protein, P120

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Mathiesen, SL; Nyvold, Charlotte Guldborg

    1994-01-01

    extension analysis. The gene contained an open reading frame of 3237 bp encoding a peptide of 1079 amino acids with a deduced molecular mass of 123 kDa. A putative amino-terminal signal peptide and cleavage site for signal peptidase II were found. This suggests that the protein was synthesized...

  2. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  3. Retrieving Backbone String Neighbors Provides Insights Into Structural Modeling of Membrane Proteins*

    Science.gov (United States)

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-01-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold. PMID:22415040

  4. Retrieving backbone string neighbors provides insights into structural modeling of membrane proteins.

    Science.gov (United States)

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-07-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold.

  5. Expression and Functions of CreD, an Inner Membrane Protein in Stenotrophomonas maltophilia

    OpenAIRE

    Huang, Hsin-Hui; Lin, Yi-Tsung; Chen, Wei-Ching; Huang, Yi-Wei; Chen, Shiang-Jiuun; Yang, Tsuey-Ching

    2015-01-01

    CreBC is a highly conserved two-component regulatory system (TCS) in several gram-negative bacteria, including Escherichia coli, Aeromonas spp., Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. CreD is a conserved gene that encodes a predicted inner-membrane protein and is located near the creBC loci. Activation of CreBC increases creD expression; therefore, creD expression is generally used as a measure of CreBC activation in E. coli, Aeromonas spp., and P. aeruginosa systems. In th...

  6. Major integral membrane protein immunogens of Treponema pallidum are proteolipids

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, N.R.; Brandt, M.E.; Erwin, A.L.; Radolf, J.D.; Norgard, M.V. (Univ. of Texas Southwestern Medical Center, Dallas (USA))

    1989-09-01

    A number of the major pathogen-specific immunogens of Treponema pallidum were characterized recently as amphiphilic, integral membrane proteins by phase partitioning with Triton X-114. In the present study, we demonstrated that the same membrane immunogens (designated as detergent phase proteins (DPPs)) become radiolabeled upon in vitro incubation of T. pallidum with various {sup 3}H-labeled fatty acids. Radioimmunoprecipitation with a monoclonal antibody confirmed that the {sup 3}H-labeled 47-kilodalton protein corresponded to the well-characterized treponemal antigen with the identical apparent molecular mass. Failure to detect {sup 3}H-labeled DPPs following incubation with erythromycin confirmed that protein acylation required de novo protein synthesis by the bacteria. When treponemes were incubated with ({sup 3}H)myristate, ({sup 3}H)palmitate, or ({sup 3}H)oleate, radiolabeled proteins corresponding to the DPPs were detected upon autoradiography. Demonstration that a number of the abundant membrane immunogens of T. pallidum are proteolipids provides information to help clarify their membrane association(s) and may serve to explain their extraordinary immunogenicity.

  7. Solubilization of lipids and membrane proteins into nanodiscs : Mode of action and applications of SMA copolymers

    NARCIS (Netherlands)

    Scheidelaar, S.

    2016-01-01

    Cell membranes separate the inside and outside of cells. Membrane proteins in the cell membrane control the traffic of molecules across the membrane and are therefore targets for a lot of drugs: about 50 % of all approved drugs target a membrane protein! Unfortunately, scientists only know little

  8. LEA (Late Embryogenesis Abundant proteins and their encoding genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-03-01

    Full Text Available Abstract Background LEA (late embryogenesis abundant proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Results We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE and/or low temperature response (LTRE elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded. Conclusion The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for

  9. Prevalence of Genes Encoding Outer Membrane Virulence Factors Among Fecal Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    Ahmad Rashki

    2017-03-01

    Full Text Available Objective: Escherichia coli is commensal bacterium of human intestine. The gut is a common pool of E. coli isolates causing urinary tract infections (UTIs. Some of fecal E. coli (FeEC by the possession of certain virulence factors is able to cause diseases in human and other mammalian models. To evaluate the health threats coordinated with a given fecal source of E. coli strains, we determined the frequency of genes expressing virulence determinants in fecal E. coli isolates collected from human feces in Zabol, southeast of Iran. Methods: Escherichia coli isolates (n = 94 were separated from the feces of patients attending teaching hospitals, and screened for various virulence genes: fimH, his, hlyA, ompT, irp2, iucD, iroN, and cnf1 by using the multiplex polymerase chain reaction (PCR method. Results: The prevalence of virulence genes was as follows: adhesins (fimH, 98% and iha, 26%, alpha-hemolysins (hlyA, 10%, outer membrane protease (ompT, 67%, aerobactin (iucD, 67%, iron-repressible protein (irp2, 91% and salmochelin (iroN, 33% and cytotoxic necrotizing factor 1 (cnf1. According to the diversity of different virulence genes, the examined isolates exhibited 29 different patterns. Conclusion: Our results demonstrated that most of the assessed isolates harbored several virulence factors. Our findings propose possibility of human feces serving as a source for pathogenic organisms, supporting the notion that fecal materials of humans play a role in the epidemiological chain of extra-intestinal pathogenic E. coli. This is the first report of the frequency of virulence factors among E. coli isolates collected from human feces in Iran.

  10. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Directory of Open Access Journals (Sweden)

    Miranda Lo

    Full Text Available BACKGROUND: Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. METHODOLOGY/PRINCIPAL FINDINGS: To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS. We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. CONCLUSIONS/SIGNIFICANCE: This is the first study to compare transcriptional and translational responses to temperature

  11. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins

    DEFF Research Database (Denmark)

    Bhatia, Vikram Kjøller; Hatzakis, Nikos; Stamou, Dimitrios

    2010-01-01

    itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology....

  12. Distribution of Flagella Secreted Protein and Integral Membrane Protein Among Campylobacter jejuni Isolated from Thailand

    Science.gov (United States)

    2011-01-01

    secreted protein and integral membrane protein among Campylobacter jejuni isolated from Thailand Piyarat Pootong 1·, Oralak Serichantalergs...Ladaporn Bodhidatta \\ Frederic Poly2, Patricia Guerry2 and Carl J Mason 1 Abstract Background: Campylobacter jejuni, a gram-negative bacterium, is a...groups of integral membrane protein. The significance of these different FspA variants to virulence requires further study. Background Campylobacter

  13. Application of split-green fluorescent protein for topology mapping membrane proteins in Escherichia coli.

    Science.gov (United States)

    Toddo, Stephen; Söderström, Bill; Palombo, Isolde; von Heijne, Gunnar; Nørholm, Morten H H; Daley, Daniel O

    2012-10-01

    A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structure-function relationships. Although these maps can be predicted directly from amino acid sequence, the predictions are more accurate if combined with experimental data, which are usually obtained by fusing a reporter protein to the C-terminus of the protein. However, as reporter proteins are large, they cannot be used to report on the cytoplasmic/periplasmic location of the N-terminus of a protein. Here, we show that the bimolecular split-green fluorescent protein complementation system can overcome this limitation and can be used to determine the location of both the N- and C-termini of inner membrane proteins in Escherichia coli. Copyright © 2012 The Protein Society.

  14. Effective high-throughput overproduction of membrane proteins in Escherichia coli.

    NARCIS (Netherlands)

    Gordon, E.; Horsefield, R.; Swarts, H.G.P.; Pont, J.J.H.H.M. de; Neutze, R.; Snijder, A.

    2008-01-01

    Structural biology is increasingly reliant on elevated throughput methods for protein production. In particular, development of efficient methods of heterologous production of membrane proteins is essential. Here, we describe the heterologous overproduction of 24 membrane proteins from the human

  15. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins.

    Science.gov (United States)

    Zapun, André; Morlot, Cécile; Taha, Muhamed-Kheir

    2016-09-28

    Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP), in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context.

  16. Identification of protein features encoded by alternative exons using Exon Ontology.

    Science.gov (United States)

    Tranchevent, Léon-Charles; Aubé, Fabien; Dulaurier, Louis; Benoit-Pilven, Clara; Rey, Amandine; Poret, Arnaud; Chautard, Emilie; Mortada, Hussein; Desmet, François-Olivier; Chakrama, Fatima Zahra; Moreno-Garcia, Maira Alejandra; Goillot, Evelyne; Janczarski, Stéphane; Mortreux, Franck; Bourgeois, Cyril F; Auboeuf, Didier

    2017-06-01

    Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. © 2017 Tranchevent et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, Cecilia [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Guan, Tinglu [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Figlewicz, Denise A. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Hays, Arthur P. [Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Worman, Howard J. [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Gerace, Larry [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Schirmer, Eric C., E-mail: e.schirmer@ed.ac.uk [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom)

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  18. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    Science.gov (United States)

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  19. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold

    Science.gov (United States)

    Li, Yizhou; De Luca, Roberto; Cazzamalli, Samuele; Pretto, Francesca; Bajic, Davor; Scheuermann, Jörg; Neri, Dario

    2018-03-01

    In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.

  20. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    International Nuclear Information System (INIS)

    Ostlund, Cecilia; Guan, Tinglu; Figlewicz, Denise A.; Hays, Arthur P.; Worman, Howard J.; Gerace, Larry; Schirmer, Eric C.

    2009-01-01

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  1. Characteristics of the molecular diversity of the outer membrane protein A gene of Haemophilus parasuis

    Science.gov (United States)

    Tang, Cheng; Zhang, Bin; Yue, Hua; Yang, Falong; Shao, Guoqing; Hai, Quan; Chen, Xiaofei; Guo, Dingqian

    2010-01-01

    The molecular diversity of the gene encoding the outer membrane protein A (OmpA) of Haemophilus parasuis has been unclear. In this study, the structural characteristics, sequence types, and genetic diversity of ompA were investigated in 15 H. parasuis reference strains of different serovars and 20 field isolates. Three nucleotide lengths of the complete open reading frame (ORF) of ompA were found: 1098 base pairs (bp), 1104 bp, and 1110 bp. The OmpA contained 4 hypervariable domains, mainly encoding the 4 putative surface-exposed loops, which makes it a potential molecular marker for genotyping. Western blot analysis showed that the recombinant OmpAs of serovars 4 and 5 could cross-react with antiserum to all 15 serovars. Hence, although ompA of H. parasuis exhibited high variation among serovars, this variation did not seem to affect the strong antigenic characteristics of OmpA. PMID:20885850

  2. The membrane protein LasM Promotes the Culturability of Legionella pneumophila in Water

    Directory of Open Access Journals (Sweden)

    Laam Li

    2016-09-01

    Full Text Available The water-borne pathogen Legionella pneumophila (Lp strongly expresses the lpg1659 gene in water. This gene encodes a hypothetical protein predicted to be a membrane protein using in silico analysis. While no conserved domains were identified in Lpg1659, similar proteins are found in many Legionella species and other aquatic bacteria. RT-qPCR showed that lpg1659 is positively regulated by the alternative sigma factor RpoS, which is essential for Lp to survive in water. These observations suggest an important role of this novel protein in the survival of Lp in water. Deletion of lpg1659 did not affect cell morphology, membrane integrity or tolerance to high temperature. Moreover, lpg1659 was dispensable for growth of Lp in rich medium, and during infection of the amoeba Acanthamoeba castellanii and of THP-1 human macrophages. However, deletion of lpg1659 resulted in an early loss of culturability in water, while over-expression of this gene promoted the culturability of Lp. Therefore, these results suggest that lpg1659 is required for Lp to maintain culturability, and possibly long-term survival, in water. Since the loss of culturability observed in the absence of Lpg1659 was complemented by the addition of trace metals into water, this membrane protein is likely a transporter for acquiring essential trace metal for maintaining culturability in water and potentially in other metal-deprived conditions. Given its role in the survival of Lp in water, Lpg1659 was named LasM for Legionella aquatic survival membrane protein.

  3. Codon optimizing for increased membrane protein production

    DEFF Research Database (Denmark)

    Mirzadeh, K.; Toddo, S.; Nørholm, Morten

    2016-01-01

    Reengineering a gene with synonymous codons is a popular approach for increasing production levels of recombinant proteins. Here we present a minimalist alternative to this method, which samples synonymous codons only at the second and third positions rather than the entire coding sequence...

  4. Immunohistochemical expression of latent membrane protein 1 ...

    African Journals Online (AJOL)

    Methods: Archival formalin-fixed, paraffin-embedded NPC biopsies were evaluated in 23 Moroccan patients for the presence of LMP1 and p53 using immunohistochemistry (IHC). Results: No LMP1 expression was observed whereas 8 of 23 cases (34. 7%) had detectable p53 protein in the nuclei of tumor cells.

  5. Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger.

    Science.gov (United States)

    Liu, Qili; Tabuchi, Masashi; Liu, Sha; Kodama, Lay; Horiuchi, Wakako; Daniels, Jay; Chiu, Lucinda; Baldoni, Daniel; Wu, Mark N

    2017-05-05

    Free-living animals must not only regulate the amount of food they consume but also choose which types of food to ingest. The shifting of food preference driven by nutrient-specific hunger can be essential for survival, yet little is known about the underlying mechanisms. We identified a dopamine circuit that encodes protein-specific hunger in Drosophila The activity of these neurons increased after substantial protein deprivation. Activation of this circuit simultaneously promoted protein intake and restricted sugar consumption, via signaling to distinct downstream neurons. Protein starvation triggered branch-specific plastic changes in these dopaminergic neurons, thus enabling sustained protein consumption. These studies reveal a crucial circuit mechanism by which animals adjust their dietary strategy to maintain protein homeostasis. Copyright © 2017, American Association for the Advancement of Science.

  6. Detection of soluble expression and in vivo interactions of the inner membrane protein OppC using green fluorescent protein.

    Science.gov (United States)

    Xiang, Q J; Zhai, J F; Zhang, M; Zhang, B

    2015-12-22

    In this study, the in vivo interaction system of oligopeptide permease (Opp) proteins was analyzed, and a high expression system of inner membrane protein OppC was constructed by flexible usage of the green fluorescent protein (GFP). The Escherichia coli OppC gene, which encodes a transmembrane component of oligopeptide transporter, was cloned into different vectors. Recombinant plasmids were transformed into different E. coli strains, and the expression conditions were optimized. The effect of plasmids and expression strains on OppC production was evaluated by in-gel and western blot analyses. OppC produced by the pWaldo-GFPe vector, harboring the GFP reporter gene, transformed into E. coli C43(DE3) provided sufficient functional protein for biochemical and biophysical studies. In vivo protein-protein interactions were detected among oligopeptide permease proteins using a GFP fragment reassembly protocol. The substrate binding protein OppA showed no interaction with the other components, while the ATP-binding component OppD did not interact with OppF. OppD and OppF interacted with the transmembrane components OppB and OppC. OppB also showed direct interaction with OppC. In vivo OppC functionality was determined by constructing an OppC gene deletion strain. OppC was shown to be essential for peptide uptake, and non-essential for cell viability. These results could help in elucidating the oligopeptide transport mechanism in bacteria.

  7. Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.

    Science.gov (United States)

    Sarkar, Mitul; Koland, John G

    2016-01-01

    The fluorescence recovery after photobleaching (FRAP) method is a straightforward means of assessing the diffusional mobility of membrane-associated proteins that is readily performed with current confocal microscopy instrumentation. We describe here the specific application of the FRAP method in characterizing the lateral diffusion of genetically encoded green fluorescence protein (GFP)-tagged plasma membrane receptor proteins. The method is exemplified in an examination of whether the previously observed segregation of the mammalian HER3 receptor protein in discrete plasma membrane microdomains results from its physical interaction with cellular entities that restrict its mobility. Our FRAP measurements of the diffusional mobility of GFP-tagged HER3 reporters expressed in MCF7 cultured breast cancer cells showed that despite the observed segregation of HER3 receptors within plasma membrane microdomains their diffusion on the macroscopic scale is not spatially restricted. Thus, in FRAP analyses of various HER3 reporters a near-complete recovery of fluorescence after photobleaching was observed, indicating that HER3 receptors are not immobilized by long-lived physical interactions with intracellular species. An examination of HER3 proteins with varying intracellular domain sequence truncations also indicated that a proposed formation of oligomeric HER3 networks, mediated by physical interactions involving specific HER3 intracellular domain sequences, either does not occur or does not significantly reduce HER3 mobility on the macroscopic scale.

  8. MODIFICATION OF ERYTHROCYTE MEMBRANE PROTEINS WITH POLYETHYLENE GLYCOL 1500

    Directory of Open Access Journals (Sweden)

    N. G. Zemlianskykh

    2016-10-01

    Full Text Available The aim of the work was to study the effect of polyethylene glycol PEG-1500 on the Ca2+-ATPase activity and changes in CD44 surface marker expression in human erythrocyte membranes. Determination of the Ca2+-ATPase activity was carried out in sealed erythrocyte ghosts by the level of accumulation of inorganic phosphorus. Changes in the expression of CD44 and amount of CD44+-erythrocytes were evaluated by flow cytometry. The inhibition of Ca2+-ATPase activity and a reduction in the level of CD44 expression and also the decrease in the amount CD44+-cells were found, reflecting a fairly complex restructuring in the membrane-cytoskeleton complex of erythrocytes under the influence of PEG-1500. Effect of PEG-1500 on the surface CD44 marker could be mediated by modification of proteins of membrane-cytoskeleton complex, as indicated by accelerated loss of CD44 in erythrocyte membranes after application of protein cross-linking reagent diamide. Reduced activity of Ca2+-ATPase activity may contribute to the increase in intracellular Ca2+ level and thus leads to a modification of interactions of integral proteins with cytoskeletal components that eventually could result in membrane vesiculation and decreasing in expression of the CD44 marker, which is dynamically linked to the cytoskeleton.

  9. The Rh protein family: gene evolution, membrane biology, and disease association.

    Science.gov (United States)

    Huang, Cheng-Han; Ye, Mao

    2010-04-01

    The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor's involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.

  10. Application of split-green fluorescent protein for topology mapping membrane proteins in Escherichia coli

    DEFF Research Database (Denmark)

    Toddo, Stephen; Soderstrom, Bill; Palombo, Isolde

    2012-01-01

    /periplasmic location of the N-terminus of a protein. Here, we show that the bimolecular split-green fluorescent protein complementation system can overcome this limitation and can be used to determine the location of both the N- and C-termini of inner membrane proteins in Escherichia coli.......A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structurefunction relationships. Although these maps...... can be predicted directly from amino acid sequence, the predictions are more accurate if combined with experimental data, which are usually obtained by fusing a reporter protein to the C-terminus of the protein. However, as reporter proteins are large, they cannot be used to report on the cytoplasmic...

  11. Cloning and characterization of human liver cDNA encoding a protein S precursor

    International Nuclear Information System (INIS)

    Hoskins, J.; Norman, D.K.; Beckmann, R.J.; Long, G.L.

    1987-01-01

    Human liver cDNA encoding a protein S precursor was isolated from two cDNA libraries by two different techniques. Based upon the frequency of positive clones, the abundance of mRNA for protein S is ≅ 0.01%. Blot hybridization of electrophoretically fractionated poly(A) + RNA revealed a major mRNA ≅ 4 kilobases long and two minor forms of ≅ 3.1 and ≅ 2.6 kilobases. One of the cDNA clones contains a segment encoding a 676 amino acid protein S precursor, as well as 108 and 1132 nucleotides of 5' and 3' noncoding sequence, respectively, plus a poly(A) region at the 3' end. The cDNAs are adenosine plus thymidine-rich (60%) except for the 5' noncoding region, where 78% of the nucleotides are guanosine or cytosine. The protein precursor consists of a 41 amino acid leader peptide followed by 635 amino acids corresponding to mature protein S. Comparison of the mature protein region with homologous vitamin K-dependent plasma proteins shows that it is composed of the following domains: an amino-terminal γ-carboxyglutamic acid-rich region of 37 amino acids; a 36 amino acid linker region rich in hydroxy amino acids; four epidermal growth factor-like segments, each ≅ 45 amino acids long; and a 387 amino acid carboxyl-terminal domain of unrecognized structure and unknown function

  12. Heterologous expression of membrane proteins: choosing the appropriate host.

    Directory of Open Access Journals (Sweden)

    Florent Bernaudat

    Full Text Available BACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals, functions (transporters, receptors, enzymes and topologies (between 0 and 13 transmembrane segments. The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.

  13. Evidence of electroconformational changes in membrane proteins: field-induced reductions in intra membrane nonlinear charge movement currents.

    Science.gov (United States)

    Chen, Wei

    2004-06-01

    Experimental results are presented to show that a pulsed, intensive membrane potential can reduce intra membrane, nonlinear charge movement currents, which are the voltage-sensors in the voltage-dependent membrane proteins and in the excitation-contraction coupling of skeletal muscle fibers. The results indicate a possible mechanism involved in electrical injury: dysfunctions of the voltage-dependent membrane proteins caused by electroconformational damages in their voltage-sensors.

  14. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    Science.gov (United States)

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  15. Generation of H9 T-cells stably expressing a membrane-bound form of the cytoplasmic tail of the Env-glycoprotein: lack of transcomplementation of defective HIV-1 virions encoding C-terminally truncated Env

    Directory of Open Access Journals (Sweden)

    Bosch Valerie

    2006-05-01

    Full Text Available Abstract H9-T-cells do not support the replication of mutant HIV-1 encoding Env protein lacking its long cytoplasmic C-terminal domain (Env-CT. Here we describe the generation of a H9-T-cell population constitutively expressing the HIV-1 Env-CT protein domain anchored in the cellular membrane by it homologous membrane-spanning domain (TMD. We confirmed that the Env-TMD-CT protein was associated with cellular membranes, that its expression did not have any obvious cytotoxic effects on the cells and that it did not affect wild-type HIV-1 replication. However, as measured in both a single-round assay as well as in spreading infections, replication competence of mutant pNL-Tr712, lacking the Env-CT, was not restored in this H9 T-cell population. This means that the Env-CT per se cannot transcomplement the replication block of HIV-1 virions encoding C-terminally truncated Env proteins and suggests that the Env-CT likely exerts its function only in the context of the complete Env protein.

  16. Deoxycholate-Based Glycosides (DCGs) for Membrane Protein Stabilisation

    DEFF Research Database (Denmark)

    Bae, Hyoung Eun; Gotfryd, Kamil; Thomas, Jennifer

    2015-01-01

    reported deoxycholate-based N-oxides (DCAOs). Membrane proteins in these agents, particularly the branched diglucoside-bearing amphiphiles DCG-1 and DCG-2, displayed favourable behaviour compared to previously reported parent compounds (DCAOs) and conventional detergents (LDAO and DDM). Given...

  17. Protein receptor-independent plasma membrane remodeling by HAMLET

    DEFF Research Database (Denmark)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.

    2015-01-01

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This "protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in sig...

  18. Salinity induced changes in cell membrane stability, protein and ...

    African Journals Online (AJOL)

    control), 4.7, 9.4 and 14.1 dS m-1 to determine the effect of salt on vegetative growth, relative water content, cell membrane stability, protein and RNA contents in sand culture experiment. Fresh and dry weights of plants, shoots and roots decreased ...

  19. Identification of a hypothetical membrane protein interactor of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 29; Issue 1. Identification of a hypothetical membrane protein interactor of ribosomal phosphoprotein P0. K Aruna Tirtha Chakraborty Savithri Nambeesan Abdul Baru Mannan Alfica Sehgal Seema R Bhalchandra Shobhona Sharma. Articles Volume 29 Issue 1 March 2004 ...

  20. How curved membranes recruit amphipathic helices and protein anchoring motifs

    DEFF Research Database (Denmark)

    Hatzakis, Nikos; Bhatia, Vikram Kjøller; Larsen, Jannik

    2009-01-01

    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing...

  1. Structural investigation of membrane proteins by electron microscopy

    NARCIS (Netherlands)

    Moscicka, Katarzyna Beata

    2009-01-01

    Biological membranes are vital components of all living systems, forming the boundaries of cells and their organelles. They consist of a lipid bilayer and embedded proteins, which are nanomachines that fulfill key functions such as energy conversion, solute transport, secretion, and signal

  2. Processing of Chlamydia abortus polymorphic membrane protein 18D during the chlamydial developmental cycle.

    Science.gov (United States)

    Wheelhouse, Nick M; Sait, Michelle; Aitchison, Kevin; Livingstone, Morag; Wright, Frank; McLean, Kevin; Inglis, Neil F; Smith, David G E; Longbottom, David

    2012-01-01

    Chlamydia possess a unique family of autotransporter proteins known as the Polymorphic membrane proteins (Pmps). While the total number of pmp genes varies between Chlamydia species, all encode a single pmpD gene. In both Chlamydia trachomatis (C. trachomatis) and C. pneumoniae, the PmpD protein is proteolytically cleaved on the cell surface. The current study was carried out to determine the cleavage patterns of the PmpD protein in the animal pathogen C. abortus (termed Pmp18D). Using antibodies directed against different regions of Pmp18D, proteomic techniques revealed that the mature protein was cleaved on the cell surface, resulting in a100 kDa N-terminal product and a 60 kDa carboxy-terminal protein. The N-terminal protein was further processed into 84, 76 and 73 kDa products. Clustering analysis resolved PmpD proteins into three distinct clades with C. abortus Pmp18D, being most similar to those originating from C. psittaci, C. felis and C. caviae. This study indicates that C. abortus Pmp18D is proteolytically processed at the cell surface similar to the proteins of C. trachomatis and C. pneumoniae. However, patterns of cleavage are species-specific, with low sequence conservation of PmpD across the genus. The absence of conserved domains indicates that the function of the PmpD molecule in chlamydia remains to be elucidated.

  3. Processing of Chlamydia abortus polymorphic membrane protein 18D during the chlamydial developmental cycle.

    Directory of Open Access Journals (Sweden)

    Nick M Wheelhouse

    Full Text Available Chlamydia possess a unique family of autotransporter proteins known as the Polymorphic membrane proteins (Pmps. While the total number of pmp genes varies between Chlamydia species, all encode a single pmpD gene. In both Chlamydia trachomatis (C. trachomatis and C. pneumoniae, the PmpD protein is proteolytically cleaved on the cell surface. The current study was carried out to determine the cleavage patterns of the PmpD protein in the animal pathogen C. abortus (termed Pmp18D.Using antibodies directed against different regions of Pmp18D, proteomic techniques revealed that the mature protein was cleaved on the cell surface, resulting in a100 kDa N-terminal product and a 60 kDa carboxy-terminal protein. The N-terminal protein was further processed into 84, 76 and 73 kDa products. Clustering analysis resolved PmpD proteins into three distinct clades with C. abortus Pmp18D, being most similar to those originating from C. psittaci, C. felis and C. caviae.This study indicates that C. abortus Pmp18D is proteolytically processed at the cell surface similar to the proteins of C. trachomatis and C. pneumoniae. However, patterns of cleavage are species-specific, with low sequence conservation of PmpD across the genus. The absence of conserved domains indicates that the function of the PmpD molecule in chlamydia remains to be elucidated.

  4. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    Science.gov (United States)

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  5. Polypeptide structure and encoding location of the adenovirus serotype 2 late, nonstructural 33K protein

    International Nuclear Information System (INIS)

    Oosterom-Dragon, E.A.; Anderson, C.W.

    1983-01-01

    Radiochemical microsequence analysis of selected tryptic peptides of the adenovirus type 2 33K nonstructural protein has revealed the precise region of the genomic nucleotide sequence that encodes this protein. The initiation codon for the 33K protein lies 606 nucleotides to the right of the EcoRI restriction site at 70.7 map units and 281 nucleotides to the left of the postulated carboxyterminal codon of the adenovirus 100K protein. The coding regions for these two proteins thus overlap; however, the 33K protein is derived from the +1 frame with respect to the postulated 100K reading frame. Our results contradict an earlier published report suggesting that these two proteins share extensive amino acid sequence homology. The published nucleotide sequence of the Ad2 EcoRI-F fragment (70.7 to 75.9 map units) cannot accomodate in a single reading frame the peptide sequences of the 33K protein that we have determined. Sequence analysis of DNA fragments derived from virus has confirmed the published nucleotide sequence in all critical regions with respect to the coding region for the 33K protein. Consequently, our data are only consistent with the existence of an mRNA splice within the coding for 33K. Consensus donor and acceptor splice sequences have been located that would predict the removal of 202 nucleotides from the transcripts for the 33K protein. Removal of these nucleotides would explain the structure of a peptide that cannot otherwise be directly encoded by the EcoRI-F fragment. Identification of the precise splice points by peptide sequencing has permitted a prediction of the complete amino acid sequence for the 33K protein

  6. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  7. The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms.

    Science.gov (United States)

    Jauch, Eike; Wecklein, Heike; Stark, Felix; Jauch, Mandy; Raabe, Thomas

    2006-06-07

    Genes encoding for the two evolutionary highly conserved subunits of a heterotetrameric protein kinase CK2 holoenzyme are present in all examined eukaryotic genomes. Depending on the organism, multiple transcription units encoding for a catalytically active CK2alpha subunit and/or a regulatory CK2beta subunit may exist. The phosphotransferase activity of members of the protein kinase CK2alpha family is thought to be independent of second messengers but is modulated by interaction with CK2beta-like proteins. In the genome of Drosophila melanogaster, one gene encoding for a CK2alpha subunit and three genes encoding for CK2beta-like proteins are present. The X-linked DmCK2beta transcription unit encodes for several CK2beta protein isoforms due to alternative splicing of its primary transcript. We addressed the question whether CK2beta-like proteins are redundant in function. Our in vivo experiments show that variations of the very C-terminal tail of CK2beta isoforms encoded by the X-linked DmCK2beta transcription unit influence their functional properties. In addition, we find that CK2beta-like proteins encoded by the autosomal D. melanogaster genes CK2betates and CK2beta' cannot fully substitute for a loss of CK2beta isoforms encoded by DmCK2beta.

  8. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Silica nanoparticles for the oriented encapsulation of membrane proteins into artificial bilayer lipid membranes.

    Science.gov (United States)

    Schadauer, Florian; Geiss, Andreas F; Srajer, Johannes; Siebenhofer, Bernhard; Frank, Pinar; Reiner-Rozman, Ciril; Ludwig, Bernd; Richter, Oliver-M H; Nowak, Christoph; Naumann, Renate L C

    2015-03-03

    An artificial bilayer lipid membrane system is presented, featuring the oriented encapsulation of membrane proteins in a functionally active form. Nickel nitrilo-triacetic acid-functionalized silica nanoparticles, of a diameter of around 25 nm, are used to attach the proteins via a genetically engineered histidine tag in a uniform orientation. Subsequently, the proteins are reconstituted within a phospholipid bilayer, formed around the particles by in situ dialysis to form so-called proteo-lipobeads (PLBs). With a final size of about 50 nm, the PLBs can be employed for UV/vis spectroscopy studies, particularly of multiredox center proteins, because the effects of light scattering are negligible. As a proof of concept, we use cytochrome c oxidase (CcO) from P. denitrificans with the his tag genetically engineered to subunit I. In this orientation, the P side of CcO is directed to the outside and hence electron transfer can be initiated by reduced cytochrome c (cc). UV/vis measurements are used in order to determine the occupancy by CcO molecules encapsulated in the lipid bilayer as well as the kinetics of electron transfer between CcO and cc. The kinetic data are analyzed in terms of the Michaelis-Menten kinetics showing that the turnover rate of CcO is significantly decreased compared to that of solubilized protein, whereas the binding characteristics are improved. The data demonstrate the suitability of PLBs for functional cell-free bioassays of membrane proteins.

  10. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea

    Science.gov (United States)

    Clergeot, Pierre-Henri; Gourgues, Mathieu; Cots, Joaquim; Laurans, F.; Latorse, Marie-Pascale; Pépin, Régis; Tharreau, Didier; Notteghem, Jean-Loup; Lebrun, Marc-Henri

    2001-01-01

    We describe in this study punchless, a nonpathogenic mutant from the rice blast fungus M. grisea, obtained by plasmid-mediated insertional mutagenesis. As do most fungal plant pathogens, M. grisea differentiates an infection structure specialized for host penetration called the appressorium. We show that punchless differentiates appressoria that fail to breach either the leaf epidermis or artificial membranes such as cellophane. Cytological analysis of punchless appressoria shows that they have a cellular structure, turgor, and glycogen content similar to those of wild type before penetration, but that they are unable to differentiate penetration pegs. The inactivated gene, PLS1, encodes a putative integral membrane protein of 225 aa (Pls1p). A functional Pls1p-green fluorescent protein fusion protein was detected only in appressoria and was localized in plasma membranes and vacuoles. Pls1p is structurally related to the tetraspanin family. In animals, these proteins are components of membrane signaling complexes controlling cell differentiation, motility, and adhesion. We conclude that PLS1 controls an appressorial function essential for the penetration of the fungus into host leaves. PMID:11391010

  11. Stochastic lattice model of synaptic membrane protein domains

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  12. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  13. Surfactant Protein-D-Encoding Gene Variant Polymorphisms Are Linked to Respiratory Outcome in Premature Infants

    DEFF Research Database (Denmark)

    Sorensen, Grith Lykke; Dahl, Marianne; Tan, Qihua

    2014-01-01

    OBJECTIVE: Associations between the genetic variation within or downstream of the surfactant protein-D-encoding gene (SFTPD), which encodes the collectin surfactant protein-D (SP-D) and may lead to respiratory distress syndrome or bronchopulmonary dysplasia, recently were reported. Our aim...... were used to associate genetic variation to SP-D, respiratory distress (RD), oxygen requirement, and respiratory support. RESULTS: The 5'-upstream SFTPD SNP rs1923534 and the 3 structural SNPs rs721917, rs2243639, and rs3088308 were associated with the SP-D level. The same SNPs were associated with RD......, a requirement for supplemental oxygen, and a requirement for respiratory support. Haplotype analyses identified 3 haplotypes that included the minor alleles of rs1923534, rs721917, and rs3088308 that exhibited highly significant associations with decreased SP-D levels and decreased ORs for RD, oxygen...

  14. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  15. Bactofection of sequences encoding a Bax protein peptide chemosensitizes prostate cancer tumor cells.

    Science.gov (United States)

    Hernández-Luna, Marco Antonio; Díaz de León-Ortega, Ricardo; Hernández-Cueto, Daniel Dimitri; Gaxiola-Centeno, Ricardo; Castro-Luna, Raúl; Martínez-Cristóbal, Leonel; Huerta-Yépez, Sara; Luria-Pérez, Rosendo

    Tumor cell resistance to chemotherapy agents is one of the main problems in the eradication of different neoplasias. One of the mechanisms of this process is the overexpression of anti-apoptotic proteins such as Bcl-2 and Bcl- XL ; blocking the activity of these proteins may contribute to the sensitization of tumor cells and allow the adequate effects of chemotherapeutic drugs. This study adressed the transfection of prostate cancer cells (PC3) with a plasmid encoding a recombinant protein with an antagonist peptide from the BH3 region of the Bax protein fused to the GFP reporter protein (BaxGFP). This protein induced apoptosis of these tumor cells; further, selective transport of this plasmid to the tumor cell with Salmonella enterica serovar Typhimurium (strain SL3261), a live-attenuated bacterial vector, can induce sensitization of the tumor cell to the action of drugs such as cisplatin, through a process known as bactofection. These results suggest that Salmonella enterica can be used as a carrier vector of nucleotide sequences encoding heterologous molecules used in antitumor therapy. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  16. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  17. SHY1, the yeast homolog of the mammalian SURF-1 gene, encodes a mitochondrial protein required for respiration.

    Science.gov (United States)

    Mashkevich, G; Repetto, B; Glerum, D M; Jin, C; Tzagoloff, A

    1997-05-30

    C173 and W125 are pet mutants of Saccharomyces cerevisiae, partially deficient in cytochrome oxidase but with elevated concentrations of cytochrome c. Assays of electron transport chain enzymes indicate that the mutations exert different effects on the terminal respiratory pathway, including an inefficient transfer of electrons between the bc1 and the cytochrome oxidase complexes. A cloned gene capable of restoring respiration in C173/U1 and W125 is identical to reading frame YGR112w of yeast chromosome VII (GenBank Z72897Z72897). The encoded protein is homologous to the product of the mammalian SURF-1 gene. In view of the homology, the yeast gene has been designated SHY1 (Surf Homolog of Yeast). An antibody against the carboxyl-terminal half of Shy1p has been used to localize the protein in the inner mitochondrial membrane. Deletion of part of SHY1 produces a phenotype similar to that of G91 mutants. Disruption of SHY1 at a BamHI site, located approximately 2/3 of the way into the gene, has no obvious phenotypic consequence. This evidence, together with the ability of a carboxyl-terminal coding sequence starting from the BamHI site to complement a shy1 mutant, suggests that the Shy1p contains two domains that can be separately expressed to form a functional protein.

  18. Centromere pairing by a plasmid-encoded type I ParB protein

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Löwe, Jan; Gerdes, Kenn

    2007-01-01

    The par2 locus of Escherichia coli plasmid pB171 encodes two trans-acting proteins, ParA and ParB, and two cis-acting sites, parC1 and parC2, to which ParB binds cooperatively. ParA is related to MinD and oscillates in helical structures and thereby positions ParB/parC-carrying plasmids regularly...

  19. CRC 1114 - Report Membrane Deformation by N-BAR Proteins: Extraction of membrane geometry and protein diffusion characteristics from MD simulations

    OpenAIRE

    Peters, Jan Henning; Gräser, Carsten; Klein, Rupert

    2017-01-01

    We describe simulations of Proteins and artificial pseudo-molecules interacting and shaping lipid bilayer membranes. We extract protein diffusion Parameters, membrane deformation profiles and the elastic properties of the used membrane models in preparation of calculations based on a large scale continuum model.

  20. Green fluorescent protein-based expression screening of membrane proteins in Escherichia coli.

    Science.gov (United States)

    Bird, Louise E; Rada, Heather; Verma, Anil; Gasper, Raphael; Birch, James; Jennions, Matthew; Lӧwe, Jan; Moraes, Isabel; Owens, Raymond J

    2015-01-06

    The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.

  1. Methods of reconstitution to investigate membrane protein function.

    Science.gov (United States)

    Skrzypek, Ruth; Iqbal, Shagufta; Callaghan, Richard

    2018-02-16

    Membrane proteins are notoriously difficult to investigate in isolation. The focus of this chapter is the key step following extraction and purification of membrane proteins; namely reconstitution. The process of reconstitution re-inserts proteins into a lipid bilayer that partly resembles their native environment. This native environment is vital to the stability of membrane proteins, ensuring that they undergo vital conformational transitions and maintain optimal interaction with their substrates. Reconstitution may take many forms and these have been classified into two broad categories. Symmetric systems enable unfettered access to both sides of a bilayer. Compartment containing systems contain a lumen and are ideally suited to measurement of transport processes. The investigator is encouraged to ascertain what aspects of protein function will be undertaken and to apply the most advantageous reconstitution system or systems. It is important to note that the process of reconstitution is not subject to defined protocols and requires empirical optimisation to specific targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Transport of Proteins Dissolved in Organic Solvents Across Biomimetic Membranes

    Science.gov (United States)

    Bromberg, Lev E.; Klibanov, Alexander M.

    1995-02-01

    Using lipid-impregnated porous cellulose membranes as biomimetic barriers, we tested the hypothesis that to afford effective transmembrane transfer of proteins and nucleic acids, the vehicle solvent should be able to dissolve both the biopolymers and the lipids. While the majority of solvents dissolve one or the other, ethanol and methanol were found to dissolve both, especially if the protein had been lyophilized from an aqueous solution of a pH remote from the protein's isoelectric point. A number of proteins, as well as RNA and DNA, dissolved in these alcohols readily crossed the lipidized membranes, whereas the same biopolymers placed in nondissolving solvents (e.g., hexane and ethyl acetate) or in those unable to dissolve lipids (e.g., water and dimethyl sulfoxide) exhibited little transmembrane transport. The solubility of biopolymers in ethanol and methanol was further enhanced by complexation with detergents and poly(ethylene glycol); significant protein and nucleic acid transport through the lipidized membranes was observed from these solvents but not from water.

  3. A family of related proteins is encoded by the major Drosophila heat shock gene family

    International Nuclear Information System (INIS)

    Wadsworth, S.C.

    1982-01-01

    At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites

  4. Probing protein-lipid interactions by FRET between membrane fluorophores

    Science.gov (United States)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  5. Bcl-2 apoptosis proteins, mitochondrial membrane curvature, and cancer

    Science.gov (United States)

    Hwee Lai, Ghee; Schmidt, Nathan; Sanders, Lori; Mishra, Abhijit; Wong, Gerard; Ivashyna, Olena; Christenson, Eric; Schlesinger, Paul; Akabori, Kiyotaka; Santangelo, Christian

    2012-02-01

    Critical interactions between Bcl-2 family proteins permeabilize the outer mitochondrial membrane, a common decision point early in the intrinsic apoptotic pathway that irreversibly commits the cell to death. However, a unified picture integrating the essential non-passive role of lipid membranes with the contested dynamics of Bcl-2 regulation remains unresolved. Correlating results between synchrotron x-ray diffraction and microscopy in cell-free assays, we report activation of pro-apoptotic Bax induces strong pure negative Gaussian membrane curvature topologically necessary for pore formation and membrane remodeling events. Strikingly, Bcl-xL suppresses not only Bax-induced pore formation, but also membrane remodeling by disparate systems including cell penetrating, antimicrobial or viral fusion peptides, and bacterial toxin, none of which have BH3 allosteric domains to mediate direct binding. We propose a parallel mode of Bcl-2 pore regulation in which Bax and Bcl-xL induce antagonistic and mutually interacting Gaussian membrane curvatures. The universal nature of curvature-mediated interactions allows synergy with direct binding mechanisms, and potentially accounts for the Bcl-2 family modulation of mitochondrial fission/fusion dynamics.

  6. The impact of physiological crowding on the diffusivity of membrane bound proteins.

    Science.gov (United States)

    Houser, Justin R; Busch, David J; Bell, David R; Li, Brian; Ren, Pengyu; Stachowiak, Jeanne C

    2016-02-21

    Diffusion of transmembrane and peripheral membrane-bound proteins within the crowded cellular membrane environment is essential to diverse biological processes including cellular signaling, endocytosis, and motility. Nonetheless we presently lack a detailed understanding of the influence of physiological levels of crowding on membrane protein diffusion. Utilizing quantitative in vitro measurements, here we demonstrate that the diffusivities of membrane bound proteins follow a single linearly decreasing trend with increasing membrane coverage by proteins. This trend holds for homogenous protein populations across a range of protein sizes and for heterogeneous mixtures of proteins of different sizes, such that protein diffusivity is controlled by the total coverage of the surrounding membrane. These results demonstrate that steric exclusion within the crowded membrane environment can fundamentally limit the diffusive rate of proteins, regardless of their size. In cells this "speed limit" could be modulated by changes in local membrane coverage, providing a mechanism for tuning the rate of molecular interaction and assembly.

  7. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex

    DEFF Research Database (Denmark)

    Mygind, Per H; Christiansen, Gunna; Roepstorff, P

    2000-01-01

    The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. By....... By silver staining of the protein profile, a major protein doublet of 100-110 kDa was detected. In-gel tryptic digestion and matrix-assisted laser desorption/ionization mass spectrometry identified these proteins as the putative outer membrane proteins PmpG and PmpH....

  8. Infrared spectroscopic study of photoreceptor membrane and purple membrane. Protein secondary structure and hydrogen deuterium exchange

    International Nuclear Information System (INIS)

    Downer, N.W.; Bruchman, T.J.; Hazzard, J.H.

    1986-01-01

    Infrared spectroscopy in the interval from 1800 to 1300 cm-1 has been used to investigate the secondary structure and the hydrogen/deuterium exchange behavior of bacteriorhodopsin and bovine rhodopsin in their respective native membranes. The amide I' and amide II' regions from spectra of membrane suspensions in D2O were decomposed into constituent bands by use of a curve-fitting procedure. The amide I' bands could be fit with a minimum of three theoretical components having peak positions at 1664, 1638, and 1625 cm-1 for bacteriorhodopsin and 1657, 1639, and 1625 cm-1 for rhodopsin. For both of these membrane proteins, the amide I' spectrum suggests that alpha-helix is the predominant form of peptide chain secondary structure, but that a substantial amount of beta-sheet conformation is present as well. The shape of the amide I' band was pH-sensitive for photoreceptor membranes, but not for purple membrane, indicating that membrane-bound rhodopsin undergoes a conformation change at acidic pH. Peptide hydrogen exchange of bacteriorhodopsin and rhodopsin was monitored by observing the change in the ratio of integrated absorbance (Aamide II'/Aamide I') during the interval from 1.5 to 25 h after membranes were introduced into buffered D2O. The fraction of peptide groups in a very slowly exchanging secondary structure was estimated to be 0.71 for bacteriorhodopsin at pD 7. The corresponding fraction in vertebrate rhodopsin was estimated to be less than or equal to 0.60. These findings are discussed in relationship to previous studies of hydrogen exchange behavior and to structural models for both proteins

  9. A macrophage inflammatory protein homolog encoded by guinea pig cytomegalovirus signals via CC chemokine receptor 1

    International Nuclear Information System (INIS)

    Penfold, Mark; Miao Zhenhua; Wang Yu; Haggerty, Shannon; Schleiss, Mark R.

    2003-01-01

    Cytomegaloviruses encode homologs of cellular immune effector proteins, including chemokines (CKs) and CK receptor-like G protein-coupled receptors (GPCRs). Sequence of the guinea pig cytomegalovirus (GPCMV) genome identified an open reading frame (ORF) which predicted a 101 amino acid (aa) protein with homology to the macrophage inflammatory protein (MIP) subfamily of CC (β) CKs, designated GPCMV-MIP. To assess functionality of this CK, recombinant GPCMV-MIP was expressed in HEK293 cells and assayed for its ability to bind to and functionally interact with a variety of GPCRs. Specific signaling was observed with the hCCR1 receptor, which could be blocked with hMIP -1α in competition experiments. Migration assays revealed that GPCMV-MIP was able to induce chemotaxis in hCCR1-L1.2 cells. Antisera raised against a GST-MIP fusion protein immunoprecipitated species of ∼12 and 10 kDa from GPCMV-inoculated tissue culture lysates, and convalescent antiserum from GPCMV-infected animals was immunoreactive with GST-MIP by ELISA assay. These results represent the first substantive in vitro characterization of a functional CC CK encoded by a cytomegalovirus

  10. Quantification of functional dynamics of membrane proteins reconstituted in nanodiscs membranes by single turnover functional readout

    DEFF Research Database (Denmark)

    Moses, Matias Emil; Hedegård, Per; Hatzakis, Nikos

    2016-01-01

    Single-molecule measurements are emerging as a powerful tool to study the individual behavior of biomolecules, revolutionizing our understanding of biological processes. Their ability to measure the distribution of behaviors, instead of the average behavior, allows the direct observation and quan......Single-molecule measurements are emerging as a powerful tool to study the individual behavior of biomolecules, revolutionizing our understanding of biological processes. Their ability to measure the distribution of behaviors, instead of the average behavior, allows the direct observation...... and quantification of the activity, abundance, and lifetime of multiple states and transient intermediates in the energy landscape that are typically averaged out in nonsynchronized ensemble measurements. Studying the function of membrane proteins at the single-molecule level remains a formidable challenge......, and to date there is limited number of available functional assays. In this chapter, we describe in detail our recently developed methodology to reconstitute membrane proteins such as the integral membrane protein cytochrome P450 oxidoreductase on membrane systems such as Nanodiscs and study their functional...

  11. The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins

    Directory of Open Access Journals (Sweden)

    Cristian Oliver

    2017-09-01

    Full Text Available Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.

  12. The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus)

    Science.gov (United States)

    Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.

    2016-06-01

    Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.

  13. Accessible Mannitol-Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation

    DEFF Research Database (Denmark)

    Hussain, Hazrat; Du, Yang; Scull, Nicola J.

    2016-01-01

    Integral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent...

  14. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Du, Yang; Scull, Nicola J

    2015-01-01

    Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions. Conv...

  15. An approach to membrane protein structure without crystals

    Science.gov (United States)

    Sorgen, Paul L.; Hu, Yonglin; Guan, Lan; Kaback, H. Ronald; Girvin, Mark E.

    2002-01-01

    The lactose permease of Escherichia coli catalyzes coupled translocation of galactosides and H+ across the cell membrane. It is the best-characterized member of the Major Facilitator Superfamily, a related group of membrane proteins with 12 transmembrane domains that mediate transport of various substrates across cell membranes. Despite decades of effort and their functional importance in all kingdoms of life, no high-resolution structures have been solved for any member of this family. However, extensive biochemical, genetic, and biophysical studies on lactose permease have established its transmembrane topology, secondary structure, and numerous interhelical contacts. Here we demonstrate that this information is sufficient to calculate a structural model at the level of helix packing or better. PMID:12391320

  16. Computational Approaches for Designing Protein/Inhibitor Complexes and Membrane Protein Variants

    Science.gov (United States)

    Vijayendran, Krishna Gajan

    Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves several scientific disciplines (i.e. genomics, cell biology, x-ray crystallography, chemistry, computer science, statistics), with each discipline focusing on a particular aspect of the process. In this thesis, I use computational and experimental approaches to explore the most fundamental aspect of drug discovery: the molecular interactions of small-molecules inhibitors with proteins. In Part I (Chapters I and II), I describe how computational docking approaches can be used to identify structurally diverse molecules that can inhibit multiple protein targets in the brain. I illustrate this approach using the examples of microtubule-stabilizing agents and inhibitors of cyclooxygenase(COX)-I and 5-lipoxygenase (5-LOX). In Part II (Chapters III and IV), I focus on membrane proteins, which are notoriously difficult to work with due to their low natural abundances, low yields for heterologous over expression, and propensities toward aggregation. I describe a general approach for designing water-soluble variants of membrane proteins, for the purpose of developing cell-free, label-free, detergent-free, solution-phase studies of protein structure and small-molecule binding. I illustrate this approach through the design of a water-soluble variant of the membrane protein Smoothened, wsSMO. This wsSMO stands to serve as a first-step towards developing membrane protein analogs of this important signaling protein and drug target.

  17. Major proteins of the goat milk fat globule membrane.

    Science.gov (United States)

    Cebo, C; Caillat, H; Bouvier, F; Martin, P

    2010-03-01

    Fat is present in milk as droplets of triglycerides surrounded by a complex membrane derived from the mammary epithelial cell called milk fat globule membrane (MFGM). Although numerous studies have been published on human or bovine MFGM proteins, to date few studies exist on MFGM proteins from goat milk. The objective of this study was thus to investigate the protein composition of the goat MFGM. Milk fat globule membrane proteins from goat milk were separated by 6% and 10% sodium dodecyl sulfate-PAGE and were Coomassie or periodic acid-Schiff stained. Most of MFGM proteins [mucin-1, fatty acid synthase, xanthine oxidase, butyrophilin, lactadherin (MFG EGF-8, MFG-E8), and adipophilin] already described in cow milk were identified in goat milk using peptide mass fingerprinting. In addition, lectin staining provided a preliminary characterization of carbohydrate structures occurring on MFGM proteins from goat milk depending on alpha(S1)-casein genotype and lactation stage. We provide here first evidence of the presence of O-glycans on fatty acid synthase and xanthine oxidase from goat milk. A prominent difference between the cow and the goat species was demonstrated for lactadherin. Indeed, whereas 2 polypeptide chains were easily identified by peptide mass fingerprinting matrix-assisted laser desorption/ionization-time of flight analysis within bovine MFGM proteins, lactadherin from goat milk consisted of a single polypeptide chain. Another striking observation was the presence of caseins associated with MFGM preparations from goat milk, whereas virtually no caseins were found in MFGM extracts from bovine milk. Taken together, these observations strongly support the existence of a singular secretion mode previously hypothesized in the goat.

  18. The E. coli Single Protein Production (cSPP) System for Production and Structural Analysis of Membrane Proteins

    OpenAIRE

    Mao, Lili; Vaiphei, S. Thangminlal; Shimazu, Tsutomu; Schneider, William M.; Tang, Yuefeng; Mani, Rajeswari; Roth, Monica J.; Montelione, Gaetano T.; Inouye, Masayori

    2009-01-01

    At present, only 0.9% of PDB-deposited structures are of membrane proteins in spite of the fact that membrane proteins constitute approximately 30% of total proteins in most genomes from bacteria to humans. Here we address some of the major bottlenecks in the structural studies of membrane proteins and discuss the ability of the new technology, the Single-Protein Production (SPP) system, to help solve these bottlenecks.

  19. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Rioux

    2010-02-01

    Full Text Available Magnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour. A large genomic island, conserved among magnetotactic bacteria, contains the genes potentially involved in magnetosome formation. One of the genes, mamK has been described as encoding a prokaryotic actin-like protein which when it polymerizes forms in the cytoplasm filamentous structures that provide the scaffold for magnetosome alignment. Here, we have identified a series of genes highly similar to the mam genes in the genome of Magnetospirillum magneticum AMB-1. The newly annotated genes are clustered in a genomic islet distinct and distant from the known magnetosome genomic island and most probably acquired by lateral gene transfer rather than duplication. We focused on a mamK-like gene whose product shares 54.5% identity with the actin-like MamK. Filament bundles of polymerized MamK-like protein were observed in vitro with electron microscopy and in vivo in E. coli cells expressing MamK-like-Venus fusions by fluorescence microscopy. In addition, we demonstrate that mamK-like is transcribed in AMB-1 wild-type and DeltamamK mutant cells and that the actin-like filamentous structures observed in the DeltamamK strain are probably MamK-like polymers. Thus MamK-like is a new member of the prokaryotic actin-like family. This is the first evidence of a functional mam gene encoded outside the magnetosome genomic island.

  20. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The impact of hemodialysis on erythrocyte membrane cytoskeleton proteins

    Directory of Open Access Journals (Sweden)

    Maria Olszewska

    2015-02-01

    Full Text Available Background: Hemodialysis (HD is one of the methods of renal replacement therapy, but it also contributes to an increase in oxidative stress. Hemodialysis leads to changes in the erythrocyte cytoskeleton structure, whilst the presence of glucose in the dialysis fluid which activates the pentose phosphate pathway contributes to the intensification of oxidative stress. Available literature lacks reports on the effect of glucose in the dialytic fluid on the composition of proteins of the cell membrane cytoskeleton.Material/Methods: Red blood cells for this analysis were collected from patients with chronic renal failure treated with hemodialysis using both glucose-containing and glucose-free dialysis fluid. Following the preparation of membranes, the electrophoretic separation of proteins was performed in denaturing conditions according to Laemmli. The level of tryptophan in membranes was determined by spectrofluorimetry, whilst the activity of glucose-6-phosphate dehydrogenase was determined by measuring the reduction of oxidated NADP.Results: Hemodialysis in both groups of patients resulted in a statistically significant reduction of tryptophan as an oxidative stress indicator when compared to the control group. Moreover, the activity of glucose-6-phosphate dehydrogenase in the group of patients was higher than in the control group, and following the HD procedure it decreased, which may have been caused by a reduced concentration of dialyzed glucose. The HD procedure affects the structure of the erythrocyte membrane cytoskeleton, which is reflected in the concentration changes in individual proteins and in their mutual relationships corresponding to vertical and horizontal interactions stabilizing the structure of the erythrocyte membrane cytoskeleton. These changes may contribute to the shortening of cell lifespan.

  2. Disrupted yeast mitochondria can import precursor proteins directly through their inner membrane

    OpenAIRE

    1989-01-01

    Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free ...

  3. Alterations in membrane protein-profile during cold treatment of alfalfa

    International Nuclear Information System (INIS)

    Mohapatra, S.S.; Poole, R.J.; Dhindsa, R.S.

    1988-01-01

    Changes in pattern of membrane proteins during cold acclimation of alfalfa have been examined. Cold acclimation for 2 to 3 days increases membrane protein content. Labeling of membrane proteins in vivo with [ 35 S]methionine indicates increases in the rate of incorporation as acclimation progresses. Cold acclimation induces the synthesis of about 10 new polypeptides as shown by SDS-PAGE and fluorography of membrane proteins labeled in vivo

  4. NOF1 encodes an Arabidopsis protein involved in the control of rRNA expression.

    Directory of Open Access Journals (Sweden)

    Erwana Harscoët

    Full Text Available The control of ribosomal RNA biogenesis is essential for the regulation of protein synthesis in eukaryotic cells. Here, we report the characterization of NOF1 that encodes a putative nucleolar protein involved in the control of rRNA expression in Arabidopsis. The gene has been isolated by T-DNA tagging and its function verified by the characterization of a second allele and genetic complementation of the mutants. The nof1 mutants are affected in female gametogenesis and embryo development. This result is consistent with the detection of NOF1 mRNA in all tissues throughout plant life's cycle, and preferentially in differentiating cells. Interestingly, the closely related proteins from zebra fish and yeast are also necessary for cell division and differentiation. We showed that the nof1-1 mutant displays higher rRNA expression and hypomethylation of rRNA promoter. Taken together, the results presented here demonstrated that NOF1 is an Arabidopsis gene involved in the control of rRNA expression, and suggested that it encodes a putative nucleolar protein, the function of which may be conserved in eukaryotes.

  5. Artificial membranes with selective nanochannels for protein transport

    KAUST Repository

    Sutisna, B.

    2016-09-05

    A poly(styrene-b-tert-butoxystyrene-b-styrene) copolymer was synthesized by anionic polymerization and hydrolyzed to poly(styrene-b-4-hydroxystyrene-b-styrene). Lamellar morphology was confirmed in the bulk after annealing. Membranes were fabricated by self-assembly of the hydrolyzed copolymer in solution, followed by water induced phase separation. A high density of pores of 4 to 5 nm diameter led to a water permeance of 40 L m−2 h−1 bar−1 and molecular weight cut-off around 8 kg mol−1. The morphology was controlled by tuning the polymer concentration, evaporation time, and the addition of imidazole and pyridine to stabilize the terpolymer micelles in the casting solution via hydrogen bond complexes. Transmission electron microscopy of the membrane cross-sections confirmed the formation of channels with hydroxyl groups beneficial for hydrogen-bond forming sites. The morphology evolution was investigated by time-resolved grazing incidence small angle X-ray scattering experiments. The membrane channels reject polyethylene glycol with a molecular size of 10 kg mol−1, but are permeable to proteins, such as lysozyme (14.3 kg mol−1) and cytochrome c (12.4 kg mol−1), due to the right balance of hydrogen bond interactions along the channels, electrostatic attraction, as well as the right pore sizes. Our results demonstrate that artificial channels can be designed for protein transport via block copolymer self-assembly using classical methods of membrane preparation.

  6. Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima.

    Science.gov (United States)

    Clark, A M; Jacobsen, K R; Bostwick, D E; Dannenhoffer, J M; Skaggs, M I; Thompson, G A

    1997-07-01

    Sieve elements in the phloem of most angiosperms contain proteinaceous filaments and aggregates called P-protein. In the genus Cucurbita, these filaments are composed of two major proteins: PP1, the phloem filament protein, and PP2, the phloem lactin. The gene encoding the phloem filament protein in pumpkin (Cucurbita maxima Duch.) has been isolated and characterized. Nucleotide sequence analysis of the reconstructed gene gPP1 revealed a continuous 2430 bp protein coding sequence, with no introns, encoding an 809 amino acid polypeptide. The deduced polypeptide had characteristics of PP1 and contained a 15 amino acid sequence determined by N-terminal peptide sequence analysis of PP1. The sequence of PP1 was highly repetitive with four 200 amino acid sequence domains containing structural motifs in common with cysteine proteinase inhibitors. Expression of the PP1 gene was detected in roots, hypocotyls, cotyledons, stems, and leaves of pumpkin plants. PP1 and its mRNA accumulated in pumpkin hypocotyls during the period of rapid hypocotyl elongation after which mRNA levels declined, while protein levels remained elevated. PP1 was immunolocalized in slime plugs and P-protein bodies in sieve elements of the phloem. Occasionally, PP1 was detected in companion cells. PP1 mRNA was localized by in situ hybridization in companion cells at early stages of vascular differentiation. The developmental accumulation and localization of PP1 and its mRNA paralleled the phloem lactin, further suggesting an interaction between these phloem-specific proteins.

  7. Evidence for in vitro and in vivo expression of the conserved VAR3 (type 3) plasmodium falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Wang, Christian W; Lavstsen, Thomas; Bengtsson, Dominique C

    2012-01-01

    ABSTRACT: BACKGROUND: Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes,...

  8. Characterization of the Single Stranded DNA Binding Protein SsbB Encoded in the Gonoccocal Genetic Island

    NARCIS (Netherlands)

    Jain, Samta; Zweig, Maria; Peeters, Eveline; Siewering, Katja; Hackett, Kathleen T.; Dillard, Joseph P.; van der Does, Chris

    2012-01-01

    Background: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in

  9. Membrane's Eleven: heavy-atom derivatives of membrane-protein crystals

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Sørensen, Thomas Lykke-Møller; Nissen, Poul

    2006-01-01

    A database has been assembled of heavy-atom derivatives used in the structure determination of membrane proteins. The database can serve as a guide to the design of experiments in the search for heavy-atom derivatives of new membrane-protein crystals. The database pinpoints organomercurials......, platinum(II) and trimethyllead compounds as being particularly useful. On the other hand, lanthanide and uranyl compounds are poorly represented, which may be a consequence of these compounds having aggressive effects in crystal-soaking procedures. Furthermore, the database highlights the variety...... of methods applied in the preparation of heavy-atom-derivatized crystals and in phasing. Cocrystallization can be further exploited. Phases have predominantly been obtained by SIRAS/MIRAS methods rather than SAD/MAD in recent structure determinations....

  10. Monoclonal antibody against membrane protein of transmissible gastroenteritis virus.

    Science.gov (United States)

    Sun, Xuejiao; Ren, Yudong; Li, Yu; Zhu, Jiayi; Zhu, Weijuan; Ding, Fan; Li, Guangxing; Wang, Chunfeng; Gao, Ming; Gao, Yunhang; Cao, Liyan; Ren, Xiaofeng

    2013-02-01

    Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that can cause piglet diarrhea with high mortality rates. TGEV membrane (M) protein not only plays a vital role in the process of virus assembly and budding, but also induces the production of interferon-α during infection. In this study, a monoclonal antibody (MAb) designated 7G7, against the TGEV M protein was generated by inoculating BALB/c mice with TGEV followed by hybridoma technique. Immunofluorescence assays indicated that MAb 7G7 was capable of detecting cell infection by TGEV. Virus-based ELISA demonstrated that MAb 7G7 can be used as a highly specific diagnostic reagent for TGEV.

  11. Nanodisc films for membrane protein studies by neutron reflection

    DEFF Research Database (Denmark)

    Bertram, Nicolas; Laursen, Tomas; Barker, Robert

    2015-01-01

    the increased stability of POR loaded MSP1E3D1 based nanodiscs in comparison to MSP1D1 based nanodiscs, neutron reflection at the silicon-solution interface showed that POR loaded MSP1E3D1 based nanodisc films had poor surface coverage. This was the case, even when incubation was carried out under conditions...... that typically gave high coverage for empty nanodiscs. The low surface coverage affects the embedded POR coverage in the nanodisc film and limits the structural information that can be extracted from membrane bound proteins within them. Thus, nanodisc reconstitution on the smaller scaffold proteins is necessary...

  12. Nonvirus encoded proteins could be embedded into Bombyx mori cypovirus polyhedra.

    Science.gov (United States)

    Zhang, Yi-Ling; Xue, Ren-Yu; Cao, Guang-Li; Meng, Xiang-Kun; Zhu, Yue-Xiong; Pan, Zhong-Hua; Gong, Cheng-Liang

    2014-01-01

    To explore whether the nonvirus encoded protein could be embedded into Bombyx mori cypovirus (BmCPV) polyhedra. The stable transformants of BmN cells expressing a polyhedrin (Polh) gene of BmCPV were constructed by transfection with a non-transposon derived vector containing a polh gene. The polyhedra were purified from the midguts of BmCPV-infected silkworms and the transformed BmN cells, respectively. The proteins embedded into polyhedra were determined by mass spectrometry analysis. Host derived proteins were detected in the purified polyhedra. Analysis of structure and hydrophilicity of embedded proteins indicated that the hydrophilic proteins, in structure, were similar to the left-handed structure of polyhedrin or the N-terminal domain of BmCPV structural protein VP3, which were easily embedded into the BmCPV polyhedra. The lysate of polyhedra purified from the infected transformation of BmN cells with modified B. mori baculovirus BmPAK6 could infect BmN cells, indicating that B. mori baculovirus could be embedded into BmCPV polyhedra. Both the purified polyhedra and its lysate could be coloured by X-gal, indicating that the β-galactosidase expressed by BmPAK6 could be incorporated into BmCPV polyhedra. These results suggested that some heterologous proteins and baculovirus could be embedded into polyhedra in an unknown manner.

  13. Biomimetic Membranes for Multi-Redox Center Proteins

    Directory of Open Access Journals (Sweden)

    Renate L. C. Naumann

    2016-03-01

    Full Text Available His-tag technology was applied for biosensing purposes involving multi-redox center proteins (MRPs. An overview is presented on various surfaces ranging from flat to spherical and modified with linker molecules with nitrile-tri-acetic acid (NTA terminal groups to bind his-tagged proteins in a strict orientation. The bound proteins are submitted to in situ dialysis in the presence of lipid micelles to form a so-called protein-tethered bilayer lipid membrane (ptBLM. MRPs, such as the cytochrome c oxidase (CcO from R. sphaeroides and P. denitrificans, as well as photosynthetic reactions centers (RCs from R. sphaeroides, were thus investigated. Electrochemical and surface-sensitive optical techniques, such as surface plasmon resonance, surface plasmon-enhanced fluorescence, surface-enhanced infrared absorption spectroscopy (SEIRAS and surface-enhanced resonance Raman spectroscopy (SERRS, were employed in the case of the ptBLM structure on flat surfaces. Spherical particles ranging from µm size agarose gel beads to nm size nanoparticles modified in a similar fashion were called proteo-lipobeads (PLBs. The particles were investigated by laser-scanning confocal fluorescence microscopy (LSM and UV/Vis spectroscopy. Electron and proton transfer through the proteins were demonstrated to take place, which was strongly affected by the membrane potential. MRPs can thus be used for biosensing purposes under quasi-physiological conditions.

  14. Targeting proteins to liquid-ordered domains in lipid membranes.

    Science.gov (United States)

    Stachowiak, Jeanne C; Hayden, Carl C; Sanchez, Mari Angelica A; Wang, Julia; Bunker, Bruce C; Voigt, James A; Sasaki, Darryl Y

    2011-02-15

    We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (L(o)) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the L(o) phase containing DPIDA. In the presence of CuCl(2), the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and L(o) phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains.

  15. Development of Escherichia coli Strains That Withstand Membrane Protein-Induced Toxicity and Achieve High-Level Recombinant Membrane Protein Production.

    Science.gov (United States)

    Gialama, Dimitra; Kostelidou, Kalliopi; Michou, Myrsini; Delivoria, Dafni Chrysanthi; Kolisis, Fragiskos N; Skretas, Georgios

    2017-02-17

    Membrane proteins perform critical cellular functions in all living organisms and constitute major targets for drug discovery. Escherichia coli has been the most popular overexpression host for membrane protein biochemical/structural studies. Bacterial production of recombinant membrane proteins, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low final biomass and minute volumetric yields. In this work, we aimed to rewire the E. coli protein-producing machinery to withstand the toxicity caused by membrane protein overexpression in order to generate engineered bacterial strains with the ability to achieve high-level membrane protein production. To achieve this, we searched for bacterial genes whose coexpression can suppress membrane protein-induced toxicity and identified two highly potent effectors: the membrane-bound DnaK cochaperone DjlA, and the inhibitor of the mRNA-degrading activity of the E. coli RNase E, RraA. E. coli strains coexpressing either djlA or rraA, termed SuptoxD and SuptoxR, respectively, accumulated markedly higher levels of final biomass and produced dramatically enhanced yields for a variety of prokaryotic and eukaryotic recombinant membrane proteins. In all tested cases, either SuptoxD, or SuptoxR, or both, outperformed the capabilities of commercial strains frequently utilized for recombinant membrane protein production purposes.

  16. Protein-lipid interactions in bilayer membranes: A lattice model

    Science.gov (United States)

    Pink, David A.; Chapman, Dennis

    1979-01-01

    A lattice model has been developed to study the effects of intrinsic membrane proteins upon the thermodynamic properties of a lipid bilayer membrane. We assume that only nearest-neighbor van der Waals and steric interactions are important and that the polar group interactions can be represented by effective pressure—area terms. Phase diagrams, the temperature T0, which locates the gel—fluid melting, the transition enthalpy, and correlations were calculated by mean field and cluster approximations. Average lipid chain areas and chain areas when the lipid is in a given protein environment were obtained. Proteins that have a “smooth” homogeneous surface (“cholesterol-like”) and those that have inhomogeneous surfaces or that bind lipids specifically were considered. We find that T0 can vary depending upon the interactions and that another peak can appear upon the shoulder of the main peak which reflects the melting of a eutectic mixture. The transition enthalpy decreases generally, as was found before, but when a second peak appears departures from this behavior reflect aspects of the eutectic mixture. We find that proteins have significant nonzero probabilities for being adjacent to one another so that no unbroken “annulus” of lipid necessarily exists around a protein. If T0 does not increase much, or decreases, with increasing c, then lipids adjacent to a protein cannot all be all-trans on the time scale (10-7 sec) of our system. Around a protein the lipid correlation depth is about one lipid layer, and this increases with c. Possible consequences of ignoring changes in polar group interactions due to clustering of proteins are discussed. PMID:286996

  17. The Saccharomyces cerevisiae enolase-related regions encode proteins that are active enolases.

    Science.gov (United States)

    Kornblatt, M J; Richard Albert, J; Mattie, S; Zakaib, J; Dayanandan, S; Hanic-Joyce, P J; Joyce, P B M

    2013-02-01

    In addition to two genes (ENO1 and ENO2) known to code for enolase (EC4.2.1.11), the Saccharomyces cerevisiae genome contains three enolase-related regions (ERR1, ERR2 and ERR3) which could potentially encode proteins with enolase function. Here, we show that products of these genes (Err2p and Err3p) have secondary and quaternary structures similar to those of yeast enolase (Eno1p). In addition, Err2p and Err3p can convert 2-phosphoglycerate to phosphoenolpyruvate, with kinetic parameters similar to those of Eno1p, suggesting that these proteins could function as enolases in vivo. To address this possibility, we overexpressed the ERR2 and ERR3 genes individually in a double-null yeast strain lacking ENO1 and ENO2, and showed that either ERR2 or ERR3 could complement the growth defect in this strain when cells are grown in medium with glucose as the carbon source. Taken together, these data suggest that the ERR genes in Saccharomyces cerevisiae encode a protein that could function in glycolysis as enolase. The presence of these enolase-related regions in Saccharomyces cerevisiae and their absence in other related yeasts suggests that these genes may play some unique role in Saccharomyces cerevisiae. Further experiments will be required to determine whether these functions are related to glycolysis or other cellular processes. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2 encoding secreted proteins

    Directory of Open Access Journals (Sweden)

    Mereghetti Laurent

    2011-04-01

    Full Text Available Abstract Background The genome of serotype M28 group A Streptococcus (GAS strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2 that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs. Results We transferred RD2 from GAS strain MGAS6180 (serotype M28 to serotype M1 and M4 GAS strains by filter mating. The copy number of the RD2 element was rapidly and significantly increased following treatment of strain MGAS6180 with mitomycin C, a DNA damaging agent. Using a PCR-based method, we also identified RD2-like regions in multiple group C and G strains of Streptococcus dysgalactiae subsp.equisimilis cultured from invasive human infections. Conclusions Taken together, the data indicate that the RD2 element has disseminated by lateral gene transfer to genetically diverse strains of human-pathogenic streptococci.

  19. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure.

    Science.gov (United States)

    Yu, Xiaxia; Weber, Irene T; Harrison, Robert W

    2014-01-01

    Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and observed resistance. The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase.

  20. FGF-2 antisense RNA encodes a nuclear protein with MutT-like antimutator activity.

    Science.gov (United States)

    Li, A W; Too, C K; Knee, R; Wilkinson, M; Murphy, P R

    1997-10-20

    Bidirectional transcription of the basic fibroblast growth factor (FGF-2) gene gives rise to multiple polyadenylated sense mRNAs and a unique 1.5 kb antisense transcript (FGF-AS) which is complementary to the 3'-untranslated region of the FGF-2 mRNA. The rat FGF-AS cDNA encodes a novel 35 kDa nuclear protein (GFG) with homology to the MutT family of antimutator NTPases. Antibodies against the deduced amino acid sequence of GFG detected intense immunoreactivity in the nuclei of adult rat hepatocytes. Subcellular fractionation and Western blotting confirmed the presence of a 35 kDa immunoreactive protein in the nuclear fraction and, to a lesser extent, in the mitochondrial fractions of rat liver homogenates. Recombinant GFG suppressed the spontaneous mutation rate of MutT-deficient E. coli in a complementation assay. In-frame deletion of the 53 amino acids encompassing the MutT domain eliminated this activity, confirming the catalytic function of this region in the FGF antisense gene product. These findings demonstrate for the first time that the FGF-AS transcript encodes a functional nuclear protein with MutT-related enzymatic activity.

  1. Genome segment 6 of Antheraea mylitta cypovirus encodes a structural protein with ATPase activity

    International Nuclear Information System (INIS)

    Chavali, Venkata R.M.; Madhurantakam, Chaithanya; Ghorai, Suvankar; Roy, Sobhan; Das, Amit K.; Ghosh, Ananta K.

    2008-01-01

    The genome segment 6 (S6) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus was converted into cDNA, cloned and sequenced. S6 consisted of 1944 nucleotides with an ORF of 607 amino acids and could encode a protein of 68 kDa, termed P68. Motif scan and molecular docking analysis of P68 showed the presence of two cystathionine beta synthase (CBS) domains and ATP binding sites. The ORF of AmCPV S6 was expressed in E. coli as His-tag fusion protein and polyclonal antibody was raised. Immunoblot analysis of virus infected gut cells and purified polyhedra using raised anti-p68 polyclonal antibody showed that S6 encodes a viral structural protein. Fluorescence and ATPase assay of soluble P68 produced in Sf-9 cells via baculovirus expression system showed its ability to bind and cleave ATP. These results suggest that P68 may bind viral RNA through CBS domains and help in replication and transcription through ATP binding and hydrolysis

  2. Membrane protein damage and repair: selective loss of a quinone-protein function in chloroplast membranes

    International Nuclear Information System (INIS)

    Kyle, D.J.; Ohad, I.; Arntzen, C.J.

    1984-01-01

    A loss of electron transport capacity in chloroplast membranes was induced by high-light intensities (photoinhibition). The primary site of inhibition was at the reducing side of photosystem II (PSII) with little damage to the oxidizing side or to the reaction center core of PSII. Addition of herbicides (atrazine or diuron) partially protected the membrane from photoinhibition; these compounds displace the bound plastoquinone (designated as Q/sub B/), which functions as the secondary electron acceptor on the reducing side of PSII. Loss of function of the 32-kilodalton Q/sub B/ apoprotein was demonstrated by a loss of binding sites for [ 14 C]atraazine. We suggest that quinone anions, which may interact with molecular oxygen to produce an oxygen radical, selectively damage the apoprotein of the secondary acceptor of PSII, thus rendering it inactive and thereby blocking photosynthetic electron flow under conditions of high photon flux densities. 21 references, 4 figures, 2 tables

  3. Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane

    OpenAIRE

    Zhang, Xiaoyan; Fu, Wangyang; Palivan, Cornelia G.; Meier, Wolfgang

    2013-01-01

    Reconstitution of membrane proteins in artificial membrane systems creates a platform for exploring their potential for pharmacological or biotechnological applications. Previously, we demonstrated amphiphilic block copolymers as promising building blocks for artificial membranes with long-term stability and tailorable structural parameters. However, the insertion of membrane proteins has not previously been realized in a large-area, stable, and solid-supported artificial membrane. Here, we s...

  4. Phytochrome-regulated expression of the genes encoding the small GTP-binding proteins in peas.

    OpenAIRE

    Yoshida, K; Nagano, Y; Murai, N; Sasaki, Y

    1993-01-01

    We examined the effect of light on the mRNA levels of 11 genes (pra1-pra9A, pra9B, and pra9C) encoding the small GTP-binding proteins that belong to the ras superfamily in Pisum sativum. When the dark-grown seedlings were exposed to continuous white light for 24 hr, the levels of several pra mRNAs in the pea buds decreased: pra2 and pra3 mRNAs decreased markedly; pra4, pra6, and pra9A mRNAs decreased slightly; the other 6 pra mRNAs did not decrease. We studied the kinetics of mRNA accumulatio...

  5. Identification of frog photoreceptor plasma and disk membrane proteins by radioiodination

    International Nuclear Information System (INIS)

    Witt, P.L.; Bownds, M.D.

    1987-01-01

    Several functions have been identified for the plasma membrane of the rod outer segment, including control of light-dependent changes in sodium conductance and a sodium-calcium exchange mechanism. However, little is known about its constituent proteins. Intact rod outer segments substantially free of contaminants were prepared in the dark and purified on a density gradient of Percoll. Surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination, and intact rod outer segments were reisolated. Membrane proteins were identified by polyacrylamide gel electrophoresis and autoradiography. The surface proteins labeled included rhodopsin, the major membrane protein, and 12 other proteins. To compare the protein composition of plasma membrane with that of the internal disk membrane, purified rod outer segments were lysed by hypotonic disruption or freeze-thawing, and plasma plus disk membranes were radioiodinated. In these membrane preparations, rhodopsin was the major iodinated constituent, with 12 other proteins also labeled. Autoradiographic evidence indicated some differences in protein composition between disk and plasma membranes. A quantitative comparison of the two samples showed that labeling of two proteins, 24 kilodaltons (kDa) and 13 kDa, was enriched in the plasma membrane, while labeling of a 220-kDa protein was enriched in the disk membrane. These plasma membrane proteins may be associated with important functions such as the light-sensitive conductance and the sodium-calcium exchanger

  6. Steric pressure between membrane-bound proteins opposes lipid phase separation.

    Science.gov (United States)

    Scheve, Christine S; Gonzales, Paul A; Momin, Noor; Stachowiak, Jeanne C

    2013-01-30

    Cellular membranes are densely crowded with a diverse population of integral and membrane-associated proteins. In this complex environment, lipid rafts, which are phase-separated membrane domains enriched in cholesterol and saturated lipids, are thought to organize the membrane surface. Specifically, rafts may help to concentrate proteins and lipids locally, enabling cellular processes such as assembly of caveolae, budding of enveloped viruses, and sorting of lipids and proteins in the Golgi. However, the ability of rafts to concentrate protein species has not been quantified experimentally. Here we show that when membrane-bound proteins become densely crowded within liquid-ordered membrane regions, steric pressure arising from collisions between proteins can destabilize lipid phase separations, resulting in a homogeneous distribution of proteins and lipids over the membrane surface. Using a reconstituted system of lipid vesicles and recombinant proteins, we demonstrate that protein-protein steric pressure creates an energetic barrier to the stability of phase-separated membrane domains that increases in significance as the molecular weight of the proteins increases. Comparison with a simple analytical model reveals that domains are destabilized when the steric pressure exceeds the approximate enthalpy of membrane mixing. These results suggest that a subtle balance of free energies governs the stability of phase-separated cellular membranes, providing a new perspective on the role of lipid rafts as concentrators of membrane proteins.

  7. Saccharomyces cerevisiae gene ISW2 encodes a microtubule-interacting protein required for premeiotic DNA replication.

    Science.gov (United States)

    Trachtulcová, P; Janatová, I; Kohlwein, S D; Hasek, J

    2000-01-15

    A molecular genetic characterization of the ORF YOR304W (ISW2), identified in a screen of a yeast lambdagt11 library using a monoclonal antibody that reacts with a 210 kDa mammalian microtubule-interacting protein, is presented in this paper. The protein encoded by the ORF YOR304W is 50% identical to the Drosophila nucleosome remodelling factor ISWI and is therefore a new member of the SNF2 protein family and has been recently entered into SDG as ISW2. Although not essential for vegetative growth, we found that the ISW2 gene is required for early stages in sporulation. The isw2 homozygous deletant diploid strain was blocked in the G(1) phase of the cell cycle, unable to execute the premeiotic DNA replication and progress through the nuclear meiotic division cycle. ISW2 expression from a multicopy plasmid had the same effect as deletion, but ISW2 expression from a centromeric plasmid rescued the deletion phenotype. In vegetatively growing diploid cells, the Isw2 protein was preferentially found in the cytoplasm, co-localizing with microtubules. An accumulation of the Isw2 protein within the nucleus was observed in cells entering sporulation. Together with data published very recently by Tsukiyama et al. (1999), we propose a role for the Isw2 protein in facilitating chromatin accessibility for transcriptional factor(s) that positively regulate meiosis/sporulation-specific genes. Copyright 2000 John Wiley & Sons, Ltd.

  8. Equilibrium fluctuation relations for voltage coupling in membrane proteins.

    Science.gov (United States)

    Kim, Ilsoo; Warshel, Arieh

    2015-11-01

    A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage coupling" reaction coordinate, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference between the two conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of free energy change in ion channels) is shown to be equivalent to the free energy difference between the two "equilibrium" (resting and activated) conformational states along the one-dimensional voltage couplin reaction coordinate. Furthermore, the requirement that the application of linear response approximation to the free energy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form expression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane, representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus-type voltage dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and free

  9. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans.

    Science.gov (United States)

    Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali

    2013-04-01

    The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.

  10. Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal.

    Science.gov (United States)

    Gioio, A E; Eyman, M; Zhang, H; Lavina, Z S; Giuditta, A; Kaplan, B B

    2001-06-01

    One of the central tenets in neuroscience has been that the protein constituents of distal compartments of the neuron (e.g., the axon and nerve terminal) are synthesized in the nerve cell body and are subsequently transported to their ultimate sites of function. In contrast to this postulate, we have established previously that a heterogeneous population of mRNAs and biologically active polyribosomes exist in the giant axon and presynaptic nerve terminals of the photoreceptor neurons in squid. We report that these mRNA populations contain mRNAs for nuclear-encoded mitochondrial proteins to include: cytochrome oxidase subunit 17, propionyl-CoA carboxylase (EC 6.4.1.3), dihydrolipoamide dehydrogenase (EC 1.8.1.4), and coenzyme Q subunit 7. The mRNA for heat shock protein 70, a chaperone protein known to be involved in the import of proteins into mitochondria, has also been identified. Electrophoretic gel analysis of newly synthesized proteins in the synaptosomal fraction isolated from the squid optic lobe revealed that the large presynaptic terminals of the photoreceptor neuron contain a cytoplasmic protein synthetic system. Importantly, a significant amount of the cycloheximide resistant proteins locally synthesized in the terminal becomes associated with mitochondria. PCR analysis of RNA from synaptosomal polysomes establishes that COX17 and CoQ7 mRNAs are being actively translated. Taken together, these findings indicate that proteins required for the maintenance of mitochondrial function are synthesized locally in the presynaptic nerve terminal, and call attention to the intimacy of the relationship between the terminal and its energy generating system. J. Neurosci. Res. 64:447-453, 2001. Published 2001 Wiley-Liss, Inc.

  11. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  12. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  13. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    Science.gov (United States)

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes.

    Directory of Open Access Journals (Sweden)

    Maia M Chan

    Full Text Available Hematopoietic protein-1 (Hem-1 is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein complex, which regulates filamentous actin (F-actin polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A, which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.

  15. A cell-free method for expressing and reconstituting membrane proteins enables functional characterization of the plant receptor-like protein kinase FERONIA.

    Science.gov (United States)

    Minkoff, Benjamin B; Makino, Shin-Ichi; Haruta, Miyoshi; Beebe, Emily T; Wrobel, Russell L; Fox, Brian G; Sussman, Michael R

    2017-04-07

    There are more than 600 receptor-like kinases (RLKs) in Arabidopsis , but due to challenges associated with the characterization of membrane proteins, only a few have known biological functions. The plant RLK FERONIA is a peptide receptor and has been implicated in plant growth regulation, but little is known about its molecular mechanism of action. To investigate the properties of this enzyme, we used a cell-free wheat germ-based expression system in which mRNA encoding FERONIA was co-expressed with mRNA encoding the membrane scaffold protein variant MSP1D1. With the addition of the lipid cardiolipin, assembly of these proteins into nanodiscs was initiated. FERONIA protein kinase activity in nanodiscs was higher than that of soluble protein and comparable with other heterologously expressed protein kinases. Truncation experiments revealed that the cytoplasmic juxtamembrane domain is necessary for maximal FERONIA activity, whereas the transmembrane domain is inhibitory. An ATP analogue that reacts with lysine residues inhibited catalytic activity and labeled four lysines; mutagenesis demonstrated that two of these, Lys-565 and Lys-663, coordinate ATP in the active site. Mass spectrometric phosphoproteomic measurements further identified phosphorylation sites that were examined using phosphomimetic mutagenesis. The results of these experiments are consistent with a model in which kinase-mediated phosphorylation within the C-terminal region is inhibitory and regulates catalytic activity. These data represent a step further toward understanding the molecular basis for the protein kinase catalytic activity of FERONIA and show promise for future characterization of eukaryotic membrane proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Quantification of green fluorescent protein-(GFP-) tagged membrane proteins by capillary gel electrophoresis.

    Science.gov (United States)

    Danish, Azeem; Lee, Sang-Yong; Müller, Christa E

    2017-10-07

    A fast and robust procedure for the quantification of GFP-tagged membrane proteins in cell homogenates was developed employing capillary gel electrophoresis coupled to laser-induced fluorescence detection (CGE-LIF). The new method was found to be highly sensitive and applicable to structurally diverse membrane proteins including synaptic vesicle protein 2A (SV2A), adenosine A 2A receptor (A 2A AR), and connexin 43 (Cx43). Quantification of SV2A and A 2A AR using radioligand binding assays confirmed the results obtained with CGE-LIF. The CGE-LIF method showed significantly higher sensitivity as compared to fluorimetric measurement in a microplate. Importantly, CGE-LIF involves separation of the target proteins and their degradation products prior to quantification and thereby ensures specificity. We anticipate broad applicability of the method for any fluorophore-tagged protein.

  17. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study

    DEFF Research Database (Denmark)

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano

    2016-01-01

    for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles....... Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein......Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used...

  18. Genetic variability in the sable (Martes zibellina L.) with respect to genes encoding blood proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kashtanov, S.N. [Vavilov Institute of General Genetics, Moscow (Russian Federation); Kazakova, T.I. [Afanas`ev Scientific Research Institute for Breeding of Fur-Bearing Animals, Moscow (Russian Federation)

    1995-02-01

    Electrophoresis of blood proteins was used to determine, for the first time, the level of genetic variability of certain loci in the sable (Martes zibellina L., Mustelidae). Variation of 23 blood proteins encoded by 25 genes was analyzed. Polymorphism was revealed in six genes. The level of heterozygosity was estimated at 0.069; the proportion of polymorphic loci was 24%. Data on the history of the sable population maintained at the farm, on geographical distribution of natural sable populations, and on the number of animals selected for reproduction in captivity is presented. The great number of animals studies and the extensive range of natural sable populations, on the basis of which the population maintained in captivity was obtained, suggest that the results of this work can be used for estimating the variability of the gene pool of sable as a species. 9 refs., 2 figs., 1 tab.

  19. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Sabrina M de Munnik

    2015-03-01

    Full Text Available Human herpesviruses are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, human herpesviruses have pirated genes encoding viral G protein-coupled receptors (vGPCRs, which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies.

  20. Membrane-based techniques for the separation and purification of proteins: an overview.

    Science.gov (United States)

    Saxena, Arunima; Tripathi, Bijay P; Kumar, Mahendra; Shahi, Vinod K

    2009-01-30

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as microfiltration, ultrafiltration, emerging processes as membrane chromatography, high performance tangential flow filtration and electrophoretic membrane contactor. Membrane-based processes are playing critical role in the field of separation/purification of biotechnological products. Membranes became an integral part of biotechnology and improvements in membrane technology are now focused on high resolution of bioproduct. In bioseparation, applications of membrane technologies include protein production/purification, protein-virus separation. This manuscript provides an overview of recent developments and published literature in membrane technology, focusing on special characteristics of the membranes and membrane-based processes that are now used for the production and purification of proteins.

  1. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Bhatia, V K; Gether, U

    2010-01-01

    The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as "molecular information" to organize cellular proc...... on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology....

  2. Effect of Adsorbed Protein on the Hydraulic Permeability, Membrane and Streaming Potential Values Measured across a Microporous Membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1998-01-01

    The effect of the adsorption of a protein, bovine serum albumin (BSA), on the membrane potential, flux reduction and streaming potential measured across a microporous polysulphone membrane with different NaCl solutions and pH values is studied. From electrokinetic phenomena, information about...... as a "composite" or two-layer membrane, and a comparison of the results obtained with both microporous polysulphone and "composite" (microporous + BSA layer) membranes could permit us to determine some parameters related to the protein sublayer. (C) 1998 Elsevier Science B.V....

  3. RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels

    Science.gov (United States)

    Ogino, Kazutoyo; Low, Sean E.; Yamada, Kenta; Saint-Amant, Louis; Zhou, Weibin; Muto, Akira; Asakawa, Kazuhide; Nakai, Junichi; Kawakami, Koichi; Kuwada, John Y.; Hirata, Hiromi

    2015-01-01

    Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVβ subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane. PMID:25691753

  4. The Neurospora crassa colonial temperature-sensitive 3 (cot-3) gene encodes protein elongation factor 2.

    Science.gov (United States)

    Propheta, O; Vierula, J; Toporowski, P; Gorovits, R; Yarden, O

    2001-02-01

    At elevated temperatures, the Neurospora crassa mutant colonial, temperature-sensitive 3 (cot-3) forms compact, highly branched colonies. Growth of the cot-3 strain under these conditions also results in the loss of the lower molecular weight (LMW) isoform of the Ser/Thr protein kinase encoded by the unlinked cot-1 gene, whose function is also involved in hyphal elongation. The unique cot-3 gene has been cloned by complementation and shown to encode translation elongation factor 2 (EF-2). As expected for a gene with a general role in protein synthesis, cot-3 mRNA is abundantly expressed throughout all asexual phases of the N. crassa life cycle. The molecular basis of the cot-3 mutation was determined to be an ATT to AAT transversion, which causes an Ile to Asn substitution at residue 278. Treatment with fusidic acid (a specific inhibitor of EF-2) inhibits hyphal elongation and induces hyperbranching in a manner which mimics the cot-3 phenotype, and also leads to a decrease in the abundance of the LMW isoform of COT1. This supports our conclusion that the mutation in cot-3 which results in abnormal hyphal elongation/branching impairs EF-2 function and confirms that the abundance of a LMW isoform of COT1 kinase is dependent on the function of this general translation factor.

  5. A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor

    International Nuclear Information System (INIS)

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K.

    1989-01-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human β-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human β-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development

  6. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Copyright © 2013 Wiley Periodicals, Inc.

  7. Steric confinement of proteins on lipid membranes can drive curvature and tubulation.

    Science.gov (United States)

    Stachowiak, Jeanne C; Hayden, Carl C; Sasaki, Darryl Y

    2010-04-27

    Deformation of lipid membranes into curved structures such as buds and tubules is essential to many cellular structures including endocytic pits and filopodia. Binding of specific proteins to lipid membranes has been shown to promote membrane bending during endocytosis and transport vesicle formation. Additionally, specific lipid species are found to colocalize with many curved membrane structures, inspiring ongoing exploration of a variety of roles for lipid domains in membrane bending. However, the specific mechanisms by which lipids and proteins collaborate to induce curvature remain unknown. Here we demonstrate a new mechanism for induction and amplification of lipid membrane curvature that relies on steric confinement of protein binding on membrane surfaces. Using giant lipid vesicles that contain domains with high affinity for his-tagged proteins, we show that protein crowding on lipid domain surfaces creates a protein layer that buckles outward, spontaneously bending the domain into stable buds and tubules. In contrast to previously described bending mechanisms relying on local steric interactions between proteins and lipids (i.e. helix insertion into membranes), this mechanism produces tubules whose dimensions are defined by global parameters: domain size and membrane tension. Our results suggest the intriguing possibility that confining structures, such as lipid domains and protein lattices, can amplify membrane bending by concentrating the steric interactions between bound proteins. This observation highlights a fundamental physical mechanism for initiation and control of membrane bending that may help explain how lipids and proteins collaborate to create the highly curved structures observed in vivo.

  8. Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan.

    Science.gov (United States)

    Rogalski, T M; Williams, B D; Mullen, G P; Moerman, D G

    1993-08-01

    Mutations in the unc-52 gene of Caenorhabditis elegans affect attachment of the myofilament lattice to the muscle cell membrane. Here, we demonstrate that the unc-52 gene encodes a nematode homolog of perlecan, the mammalian basement membrane heparan sulfate proteoglycan. The longest potential open reading frame of this gene encodes a 2482-amino-acid protein with a signal peptide and four domains. The first domain is unique to the unc-52 polypeptide, whereas the three remaining domains contain sequences found in the LDL receptor (domain II) laminin (domain III) and N-CAM (domain IV). We have identified three alternatively spliced transcripts that encode different carboxy-terminal sequences. The two larger transcripts encode proteins containing all or part of domain IV, whereas the smaller transcript encodes a shortened polypeptide that completely lacks domain IV. We have determined that the disorganized muscle phenotype observed in unc-52(st196) animals is caused by the insertion of a Tc1 transposon into domain IV. Two monoclonal antibodies that recognize an extracellular component of all contractile tissues in C. elegans fail to stain embryos homozygous for a lethal unc-52 allele. We have mapped the epitopes recognized by both monoclonal antibodies to a region of domain IV in the unc-52-encoded protein sequence.

  9. Bcmimp1, a Botrytis cinerea gene transiently expressed in planta, encodes a mitochondrial protein

    Directory of Open Access Journals (Sweden)

    David eBenito-Pescador

    2016-02-01

    Full Text Available Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of ROS, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor.

  10. Proteins of the lactococcin A secretion system : lcnD encodes two in-frame proteins

    NARCIS (Netherlands)

    Varcamonti, M; Nicastro, G; Venema, G; Kok, J

    2001-01-01

    Polyclonal antibodies were raised against LcnC and LcnD proteins of the Lactococcus lactis bacteriocin lactococcin A secretory system to examine their cellular location and interaction. Two major reacting bands were detected by Western immunoblot with the anti-LcnD antibody: one of 52 kDa (LcnD) and

  11. Flippase activity in proteoliposomes reconstituted with Spinacea oleracea endoplasmic reticulum membrane proteins: evidence of biogenic membrane flippase in plants.

    Science.gov (United States)

    Sahu, Santosh Kumar; Gummadi, Sathyanarayana N

    2008-09-30

    Phospholipid translocation (flip-flop) in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum of eukaryotic cells (rat liver) and bacterial cytoplasmic membranes is a fundamental step in membrane biogenesis. It is known that flip-flop in these membranes occurs without a metabolic energy requirement, bidirectionally with no specificity for phospholipid headgroup. In this study, we demonstrate for the first time ATP-independent flippase activity in endoplasmic reticulum membranes of plants using spinach as a model system. For this, we generated proteoliposomes from a Triton X-100 extract of endoplasmic reticulum membranes of spinach and assayed them for flippase activity using fluorescently labeled phospholipids. The half-time for flipping was found to be 0.7-1.0 min. We also show that (a) proteoliposomes can flip fluorescently labeled analogues of phosphatidylcholine and phosphatidylethanolamine, (b) flipping activity is protein-mediated, (c) more than one class of lipid translocator (flippase) is present in spinach membranes, based on the sensitivity to protease and protein-modifying reagents, and (d) translocation of PC and PE is affected differently upon treatment with protease and protein-modifying reagents. Ca (2+)-dependent scrambling activity was not observed in the vesicles reconstituted from plant ER membranes, ruling out the possibility of the involvement of scramblase in translocation of phospholipids. These results suggest the existence of biogenic membrane flippases in plants and that the mechanism of membrane biogenesis is similar to that found in animals.

  12. Proteomic analysis of equine amniotic membrane: characterization of proteins.

    Science.gov (United States)

    Galera, Paula D; Ribeiro, Cássio R; Sapp, Harold L; Coleman, James; Fontes, Wagner; Brooks, Dennis E

    2015-05-01

    Human amniotic membrane (AM) has been used as a biomaterial for surgical wound skin and ocular surface reconstruction for several years. Currently, equine AM has been used for corneal reconstruction in several animal species, and appears to have the same properties as human AM. Despite the observed positive healing abilities of this tissue in horses with ulcerative keratitis the proteins of equine AM have not been described. To identify proteins known to be associated with corneal healing from frozen equine AM. Placentas were acquired from healthy live foal births from a local Thoroughbred breeding farm. The amnion was removed from the chorion by blunt dissection, washed with phosphate-buffered saline (PBS), and treated with 0.05% trypsin and 0.02% ethylene diaminetetraacetic acid in PBS. Amnion was attached to nitrocellulose paper (epithelial side up), and cut into 4 × 4 cm pieces. The sheets were frozen at -80 °C. The protein samples were solubilized, and analyzed by 2D gel electrophoresis and shotgun proteomics. A reference identification map of the equine AM proteins was produced and 149 different proteins were identified. From gel-based proteomics, 49 spots were excised and 43 proteins identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Shotgun proteomics identified 116 proteins with an overlap of 10 proteins in both analyses. We have described a reference map for equine AM proteins that may provide a background to explain the positive results found in horses with ulcerative keratopathies using this biomaterial. © 2014 American College of Veterinary Ophthalmologists.

  13. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Magistrado, Pamela; Hermsen, Cornelus C

    2005-01-01

    sporozoites. RESULTS: In cultures representing the first generation of parasites after hepatic release, all var genes were transcribed, but Group A var genes were transcribed at the lowest levels. In cultures established from second or third generation blood stage parasites of volunteers with high in vivo......BACKGROUND: Parasites causing severe malaria in non-immune patients express a restricted subset of variant surface antigens (VSA), which are better recognized by immune sera than VSA expressed during non-severe disease in semi-immune individuals. The most prominent VSA are the var gene......-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration...

  14. Comparisons of the M1 genome segments and encoded μ2 proteins of different reovirus isolates

    Directory of Open Access Journals (Sweden)

    Arnold Michelle M

    2004-09-01

    Full Text Available Abstract Background The reovirus M1 genome segment encodes the μ2 protein, a structurally minor component of the viral core, which has been identified as a transcriptase cofactor, nucleoside and RNA triphosphatase, and microtubule-binding protein. The μ2 protein is the most poorly understood of the reovirus structural proteins. Genome segment sequences have been reported for 9 of the 10 genome segments for the 3 prototypic reoviruses type 1 Lang (T1L, type 2 Jones (T2J, and type 3 Dearing (T3D, but the M1 genome segment sequences for only T1L and T3D have been previously reported. For this study, we determined the M1 nucleotide and deduced μ2 amino acid sequences for T2J, nine other reovirus field isolates, and various T3D plaque-isolated clones from different laboratories. Results Determination of the T2J M1 sequence completes the analysis of all ten genome segments of that prototype. The T2J M1 sequence contained a 1 base pair deletion in the 3' non-translated region, compared to the T1L and T3D M1 sequences. The T2J M1 gene showed ~80% nucleotide homology, and the encoded μ2 protein showed ~71% amino acid identity, with the T1L and T3D M1 and μ2 sequences, respectively, making the T2J M1 gene and μ2 proteins amongst the most divergent of all reovirus genes and proteins. Comparisons of these newly determined M1 and μ2 sequences with newly determined M1 and μ2 sequences from nine additional field isolates and a variety of laboratory T3D clones identified conserved features and/or regions that provide clues about μ2 structure and function. Conclusions The findings suggest a model for the domain organization of μ2 and provide further evidence for a role of μ2 in viral RNA synthesis. The new sequences were also used to explore the basis for M1/μ2-determined differences in the morphology of viral factories in infected cells. The findings confirm the key role of Ser/Pro208 as a prevalent determinant of differences in factory morphology

  15. The coronavirus spike protein : mechanisms of membrane fusion and virion incorporation

    NARCIS (Netherlands)

    Bosch, B.J.

    2004-01-01

    The coronavirus spike protein is a membrane-anchored glycoprotein responsible for virus-cell attachment and membrane fusion, prerequisites for a successful virus infection. In this thesis, two aspects are described regarding the molecular biology of the coronavirus spike protein: its membrane fusion

  16. Rooster sperm plasma membrane protein and phospholipid organization and reorganization attributed to cooling and cryopreservation

    Science.gov (United States)

    Cholesterol to phospholipid ratio is used as a representation for membrane fluidity, and predictor of cryopreservation success but results are not consistent across species and ignore the impact of membrane proteins. Therefore, this research explored the modulation of membrane fluidity and protein ...

  17. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies

    DEFF Research Database (Denmark)

    Ehsan, Muhammad; Ghani, Lubna; Du, Yang

    2017-01-01

    Integral membrane proteins either alone or as complexes carry out a range of key cellular functions. Detergents are indispensable tools in the isolation of membrane proteins from biological membranes for downstream studies. Although a large number of techniques and tools, including a wide variety...

  18. The Vacuolar ATPase from Entamoeba histolytica: Molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein

    Directory of Open Access Journals (Sweden)

    Luna-Arias Juan

    2008-12-01

    Full Text Available Abstract Background Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. Results We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. Conclusion We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits

  19. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes.

    Science.gov (United States)

    Meyers, Blake C; Morgante, Michele; Michelmore, Richard W

    2002-10-01

    The Toll/interleukin-1 receptor (TIR) domain is found in one of the two large families of homologues of plant disease resistance proteins (R proteins) in Arabidopsis and other dicotyledonous plants. In addition to these TIR-NBS-LRR (TNL) R proteins, we identified two families of TIR-containing proteins encoded in the Arabidopsis Col-0 genome. The TIR-X (TX) family of proteins lacks both the nucleotide-binding site (NBS) and the leucine rich repeats (LRRs) that are characteristic of the R proteins, while the TIR-NBS (TN) proteins contain much of the NBS, but lack the LRR. In Col-0, the TX family is encoded by 27 genes and three pseudogenes; the TN family is encoded by 20 genes and one pseudogene. Using massively parallel signature sequencing (MPSS), expression was detected at low levels for approximately 85% of the TN-encoding genes. Expression was detected for only approximately 40% of the TX-encoding genes, again at low levels. Physical map data and phylogenetic analysis indicated that multiple genomic duplication events have increased the numbers of TX and TN genes in Arabidopsis. Genes encoding TX, TN and TNL proteins were demonstrated in conifers; TX and TN genes are present in very low numbers in grass genomes. The expression, prevalence, and diversity of TX and TN genes suggests that these genes encode functional proteins rather than resulting from degradation or deletions of TNL genes. These TX and TN proteins could be plant analogues of small TIR-adapter proteins that function in mammalian innate immune responses such as MyD88 and Mal.

  20. The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors.

    Directory of Open Access Journals (Sweden)

    Luciana Galetto

    Full Text Available Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of "Candidatus Phytoplasma asteris", the chrysanthemum yellows phytoplasmas (CYP strain, and three others as non-vectors. Interactions between a labelled (recombinant CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.

  1. Plasma membrane microdomains regulate turnover of transport proteins in yeast

    Czech Academy of Sciences Publication Activity Database

    Grossmann, G.; Malínský, Jan; Stahlschmidt, W.; Loibl, M.; Weig-Meckl, I.; Frommer, W.B.; Opekarová, Miroslava; Tanner, W.

    2008-01-01

    Roč. 183, č. 6 (2008), s. 1075-1088 ISSN 0021-9525 R&D Projects: GA ČR GA204/06/0009; GA ČR GA204/07/0133; GA ČR GC204/08/J024 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50200510 Keywords : Lithium acetate * Membrane compartment of Can1 * Monomeric red fluorescent protein Subject RIV: EA - Cell Biology Impact factor: 9.120, year: 2008

  2. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  3. The ROOT HAIRLESS 1 gene encodes a nuclear protein required for root hair initiation in Arabidopsis.

    Science.gov (United States)

    Schneider, K; Mathur, J; Boudonck, K; Wells, B; Dolan, L; Roberts, K

    1998-07-01

    The epidermis of Arabidopsis wild-type primary roots, in which some cells grow hairs and others remain hairless in a position-dependent manner, has become an established model system to study cell differentiation. Here we present a molecular analysis of the RHL1 (ROOT HAIRLESS 1) gene that, if mutated, prevents the formation of hairs on primary roots and causes a seedling lethal phenotype. We have cloned the RHL1 gene by use of a T-DNA-tagged mutant and found that it encodes a protein that appears to be plant specific. The predicted RHL1 gene product is a small hydrophilic protein (38.9 kD) containing putative nuclear localization signals and shows no significant homology to any known amino acid sequence. We demonstrate that a 78-amino-acid sequence at its amino terminus is capable of directing an RHL1-GFP fusion protein to the nucleus. The RHL1 transcript is present throughout the wild-type plant and in suspension culture cells, but in very low amounts, suggesting a regulatory function for the RHL1 protein. Structural evidence suggests a role for the RHL1 gene product in the nucleolus. We have examined the genetic relationship between RHL1 and GL2, an inhibitor of root hair initiation in non-hair cells. Our molecular and genetic data with double mutants, together with the expression analysis of a GL2 promoter-GUS reporter gene construct, indicate that the RHL1 gene acts independently of GL2.

  4. Genetically encoded releasable photo-cross-linking strategies for studying protein-protein interactions in living cells.

    Science.gov (United States)

    Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Xie, Xiao; Lin, Shixian; Hao, Ziyang; Zheng, Huangtao; Chen, Peng R

    2017-10-01

    Although protein-protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey-bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey-bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.

  5. Clusters of proteins in bio-membranes: insights into the roles of interaction potential shapes and of protein diversity

    OpenAIRE

    Meilhac, Nicolas; Destainville, Nicolas

    2011-01-01

    It has recently been proposed that proteins embedded in lipidic bio-membranes can spontaneously self-organize into stable small clusters, or membrane nano-domains, due to the competition between short-range attractive and longer-range repulsive forces between proteins, specific to these systems. In this paper, we carry on our investigation, by Monte Carlo simulations, of different aspects of cluster phases of proteins in bio-membranes. First, we compare different long-range potentials (includ...

  6. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  7. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP g...

  8. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F

    DEFF Research Database (Denmark)

    Helin, K; Lees, J A; Vidal, M

    1992-01-01

    The retinoblastoma protein (pRB) plays an important role in the control of cell proliferation, apparently by binding to and regulating cellular transcription factors such as E2F. Here we describe the characterization of a cDNA clone that encodes a protein with properties of E2F. This clone, RBP3...

  9. Facilitation of yeast-lethal membrane protein production by detoxifying with GFP tagging.

    Science.gov (United States)

    Oshikane, Hiroyuki; Watabe, Masahiko; Nakaki, Toshio

    2018-03-27

    Recombinant techniques for target protein production have been rapidly established and widely utilised in today's biological research. Nevertheless, methods for membrane protein production have yet to be developed, since membrane proteins generally tend to be expressed at low levels, easily aggregated, and/or even toxic to their host cells. Here we report that a GFP-tagging technique can be applied for the stable production of membrane proteins that are toxic to their host cells when overexpressed, paving the way for future advances in membrane protein biochemistry and drug development. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  11. Ultrananocrystalline Diamond Membranes for Detection of High-Mass Proteins

    Science.gov (United States)

    Kim, H.; Park, J.; Aksamija, Z.; Arbulu, M.; Blick, R. H.

    2016-12-01

    Mechanical resonators realized on the nanoscale by now offer applications in mass sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical mass sensors should be of extremely small size to achieve zepto- or yoctogram sensitivity in weighing single molecules similar to a classical scale. However, the small effective size and long response time for weighing biomolecules with a cantilever restricts their usefulness as a high-throughput method. Commercial mass spectrometry (MS), on the other hand, such as electrospray ionization and matrix-assisted laser desorption and ionization (MALDI) time of flight (TOF) and their charge-amplifying detectors are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as TOF. The principle we describe here for ion detection is based on the conversion of kinetic energy of the biomolecules into thermal excitation of chemical vapor deposition diamond nanomembranes via phonons followed by phonon-mediated detection via field emission of thermally emitted electrons. We fabricate ultrathin diamond membranes with large lateral dimensions for MALDI TOF MS of high-mass proteins. These diamond membranes are realized by straightforward etching methods based on semiconductor processing. With a minimal thickness of 100 nm and cross sections of up to 400 ×400 μ m2 , the membranes offer extreme aspect ratios. Ion detection is demonstrated in MALDI TOF analysis over a broad range from insulin to albumin. The resulting data in detection show much enhanced resolution as compared to existing detectors, which can offer better sensitivity and overall performance in resolving protein masses.

  12. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sca1, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2006-02-01

    Full Text Available Abstract Background Among the 17 genes encoding autotransporter proteins of the "surface cell antigen" (sca family in the currently sequenced Rickettsia genomes, ompA, sca5 (ompB and sca4 (gene D, have been extensively used for identification and phylogenetic purposes for Rickettsia species. However, none of these genes is present in all 20 currently validated Rickettsia species. Of the remaining 14 sca genes, sca1 is the only gene to be present in all nine sequenced Rickettsia genomes. To estimate whether the sca1 gene is present in all Rickettsia species and its usefulness as an identification and phylogenetic tool, we searched for sca1genes in the four published Rickettsia genomes and amplified and sequenced this gene in the remaining 16 validated Rickettsia species. Results Sca1 is the only one of the 17 rickettsial sca genes present in all 20 Rickettsia species. R. prowazekii and R. canadensis exhibit a split sca1 gene whereas the remaining species have a complete gene. Within the sca1 gene, we identified a 488-bp variable sequence fragment that can be amplified using a pair of conserved primers. Sequences of this fragment are specific for each Rickettsia species. The phylogenetic organization of Rickettsia species inferred from the comparison of sca1 sequences strengthens the classification based on the housekeeping gene gltA and is similar to those obtained from the analyses of ompA, sca5 and sca4, thus suggesting similar evolutionary constraints. We also observed that Sca1 protein sequences have evolved under a dual selection pressure: with the exception of typhus group rickettsiae, the amino-terminal part of the protein that encompasses the predicted passenger domain, has evolved under positive selection in rickettsiae. This suggests that the Sca1 protein interacts with the host. In contrast, the C-terminal portion containing the autotransporter domain has evolved under purifying selection. In addition, sca1 is transcribed in R. conorii

  14. Changes in exposed membrane proteins during in vitro capacitation of boar sperm

    International Nuclear Information System (INIS)

    Berger, T.

    1990-01-01

    Exposed plasma membrane proteins were labeled with 125 I before and after incubation of boar sperm under capacitating conditions. Labeled protein profiles were compared to the ability of the sperm to penetrate zona-free hamster ova. Quantitatively, the labeled sperm membrane proteins were primarily low Mr prior to capacitation. The majority of the labeled seminal plasma protein was also low Mr. After capacitation, two new proteins (64,000 Mr and 78,000 Mr) were labeled. Sperm did not exhibit these exposed membrane proteins when incubated under noncapacitating conditions. Appearance of these proteins was not correlated to the percentage of acrosome-reacted sperm. Although the 64,000 Mr protein was not consistently observed, the relative labeling of the 78,000 Mr protein was highly correlated with the ability of sperm to fuse with zona-free hamster ova. The 78,000 Mr protein may be a sperm protein involved in fusion with the egg plasma membrane

  15. Vaccination with DNA Encoding an Immunodominant Myelin Basic Protein Peptide Targeted to Fc of Immunoglobulin G Suppresses Experimental Autoimmune Encephalomyelitis

    OpenAIRE

    Lobell, Anna; Weissert, Robert; Storch, Maria K.; Svanholm, Cecilia; de Graaf, Katrien L.; Lassmann, Hans; Andersson, Roland; Olsson, Tomas; Wigzell, Hans

    1998-01-01

    We explore here if vaccination with DNA encoding an autoantigenic peptide can suppress autoimmune disease. For this purpose we used experimental autoimmune encephalomyelitis (EAE), which is an autoaggressive disease in the central nervous system and an animal model for multiple sclerosis. Lewis rats were vaccinated with DNA encoding an encephalitogenic T cell epitope, guinea pig myelin basic protein peptide 68–85 (MBP68–85), before induction of EAE with MBP68–85 in complete Freund's adjuvant....

  16. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes

    DEFF Research Database (Denmark)

    Schubert, J.; Siekierska, A.; Langlois, M.

    2014-01-01

    Febrile seizures affect 2-4% of all children(1) and have a strong genetic component(2). Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)(3-5) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding...... syntaxin-1B(6), that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees(7,8) identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations....... Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes....

  17. Comparative genomic analyses of transport proteins encoded within the genomes of Leptospira species.

    Science.gov (United States)

    Buyuktimkin, Bora; Saier, Milton H

    2015-11-01

    Select species of the bacterial genus Leptospira are causative agents of leptospirosis, an emerging global zoonosis affecting nearly one million people worldwide annually. We examined two Leptospira pathogens, Leptospira interrogans serovar Lai str. 56601 and Leptospira borgpetersenii serovar Hardjo-bovis str. L550, as well as the free-living leptospiral saprophyte, Leptospira biflexa serovar Patoc str. 'Patoc 1 (Ames)'. The transport proteins of these leptospires were identified and compared using bioinformatics to gain an appreciation for which proteins may be related to pathogenesis and saprophytism. L. biflexa possesses a disproportionately high number of secondary carriers for metabolite uptake and environmental adaptability as well as an increased number of inorganic cation transporters providing ionic homeostasis and effective osmoregulation in a rapidly changing environment. L. interrogans and L. borgpetersenii possess far fewer transporters, but those that they have are remarkably similar, with near-equivalent representation in most transporter families. These two Leptospira pathogens also possess intact sphingomyelinases, holins, and virulence-related outer membrane porins. These virulence-related factors, in conjunction with decreased transporter substrate versatility, indicate that pathogenicity was accompanied by progressively narrowing ecological niches and the emergence of a limited set of proteins responsible for host invasion. The variability of host tropism and mortality rates by infectious leptospires suggests that small differences in individual sets of proteins play important physiological and pathological roles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparative analyses of transport proteins encoded within the genomes of Leptospira species.

    Science.gov (United States)

    Buyuktimkin, Bora; Saier, Milton H

    2016-09-01

    Select species of the bacterial genus Leptospira are causative agents of leptospirosis, an emerging global zoonosis affecting nearly one million people worldwide annually. We examined two Leptospira pathogens, Leptospira interrogans serovar Lai str. 56601 and Leptospira borgpetersenii serovar Hardjo-bovis str. L550, as well as the free-living leptospiral saprophyte, Leptospira biflexa serovar Patoc str. 'Patoc 1 (Ames)'. The transport proteins of these leptospires were identified and compared using bioinformatics to gain an appreciation for which proteins may be related to pathogenesis and saprophytism. L. biflexa possesses a disproportionately high number of secondary carriers for metabolite uptake and environmental adaptability as well as an increased number of inorganic cation transporters providing ionic homeostasis and effective osmoregulation in a rapidly changing environment. L. interrogans and L. borgpetersenii possess far fewer transporters, but those that they all have are remarkably similar, with near-equivalent representation in most transporter families. These two Leptospira pathogens also possess intact sphingomyelinases, holins, and virulence-related outer membrane porins. These virulence-related factors, in conjunction with decreased transporter substrate versatility, indicate that pathogenicity arose in Leptospira correlating to progressively narrowing ecological niches and the emergence of a limited set of proteins responsible for host invasion. The variability of host tropism and mortality rates by infectious leptospires suggests that small differences in individual sets of proteins play important physiological and pathological roles. Copyright © 2016. Published by Elsevier Ltd.

  19. Nitrilase and Fhit homologs are encoded as fusion proteins in Drosophila melanogaster and Caenorhabditis elegans

    Science.gov (United States)

    Pekarsky, Yuri; Campiglio, Manuela; Siprashvili, Zurab; Druck, Teresa; Sedkov, Yurii; Tillib, Sergei; Draganescu, Alexandra; Wermuth, Peter; Rothman, Joel H.; Huebner, Kay; Buchberg, Arthur M.; Mazo, Alexander; Brenner, Charles; Croce, Carlo M.

    1998-01-01

    The tumor suppressor gene FHIT encompasses the common human chromosomal fragile site at 3p14.2 and numerous cancer cell biallelic deletions. To study Fhit function we cloned and characterized FHIT genes from Drosophila melanogaster and Caenorhabditis elegans. Both genes code for fusion proteins in which the Fhit domain is fused with a novel domain showing homology to bacterial and plant nitrilases; the D. melanogaster fusion protein exhibited diadenosine triphosphate (ApppA) hydrolase activity expected of an authentic Fhit homolog. In human and mouse, the nitrilase homologs and Fhit are encoded by two different genes: FHIT and NIT1, localized on chromosomes 3 and 1 in human, and 14 and 1 in mouse, respectively. We cloned and characterized human and murine NIT1 genes and determined their exon-intron structure, patterns of expression, and alternative processing of their mRNAs. The tissue specificity of expression of murine Fhit and Nit1 genes was nearly identical. Because fusion proteins with dual or triple enzymatic activities have been found to carry out specific steps in a given biochemical or biosynthetic pathway, we postulate that Fhit and Nit1 likewise collaborate in a biochemical or cellular pathway in mammalian cells. PMID:9671749

  20. spn-F encodes a novel protein that affects oocyte patterning and bristle morphology in Drosophila.

    Science.gov (United States)

    Abdu, Uri; Bar, Dikla; Schüpbach, Trudi

    2006-04-01

    The anteroposterior and dorsoventral axes of the Drosophila embryo are established during oogenesis through the activities of Gurken (Grk), a Tgfalpha-like protein, and the Epidermal growth factor receptor (Egfr). spn-F mutant females produce ventralized eggs similar to the phenotype produced by mutations in the grk-Egfr pathway. We found that the ventralization of the eggshell in spn-F mutants is due to defects in the localization and translation of grk mRNA during mid-oogenesis. Analysis of the microtubule network revealed defects in the organization of the microtubules around the oocyte nucleus. In addition, spn-F mutants have defective bristles. We cloned spn-F and found that it encodes a novel coiled-coil protein that localizes to the minus end of microtubules in the oocyte, and this localization requires the microtubule network and a Dynein heavy chain gene. We also show that Spn-F interacts directly with the Dynein light chain Ddlc-1. Our results show that we have identified a novel protein that affects oocyte axis determination and the organization of microtubules during Drosophila oogenesis.

  1. Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein.

    Science.gov (United States)

    Vos, Seychelle M; Lyubimov, Artem Y; Hershey, David M; Schoeffler, Allyn J; Sengupta, Sugopa; Nagaraja, Valakunja; Berger, James M

    2014-07-01

    Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coli gyrase, a type IIA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holoenzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state. © 2014 Vos et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Regulation of dsr genes encoding proteins responsible for the oxidation of stored sulfur in Allochromatium vinosum.

    Science.gov (United States)

    Grimm, Frauke; Dobler, Nadine; Dahl, Christiane

    2010-03-01

    Sulfur globules are formed as obligatory intermediates during the oxidation of reduced sulfur compounds in many environmentally important photo- and chemolithoautotrophic bacteria. It is well established that the so-called Dsr proteins are essential for the oxidation of zero-valent sulfur accumulated in the globules; however, hardly anything is known about the regulation of dsr gene expression. Here, we present a closer look at the regulation of the dsr genes in the phototrophic sulfur bacterium Allochromatium vinosum. The dsr genes are expressed in a reduced sulfur compound-dependent manner and neither sulfite, the product of the reverse-acting dissimilatory sulfite reductase DsrAB, nor the alternative electron donor malate inhibit the gene expression. Moreover, we show the oxidation of sulfur to sulfite to be the rate-limiting step in the oxidation of sulfur to sulfate as sulfate production starts concomitantly with the upregulation of the expression of the dsr genes. Real-time RT-PCR experiments suggest that the genes dsrC and dsrS are additionally expressed from secondary internal promoters, pointing to a special function of the encoded proteins. Earlier structural analyses indicated the presence of a helix-turn-helix (HTH)-like motif in DsrC. We therefore assessed the DNA-binding capability of the protein and provide evidence for a possible regulatory function of DsrC.

  3. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium.

    Science.gov (United States)

    Todd, Sarah J; Moir, Arthur J G; Johnson, Matt J; Moir, Anne

    2003-06-01

    The exosporium is the outermost layer of spores of Bacillus cereus and its close relatives Bacillus anthracis and Bacillus thuringiensis. For these pathogens, it represents the surface layer that makes initial contact with the host. To date, only the BclA glycoprotein has been described as a component of the exosporium; this paper defines 10 more tightly associated proteins from the exosporium of B. cereus ATCC 10876, identified by N-terminal sequencing of proteins from purified, washed exosporium. Likely coding sequences were identified from the incomplete genome sequence of B. anthracis or B. cereus ATCC 14579, and the precise corresponding sequence from B. cereus ATCC 10876 was defined by PCR and sequencing. Eight genes encode likely structural components (exsB, exsC, exsD, exsE, exsF, exsG, exsJ, and cotE). Several proteins of the exosporium are related to morphogenetic and outer spore coat proteins of B. subtilis, but most do not have homologues in B. subtilis. ExsE is processed from a larger precursor, and the CotE homologue appears to have been C-terminally truncated. ExsJ contains a domain of GXX collagen-like repeats, like the BclA exosporium protein of B. anthracis. Although most of the exosporium genes are scattered on the genome, bclA and exsF are clustered in a region flanking the rhamnose biosynthesis operon; rhamnose is part of the sugar moiety of spore glycoproteins. Two enzymes, alanine racemase and nucleoside hydrolase, are tightly adsorbed to the exosporium layer; they could metabolize small molecule germinants and may reduce the sensitivity of spores to these, limiting premature germination.

  4. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    International Nuclear Information System (INIS)

    Zhou, Donghua H.; Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.; Rienstra, Chad M.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

  5. Nanoscopic dynamics of bicontinous microemulsions: effect of membrane associated protein.

    Science.gov (United States)

    Sharma, V K; Hayes, Douglas G; Urban, Volker S; O'Neill, Hugh M; Tyagi, M; Mamontov, E

    2017-07-19

    Bicontinous microemulsions (BμE) generally consist of nanodomains formed by surfactant in a mixture of water and oil at nearly equal proportions and are potential candidates for the solubilization and purification of membrane proteins. Here we present the first time report of nanoscopic dynamics of surfactant monolayers within BμEs formed by the anionic surfactant sodium dodecyl sulfate (SDS) measured on the nanosecond to picosecond time scale using quasielastic neutron scattering (QENS). BμEs investigated herein consisted of middle phases isolated from Winsor-III microemulsion systems that were formed by mixing aqueous and oil solutions under optimal conditions. QENS data indicates that surfactants undergo two distinct motions, namely (i) lateral motion along the surface of the oil nanodomains and (ii) localized internal motion. Lateral motion can be described using a continuous diffusion model, from which the lateral diffusion coefficient is obtained. Internal motion of surfactant is described using a model which assumes that a fraction of the surfactants' hydrogens undergoes localized translational diffusion that could be considered confined within a spherical volume. The effect of cytochrome c, an archetypal membrane-associated protein known to strongly partition near the surfactant head groups in BμEs (a trend supported by small-angle X-ray scattering [SAXS] analysis), on the dynamics of BμE has also been investigated. QENS results demonstrated that cytochrome c significantly hindered both the lateral and the internal motions of surfactant. The lateral motion was more strongly affected: a reduction of the lateral diffusion coefficient by 33% was measured. This change is mainly attributable to the strong association of cytochrome c with oppositely charged SDS. In contrast, analysis of SAXS data suggested that thermal fluctuations (for a longer length and slower time scale compared to QENS) were increased upon incorporation of cytochrome c. This study

  6. Protein kinase and phosphatase activities of thylakoid membranes

    International Nuclear Information System (INIS)

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg 2+ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg 2+ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs

  7. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  8. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  9. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  10. Influence of calcium on direct incorporation of membrane proteins into in-plane lipid bilayer

    International Nuclear Information System (INIS)

    Berquand, Alexandre; Levy, Daniel; Gubellini, Francesca; Le Grimellec, Christian; Milhiet, Pierre-Emmanuel

    2007-01-01

    Reconstitution of transmembrane proteins by direct incorporation into supported lipid bilayers (SLBs) is a new method to provide suitable samples for high-resolution atomic force microscopy (AFM) analysis of membrane proteins. First experiments have reported successful incorporation of proteins into detergent-destabilized SLBs. Here, we analyzed by AFM the incorporation of membrane proteins in the presence of calcium, a divalent cation functionally important for several membrane proteins. Using lipid-phase-separated membranes, we first show that calcium strongly stabilizes the SLBs decreasing the insertion of low cmc detergents, dodecyl-β-maltoside, dodecyl-β-thiomaltoside, and N-hexadecylphosphocholine (Fos-Choline-16) and further insertion of proteins. However, high yield of protein insertion is recovered in the presence of calcium by increasing the detergent concentration in the solution. These data revealed the importance of the calcium in the structure of SLBs and provided new insights into the mechanism of protein insertion into these model membranes

  11. Membrane-protein integration and the role of the translocation channel.

    Science.gov (United States)

    Rapoport, Tom A; Goder, Veit; Heinrich, Sven U; Matlack, Kent E S

    2004-10-01

    Most eukaryotic membrane proteins are integrated into the lipid bilayer during their synthesis at the endoplasmic reticulum (ER). Their integration occurs with the help of a protein-conducting channel formed by the heterotrimeric Sec61 membrane-protein complex. The crystal structure of an archaeal homolog of the complex suggests mechanisms that enable the channel to open across the membrane and to release laterally hydrophobic transmembrane segments of nascent membrane proteins into lipid. Many aspects of membrane-protein integration remain controversial and poorly understood, but new structural data provide testable hypotheses. We propose a model of how the channel recognizes transmembrane segments, orients them properly with respect to the plane of the membrane and releases them into lipid. We also discuss how the channel would prevent small molecules from crossing the lipid bilayer while it is integrating proteins.

  12. Genetic characterization of psp encoding the DING protein in Pseudomonas fluorescens SBW25

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Xian

    2007-12-01

    Full Text Available Abstract Background DING proteins constitute a conserved and broadly distributed set of proteins found in bacteria, fungi, plants and animals (including humans. Characterization of DING proteins from animal and plant tissues indicated ligand-binding ability suggesting a role for DING proteins in cell signaling and biomineralization. Surprisingly, the genes encoding DING proteins in eukaryotes have not been identified in the eukaryotic genome or EST databases. Recent discovery of a DING homologue (named Psp here in the genome of Pseudomonas fluorescens SBW25 provided a unique opportunity to investigate the physiological roles of DING proteins. P. fluorescens SBW25 is a model bacterium that can efficiently colonize plant surfaces and enhance plant health. In this report we genetically characterize Psp with a focus on conditions under which psp is expressed and the protein exported. Results Psp is closely related to the periplasmic Pi binding component of the ABC-type phosphate transporter system (Pst. psp is flanked by a gene cluster predicted to function as a type II protein secretion system (Hxc. Deletion analysis combined with chromosomally integrated 'lacZ fusions showed that both psp and pstC are induced by Pi limitation and that pstC is required for competitive growth of the bacterium in Pi limited medium. hxcR is not regulated by Pi limitation. Psp was detected (using anti-DING serum in the supernatant of wild-type culture but was greatly reduced in the supernatant of an isogenic strain carrying an hxcR mutation (ΔhxcR. A promoter fusion between hxcR and a promoterless copy of a gene ('dapB essential for growth in the plant environment showed that expression of hxcR is elevated during colonization of sugar beet seedlings. A similar analysis of psp showed that it is not induced in the plant environment. Conclusion Psp gene is expressed under conditions of Pi limitation. It is an exoprotein secreted mainly via the Hxc type II secretion

  13. Genetic characterization of psp encoding the DING protein in Pseudomonas fluorescens SBW25.

    Science.gov (United States)

    Zhang, Xue-Xian; Scott, Ken; Meffin, Rebecca; Rainey, Paul B

    2007-12-18

    DING proteins constitute a conserved and broadly distributed set of proteins found in bacteria, fungi, plants and animals (including humans). Characterization of DING proteins from animal and plant tissues indicated ligand-binding ability suggesting a role for DING proteins in cell signaling and biomineralization. Surprisingly, the genes encoding DING proteins in eukaryotes have not been identified in the eukaryotic genome or EST databases. Recent discovery of a DING homologue (named Psp here) in the genome of Pseudomonas fluorescens SBW25 provided a unique opportunity to investigate the physiological roles of DING proteins. P. fluorescens SBW25 is a model bacterium that can efficiently colonize plant surfaces and enhance plant health. In this report we genetically characterize Psp with a focus on conditions under which psp is expressed and the protein exported. Psp is closely related to the periplasmic Pi binding component of the ABC-type phosphate transporter system (Pst). psp is flanked by a gene cluster predicted to function as a type II protein secretion system (Hxc). Deletion analysis combined with chromosomally integrated 'lacZ fusions showed that both psp and pstC are induced by Pi limitation and that pstC is required for competitive growth of the bacterium in Pi limited medium. hxcR is not regulated by Pi limitation. Psp was detected (using anti-DING serum) in the supernatant of wild-type culture but was greatly reduced in the supernatant of an isogenic strain carrying an hxcR mutation (DeltahxcR). A promoter fusion between hxcR and a promoterless copy of a gene ('dapB) essential for growth in the plant environment showed that expression of hxcR is elevated during colonization of sugar beet seedlings. A similar analysis of psp showed that it is not induced in the plant environment. Psp gene is expressed under conditions of Pi limitation. It is an exoprotein secreted mainly via the Hxc type II secretion system, whose expression is elevated on plant surfaces

  14. Viroids: how to infect a host and cause disease without encoding proteins.

    Science.gov (United States)

    Navarro, Beatriz; Gisel, Andreas; Rodio, Maria-Elena; Delgado, Sonia; Flores, Ricardo; Di Serio, Francesco

    2012-07-01

    Despite being composed by a single-stranded, circular, non-protein-coding RNA of just 246-401 nucleotides (nt), viroids can incite in their host plants symptoms similar to those caused by DNA and RNA viruses, which have genomes at least 20-fold bigger and encode proteins. On the other hand, certain non-protein-coding plant satellite RNAs display structural similarities with viroids but for replication and transmission they need to parasitize specific helper viruses (modifying concomitantly the symptoms they induce). While phenotypic alterations accompanying infection by viruses may partly result from expressing the proteins they code for, how the non-protein-coding viroids (and satellite RNAs) cause disease remains a conundrum. Initial ideas on viroid pathogenesis focused on a direct interaction of the genomic RNA with host proteins resulting in their malfunction. With the advent of RNA silencing, it was alternatively proposed that symptoms could be produced by viroid-derived small RNAs (vd-sRNAs) -generated by the host defensive machinery- targeting specific host mRNA or DNA sequences for post-transcriptional or transcriptional gene silencing, respectively, a hypothesis that could also explain pathogenesis of non-protein-coding satellite RNAs. Evidence sustaining this view has been circumstantial, but recent data provide support for it in two cases: i) the yellow symptoms associated with a specific satellite RNA result from a 22-nt small RNA (derived from the 24-nt fragment of the satellite genome harboring the pathogenic determinant), which is complementary to a segment of the mRNA of the chlorophyll biosynthetic gene CHLI and targets it for cleavage by the RNA silencing machinery, and ii) two 21-nt vd-sRNAS containing the pathogenic determinant of the albino phenotype induced by a chloroplast-replicating viroid target for cleavage the mRNA coding for the chloroplastic heat-shock protein 90 via RNA silencing too. This evidence, which is compelling for the

  15. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis

    Directory of Open Access Journals (Sweden)

    González Mauricio

    2009-09-01

    Full Text Available Abstract Background Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis. Results Microarrays were constructed to confirm induction of expression and to determine the temporal profile of isolated subtracted cDNAs during embryo development. We identified a set of 118 genes whose expression levels increased significantly in at least one developmental interval compared with a reference interval. Of these genes, 53% had a phenotype and/or molecular function reported in the literature, whereas 47% were essentially uncharacterized. Clustering analysis revealed demarcated transcript groups with maximum gene activity at distinct developmental intervals. In situ hybridization assays were carried out on 23 uncharacterized genes, 15 of which proved to have spatiotemporally restricted expression patterns. Among these 15 uncharacterized genes, 13 were found to encode putative secreted and transmembrane proteins. For three of them we validated our protein sequence predictions by expressing their cDNAs in Drosophila S2R+ cells and analyzed the subcellular distribution of recombinant proteins. We then focused on the functional characterization of the gene CG6234. Inhibition of CG6234 by RNA interference resulted in morphological defects in embryos, suggesting the involvement of this gene in germ band retraction. Conclusion Our data have yielded a list of developmentally regulated D. melanogaster genes and their expression profiles during embryogenesis and provide new information on the spatiotemporal expression patterns of several uncharacterized genes. In particular, we

  16. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis.

    Science.gov (United States)

    Zúñiga, Alejandro; Hödar, Christian; Hanna, Patricia; Ibáñez, Freddy; Moreno, Pablo; Pulgar, Rodrigo; Pastenes, Luis; González, Mauricio; Cambiazo, Verónica

    2009-09-22

    Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis. Microarrays were constructed to confirm induction of expression and to determine the temporal profile of isolated subtracted cDNAs during embryo development. We identified a set of 118 genes whose expression levels increased significantly in at least one developmental interval compared with a reference interval. Of these genes, 53% had a phenotype and/or molecular function reported in the literature, whereas 47% were essentially uncharacterized. Clustering analysis revealed demarcated transcript groups with maximum gene activity at distinct developmental intervals. In situ hybridization assays were carried out on 23 uncharacterized genes, 15 of which proved to have spatiotemporally restricted expression patterns. Among these 15 uncharacterized genes, 13 were found to encode putative secreted and transmembrane proteins. For three of them we validated our protein sequence predictions by expressing their cDNAs in Drosophila S2R+ cells and analyzed the subcellular distribution of recombinant proteins. We then focused on the functional characterization of the gene CG6234. Inhibition of CG6234 by RNA interference resulted in morphological defects in embryos, suggesting the involvement of this gene in germ band retraction. Our data have yielded a list of developmentally regulated D. melanogaster genes and their expression profiles during embryogenesis and provide new information on the spatiotemporal expression patterns of several uncharacterized genes. In particular, we recovered a substantial number of unknown genes encoding

  17. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    Science.gov (United States)

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-03-14

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Influenza A virus encoding secreted Gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins.

    Directory of Open Access Journals (Sweden)

    Nadine Eckert

    Full Text Available Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI zanamivir and the host cell interferon-inducible transmembrane (IFITM proteins 1-3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels.

  19. Latent Membrane Protein 1 Deletion Mutants Accumulate in Reed-Sternberg Cells of Human Immunodeficiency Virus-Related Hodgkin's Lymphoma

    OpenAIRE

    Guidoboni, Massimo; Ponzoni, Maurilio; Caggiari, Laura; Lettini, Antonia A.; Vago, Luca; De Re, Valli; Gloghini, Annunziata; Zancai, Paola; Carbone, Antonino; Boiocchi, Mauro; Dolcetti, Riccardo

    2005-01-01

    The origin and biological significance of deletions at the 3′ end of the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) gene are still controversial. We herein demonstrate that LMP-1 deletion mutants are highly associated with human immunodeficiency virus-related Hodgkin's lymphoma (HIV-HL) of Italian patients (29 of 31 cases; 93.5%), a phenomenon that is not due to a peculiar distribution of EBV strains in this area. In fact, although HIV-HL patients are infected by multi...

  20. Limited cross-reactivity among domains of the Plasmodium falciparum clone 3D7 erythrocyte membrane protein 1 family

    DEFF Research Database (Denmark)

    Joergensen, Louise; Turner, Louise; Magistrado, Pamela

    2006-01-01

    The var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family is responsible for antigenic variation and sequestration of infected erythrocytes during malaria. We have previously grouped the 60 PfEMP1 variants of P. falciparum clone 3D7 into groups A and B/A (category A...... from clone 3D7 by using a competition enzyme-linked immunosorbent assay and a pool of plasma from 63 malaria-exposed Tanzanian individuals. We conclude that naturally acquired antibodies are largely directed toward epitopes varying between different domains with a few, mainly category A, domains...

  1. Functional recruitment of human complement inhibitor C4B-binding protein to outer membrane protein Rck of Salmonella.

    Directory of Open Access Journals (Sweden)

    Derek K Ho

    Full Text Available Resistance to complement mediated killing, or serum resistance, is a common trait of pathogenic bacteria. Rck is a 17 kDa outer membrane protein encoded on the virulence plasmid of Salmonella enterica serovars Typhimurium and Enteritidis. When expressed in either E. coli or S. enterica Typhimurium, Rck confers LPS-independent serum resistance as well as the ability to bind to and invade mammalian cells. Having recently shown that Rck binds the inhibitor of the alternative pathway of complement, factor H (fH, we hypothesized that Rck can also bind the inhibitor of the classical and lectin pathways, C4b-binding protein (C4BP. Using flow cytometry and direct binding assays, we demonstrate that E. coli expressing Rck binds C4BP from heat-inactivated serum and by using the purified protein. No binding was detected in the absence of Rck expression. C4BP bound to Rck is functional, as we observed factor I-mediated cleavage of C4b in cofactor assays. In competition assays, binding of radiolabeled C4BP to Rck was reduced by increasing concentrations of unlabeled protein. No effect was observed by increasing heparin or salt concentrations, suggesting mainly non-ionic interactions. Reduced binding of C4BP mutants lacking complement control protein domains (CCPs 7 or 8 was observed compared to wt C4BP, suggesting that these CCPs are involved in Rck binding. While these findings are restricted to Rck expression in E. coli, these data suggest that C4BP binding may be an additional mechanism of Rck-mediated complement resistance.

  2. The effects of a protein osmolyte on the stability of the integral membrane protein glycerol facilitator.

    Science.gov (United States)

    Baturin, Simon; Galka, Jamie J; Piyadasa, Hadeesha; Gajjeraman, S; O'Neil, Joe D

    2014-12-01

    Osmolytes are naturally occurring molecules used by a wide variety of organisms to stabilize proteins under extreme conditions of temperature, salinity, hydrostatic pressure, denaturant concentration, and desiccation. The effects of the osmolyte trimethylamine N-oxide (TMAO) as well as the influence of detergent head group and acyl chain length on the stability of the Escherichia coli integral membrane protein glycerol facilitator (GF) tetramer to thermal and chemical denaturation by sodium dodecyl sulphate (SDS) are reported. TMAO promotes the association of the normally tetrameric α-helical protein into higher order oligomers in dodecyl-maltoside (DDM), but not in tetradecyl-maltoside (TDM), lyso-lauroylphosphatidyl choline (LLPC), or lyso-myristoylphosphatidyl choline (LMPC), as determined by dynamic light scattering (DLS); an octameric complex is particularly stable as indicated by SDS polyacrylamide gel electrophoresis. TMAO increases the heat stability of the GF tetramer an average of 10 °C in the 4 detergents and also protects the protein from denaturation by SDS. However, it did not promote re-association to the tetramer when added to SDS-dissociated protein. TMAO also promotes the formation of rod-like detergent micelles, and DLS was found to be useful for monitoring the structure of the protein and the redistribution of detergent during thermal dissociation of the protein. The protein is more thermally stable in detergents with the phosphatidylcholine head group (LLPC and LMPC) than in the maltoside detergents. The implications of the results for osmolyte mechanism, membrane protein stability, and protein-protein interactions are discussed.

  3. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  4. NMR-based detection of hydrogen/deuterium exchange in liposome-embedded membrane proteins.

    Directory of Open Access Journals (Sweden)

    Xuejun Yao

    Full Text Available Membrane proteins play key roles in biology. Determination of their structure in a membrane environment, however, is highly challenging. To address this challenge, we developed an approach that couples hydrogen/deuterium exchange of membrane proteins to rapid unfolding and detection by solution-state NMR spectroscopy. We show that the method allows analysis of the solvent protection of single residues in liposome-embedded proteins such as the 349-residue Tom40, the major protein translocation pore in the outer mitochondrial membrane, which has resisted structural analysis for many years.

  5. Membrane-Associated Transporter Protein (MATP Regulates Melanosomal pH and Influences Tyrosinase Activity.

    Directory of Open Access Journals (Sweden)

    Bum-Ho Bin

    Full Text Available The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP. Mutations of this gene cause oculocutaneous albinism type 4 (OCA4. However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.

  6. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interaction.

    Directory of Open Access Journals (Sweden)

    L David Kuykendall

    Full Text Available Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential 'accessory' genes for nitrogen fixation (nif, nodulation and host specificity (nod. A related bacterium, psyllid-vectored 'Ca. Liberibacter asiaticus,' is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the 'Ca. Liberibacter asiaticus' genome. Only two 'Ca. Liberibacter asiaticus' proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na(+/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and 'Ca. Liberibacter asiaticus' orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤ E-10 with 'Ca. Liberibacter asiaticus' proteins, often present as multiple orthologs of single 'Ca. Liberibacter asiaticus' proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational

  7. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions.

    Directory of Open Access Journals (Sweden)

    Francisco Muñoz-Martínez

    Full Text Available Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF. CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was

  8. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; García-Fontana, Cristina; Rico-Jiménez, Miriam; Alfonso, Carlos; Krell, Tino

    2012-01-01

    Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be

  9. Further advances in the production of membrane proteins in Pichia pastoris.

    Science.gov (United States)

    Hedfalk, Kristina

    2013-01-01

    Membrane proteins have essential cellular functions and are therefore of high interest in both academia and industry. Many efforts have been made on producing those targets in yields allowing crystallization experiments aiming for high resolution structures and mechanistic understanding. The first step of production provides a crucial barrier to overcome, but what we now see, is great progress in membrane protein structural determination in a relatively short time. Achievements on recombinant protein production have been essential for this development and the yeast Pichia pastoris is the most commonly used host for eukaryotic membrane proteins. High-resolution structures nicely illustrate the successes in protein production, and this is the measure used by Ramón and Marin in their review "Advances in the production of membrane proteins in Pichia pastoris" from 2011. Here, additional advances on production and crystallization of eukaryotic membrane proteins are described and reflected on.

  10. MEDELLER: homology-based coordinate generation for membrane proteins.

    Science.gov (United States)

    Kelm, Sebastian; Shi, Jiye; Deane, Charlotte M

    2010-11-15

    Membrane proteins (MPs) are important drug targets but knowledge of their exact structure is limited to relatively few examples. Existing homology-based structure prediction methods are designed for globular, water-soluble proteins. However, we are now beginning to have enough MP structures to justify the development of a homology-based approach specifically for them. We present a MP-specific homology-based coordinate generation method, MEDELLER, which is optimized to build highly reliable core models. The method outperforms the popular structure prediction programme Modeller on MPs. The comparison of the two methods was performed on 616 target-template pairs of MPs, which were classified into four test sets by their sequence identity. Across all targets, MEDELLER gave an average backbone root mean square deviation (RMSD) of 2.62 Å versus 3.16 Å for Modeller. On our 'easy' test set, MEDELLER achieves an average accuracy of 0.93 Å backbone RMSD versus 1.56 Å for Modeller. http://medeller.info; Implemented in Python, Bash and Perl CGI for use on Linux systems; Supplementary data are available at http://www.stats.ox.ac.uk/proteins/resources.

  11. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Science.gov (United States)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  12. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    DEFF Research Database (Denmark)

    Rossin, Elizabeth J.; Hansen, Kasper Lage; Raychaudhuri, Soumya

    2011-01-01

    in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more...... that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non...... evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease....

  13. Hypoxia-inducible genes encoding small EF-hand proteins in rice and tomato.

    Science.gov (United States)

    Otsuka, Chie; Minami, Ikuko; Oda, Kenji

    2010-01-01

    Rice has evolved metabolic and morphological adaptations to low-oxygen stress to grow in submerged paddy fields. To characterize the molecular components that mediate the response to hypoxia in rice, we identified low-oxygen stress early response genes by microarray analysis. Among the highly responsive genes, five genes, OsHREF1 to OsHREF5, shared strong homology. They encoded small proteins harboring two EF-hands, typical Ca(2+)-binding motifs. Homologous genes were found in many land plants, including SlHREF in tomato, which is also strongly induced by hypoxia. SlHREF induction was detected in both roots and shoots of tomato plants under hypoxia. With the exception of OsHREF5, OsHREF expression was unaffected by drought, salinity, cold, or osmotic stress. Fluorescent signals of green fluorescent protein-fused OsHREFs were detected in the cytosol and nucleus. Ruthenium red, an inhibitor of intracellular Ca(2+) release, repressed induction of OsHREF1-4 under hypoxia. The HREFs may be related to the Ca(2+) response to hypoxia.

  14. An α-Helical Core Encodes the Dual Functions of the Chlamydial Protein IncA*

    Science.gov (United States)

    Ronzone, Erik; Wesolowski, Jordan; Bauler, Laura D.; Bhardwaj, Anshul; Hackstadt, Ted; Paumet, Fabienne

    2014-01-01

    Chlamydia is an intracellular bacterium that establishes residence within parasitophorous compartments (inclusions) inside host cells. Chlamydial inclusions are uncoupled from the endolysosomal pathway and undergo fusion with cellular organelles and with each other. To do so, Chlamydia expresses proteins on the surface of the inclusion using a Type III secretion system. These proteins, termed Incs, are located at the interface between host and pathogen and carry out the functions necessary for Chlamydia survival. Among these Incs, IncA plays a critical role in both protecting the inclusion from lysosomal fusion and inducing the homotypic fusion of inclusions. Within IncA are two regions homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) domains referred to as SNARE-like domain 1 (SLD1) and SNARE-like domain 2 (SLD2). Using a multidisciplinary approach, we have discovered the functional core of IncA that retains the ability to both inhibit SNARE-mediated fusion and promote the homotypic fusion of Chlamydia inclusions. Circular dichroism and analytical ultracentrifugation experiments show that this core region is composed almost entirely of α-helices and assembles into stable homodimers in solution. Altogether, we propose that both IncA functions are encoded in a structured core domain that encompasses SLD1 and part of SLD2. PMID:25324548

  15. An α-helical core encodes the dual functions of the chlamydial protein IncA.

    Science.gov (United States)

    Ronzone, Erik; Wesolowski, Jordan; Bauler, Laura D; Bhardwaj, Anshul; Hackstadt, Ted; Paumet, Fabienne

    2014-11-28

    Chlamydia is an intracellular bacterium that establishes residence within parasitophorous compartments (inclusions) inside host cells. Chlamydial inclusions are uncoupled from the endolysosomal pathway and undergo fusion with cellular organelles and with each other. To do so, Chlamydia expresses proteins on the surface of the inclusion using a Type III secretion system. These proteins, termed Incs, are located at the interface between host and pathogen and carry out the functions necessary for Chlamydia survival. Among these Incs, IncA plays a critical role in both protecting the inclusion from lysosomal fusion and inducing the homotypic fusion of inclusions. Within IncA are two regions homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) domains referred to as SNARE-like domain 1 (SLD1) and SNARE-like domain 2 (SLD2). Using a multidisciplinary approach, we have discovered the functional core of IncA that retains the ability to both inhibit SNARE-mediated fusion and promote the homotypic fusion of Chlamydia inclusions. Circular dichroism and analytical ultracentrifugation experiments show that this core region is composed almost entirely of α-helices and assembles into stable homodimers in solution. Altogether, we propose that both IncA functions are encoded in a structured core domain that encompasses SLD1 and part of SLD2. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Sequence of a cDNA encoding turtle high mobility group 1 protein.

    Science.gov (United States)

    Zheng, Jifang; Hu, Bi; Wu, Duansheng

    2005-07-01

    In order to understand sequence information about turtle HMG1 gene, a cDNA encoding HMG1 protein of the Chinese soft-shell turtle (Pelodiscus sinensis) was amplified by RT-PCR from kidney total RNA, and was cloned, sequenced and analyzed. The results revealed that the open reading frame (ORF) of turtle HMG1 cDNA is 606 bp long. The ORF codifies 202 amino acid residues, from which two DNA-binding domains and one polyacidic region are derived. The DNA-binding domains share higher amino acid identity with homologues sequences of chicken (96.5%) and mammalian (74%) than homologues sequence of rainbow trout (67%). The polyacidic region shows 84.6% amino acid homology with the equivalent region of chicken HMG1 cDNA. Turtle HMG1 protein contains 3 Cys residues located at completely conserved positions. Conservation in sequence and structure suggests that the functions of turtle HMG1 cDNA may be highly conserved during evolution. To our knowledge, this is the first report of HMG1 cDNA sequence in any reptilian.

  17. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery.

    Science.gov (United States)

    Yang, Yoosoo; Hong, Yeonsun; Cho, Eunji; Kim, Gi Beom; Kim, In-San

    2018-01-01

    Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.

  18. The synthesis of recombinant membrane proteins in yeast for structural studies.

    Science.gov (United States)

    Routledge, Sarah J; Mikaliunaite, Lina; Patel, Anjana; Clare, Michelle; Cartwright, Stephanie P; Bawa, Zharain; Wilks, Martin D B; Low, Floren; Hardy, David; Rothnie, Alice J; Bill, Roslyn M

    2016-02-15

    Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2015-11-20

    During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.

  20. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  1. The Nanodisc: A Novel Toolf For Studies of Membrane-Protein Interactions

    DEFF Research Database (Denmark)

    Borch, Jonas

      Nanodiscs are self-assembled soluble discoidal phospholipid bilayers encirculated by an amphipatic protein that together provide a functional stabilized membrane disc for the incorporation of membrane-bound and membrane associated molecules. Integral membrane proteins in nanodiscs adopt a uniform...... environment that resembles biological membranes and where the lipid composition in the immediate surroundings of the protein can be controlled. Additionally, its oligomerization state can be varied by careful control of protein:MPS stoichometry and by selection of MSP with a suitable length that leads...... be considered a paradigm for interactions of soluble proteins with membrane receptors. In this work, we have investigated different technologies for capturing nanodiscs that contain the glycolipid receptor GM1 in lipid bilayers, enabling facile elution from solid supports. By a combining surface plasmon...

  2. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein.

    Directory of Open Access Journals (Sweden)

    Thomas Riedel

    Full Text Available Proteorhodopsin (PR photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.

  3. Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Jilu Shen

    Full Text Available We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM and imipenem (IMP for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE. Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA isolates tested, namely IMPRMEMR (66.7%, IMPRMEMS (32.6%, and IMPRMEMS (0.7%. DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa.

  4. Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Shen, Jilu; Pan, Yaping; Fang, Yaping

    2015-01-01

    We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM) and imipenem (IMP) for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE). Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA) isolates tested, namely IMPRMEMR (66.7%), IMPRMEMS (32.6%), and IMPRMEMS (0.7%). DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant) strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa.

  5. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein.

    Science.gov (United States)

    Bartra, Sara Schesser; Styer, Katie L; O'Bryant, Deanna M; Nilles, Matthew L; Hinnebusch, B Joseph; Aballay, Alejandro; Plano, Gregory V

    2008-02-01

    Yersinia pestis, the causative agent of plague, must survive in blood in order to cause disease and to be transmitted from host to host by fleas. Members of the Ail/Lom family of outer membrane proteins provide protection from complement-dependent killing for a number of pathogenic bacteria. The Y. pestis KIM genome is predicted to encode four Ail/Lom family proteins. Y. pestis mutants specifically deficient in expression of each of these proteins were constructed using lambda Red-mediated recombination. The Ail outer membrane protein was essential for Y. pestis to resist complement-mediated killing at 26 and 37 degrees C. Ail was expressed at high levels at both 26 and 37 degrees C, but not at 6 degrees C. Expression of Ail in Escherichia coli provided protection from the bactericidal activity of complement. High-level expression of the three other Y. pestis Ail/Lom family proteins (the y1682, y2034, and y2446 proteins) provided no protection against complement-mediated bacterial killing. A Y. pestis ail deletion mutant was rapidly killed by sera obtained from all mammals tested except mouse serum. The role of Ail in infection of mice, Caenorhabditis elegans, and fleas was investigated.

  6. Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus

    Directory of Open Access Journals (Sweden)

    Chakrabarti Mrinmay

    2010-08-01

    Full Text Available Abstract Background Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV, a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11 in its genome. Some of its genome segments (S2 and S6-S11 have been previously characterized but genome segments encoding viral capsid have not been characterized. Results In this study genome segments 1 (S1 and 3 (S3 of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV, Lymantria dispar CPV (LdCPV, and Dendrolimus punctatus CPV (DpCPV. The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein. Conclusion Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3

  7. Probing simultaneously membrane dynamics and protein activity in suspended bilayers in a microfluidic format

    NARCIS (Netherlands)

    Schulze Greiving-Stimberg, Verena Carolin; Bomer, Johan G.; de Boer, Hans L.; van den Berg, Albert; le Gac, Severine

    2014-01-01

    Membrane dynamics affect the structure and function of ion channels, a point that deserves more attention while studying membrane proteins. One important factor in the local lipidic environment of the ion channels, is the membrane fluidity which is directly connected to the free diffusion and

  8. The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum.

    Science.gov (United States)

    Fernández-Aguado, Marta; Ullán, Ricardo V; Teijeira, Fernando; Rodríguez-Castro, Raquel; Martín, Juan F

    2013-04-01

    Penicillium chrysogenum, an industrial microorganism used worldwide for penicillin production, is an excellent model to study the biochemistry and the cell biology of enzymes involved in the synthesis of secondary metabolites. The well-known peroxisomal location of the last two steps of penicillin biosynthesis (phenylacetyl-CoA ligase and isopenicillin N acyltransferase) requires the import into the peroxisomes of the intermediate isopenicillin N and the precursors phenylacetic acid and coenzyme A. The mechanisms for the molecular transport of these precursors are still poorly understood. In this work, a search was made, in the genome of P. chrysogenum, in order to find a Major Facilitator Superfamily (MFS) membrane protein homologous to CefT of Acremonium chrysogenum, which is known to confer resistance to phenylacetic acid. The paaT gene was found to encode a MFS membrane protein containing 12 transmembrane spanners and one Pex19p-binding domain for Pex19-mediated targeting to peroxisomal membranes. RNA interference-mediated silencing of the paaT gene caused a clear reduction of benzylpenicillin secretion and increased the sensitivity of P. chrysogenum to the penicillin precursor phenylacetic acid. The opposite behavior was found when paaT was overexpressed from the glutamate dehydrogenase promoter that increases phenylacetic acid resistance and penicillin production. Localization studies by fluorescent laser scanning microscopy using PaaT-DsRed and EGFP-SKL fluorescent fusion proteins clearly showed that the protein was located in the peroxisomal membrane. The results suggested that PaaT is involved in penicillin production, most likely through the translocation of side-chain precursors (phenylacetic acid and phenoxyacetic acid) from the cytosol to the peroxisomal lumen across the peroxisomal membrane of P. chrysogenum.

  9. The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    Directory of Open Access Journals (Sweden)

    Lomize Mikhail A

    2007-06-01

    Full Text Available Abstract Background Three-dimensional (3D structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. Results We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM database. Conclusion Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our

  10. ORF 2 from the Bacillus cereus linear plasmid pBClin15 encodes a DNA binding protein.

    Science.gov (United States)

    Stabell, F B; Egge-Jacobsen, W; Risøen, P A; Kolstø, A-B; Økstad, O A

    2009-01-01

    To isolate and identify DNA-binding protein(s) with affinity for the mobile chromosomal repeat element bcr1 in Bacillus cereus group bacteria. A biotinylated bcr1 element was immobilized to streptavidin-coated magnetic beads and used to pull out a 20 kDa DNA-binding protein from a whole cell protein extract of B. cereus ATCC 14579. The protein was identified as the product of ORF 2 encoded by the bacteriophage-related autonomously replicating linear genetic element pBClin15 carried by the strain. DNA binding was not bcr1-specific. By Northern blotting ORF 2 was co-transcribed with ORF 1, and also in certain instances with ORF 3 by transcriptional readthrough of the terminator located between ORF 2 and ORF 3. ORF 2 from pBClin15 encodes a DNA-binding protein. ORF 2 is co-transcribed with its upstream gene ORF 1, and in a subset of the transcripts also with the downstream gene ORF 3 through alternative transcription termination. The B. cereus group contains bacterial species of medical and economic importance. Bacteriophages or phage-encoded proteins from these bacteria have been suggested as potential therapeutic agents. Understanding the biology of bacteriophage-related genetic elements through functional characterization of their genes is of high relevance.

  11. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity

    International Nuclear Information System (INIS)

    Cunningham, K.; Wickner, W.T.

    1989-01-01

    Isolation of the integral membrane components of protein translocation requires methods for fractionation and functional reconstitution. The authors treated inner-membrane vesicles of Escherichia coli with mixtures of octyl β-D-glucoside, phospholipids, and an integral membrane carrier protein under conditions that extract most of the membrane proteins into micellar solution. Upon dialysis, proteoliposomes were reconstituted that supported translocation of radiochemically pure [ 35 S]pro-OmpA (the precursor of outer membrane protein A). Translocation into these proteoliposomes required ATP hydrolysis and membrane proteins, indicating that the reaction is that of the inner membrane. The suspension of membranes in detergent was separated into supernatant and pellet fractions by ultracentrifugation. After reconstitution, translocation activity was observed in both fractions, but processing by leader peptidase of translocated pro-OmpA to OmpA was not detectable in the reconstituted pellet fraction. Processing activity was restored by addition of pure leader peptidase as long as this enzyme was added before detergent removal, indicating that the translocation activity is not associated with detergent-resistant membrane vesicles. These results show that protein translocation activity can be recovered from detergent-disrupted membrane vesicles, providing a first step towards the goal of isolating the solubilized components

  12. The Tat System for Membrane Translocation of Folded Proteins Recruits the Membrane-stabilizing Psp Machinery in Escherichia coli*

    Science.gov (United States)

    Mehner, Denise; Osadnik, Hendrik; Lünsdorf, Heinrich; Brüser, Thomas

    2012-01-01

    Tat systems transport folded proteins across energized membranes of bacteria, archaea, and plant plastids. In Escherichia coli, TatBC complexes recognize the transported proteins, and TatA complexes are recruited to facilitate transport. We achieved an abstraction of TatA from membranes without use of detergents and observed a co-purification of PspA, a membrane-stress response protein. The N-terminal transmembrane domain of TatA was required for the interaction. Electron microscopy displayed TatA complexes in direct contact with PspA. PspB and PspC were important for the TatA-PspA contact. The activator protein PspF was not involved in the PspA-TatA interaction, demonstrating that basal levels of PspA already interact with TatA. Elevated TatA levels caused membrane stress that induced a strictly PspBC- and PspF-dependent up-regulation of PspA. TatA complexes were found to destabilize membranes under these conditions. At native TatA levels, PspA deficiency clearly affected anaerobic TMAO respiratory growth, suggesting that energetic costs for transport of large Tat substrates such as TMAO reductase can become growth limiting in the absence of PspA. The physiological role of PspA recruitment to TatA may therefore be the control of membrane stress at active translocons. PMID:22689583

  13. High-level cell-free production of membrane proteins with nanodiscs.

    Science.gov (United States)

    Roos, Christian; Kai, Lei; Haberstock, Stefan; Proverbio, Davide; Ghoshdastider, Umesh; Ma, Yi; Filipek, Slawomir; Wang, Xiaoning; Dötsch, Volker; Bernhard, Frank

    2014-01-01

    This chapter addresses two major bottlenecks in cell-free membrane protein production. Firstly, we describe the optimization of expression templates for obtaining membrane proteins in preparative scales. We present details for a newly established tag variation screen providing high success rates in improving expression efficiencies while having only minimal impacts on the target protein structure. Secondly, we present protocols for the efficient co-translational insertion of membrane proteins into defined lipid bilayers. We describe the production of nanodiscs and their implementation into cell-free expression reactions for the co-translational reconstitution of membrane proteins. In addition we give guidelines for the loading of nanodiscs with different lipids in order to systematically analyze effects of lipids on the translocation, functional folding, and stability of cell-free expressed membrane proteins.

  14. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  15. Proteomic Analysis of Intracellular and Membrane Proteins From Voriconazole-Resistant Candida glabrata.

    Science.gov (United States)

    Yoo, Jae Il; Kim, Hwa Su; Choi, Chi Won; Yoo, Jung Sik; Yu, Jae Yon; Lee, Yeong Seon

    2013-12-01

    The proteomic analysis of voriconazole resistant Candida glabrata strain has not yet been investigated. In this study, differentially expressed proteins of intracellular and membrane fraction from voriconazole-susceptible, susceptible dose-dependent (S-DD), resistant C. glabrata strains were compared with each other and several proteins were identified. The proteins of intracellular and membrane were isolated by disrupting cells with glass bead and centrifugation from voriconazole susceptible, S-DD, and resistant C. glabrata strains. The abundance of expressed proteins was compared using two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteins showing continuous twofold or more increase or reduction of expression in resistant strains compared to susceptible and S-DD strain were analyzed by liquid chromatography/mass spectrometry-mass spectrometry method. Of 34 intracellular proteins, 15 proteins showed expression increase or reduction (twofold or more). The identified proteins included regulation, energy production, carbohydrate transport, amino acid transport, and various metabolism related proteins. The increase of expression of heat shock protein 70 was found. Among membrane proteins, 12, 31 proteins showed expression increase or decrease in the order of susceptible, S-DD, and resistant strains. This expression included carbohydrate metabolism, amino acid synthesis, and response to stress-related proteins. In membrane fractions, the change of expression of 10 heat shock proteins was observed, and 9 heat shock protein 70 (Hsp70) showed the reduction of expression. The expression of Hsp70 protein in membrane fraction is related to voriconazole resistant C. glabrata strains.

  16. Nanodisc Films for Membrane Protein Studies by Neutron Reflection: Effect of the Protein Scaffold Choice

    OpenAIRE

    Bertram, Nicolas; Laursen, Tomas; Barker, Robert; Bavishi, Krutika; M?ller, Birger Lindberg; C?rdenas, Marit?

    2015-01-01

    Nanodisc films are a promising approach to study the equilibrium conformation of membrane bound proteins in native-like environment. Here we compare nanodisc formation for NADPH-dependent cytochrome P450 oxidoreductase (POR) using two different scaffold proteins, MSP1D1 and MSP1E3D1. Despite the increased stability of POR loaded MSP1E3D1 based nanodiscs in comparison to MSP1D1 based nanodiscs, neutron reflection at the silicon?solution interface showed that POR loaded MSP1E3D1 based nanodisc ...

  17. Immobilization of an integral membrane protein for biotechnological phenylacetaldehyde production.

    Science.gov (United States)

    Oelschlägel, Michel; Riedel, Anika; Zniszczoł, Aurelia; Szymańska, Katarzyna; Jarzębski, Andrzej B; Schlömann, Michael; Tischler, Dirk

    2014-03-20

    Styrene oxide isomerase (SOI) has previously been shown to be an integral membrane protein performing a highly selective, hydrolytic ring opening reaction of epoxides to yield pure aldehydes. Earlier studies had also shown a high sensitivity of SOIs toward their product phenylacetaldehyde which caused an irreversible inhibition and finally complete loss of activity at higher aldehyde concentrations. Here we report on the covalent immobilization of a styrene oxide isomerase (SOI) on SBA-15 silica carriers. The production of the SOI from a Rhodococcus strain was optimized, the enzyme was enriched and immobilized, and finally the biocatalyst was applied in aqueous as well as in two-phase systems. Linkage of the protein to epoxide or amino groups on the SBA-based carriers led to relatively poor stabilization of the enzyme in an aqueous system. But, improved stability was observed toward organic phases like the non-toxic phthalate-related 1,2-cyclohexane dicarboxylic acid diisononyl ester (Hexamol DINCH) which here to our knowledge was used for the first time in a biotechnological application. With this two-phase system and the immobilized SOI, 1.6-2.0× higher product yields were reached and the lifetime of the biocatalyst was tremendously increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The first gene in the Escherichia coli secA operon, gene X, encodes a nonessential secretory protein.

    OpenAIRE

    Rajapandi, T; Dolan, K M; Oliver, D B

    1991-01-01

    TnphoA insertions in the first gene of the Escherichia coli secA operon, gene X, were isolated and analyzed. Studies of the Gene X-PhoA fusion proteins showed that gene X encodes a secretory protein, since the fusion proteins possessed normal alkaline phosphatase activity and a substantial portion of this activity was found in the periplasm. In addition, the Gene X-PhoA fusion proteins were initially synthesized with a cleavable signal peptide. A gene X::TnphoA insertion was used to construct...

  19. Genes encoding heterotrimeric G-proteins are associated with gray matter volume variations in the medial frontal cortex.

    Science.gov (United States)

    Chavarría-Siles, Iván; Rijpkema, Mark; Lips, Esther; Arias-Vasquez, Alejandro; Verhage, Matthijs; Franke, Barbara; Fernández, Guillén; Posthuma, Danielle

    2013-05-01

    G-protein-coupled signal transduction mediates most cellular responses to hormones and neurotransmitters; this signaling system transduces a large variety of extracellular stimuli into neurons and is the most widely used mechanism for cell communication at the synaptic level. The heterotrimeric G-proteins have been well established as key regulators of neuronal growth, differentiation, and function. More recently, the heterotrimeric G-protein genes group was associated with general cognitive ability. Although heterotrimeric G-proteins are linked to both cognitive ability and neuron signaling, it is unknown whether heterotrimeric G-proteins are also important for brain structure. We tested for association between local cerebral gray matter volume and the heterotrimeric G-protein genes group in 294 subjects; a replication analysis was performed in an independent sample of 238 subjects. Voxel-based morphometry revealed a strong replicated association between 2 genes encoding heterotrimeric G-proteins with specific local increase in medial frontal cortex volume, an area known to be involved in cognitive control and negative affect. This finding suggests that heterotrimeric G-proteins might modulate medial frontal cortex gray matter volume. The differences in gray matter volume due to variations in genes encoding G-proteins may be explained by the role of G-proteins in prenatal and postnatal neocortex development.

  20. Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage

    NARCIS (Netherlands)

    Rouwendal, G.J.A.; Mendes, O.; Wolbert, E.J.H.; Boer, de A.D.

    1997-01-01

    The gene encoding green fluorescent protein (GFP) from Aequorea victoria was resynthesized to adapt its codon usage for expression in plants by increasing the frequency of codons with a C or a G in the third position from 32 to 60%. The strategy for constructing the synthetic gfp gene was based on

  1. Expression of the Immediate-Early Gene-Encoded Protein Egr-1 ("zif268") during in Vitro Classical Conditioning

    Science.gov (United States)

    Mokin, Maxim; Keifer, Joyce

    2005-01-01

    Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink…

  2. Red-shifted fluorescent proteins mPlum and mRaspberry and polynucleotides encoding the same

    Science.gov (United States)

    Tsien, Roger Y [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-07-01

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  3. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes

    NARCIS (Netherlands)

    Dijkman, Ronald; Jebbink, Maarten F.; Wilbrink, Berry; Pyrc, Krzysztof; Zaaijer, Hans L.; Minor, Philip D.; Franklin, Sally; Berkhout, Ben; Thiel, Volker; van der Hoek, Lia

    2006-01-01

    BACKGROUND: The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV) 229E. The prototype virus has a

  4. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant

  5. Magic-Angle-Spinning Solid-State NMR of Membrane Proteins

    NARCIS (Netherlands)

    Baker, Lindsay A.; Folkers, Gert E.; Sinnige, Tessa; Houben, Klaartje; Kaplan, M.; van der Cruijsen, Elwin A W; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging from synthetic bilayers to whole cells. This flexibility often enables ssNMR experiments to be directly correlated with membrane protein function. In this

  6. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol...

  7. Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Jaiswal Dinesh Kumar

    2012-10-01

    Full Text Available Abstract Background Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. Results To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. Conclusions The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses.

  8. An Overview of the Top Ten Detergents Used for Membrane Protein Crystallization

    NARCIS (Netherlands)

    Stetsenko, Artem; Guskov, Albert

    2017-01-01

    To study integral membrane proteins, one has to extract them from the membrane—the step that is typically achieved by the application of detergents. In this mini-review, we summarize the top 10 detergents used for the structural analysis of membrane proteins based on the published results. The aim

  9. Isolation of monodisperse nanodisc-reconstituted membrane proteins using free flow electrophoresis

    DEFF Research Database (Denmark)

    Justesen, Bo Højen; Laursen, Tomas; Weber, Gerhard

    2013-01-01

    Free flow electrophoresis is used for rapid and high-recovery isolation of homogeneous preparations of functionally active membrane proteins inserted into nanodiscs. The approach enables isolation of integral and membrane anchored proteins and is also applicable following introduction of, e...

  10. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    DEFF Research Database (Denmark)

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived...

  11. Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone Modification.

    Science.gov (United States)

    Zheng, Ji-Shen; He, Yao; Zuo, Chao; Cai, Xiao-Ying; Tang, Shan; Wang, Zhipeng A; Zhang, Long-Hua; Tian, Chang-Lin; Liu, Lei

    2016-03-16

    Chemical protein synthesis can provide access to proteins with post-translational modifications or site-specific labelings. Although this technology is finding increasing applications in the studies of water-soluble globular proteins, chemical synthesis of membrane proteins remains elusive. In this report, a general and robust removable backbone modification (RBM) method is developed for the chemical synthesis of membrane proteins. This method uses an activated O-to-N acyl transfer auxiliary to install in the Fmoc solid-phase peptide synthesis process a RBM group with switchable reactivity toward trifluoroacetic acid. The method can be applied to versatile membrane proteins because the RBM group can be placed at any primary amino acid. With RBM, the membrane proteins and their segments behave almost as if they were water-soluble peptides and can be easily handled in the process of ligation, purification, and mass characterizations. After the full-length protein is assembled, the RBM group can be readily removed by trifluoroacetic acid. The efficiency and usefulness of the new method has been demonstrated by the successful synthesis of a two-transmembrane-domain protein (HCV p7 ion channel) with site-specific isotopic labeling and a four-transmembrane-domain protein (multidrug resistance transporter EmrE). This method enables practical synthesis of small- to medium-sized membrane proteins or membrane protein domains for biochemical and biophysical studies.

  12. RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana.

    Science.gov (United States)

    Takeda, Seiji; Matsumoto, Noritaka; Okada, Kiyotaka

    2004-01-01

    Floral organs usually initiate at fixed positions in concentric whorls within a flower. Although it is understood that floral homeotic genes determine the identity of floral organs, the mechanisms of position determination and the development of each organ have not been clearly explained. We isolated a novel mutant, rabbit ears (rbe), with defects in petal development. In rbe, under-developed petals are formed at the correct position in a flower, and the initiation of petal primordia is altered. The rbe mutation affects the second whorl organ shapes independently of the organ identity. RBE encodes a SUPERMAN-like protein and is located in the nucleus, and thus may be a transcription factor. RBE transcripts are expressed in petal primordia and their precursor cells, and disappeared at later stages. When cells that express RBE are ablated genetically, no petal primordia arise. RBE is not expressed in ap1-1 and ptl-1 mutants, indicating that RBE acts downstream of AP1 and PTL genes. These characteristics suggest that RBE is required for the early development of the organ primordia of the second whorl.

  13. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed

    Science.gov (United States)

    Rocca, Jennifer D.; Hall, Edward K.; Lennon, Jay T.; Evans, Sarah E.; Waldrop, Mark P.; Cotner, James B.; Nemergut, Diana R.; Graham, Emily B.; Wallenstein, Matthew D.

    2015-01-01

    For any enzyme-catalyzed reaction to occur, the corresponding protein-encoding genes and transcripts are necessary prerequisites. Thus, a positive relationship between the abundance of gene or transcripts and corresponding process rates is often assumed. To test this assumption, we conducted a meta-analysis of the relationships between gene and/or transcript abundances and corresponding process rates. We identified 415 studies that quantified the abundance of genes or transcripts for enzymes involved in carbon or nitrogen cycling. However, in only 59 of these manuscripts did the authors report both gene or transcript abundance and rates of the appropriate process. We found that within studies there was a significant but weak positive relationship between gene abundance and the corresponding process. Correlations were not strengthened by accounting for habitat type, differences among genes or reaction products versus reactants, suggesting that other ecological and methodological factors may affect the strength of this relationship. Our findings highlight the need for fundamental research on the factors that control transcription, translation and enzyme function in natural systems to better link genomic and transcriptomic data to ecosystem processes.

  14. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ian G Woods

    2005-03-01

    Full Text Available Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.

  15. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.

    Science.gov (United States)

    Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen

    2017-06-01

    The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.

  16. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis.

    Science.gov (United States)

    Zhang, Maolei; Huang, Nunu; Yang, Xuesong; Luo, Jingyan; Yan, Sheng; Xiao, Feizhe; Chen, Wenping; Gao, Xinya; Zhao, Kun; Zhou, Huangkai; Li, Ziqiang; Ming, Liu; Xie, Bo; Zhang, Nu

    2018-01-18

    Circular RNAs (circRNAs) are recognized as functional non-coding transcripts in eukaryotic cells. Recent evidence has indicated that even though circRNAs are generally expressed at low levels, they may be involved in many physiological or pathological processes, such as gene regulation, tissue development and carcinogenesis. Although the 'microRNA sponge' function is well characterized, most circRNAs do not contain perfect trapping sites for microRNAs, which suggests the possibility that circRNAs have functions that have not yet been defined. In this study, we show that a circRNA containing an open reading frame (ORF) driven by the internal ribosome entry site (IRES) can translate a functional protein. The circular form of the SNF2 histone linker PHD RING helicase (SHPRH) gene encodes a novel protein that we termed SHPRH-146aa. Circular SHPRH (circ-SHPRH) uses overlapping genetic codes to generate a 'UGA' stop codon, which results in the translation of the 17 kDa SHPRH-146aa. Both circ-SHPRH and SHPRH-146aa are abundantly expressed in normal human brains and are down-regulated in glioblastoma. The overexpression of SHPRH-146aa in U251 and U373 glioblastoma cells reduces their malignant behavior and tumorigenicity in vitro and in vivo. Mechanistically, SHPRH-146aa protects full-length SHPRH from degradation by the ubiquitin proteasome. Stabilized SHPRH sequentially ubiquitinates proliferating cell nuclear antigen (PCNA) as an E3 ligase, leading to inhibited cell proliferation and tumorigenicity. Our findings provide a novel perspective regarding circRNA function in physiological and pathological processes. Specifically, SHPRH-146aa generated from overlapping genetic codes of circ-SHPRH is a tumor suppressor in human glioblastoma.

  17. tassel-less1 encodes a boron channel protein required for inflorescence development in maize.

    Science.gov (United States)

    Leonard, April; Holloway, Beth; Guo, Mei; Rupe, Mary; Yu, GongXin; Beatty, Mary; Zastrow-Hayes, Gina; Meeley, Robert; Llaca, Victor; Butler, Karlene; Stefani, Tony; Jaqueth, Jennifer; Li, Bailin

    2014-06-01

    tassel-less1 (tls1) is a classical maize (Zea mays) inflorescence mutant. Homozygous mutant plants have no tassels or very small tassels, and ear development is also impaired. Using a positional cloning approach, ZmNIP3;1 (a NOD26-like intrinsic protein) was identified as the candidate gene for tls1. The ZmNIP3;1 gene is completely deleted in the tls1 mutant genome. Two Mutator-insertional TUSC alleles of ZmNIP3;1 exhibited tls1-like phenotypes, and allelism tests confirmed that the tls1 gene encodes ZmNIP3;1. Transgenic plants with an RNA interference (RNAi) construct to down-regulate ZmNIP3;1 also showed tls1-like phenotypes, further demonstrating that TLS1 is ZmNIP3;1. Sequence analysis suggests that ZmNIP3;1 is a boron channel protein. Foliar application of boron could rescue the tls1 phenotypes and restore the normal tassel and ear development. Gene expression analysis indicated that in comparison with that of the wild type or tls1 plants treated with boron, the transition from the vegetative to reproductive phase or the development of the floral meristem is impaired in the shoot apical meristem of the tls1 mutant plants. It is concluded that the tls1 mutant phenotypes are caused by impaired boron transport, and boron is essential for inflorescence development in maize. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem.

    Science.gov (United States)

    Dayaram, Anisha; Galatowitsch, Mark L; Argüello-Astorga, Gerardo R; van Bysterveldt, Katherine; Kraberger, Simona; Stainton, Daisy; Harding, Jon S; Roumagnac, Philippe; Martin, Darren P; Lefeuvre, Pierre; Varsani, Arvind

    2016-04-01

    Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characterization of the ectodomain of the envelope protein of dengue virus type 4: expression, membrane association, secretion and particle formation in the absence of precursor membrane protein.

    Directory of Open Access Journals (Sweden)

    Szu-Chia Hsieh

    Full Text Available The envelope (E of dengue virus (DENV is the major target of neutralizing antibodies and vaccine development. After biosynthesis E protein forms a heterodimer with precursor membrane (prM protein. Recent reports of infection enhancement by anti-prM monoclonal antibodies (mAbs suggest anti-prM responses could be potentially harmful. Previously, we studied a series of C-terminal truncation constructs expressing DENV type 4 prM/E or E proteins and found the ectodomain of E protein alone could be recognized by all 12 mAbs tested, suggesting E protein ectodomain as a potential subunit immunogen without inducing anti-prM response. The characteristics of DENV E protein ectodomain in the absence of prM protein remains largely unknown.In this study, we investigated the expression, membrane association, glycosylation pattern, secretion and particle formation of E protein ectodomain of DENV4 in the presence or absence of prM protein. E protein ectodomain associated with membrane in or beyond trans-Golgi and contained primarily complex glycans, whereas full-length E protein associated with ER membrane and contained high mannose glycans. In the absence of prM protein, E protein ectodomain can secrete as well as form particles of approximately 49 nm in diameter, as revealed by sucrose gradient ultracentrifugation with or without detergent and electron microscopy. Mutational analysis revealed that the secretion of E protein ectodomain was affected by N-linked glycosylation and could be restored by treatment with ammonia chloride.Considering the enhancement of DENV infectivity by anti-prM antibodies, our findings provide new insights into the expression and secretion of E protein ectodomain in the absence of prM protein and contribute to future subunit vaccine design.

  20. The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Love, James; Mancia, Filippo; Shapiro, Lawrence; Punta, Marco; Rost, Burkhard; Girvin, Mark; Wang, Da-Neng; Zhou, Ming; Hunt, John F; Szyperski, Thomas; Gouaux, Eric; MacKinnon, Roderick; McDermott, Ann; Honig, Barry; Inouye, Masayori; Montelione, Gaetano; Hendrickson, Wayne A

    2010-09-01

    The New York Consortium on Membrane Protein Structure (NYCOMPS) was formed to accelerate the acquisition of structural information on membrane proteins by applying a structural genomics approach. NYCOMPS comprises a bioinformatics group, a centralized facility operating a high-throughput cloning and screening pipeline, a set of associated wet labs that perform high-level protein production and structure determination by x-ray crystallography and NMR, and a set of investigators focused on methods development. In the first three years of operation, the NYCOMPS pipeline has so far produced and screened 7,250 expression constructs for 8,045 target proteins. Approximately 600 of these verified targets were scaled up to levels required for structural studies, so far yielding 24 membrane protein crystals. Here we describe the overall structure of NYCOMPS and provide details on the high-throughput pipeline.

  1. Wetting and Capillary Condensation as Means of Protein Organization in Membranes

    DEFF Research Database (Denmark)

    Gil, Tamir; Sabra, Mads Christian; Ipsen, John Hjorth

    1997-01-01

    that in membranes may serve to induce special lipid phases in between integral membrane proteins leading to long-range lipid-mediated joining forces acting between the proteins and hence providing a means of protein organization. The consequences of wetting in terms of protein aggregation and protein clustering...... are derived both within a simple phenomenological theory as well as within a concrete calculation on a microscopic model of lipid-protein interactions that accounts for the lipid bilayer phase equilibria and direct lipid-protein interactions governed by hydrophobic matching between the lipid bilayer...

  2. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    Science.gov (United States)

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish. © 2016 Authors; published by Portland Press Limited.

  3. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins.

    Science.gov (United States)

    Faas, Ramona; Pohle, Annelie; Moß, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-12-01

    Nanodiscs are membrane mimetics which may be used as tools for biochemical and biophysical studies of a variety of membrane proteins. These nanoscale structures are composed of a phospholipid bilayer held together by an amphipathic membrane scaffold protein (MSP). In the past, nanodiscs were successfully assembled with membrane scaffold protein 1D1 and 1,2-dipalmitoyl- sn -glycero-3-phosphorylcholine with a homogeneous diameter of ∼10 nm. In this study, the formation of nanoscale particles from MSP1D1 and rhamnolipid biosurfactants is investigated. Different protein to lipid ratios of 1:80, 1:90 and 1:100 were used for the assembly reaction, which were consecutively separated, purified and analyzed by size-exclusion chromatography (SEC) and dynamic light scattering (DLS). Size distributions were measured to determine homogeneity and confirm size dimensions. In this study, first evidence is presented on the formation of nanoscale particles with rhamnolipid biosurfactants and membrane scaffold proteins.

  4. Invisible detergents for structure determination of membrane proteins by small-angle neutron scattering.

    Science.gov (United States)

    Midtgaard, Søren Roi; Darwish, Tamim A; Pedersen, Martin Cramer; Huda, Pie; Larsen, Andreas Haahr; Jensen, Grethe Vestergaard; Kynde, Søren Andreas Røssell; Skar-Gislinge, Nicholas; Nielsen, Agnieszka Janina Zygadlo; Olesen, Claus; Blaise, Mickael; Dorosz, Jerzy Józef; Thorsen, Thor Seneca; Venskutonytė, Raminta; Krintel, Christian; Møller, Jesper V; Frielinghaus, Henrich; Gilbert, Elliot Paul; Martel, Anne; Kastrup, Jette Sandholm; Jensen, Poul Erik; Nissen, Poul; Arleth, Lise

    2018-01-01

    A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron scattering length difference between hydrogen and deuterium. Individual hydrogen/deuterium levels of the detergent head and tail groups were achieved such that the formed micelles became effectively invisible in heavy water (D 2 O) when investigated by neutrons. This way, only the signal from the membrane protein remained in the SANS data. We demonstrate that the method is not only generally applicable on five very different membrane proteins but also reveals subtle structural details about the sarco/endoplasmatic reticulum Ca 2+ ATPase (SERCA). In all, the synthesis of isotope-substituted detergents makes solution structure determination of membrane proteins by SANS and subsequent data analysis available to nonspecialists. © 2017 Federation of European Biochemical Societies.

  5. Structural basis of Sec-independent membrane protein insertion by YidC.

    Science.gov (United States)

    Kumazaki, Kaoru; Chiba, Shinobu; Takemoto, Mizuki; Furukawa, Arata; Nishiyama, Ken-ichi; Sugano, Yasunori; Mori, Takaharu; Dohmae, Naoshi; Hirata, Kunio; Nakada-Nakura, Yoshiko; Maturana, Andrés D; Tanaka, Yoshiki; Mori, Hiroyuki; Sugita, Yuji; Arisaka, Fumio; Ito, Koreaki; Ishitani, Ryuichiro; Tsukazaki, Tomoya; Nureki, Osamu

    2014-05-22

    Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 Å resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane.

  6. A Deg-protease family protein in marine Synechococcus is involved in outer membrane protein organization

    Directory of Open Access Journals (Sweden)

    Rhona Kayra Stuart

    2014-06-01

    Full Text Available Deg-family proteases are a periplasm-associated group of proteins that are known to be involved in envelope stress responses and are found in most microorganisms. Orthologous genes SYNW2176 (in strain WH8102 and sync_2523 (strain CC9311 are predicted members of the Deg-protease family and are among the few genes induced by copper stress in both open ocean and coastal marine Synechococcus strains. In contrast to the lack of a phenotype in a similar knockout in Synechocystis PCC6803, a SYNW2176 knockout mutant in strain WH8102 was much more resistant to copper than the wild-type. The mutant also exhibited a significantly altered outer membrane protein composition which may contribute to copper resistance, longer lag phase after transfer, low-level consistent alkaline phosphatase activity, and an inability to induce high alkaline phosphatase activity in response to phosphate stress. This phenotype suggests a protein-quality-control role for SYNW2176, the absence of which leads to a constitutively activated stress response. Deg-protease family proteins in this ecologically important cyanobacterial group thus help to determine outer membrane responses to both nutrients and toxins.

  7. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    Science.gov (United States)

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior

  8. Extraction and identification of membrane proteins from black widow spider eggs.

    Science.gov (United States)

    Fu, Si-Ling; Li, Jiang-Lin; Chen, Jia; Wang, Qiu-Ting; Li, Jian-Jun; Wang, Xian-Chun

    2015-07-18

    The eggs of oviparous animals are storehouses of maternal proteins required for embryonic development. Identification and molecular characterization of such proteins will provide much insight into the regulation of embryonic development. We previously analyzed soluble proteins in the eggs of the black widow spider (Latrodectus tredecimguttatus), and report here on the extraction and mass spectrometric identification of the egg membrane proteins. Comparison of different lysis solutions indicated that the highest extraction of the membrane proteins was achieved with 3%-4% sodium laurate in 40 mmol/L Tris-HCl buffer containing 4% CHAPS and 2% DTT (pH 7.4). SDS-PAGE combined with nLC-MS/MS identified 39 proteins with membrane-localization annotation, including those with structural, catalytic, and regulatory activities. Nearly half of the identified membrane proteins were metabolic enzymes involved in various cellular processes, particularly energy metabolism and biosynthesis, suggesting that relevant metabolic processes were active during the embryonic development of the eggs. Several identified cell membrane proteins were involved in the special structure formation and function of the egg cell membranes. The present proteomic analysis of the egg membrane proteins provides new insight into the molecular mechanisms of spider embryonic development.

  9. Membrane proteins: functional and structural studies using reconstituted proteoliposomes and 2-D crystals

    Directory of Open Access Journals (Sweden)

    Rigaud J.-L.

    2002-01-01

    Full Text Available Reconstitution of membrane proteins into lipid bilayers is a powerful tool to analyze functional as well as structural areas of membrane protein research. First, the proper incorporation of a purified membrane protein into closed lipid vesicles, to produce proteoliposomes, allows the investigation of transport and/or catalytic properties of any membrane protein without interference by other membrane components. Second, the incorporation of a large amount of membrane proteins into lipid bilayers to grow crystals confined to two dimensions has recently opened a new way to solve their structure at high resolution using electron crystallography. However, reconstitution of membrane proteins into functional proteoliposomes or 2-D crystallization has been an empirical domain, which has been viewed for a long time more like "black magic" than science. Nevertheless, in the last ten years, important progress has been made in acquiring knowledge of lipid-protein-detergent interactions and has permitted to build upon a set of basic principles that has limited the empirical approach of reconstitution experiments. Reconstitution strategies have been improved and new strategies have been developed, facilitating the success rate of proteoliposome formation and 2-D crystallization. This review deals with the various strategies available to obtain proteoliposomes and 2-D crystals from detergent-solubilized proteins. It gives an overview of the methods that have been applied, which may be of help for reconstituting more proteins into lipid bilayers in a form suitable for functional studies at the molecular level and for high-resolution structural analysis.

  10. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum.

    Science.gov (United States)

    Fernández-Aguado, Marta; Teijeira, Fernando; Martín, Juan F; Ullán, Ricardo V

    2013-01-01

    The knowledge about enzymes' compartmentalization and transport processes involved in the penicillin biosynthesis in Penicillium chrysogenum is very limited. The genome of this fungus contains multiple genes encoding transporter proteins, but very little is known about them. A bioinformatic search was made to find major facilitator supefamily (MFS) membrane proteins related to CefP transporter protein involved in the entry of isopenicillin N to the peroxisome in Acremonium chrysogenum. No strict homologue of CefP was observed in P. chrysogenum, but the penV gene was found to encode a membrane protein that contained 10 clear transmembrane spanners and two other motifs COG5594 and DUF221, typical of membrane proteins. RNAi-mediated silencing of penV gene provoked a drastic reduction of the production of the δ-(L-α-aminoadipyl-L-cysteinyl-D-valine) (ACV) and isopenicillin N intermediates and the final product of the pathway. RT-PCR and northern blot analyses confirmed a reduction in the expression levels of the pcbC and penDE biosynthetic genes, whereas that of the pcbAB gene increased. Localization studies by fluorescent laser scanning microscopy using Dsred and GFP fluorescent fusion proteins and the FM 4-64 fluorescent dye showed clearly that the protein was located in the vacuolar membrane. These results indicate that PenV participates in the first stage of the beta-lactam biosynthesis (i.e., the formation of the ACV tripeptide), probably taking part in the supply of amino acids from the vacuolar lumen to the vacuole-anchored ACV synthetase. This is in agreement with several reports on the localization of the ACV synthetase and provides increased evidence for a compartmentalized storage of precursor amino acids for non-ribosomal peptides. PenV is the first MFS transporter of P. chrysogenum linked to the beta-lactam biosynthesis that has been located in the vacuolar membrane.

  11. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Nazarul [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Room 515, Louisville, KY 40202 (United States); Hu, Chuan, E-mail: chuan.hu@louisville.edu [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Room 515, Louisville, KY 40202 (United States)

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  12. High-resolution atomic force microscopy and spectroscopy of native membrane proteins

    Science.gov (United States)

    Bippes, Christian A.; Muller, Daniel J.

    2011-08-01

    Membranes confining cells and cellular compartments are essential for life. Membrane proteins are molecular machines that equip cell membranes with highly sophisticated functionality. Examples of such functions are signaling, ion pumping, energy conversion, molecular transport, specific ligand binding, cell adhesion and protein trafficking. However, it is not well understood how most membrane proteins work and how the living cell regulates their function. We review how atomic force microscopy (AFM) can be applied for structural and functional investigations of native membrane proteins. High-resolution time-lapse AFM imaging records membrane proteins at work, their oligomeric state and their dynamic assembly. The AFM stylus resembles a multifunctional toolbox that allows the measurement of several chemical and physical parameters at the nanoscale. In the single-molecule force spectroscopy (SMFS) mode, AFM quantifies and localizes interactions in membrane proteins that stabilize their folding and modulate their functional state. Dynamic SMFS discloses fascinating insights into the free energy landscape of membrane proteins. Single-cell force spectroscopy quantifies the interactions of live cells with their environment to single-receptor resolution. In the future, technological progress in AFM-based approaches will enable us to study the physical nature of biological interactions in more detail and decipher how cells control basic processes.

  13. Humanin decreases mitochondrial membrane permeability by inhibiting the membrane association and oligomerization of Bax and Bid proteins.

    Science.gov (United States)

    Ma, Ze-Wei; Liu, Dong-Xiang

    2017-12-21

    Humanin (HN) is a 24-residue peptide identified from the brain of a patient with Alzheimer's disease (AD). HN has been found to protect against neuronal insult caused by Aβ peptides or transfection of familial AD mutant genes. In order to elucidate the molecular mechanisms of HN neuroprotection, we explored the effects of HN on the association of Bax or Bid with lipid bilayers and their oligomerization in the membrane. By using single-molecule fluorescence and Förster resonance energy transfer techniques, we showed that Bax was mainly present as monomers, dimers and tetramers in lipid bilayers, while truncated Bid (tBid) enhanced the membrane association and tetramerization of Bax. HN (100 nmol/L) inhibited the self-association and tBid-activated association of Bax with the bilayers, and significantly decreased the proportion of Bax in tetramers. Furthermore, HN inhibited Bid translocation to lipid bilayers. HN could bind with Bax and Bid either in solution or in the membrane. However, HN could not pull the proteins out of the membrane. Based on these results, we propose that HN binds to Bax and cBid in solution and inhibits their translocation to the membrane. Meanwhile, HN interacts with the membrane-bound Bax and tBid, preventing the recruitment of cytosolic Bax and its oligomerization in the membrane. In this way, HN inhibits Bax pore formation in mitochondrial outer membrane and suppresses cytochrome c release and mitochondria-dependent apoptosis.

  14. The Drosophila homologue of vertebrate myogenic-determination genes encodes a transiently expressed nuclear protein marking primary myogenic cells.

    OpenAIRE

    Paterson, B M; Walldorf, U; Eldridge, J; Dübendorfer, A; Frasch, M; Gehring, W J

    1991-01-01

    We have isolated a cDNA clone, called Dmyd for Drosophila myogenic-determination gene, that encodes a protein with structural and functional characteristics similar to the members of the vertebrate MyoD family. Dmyd clone encodes a polypeptide of 332 amino acids with 82% identity to MyoD in the 41 amino acids of the putative helix-loop-helix region and 100% identity in the 13 amino acids of the basic domain proposed to contain the essential recognition code for muscle-specific gene activation...

  15. A lepidopteran-specific gene family encoding valine-rich midgut proteins.

    Directory of Open Access Journals (Sweden)

    Jothini Odman-Naresh

    Full Text Available Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM, an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps, which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran

  16. Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms

    NARCIS (Netherlands)

    Römisch, Karin; Collie, Nicola; Soto, Nelyn; Logue, James; Lindsay, Margaret; Scheper, Wiep; Cheng, Chi-Hing C.

    2003-01-01

    Secretory proteins enter the secretory pathway by translocation across the membrane of the endoplasmic reticulum (ER) via a channel formed primarily by the Sec61 protein. Protein translocation is highly temperature dependent in mesophilic organisms. We asked whether the protein translocation

  17. Cyanobacterial flv4-2 Operon-Encoded Proteins Optimize Light Harvesting and Charge Separation in Photosystem II.

    Science.gov (United States)

    Chukhutsina, Volha; Bersanini, Luca; Aro, Eva-Mari; van Amerongen, Herbert

    2015-05-01

    Photosystem II (PSII) complexes drive the water-splitting reaction necessary to transform sunlight into chemical energy. However, too much light can damage and disrupt PSII. In cyanobacteria, the flv4-2 operon encodes three proteins (Flv2, Flv4, and Sll0218), which safeguard PSII activity under air-level CO2 and in high light conditions. However, the exact mechanism of action of these proteins has not been clarified yet. We demonstrate that the PSII electron transfer properties are influenced by the flv4-2 operon-encoded proteins. Accelerated secondary charge separation kinetics was observed upon expression/overexpression of the flv4-2 operon. This is likely induced by docking of the Flv2/Flv4 heterodimer in the vicinity of the QB pocket of PSII, which, in turn, increases the QB redox potential and consequently stabilizes forward electron transfer. The alternative electron transfer route constituted by Flv2/Flv4 sequesters electrons from QB(-) guaranteeing the dissipation of excess excitation energy in PSII under stressful conditions. In addition, we demonstrate that in the absence of the flv4-2 operon-encoded proteins, about 20% of the phycobilisome antenna becomes detached from the reaction centers, thus decreasing light harvesting. Phycobilisome detachment is a consequence of a decreased relative content of PSII dimers, a feature observed in the absence of the Sll0218 protein. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6

    Directory of Open Access Journals (Sweden)

    Randall Marcelo Chin

    2018-03-01

    Full Text Available Summary: Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression—the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3′ UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene. : Allotopic expression of proteins normally encoded by mtDNA is a promising therapy for mitochondrial disease. Chin et al. use an unbiased and high-content imaging-based screening platform to optimize allotopic expression. Modified mRNAs encoding for the optimized allotopic expression constructs rescued the respiration and growth of mtATP6-deficient cells. Keywords: mitochondria, mitochondrial disease, mRNA, modified mRNA, ATP6, allotopic expression, rare disease, gene therapy, screening, high content imaging

  19. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    Science.gov (United States)

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.

  20. Arabidopsis Tic40 expression in tobacco chloroplasts results in massive proliferation of the inner envelope membrane and upregulation of associated proteins.

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Li, Ming; Lee, Sueng-Bum; Schnell, Danny; Daniell, Henry

    2008-12-01

    The chloroplast inner envelope membrane (IM) plays essential roles in lipid synthesis, metabolite transport, and cellular signaling in plants. We have targeted a model nucleus-encoded IM protein from Arabidopsis thaliana, pre-Tic40-His, by relocating its expression from the nucleus to the chloroplast genome. Pre-Tic40-His was properly targeted, processed, and inserted. It attained correct topology and was folded and assembled into a TIC complex, where it accounted for up to 15% of the total chloroplast protein. These results confirm the existence of a novel pathway for protein targeting to the IM. Tic40-His overexpression resulted in a massive proliferation of the IM (up to 19 layers in electron micrographs) without significant effects on plant growth or reproduction. Consistent with IM proliferation, the expression levels of other endogenous IM proteins (IEP37, PPT, Tic110) were significantly (10-fold) upregulated but those of outer envelope membrane (Toc159), stromal (hsp93, cpn60), or thylakoid (LHCP, OE23) proteins were not increased, suggesting retrograde signal transduction between chloroplast and nuclear genomes to increase lipid and protein components for accommodation of increased accumulation of Tic40. This study opens the door for understanding the regulation of membrane biogenesis within the organelle and the utilization of transgenic chloroplasts as bioreactors for hyperaccumulation of membrane proteins for biotechnological applications.

  1. Molecular cloning and characterization of five genes encoding pentatricopeptide repeat proteins from Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Yang, Luming; Zhu, Huayu; Guo, Wangzhen; Zhang, Tianzhen

    2010-02-01

    The pentatricopeptide repeat (PPR) protein family is one of the largest and most complex families in plants. These proteins contain multiple 35-amino acid repeats that are proposed to form a super helix capable of binding RNA. PPR proteins have been implicated in many crucial functions broadly involving organelle biogenesis and plant development. In this study, we identified many genes encoding PPR protein in Upland cotton through an extensive survey of the database of Gossypium hirsutum. Furthermore, we isolated five full-length cDNA of PPR genes from G. hirsutum 0-613-2R which were named GhPPR1-GhPPR5. Domain analysis revealed that the deduced amino acid sequences of GhPPR1-5 contained from 5 to 10 PPR motifs and those PPR proteins were divided into two different PPR subfamilies. GhPPR1-2 belonged to the PLS subfamily and GhPPR3-5 belonged to the P subfamily. Phylogenetic analysis of the five GhPPR proteins and 18 other plant PPR proteins also revealed that the same subfamily clustered together. All five GhPPR genes were differentially but constitutively expressed in roots, stems, leav