WorldWideScience

Sample records for encapsidated rna particle

  1. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    Directory of Open Access Journals (Sweden)

    Ma Hong

    2011-06-01

    Full Text Available Abstract Background The process of HIV-1 genomic RNA (gRNA encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ. Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site from the 5' untranslated region (UTR. Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ. Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons; however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into

  2. Mutations in the alpha-helical region of the amino terminus of the Maize rayado fino virus capsid protein and CP:RNA ratios affect virus-like particle encapsidation of RNAs.

    Science.gov (United States)

    Natilla, Angela; Murphy, Charles; Hammond, Rosemarie W

    2015-01-22

    Viral-based nanoplatforms rely on balancing the delicate array of virus properties to optimally achieve encapsidation of foreign materials with various potential objectives. We investigated the use of Maize rayado fino virus (MRFV)-virus-like particles (VLPs) as a multifunctional nanoplatform and their potential application as protein cages. MRFV-VLPs are composed of two serologically related, carboxy co-terminal coat proteins (CP1 and CP2) which are capable of self-assembling in Nicotiana benthamiana plants into 30nm particles with T=3 symmetry. The N-terminus of CP1 was targeted for genetic modification to exploit the driving forces for VLP assembly, packaging and retention of RNA in vivo and in vitro. The N-terminus of MRFV-CP1 contains a peptide sequence of 37 amino acids which has been predicted to have an alpha-helical structure, is rich in hydrophobic amino acids, facilitates CP-RNA interactions, and is not required for self-assembly. Amino acid substitutions were introduced in the 37 amino acid N-terminus by site-directed mutagenesis and the mutant VLPs produced in plants by a Potato virus X (PVX)-based vector were tested for particle stability and RNA encapsidation. All mutant CPs resulted in production of VLPs which encapsidated non-viral RNAs, including PVX genomic and subgenomic (sg) RNAs, 18S rRNA and cellular and viral mRNAs. In addition, MRFV-VLPs encapsidated GFP mRNA when was expressed in plant cells from the pGD vector. These results suggest that RNA packaging in MRFV-VLPs is predominantly driven by electrostatic interactions between the N-terminal 37 amino acid extension of CP1 and RNA, and that the overall species concentration of RNA in the cellular pool may determine the abundance and species of the RNAs packaged into the VLPs. Furthermore, RNA encapsidation is not required for VLPs stability, VLPs formed from MRFV-CP1 were stable at temperatures up to 70°C, and can be disassembled into CP monomers, which can then reassemble in vitro into

  3. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1.

    Directory of Open Access Journals (Sweden)

    Luis Apolonia

    2015-01-01

    Full Text Available The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G and APOBEC3F (A3F, act as potent human immunodeficiency virus type-1 (HIV-1 restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.

  4. Hepatitis B Virus Core Protein Dephosphorylation Occurs during Pregenomic RNA Encapsidation.

    Science.gov (United States)

    Zhao, Qiong; Hu, Zhanying; Cheng, Junjun; Wu, Shuo; Luo, Yue; Chang, Jinhong; Hu, Jianming; Guo, Ju-Tao

    2018-07-01

    Hepatitis B virus (HBV) core protein consists of an N-terminal assembly domain and a C-terminal domain (CTD) with seven conserved serines or threonines that are dynamically phosphorylated/dephosphorylated during the viral replication cycle. Sulfamoylbenzamide derivatives are small molecular core protein allosteric modulators (CpAMs) that bind to the heteroaryldihydropyrimidine (HAP) pocket between the core protein dimer-dimer interfaces. CpAM binding alters the kinetics and pathway of capsid assembly and can result in the formation of morphologically "normal" capsids devoid of viral pregenomic RNA (pgRNA) and DNA polymerase. In order to investigate the mechanism underlying CpAM inhibition of pgRNA encapsidation, we developed an immunoblotting assay that can resolve core protein based on its phosphorylation status and demonstrated, for the first time, that core protein is hyperphosphorylated in free dimers and empty capsids from both mock-treated and CpAM-treated cells but is hypophosphorylated in pgRNA- and DNA-containing nucleocapsids. Interestingly, inhibition of pgRNA encapsidation by a heat shock protein 90 (HSP90) inhibitor prevented core protein dephosphorylation. Moreover, core proteins with point mutations at the wall of the HAP pocket, V124A and V124W, assembled empty capsids and nucleocapsids with altered phosphorylation status. The results thus suggest that core protein dephosphorylation occurs in the assembly of pgRNA and that interference with the interaction between core protein subunits at dimer-dimer interfaces during nucleocapsid assembly alters not only capsid structure, but also core protein dephosphorylation. Hence, inhibition of pgRNA encapsidation by CpAMs might be due to disruption of core protein dephosphorylation during nucleocapsid assembly. IMPORTANCE Dynamic phosphorylation of HBV core protein regulates multiple steps of viral replication. However, the regulatory function was mainly investigated by phosphomimetic mutagenesis, which

  5. Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3

    Directory of Open Access Journals (Sweden)

    Katarzyna Pachulska-Wieczorek

    2016-07-01

    Full Text Available Long-terminal repeat (LTR retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.

  6. The effect of RNA stiffness on the self-assembly of virus particles

    Science.gov (United States)

    Li, Siyu; Erdemci-Tandogan, Gonca; van der Schoot, Paul; Zandi, Roya

    2018-01-01

    Under many in vitro conditions, some small viruses spontaneously encapsidate a single stranded (ss) RNA into a protein shell called the capsid. While viral RNAs are found to be compact and highly branched because of long distance base-pairing between nucleotides, recent experiments reveal that in a head-to-head competition between an ssRNA with no secondary or higher order structure and a viral RNA, the capsid proteins preferentially encapsulate the linear polymer! In this paper, we study the impact of genome stiffness on the encapsidation free energy of the complex of RNA and capsid proteins. We show that an increase in effective chain stiffness because of base-pairing could be the reason why under certain conditions linear chains have an advantage over branched chains when it comes to encapsidation efficiency. While branching makes the genome more compact, RNA base-pairing increases the effective Kuhn length of the RNA molecule, which could result in an increase of the free energy of RNA confinement, that is, the work required to encapsidate RNA, and thus less efficient packaging.

  7. An RNA-binding compound that stabilizes the HIV-1 gRNA packaging signal structure and specifically blocks HIV-1 RNA encapsidation.

    Science.gov (United States)

    Ingemarsdotter, Carin K; Zeng, Jingwei; Long, Ziqi; Lever, Andrew M L; Kenyon, Julia C

    2018-03-14

    NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594

  8. Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli.

    Science.gov (United States)

    Hammond, Rosemarie W; Hammond, John

    2010-02-01

    Maize rayado fino virus (MRFV; genus Marafivirus; family Tymoviridae) is an isometric plant virus of 30 nm containing two components: empty shells and complete virus particles (encapsidating the 6.3 kb genomic RNA). Both particles are composed of two serologically related, carboxy co-terminal, coat proteins (CP) of apparent molecular mass 21-22 kDa (CP2) and 24-28 kDa (CP1) in a molar ratio of 3:1, respectively; CP1 contains a 37 amino acid amino terminal extension of CP2. In our study, expression of CP1 or CP2 in Escherichia coli resulted in assembly of each capsid protein into virus-like particles (VLPs), appearing in electron microscopy as stain-permeable (CP2) or stain-impermeable particles (CP1). CP1 VLPs encapsidated bacterial 16S ribosomal RNA, but not CP mRNA, while CP2 VLPs encapsidated neither CP mRNA nor 16S ribosomal RNA. Expression of CP1 and CP2 in E. coli using a co-expression vector resulted in the assembly of VLPs which were stain-impermeable and encapsidated CP mRNA. These results suggest that the N-terminal 37 amino acid residues of CP1, although not required for particle formation, may be involved in the assembly of complete virions and that the presence of both CP1 and CP2 in the particle is required for specific encapsidation of MRFV CP mRNA. (c) 2009 Elsevier B.V. All rights reserved.

  9. Isolation and characterization of subgenomic DNAs encapsidated in 'single' T = 1 isometric particles of Maize streak virus

    International Nuclear Information System (INIS)

    Casado, Carolina G.; Javier Ortiz, G.; Padron, Eric; Bean, Samantha J.; McKenna, Robert; Agbandje-McKenna, Mavis; Boulton, Margaret I.

    2004-01-01

    'Single' T = 1 isometric particles of Maize streak virus (MSV) have been isolated from infected maize leaves. Biochemical and genetic characterizations show that these particles contain subgenomic (sg) MSV DNA encapsidated by the MSV coat protein. The largest sg DNA is 1.56 kb, slightly larger than half genome size, although sg DNAs as small as 0.2 kb were also cloned. The sg DNAs are not infectious, and they do not appear to play a role in the pathogenicity of MSV. This is the first report of sg DNAs for MSV and, to our knowledge, the first time that encapsidated sg DNAs have been characterized at the sequence level for any geminivirus. These data will assist in our investigations into the role of genomic DNA in the formation of the unique geminate capsid architecture of the Geminiviridae

  10. Structure of the Hantavirus Nucleoprotein Provides Insights into the Mechanism of RNA Encapsidation

    Directory of Open Access Journals (Sweden)

    Daniel Olal

    2016-03-01

    Full Text Available Hantaviruses are etiological agents of life-threatening hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. The nucleoprotein (N of hantavirus is essential for viral transcription and replication, thus representing an attractive target for therapeutic intervention. We have determined the crystal structure of hantavirus N to 3.2 Å resolution. The structure reveals a two-lobed, mostly α-helical structure that is distantly related to that of orthobunyavirus Ns. A basic RNA binding pocket is located at the intersection between the two lobes. We provide evidence that oligomerization is mediated by amino- and C-terminal arms that bind to the adjacent monomers. Based on these findings, we suggest a model for the oligomeric ribonucleoprotein (RNP complex. Our structure provides mechanistic insights into RNA encapsidation in the genus Hantavirus and constitutes a template for drug discovery efforts aimed at combating hantavirus infections.

  11. Application of Live-Cell RNA Imaging Techniques to the Study of Retroviral RNA Trafficking

    Directory of Open Access Journals (Sweden)

    Darrin V. Bann

    2012-06-01

    Full Text Available Retroviruses produce full-length RNA that serves both as a genomic RNA (gRNA, which is encapsidated into virus particles, and as an mRNA, which directs the synthesis of viral structural proteins. However, we are only beginning to understand the cellular and viral factors that influence trafficking of retroviral RNA and the selection of the RNA for encapsidation or translation. Live cell imaging studies of retroviral RNA trafficking have provided important insight into many aspects of the retrovirus life cycle including transcription dynamics, nuclear export of viral RNA, translational regulation, membrane targeting, and condensation of the gRNA during virion assembly. Here, we review cutting-edge techniques to visualize single RNA molecules in live cells and discuss the application of these systems to studying retroviral RNA trafficking.

  12. The Host RNAs in Retroviral Particles

    Directory of Open Access Journals (Sweden)

    Alice Telesnitsky

    2016-08-01

    Full Text Available As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA, some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs’ packaging determinants differ from the viral genome’s, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1 reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs—if any—have remained elusive.

  13. Sequences within both the 5' untranslated region and the Gag gene are important for efficient encapsidation of Mason-Pfizer monkey virus RNA

    International Nuclear Information System (INIS)

    Schmidt, Russell D.; Mustafa, Farah; Lew, Kathy A.; Browning, Mathew T.; Rizvi, Tahir A.

    2003-01-01

    It has previously been shown that the 5' untranslated leader region (UTR), including about 495 bp of the gag gene, is sufficient for the efficient encapsidation and propagation of Mason-Pfizer monkey virus (MPMV) based retroviral vectors. In addition, a deletion upstream of the major splice donor, SD, has been shown to adversely affect MPMV RNA packaging. However, the precise sequence requirement for the encapsidation of MPMV genomic RNA within the 5' UTR and gag remains largely unknown. In this study, we have used a systematic deletion analysis of the 5' UTR and gag gene to define the cis-acting sequences responsible for efficient MPMV RNA packaging. Using an in vivo packaging and transduction assay, our results reveal that the MPMV packaging signal is primarily found within the first 30 bp immediately downstream of the primer binding site. However, its function is dependent upon the presence of the last 23 bp of the 5' UTR and approximately the first 100 bp of the gag gene. Thus, sequences that affect MPMV RNA packaging seem to reside both upstream and downstream of the major splice donor with the downstream region responsible for the efficient functioning of the upstream primary packaging determinant

  14. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation.

    Science.gov (United States)

    Zhang, Wen; Chen, Jieliang; Wu, Min; Zhang, Xiaonan; Zhang, Min; Yue, Lei; Li, Yaming; Liu, Jiangxia; Li, Baocun; Shen, Fang; Wang, Yang; Bai, Lu; Protzer, Ulrike; Levrero, Massimo; Yuan, Zhenghong

    2017-08-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. The covalently closed circular DNA (cccDNA) minichromosome, which serves as the template for the transcription of viral RNAs, plays a key role in viral persistence. While accumulating evidence suggests that cccDNA transcription is regulated by epigenetic machinery, particularly the acetylation of cccDNA-bound histone 3 (H3) and H4, the potential contributions of histone methylation and related host factors remain obscure. Here, by screening a series of methyltransferases and demethylases, we identified protein arginine methyltransferase 5 (PRMT5) as an effective restrictor of HBV transcription and replication. In cell culture-based models for HBV infection and in liver tissues of patients with chronic HBV infection, we found that symmetric dimethylation of arginine 3 on H4 on cccDNA was a repressive marker of cccDNA transcription and was regulated by PRMT5 depending on its methyltransferase domain. Moreover, PRMT5-triggered symmetric dimethylation of arginine 3 on H4 on the cccDNA minichromosome involved an interaction with the HBV core protein and the Brg1-based human SWI/SNF chromatin remodeler, which resulted in down-regulation of the binding of RNA polymerase II to cccDNA. In addition to the inhibitory effect on cccDNA transcription, PRMT5 inhibited HBV core particle DNA production independently of its methyltransferase activity. Further study revealed that PRMT5 interfered with pregenomic RNA encapsidation by preventing its interaction with viral polymerase protein through binding to the reverse transcriptase-ribonuclease H region of polymerase, which is crucial for the polymerase-pregenomic RNA interaction. PRMT5 restricts HBV replication through a two-part mechanism including epigenetic suppression of cccDNA transcription and interference with pregenomic RNA encapsidation; these findings improve the understanding of epigenetic regulation of HBV transcription and host

  15. Effects of mutations in the VP2/VP4 cleavage site of Swine vesicular disease virus on RNA encapsidation and viral infectivity

    NARCIS (Netherlands)

    Rebel, J.M.J.; Leendertse, C.H.; Dekker, A.; Moormann, R.J.M.

    2003-01-01

    We studied VP0 cleavage of Swine vesicular disease virus (SVDV), a member of the Picornaviridae using a full-length cDNA copy of the Dutch SVDV isolate. The influences of mutations, introduced at the cleavage site of SVDV, on VP0 cleavage, RNA encapsidation and viral infection were studied. Double

  16. From Cells to Virus Particles: Quantitative Methods to Monitor RNA Packaging

    Directory of Open Access Journals (Sweden)

    Mireia Ferrer

    2016-08-01

    Full Text Available In cells, positive strand RNA viruses, such as Retroviridae, must selectively recognize their full-length RNA genome among abundant cellular RNAs to assemble and release particles. How viruses coordinate the intracellular trafficking of both RNA and protein components to the assembly sites of infectious particles at the cell surface remains a long-standing question. The mechanisms ensuring packaging of genomic RNA are essential for viral infectivity. Since RNA packaging impacts on several essential functions of retroviral replication such as RNA dimerization, translation and recombination events, there are many studies that require the determination of RNA packaging efficiency and/or RNA packaging ability. Studies of RNA encapsidation rely upon techniques for the identification and quantification of RNA species packaged by the virus. This review focuses on the different approaches available to monitor RNA packaging: Northern blot analysis, ribonuclease protection assay and quantitative reverse transcriptase-coupled polymerase chain reaction as well as the most recent RNA imaging and sequencing technologies. Advantages, disadvantages and limitations of these approaches will be discussed in order to help the investigator to choose the most appropriate technique. Although the review was written with the prototypic simple murine leukemia virus (MLV and complex human immunodeficiency virus type 1 (HIV-1 in mind, the techniques were described in order to benefit to a larger community.

  17. Development of a novel recombinant encapsidated RNA particle: evaluation as an internal control for diagnostic RT-PCR

    DEFF Research Database (Denmark)

    King, Donald P.; Montague, Nick; Ebert, Katja

    2007-01-01

    -and-mouth disease virus (FMDV) and a set for swine vesicular disease virus (SVDV) was engineered into a full-length cDNA clone containing the RNA-2 segment of Cowpea Mosaic Virus (CPMV). After co-inoculation with a plasmid that expressed CPMV RNA-1, recombinant virus particles were rescued from cowpea plants (Vigna...

  18. RNA Encapsidation and Packaging in the Phleboviruses

    Directory of Open Access Journals (Sweden)

    Katherine E. Hornak

    2016-07-01

    Full Text Available The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV, severe fever with thrombocytopenia syndrome virus (SFTSV, Uukuniemi virus (UUKV, and the sandfly fever viruses. The phleboviruses have small tripartite RNA genomes that encode a repertoire of 5–7 proteins. These few proteins accomplish the daunting task of recognizing and specifically packaging a tri-segment complement of viral genomic RNA in the midst of an abundance of host components. The critical nucleation events that eventually lead to virion production begin early on in the host cytoplasm as the first strands of nascent viral RNA (vRNA are synthesized. The interaction between the vRNA and the viral nucleocapsid (N protein effectively protects and masks the RNA from the host, and also forms the ribonucleoprotein (RNP architecture that mediates downstream interactions and drives virion formation. Although the mechanism by which all three genomic counterparts are selectively co-packaged is not completely understood, we are beginning to understand the hierarchy of interactions that begins with N-RNA packaging and culminates in RNP packaging into new virus particles. In this review we focus on recent progress that highlights the molecular basis of RNA genome packaging in the phleboviruses.

  19. The Generation of Turnip Crinkle Virus-Like Particles in Plants by the Transient Expression of Wild-Type and Modified Forms of Its Coat Protein.

    Science.gov (United States)

    Saunders, Keith; Lomonossoff, George P

    2015-01-01

    Turnip crinkle virus (TCV), a member of the genus carmovirus of the Tombusviridae family, has a genome consisting of a single positive-sense RNA molecule that is encapsidated in an icosahedral particle composed of 180 copies of a single type of coat protein. We have employed the CPMV-HT transient expression system to investigate the formation of TCV-like particles following the expression of the wild-type coat protein or modified forms of it that contain either deletions and/or additions. Transient expression of the coat protein in plants results in the formation of capsid structures that morphologically resemble TCV virions (T = 3 structure) but encapsidate heterogeneous cellular RNAs, rather than the specific TCV coat protein messenger RNA. Expression of an amino-terminal deleted form of the coat protein resulted in the formation of smaller T = 1 structures that are free of RNA. The possibility of utilizing TCV as a carrier for the presentation of foreign proteins on the particle surface was also explored by fusing the sequence of GFP to the C-terminus of the coat protein. The expression of coat protein-GFP hybrids permitted the formation of VLPs but the yield of particles is diminished compared to the yield obtained with unmodified coat protein. Our results confirm the importance of the N-terminus of the coat protein for the encapsidation of RNA and show that the coat protein's exterior P domain plays a key role in particle formation.

  20. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    Science.gov (United States)

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  1. Vaccination with human papillomavirus pseudovirus-encapsidated plasmids targeted to skin using microneedles.

    Directory of Open Access Journals (Sweden)

    Rhonda C Kines

    Full Text Available Human papilloma virus-like particles (HPV VLP serve as the basis of the current licensed vaccines for HPV. We have previously shown that encapsidation of DNA expressing the model antigen M/M2 from respiratory syncytial virus (RSV in HPV pseudovirions (PsV is immunogenic when delivered intravaginally. Because the HPV capsids confer tropism for basal epithelium, they represent attractive carriers for vaccination targeted to the skin using microneedles. In this study we asked: 1 whether HPV16 VLP administered by microneedles could induce protective immune responses to HPV16 and 2 whether HPV16 PsV-encapsidated plasmids delivered by microneedles could elicit immune responses to both HPV and the antigen delivered by the transgene. Mice immunized with HPV16 VLP coated microneedles generated robust neutralizing antibody responses and were protected from HPV16 challenge. Microneedle arrays coated with HPV16-M/M2 or HPV16-F protein (genes of RSV were then tested and dose-dependent HPV and F-specific antibody responses were detected post-immunization, and M/M2-specific T-cell responses were detected post RSV challenge, respectively. HPV16 PsV-F immunized mice were fully protected from challenge with HPV16 PsV and had reduced RSV viral load in lung and nose upon intranasal RSV challenge. In summary, HPV16 PsV-encapsidated DNA delivered by microneedles induced neutralizing antibody responses against HPV and primed for antibody and T-cell responses to RSV antigens encoded by the encapsidated plasmids. Although the immunogenicity of the DNA component was just above the dose response threshold, the HPV-specific immunity was robust. Taken together, these data suggest microneedle delivery of lyophilized HPV PsV could provide a practical, thermostable combined vaccine approach that could be developed for clinical evaluation.

  2. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.

    Science.gov (United States)

    Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2015-11-01

    To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas

  3. Role of nucleocytoplasmic RNA transport during the life cycle of retroviruses

    Directory of Open Access Journals (Sweden)

    Hisatoshi eShida

    2012-05-01

    Full Text Available Retroviruses have evolved mechanisms for transporting their intron-containing RNAs (including genomic and messenger RNAs, which encode virion components from the nucleus to the cytoplasm of the infected cell. Human retroviruses, such as human immunodeficiency virus (HIV and human T cell leukemia virus type 1 (HTLV-1, encode the regulatory proteins Rev and Rex, which form a bridge between the viral RNA and the export receptor CRM1. Recent studies show that these transport systems are not only involved in RNA export, but also in the encapsidation of genomic RNA; furthermore, they influence subsequent events in the cytoplasm, including the translation of the cognate mRNA, transport of Gag proteins to the plasma membrane, and the formation of virus particles. Moreover, the mode of interaction between the viral and cellular RNA transport machinery underlies the species-specific propagation of HIV-1 and HTLV-1, forming the basis for constructing animal models of infection. This review article discusses recent progress regarding these issues.

  4. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus.

    Science.gov (United States)

    Gallo, Araiz; Valli, Adrian; Calvo, María; García, Juan Antonio

    2018-05-01

    Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans , was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection. IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus

  5. Effects of RNA branching on the electrostatic stabilization of viruses

    NARCIS (Netherlands)

    Erdemci-Tandogan, Gonca; Wagner, Jef; Schoot, Paul van der|info:eu-repo/dai/nl/102140618; Podgornik, Rudolf; Zandi, Roya

    2016-01-01

    Many single-stranded (ss) RNA viruses self assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although

  6. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA.

    Science.gov (United States)

    Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L

    1988-06-01

    Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way.

  7. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1.

    Science.gov (United States)

    Darlix, J L; Gabus, C; Nugeyre, M T; Clavel, F; Barré-Sinoussi, F

    1990-12-05

    The retroviral genome consists of two identical RNA molecules joined at their 5' ends by the Dimer Linkage Structure (DLS). To study the mechanism of dimerization and the DLS of HIV-1 RNA, large amounts of bona fide HIV-1 RNA and of mutants have been synthesized in vitro. We report that HIV-1 RNA forms dimeric molecules and that viral nucleocapsid (NC) protein NCp15 greatly activates dimerization. Deletion mutagenesis in the RNA 5' 1333 nucleotides indicated that a small domain of 100 nucleotides, located between positions 311 to 415 from the 5' end, is necessary and sufficient to promote HIV-1 RNA dimerization. This dimerization domain encompasses an encapsidation element located between the 5' splice donor site and initiator AUG of gag and shows little sequence variations in different strains of HIV-1. Furthermore, cross-linking analysis of the interactions between NC and HIV-1 RNA (311 to 415) locates a major contact site in the encapsidation element of HIV-1 RNA. The genomic RNA dimer is tightly associated with nucleocapsid protein molecules in avian and murine retroviruses, and this ribonucleoprotein structure is believed to be the template for reverse transcription. Genomic RNA-protein interactions have been analyzed in human immunodeficiency virus (HIV) virions and results showed that NC protein molecules are tightly bound to the genomic RNA dimer. Since retroviral RNA dimerization and packaging appear to be under the control of the same cis element, the encapsidation sequences, and trans-acting factor, the NC protein, they are probably related events in the course of virion assembly.

  8. A novel self-replicating chimeric lentivirus-like particle.

    Science.gov (United States)

    Jurgens, Christy K; Young, Kelly R; Madden, Victoria J; Johnson, Philip R; Johnston, Robert E

    2012-01-01

    Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4⁺ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.

  9. A Polyamide Inhibits Replication of Vesicular Stomatitis Virus by Targeting RNA in the Nucleocapsid

    Energy Technology Data Exchange (ETDEWEB)

    Gumpper, Ryan H.; Li, Weike; Castañeda, Carlos H.; Scuderi, M. José; Bashkin, James K.; Luo, Ming; Dutch, Rebecca Ellis

    2018-02-07

    Polyamides have been shown to bind double-stranded DNA by complementing the curvature of the minor groove and forming various hydrogen bonds with DNA. Several polyamide molecules have been found to have potent antiviral activities against papillomavirus, a double-stranded DNA virus. By analogy, we reason that polyamides may also interact with the structured RNA bound in the nucleocapsid of a negative-strand RNA virus. Vesicular stomatitis virus (VSV) was selected as a prototype virus to test this possibility since its genomic RNA encapsidated in the nucleocapsid forms a structure resembling one strand of an A-form RNA duplex. One polyamide molecule, UMSL1011, was found to inhibit infection of VSV. To confirm that the polyamide targeted the nucleocapsid, a nucleocapsid-like particle (NLP) was incubated with UMSL1011. The encapsidated RNA in the polyamide-treated NLP was protected from thermo-release and digestion by RNase A. UMSL1011 also inhibits viral RNA synthesis in the intracellular activity assay for the viral RNA-dependent RNA polymerase. The crystal structure revealed that UMSL1011 binds the structured RNA in the nucleocapsid. The conclusion of our studies is that the RNA in the nucleocapsid is a viable antiviral target of polyamides. Since the RNA structure in the nucleocapsid is similar in all negative-strand RNA viruses, polyamides may be optimized to target the specific RNA genome of a negative-strand RNA virus, such as respiratory syncytial virus and Ebola virus.

    IMPORTANCENegative-strand RNA viruses (NSVs) include several life-threatening pathogens, such as rabies virus, respiratory syncytial virus, and Ebola virus. There are no effective antiviral drugs against these viruses. Polyamides offer an exceptional opportunity because they may be optimized to target each NSV. Our studies on vesicular stomatitis virus, an NSV, demonstrated that a polyamide molecule could specifically target the viral RNA in the nucleocapsid and inhibit

  10. Small angle scattering study of the structure and organization of RNA and protein in Brome Mosaic Virus (BMV)

    Science.gov (United States)

    Das, Narayan C.; Warren, Garfield T.; Cheng, Si; Kao, C. Cheng; Ni, Peng; Dragnea, Bogdan; Sokol, Paul E.

    2012-02-01

    Brome mosaic virus (BMV) is a small icosahedral of the alpha virus-like superfamily of RNA with a segmented positive-strand RNA genome and a mean diameter ˜ 268å that offers high levels of RNA synthesis and virus production in plants. BMV also tightly regulates the packaging of its four RNAs (RNA1 through RNA4) into three separate particles; RNA1 and RNA2 are encapsidated separately while one copy each of RNA3 and RNA4 are normally packaged together. Small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) were applied to study the size, shape and protein-RNA organization of BMV. D2O/H2O mixture was used to enhance contrast in SANS measurement. The radial distribution of BMV from the Fourier transform of scattering spectrum gives a clear indication of RNA packing, and distribution and their structure in the BMV. The result reveals that the virus is about 266 å in diameter and is composed of RNA inside the virion coated with a protein shell.

  11. Investigation of RNA structure in satellite panicum mosaic virus

    International Nuclear Information System (INIS)

    Makino, D.L.; Day, J.; Larson, S.B.; McPherson, A.

    2006-01-01

    Three new crystal forms of satellite panicum mosaic virus (SPMV) were grown and their structures solved from X-ray diffraction data using molecular replacement techniques. The crystals were grown under conditions of pH and ionic strength that were appreciably different then those used for the original structure determination. In rhombohedral crystals grown at pH 8.5 and low ionic strength PEG 3350 solutions, Fourier syntheses revealed segments, ten amino acid residues long, of amino-terminal polypeptides not previously seen, as well as masses of electron density within concavities on the interior of the capsid, which appeared in the neighborhoods of icosahedral five- and threefold axes. The densities were compatible with secondary structural domains of RNA, and they included a segment of double helical RNA of about four to five base pairs oriented, at least approximately, along the fivefold axes. The distribution of RNA observed for SPMV appears to be distinctly different than the encapsidated nucleic acid conformation previously suggested for another satellite virus, satellite tobacco mosaic virus. This study further shows that analysis of viruses in crystals grown under different chemical conditions may reveal additional information regarding the structure of encapsidated RNA

  12. RNA polymerase of the killer virus of yeast

    International Nuclear Information System (INIS)

    Georgopoulos, D.E.; Leibowitz, M.J.

    1984-01-01

    The L/sub A/ and M double-stranded (ds) RNA segments of the cytoplasmically inherited killer virus of Saccharomyces cerevisiae are encapsidated in virions that contain a DNA-independent transcriptase activity. This enzyme catalyzes the synthesis of full-length (+) stranded copies of the genomic dsRNA segments, denoted l/sub A/ and m. The L/sub A/ dsRNA segment appears to encode the major capsid protein in which both dsRNA molecules are encapsidated, while M dsRNA encodes products responsible for the two killer phenotypes of toxin production and resistance to toxin. Proteins extracted from transcriptionally active virions fail to cross-react with antibody to yeast DNA-dependent RNA polymerases, suggesting that none of the subunits of the host cell polymerases are active in viral transcription. Sequence analysis of the in vitro transcripts reveals neither to be 3'-terminally polyadenylated, although m contains an apparent internal polyA-like tract. In the presence of any three ribonucleoside triphosphates (0.5 mM), the fourth ribonucleoside triphosphate shows an optimal rate of incorporation into transcript at a concentration of 20 μM. However, in a 3-hour reaction, the yield of a product RNA increases with the concentration of the limiting ribonucleotide up to 0.5 mM. Gel electrophoresis of the reaction products reveals that increasing the substrate concentration accelerates the appearance of radioactivity in full-length l/sub A/ and m transcripts

  13. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    Science.gov (United States)

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-02-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation.

  14. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    Science.gov (United States)

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  15. RNA packaging of MRFV virus-like particles: The interplay between RNA pools and capsid coat protein

    Science.gov (United States)

    Virus-like particles (VLPs) can be produced through self-assembly of capsid protein (CP) into particles with discrete shapes and sizes and containing different types of RNA molecules. The general principle that governs particle assembly and RNA packaging is determined by unique interactions between ...

  16. The RNA 5 of Prunus necrotic ringspot virus is a biologically inactive copy of the 3'-UTR of the genomic RNA 3.

    Science.gov (United States)

    Di Terlizzi, B; Skrzeczkowski, L J; Mink, G I; Scott, S W; Zimmerman, M T

    2001-01-01

    In addition to the four RNAs known to be encapsidated by Prunus necrotic ringspot virus (PNRSV) and Apple mosaic virus (ApMV), an additional small RNA (RNA 5) was present in purified preparations of several isolates of both viruses. RNA 5 was always produced following infection of a susceptible host by an artificial mixture of RNAs 1, 2, 3, and 4 indicating that it was a product of viral replication. RNA 5 does not activate the infectivity of mixtures that contain the three genomic RNAs (RNA 1 + RNA 2 + RNA 3) nor does it appear to modify symptom expression. Results from hybridization studies suggested that RNA 5 had partial sequence homology with RNAs 1, 2, 3, and 4. Cloning and sequencing the RNA 5 of isolate CH 57/1-M of PNRSV, and the 3' termini of the RNA 1, RNA 2 and RNA 3 of this isolate indicated that it was a copy of the 3' untranslated terminal region (3'-UTR) of the genomic RNA 3.

  17. Appearance of newly formed mRNA and rRNA as ribonucleoprotein-particles in the cytoplasmic subribosomal fraction of pea embryos

    International Nuclear Information System (INIS)

    Takahashi, Noribumi; Takaiwa, Fumio; Fukuei, Keisuke; Sakamaki, Tadashi; Tanifuji, Shigeyuki

    1977-01-01

    Incorporation studies with 3 H-uridine or 3 H-adenosine showed that germinating pea embryos synthesize all types of poly A(+) RNA, rRNA and 4-5S RNA at the early stage of germination. After the pulse labeling for 30 min, only heterodisperse RNA and 4-5S RNA appeared in the cytoplasm as labeled RNA species. At this time the radioactivity was associated with cytoplasmic structures heavier than 80S and RNP particles of 68-70S, 52-55S, 36-38S and 20-22S which are presumed to be free mRNP particles in plants. When the pulse-labeled embryos were incubated for a further 60 min in an isotope-free medium, the labeled 17S and 25S rRNA emerged in the cytoplasm, together with labeled heterodisperse and 4-5S RNAs. More radioactivity accumulated in the regions of the polysome, 62-65S and 38-42S particles. The results of analysis of RNAs extracted from the whole cytoplasm, polysome or subribosomal fractions indicated that small subunits of newly formed ribosomes appear more rapidly in the cytoplasm than new large subunits, which accumulate for a while as free particles in the cytoplasm than are incorporated into polysomes. The actinomycin treatment which caused preferential inhibition of rRNA synthesis reduced the accumulation of free, newly formed ribosome subunits and partially permitted detection of the presumed mRNP particles in the subribosomal region even after the chase treatment. (auth.)

  18. Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2010-08-01

    Full Text Available In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV, is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20 and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20 were blocked in encapsidation (no virus after blind passages but could be rescued if the capsid and 2C(ATPase coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i genome replication is known to be stringently linked to translation, (ii morphogenesis is known to be stringently linked to genome replication, (iii newly synthesized 2C(ATPase is an essential component of the replication complex, and (iv 2C(ATPase has specific affinity to capsid protein(s. These conditions lead to morphogenesis at the site where newly

  19. Structural basis of genomic RNA (gRNA) dimerization and packaging determinants of mouse mammary tumor virus (MMTV).

    Science.gov (United States)

    Aktar, Suriya J; Vivet-Boudou, Valérie; Ali, Lizna M; Jabeen, Ayesha; Kalloush, Rawan M; Richer, Delphine; Mustafa, Farah; Marquet, Roland; Rizvi, Tahir A

    2014-11-14

    two MMTV RNAs, leading to gRNA dimerization and its subsequent encapsidation into the assembling virus particles. The results presented here enhance our understanding of the MMTV gRNA dimerization and packaging processes and the role of structural motifs with respect to RNA-RNA and possibly RNA-protein interactions that might be taking place during MMTV life cycle.

  20. Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group.

    Science.gov (United States)

    Fukuda, M; Meshi, T; Okada, Y; Otsuki, Y; Takebe, I

    1981-07-01

    The initiation site for reconstitution on genome RNA was determined by electron microscopic serology for a watermelon strain of cucumber green mottle mosaic virus (CGMMV-W), which is chemically and serologically related to tobacco mosaic virus (TMV). The initiation site was located at the same position as that of the cowpea strain, a virus that produces short rods of encapsidated subgenomic messenger RNA for the coat protein (a two-component TMV), being about 320 nucleotides away from the 3' terminus, and hence within the coat protein cistron. Although CGMMV-W was until now believed to be a single-component TMV, the location of the initiation site indicated the presence of short rods containing coat protein messenger RNA in CGMMV-W-infected tissue, as in the case for the cowpea strain. We found such short rods in CGMMV-W-infected tissue. The results confirmed our previous hypothesis that the site of the initiation region for reconstitution determines the rod multiplicity of TMV. The finding of the second two-component TMV, CGMMV, indicates that the cowpea strain of TMV is not unique in being a two-component virus and that the location of the assembly initiation site on the genome RNA can be a criterion for grouping of viruses.

  1. Proteolytic processing of the primary translation products of cowpea mosaic virus RNAs

    NARCIS (Netherlands)

    Franssen, H.

    1984-01-01

    Cowpea mosaic virus (CPMV) is the type member of a group of plant viruses, the comoviruses, with a genome consisting of two single stranded RNA molecules separately encapsidated in icosahedral particles. A characteristic feature of the two genome RNAs is that they are both polyadenylated at their

  2. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges

    Directory of Open Access Journals (Sweden)

    Anna Kolliopoulou

    2017-06-01

    Full Text Available RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.

  3. Retrovirus-specific differences in matrix and nucleocapsid protein-nucleic acid interactions: implications for genomic RNA packaging.

    Science.gov (United States)

    Sun, Meng; Grigsby, Iwen F; Gorelick, Robert J; Mansky, Louis M; Musier-Forsyth, Karin

    2014-01-01

    Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging.

  4. The RNA of turnip yellow mosaic virus exhibits icosahedral order

    International Nuclear Information System (INIS)

    Larson, Steven B.; Lucas, Robert W.; Greenwood, Aaron; McPherson, Alexander

    2005-01-01

    Difference electron density maps, based on structure factor amplitudes and experimental phases from crystals of wild-type turnip yellow mosaic virus and those of empty capsids prepared by freeze-thawing, show a large portion of the encapsidated RNA to have an icosahedral distribution. Four unique segments of base-paired, double-helical RNA, one to two turns in length, lie between 33-A and 101-A radius and are organized about either 2-fold or 5-fold icosahedral axes. In addition, single-stranded loops of RNA invade the pentameric and hexameric capsomeres where they contact the interior capsid surface. The remaining RNA, not seen in electron density maps, must serve as connecting links between these secondary structural elements and is likely icosahedrally disordered. The distribution of RNA observed crystallographically appears to be in agreement with models based on biochemical data and secondary structural analyses

  5. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.

    Directory of Open Access Journals (Sweden)

    Hui Feng

    Full Text Available BACKGROUND: The specific interaction between hepatitis B virus (HBV polymerase (P protein and the ε RNA stem-loop on pregenomic (pg RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP, to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.

  6. Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus.

    Science.gov (United States)

    Sánchez-Navarro, J A; Reusken, C B; Bol, J F; Pallás, V

    1997-12-01

    Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) are tripartite positive-strand RNA plant viruses that encode functionally similar translation products. Although the two viruses are phylogenetically closely related, they infect a very different range of natural hosts. The coat protein (CP) gene, the movement protein (MP) gene or both genes in AMV RNA 3 were replaced by the corresponding genes of PNRSV. The chimeric viruses were tested for heterologous encapsidation, replication in protoplasts from plants transformed with AMV replicase genes P1 and P2 (P12 plants) and for cell-to-cell transport in P12 plants. The chimeric viruses exhibited basic competence for encapsidation and replication in P12 protoplasts and for a low level of cell-to-cell movement in P12 plants. The potential involvement of the MP gene in determining host specificity in ilarviruses is discussed.

  7. Concentration of circulating miRNA-containing particles in serum enhances miRNA detection and reflects CRC tissue-related deregulations.

    Science.gov (United States)

    ElSharawy, Abdou; Röder, Christian; Becker, Thomas; Habermann, Jens K; Schreiber, Stefan; Rosenstiel, Philip; Kalthoff, Holger

    2016-11-15

    The emerging potential of miRNAs as biomarkers for cancer detection demands parallel evaluation of strategies for reliable identification of disease-related signatures from easily accessible and pertinent body compartments. Here, we addressed whether efficient concentration of circulating miRNA-carrying particles is a rationale for miRNA biomarker discovery. We systematically compared miRNA signatures in 93 RNA preparations from three serum entities (whole serum, particle-concentrated, and particle-depleted fractions) and corresponding tissue samples from patients with colorectal cancer (CRC) as a model disease. Significant differences between whole sera and particle-concentrated serum fractions of CRC patients emerged for 45 of 742 tested miRNAs. Twenty-eight of these 45 miRNAs were differentially expressed between particle-concentrated serum fractions of metastatic CRC- and healthy individuals. Over half of these candidates (15 of 28) showed deregulations only in concentrated serum fractions, but not in whole sera, compared to the respective controls.Our results also provided evidence of a consistent downregulation of miR-486 and miR-92a, and further showed a possible "strand-specific" deregulation of extracellular miRNAs in CRC. More importantly, most of the identified miRNAs in the enriched sera reflected the patterns of the corresponding tumor tissues and showed links to cancer-related inflammation. Further investigation of seven serum pools revealed a subset of potential extracellular miRNA candidates to be implicated in both neoplastic and inflammatory bowel disease.Our findings demonstrate that enrichment and sensitive detection of miRNA carriers is a promising approach to detect CRC-related pathological changes in liquid biopsies, and has potential for clinical diagnostics.

  8. Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase.

    Science.gov (United States)

    Naum-Onganía, Gabriela; Gago-Zachert, Selma; Peña, Eduardo; Grau, Oscar; Garcia, Maria Laura

    2003-10-01

    Citrus psorosis virus (CPsV), the type member of genus Ophiovirus, has three genomic RNAs. Complete sequencing of CPsV RNA 1 revealed a size of 8184 nucleotides and Northern blot hybridization with chain specific probes showed that its non-coding strand is preferentially encapsidated. The complementary strand of RNA 1 contains two open reading frames (ORFs) separated by a 109-nt intergenic region, one located near the 5'-end potentially encoding a 24K protein of unknown function, and another of 280K containing the core polymerase motifs characteristic of viral RNA-dependent RNA polymerases (RdRp). Comparison of the core RdRp motifs of negative-stranded RNA viruses, supports grouping CPsV, Ranunculus white mottle virus (RWMV) and Mirafiori lettuce virus (MiLV) within the same genus (Ophiovirus), constituting a monophyletic group separated from all other negative-stranded RNA viruses. Furthermore, RNAs 1 of MiLV, CPsV and RWMV are similar in size and those of MiLV and CPsV also in genomic organization and sequence.

  9. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles.

    Directory of Open Access Journals (Sweden)

    Alexsia L Richards

    Full Text Available The autophagic pathway acts as part of the immune response against a variety of pathogens. However, several pathogens subvert autophagic signaling to promote their own replication. In many cases it has been demonstrated that these pathogens inhibit or delay the degradative aspect of autophagy. Here, using poliovirus as a model virus, we report for the first time bona fide autophagic degradation occurring during infection with a virus whose replication is promoted by autophagy. We found that this degradation is not required to promote poliovirus replication. However, vesicular acidification, which in the case of autophagy precedes delivery of cargo to lysosomes, is required for normal levels of virus production. We show that blocking autophagosome formation inhibits viral RNA synthesis and subsequent steps in the virus cycle, while inhibiting vesicle acidification only inhibits the final maturation cleavage of virus particles. We suggest that particle assembly, genome encapsidation, and virion maturation may occur in a cellular compartment, and we propose the acidic mature autophagosome as a candidate vesicle. We discuss the implications of our findings in understanding the late stages of poliovirus replication, including the formation and maturation of virions and egress of infectious virus from cells.

  10. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro.

    Science.gov (United States)

    Bieth, E; Gabus, C; Darlix, J L

    1990-01-11

    The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12.

  11. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging.

    Science.gov (United States)

    Webb, Joseph A; Jones, Christopher P; Parent, Leslie J; Rouzina, Ioulia; Musier-Forsyth, Karin

    2013-08-01

    Despite the vast excess of cellular RNAs, precisely two copies of viral genomic RNA (gRNA) are selectively packaged into new human immunodeficiency type 1 (HIV-1) particles via specific interactions between the HIV-1 Gag and the gRNA psi (ψ) packaging signal. Gag consists of the matrix (MA), capsid, nucleocapsid (NC), and p6 domains. Binding of the Gag NC domain to ψ is necessary for gRNA packaging, but the mechanism by which Gag selectively interacts with ψ is unclear. Here, we investigate the binding of NC and Gag variants to an RNA derived from ψ (Psi RNA), as well as to a non-ψ region (TARPolyA). Binding was measured as a function of salt to obtain the effective charge (Zeff) and nonelectrostatic (i.e., specific) component of binding, Kd(1M). Gag binds to Psi RNA with a dramatically reduced Kd(1M) and lower Zeff relative to TARPolyA. NC, GagΔMA, and a dimerization mutant of Gag bind TARPolyA with reduced Zeff relative to WT Gag. Mutations involving the NC zinc finger motifs of Gag or changes to the G-rich NC-binding regions of Psi RNA significantly reduce the nonelectrostatic component of binding, leading to an increase in Zeff. These results show that Gag interacts with gRNA using different binding modes; both the NC and MA domains are bound to RNA in the case of TARPolyA, whereas binding to Psi RNA involves only the NC domain. Taken together, these results suggest a novel mechanism for selective gRNA encapsidation.

  12. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation

    Directory of Open Access Journals (Sweden)

    Valerie Bríd O’Leary

    2015-04-01

    Full Text Available Exposure to low-dose irradiation causes transiently elevated expression of the long ncRNA PARTICLE (gene PARTICLE, promoter of MAT2A-antisense radiation-induced circulating lncRNA. PARTICLE affords both a cytosolic scaffold for the tumor suppressor methionine adenosyltransferase (MAT2A and a nuclear genetic platform for transcriptional repression. In situ hybridization discloses that PARTICLE and MAT2A associate together following irradiation. Bromouridine tracing and presence in exosomes indicate intercellular transport, and this is supported by ex vivo data from radiotherapy-treated patients. Surface plasmon resonance indicates that PARTICLE forms a DNA-lncRNA triplex upstream of a MAT2A promoter CpG island. We show that PARTICLE represses MAT2A via methylation and demonstrate that the radiation-induced PARTICLE interacts with the transcription-repressive complex proteins G9a and SUZ12 (subunit of PRC2. The interplay of PARTICLE with MAT2A implicates this lncRNA in intercellular communication and as a recruitment platform for gene-silencing machineries through triplex formation in response to irradiation.

  13. Caulimoviridae Tubule-Guided Transport Is Dictated by Movement Protein Properties ▿

    Science.gov (United States)

    Sánchez-Navarro, Jesús; Fajardo, Thor; Zicca, Stefania; Pallás, Vicente; Stavolone, Livia

    2010-01-01

    Plant viruses move through plasmodesmata (PD) either as nucleoprotein complexes (NPCs) or as tubule-guided encapsidated particles with the help of movement proteins (MPs). To explore how and why MPs specialize in one mechanism or the other, we tested the exchangeability of MPs encoded by DNA and RNA virus genomes by means of an engineered alfalfa mosaic virus (AMV) system. We show that Caulimoviridae (DNA genome virus) MPs are competent for RNA virus particle transport but are unable to mediate NPC movement, and we discuss this restriction in terms of the evolution of DNA virus MPs as a means of mediating DNA viral genome entry into the RNA-trafficking PD pathway. PMID:20130061

  14. Characterization of a novel single-stranded RNA mycovirus in pleurotus ostreatus

    International Nuclear Information System (INIS)

    Yu, Hyun Jae; Lim, Dongbin; Lee, Hyun-Sook

    2003-01-01

    A mycovirus, named oyster mushroom spherical virus (OMSV), was isolated from cultivated oyster mushrooms with a severe epidemic of oyster mushroom Die-back disease. OMSV was a 27-nm spherical virus encapsidating a single-stranded RNA (ssRNA) of 5.784 kb with a coat protein of approximately 28.5 kDa. The nucleotide sequence of the virus revealed that its genomic RNA was positive strand, containing 5784 bases with seven open reading frames (ORF). ORF1 had the motifs of RNA-dependent RNA polymerases (RdRp) and helicase. ORF2 encoded a coat protein. ORF3 to 7 could encode putative polypeptides of approximately 12, 12.5, 21, 14.5, and 23 kDa, respectively, but none of them showed significant similarity to any other known polypeptides. The 5' end of the viral RNA was uncapped and the 3' end was polyadenylated with 74 bases. Genomic structure and organization and the derived amino acid sequence of RdRp and helicase domain were similar to those of tymoviruses, a plant virus group

  15. Gene expression in the muscle and central nervous system following intramuscular inoculation of encapsidated or naked poliovirus replicons

    International Nuclear Information System (INIS)

    Jackson, Cheryl A.; Messinger, Jeff; Palmer, Matthew T.; Peduzzi, Jean D.; Morrow, Casey D.

    2003-01-01

    The spread of intramuscularly inoculated poliovirus to the central nervous system (CNS) has been documented in humans, monkeys, and mice transgenic for the human poliovirus receptor. Poliovirus spread is thought to be due to infection of the peripheral nerve and retrograde transport of poliovirus through the axon to the neuron cell body, where final virus uncoating occurs and translation/replication ensues. In previous studies, we have shown that polio-based vectors (replicons) can be used for gene delivery to motor neurons of the CNS. Using a replicon that encodes green fluorescent protein (GFP), we found that following intrathecal inoculation, GFP expression was confined to motorneurons of the spinal cord. To further characterize the gene expression of poliovirus in the periphery and CNS, we have intramuscularly inoculated transgenic mice with poliovirus replicons encoding GFP. Expression of GFP was demonstrated in the muscle, sciatic nerve, dorsal root ganglion, and the ventral horn motorneurons following intramuscular inoculation. There was no evidence of paralysis or behavioral abnormalities in the mice following intramuscular inoculation of the replicon encoding GFP. Injection of replicon RNA alone (naked RNA) into the muscle of transgenic mice or rats, which do not express the poliovirus receptor, also resulted in expression of GFP in the muscle, sciatic nerve, dorsal root ganglion, and ventral horn motorneurons, indicating that transport of the replicon RNA from the periphery to CNS had occurred. GFP expression was found in the muscles and sciatic nerve as early as 6 h after injection of replicons or replicon RNA, even after sciatic nerve section. Analysis at longer times postinjection revealed GFP expression similar to 6 h levels in the cut sciatic nerves and robust expression in the nerves of uncut animals. The infection and expression of GFP in the CNS following intramuscular inoculation of encapsidated replicons encoding GFP occurred in juvenile or

  16. C-Terminal Substitution of HBV Core Proteins with Those from DHBV Reveals That Arginine-Rich 167RRRSQSPRR175 Domain Is Critical for HBV Replication

    Science.gov (United States)

    Kim, Taeyeung; Shin, Bo-Hye; Park, Gil-Soon; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2012-01-01

    To investigate the contributions of carboxyl-terminal nucleic acid binding domain of HBV core (C) protein for hepatitis B virus (HBV) replication, chimeric HBV C proteins were generated by substituting varying lengths of the carboxyl-terminus of duck hepatitis B virus (DHBV) C protein for the corresponding regions of HBV C protein. All chimeric C proteins formed core particles. A chimeric C protein with 221–262 amino acids of DHBV C protein, in place of 146–185 amino acids of the HBV C protein, supported HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis: 40% amino acid sequence identity or 45% homology in the nucleic-acid binding domain of HBV C protein was sufficient for pgRNA encapsidation and DNA synthesis, although we predominantly detected spliced DNA. A chimeric C protein with 221–241 and 251–262 amino acids of DHBV C, in place of HBV C 146–166 and 176–185 amino acids, respectively, could rescue full-length DNA synthesis. However, a reciprocal C chimera with 242–250 of DHBV C (242RAGSPLPRS 250) introduced in place of 167–175 of HBV C (167RRRSQSPRR 175) significantly decreased pgRNA encapsidation and DNA synthesis, and full-length DNA was not detected, demonstrating that the arginine-rich 167RRRSQSPRR175 domain may be critical for efficient viral replication. Five amino acids differing between viral species (underlined above) were tested for replication rescue; R169 and R175 were found to be important. PMID:22911745

  17. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements

    Science.gov (United States)

    Watters, Kyle E; Choudhary, Krishna; Aviran, Sharon; Perry, Keith L

    2018-01-01

    Abstract In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and covariation analysis, we explore the structural features of the third genome segment of cucumber mosaic virus (CMV), RNA3 (2216 nt), both in vitro and in plant cell lysates. Comparing SHAPE-Seq and covariation analysis results revealed multiple SEs in the coat protein open reading frame and 3′ untranslated region. Four of these SEs were mutated and serially passaged in Nicotiana tabacum plants to identify biologically selected changes to the original mutated sequences. After passaging, loop mutants showed partial reversion to their wild-type sequence and SEs that were structurally disrupted by mutations were restored to wild-type-like structures via synonymous mutations in planta. These results support the existence and selection of virus open reading frame SEs in the host organism and provide a framework for further studies on the role of RNA structure in viral infection. Additionally, this work demonstrates the applicability of high-throughput chemical probing in plant cell lysates and presents a new method for calculating SHAPE reactivities from overlapping reverse transcriptase priming sites. PMID:29294088

  18. Forced recombination of psi-modified murine leukaemia virus-based vectors with murine leukaemia-like and VL30 murine endogenous retroviruses

    DEFF Research Database (Denmark)

    Mikkelsen, J G; Lund, Anders Henrik; Duch, M

    1999-01-01

    Co-encapsidation of retroviral RNAs into virus particles allows for the generation of recombinant proviruses through events of template switching during reverse transcription. By use of a forced recombination system based on recombinational rescue of replication- defective primer binding site-imp....... We note that recombination-based rescue of primer binding site knock-out retroviral vectors may constitute a sensitive assay to register putative genetic interactions involving endogenous retroviral RNAs present in cells of various species.......-impaired Akv-MLV-derived vectors, we here examine putative genetic interactions between vector RNAs and copackaged endogenous retroviral RNAs of the murine leukaemia virus (MLV) and VL30 retroelement families. We show (i) that MLV recombination is not blocked by nonhomology within the 5' untranslated region...... harbouring the supposed RNA dimer-forming cis -elements and (ii) that copackaged retroviral RNAs can recombine despite pronounced sequence dissimilarity at the cross-over site(s) and within parts of the genome involved in RNA dimerization, encapsidation and strand transferring during reverse transcription...

  19. Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.

    Science.gov (United States)

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2012-01-09

    Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.

  20. Intracellular coordination of potyviral RNA functions in infection.

    Science.gov (United States)

    Mäkinen, Kristiina; Hafrén, Anders

    2014-01-01

    Establishment of an infection cycle requires mechanisms to allocate the genomes of (+)-stranded RNA viruses in a balanced ratio to translation, replication, encapsidation, and movement, as well as mechanisms to prevent translocation of viral RNA (vRNA) to cellular RNA degradation pathways. The ratio of vRNA allocated to various functions is likely balanced by the availability of regulatory proteins or competition of the interaction sites within regulatory ribonucleoprotein complexes. Due to the transient nature of viral processes and the interdependency between vRNA pathways, it is technically demanding to work out the exact molecular mechanisms underlying vRNA regulation. A substantial number of viral and host proteins have been identified that facilitate the steps that lead to the assembly of a functional potyviral RNA replication complex and their fusion with chloroplasts. Simultaneously with on-going viral replication, part of the replicated potyviral RNA enters movement pathways. Although not much is known about the processes of potyviral RNA release from viral replication complexes, the molecular interactions involved in these processes determine the fate of the replicated vRNA. Some viral and host cell proteins have been described that direct replicated potyviral RNA to translation to enable potyviral gene expression and productive infection. The antiviral defense of the cell causes vRNA degradation by RNA silencing. We hypothesize that also plant pathways involved in mRNA decay may have a role in the coordination of potyviral RNA expression. In this review, we discuss the roles of different potyviral and host proteins in the coordination of various potyviral RNA functions.

  1. Analysis of the RNA species isolated from defective particles of vesicular stomatitis virus.

    Science.gov (United States)

    Adler, R; Banerjee, A K

    1976-10-01

    Serial high multiplicity passage of a cloned stock of vesicular stomatitis virus was found to generate defective interfering particles containing three size classes of RNA, with sedimentaiton coefficients of 31 S, 23 S and 19 S. The 31 S and 23 S RNA species were found to be complementary to both the 12 to 18 S and 31 S size classes of VSV mRNAs. The 19 S class of RNA was found to be partially base-paired. All three RNA species were found to contain ppAp at their 5' termini.

  2. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    Science.gov (United States)

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  3. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    Science.gov (United States)

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  4. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    Directory of Open Access Journals (Sweden)

    Giada Mattiuzzo

    Full Text Available The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT. The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  5. Intracellular coordination of potyviral RNA functions in infection

    Directory of Open Access Journals (Sweden)

    Kristiina eMäkinen

    2014-03-01

    Full Text Available Abstract Establishment of an infection cycle requires mechanisms to allocate the genomes of (+-stranded RNA viruses in a balanced ratio to translation, replication, encapsidation, and movement, as well as mechanisms to prevent translocation of viral RNA (vRNA to cellular RNA degradation pathways. The ratio of vRNA allocated to various functions is likely balanced by the availability of regulatory proteins or competition of the interaction sites within regulatory ribonucleoprotein (RNP complexes. Due to the transient nature of viral processes and the interdependency between vRNA pathways, it is technically demanding to work out the exact molecular mechanisms underlying vRNA regulation. A substantial number of viral and host proteins have been identified that facilitate the steps that lead to the assembly of a functional potyviral RNA replication complex and their fusion with chloroplasts. Simultaneously with on-going viral replication, part of the replicated potyviral RNA enters movement pathways. Although not much is known about the processes of potyviral RNA release from viral replication complexes (VRCs, the molecular interactions involved in these processes determine the fate of the replicated vRNA. Some viral and host cell proteins have been described that direct replicated potyviral RNA to translation to enable potyviral gene expression and productive infection. The antiviral defense of the cell causes vRNA degradation by RNA silencing. We hypothesize that also plant pathways involved in mRNA decay may have a role in the coordination of potyviral RNA expression. In this review, we discuss the roles of different potyviral and host proteins in the coordination of various potyviral RNA functions.

  6. Processing of the 17-S Escherichia coli precursor RNA in the 27-S pre-ribosomal particle

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, F; Vasseur, M [Institut de Biologie Physico-Chimique, 75 - Paris (France)

    1976-01-01

    An RNase activity probably involved in the maturation of 16-S pre-ribosomal RNA in Escherichia coli has been partially purified from crude cell extracts. When 27-S ribosome precursor particles are incubated with this enzyme preparation in vitro, their 17-S RNA is converted to a product with the same electrophoretic mobility as mature 16-S rRNA. FingerprS rRNA. Generation of the normal 5'-P terminus seems to require a factor present in cell extracts since incubation of the 27-S precursor particle in an extract obtained after centrifugation at 30,000 x g causes conversion of the 17-S RNA to a 16-S species containing both termini of mature 16-S rRNS. Preliminary experiments suggest that correct maturation of the 5' end of the 17-S precursor RNA requires a system in which protein synthesis can take place.

  7. A parallel implementation of the Wuchty algorithm with additional experimental filters to more thoroughly explore RNA conformational space.

    Directory of Open Access Journals (Sweden)

    Jonathan W Stone

    Full Text Available We present new modifications to the Wuchty algorithm in order to better define and explore possible conformations for an RNA sequence. The new features, including parallelization, energy-independent lonely pair constraints, context-dependent chemical probing constraints, helix filters, and optional multibranch loops, provide useful tools for exploring the landscape of RNA folding. Chemical probing alone may not necessarily define a single unique structure. The helix filters and optional multibranch loops are global constraints on RNA structure that are an especially useful tool for generating models of encapsidated viral RNA for which cryoelectron microscopy or crystallography data may be available. The computations generate a combinatorially complete set of structures near a free energy minimum and thus provide data on the density and diversity of structures near the bottom of a folding funnel for an RNA sequence. The conformational landscapes for some RNA sequences may resemble a low, wide basin rather than a steep funnel that converges to a single structure.

  8. The crystal structure and RNA-binding of an orthomyxovirus nucleoprotein.

    Directory of Open Access Journals (Sweden)

    Wenjie Zheng

    2013-09-01

    Full Text Available Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV (genus Isavirus. As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ~12 nts of RNA, shorter than the 24-28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions.

  9. Ribonucleoprotein organization of eukaryotic RNA. XXXII. U2 small nuclear RNA precursors and their accurate 3' processing in vitro as ribonucleoprotein particles.

    Science.gov (United States)

    Wieben, E D; Nenninger, J M; Pederson, T

    1985-05-05

    Biosynthetic precursors of U2 small nuclear RNA have been identified in cultured human cells by hybrid-selection of pulse-labeled RNA with cloned U2 DNA. These precursor molecules are one to approximately 16 nucleotides longer than mature U2 RNA and contain 2,2,7-trimethylguanosine "caps". The U2 RNA precursors are associated with proteins that react with a monoclonal antibody for antigens characteristic of small nuclear ribonucleoprotein particles. Like previously described precursors of U1 and U4 small nuclear RNAs, the pre-U2 RNAs are recovered in cytoplasmic fractions, although it is not known if this is their location in vivo. The precursors are processed to mature-size U2 RNA when cytoplasmic extracts are incubated in vitro at 37 degrees C. Mg2+ is required but ATP is not. The ribonucleoprotein structure of the pre-U2 RNA is maintained during the processing reaction in vitro, as are the 2,2,7-trimethylguanosine caps. The ribonucleoprotein organization is of major importance, as exogenous, protein-free U2 RNA precursors are degraded rapidly in the in vitro system. Two lines of evidence indicate that the conversion of U2 precursors to mature-size U2 RNA involves a 3' processing reaction. First, the reaction is unaffected by a large excess of mature U2 small nuclear RNP, whose 5' trimethylguanosine caps would be expected to compete for a 5' processing activity. Second, when pre-U2 RNA precursors are first stoichiometrically decorated with an antibody specific for 2,2,7-trimethylguanosine, the extent of subsequent processing in vitro is unaffected. These results provide the first demonstration of a eukaryotic RNA processing reaction in vitro occurring within a ribonucleoprotein particle.

  10. Virus-Like Particles That Can Deliver Proteins and RNA | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

  11. Defective RNA particles derived from Tomato black ring virus genome interfere with the replication of parental virus.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Minicka, Julia; Zarzyńska-Nowak, Aleksandra; Budzyńska, Daria; Elena, Santiago F

    2018-05-02

    Tomato black ring virus (TBRV) is the only member of the Nepovirus genus that is known to form defective RNA particles (D RNAs) during replication. Here, de novo generation of D RNAs was observed during prolonged passages of TBRV isolates originated from Solanum lycopersicum and Lactuca sativa in Chenopodium quinoa plants. D RNAs of about 500 nt derived by a single deletion in the RNA1 molecule and contained a portion of the 5' untranslated region and viral replicase, and almost the entire 3' non-coding region. Short regions of sequence complementarity were found at the 5' and 3' junction borders, which can facilitate formation of the D RNAs. Moreover, in this study we analyzed the effects of D RNAs on TBRV replication and symptoms development of infected plants. C. quinoa, S. lycopersicum, Nicotiana tabacum, and L. sativa were infected with the original TBRV isolates (TBRV-D RNA) and those containing additional D RNA particles (TBRV + D RNA). The viral accumulation in particular hosts was measured up to 28 days post inoculation by RT-qPCR. Statistical analyses revealed that D RNAs interfere with TBRV replication and thus should be referred to as defective interfering particles. The magnitude of the interference effect depends on the interplay between TBRV isolate and host species. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Thermal Stability of RNA Phage Virus-Like Particles Displaying Foreign Peptides

    Directory of Open Access Journals (Sweden)

    Peabody David S

    2011-05-01

    Full Text Available Abstract Background To be useful for genetic display of foreign peptides a viral coat protein must tolerate peptide insertions without major disruption of subunit folding and capsid assembly. The folding of the coat protein of RNA phage MS2 does not normally tolerate insertions in its AB-loop, but an engineered single-chain dimer readily accepts them as long as they are restricted to one of its two halves. Results Here we characterize the effects of peptide insertions on the thermal stabilities of MS2 virus-like particles (VLPs displaying a variety of different peptides in one AB-loop of the coat protein single-chain dimer. These particles typically denature at temperatures around 5-10°C lower than unmodified VLPs. Even so, they are generally stable up to about 50°C. VLPs of the related RNA phage PP7 are cross-linked with intersubunit disulfide bonds and are therefore significantly more stable. An AB-loop insertion also reduces the stability of PP7 VLPs, but they only begin to denature above about 70°C. Conclusions VLPs assembled from MS2 single-chain dimer coat proteins with peptide insertions in one of their AB-loops are somewhat less stable than the wild-type particle, but still resist heating up to about 50°C. Because they possess disulfide cross-links, PP7-derived VLPs provide an alternate platform with even higher stability.

  13. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2001-12-01

    Full Text Available Abstract Background Post-transcriptional gene silencing (PTGS by short interfering RNA has opened up new directions in the phenotypic mutation of cellular genes. However, its efficacy on non-nuclear genes and its effect on the interferon pathway remain unexplored. Since directed mutation of RNA genomes is not possible through conventional mutagenesis, we have tested sequence-specific 21-nucleotide long double-stranded RNAs (dsRNAs for their ability to silence cytoplasmic RNA genomes. Results Short dsRNAs were generated against specific mRNAs of respiratory syncytial virus, a nonsegmented negative-stranded RNA virus with a cytoplasmic life cycle. At nanomolar concentrations, the dsRNAs specifically abrogated expression of the corresponding viral proteins, and produced the expected mutant phenotype ex vivo. The dsRNAs did not induce an interferon response, and did not inhibit cellular gene expression. The ablation of the viral proteins correlated with the loss of the specific mRNAs. In contrast, viral genomic and antigenomic RNA, which are encapsidated, were not directly affected. Conclusions Synthetic inhibitory dsRNAs are effective in specific silencing of RNA genomes that are exclusively cytoplasmic and transcribed by RNA-dependent RNA polymerases. RNA-directed RNA gene silencing does not require cloning, expression, and mutagenesis of viral cDNA, and thus, will allow the generation of phenotypic null mutants of specific RNA viral genes under normal infection conditions and at any point in the infection cycle. This will, for the first time, permit functional genomic studies, attenuated infections, reverse genetic analysis, and studies of host-virus signaling pathways using a wild type RNA virus, unencumbered by any superinfecting virus.

  14. Transmission of HCV to a chimpanzee using virus particles produced in an RNA-transfected HepG2 cell culture.

    Science.gov (United States)

    Dash, S; Kalkeri, G; McClure, H M; Garry, R F; Clejan, S; Thung, S N; Murthy, K K

    2001-10-01

    It was demonstrated previously that HepG2 cells produce negative strand RNA and virus-like particles after transfection with RNA transcribed from a full-length hepatitis C virus (HCV) cDNA clone [Dash et al. (1997) American Journal of Pathology, 151:363-373]. To determine in vivo infectivity of these in vitro synthesized viral particles, a chimpanzee was inoculated intravenously with HCV derived from HepG2 cells. The infected chimpanzee was examined serially for elevation of liver enzymes, for the presence of HCV RNA in the serum by reverse transcription nested polymerase chain reaction (RT-PCR), anti-HCV antibodies in the serum, and inflammation in the liver. The chimpanzee developed elevated levels of liver enzymes after the second week, but the levels fluctuated over a 10-week period. HCV RNA was detected in the serum of the chimpanzee at the second, seventh and ninth weeks after inoculation, and remained positive up to 25 weeks. Liver biopsies at Weeks 18 and 19 revealed of mild inflammation. Nucleotide sequence analysis of HCV recovered from the infected chimpanzee at the second and ninth weeks showed 100% sequence homology with the clone used for transfection studies. Serum anti-HCV antibodies were not detected by EIA during the 25 weeks follow-up period. These results suggest that intravenous administration of the virus-like particles derived from RNA-transfected HepG2 cells are infectious, and therefore, the pMO9.6-T7 clone is an infectious clone. These results provide new information that in vitro synthesized HCV particles produced from full-length HCV clone can cause infection in a chimpanzee. This study will facilitate the use of innovative approaches to the study of assembly of HCV particles and mechanisms of virus infectivity in cell culture. Copyright 2001 Wiley-Liss, Inc.

  15. Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA

    Directory of Open Access Journals (Sweden)

    Ristic Natalia

    2010-09-01

    Full Text Available Abstract Background The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1 sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines. The replication restriction phenotype in the SL1 deletion mutant appears to be multifactorial, with defects in viral RNA dimerization and packaging in producer cells as well as in reverse transcription of the viral RNA in infected cells. In this study, we sought to characterize SL1 mutant replication restrictions and provide insights into the underlying mechanisms of compensation in revertants. Results HIV-1 lacking SL1 (NLΔSL1 did not replicate in PM-1 cells until two independent non-synonymous mutations emerged: G913A in the matrix domain (E42K on day 18 postinfection and C1907T in the SP1 domain (P10L on day 11 postinfection. NLΔSL1 revertants carrying either compensatory mutation showed enhanced infectivity in PM-1 cells. The SL1 revertants produced significantly more infectious particles per nanogram of p24 than did NLΔSL1. The SL1 deletion mutant packaged less HIV-1 genomic RNA and more cellular RNA, particularly signal recognition particle RNA, in the virion than the wild-type. NLΔSL1 also packaged 3- to 4-fold more spliced HIV mRNA into the virion, potentially interfering with infectious virus production. In contrast, both revertants encapsidated 2.5- to 5-fold less of these HIV-1 mRNA species. Quantitative RT-PCR analysis of RNA cross-linked with Gag in formaldehyde-fixed cells demonstrated that the compensatory mutations reduced the association between Gag and spliced HIV-1 RNA, thereby effectively preventing these RNAs from being packaged into the virion. The reduction of spliced viral RNA in the virion may have a major role in facilitating infectious virus production, thus restoring the infectivity of NLΔSL1

  16. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    Science.gov (United States)

    Darlix, J L; Gabus, C; Allain, B

    1992-12-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein.

  17. Specificity in the association of tomato black ring virus satellite RNA with helper virus.

    Science.gov (United States)

    Oncino, C; Hemmer, O; Fritsch, C

    1995-10-20

    The satellite RNAs (sat-RNAs) associated with some isolates of tomato black ring virus (TBRV) consist of single-stranded molecules of about 1375 nucleotides, encoding a nonstructural protein of 48K which has been shown to be involved in the replication of the sat-RNA. The TBRV sat-RNAs are also dependent for their replication and for their encapsidation on the helper virus. To characterize the nature of the association between sat-RNA and helper virus, transcripts of sat-RNA from TBRV isolates C and L (respectively, of serotypes G and S) have been prepared and inoculated onto Chenopodium quinoa leaves or protoplasts. Transcript of the TBRV sat-RNA C is efficiently multiplied when coinoculated with the genomic RNAs of TBRV isolate G (used instead of TBRV isolate C, because isolate G was depleted of sat-RNA), but does not multiply with TBRV isolate L. On the other hand, transcript of the sat-RNA L is able to multiply with the cognate helper virus and, less efficiently, with grapevine chrome mosaic virus (another nepovirus, 80% similar to TBRV), but does not multiply with TBRV G. The specificity of the association resides at the level of sat-RNA replication. Analysis of the multiplication of chimeric sat-RNAs, obtained by exchanging different regions between the two sat-RNAs C and L, showed that the 5' and the 3' noncoding regions of the sat-RNA, although important for replication, are not implicated in specificity. The results suggest that the determinants of the specificity are contained in the 48K sat-RNA-encoded protein.

  18. A C-terminal, cysteine-rich site in poliovirus 2C(ATPase) is required for morphogenesis.

    Science.gov (United States)

    Wang, Chunling; Ma, Hsin-Chieh; Wimmer, Eckard; Jiang, Ping; Paul, Aniko V

    2014-06-01

    The morphogenesis of viruses belonging to the genus Enterovirus in the family Picornaviridae is still poorly understood despite decades-long investigations. However, we recently provided evidence that 2C(ATPase) gives specificity to poliovirus encapsidation through an interaction with capsid protein VP3. The polypeptide 2C(ATPase) is a highly conserved non-structural protein of enteroviruses with important roles in RNA replication, encapsidation and uncoating. We have identified a site (K279/R280) near the C terminus of the polypeptide that is required for morphogenesis. The aim of the current project was to search for additional functional sites near the C terminus of the 2C(ATPase) polypeptide, with particular interest in those that are required for encapsidation. We selected for analysis a cysteine-rich site of the polypeptide and constructed four mutants in which cysteines or a histidine was changed to an alanine. The RNA transcripts were transfected into HeLa cells yielding two lethal, one temperature-sensitive and one quasi-infectious mutants. All four mutants exhibited normal protein translation in vitro and three of them possessed severe RNA replication defects. The quasi-infectious mutant (C286A) yielded variants with a pseudo-reversion at the original site (A286D), but some also contained one additional mutation: A138V or M293V. The temperature-sensitive mutant (C272A/H273A) exhibited an encapsidation and possibly also an uncoating defect at 37 °C. Variants of this mutant revealed suppressor mutations at three different sites in the 2C(ATPase) polypeptide: A138V, M293V and K295R. We concluded that the cysteine-rich site near the C terminus of 2C(ATPase) is involved in encapsidation, possibly through an interaction with an upstream segment located between boxes A and B of the nucleotide-binding domain. © 2014 The Authors.

  19. Structure determination of feline calicivirus virus-like particles in the context of a pseudo-octahedral arrangement.

    Directory of Open Access Journals (Sweden)

    Wim P Burmeister

    Full Text Available The vesivirus feline calicivirus (FCV is a positive strand RNA virus encapsidated by an icosahedral T=3 shell formed by the viral VP1 protein. Upon its expression in the insect cell - baculovirus system in the context of vaccine development, two types of virus-like particles (VLPs were formed, a majority built of 60 subunits (T=1 and a minority probably built of 180 subunits (T=3. The structure of the small particles was determined by x-ray crystallography at 0.8 nm resolution helped by cryo-electron microscopy in order to understand their formation. Cubic crystals belonged to space group P213. Their self-rotation function showed the presence of an octahedral pseudo-symmetry similar to the one described previously by Agerbandje and co-workers for human parvovirus VLPs. The crystal structure could be solved starting from the published VP1 structure in the context of the T=3 viral capsid. In contrast to viral capsids, where the capsomers are interlocked by the exchange of the N-terminal arm (NTA domain, this domain is disordered in the T=1 capsid of the VLPs. Furthermore it is prone to proteolytic cleavage. The relative orientation of P (protrusion and S (shell domains is alerted so as to fit VP1 to the smaller T=1 particle whereas the intermolecular contacts around 2-fold, 3-fold and 5-fold axes are conserved. By consequence the surface of the VLP is very similar compared to the viral capsid and suggests a similar antigenicity. The knowledge of the structure of the VLPs will help to improve their stability, in respect to a use for vaccination.

  20. Cross- and Co-Packaging of Retroviral RNAs and Their Consequences

    Directory of Open Access Journals (Sweden)

    Lizna M. Ali

    2016-10-01

    Full Text Available Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.

  1. Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging

    OpenAIRE

    Narayanan, Krishna; Makino, Shinji

    2001-01-01

    Murine coronavirus mouse hepatitis virus (MHV) produces a genome-length mRNA, mRNA 1, and six or seven species of subgenomic mRNAs in infected cells. Among these mRNAs, only mRNA 1 is efficiently packaged into MHV particles. MHV N protein binds to all MHV mRNAs, whereas envelope M protein interacts only with mRNA 1. This M protein-mRNA 1 interaction most probably determines the selective packaging of mRNA 1 into MHV particles. A short cis-acting MHV RNA packaging signal is necessary and suffi...

  2. A duplex real-time RT-PCR system with an internal control offers sensitive and reliable broad spectrum detection of Squash mosaic virus variants

    Science.gov (United States)

    Squash mosaic virus (SqMV) is a seed-borne virus, belonging to the genus Commovirus in the subfamily Comoviridae of family Secoviridae. SqMV has a bipartite single-stranded ribonucleic acid (RNA) genome (RNA1 and RNA2) encapsidated separately with two capsid proteins. Two serotypes (genotypes) of ...

  3. U1 small nuclear RNA variants differentially form ribonucleoprotein particles in vitro.

    Science.gov (United States)

    Somarelli, Jason A; Mesa, Annia; Rodriguez, Carol E; Sharma, Shalini; Herrera, Rene J

    2014-04-25

    The U1 small nuclear (sn)RNA participates in splicing of pre-mRNAs by recognizing and binding to 5' splice sites at exon/intron boundaries. U1 snRNAs associate with 5' splice sites in the form of ribonucleoprotein particles (snRNPs) that are comprised of the U1 snRNA and 10 core components, including U1A, U1-70K, U1C and the 'Smith antigen', or Sm, heptamer. The U1 snRNA is highly conserved across a wide range of taxa; however, a number of reports have identified the presence of expressed U1-like snRNAs in multiple species, including humans. While numerous U1-like molecules have been shown to be expressed, it is unclear whether these variant snRNAs have the capacity to form snRNPs and participate in splicing. The purpose of the present study was to further characterize biochemically the ability of previously identified human U1-like variants to form snRNPs and bind to U1 snRNP proteins. A bioinformatics analysis provided support for the existence of multiple expressed variants. In vitro gel shift assays, competition assays, and immunoprecipitations (IPs) revealed that the variants formed high molecular weight assemblies to varying degrees and associated with core U1 snRNP proteins to a lesser extent than the canonical U1 snRNA. Together, these data suggest that the human U1 snRNA variants analyzed here are unable to efficiently bind U1 snRNP proteins. The current work provides additional biochemical insights into the ability of the variants to assemble into snRNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Experimental Approaches to Study Genome Packaging of Influenza A Viruses

    Directory of Open Access Journals (Sweden)

    Catherine Isel

    2016-08-01

    Full Text Available The genome of influenza A viruses (IAV consists of eight single-stranded negative sense viral RNAs (vRNAs encapsidated into viral ribonucleoproteins (vRNPs. It is now well established that genome packaging (i.e., the incorporation of a set of eight distinct vRNPs into budding viral particles, follows a specific pathway guided by segment-specific cis-acting packaging signals on each vRNA. However, the precise nature and function of the packaging signals, and the mechanisms underlying the assembly of vRNPs into sub-bundles in the cytoplasm and their selective packaging at the viral budding site, remain largely unknown. Here, we review the diverse and complementary methods currently being used to elucidate these aspects of the viral cycle. They range from conventional and competitive reverse genetics, single molecule imaging of vRNPs by fluorescence in situ hybridization (FISH and high-resolution electron microscopy and tomography of budding viral particles, to solely in vitro approaches to investigate vRNA-vRNA interactions at the molecular level.

  5. A G-C-rich palindromic structural motif and a stretch of single-stranded purines are required for optimal packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA.

    Science.gov (United States)

    Jaballah, Soumeya Ali; Aktar, Suriya J; Ali, Jahabar; Phillip, Pretty Susan; Al Dhaheri, Noura Salem; Jabeen, Aayesha; Rizvi, Tahir A

    2010-09-03

    During retroviral RNA packaging, two copies of genomic RNA are preferentially packaged into the budding virus particles whereas the spliced viral RNAs and the cellular RNAs are excluded during this process. Specificity towards retroviral RNA packaging is dependent upon sequences at the 5' end of the viral genome, which at times extend into Gag sequences. It has earlier been suggested that the Mason-Pfizer monkey virus (MPMV) contains packaging sequences within the 5' untranslated region (UTR) and Gag. These studies have also suggested that the packaging determinants of MPMV that lie in the UTR are bipartite and are divided into two regions both upstream and downstream of the major splice donor. However, the precise boundaries of these discontinuous regions within the UTR and the role of the intervening sequences between these dipartite sequences towards MPMV packaging have not been investigated. Employing a combination of genetic and structural prediction analyses, we have shown that region "A", immediately downstream of the primer binding site, is composed of 50 nt, whereas region "B" is composed of the last 23 nt of UTR, and the intervening 55 nt between these two discontinuous regions do not contribute towards MPMV RNA packaging. In addition, we have identified a 14-nt G-C-rich palindromic sequence (with 100% autocomplementarity) within region A that has been predicted to fold into a structural motif and is essential for optimal MPMV RNA packaging. Furthermore, we have also identified a stretch of single-stranded purines (ssPurines) within the UTR and 8 nt of these ssPurines are duplicated in region B. The native ssPurines or its repeat in region B when predicted to refold as ssPurines has been shown to be essential for RNA packaging, possibly functioning as a potential nucleocapsid binding site. Findings from this study should enhance our understanding of the steps involved in MPMV replication including RNA encapsidation process. Copyright (c) 2010 Elsevier Ltd

  6. Crystal structure of the bacteriophage Qβ coat protein in complex with the RNA operator of the replicase gene.

    Science.gov (United States)

    Rumnieks, Janis; Tars, Kaspars

    2014-03-06

    The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein-RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA. © 2013.

  7. Systematic identification of novel, essential host genes affecting bromovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    Brandi L Gancarz

    Full Text Available Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol levels were significantly increased in strains depleted for a heat shock protein (HSF1 or proteasome components (PRE1 and RPT6, suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.

  8. Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation

    Science.gov (United States)

    Dao Duc, Khanh; Saleem, Zain H.; Song, Yun S.

    2018-01-01

    The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during translation. Although this model has been widely studied in the past, the extent of collision between particles and the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of the model in which each particle occupies only a single site, we obtain an exact analytic solution using the matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the interference rate associated with collisions can be robustly estimated and show that approximately 1% of the translating ribosomes get obstructed.

  9. A stable RNA virus-based vector for citrus trees

    International Nuclear Information System (INIS)

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe; Dawson, William O.

    2007-01-01

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees

  10. Analysis of Genetic Variation across the Encapsidated Genome of Microplitis demolitor Bracovirus in Parasitoid Wasps.

    Directory of Open Access Journals (Sweden)

    Gaelen R Burke

    Full Text Available Insect parasitoids must complete part of their life cycle within or on another insect, ultimately resulting in the death of the host insect. One group of parasitoid wasps, the 'microgastroid complex' (Hymenoptera: Braconidae, engage in an association with beneficial symbiotic viruses that are essential for successful parasitism of hosts. These viruses, known as Bracoviruses, persist in an integrated form in the wasp genome, and activate to replicate in wasp ovaries during development to ultimately be delivered into host insects during parasitism. The lethal nature of host-parasitoid interactions, combined with the involvement of viruses in mediating these interactions, has led to the hypothesis that Bracoviruses are engaged in an arms race with hosts, resulting in recurrent adaptation in viral (and host genes. Deep sequencing was employed to characterize sequence variation across the encapsidated Bracovirus genome within laboratory and field populations of the parasitoid wasp species Microplitis demolitor. Contrary to expectations, there was a paucity of evidence for positive directional selection among virulence genes, which generally exhibited signatures of purifying selection. These data suggest that the dynamics of host-parasite interactions may not result in recurrent rounds of adaptation, and that adaptation may be more variable in time than previously expected.

  11. RNA processing and ribonucleoprotein assembly studied in vivo by RNA transfection

    International Nuclear Information System (INIS)

    Kleinschmidt, A.M.; Pederson, T.

    1990-01-01

    The authors present a method for studying RNA processing and ribonucleoprotein assembly in vivo, by using RNA synthesized in vitro. SP6-transcribed 32 P-labeled U2 small nuclear RNA precursor molecules were introduced into cultured human 293 cells by calcium phosphate-mediated uptake, as in standard DNA transfection experiments. RNase protection mapping demonstrated that the introduced pre-U2 RNA underwent accurate 3' end processing. The introduced U2 RNA was assembled into ribonucleoprotein particles that reacted with an antibody specific for proteins known to be associated with the U2 small nuclear ribonucleoprotein particle. The 3' end-processed, ribonucleoprotein-assembled U2 RNA accumulated in the nuclear fraction. When pre-U2 RNA with a 7-methylguanosine group at the 5' end was introduced into cells, it underwent conversion to a 2,2,7-trimethylguanosine cap structure, a characteristic feature of the U-small nuclear RNAs. Pre-U2 RNA introduced with an adenosine cap (Ap-ppG) also underwent processing, small nuclear ribonucleoprotein assembly, and nuclear accumulation, establishing that a methylated guanosine cap structure is not required for these steps in U2 small nuclear ribonucleprotein biosynthesis. Beyond its demonstrated usefulness in the study of small nuclear ribonucleoprotein biosynthesis, RNA transfection may be of general applicability to the investigation of eukaryotic RNA processing in vivo and may also offer opportunities for introducing therapeutically targeted RNAs (ribozymes or antisense RNA) into cells

  12. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A.

    Directory of Open Access Journals (Sweden)

    Margarita Zayas

    2016-01-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein (NS5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI and two intrinsically disordered domains (DII and DIII interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2. We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core-RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i SC-dependent recruitment of replication complexes to core protein and (ii BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles.

  13. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication.

    Science.gov (United States)

    Niepmann, Michael; Shalamova, Lyudmila A; Gerresheim, Gesche K; Rossbach, Oliver

    2018-01-01

    Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis -replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis -elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis -elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis -elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis -element in question acts on HCV

  14. Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.

    Science.gov (United States)

    Nikolaitchik, Olga A; Hu, Wei-Shau

    2014-04-01

    A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1

  15. Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices

    Directory of Open Access Journals (Sweden)

    Pavel Mikel

    2016-12-01

    Full Text Available The detection and quantification of enteric RNA viruses is based on isolation of viral RNA from the sample followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR. To control the whole process of analysis and in order to guarantee the validity and reliability of results, process control viruses (PCV are used. The present article describes the process of preparation and use of such PCV– MS2 phage-like particles (MS2 PLP – in RT-qPCR detection and quantification of enteric RNA viruses. The MS2 PLP were derived from bacteriophage MS2 carrying a unique and specific de novo-constructed RNA target sequence originating from the DNA of two extinct species. The amount of prepared MS2 particles was quantified using four independent methods - UV spectrophotometry, fluorimetry, transmission electron microscopy (TEM and a specifically developed duplex RT-qPCR. To evaluate the usefulness of MS2 PLP in routine diagnostics different matrices known to harbor enteric RNA viruses (swab samples, liver tissue, serum, feces, and vegetables were artificially contaminated with specific amounts of MS2 PLP. The extraction efficiencies were calculated for each individual matrix. The prepared particles fulfill all requirements for PCV – they are very stable, non-infectious, and are genetically distinct from the target RNA viruses. Due to these properties they represent a good morphological and physiochemical model. The use of MS2 PLP as a PCV in detection and quantification of enteric RNA viruses was evaluated in different types of matrices.

  16. SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization.

    Science.gov (United States)

    Kenyon, Julia C; Tanner, Sian J; Legiewicz, Michal; Phillip, Pretty S; Rizvi, Tahir A; Le Grice, Stuart F J; Lever, Andrew M L

    2011-08-01

    Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2' hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem-loops, extensive long-range interactions (LRIs) and a small, palindromic stem-loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem-loops are static structures, the 5' and 3' regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem-loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.

  17. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication

    Directory of Open Access Journals (Sweden)

    Michael Niepmann

    2018-03-01

    Full Text Available Hepatitis C virus (HCV preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES in the 5′ untranslated region (5′ UTR, while also downstream elements like the cis-replication element (CRE in the coding region and the 3′ UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5′- and 3′-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA–RNA interactions (LRIs are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122 binds to two target sites at the 5′ end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3′ UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in

  18. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    Directory of Open Access Journals (Sweden)

    Nora López

    2012-09-01

    Full Text Available The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  19. Evidence that viral RNAs have evolved for efficient, two-stage packaging.

    Science.gov (United States)

    Borodavka, Alexander; Tuma, Roman; Stockley, Peter G

    2012-09-25

    Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing structural families, we have discovered that packaging is a two-stage process. Initially, the genomic RNAs undergo rapid and dramatic (approximately 20-30%) collapse of their solution conformations upon addition of cognate coat proteins. The collapse occurs with a substoichiometric ratio of coat protein subunits and is followed by a gradual increase in particle size, consistent with the recruitment of additional subunits to complete a growing capsid. Equivalently sized nonviral RNAs, including high copy potential in vivo competitor mRNAs, do not collapse. They do support particle assembly, however, but yield many aberrant structures in contrast to viral RNAs that make only capsids of the correct size. The collapse is specific to viral RNA fragments, implying that it depends on a series of specific RNA-protein interactions. For bacteriophage MS2, we have shown that collapse is driven by subsequent protein-protein interactions, consistent with the RNA-protein contacts occurring in defined spatial locations. Conformational collapse appears to be a distinct feature of viral RNA that has evolved to facilitate assembly. Aspects of this process mimic those seen in ribosome assembly.

  20. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    Science.gov (United States)

    Torrent, C; Gabus, C; Darlix, J L

    1994-02-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.

  1. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk

    DEFF Research Database (Denmark)

    Saber, Anne Thoustrup; Lamson, Jacob Stuart; Jacobsen, Nicklas Raun

    2013-01-01

    We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected...... at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar...... lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes. Results Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma...

  2. A physical interaction between viral replicase and capsid protein is required for genome-packaging specificity in an RNA virus.

    Science.gov (United States)

    Seo, Jang-Kyun; Kwon, Sun-Jung; Rao, A L N

    2012-06-01

    Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity.

  3. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  4. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    Science.gov (United States)

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  5. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  6. Molecular interactions during the assembly of cowpea chlorotic mottle virus studied by magnetic resonance

    NARCIS (Netherlands)

    Vriend, G.

    1983-01-01

    This thesis describes the application of 1 H- and 13 C- NMR, EPR, ST-EPR and calculational methods to study cowpea chlorotic mottle virus. This virus consists of RNA encapsidated by 180 identical protein subunits, arranged icosahedrally. The

  7. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging.

    Science.gov (United States)

    Pijlman, Gorben P; Kondratieva, Natasha; Khromykh, Alexander A

    2006-11-01

    Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.

  8. How does a scanning ribosomal particle move along the 5'-untranslated region of eukaryotic mRNA? Brownian Ratchet model.

    Science.gov (United States)

    Spirin, Alexander S

    2009-11-17

    A model of the ATP-dependent unidirectional movement of the 43S ribosomal initiation complex (=40S ribosomal subunit + eIF1 + eIF1A + eIF2.GTP.Met-tRNA(i) + eIF3) during scanning of the 5'-untranslated region of eukaryotic mRNA is proposed. The model is based on the principles of molecular Brownian ratchet machines and explains several enigmatic data concerning the scanning complex. In this model, the one-dimensional diffusion of the ribosomal initiation complex along the mRNA chain is rectified into the net-unidirectional 5'-to-3' movement by the Feynman ratchet-and-pawl mechanism. The proposed mechanism is organized by the heterotrimeric protein eIF4F (=eIF4A + eIF4E + eIF4G), attached to the scanning ribosomal particle via eIF3, and the RNA-binding protein eIF4B that is postulated to play the role of the pawl. The energy for the useful work of the ratchet-and-pawl mechanism is supplied from ATP hydrolysis induced by the eIF4A subunit: ATP binding and its hydrolysis alternately change the affinities of eIF4A for eIF4B and for mRNA, resulting in the restriction of backward diffusional sliding of the 43S ribosomal complex along the mRNA chain, while stochastic movements ahead are allowed.

  9. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA:Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged......Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious virus-like particles and the viral RNA is dispensable...... in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle...

  10. ICTV virus taxonomy profile

    NARCIS (Netherlands)

    García, María Laura; Bó, Dal Elena; Graça, da John V.; Gago-Zachert, Selma; Hammond, John; Moreno, Pedro; Natsuaki, Tomohide; Pallás, Vicente; Navarro, Jose A.; Reyes, Carina A.; Luna, Gabriel Robles; Sasaya, Takahide; Tzanetakis, Ioannis E.; Vaira, Anna María; Verbeek, Martin; Lefkowitz, Elliot J.; Davison, Andrew J.; Siddell, Stuart G.; Simmonds, Peter; Adams, Michael J.; Smith, Donald B.; Orton, Richard J.; Sanfaçon, Hélène

    2017-01-01

    The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour

  11. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster......: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture...

  12. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex.

    Science.gov (United States)

    Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel

    2003-08-01

    Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.

  13. RNA secondary structures of the bacteriophage phi6 packaging regions.

    OpenAIRE

    Pirttimaa, M J; Bamford, D H

    2000-01-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models ...

  14. Cytoplasmic assembly of snRNP particles from stored proteins and newly transcribed snRNA's in L929 mouse fibroblasts

    International Nuclear Information System (INIS)

    Sauterer, R.A.; Feeney, R.J.; Zieve, G.W.

    1988-01-01

    Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs

  15. Inhibition of ribosomal RNA synthesis in yeast by ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    Weber, K; Kiefer, J [Giessen Univ. (Germany, F.R.). Strahlenzentrum

    1984-12-01

    Synthesis of ribosomal RNA(r-RNA) was measured for 1 h after exposure of Saccharomyces cerevisiae to ..gamma..-rays, X-rays or ..cap alpha.. particles. ..gamma..- or X-ray induced transcription inhibition was always found to decrease exponentially with dose. D/sub 0/ values of 2150 or 1950 Gy were determined in wild-type cells, corresponding to a mean energy of about 60 eV per r-RNA gene. The finding of differential sensitivities of the two high molecular-weight r-RNA species which are cotranscribed from r-DNA is compatible with the existence of a transcription terminating mechanism. Cells from a mutant strain (rad-9), radiation sensitive to colony forming ability, showed an approximately equal sensitivity for transcription inhibition compared to the wild-type (D/sub 0/ (2095) = 2400 Gy). Inactivation of r-RNA synthesis in cells exposed to ..cap alpha..-particles at room-temperature showed a decreased sensitivity with higher particle fluences ('resistant tail'). This phenomenon was drastically reduced if the temperature during irradiation was lowered to 4/sup 0/C and completely abolished when dried cells were used. An inactivation cross-section for ..cap alpha..-particle induced transcription inhibition of about 0.02 ..mu..m/sup 2/ can be derived from the experimental data.

  16. Nuclear Export of Messenger RNA

    Directory of Open Access Journals (Sweden)

    Jun Katahira

    2015-03-01

    Full Text Available Transport of messenger RNA (mRNA from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex.

  17. Nuclear Export of Messenger RNA

    Science.gov (United States)

    Katahira, Jun

    2015-01-01

    Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925

  18. Measles virus: Background and oncolytic virotherapy

    OpenAIRE

    Sankhajit Bhattacharjee; Pramod Kumar Yadava

    2018-01-01

    Measles is a highly transmissible disease caused by measles virus and remains a major cause of child mortality in developing countries. Measles virus nucleoprotein (N) encapsidates the RNA genome of the virus for providing protection from host cell endonucleases and for specific recognition of viral RNA as template for transcription and replication. This protein is over-expressed at the time of viral replication. The C-terminal of N protein is intrinsically disordered, which enables this prot...

  19. Extracellular plasma RNA from colon cancer patients is confined in a vesicle-like structure and is mRNA-enriched

    Science.gov (United States)

    García, José Miguel; García, Vanesa; Peña, Cristina; Domínguez, Gemma; Silva, Javier; Diaz, Raquel; Espinosa, Pablo; Citores, Maria Jesús; Collado, Manuel; Bonilla, Félix

    2008-01-01

    Little is yet known about the origin and protective mechanism of free nucleic acids in plasma. We investigated the possibility of these free nucleic acids being particle associated. Plasma samples from colon cancer patients and cell culture media were subjected to various antibody incubations, ultracentrifugation, and RNA extraction protocols for total RNA, epithelial RNA, and mRNA. Flow cytometry using a Ber-EP4 antibody and confocal laser microscopy after staining with propidium iodide were also performed. mRNA levels of the LISCH7 and SDHA genes were determined in cells and in culture media. Ber-EP4 antibody and polystyrene beads coated with oligo dT sequences were employed. We observed that, after incubation, total RNA and mRNA were always detected after membrane digestion, and that epithelial RNA was detected before this procedure. In ultracentrifugation, mRNA was caught in the supernatant only if a former lysis mediated or in the pellet if there was no previous digestion. Flow cytometry determinations showed that antibody-coated microbeads keep acellular structures bearing epithelial antigens apart. Confocal laser microscopy made 1- to 2-μm-diameter particles perceptible in the vicinity of magnetic polystyrene beads. Relevant differences were observed between mRNA of cells and culture media, as there was a considerable difference in LISCH7 mRNA levels between HT29 and IMR90 cell co-cultures and their culture media. Our results support the view that extracellular RNA found in plasma from cancer patients circulates in association with or is protected in a multiparticle complex, and that an active release mechanism by tumor cells may be a possible origin. PMID:18456845

  20. Myosin Va associates with mRNA in ribonucleoprotein particles present in myelinated peripheral axons and in the central nervous system.

    Science.gov (United States)

    Calliari, Aldo; Farías, Joaquina; Puppo, Agostina; Canclini, Lucía; Mercer, John A; Munroe, David; Sotelo, José R; Sotelo-Silveira, José R

    2014-03-01

    Sorting of specific mRNAs to particular cellular locations and regulation of their translation is an essential mechanism underlying cell polarization. The transport of RNAs by kinesins and dyneins has been clearly established in several cell models, including neurons in culture. A similar role appears to exist in higher eukaryotes for the myosins. Myosin Va (Myo5a) has been described as a component of ribonucleoprotein particles (RNPs) in the adult rat nervous system and associated to ZBP1 and ribosomes in ribosomal periaxoplasmic plaques (PARPs), making it a likely candidate for mediating some aspects of RNA transport in neurons. To test this hypothesis, we have characterized RNPs containing Myo5a in adult brains of rats and mice. Microarray analysis of RNAs co-immunoprecipitated with Myo5a indicates that this motor may associate with a specific subpopulation of neuronal mRNAs. We found mRNAs encoding α-synuclein and several proteins with functions in translation in these RNPs. Immunofluorescence analyses of RNPs showed apparent co-localization of Myo5a with ribosomes, mRNA and RNA-binding proteins in discrete structures present both in axons of neurons in culture and in myelinated fibers of medullary roots. Our data suggest that PARPs include RNPs bearing the mRNA coding for Myo5a and are equipped with kinesin and Myo5a molecular motors. In conclusion, we suggest that Myo5a is involved in mRNA trafficking both in the central and peripheral nervous systems. Copyright © 2013 Wiley Periodicals, Inc.

  1. On the conformational stability of the smallest RNA kissing complexes maintained through two G·C base pairs

    International Nuclear Information System (INIS)

    Chu, Wally; Weerasekera, Akila; Kim, Chul-Hyun

    2017-01-01

    Two identical 5′GACG3′ tetra-loop motifs with different stem sequences (called H2 and H3) are found in the 5′ end region of Moloney Murine Leukemia Virus (MMLV) genomic RNA. They play important roles in RNA dimerization and encapsidation through two identical tetra-loops (5′GACG3′) forming a loop-to-loop kissing complex, the smallest RNA kissing complex ever found in nature. We examined the effects of a loop-closing base pair as well as a stem sequence on the conformational stability of the kissing complex. UV melting analysis and gel electrophoresis were performed on eight RNA sequences mimicking the H2 and H3 hairpin tetra-loops with variation in loop-closing base pairs. Our results show that changing the loop-closing base pair from the wildtype (5′A·U3′ for H3, 5′U·A3′ for H2) to 5′G·C3’/5′C·G3′ has significant effect on the stability of the kissing complexes: the substitution to 5′C·G3′ significantly decreases both thermal and mechanical stability, while switching to the 5′G·C3′ significantly increases the mechanical stability only. The kissing complexes with the wildtype loop-closing base pairs (5′A·U3′ for H3 and 5′U·A3′ for H2) show different stability when attached to a different stem sequence (H2 stem vs. H3 stem). This suggests that not only the loop-closing base pair itself, but also the stem sequence, affects the conformational stability of the RNA kissing complex. - Highlights: • Thermodynamic parameters of the smallest RNA kissing interactions were measured. • The effects of loop-closing base pairs on the RNA kissing complex was investigated. • Changing the base pair to 5′CG3′ decreases the stability of the kissing complex. • Changing it to 5′GC3′ increases the mechanical resilience of the kissing complex. • Difference in its stem sequence also affects the stability of the kissing complex.

  2. Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro

    Directory of Open Access Journals (Sweden)

    Wimmer Eckard

    2005-11-01

    Full Text Available Abstract Poliovirus protein 3CDpro possesses both proteinase and RNA binding activities, which are located in the 3Cpro domain of the protein. The RNA polymerase (3Dpol domain of 3CDpro modulates these activities of the protein. We have recently shown that the level of 3CDpro in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CDpro mRNA or of purified 3CDpro protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CDpro indicated that RNA binding by the 3Cpro domain and the integrity of interface I in the 3Dpol domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CDpro enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CDpro to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CDpro has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3Cpro domain of 3CDpro. In addition, the integrity of interface I in the 3Dpol domain of 3CDpro is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CDpro. Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CDpro in vitro is dependent on the presence of a VPg-linked RNA template.

  3. Physics of Complex Polymeric Molecules

    Science.gov (United States)

    Kelly, Joshua Walter

    The statistical physics of complex polymers with branches and circuits is the topic of this dissertation. An important motivation are large, single-stranded (ss) RNA molecules. Such molecules form complex ``secondary" and ``tertiary" structures that can be represented as branched polymers with circuits. Such structures are in part directly determined by the nucleotide sequence and in part subject to thermal fluctuations. The polymer physics literature on molecules in this class has mostly focused on randomly branched polymers without circuits while there has been minimal research on polymers with specific structures and on polymers that contain circuits. The dissertation is composed of three parts: Part I studies branched polymers with thermally fluctuating structure confined to a potential well as a simple model for the encapsidation of viral RNA. Excluded volume interactions were ignored. In Part II, I apply Flory theory to the study of the encapsidation of viral ss RNA molecules with specific branched structures, but without circuits, in the presence of excluded volume interaction. In Part III, I expand on Part II and consider complex polymers with specific structure including both branching and circuits. I introduce a method based on the mathematics of Laplacian matrices that allows me to calculate density profiles for such molecules, which was not possible within Flory theory.

  4. Characterization of a defective interfering RNA that contains a mosaic of a plant viral genome

    Energy Technology Data Exchange (ETDEWEB)

    Morris, T.J.; Jackson, A.O.

    1991-01-01

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since then, we have also discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), a virus structurally related to TBSV. We proposed a thorough characterization of this unique class of symptom modulating RNAs with the overall objective of identifying viral RNA nucleotide, sequences involved in such fundamental processes as virus replication and encapsidation as well as the degree of symptom expression resulting from the viral-DI-host interaction. The proposed research focused on the molecular characterization of the DI RNAs and the helper virus. We had demonstrated that the DIs were collinear deletion mutants of the genome of a cherry strain of tomato bushy stunt virus (TBSV). We had also shown that these low molecular weight RNAs interfered with the helper plant virus and modulated disease expression by preventing the development of a lethal necrotic disease in susceptible host plants. We also suggested that by exploring the mechanisms associated with the symptom attenuation effect, we might be able to devise novel strategies useful for engineering viral disease resistance.

  5. Heavy ion effects on yeast: Inhibition of ribosomal RNA synthesis

    International Nuclear Information System (INIS)

    Weber, K.J.; Schneider, E.; Kiefer, J.; Kraft, G.

    1990-01-01

    Diploid wild-type yeast cells were exposed to beams of heavy ions covering a wide range of linear energy transfer (LET) (43-13,700 keV/microns). Synthesis of ribosomal RNA (rRNA) was assessed as a functional measure of damage produced by particle radiation. An exponential decrease of relative rRNA synthesis with particle fluence was demonstrated in all cases. The inactivation cross sections derived were found to increase with LET over the entire range of LET studied. The corresponding values for relative biological effectiveness were slightly less than unity. Maximum cross sections measured were close to 1 micron 2, implying that some larger structure within the yeast nucleus (e.g., the nucleolus) might represent the target for an impairment of synthetic activity by very heavy ions rather than the genes coding for rRNA. Where tested, an oxygen effect for rRNA synthesis could not be demonstrated

  6. RNA secondary structures of the bacteriophage phi6 packaging regions.

    Science.gov (United States)

    Pirttimaa, M J; Bamford, D H

    2000-06-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.

  7. Packaging of HCV-RNA into lentiviral vector

    International Nuclear Information System (INIS)

    Caval, Vincent; Piver, Eric; Ivanyi-Nagy, Roland; Darlix, Jean-Luc; Pagès, Jean-Christophe

    2011-01-01

    Highlights: ► Description of HCV-RNA Core-D1 interactions. ► In vivo evaluation of the packaging of HCV genome. ► Determination of the role of the three basic sub-domains of D1. ► Heterologous system involving HIV-1 vector particles to mobilise HCV genome. ► Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  8. Dense particles and slow sedimenting particles produced by ultraviolet irradiation of poliovirus

    International Nuclear Information System (INIS)

    Wetz, K.; Zeichhardt, H.; Willingmann, P.; Habermehl, K.-O.

    1983-01-01

    Low doses of u.v. radiation rapidly inactivate poliovirus, the virus progressively converting into dense particles (DPs) of buoyant density 1.44 g/ml in CsCl. The DPs are structurally and antigenically related to standard virus (N-antigen), i.e. indistinguishable from virus in their RNA and protein content and in sedimentation properties. Furthermore, there is no difference in reactivity of the structural proteins of virus and DPs with the monofunctional reagent [ 3 H]N-succinimidyl propionate ( 3 H-NSP). However, DPs differ from virus in that their capsids are permeable to several ions, and they can be degraded by RNase and protease. Increasing the radiation dose causes a successive transformation of DPs into 105S slow-sedimenting particles (SSPs), antigenically related to 76S artificial empty capsids (AECs) or H-antigen, but differing physically and structurally. The SSPs have a higher S value than AECs and contain all the capsid proteins, including VP4, and the RNA, both of these macromolecules being absent from AECs. It is concluded, therefore, that transformation from N- to H- antigenicity by u.v. radiation does not require release of RNA and VP4. Conversion of virus particles to SSPs correlates with altered reactivity of VP2 and to a lesser extent VP1 and VP3, with the monofunctional reagent 3 H-NSP. (author)

  9. Dense particles and slow sedimenting particles produced by ultraviolet irradiation of poliovirus

    Energy Technology Data Exchange (ETDEWEB)

    Wetz, K.; Zeichhardt, H.; Willingmann, P.; Habermehl, K.O. (Freie Univ. Berlin (Germany, F.R.))

    1983-06-01

    Low doses of u.v. radiation rapidly inactivate poliovirus, the virus progressively converting into dense particles (DPs) of buoyant density 1.44 g/ml in CsCl. The DPs are structurally and antigenically related to standard virus (N-antigen), i.e. indistinguishable from virus in their RNA and protein content and in sedimentation properties. Furthermore, there is no difference in reactivity of the structural proteins of virus and DPs with the monofunctional reagent (/sup 3/H)N-succinimidyl propionate (/sup 3/H-NSP). However, DPs differ from virus in that their capsids are permeable to several ions, and they can be degraded by RNase and protease. Increasing the radiation dose causes a successive transformation of DPs into 105S slow-sedimenting particles (SSPs), antigenically related to 76S artificial empty capsids (AECs) or H-antigen, but differing physically and structurally. The SSPs have a higher S value than AECs and contain all the capsid proteins, including VP4, and the RNA, both of these macromolecules being absent from AECs. It is concluded, therefore, that transformation from N- to H- antigenicity by u.v. radiation does not require release of RNA and VP4. Conversion of virus particles to SSPs correlates with altered reactivity of VP2 and to a lesser extent VP1 and VP3, with the monofunctional reagent /sup 3/H-NSP.

  10. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA.

    Science.gov (United States)

    Iakhiaeva, Elena; Iakhiaev, Alexei; Zwieb, Christian

    2010-11-13

    Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.

  11. The AAA-ATPase NVL2 is a component of pre-ribosomal particles that interacts with the DExD/H-box RNA helicase DOB1

    International Nuclear Information System (INIS)

    Nagahama, Masami; Yamazoe, Takeshi; Hara, Yoshimitsu; Tani, Katsuko; Tsuji, Akihiko; Tagaya, Mitsuo

    2006-01-01

    Nuclear VCP/p97-like protein 2 (NVL2) is a member of the chaperone-like AAA-ATPase family with two conserved ATP-binding modules. Our previous studies have shown that NVL2 is localized to the nucleolus by interacting with ribosomal protein L5 and may participate in ribosome synthesis, a process involving various non-ribosomal factors including chaperones and RNA helicases. Here, we show that NVL2 is associated with pre-ribosomal particles in the nucleus. Moreover, we used yeast two-hybrid and co-immunoprecipitation assays to identify an NVL2-interacting protein that could yield insights into NVL2 function in ribosome biogenesis. We found that NVL2 interacts with DOB1, a DExD/H-box RNA helicase, whose yeast homologue functions in a late stage of the 60S subunit synthesis. DOB1 can interact with a second ATP-binding module mutant of NVL2, which shows a dominant negative effect on ribosome synthesis. In contrast, it cannot interact with a first ATP-binding module mutant, which does not show the dominant negative effect. When the dominant negative mutant of NVL2 was overexpressed in cells, DOB1 appeared to remain associated with nuclear pre-ribosomal particles. Such accumulation was not observed upon overexpression of wild-type NVL2 or a nondominant-negative mutant. Taken together, our results suggest that NVL2 might regulate the association/dissociation reaction of DOB1 with pre-ribosomal particles by acting as a molecular chaperone

  12. Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown

    Science.gov (United States)

    Moore, Chris B.; Guthrie, Elizabeth H.; Huang, Max Tze-Han; Taxman, Debra J.

    2013-01-01

    Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery. PMID:20387148

  13. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis

    International Nuclear Information System (INIS)

    Reich, Charles F.; Pisetsky, David S.

    2009-01-01

    Microparticles are small membrane-bound vesicles that are released from apoptotic cells during blebbing. These particles contain DNA and RNA and display important functional activities, including immune system activation. Furthermore, nucleic acids inside the particle can be analyzed as biomarkers in a variety of disease states. To elucidate the nature of microparticle nucleic acids, DNA and RNA released in microparticles from the Jurkat T and HL-60 promyelocytic cell lines undergoing apoptosis in vitro were studied. Microparticles were isolated from culture media by differential centrifugation and characterized by flow cytometry and molecular approaches. In these particles, DNA showed laddering by gel electrophoresis and was present in a form that allowed direct binding by a monoclonal anti-DNA antibody, suggesting antigen accessibility even without fixation. Analysis of RNA by gel electrophoresis showed intact 18s and 28s ribosomal RNA bands, although lower molecular bands consistent with 28s ribosomal RNA degradation products were also present. Particles also contained messenger RNA as shown by RT-PCR amplification of sequences for β-actin and GAPDH. In addition, gel electrophoresis showed the presence of low molecular weight RNA in the size range of microRNA. Together, these results indicate that microparticles from apoptotic Jurkat and HL-60 cells contain diverse nucleic acid species, indicating translocation of both nuclear and cytoplasmic DNA and RNA as particle release occurs during death

  14. Retroviral RNA Dimerization: From Structure to Functions

    Directory of Open Access Journals (Sweden)

    Noé Dubois

    2018-03-01

    Full Text Available The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…, the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.

  15. Characterization of a defective interfering RNA that contains a mosaic of a plant viral genome. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, T.J.; Jackson, A.O.

    1991-12-31

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since then, we have also discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), a virus structurally related to TBSV. We proposed a thorough characterization of this unique class of symptom modulating RNAs with the overall objective of identifying viral RNA nucleotide, sequences involved in such fundamental processes as virus replication and encapsidation as well as the degree of symptom expression resulting from the viral-DI-host interaction. The proposed research focused on the molecular characterization of the DI RNAs and the helper virus. We had demonstrated that the DIs were collinear deletion mutants of the genome of a cherry strain of tomato bushy stunt virus (TBSV). We had also shown that these low molecular weight RNAs interfered with the helper plant virus and modulated disease expression by preventing the development of a lethal necrotic disease in susceptible host plants. We also suggested that by exploring the mechanisms associated with the symptom attenuation effect, we might be able to devise novel strategies useful for engineering viral disease resistance.

  16. Packaging of HCV-RNA into lentiviral vector

    Energy Technology Data Exchange (ETDEWEB)

    Caval, Vincent [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Piver, Eric [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Service de Biochimie et Biologie Moleculaire, CHRU de Tours (France); Ivanyi-Nagy, Roland; Darlix, Jean-Luc [LaboRetro, ENS-Lyon INSERM, U758, 46 Allee d' Italie, 69364 Lyon (France); Pages, Jean-Christophe, E-mail: jean-christophe.pages@univ-tours.fr [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Service de Biochimie et Biologie Moleculaire, CHRU de Tours (France)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Description of HCV-RNA Core-D1 interactions. Black-Right-Pointing-Pointer In vivo evaluation of the packaging of HCV genome. Black-Right-Pointing-Pointer Determination of the role of the three basic sub-domains of D1. Black-Right-Pointing-Pointer Heterologous system involving HIV-1 vector particles to mobilise HCV genome. Black-Right-Pointing-Pointer Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  17. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP).

    Science.gov (United States)

    Kamina, Anyango D; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  18. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA

    International Nuclear Information System (INIS)

    Peng Xiaochun; Tao Kun; Cheng Tao; Zhu Junfeng; Zhang Xianlong

    2008-01-01

    Aseptic loosening is the most common long-term complication of total joint replacement, which is associated with the generation of wear debris. The purpose of this study was to investigate the inhibitory effect of small interfering RNA (siRNA) targeting tumor necrosis factor-α (TNF-α) on wear debris-induced inflammation. A local delivery of lentivirus-mediated TNF-α siRNA into the modified murine air pouch, which was stimulated by polymethylmethacrylate (PMMA) particles, resulted in significant blockage of TNF-α both in mRNA and protein levels for up to 4 weeks. In addition, significant down-regulation of interleukin-1 (IL-1) and interleukin-6 (IL-6) was observed in TNF-α siRNA-treated pouches. The safety profile of gene therapy was proven by Bioluminescent assay and quantitative fluorescent flux. Histological analysis revealed less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) in TNF-α siRNA-treated pouches. These findings suggest that local delivery of TNF-α siRNA might be an excellent therapeutic candidate to inhibit particle-induced inflammation.

  19. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA

    Directory of Open Access Journals (Sweden)

    Zwieb Christian

    2010-11-01

    Full Text Available Abstract Background Human cells depend critically on the signal recognition particle (SRP for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. Results We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. Conclusions The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.

  20. The RNA core weakly influences the interactions of the bacteriophage MS2 at key environmental interfaces

    KAUST Repository

    Nguyen, Thanh H.; Easter, Nickolas; Gutierrez, Leonardo; Huyett, Lauren; Defnet, Emily; Mylon, Steven E.; Ferri, James K.; Viet, Nguyen Ai

    2011-01-01

    The effect of the RNA core on interfacial interactions of the bacteriophage MS2 was investigated. After removal of the RNA core, empty intact capsids were characterized and compared to untreated MS2. Electron density of untreated MS2 and RNA-free MS2 were characterized by transmission electron microscopy (TEM) and synchrotron-based small angle spectroscopy (SAXS). Suspensions of both particles exhibited similar electrophoretic mobility across a range of pH values. Similar effects were observed at pH 5.9 across a range of NaCl or CaCl2 concentrations. We compared key interfacial interactions (particle-particle and particle/air-water interface) between suspensions of each type of particle using time resolved dynamic light scattering (TR-DLS) to observe and quantify aggregation kinetics and axisymmetric drop shape analysis to measure adsorption at the air-water interface. Both suspensions showed insignificant aggregation over 4 h in 600 mM NaCl solutions. In the presence of Ca2+ ions, aggregation of both types of particles was consistent with earlier aggregation studies and was characterized by both reaction-limited and diffusion-limited regimes occurring at similar [Ca2+]. However, the removal of the RNA from MS2 had no apparent effect on the aggregation kinetics of particles. Despite some differences in the kinetics of adsorption to the air-water interface, the changes in surface tension which result from particle adsorption showed no difference between the untreated MS2 and RNA-free MS2. The interactions and structure of particles at the air-water interface were further probed using interfacial dilational rheology. The surface elasticity (E s) and surface viscosity (ηs) at the interface were low for both the untreated virus and the RNA-free capsid. This observation suggests that the factors that impact the adsorption kinetics are not important for an equilibrated interface. © 2011 The Royal Society of Chemistry.

  1. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    Science.gov (United States)

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell

  2. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  3. High-throughput determination of RNA structure by proximity ligation.

    Science.gov (United States)

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  4. Towards Defined DNA and RNA Delivery Vehicles Using Nucleic Acid Nanotechnology

    DEFF Research Database (Denmark)

    Okholm, Anders Hauge; Schaffert, David Henning; Kjems, Jørgen

    2014-01-01

    Both DNA and RNA nanostructures show exceptional programmability, modularity, and self-assembly ability. Using DNA or RNA molecules it is possible to assemble monodisperse particles that are homogeneous in size and shape and with identical positioning of surface modifications. For therapeutic app...

  5. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.H.; Yu, C.C.; Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China); Ma, X.J. [Ningxia Medical Autonomous Region of the First People' s Hospital, Department of Orthopedic Surgery, Yinchuan (China); Yang, X.C.; Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China)

    2013-10-02

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

  6. Peptidomimetics with beta-peptoid resudies as carriers for intracellular delivery of small interfering RNA (siRNA)

    DEFF Research Database (Denmark)

    Foged, Camilla

    cytometry. We conclude that simple complex formation via electrostatic interactions between siRNA and the cationic peptidomimetics is not sufficient for the delivery of siRNA to the RNA interference (RNAi) pathway in the cytoplasm. We are currently testing chemical conjugates of si...... prepared by mixing and characterized with respect to size and surface charge. At ratios of peptide nitrogen to siRNA phosphate (N/P) of 1 and below, particles with narrow size distributions (poly dispersity indexes lower than 0.11) ranging from approximately 100 to 350 nm were formed, and they showed...... a negative zeta potential (-24 to -31 mV). At higher N/P ratios, larger aggregates with zeta potential close to neutral were formed. However, the complexes were not able to silence the expression of enhanced green fluorescent protein (EGFP) in HeLa-cells stably expressing EGFP, which was measured by flow...

  7. Association of protein C23 with rapidly labeled nucleolar RNA

    International Nuclear Information System (INIS)

    Herrera, A.H.; Olson, M.O.

    1986-01-01

    The association of nucleolar phosphoprotein C23 with preribosomal ribonucleoprotein (RNP) particles was examined in Novikoff hepatoma nucleoli. RNA was labeled with [ 3 H]uridine for various times in cell suspensions, and RNP particles were extracted from isolated nucleoli and fractionated by sucrose gradient ultracentrifugation. The majority of protein C23 cosedimented with fractions containing rapidly labeled RNA (RL fraction). To determine whether there was a direct association of RNA with protein C23, the RL fraction was exposed to ultraviolet (UV) light (254 nm) for short periods of time. After 2 min of exposure there was a 50% decrease in C23 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses, with no significant further decrease at longer times. When UV-treated fractions were subjected to phenol/chloroform extractions, as much as 30% of the labeled RNA was found in the phenol (protein) layer, indicating that RNA became cross-linked to protein. Similarly, there was an increase in protein C23 extracted into the water layer after irradiation. By SDS-PAGE analyses the cross-linked species migrated more slowly than protein C23, appearing as a smear detected either by [ 3 H]uridine radioactivity or by anti-C23 antibody. With anti-C23 antibodies, up to 25% of the labeled RNA was precipitated from the RL fraction. Dot-blot hybridizations, using cloned rDNA fragments as probes, indicated that the RNA in the RL fraction and the immunoprecipitated RNA contained sequences from 18S and 28S ribosomal RNA

  8. A glimpse at mRNA dynamics reveals cellular domains and rapid trafficking through granules

    NARCIS (Netherlands)

    Gemert, Alice Myriam Christi van

    2011-01-01

    mRNA transport and targeting are essential to gene expression regulation. Specific mRNA sequences can bind several proteins and together form RiboNucleoProtein particles (RNP). The various proteins within the RNP determine mRNA fate: translation, transport or decay. RNP composition varies with

  9. mRNA processing in yeast

    International Nuclear Information System (INIS)

    Stevens, A.

    1982-01-01

    Investigations in this laboratory center on basic enzymatic reactions of RNA. Still undefined are reactions involved in the conversion of precursors of mRA (pre-mRNA) to mRNA in eukaryotes. The pre-mRNA is called heterogeneous nuclear RNA and is 2 to 6 times larger than mRNA. The conversion, called splicing, involves a removal of internal sequences called introns by endoribonuclease action followed by a rejoining of the 3'- and 5'-end fragments, called exons, by ligating activity. It has not been possible yet to study the enzymes involved in vitro. Also undefined are reactions involved in the turnover or discarding of certain of the pre-mRNA molecules. Yeast is a simple eukaryote and may be expected to have the same, but perhaps simpler, processing reactions as the higher eukaryotes. Two enzymes involved in the processing of pre-mRNA and mRNA in yeast are under investigation. Both enzymes have been partially purified from ribonucleoprotein particles of yeast. The first is a unique decapping enzyme which cleaves [ 3 H]m 7 Gppp [ 14 C]RNA-poly (A) of yeast, yielding [ 3 H]m 7 GDP and is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed. The second enzyme is an endoribonuclease which converts both the [ 3 H] and [ 14 C] labels of [ 3 H]m 7 Gppp[ 14 C]RNA-poly(A) from an oligo(dT)-cellulose bound form to an unbound, acid-insoluble form. Results show that the stimulation involves an interaction of the labeled RNA with the small nuclear RNA. The inhibition of the enzyme by ethidium bromide and its stimulation by small nuclear RNA suggest that it may be a processing ribonuclease, requiring specific double-stranded features in its substrate. The characterization of the unique decapping enzyme and endoribonuclease may help to understand reactions involved in the processing of pre-mRNA and mRNA in eukaryotes

  10. Bio-Inspired Nanomaterials: Protein Cage Nano-Architectures

    Science.gov (United States)

    2008-04-01

    Shevchenko, A. Weizsacker, F. (2004). Hepatitis B virus nucleocapsids (2003). Fast-response proteomics by accelerated in-gel formed by carboxy-terminally...Newman, M. & Shih, C. sin. Proteomics , 5, 2319-2321. (2005). Exposure of RNA templates and encapsidation 60. Prudova, A., Bauman, Z., Braun, A...isolated from the fungus Dactylium dendroides [I]. It is H334, Y329, G513, and T580) and water molecules. composed of three distinct domains, organized

  11. Efficient cellular release of Rift Valley fever virus requires genomic RNA.

    Directory of Open Access Journals (Sweden)

    Mary E Piper

    2011-03-01

    Full Text Available The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies.

  12. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery

    Science.gov (United States)

    Müller, Katharina; Klein, Philipp M.; Heissig, Philipp; Roidl, Andreas; Wagner, Ernst

    2016-11-01

    Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.

  13. Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar.

    Science.gov (United States)

    Xu, Xin; Brechbiel, Jillian L; Gavis, Elizabeth R

    2013-09-11

    Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.

  14. Mechanisms of human immunodeficiency virus type 2 RNA packaging

    DEFF Research Database (Denmark)

    Ni, Na; Nikolaitchik, Olga A; Dilley, Kari A

    2011-01-01

    do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins......Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2...... proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results...

  15. RNA secondary structure prediction using soft computing.

    Science.gov (United States)

    Ray, Shubhra Sankar; Pal, Sankar K

    2013-01-01

    Prediction of RNA structure is invaluable in creating new drugs and understanding genetic diseases. Several deterministic algorithms and soft computing-based techniques have been developed for more than a decade to determine the structure from a known RNA sequence. Soft computing gained importance with the need to get approximate solutions for RNA sequences by considering the issues related with kinetic effects, cotranscriptional folding, and estimation of certain energy parameters. A brief description of some of the soft computing-based techniques, developed for RNA secondary structure prediction, is presented along with their relevance. The basic concepts of RNA and its different structural elements like helix, bulge, hairpin loop, internal loop, and multiloop are described. These are followed by different methodologies, employing genetic algorithms, artificial neural networks, and fuzzy logic. The role of various metaheuristics, like simulated annealing, particle swarm optimization, ant colony optimization, and tabu search is also discussed. A relative comparison among different techniques, in predicting 12 known RNA secondary structures, is presented, as an example. Future challenging issues are then mentioned.

  16. Fluctuations and synchrony of RNA synthesis in nucleoli.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Baev, Alexander; Berezney, Ronald; Prasad, Paras N

    2015-06-01

    Ribosomal RNA (rRNA) sequences are synthesized at exceptionally high rates and, together with ribosomal proteins (r-proteins), are utilized as building blocks for the assembly of pre-ribosomal particles. Although it is widely acknowledged that tight regulation and coordination of rRNA and r-protein production are fundamentally important for the maintenance of cellular homeostasis, still little is known about the real-time kinetics of the ribosome component synthesis in individual cells. In this communication we introduce a label-free MicroRaman spectrometric approach for monitoring rRNA synthesis in live cultured cells. Remarkably high and rapid fluctuations of rRNA production rates were revealed by this technique. Strikingly, the changes in the rRNA output were synchronous for ribosomal genes located in separate nucleoli of the same cell. Our findings call for the development of new concepts to elucidate the coordination of ribosomal components production. In this regard, numerical modeling further demonstrated that the production of rRNA and r-proteins can be coordinated, regardless of the fluctuations in rRNA synthesis. Overall, our quantitative data reveal a spectacular interplay of inherently stochastic rates of RNA synthesis and the coordination of gene expression.

  17. Infinite Coordination Polymer Nano- and Micro-Particles

    Science.gov (United States)

    2015-06-12

    attachment (Figure 1). Particles were synthesized by combining DABA-bis-HP-N3 and ferric nitrate in dilute NaOH. The crude particles were purified by...cervical cancer cells using dye-labeled DNA (Figure 2). The ICP-DNA particles were found to cross cell membranes with efficiency very similar to the...deliver their genetic cargo to the cell and effect expression of a known cancer -related mRNA transcript in vitro. SKOV-3 ovarian cancer cells were chosen

  18. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...... in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III...

  19. Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence.

    Science.gov (United States)

    Kotta-Loizou, Ioly; Coutts, Robert H A

    2017-01-01

    The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.

  20. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs

    Czech Academy of Sciences Publication Activity Database

    Krepl, Miroslav; Clery, A.; Blatter, M.; Allain, F.H.T.; Šponer, Jiří

    2016-01-01

    Roč. 44, č. 13 (2016), s. 6452-6470 ISSN 0305-1048 Institutional support: RVO:68081707 Keywords : molecular- dynamics simulations * particle mesh ewald * pre-ribosomal-rna Subject RIV: BO - Biophysics Impact factor: 10.162, year: 2016

  1. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Xiong

    2015-08-01

    Full Text Available microRNAs (miRNAs are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs that contain Argonaute (AGO family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be

  2. Exportin-5 mediates nuclear export of SRP RNA in vertebrates.

    Science.gov (United States)

    Takeiwa, Toshihiko; Taniguchi, Ichiro; Ohno, Mutsuhito

    2015-04-01

    The signal recognition particle is a ribonucleoprotein complex that is essential for the translocation of nascent proteins into the endoplasmic reticulum. It has been shown that the RNA component (SRP RNA) is exported from the nucleus by CRM1 in the budding yeast. However, how SRP RNA is exported in higher species has been elusive. Here, we show that SRP RNA does not use the CRM1 pathway in Xenopus oocytes. Instead, SRP RNA uses the same export pathway as pre-miRNA and tRNA as showed by cross-competition experiments. Consistently, the recombinant Exportin-5 protein specifically stimulated export of SRP RNA as well as of pre-miRNA and tRNA, whereas an antibody raised against Exportin-5 specifically inhibited export of the same RNA species. Moreover, biotinylated SRP RNA can pull down Exportin-5 but not CRM1 from HeLa cell nuclear extracts in a RanGTP-dependent manner. These results, taken together, strongly suggest that the principal export receptor for SRP RNA in vertebrates is Exportin-5 unlike in the budding yeast. © 2015 The Authors. Genes to Cells published by Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  3. tRNA conjugation with chitosan nanoparticles: An AFM imaging study.

    Science.gov (United States)

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A

    2016-04-01

    The conjugation of tRNA with chitosan nanoparticles of different sizes 15,100 and 200 kDa was investigated in aqueous solution using multiple spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed that chitosan binds tRNA via G-C and A-U base pairs as well as backbone PO2 group, through electrostatic, hydrophilic and H-bonding contacts with overall binding constants of KCh-15-tRNA=4.1 (±0.60)×10(3)M(-1), KCh-100-tRNA=5.7 (±0.8)×10(3)M(-1) and KCh-200-tRNA=1.2 (±0.3)×10(4)M(-1). As chitosan size increases more stable polymer-tRNA conjugate is formed. AFM images showed major tRNA aggregation and particle formation occurred as chitosan concentration increased. Even though chitosan induced major biopolymer structural changes, tRNA remains in A-family structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Reverse Transcriptase-Containing Particles Induced in Rous Sarcoma Virus-Transformed Rat Cells by Arginine Deprivation

    Science.gov (United States)

    Kotler, Moshe; Weinberg, Eynat; Haspel, Osnat; Becker, Yechiel

    1972-01-01

    Incubation of rat cells transformed by Rous sarcoma virus (RSV) in an arginine-deficient medium resulted in accumulation of particles in the culture medium. Such particles did not appear when the transformed rat cells were incubated in a complete medium nor in the medium of primary rat cells which were incubated either in arginine-deficient or complete media. The particles which were released from the arginine-deprived transformed rat cells resemble C-type particles in their properties. These particles band in sucrose gradients at a density of 1.16 g/ml and contain 35S ribonucleic acid (RNA) molecules and a reverse transcriptase activity. Analysis of the cytoplasm of transformed and primary rat cells, deprived and undeprived of arginine, revealed the presence of reverse transcriptase-containing particles which banded in sucrose gradients at a density of 1.14 g/ml. These particles differed from the particles released into the medium by the arginine-deprived RSV-transformed rat cells. The deoxyribonucleic acid (DNA) molecules synthesized in vitro by the reverse transcriptase present in the particles isolated from the medium of arginine-deprived cells hybridized to RSV RNA, whereas the DNA synthesized by the cell-bound enzyme had no homology to RSV RNA. PMID:4116137

  5. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Structural insights into RNA processing by the human RISC-loading complex.

    Science.gov (United States)

    Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva

    2009-11-01

    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.

  7. Chaperoning 5S RNA assembly.

    Science.gov (United States)

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-07-01

    In eukaryotes, three of the four ribosomal RNAs (rRNAs)—the 5.8S, 18S, and 25S/28S rRNAs—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP), containing ribosomal proteins Rpl5/uL18 and Rpl11/uL5, prior to its incorporation into preribosomes. In mammals, the 5S RNP is also a central regulator of the homeostasis of the tumor suppressor p53. The nucleolar localization of the 5S RNP and its assembly into preribosomes are performed by a specialized complex composed of Rpf2 and Rrs1 in yeast or Bxdc1 and hRrs1 in humans. Here we report the structural and functional characterization of the Rpf2-Rrs1 complex alone, in complex with the 5S RNA, and within pre-60S ribosomes. We show that the Rpf2-Rrs1 complex contains a specialized 5S RNA E-loop-binding module, contacts the Rpl5 protein, and also contacts the ribosome assembly factor Rsa4 and the 25S RNA. We propose that the Rpf2-Rrs1 complex establishes a network of interactions that guide the incorporation of the 5S RNP in preribosomes in the initial conformation prior to its rotation to form the central protuberance found in the mature large ribosomal subunit. © 2015 Madru et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

    Science.gov (United States)

    Ma, Da; Tian, Shaomin; Baryza, Jeremy; Luft, J Christopher; DeSimone, Joseph M

    2015-10-05

    To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

  9. Micro RNA in Exosomes from HIV-Infected Macrophages

    Directory of Open Access Journals (Sweden)

    William W. Roth

    2015-12-01

    Full Text Available Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  10. In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells.

    Science.gov (United States)

    Feldmann, Daniel P; Cheng, Yilong; Kandil, Rima; Xie, Yuran; Mohammadi, Mariam; Harz, Hartmann; Sharma, Akhil; Peeler, David J; Moszczynska, Anna; Leonhardt, Heinrich; Pun, Suzie H; Merkel, Olivia M

    2018-04-28

    The block copolymer VIPER (virus-inspired polymer for endosomal release) has been reported to be a promising novel delivery system of DNA plasmids both in vitro and in vivo. VIPER is comprised of a polycation segment for condensation of nucleic acids as well as a pH-sensitive segment that exposes the membrane lytic peptide melittin in acidic environments to facilitate endosomal escape. The objective of this study was to investigate VIPER/siRNA polyplex characteristics, and compare their in vitro and in vivo performance with commercially available transfection reagents and a control version of VIPER lacking melittin. VIPER/siRNA polyplexes were formulated and characterized at various charge ratios and shown to be efficiently internalized in cultured cells. Target mRNA knockdown was confirmed by both flow cytometry and qRT-PCR and the kinetics of knockdown was monitored by live cell spinning disk microscopy, revealing knockdown starting by 4 h post-delivery. Intratracheal instillation of VIPER particles formulated with sequence specific siRNA to the lung of mice resulted in a significantly more efficient knockdown of GAPDH compared to treatment with VIPER particles formulated with scrambled sequence siRNA. We also demonstrated using pH-sensitive labels that VIPER particles experience less acidic environments compared to control polyplexes. In summary, VIPER/siRNA polyplexes efficiently deliver siRNA in vivo resulting in robust gene silencing (>75% knockdown) within the lung. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics.

    Science.gov (United States)

    Zambenedetti, Miriam Ribas; Pavoni, Daniela Parada; Dallabona, Andreia Cristine; Dominguez, Alejandro Correa; Poersch, Celina de Oliveira; Fragoso, Stenio Perdigão; Krieger, Marco Aurélio

    2017-05-01

    Real-time reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV), hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC) is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. The MS2 genome was cloned into the pET47b(+) plasmid, generating pET47b(+)-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+)-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses.

  12. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics

    Directory of Open Access Journals (Sweden)

    Miriam Ribas Zambenedetti

    Full Text Available BACKGROUND Real-time reverse transcription polymerase chain reaction (RT-PCR is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV, hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. OBJECTIVES The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. METHODS The MS2 genome was cloned into the pET47b(+ plasmid, generating pET47b(+-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. FINDINGS We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses.

  13. Preliminary X-ray Data Analysis of Crystalline Hibiscus Chlorotic Ringspot Virus

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, A.; Speir, J; Yuan, Y; Johnson, J; Wong, S

    2009-01-01

    Hibiscus chlorotic ringspot virus (HCRSV) is a positive-sense monopartite single-stranded RNA virus that belongs to the Carmovirus genus of the Tombusviridae family, which includes carnation mottle virus (CarMV). The HCRSV virion has a 30 nm diameter icosahedral capsid with T = 3 quasi-symmetry containing 180 copies of a 38 kDa coat protein (CP) and encapsidates a full-length 3.9 kb genomic RNA. Authentic virus was harvested from infected host kenaf leaves and was purified by saturated ammonium sulfate precipitation, sucrose density-gradient centrifugation and anion-exchange chromatography. Virus crystals were grown in multiple conditions; one of the crystals diffracted to 3Synchrotron .2 A resolution and allowed the collection of a partial data set. The crystal belonged to space group R32, with unit-cell parameters a = b = 336.4, c = 798.5 . Packing considerations and rotation-function analysis determined that there were three particles per unit cell, all of which have the same orientation and fixed positions, and resulted in tenfold noncrystallography symmetry for real-space averaging. The crystals used for the structure determination of southern bean mosaic virus (SBMV) have nearly identical characteristics. Together, these findings will greatly aid the high-resolution structure determination of HCRSV.

  14. Preparation of (Ga1−xZnx)(N1−xOx) Photocatalysts from the Reaction of NH3 with Ga2O3/ZnO and ZnGa2O4: In Situ Time-Resolved XRD and XAFS Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Wen , W; Wang, Q; Hanson, J; Muckerman, J; Fujita, E; Frenkel, A; Rodriguez, J

    2009-01-01

    Hibiscus chlorotic ringspot virus (HCRSV) is a positive-sense monopartite single-stranded RNA virus that belongs to the Carmovirus genus of the Tombusviridae family, which includes carnation mottle virus (CarMV). The HCRSV virion has a 30 nm diameter icosahedral capsid with T = 3 quasi-symmetry containing 180 copies of a 38 kDa coat protein (CP) and encapsidates a full-length 3.9 kb genomic RNA. Authentic virus was harvested from infected host kenaf leaves and was purified by saturated ammonium sulfate precipitation, sucrose density-gradient centrifugation and anion-exchange chromatography. Virus crystals were grown in multiple conditions; one of the crystals diffracted to 3.2 A resolution Ad allowed the collection of a partial data set. The crystal belonged to space group R32, with unit-cell parameters a = b = 336.4, c = 798.5 A. Packing considerations and rotation-function analysis determined that there were three particles per unit cell, all of which have the same orientation and fixed positions, and resulted in tenfold noncrystallography symmetry for real-space averaging. The crystals used for the structure determination of southern bean mosaic virus (SBMV) have nearly identical characteristics. Together, these findings will greatly aid the high-resolution structure determination of HCRSV.

  15. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F [Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Yang, B, E-mail: andrewfxu1998@gmail.co [Department of Chemistry, Indiana University-Bloomington, Bloomington, IN 47405 (United States)

    2009-10-07

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  16. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    International Nuclear Information System (INIS)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F; Yang, B

    2009-01-01

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  17. Analysis of the initiating events in HIV-1 particle assembly and genome packaging.

    Directory of Open Access Journals (Sweden)

    Sebla B Kutluay

    2010-11-01

    Full Text Available HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD of capsid (CA, which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent

  18. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium

    Directory of Open Access Journals (Sweden)

    Louise C. Laurent

    2015-08-01

    Full Text Available Extracellular RNAs (exRNAs have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.

  19. Effects of fuel components and combustion particle physicochemical properties on toxicological responses of lung cells.

    Science.gov (United States)

    Jaramillo, Isabel C; Sturrock, Anne; Ghiassi, Hossein; Woller, Diana J; Deering-Rice, Cassandra E; Lighty, JoAnn S; Paine, Robert; Reilly, Christopher; Kelly, Kerry E

    2018-03-21

    The physicochemical properties of combustion particles that promote lung toxicity are not fully understood, hindered by the fact that combustion particles vary based on the fuel and combustion conditions. Real-world combustion-particle properties also continually change as new fuels are implemented, engines age, and engine technologies evolve. This work used laboratory-generated particles produced under controlled combustion conditions in an effort to understand the relationship between different particle properties and the activation of established toxicological outcomes in human lung cells (H441 and THP-1). Particles were generated from controlled combustion of two simple biofuel/diesel surrogates (methyl decanoate and dodecane/biofuel-blended diesel (BD), and butanol and dodecane/alcohol-blended diesel (AD)) and compared to a widely studied reference diesel (RD) particle (NIST SRM2975/RD). BD, AD, and RD particles exhibited differences in size, surface area, extractable chemical mass, and the content of individual polycyclic aromatic hydrocarbons (PAHs). Some of these differences were directly associated with different effects on biological responses. BD particles had the greatest surface area, amount of extractable material, and oxidizing potential. These particles and extracts induced cytochrome P450 1A1 and 1B1 enzyme mRNA in lung cells. AD particles and extracts had the greatest total PAH content and also caused CYP1A1 and 1B1 mRNA induction. The RD extract contained the highest relative concentration of 2-ring PAHs and stimulated the greatest level of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNFα) cytokine secretion. Finally, AD and RD were more potent activators of TRPA1 than BD, and while neither the TRPA1 antagonist HC-030031 nor the antioxidant N-acetylcysteine (NAC) affected CYP1A1 or 1B1 mRNA induction, both inhibitors reduced IL-8 secretion and mRNA induction. These results highlight that differences in fuel and combustion conditions

  20. Negative-strand RNA viruses: The plant-infecting counterparts

    NARCIS (Netherlands)

    Kormelink, R.J.M.; Garcia, M.L.; Goodin, M.; Sasaya, T.; Haenni, A.L.

    2011-01-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome

  1. BARE retrotransposons are translated and replicated via distinct RNA pools.

    Directory of Open Access Journals (Sweden)

    Wei Chang

    Full Text Available The replication of Long Terminal Repeat (LTR retrotransposons, which can constitute over 80% of higher plant genomes, resembles that of retroviruses. A major question for retrotransposons and retroviruses is how the two conflicting roles of their transcripts, in translation and reverse transcription, are balanced. Here, we show that the BARE retrotransposon, despite its organization into just one open reading frame, produces three distinct classes of transcripts. One is capped, polyadenylated, and translated, but cannot be copied into cDNA. The second is not capped or polyadenylated, but is destined for packaging and ultimate reverse transcription. The third class is capped, polyadenylated, and spliced to favor production of a subgenomic RNA encoding only Gag, the protein forming virus-like particles. Moreover, the BARE2 subfamily, which cannot synthesize Gag and is parasitic on BARE1, does not produce the spliced sub-genomic RNA for translation but does make the replication competent transcripts, which are packaged into BARE1 particles. To our knowledge, this is first demonstration of distinct RNA pools for translation and transcription for any retrotransposon.

  2. Layer-by-layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing.

    Science.gov (United States)

    Tan, Yang Fei; Mundargi, Raghavendra C; Chen, Min Hui Averil; Lessig, Jacqueline; Neu, Björn; Venkatraman, Subbu S; Wong, Tina T

    2014-05-14

    Efficient and safe delivery systems for siRNA therapeutics remain a challenge. Elevated secreted protein, acidic, and rich in cysteine (SPARC) protein expression is associated with tissue scarring and fibrosis. Here we investigate the feasibility of encapsulating SPARC-siRNA in the bilayers of layer-by-layer (LbL) nanoparticles (NPs) with poly(L-arginine) (ARG) and dextran (DXS) as polyelectrolytes. Cellular binding and uptake of LbL NPs as well as siRNA delivery were studied in FibroGRO cells. siGLO-siRNA and SPARC-siRNA were efficiently coated onto hydroxyapatite nanoparticles. The multilayered NPs were characterized with regard to particle size, zeta potential and surface morphology using dynamic light scattering and transmission electron microscopy. The SPARC-gene silencing and mRNA levels were analyzed using ChemiDOC western blot technique and RT-PCR. The multilayer SPARC-siRNA incorporated nanoparticles are about 200 nm in diameter and are efficiently internalized into FibroGRO cells. Their intracellular fate was also followed by tagging with suitable reporter siRNA as well as with lysotracker dye; confocal microscopy clearly indicates endosomal escape of the particles. Significant (60%) SPARC-gene knock down was achieved by using 0.4 pmole siRNA/μg of LbL NPs in FibroGRO cells and the relative expression of SPARC mRNA reduced significantly (60%) against untreated cells. The cytotoxicity as evaluated by xCelligence real-time cell proliferation and MTT cell assay, indicated that the SPARC-siRNA-loaded LbL NPs are non-toxic. In conclusion, the LbL NP system described provides a promising, safe and efficient delivery platform as a non-viral vector for siRNA delivery that uses biopolymers to enhance the gene knock down efficiency for the development of siRNA therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Formation of virions is strictly required for turnip yellows virus long-distance movement in plants.

    Science.gov (United States)

    Hipper, Clémence; Monsion, Baptiste; Bortolamiol-Bécet, Diane; Ziegler-Graff, Véronique; Brault, Véronique

    2014-02-01

    Viral genomic RNA of the Turnip yellows virus (TuYV; genus Polerovirus; family Luteoviridae) is protected in virions formed by the major capsid protein (CP) and the minor component, the readthrough (RT*) protein. Long-distance transport, used commonly by viruses to systemically infect host plants, occurs in phloem sieve elements and two viral forms of transport have been described: virions and ribonucleoprotein (RNP) complexes. With regard to poleroviruses, virions have always been presumed to be the long-distance transport form, but the potential role of RNP complexes has not been investigated. Here, we examined the requirement of virions for polerovirus systemic movement by analysing CP-targeted mutants that were unable to form viral particles. We confirmed that TuYV mutants that cannot encapsidate into virions are not able to reach systemic leaves. To completely discard the possibility that the introduced mutations in CP simply blocked the formation or the movement of RNP complexes, we tested in trans complementation of TuYV CP mutants by providing WT CP expressed in transgenic plants. WT CP was able to facilitate systemic movement of TuYV CP mutants and this observation was always correlated with the formation of virions. This demonstrated clearly that virus particles are essential for polerovirus systemic movement.

  4. Structure of Hepatitis E Virion-Sized Particle Reveals an RNA-Dependent Viral Assembly Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L.; Wall, J.; Li, T.-C.; Mayazaki, N.; Simon, M. N.; Moore, M.; Wang, C.-Y.; Takeda, N.; Wakita, T.; Miyamura, T.; Cheng, R. H.

    2010-10-22

    Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.

  5. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    International Nuclear Information System (INIS)

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-01-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells

  6. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Robert Y.L., E-mail: yuwang@mail.cgu.edu.tw [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Kuo, Rei-Lin [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Ma, Wei-Chieh [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Hsing-I [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yu, Jau-Song [Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yen, Sih-Min [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Chi-Ruei [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Shih, Shin-Ru [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  7. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    Directory of Open Access Journals (Sweden)

    Yuqing eFeng

    2014-08-01

    Full Text Available The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-DNA APOBEC3 enzymes deaminate cytosines to forms uracils in single-stranded (- DNA regions. Upon replication of the (-DNA to (+DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but by several degradation-independent mechanisms such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.

  8. Origin of the RNA world: The fate of nucleobases in warm little ponds

    Science.gov (United States)

    Pearce, Ben K. D.; Pudritz, Ralph E.; Semenov, Dmitry A.; Henning, Thomas K.

    2017-10-01

    Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet–dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth's early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of “targets” for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet–dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago.

  9. Origin of the RNA world: The fate of nucleobases in warm little ponds.

    Science.gov (United States)

    Pearce, Ben K D; Pudritz, Ralph E; Semenov, Dmitry A; Henning, Thomas K

    2017-10-24

    Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet-dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth's early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of "targets" for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet-dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago.

  10. Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin

    Science.gov (United States)

    Siebrasse, Jan Peter; Veith, Roman; Dobay, Akos; Leonhardt, Heinrich; Daneholt, Bertil; Kubitscheck, Ulrich

    2008-01-01

    Messenger ribonucleoprotein particles (mRNPs) move randomly within nucleoplasm before they exit from the nucleus. To further understand mRNP trafficking, we have studied the intranuclear movement of a specific mRNP, the BR2 mRNP, in salivary gland cells in Chironomus tentans. Their polytene nuclei harbor giant chromosomes separated by vast regions of nucleoplasm, which allows us to study mRNP mobility without interference of chromatin. The particles were fluorescently labeled with microinjected oligonucleotides (DNA or RNA) complementary to BR2 mRNA or with the RNA-binding protein hrp36, the C. tentans homologue of hnRNP A1. Using high-speed laser microscopy, we followed the intranuclear trajectories of single mRNPs and characterized their motion within the nucleoplasm. The Balbiani ring (BR) mRNPs moved randomly, but unexpectedly, in a discontinuous manner. When mobile, they diffused with a diffusion coefficient corresponding to their size. Between mobile phases, the mRNPs were slowed down 10-to 250-fold but were never completely immobile. Earlier electron microscopy work has indicated that BR particles can attach to thin nonchromatin fibers, which are sometimes connected to discrete fibrogranular clusters. We propose that the observed discontinuous movement reflects transient interactions between freely diffusing BR particles and these submicroscopic structures. PMID:19074261

  11. Human immunodeficiency virus uses tRNA(Lys,3) as primer for reverse transcription in HeLa-CD4+ cells

    NARCIS (Netherlands)

    Das, A. T.; Koken, S. E.; Essink, B. B.; van Wamel, J. L.; Berkhout, B.

    1994-01-01

    Significant amounts of different tRNA molecules are present in retroviral particles, but one specific tRNA species functions as primer in reverse transcription. It is generally believed that the HIV-1 virus uses the tRNA(Lys,3) molecule as primer. This is based on sequence complementarity between

  12. Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA-complexes.

    Science.gov (United States)

    Zhang, Heyang; De Smedt, Stefaan C; Remaut, Katrien

    2018-05-10

    Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine ® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, ...), but should release

  13. Screening of siRNA nanoparticles for delivery to airway epithelial cells using high-content analysis

    LENUS (Irish Health Repository)

    Hibbitts, Alan

    2011-08-01

    Aims: Delivery of siRNA to the lungs via inhalation offers a unique opportunity to develop a new treatment paradigm for a range of respiratory conditions. However, progress has been greatly hindered by safety and delivery issues. This study developed a high-throughput method for screening novel nanotechnologies for pulmonary siRNA delivery. Methodology: Following physicochemical analysis, the ability of PEI–PEG–siRNA nanoparticles to facilitate siRNA delivery was determined using high-content analysis (HCA) in Calu-3 cells. Results obtained from HCA were validated using confocal microscopy. Finally, cytotoxicity of the PEI–PEG–siRNA particles was analyzed by HCA using the Cellomics® multiparameter cytotoxicity assay. Conclusion: PEI–PEG–siRNA nanoparticles facilitated increased siRNA uptake and luciferase knockdown in Calu-3 cells compared with PEI–siRNA.

  14. Fractionation of HeLa cell nuclear extracts reveals minor small nuclear ribonucleoprotein particles

    International Nuclear Information System (INIS)

    Kroemer, A.

    1987-01-01

    Upon chromatographic fractionation of HeLa cell nuclear extracts, small RNAs of 145 and 66/65 nucleotides, respectively, were detected that are distinct from the abundant small RNAs present in the extract. These RNAs are precipitated by antibodies directed against the trimethylguanosine cap structure, characteristic for small nuclear RNAs (snRNAs) of the U type. The RNAs of 145 and 66/65 nucleotides appear to be associated with at least one of the proteins common to the major small nuclear ribonucleoprotein particles U1 to U6, since they are specifically bound by anti-Sm antibodies. These criteria characterize the RNAs that are 145 and 66/65 nucleotides in length as U-type snRNAs. Upon gel filtration, the RNAs are found within particles of molecular weights ≅ 150,000 and 115,000 respectively. The RNA of 145 nucleotides represents a different minor snRNA, designated U11, whereas the RNA of 66/65 nucleotides may correspond to either mammalian U7 or U10 RNA

  15. Cytomegalovirus sequence variability, amplicon length, and DNase-sensitive non-encapsidated genomes are obstacles to standardization and commutability of plasma viral load results.

    Science.gov (United States)

    Naegele, Klaudia; Lautenschlager, Irmeli; Gosert, Rainer; Loginov, Raisa; Bir, Katia; Helanterä, Ilkka; Schaub, Stefan; Khanna, Nina; Hirsch, Hans H

    2018-04-22

    Cytomegalovirus (CMV) management post-transplantation relies on quantification in blood, but inter-laboratory and inter-assay variability impairs commutability. An international multicenter study demonstrated that variability is mitigated by standardizing plasma volumes, automating DNA extraction and amplification, and calibration to the 1st-CMV-WHO-International-Standard as in the FDA-approved Roche-CAP/CTM-CMV. However, Roche-CAP/CTM-CMV showed under-quantification and false-negative results in a quality assurance program (UK-NEQAS-2014). To evaluate factors contributing to quantification variability of CMV viral load and to develop optimized CMV-UL54-QNAT. The UL54 target of the UK-NEQAS-2014 variant was sequenced and compared to 329 available CMV GenBank sequences. Four Basel-CMV-UL54-QNAT assays of 361 bp, 254 bp, 151 bp, and 95 bp amplicons were developed that only differed in reverse primer positions. The assays were validated using plasmid dilutions, UK-NEQAS-2014 sample, as well as 107 frozen and 69 prospectively collected plasma samples from transplant patients submitted for CMV QNAT, with and without DNase-digestion prior to nucleic acid extraction. Eight of 43 mutations were identified as relevant in the UK-NEQAS-2014 target. All Basel-CMV-UL54 QNATs quantified the UK-NEQAS-2014 but revealed 10-fold increasing CMV loads as amplicon size decreased. The inverse correlation of amplicon size and viral loads was confirmed using 1st-WHO-International-Standard and patient samples. DNase pre-treatment reduced plasma CMV loads by >90% indicating the presence of unprotected CMV genomic DNA. Sequence variability, amplicon length, and non-encapsidated genomes obstruct standardization and commutability of CMV loads needed to develop thresholds for clinical research and management. Besides regular sequence surveys, matrix and extraction standardization, we propose developing reference calibrators using 100 bp amplicons. Copyright © 2018 Elsevier B.V. All

  16. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Lijiang eLiu

    2015-05-01

    Full Text Available A variety of mycoviruses have been found in Sclerotinia sclerotiorum. In this study, we report a novel mycovirus Sclerotinia sclerotiorum botybirnavirus 1 (SsBRV1 that was originally isolated from the hypovirulent strain SCH941 of S. sclerotiorum. SsBRV1 has rigid spherical virions that are ~38 nm in diameter, and three dsRNA segments (dsRNA1, 2 and 3 with lengths of 6.4, 6.0 and 1.7 kbp, respectively were packaged in the virions. dsRNA1 encodes a cap-pol fusion protein, and dsRNA2 encodes a polyprotein with unknown functions but contributes to the formation of virus particles. The dsRNA3 is dispensable and may be a satellite-like RNA (SatlRNA of SsBRV1. Although phylogenetic analysis of the RdRp domain demonstrated that SsBRV1 is related to Botrytis porri RNA virus 1 (BpRV1 and Ustilago maydis dsRNA virus-H1 (UmV-H1, the structure proteins of SsBRV1 do not have any significant sequence similarities with other known viral proteins with the exception of those of BpRV1. SsBRV1 carrying dsRNA3 seems to have no obvious effects on the colony morphology, but can significantly reduce the growth rate and virulence of S. sclerotiorum. Notably, a growth hormone receptor binding domain (GHBP, Pfam12772 is detected in ORF2-encoded protein of SsBRV1, which have not been reported in any other viruses. These findings provide new insights into the virus taxonomy, virus evolution and the interactions between SsBRV1 and the fungal hosts.

  17. Studies on the role of NonA in mRNA biogenesis

    International Nuclear Information System (INIS)

    Kozlova, Natalia; Braga, Jose; Lundgren, Josefin; Rino, Jose; Young, Patrick; Carmo-Fonseca, Maria; Visa, Neus

    2006-01-01

    The NonA protein of Drosophila melanogaster is an abundant nuclear protein that belongs to the DBHS (Drosophila behavior, human splicing) protein family. The DBHS proteins bind both DNA and RNA in vitro and have been involved in different aspects of gene expression, including pre-mRNA splicing, transcription regulation and nuclear retention of mRNA. We have used double-stranded RNA interference in Drosophila S2 cells to silence the expression of NonA and to investigate its role in mRNA biogenesis. We show that knockdown of NonA does not affect transcription nor splicing. We demonstrate that NonA forms a complex with the essential nuclear export factor NXF1 in an RNA-dependent manner. We have constructed stable S2 cell lines that express full-length and truncated NXF1 fused to GFP in order to perform fluorescence recovery after photobleaching experiments. We show that knockdown of NonA reduces the intranuclear mobility of NXF1-GFP associated with poly(A) + RNA in vivo, while the mobility of the truncated NXF1-GFP that does not bind RNA is not affected. Our data suggest that NonA facilitates the intranuclear mobility of mRNP particles

  18. Mutations of the kissing-loop dimerization sequence influence the site specificity of murine leukemia virus recombination in vivo

    DEFF Research Database (Denmark)

    Mikkelsen, J G; Lund, Anders Henrik; Duch, M

    2000-01-01

    synthesis in newly infected cells. We have previously shown that template shifts within the 5' leader of murine leukemia viruses occur preferentially within the kissing stem-loop motif, a cis element crucial for in vitro RNA dimer formation. By use of a forced recombination approach based on single......-cycle transfer of Akv murine leukemia virus-based vectors harboring defective primer binding site sequences, we now report that modifications of the kissing-loop structure, ranging from a deletion of the entire sequence to introduction of a single point mutation in the loop motif, significantly disturb site...... specificity of recombination within the highly structured 5' leader region. In addition, we find that an intact kissing-loop sequence favors optimal RNA encapsidation and vector transduction. Our data are consistent with the kissing-loop dimerization model and suggest that a direct intermolecular RNA...

  19. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation.

    Science.gov (United States)

    Wang, Peng; Yang, Lijiang; Gao, Yi Qin; Zhao, Xin Sheng

    2015-09-03

    H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery.

    Science.gov (United States)

    Bakan, Feray; Kara, Goknur; Cokol Cakmak, Melike; Cokol, Murat; Denkbas, Emir Baki

    2017-10-01

    Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca ++ rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.

    Science.gov (United States)

    Fischer, Niels; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V; Stark, Holger

    2010-07-15

    The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.

  2. An Interaction between KSHV ORF57 and UIF Provides mRNA-Adaptor Redundancy in Herpesvirus Intronless mRNA Export

    Science.gov (United States)

    Jackson, Brian R.; Boyne, James R.; Noerenberg, Marko; Taylor, Adam; Hautbergue, Guillaume M.; Walsh, Matthew J.; Wheat, Rachel; Blackbourn, David J.; Wilson, Stuart A.; Whitehouse, Adrian

    2011-01-01

    The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs. PMID:21814512

  3. Characterization of messenger ribonucleoprotein particles in dormant sporangiospores of the fungus Mucor racemosus

    International Nuclear Information System (INIS)

    Chapman, C.P.

    1986-01-01

    Extracts of sporangiospores of Mucor racemosus contained RNA that readily hybridized with [ 3 H]polyuridylic acid. Prior to germination, this RNA was in a form sedimenting at 31 P-orthophosphate or L-[ 32 S]methionine, absorbance at 280 nm, or hybridization of [ 3 H]polyuridylic acid. mRNP's from the first two fractions were analyzed. A bimodal population of particles was detected in sedimentation velocity and sedimentation equilibrium centrifugation. Particles eluted at low ionic strength demonstrated a sedimentation coefficient distribution of 20S-to-80S. Particles eluted in formamide demonstrated a sedimentation coefficient distribution of 20S-to-60S. Particles eluted at low ionic strength displayed two peaks in CsCl centrifugation, with buoyant densities of 1.37 gm/cc and 1.59 gm/cc. Particles eluted in formamide displayed a single peak with a buoyant density of 1.61 gm/cc. Particles eluted at low ionic strength and centrifuged in metrizamide solution formed two bands having buoyant densities of 1.15 gm/cc and 1.30 gm/cc; formamide-eluted particles banded only at the higher density. Mucor 40S ribosomal subunits banded at 1.56 gm/cc and 1.28 gm/cc in CsCl and metrizamide solution respectively

  4. An elongated model of the Xenopus laevis transcription factor IIIA-5S ribosomal RNA complex derived from neutron scattering and hydrodynamic measurements

    International Nuclear Information System (INIS)

    Timmins, P.A.; Langowski, J.; Brown, R.S.

    1988-01-01

    The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700±10,000 and 86,700±9,000 daltons from these two methods respectively. The observed match point of 54.4% D 2 O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. A simple elongated cylindrical model with dimensions of 140 angstrom length and 59 angstrom diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 angstrom in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA

  5. Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaohui; McDonald, Sarah M.; Tortorici, M. Alejandra; Tao, Yizhi Jane; Vasquez-Del Carpio, Rodrigo; Nibert, Max L.; Patton, John T.; Harrison, Stephen C. (Harvard-Med); (NIH); (CH-Boston)

    2009-04-08

    Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 {angstrom} resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus {lambda}3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.

  6. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  7. Isolation and characterization of the heterogeneous nuclear RNA-ribonucleoprotein complex

    International Nuclear Information System (INIS)

    Choi, Y.D.

    1985-01-01

    Exposure of cells to UV light of sufficient intensity brings about crosslinking of RNA to proteins which are in direct contact with it in vivo. The major [ 35 S]methionine-labeled proteins which become crosslinked to poly(A) + hnRNA in HeLa cells are of 120K, 68K, 53K, 43K, 41K, 38K, and 36K (K = kilodaltons). By immunizing mice with UV crosslinked complexes two monoclonal antibodies (2B12 and 4F4) against the C proteins (41K and 43K) and one (3G6) against the 120K protein of the hnRNP complex were obtained. Immunofluorescence microscopy demonstrates that the C proteins and 120K are segregated to the nucleus and are not associated with nucleoli or chromatin. The two C proteins are highly related to each other antigenically. Monoclonal antibody 4F4 identifies the C proteins of the hnRNP complex in widely divergent species from human to lizard. The C proteins are phosphorylated and are in contact with hnRNA in vivo. The hnRNP complex was isolated from vertebrate cell nuclei by immunoprecipitation with these monoclonal antibodies. This complex contains proteins and hnRNA of up to ∼10 kb. The major steady state labeled [ 35 S]methionine labeled proteins of the isolated complex from HeLa cells are of 34K, 36K, 36K (A1 and A2), 37K, 38K (B1 and B2), 41K, 43K (C1 and C2) and doublets at 68K and at 120K. These proteins are organized into a 30S particle. Large hnRNP complexes are composed of multiples of 30S particles which are connected by highly nuclease sensitive stretches of hnRNA. It it concluded that the hnRNP structure is an integral component of the mRNA formation pathway in the eukaryotic cell

  8. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code.

    Science.gov (United States)

    Fujii, Yoichi Robertus

    2013-01-01

    MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.

  9. Preliminary X-ray data analysis of crystalline hibiscus chlorotic ringspot virus

    International Nuclear Information System (INIS)

    Cheng, Ao; Speir, Jeffrey A.; Yuan, Y. Adam; Johnson, John E.; Wong, Sek-Man

    2009-01-01

    Hibiscus chlorotic ringspot virus is a positive-sense monopartite single-stranded RNA virus that belongs to the Carmovirus genus of the Tombusviridae family. Authentic virus harvested from infected host kenaf leaves was purified and virus crystals were grown in multiple conditions. One of the crystals diffracted to 3.2 Å resolution and allowed the collection of a partial data set. Hibiscus chlorotic ringspot virus (HCRSV) is a positive-sense monopartite single-stranded RNA virus that belongs to the Carmovirus genus of the Tombusviridae family, which includes carnation mottle virus (CarMV). The HCRSV virion has a 30 nm diameter icosahedral capsid with T = 3 quasi-symmetry containing 180 copies of a 38 kDa coat protein (CP) and encapsidates a full-length 3.9 kb genomic RNA. Authentic virus was harvested from infected host kenaf leaves and was purified by saturated ammonium sulfate precipitation, sucrose density-gradient centrifugation and anion-exchange chromatography. Virus crystals were grown in multiple conditions; one of the crystals diffracted to 3.2 Å resolution and allowed the collection of a partial data set. The crystal belonged to space group R32, with unit-cell parameters a = b = 336.4, c = 798.5 Å. Packing considerations and rotation-function analysis determined that there were three particles per unit cell, all of which have the same orientation and fixed positions, and resulted in tenfold noncrystallography symmetry for real-space averaging. The crystals used for the structure determination of southern bean mosaic virus (SBMV) have nearly identical characteristics. Together, these findings will greatly aid the high-resolution structure determination of HCRSV

  10. The 3.2 Angstrom Resolution Structure of the Polymorphic Cowpea Chlorotic Mottle Virus Ribonucleoprotein Particle

    Science.gov (United States)

    Speir, Jeffrey Alan

    Structural studies of the polymorphic cowpea chlorotic mottle virus have resulted in high resolution structures for two distinct icosahedral ribonucleoprotein particle conformations dependent upon whether acidic or basic pH conditions prevail. CCMV is stable below pH 6.5, however metal-free particles maintain a 10% increase in hydrodynamic volume at pH >=q 7.5. Identification of this swollen' form of CCMV, which can easily be disrupted with 1M NaCl, led to the first reassembly of an icosahedral virus in vitro from purified viral protein and RNA to form infectious particles, and its assembly has been the subject of biochemical and biophysical investigations for over twenty-five years. Under well defined conditions of pH, ionic strength and divalent metal ion concentration, CCMV capsid protein or capsid protein and RNA will reassemble to form icosahedral particles of various sizes, sheets, tubes, rosettes, and a variety of laminar structures which resemble virion structures from non-related virus families. Analysis of native particles at 3.2A resolution and swollen particles at 28A resolution has suggested that the chemical basis for the formation of polymorphic icosahedral and anisometric structures is: (i) hexamers formed of beta-barrel subunits stabilized by an unusual hexameric parallel beta structure made up of their N-termini, (ii) the location of protein-RNA interactions, (iii) divalent metal cation binding sites that regulate quasi-symmetrical subunit associations, (iv) charge repulsion across the same interfaces when lacking divalent metal ions at basic pH, which induces the formation of sixty 20A diameter portals for RNA release, and (v) a novel, C-terminal-based, subunit dimer assembly unit. The use of C- and N-terminal arms in CCMV has not been observed in other icosahedral RNA virus structures determined at near atomic resolution, however, their detailed interactions and roles in stabilizing the quaternary organization of CCMV are related to that found

  11. Negative-strand RNA viruses: the plant-infecting counterparts.

    Science.gov (United States)

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation

    Science.gov (United States)

    Kubota, Kohei; Onishi, Kohei; Sawaki, Kazuaki; Li, Tianshu; Mitsuoka, Kaoru; Sato, Takaaki; Takeoka, Shinji

    2017-01-01

    Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs). In this study, we prepared small interfering RNA (siRNA)-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment. PMID:28790820

  13. Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity.

    Science.gov (United States)

    Saliou, Jean-Michel; Manival, Xavier; Tillault, Anne-Sophie; Atmanene, Cédric; Bobo, Claude; Branlant, Christiane; Van Dorsselaer, Alain; Charpentier, Bruno; Cianférani, Sarah

    2015-08-01

    Site-specific isomerization of uridines into pseudouridines in RNAs is catalyzed either by stand-alone enzymes or by box H/ACA ribonucleoprotein particles (sno/sRNPs). The archaeal box H/ACA sRNPs are five-component complexes that consist of a guide RNA and the aCBF5, aNOP10, L7Ae, and aGAR1 proteins. In this study, we performed pairwise incubations of individual constituents of archaeal box H/ACA sRNPs and analyzed their interactions by native MS to build a 2D-connectivity map of direct binders. We describe the use of native MS in combination with ion mobility-MS to monitor the in vitro assembly of the active H/ACA sRNP particle. Real-time native MS was used to monitor how box H/ACA particle functions in multiple-turnover conditions. Native MS also unambiguously revealed that a substrate RNA containing 5-fluorouridine (f(5) U) was hydrolyzed into 5-fluoro-6-hydroxy-pseudouridine (f(5) ho(6) Ψ). In terms of enzymatic mechanism, box H/ACA sRNP was shown to catalyze the pseudouridylation of a first RNA substrate, then to release the RNA product (S22 f(5) ho(6) ψ) from the RNP enzyme and reload a new substrate RNA molecule. Altogether, our native MS-based approaches provide relevant new information about the potential assembly process and catalytic mechanism of box H/ACA RNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Droplet Microfluidic and Magnetic Particles Platform for Cancer Typing.

    Science.gov (United States)

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, M; Malaquin, Laurent; Descroix, Stéphanie; de Cremoux, Patricia; Viovy, Jean-Louis

    2017-01-01

    Analyses of nucleic acids are routinely performed in hospital laboratories to detect gene alterations for cancer diagnosis and treatment decision. Among the different possible investigations, mRNA analysis provides information on abnormal levels of genes expression. Standard laboratory methods are still not adapted to the isolation and quantitation of low mRNA amounts and new techniques needs to be developed in particular for rare subsets analysis. By reducing the volume involved, time process, and the contamination risks, droplet microfluidics provide numerous advantages to perform analysis down to the single cell level.We report on a droplet microfluidic platform based on the manipulation of magnetic particles that allows the clinical analysis of tumor tissues. In particular, it allows the extraction of mRNA from the total-RNA sample, Reverse Transcription, and cDNA amplification, all in droplets.

  15. Functional characterization of recombinant chloroplast signal recognition particle

    NARCIS (Netherlands)

    Groves, M R; Mant, A; Kuhn, A; Koch, J; Dübel, S; Robinson, C; Sinning, I

    2001-01-01

    The signal recognition particle (SRP) is a ubiquitous system for the targeting of membrane and secreted proteins. The chloroplast SRP (cpSRP) is unique among SRPs in that it possesses no RNA and is functional in post-translational as well as co-translational targeting. We have expressed and purified

  16. Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering.

    Science.gov (United States)

    Renner, Max; Paesen, Guido C; Grison, Claire M; Granier, Sébastien; Grimes, Jonathan M; Leyrat, Cédric

    2017-11-01

    The phosphoprotein (P) is the main and essential cofactor of the RNA polymerase (L) of non-segmented, negative-strand RNA viruses. P positions the viral polymerase onto its nucleoprotein-RNA template and acts as a chaperone of the nucleoprotein (N), thereby preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of human metapneumovirus (HMPV) forms homotetramers composed of a stable oligomerization domain (P core ) flanked by large intrinsically disordered regions (IDRs). Here we combined x-ray crystallography of P core with small angle x-ray scattering (SAXS)-based ensemble modeling of the full-length P protein and several of its fragments to provide a structural description of P that captures its dynamic character, and highlights the presence of varyingly stable structural elements within the IDRs. We discuss the implications of the structural properties of HMPV P for the assembly and functioning of the viral transcription/replication machinery.

  17. The True Story and Advantages of RNA Phage Capsids as Nanotools.

    Science.gov (United States)

    Pumpens, Paul; Renhofa, Regina; Dishlers, Andris; Kozlovska, Tatjana; Ose, Velta; Pushko, Peter; Tars, Kaspars; Grens, Elmars; Bachmann, Martin F

    2016-01-01

    RNA phages are often used as prototypes for modern recombinant virus-like particle (VLP) technologies. Icosahedral RNA phage VLPs can be formed from coat proteins (CPs) and are efficiently produced in bacteria and yeast. Both genetic fusion and chemical coupling have been successfully used for the production of numerous chimeras based on RNA phage VLPs. In this review, we describe advances in RNA phage VLP technology along with the history of the Leviviridae family, including its taxonomical organization, genomic structure, and important role in the development of molecular biology. Comparative 3D structures of different RNA phage VLPs are used to explain the level of VLP tolerance to foreign elements displayed on VLP surfaces. We also summarize data that demonstrate the ability of CPs to tolerate different organic (peptides, oligonucleotides, and carbohydrates) and inorganic (metal ions) compounds either chemically coupled or noncovalently added to the outer and/or inner surfaces of VLPs. Finally, we present lists of nanotechnological RNA phage VLP applications, such as experimental vaccines constructed by genetic fusion and chemical coupling methodologies, nanocontainers for targeted drug delivery, and bioimaging tools. © 2016 S. Karger AG, Basel.

  18. Defective interfering particles in monolayer-propagated Newcastle disease virus

    International Nuclear Information System (INIS)

    Roman, J.M.; Simon, E.H.

    1976-01-01

    Newcastle disease virus (NDV) serially passaged in chick embryo fibroblasts (M-NDV) gives rise to defective interfering (NDV-DI) particles, while NDV passaged in embryonated eggs (E-NDV) does not. Co-infection with these particles and infectious virions results in a 99 percent reduction in yield. Interference is not due to interferon or to prevention of absorption of infectious virions and is specific for NDV. The particles mediating interference sediment at the same velocity as infectious virions. The accumulation of NDV-DI particles in monolayers but not in eggs may be a consequence of the fact that M-NDV virions are larger and probably contain more RNA, or it may reflect differences in NDV replicative processes in eggs and monolayers, or both

  19. Characterization of an internal ribosomal entry segment within the 5' leader of avian reticuloendotheliosis virus type A RNA and development of novel MLV-REV-based retroviral vectors.

    Science.gov (United States)

    López-Lastra, M; Gabus, C; Darlix, J L

    1997-11-01

    The murine leukemia virus (MLV)-related type C viruses constitute a major class of retroviruses that includes numerous endogenous and exogenous mammalian viruses and the related avian spleen necrosis virus (SNV). The MLV-related viruses possess a long and multifunctional 5' untranslated leader involved in key steps of the viral life cycle--splicing, translation, RNA dimerization, encapsidation, and reverse transcription. Recent studies have shown that the 5' leader of Friend murine leukemia virus and Moloney murine leukemia virus can direct cap independent translation of gag precursor proteins (Berlioz et al., 1995; Vagner et al., 1995b). These data, together with structural homology studies (Koning et al., 1992), prompted us to undertake a search for new internal ribosome entry segment (IRES) of retroviral origin. Here we describe an IRES element within the 5' leader of avian reticuloendotheliosis virus type A (REV-A) genomic RNA. Data show that the REV-A 5' IRES element maps downstream of the packaging/dimerization (E/DLS) sequence (Watanabe and Temin, 1982; Darlix et al., 1992) and the minimal IRES sequence appears to be within a 129 nt fragment (nucleotides 452-580) of the 5' leader, immediately upstream of the gag AUG codon. The REV-A IRES has been successfully utilized in the construction of novel high titer MLV-based retroviral vectors, containing one or more IRES elements of retroviral origin. These retroviral constructs, which represent a starting point for the design of novel vectors suitable for gene therapy, are also of interest as a model system of internal translation initiation and its possible regulation during development, cancer, or virus infection.

  20. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export.

    Science.gov (United States)

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.

  1. L2, the minor capsid protein of papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joshua W. [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Roden, Richard B.S., E-mail: roden@jhmi.edu [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287 (United States)

    2013-10-15

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.

  2. L2, the minor capsid protein of papillomavirus

    International Nuclear Information System (INIS)

    Wang, Joshua W.; Roden, Richard B.S.

    2013-01-01

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies

  3. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of iDoRNA

  4. Synthesis of double-stranded RNA in a virus-enriched fraction from Agaricus bisporus

    International Nuclear Information System (INIS)

    Sriskantha, A.; Wach, P.; Schlagnhaufer, B.; Romaine, C.P.

    1986-01-01

    Partially purified virus preparations from sporophores of Agaricus bisporus affected with LaFrance disease had up to a 15-fold-higher RNA-dependent RNA polymerase activity than did comparable preparations from health sporophores. Enzyme activity was dependent upon the presence of Mg 2+ and the four nucleoside triphosphates and was insensitive to actinomycin D, α-amanitin, and rifampin. The 3 H-labeled enzyme reaction products were double-stranded RNA (dsRNA) as indicated by CF-11 cellulose column chromatography and by their ionic-strength-dependent sensitivity to hydrolysis by RNase A. The principal dsRNA products had estimated molecular weights of 4.3 /times/ 10 6 and 1.4 /times/ 10 6 . Cs 2 SO 4 equilibrium centrifugation of the virus preparation resolved a single peak of RNA polymerase activity that banded with a 35-nm spherical virus particle containing dsRNAs with molecular weights of 4.3 /times/ 10 6 and 1.4 /times/ 10 6 . The data suggest that the RNA-dependent RNA polymerase associated with the 35-nm spherical virus is a replicase which catalyzes the synthesis of the genomic dsRNAs

  5. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  6. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  7. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    International Nuclear Information System (INIS)

    Ying, Bo; Campbell, Robert B.

    2014-01-01

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  8. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    Energy Technology Data Exchange (ETDEWEB)

    Wetz, K.; Habermehl, K.O. (Freie Univ. Berlin (Germany, F.R.))

    1982-04-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid.

  9. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    International Nuclear Information System (INIS)

    Wetz, K.; Habermehl, K.-O.

    1982-01-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid. (author)

  10. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    Science.gov (United States)

    Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert

    2017-02-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  11. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis

    Science.gov (United States)

    Rey, Félix A.

    2017-01-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation. PMID:28151973

  12. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    Directory of Open Access Journals (Sweden)

    Danilo Dubrau

    2017-02-01

    Full Text Available The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132, which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  13. Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: Effects on virion morphogenesis and RNA maturation

    International Nuclear Information System (INIS)

    Moore, Michael D.; Fu, William; Soheilian, Ferri; Nagashima, Kunio; Ptak, Roger G.; Pathak, Vinay K.; Hu, Wei-Shau

    2008-01-01

    Protease activity within nascently released human immunodeficiency virus type 1 (HIV-1) particles is responsible for the cleavage of the viral polyproteins Gag and Gag-Pol into their constituent parts, which results in the subsequent condensation of the mature conical core surrounding the viral genomic RNA. Concomitant with viral maturation is a conformational change in the packaged viral RNA from a loosely associated dimer into a more thermodynamically stable form. In this study we used suboptimal concentrations of two protease inhibitors, lopinavir and atazanavir, to study their effects on Gag polyprotein processing and on the properties of the RNA in treated virions. Analysis of the treated virions demonstrated that even with high levels of inhibition of viral infectivity (IC 90 ), most of the Gag and Gag-Pol polyproteins were processed, although slight but significant increases in processing intermediates of Gag were detected. Drug treatments also caused a significant increase in the proportion of viruses displaying either immature or aberrant mature morphologies. The aberrant mature particles were characterized by an electron-dense region at the viral periphery and an electron-lucent core structure in the viral center, possibly indicating exclusion of the genomic RNA from these viral cores. Intriguingly, drug treatments caused only a slight decrease in overall thermodynamic stability of the viral RNA dimer, suggesting that the dimeric viral RNA was able to mature in the absence of correct core condensation

  14. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

    Science.gov (United States)

    Labib, Mahmoud; Mohamadi, Reza M.; Poudineh, Mahla; Ahmed, Sharif U.; Ivanov, Ivaylo; Huang, Ching-Lung; Moosavi, Maral; Sargent, Edward H.; Kelley, Shana O.

    2018-05-01

    Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.

  15. Atomic force microscopy investigation of Turnip Yellow Mosaic Virus capsid disruption and RNA extrusion

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. G.; McPherson, Alexander

    2006-01-01

    Turnip Yellow Mosaic Virus (TYMV) was subjected to a variety of procedures which disrupted the protein capsids and produced exposure of the ssRNA genome. The results of the treatments were visualized by atomic force microscopy (AFM). Both in situ and ex situ freeze-thawing produced RNA emission, though at low efficiency. The RNA lost from such particles was evident, in some cases in the process of exiting the virions. More severe disruption of TYMV and extrusion of intact RNA onto the substrate were produced by drying the virus and rehydrating with neutral buffer. Similar products were also obtained by heating TYMV to 70-75 deg. C and by exposure to alkaline pH. Experiments showed the nucleic acid to have an elaborate secondary structure distributed linearly along its length

  16. Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system.

    Science.gov (United States)

    Ohyama, Ayumu; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi

    2017-06-01

    We previously developed a tumor-selective siRNA carrier by preparing polyamidoamine dendrimer (generation 4, G4) conjugates with α-cyclodextrin and folate-polyethylene glycol (Fol-PαC (G4)). In the present study, we developed ternary complexes of Fol-PαC (G4)/siRNA with low-molecular-weight-sacrans to achieve more effective siRNA transfer activity. Among the different molecular-weight sacrans, i.e. sacran 100, 1000 and 10,000 (MW 44,889Da, 943,692Da and 1,488,281Da, respectively), sacran 100 significantly increased the cellular uptake and the RNAi effects of Fol-PαC (G4)/siRNA binary complex with negligible cytotoxicity in KB cells (folate receptor-α positive cells). In addition, the ζ-potential and particle size of Fol-PαC (G4)/siRNA complex were decreased by the ternary complexation with sacran 100. Importantly, the in vivo RNAi effect of the ternary complex after the intravenous administration to tumor-bearing BALB/c mice was significantly higher than that of the binary complex. In conclusion, Fol-PαC (G4)/siRNA/sacran 100 ternary complex has a potential as a novel tumor-selective siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers

    Science.gov (United States)

    Feng, Li; Li, Feng; Sun, Zeguo; Wu, Tan; Shi, Xinrui; Li, Jing; Li, Xia

    2016-01-01

    Recent studies indicate that long noncoding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to indirectly regulate mRNAs through shared microRNAs, which represents a novel layer of RNA crosstalk and plays critical roles in the development of tumor. However, the global regulation landscape and characterization of these lncRNA related ceRNA crosstalk in cancers is still largely unknown. Here, we systematically characterized the lncRNA related ceRNA interactions across 12 major cancers and the normal physiological states by integrating multidimensional molecule profiles of more than 5000 samples. Our study suggest the large difference of ceRNA regulation between normal and tumor states and the higher similarity across similar tissue origin of tumors. The ceRNA related molecules have more conserved features in tumor networks and they play critical roles in both the normal and tumorigenesis processes. Besides, lncRNAs in the pan-cancer ceRNA network may be potential biomarkers of tumor. By exploring hub lncRNAs, we found that these conserved key lncRNAs dominate variable tumor hallmark processes across pan-cancers. Network dynamic analysis highlights the critical roles of ceRNA regulation in tumorigenesis. By analyzing conserved ceRNA interactions, we found that miRNA mediate ceRNA regulation showed different patterns across pan-cancer; while analyzing the cancer specific ceRNA interactions reveal that lncRNAs synergistically regulated tumor driver genes of cancer hallmarks. Finally, we found that ceRNA modules have the potential to predict patient survival. Overall, our study systematically dissected the lncRNA related ceRNA networks in pan-cancer that shed new light on understanding the molecular mechanism of tumorigenesis. PMID:27580177

  18. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation

    Science.gov (United States)

    Martos, Laura; Fernández-Pardo, Álvaro; Oto, Julia; Medina, Pilar; España, Francisco; Navarro, Silvia

    2017-01-01

    microRNAs are promising biomarkers in biological fluids in several diseases. Different plasma RNA isolation protocols and carriers are available, but their efficiencies have been scarcely compared. Plasma microRNAs were isolated using a phenol and column-based procedure and a column-based procedure, in the presence or absence of two RNA carriers (yeast RNA and MS2 RNA). We evaluated the presence of PCR inhibitors and the relative abundance of certain microRNAs by qRT-PCR. Furthermore, we analyzed the association between different isolation protocols, the relative abundance of the miRNAs in the sample, the GC content and the free energy of microRNAs. In all microRNAs analyzed, the addition of yeast RNA as a carrier in the different isolation protocols used gave lower raw Cq values, indicating higher microRNA recovery. Moreover, this increase in microRNAs recovery was dependent on their own relative abundance in the sample, their GC content and the free-energy of their own most stable secondary structure. Furthermore, the normalization of microRNA levels by an endogenous microRNA is more reliable than the normalization by plasma volume, as it reduced the difference in microRNA fold abundance between the different isolation protocols evaluated. Our thorough study indicates that a standardization of pre- and analytical conditions is necessary to obtain reproducible inter-laboratory results in plasma microRNA studies. PMID:29077772

  19. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  20. Potential use of serum HBV RNA in antiviral therapy for chronic hepatitis B in the era of nucleos(t)ide analogs.

    Science.gov (United States)

    Lu, Fengmin; Wang, Jie; Chen, Xiangmei; Xu, Dongping; Xia, Ningshao

    2017-12-01

    Although the efficacy of nucleos(t)ide analogue (NA) has been confirmed for treatment of chronic hepatitis B, long-term therapy has been recommended due to the high frequency of off-therapy viral DNA rebound and disease relapse. In this review, the RNA virion-like particles of hepatitis B virus (HBV) are integrated into the life cycle of HBV replication, and the potential significance of serum HBV RNA is systematically described. The production of HBV RNA virion-like particles should not be blocked by NA; in this regard, serum HBV RNA is found to be a suitable surrogate marker for the activity of intrahepatic covalently closed circular DNA (cccDNA), particularly among patients receiving NA therapy. Therefore, the concept of virological response is redefined as persistent loss of serum HBV DNA and HBV RNA. In contrast to hepatitis B surface antigen (HBsAg) that can originate from either the cccDNA or the integrated HBV DNA fragment, serum HBV RNA, with pregenomic RNA origination, can only be transcribed from cccDNA. Therefore, the loss of serum HBV RNA would likely be a promising predicator for safe drug discontinuation. The clinical status of consistent loss of serum HBV RNA accompanied with low serum HBsAg levels might be implicated as a "para-functional cure," a status nearly close to the functional cure of chronic hepatitis B, to distinguish the "functional cure" characterized as serum HBsAg loss with or without anti-HBs seroconversion.

  1. antaRNA: ant colony-based RNA sequence design.

    Science.gov (United States)

    Kleinkauf, Robert; Mann, Martin; Backofen, Rolf

    2015-10-01

    RNA sequence design is studied at least as long as the classical folding problem. Although for the latter the functional fold of an RNA molecule is to be found ,: inverse folding tries to identify RNA sequences that fold into a function-specific target structure. In combination with RNA-based biotechnology and synthetic biology ,: reliable RNA sequence design becomes a crucial step to generate novel biochemical components. In this article ,: the computational tool antaRNA is presented. It is capable of compiling RNA sequences for a given structure that comply in addition with an adjustable full range objective GC-content distribution ,: specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. http://www.bioinf.uni-freiburg.de/Software/antaRNA CONTACT: backofen@informatik.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  2. Impedimetric Dengue Biosensor based on Functionalized Graphene Oxide Wrapped Silica Particles

    International Nuclear Information System (INIS)

    Jin, Seon-Ah; Poudyal, Shishir; Marinero, Ernesto E.; Kuhn, Richard J.; Stanciu, Lia A.

    2016-01-01

    Highlights: • 3D graphene oxide based material design. • Fabrication of a label-free dengue DNA and RNA impedimetric biosensor. • Design of a surface-based dengue sensor with good selectivity and detection limit. - Abstract: A composite of 3-Aminopropyltriethoxysilane (APTES) functionalized graphene oxide (APTES-GO) wrapped on SiO 2 particles (SiO 2 @APTES-GO) was prepared via self-assembly. Transmission electron microscopy (TEM) and ATR-Fourier Transform Infrared spectroscopy (ATR-FTIR) confirmed wrapping of the SiO 2 particles by the APTES-GO sheets. An impedimetric biosensor was constructed and used to sensitively detect dengue DNA and dengue RNA via primer hybridization using different oligonucleotide sequences. The results demonstrated that the SiO 2 @APTES-GO electrode material led to enhanced dengue RNA detection sensitivity with selectivity and detection limit (1 femto-Molar), compared to both APTES-GO and APTES-SiO 2 . The three-dimensional structure, higher contact area, electrical properties and the ability for rapid hybridization offered by the SiO 2 @APTES-GO led to the successful design of a dengue biosensor with the lowest detection limit reported to date.

  3. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond.

    Science.gov (United States)

    Michelini, Flavia; Jalihal, Ameya P; Francia, Sofia; Meers, Chance; Neeb, Zachary T; Rossiello, Francesca; Gioia, Ubaldo; Aguado, Julio; Jones-Weinert, Corey; Luke, Brian; Biamonti, Giuseppe; Nowacki, Mariusz; Storici, Francesca; Carninci, Piero; Walter, Nils G; Fagagna, Fabrizio d'Adda di

    2018-03-30

    Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.

  4. 34A, miRNA-944, miRNA-101 and miRNA-218 in cervical cancer

    African Journals Online (AJOL)

    RNAs (21 - 24 nucleotides in length) that are critical for many important processes such as development, ... RNA extraction and reverse transcription. Total RNA was extracted from each of the experimental groups using ... used as an endogenous control to normalize the expression of miRNA-143, miRNA-34A, miRNA-.

  5. Formulation Strategies and Particle Engineering Technologies for Pulmonary Delivery of Biopharmaceuticals

    DEFF Research Database (Denmark)

    Cun, Dongmei; Wan, Feng; Yang, Mingshi

    2015-01-01

    . In this review we discussed the formulation strategies and particle engineering technologies to improve the efficiency of pulmonary delivery of biopharmaceutical, with a focus on systemic therapy of pharmaceutical proteins/peptides and local delivery of siRNA via the lung administration....

  6. Extracellular RNA Communication (ExRNA)

    Data.gov (United States)

    Federal Laboratory Consortium — Until recently, scientists believed RNA worked mostly inside the cell that produced it. Some types of RNA help translate genes into proteins that are necessary for...

  7. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  8. Effective Delivery of PEGylated siRNA-Containing Lipoplexes to Extraperitoneal Tumours following Intraperitoneal Administration

    Directory of Open Access Journals (Sweden)

    Akul Singhania

    2011-01-01

    Full Text Available Intraperitoneal (i.p. administration of small interfering RNA (siRNA has, to date, shown promise in treating tumours located within the peritoneal cavity. The ability of these siRNA molecules to reach extraperitoneal tumours following i.p. administration is, however, yet to be investigated. Here, we examined the impact of PEGylation on the biodistribution of i.p. administered nucleic acids-containing lipoplexes. We showed that in contrast to non-PEGylated liposomes, PEGylated liposomes can deliver siRNA efficiently to extraperitoneal tumours following i.p. administration, resulting in a 45% reduction in tumour size when the oncogene-targeted siRNA was used. This difference was likely contributed by the decreased uptake of PEGylated lipoplexes in the first-pass organs, and, in particular, we observed a 10-fold decrease in the macrophage uptake of these particles compared to non-PEGylated counterparts. Overall, our results indicated the potential of using PEGylated liposomes to deliver siRNA for the treatment of i.p. localized cancer with coexisting extraperitoneal metastasis.

  9. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice

    OpenAIRE

    Judge, Adam D.; Robbins, Marjorie; Tavakoli, Iran; Levi, Jasna; Hu, Lina; Fronda, Anna; Ambegia, Ellen; McClintock, Kevin; MacLachlan, Ian

    2009-01-01

    siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in b...

  10. Identifying microRNA/mRNA dysregulations in ovarian cancer.

    Science.gov (United States)

    Miles, Gregory D; Seiler, Michael; Rodriguez, Lorna; Rajagopal, Gunaretnam; Bhanot, Gyan

    2012-03-27

    MicroRNAs are a class of noncoding RNA molecules that co-regulate the expression of multiple genes via mRNA transcript degradation or translation inhibition. Since they often target entire pathways, they may be better drug targets than genes or proteins. MicroRNAs are known to be dysregulated in many tumours and associated with aggressive or poor prognosis phenotypes. Since they regulate mRNA in a tissue specific manner, their functional mRNA targets are poorly understood. In previous work, we developed a method to identify direct mRNA targets of microRNA using patient matched microRNA/mRNA expression data using an anti-correlation signature. This method, applied to clear cell Renal Cell Carcinoma (ccRCC), revealed many new regulatory pathways compromised in ccRCC. In the present paper, we apply this method to identify dysregulated microRNA/mRNA mechanisms in ovarian cancer using data from The Cancer Genome Atlas (TCGA). TCGA Microarray data was normalized and samples whose class labels (tumour or normal) were ambiguous with respect to consensus ensemble K-Means clustering were removed. Significantly anti-correlated and correlated genes/microRNA differentially expressed between tumour and normal samples were identified. TargetScan was used to identify gene targets of microRNA. We identified novel microRNA/mRNA mechanisms in ovarian cancer. For example, the expression level of RAD51AP1 was found to be strongly anti-correlated with the expression of hsa-miR-140-3p, which was significantly down-regulated in the tumour samples. The anti-correlation signature was present separately in the tumour and normal samples, suggesting a direct causal dysregulation of RAD51AP1 by hsa-miR-140-3p in the ovary. Other pairs of potentially biological relevance include: hsa-miR-145/E2F3, hsa-miR-139-5p/TOP2A, and hsa-miR-133a/GCLC. We also identified sets of positively correlated microRNA/mRNA pairs that are most likely result from indirect regulatory mechanisms. Our findings identify

  11. Plasma processing conditions substantially influence circulating microRNA biomarker levels.

    Science.gov (United States)

    Cheng, Heather H; Yi, Hye Son; Kim, Yeonju; Kroh, Evan M; Chien, Jason W; Eaton, Keith D; Goodman, Marc T; Tait, Jonathan F; Tewari, Muneesh; Pritchard, Colin C

    2013-01-01

    Circulating, cell-free microRNAs (miRNAs) are promising candidate biomarkers, but optimal conditions for processing blood specimens for miRNA measurement remain to be established. Our previous work showed that the majority of plasma miRNAs are likely blood cell-derived. In the course of profiling lung cancer cases versus healthy controls, we observed a broad increase in circulating miRNA levels in cases compared to controls and that higher miRNA expression correlated with higher platelet and particle counts. We therefore hypothesized that the quantity of residual platelets and microparticles remaining after plasma processing might impact miRNA measurements. To systematically investigate this, we subjected matched plasma from healthy individuals to stepwise processing with differential centrifugation and 0.22 µm filtration and performed miRNA profiling. We found a major effect on circulating miRNAs, with the majority (72%) of detectable miRNAs substantially affected by processing alone. Specifically, 10% of miRNAs showed 4-30x variation, 46% showed 30-1,000x variation, and 15% showed >1,000x variation in expression solely from processing. This was predominantly due to platelet contamination, which persisted despite using standard laboratory protocols. Importantly, we show that platelet contamination in archived samples could largely be eliminated by additional centrifugation, even in frozen samples stored for six years. To minimize confounding effects in microRNA biomarker studies, additional steps to limit platelet contamination for circulating miRNA biomarker studies are necessary. We provide specific practical recommendations to help minimize confounding variation attributable to plasma processing and platelet contamination.

  12. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Jensen, Trine I; Clausen, Bettina Hjelm

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called comp......MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more...... sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA....

  13. RNA Origami

    DEFF Research Database (Denmark)

    Sparvath, Steffen Lynge

    introducerede vores gruppe den enkeltstrengede RNA-origami metode, der giver mulighed for cotranscriptional foldning af veldefinerede nanostrukturer, og er en central del af arbejdet præsenteret heri. Denne ph.d.-afhandling udforsker potentielle anvendelser af RNA-origami nanostrukturer, som nanomedicin eller...... biosensorer. Afhandlingen består af en introduktion til RNA-nanoteknologi feltet, en introduktion af enkeltstrenget RNA-origami design, og fire studier, der beskriver design, produktion og karakterisering af både strukturelle og funktionelle RNA-origamier. Flere RNA-origami designs er blevet undersøgt, og...... projekterne, der indgår i denne afhandling, inkluderer de nyeste fremskridt indenfor strukturel RNA-nanoteknologi og udvikling af funktionelle RNA-baserede enheder. Det første studie beskriver konstruktion og karakterisering af en enkeltstrenget 6-helix RNA-origami stuktur, som er den første demonstration af...

  14. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA

    Directory of Open Access Journals (Sweden)

    Eric R. Gamache

    2017-04-01

    Full Text Available The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5′ terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT. To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1, a 1-nucleotide interhelical loop and an 8-bp stem (S2 that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.

  15. Branched RNA: A New Architecture for RNA Interference

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2011-01-01

    Full Text Available Branched RNAs with two and four strands were synthesized. These structures were used to obtain branched siRNA. The branched siRNA duplexes had similar inhibitory capacity as those of unmodified siRNA duplexes, as deduced from gene silencing experiments of the TNF-α protein. Branched RNAs are considered novel structures for siRNA technology, and they provide an innovative tool for specific gene inhibition. As the method described here is compatible with most RNA modifications described to date, these compounds may be further functionalized to obtain more potent siRNA derivatives and can be attached to suitable delivery systems.

  16. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    Science.gov (United States)

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  17. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    Directory of Open Access Journals (Sweden)

    Rodolfo Villarreal-Calderon

    2013-11-01

    Full Text Available Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4 vs. high (n:26 air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005. Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  18. Plant RNA Regulatory Network and RNA Granules in Virus Infection

    Directory of Open Access Journals (Sweden)

    Kristiina Mäkinen

    2017-12-01

    Full Text Available Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and

  19. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    Science.gov (United States)

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual

  20. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  1. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    International Nuclear Information System (INIS)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.; Eghbalnia, Hamid R.

    2012-01-01

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ( 1 H– 15 N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy ( 1 H– 1 H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a

  2. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  3. MysiRNA-designer: a workflow for efficient siRNA design.

    Directory of Open Access Journals (Sweden)

    Mohamed Mysara

    Full Text Available The design of small interfering RNA (siRNA is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area.

  4. RNA binding and replication by the poliovirus RNA polymerase

    International Nuclear Information System (INIS)

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to 32 P-labeled ribohomopolymeric RNAs was examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K a for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 x 10 9 M -1 . The polymerase binds to a subgenomic RNAs which contain the 3' end of the genome with a K a similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3' noncoding region

  5. RNA.

    Science.gov (United States)

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  6. [Construction of RNA-containing virus-like nanoparticles expression vector with cysteine residues on surface and fluorescent decoration].

    Science.gov (United States)

    Cheng, Yang-Jian; Liang, Ji-Xuan; Li, Qing-Ge

    2005-08-01

    Site-directed mutagenesis was performed at the codon 15 of the MS2 bacteriophage coat protein gene,which had been cloned to the virus-like particles expression vector containing non-self RNA fragment. The produced expression vector,termed pARSC, was transformed to E. coli DH5alpha. The positive clones were selected and proliferated. The harvested cells were treated with sonication and the supernatant was then subjected to linear sucrose density gradients centrifugation (15% to 60%) at 32000 r/min for 4 h at 4 degrees C. The virus-like particles, VLP-Cy, were collected at 35% sucrose density. The particles were examined by transmission electron microscopy and the spherical viral particles of approximately 27 nm in diameter were found. The thiolated VLP-Cy was then chemically modified with fluorescein -5'-maleimide. The covalent fluorescent labeling was confirmed by absorption analysis, SDS-PAGE and MALDI-TOF mass spectroscopy. This is the first report of preparation of RNA-containing natural fluorescent nanoparticles. The study highlight the versatility of MS2 bacteriophage capsids as building blocks for functional nanomaterials construction for a variety of application purposes.

  7. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    OpenAIRE

    Zhang, Yunpeng; Liu, Wei; Xu, Yanjun; Li, Chunquan; Wang, Yingying; Yang, Haixiu; Zhang, Chunlong; Su, Fei; Li, Yixue; Li, Xia

    2015-01-01

    Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it i...

  8. Totally asymmetric exclusion processes with particles of arbitrary size

    CERN Document Server

    Lakatos, G

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...

  9. A voltage-gated pore for translocation of tRNA

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com

    2013-09-13

    Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.

  10. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    Science.gov (United States)

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  11. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    OpenAIRE

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. Th...

  12. On-Particle Rolling Circle Amplification-Based Core-Satellite Magnetic Superstructures for MicroRNA Detection

    DEFF Research Database (Denmark)

    Tian, Bo; Qiu, Zhen; Ma, Jing

    2018-01-01

    -specific nuclease in the presence of target microRNA, resulting in a release of MNPs that can be quantified in an optomagnetic sensor. The proposed biosensor has a simple mix-separate-measure strategy. For let-7b detection, the proposed biosensor offers a wide linear detection range of approximately 5 orders...

  13. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  14. MicroRNA from tuberculosis RNA: A bioinformatics study

    OpenAIRE

    Wiwanitkit, Somsri; Wiwanitkit, Viroj

    2012-01-01

    The role of microRNA in the pathogenesis of pulmonary tuberculosis is the interesting topic in chest medicine at present. Recently, it was proposed that the microRNA can be a useful biomarker for monitoring of pulmonary tuberculosis and might be the important part in pathogenesis of disease. Here, the authors perform a bioinformatics study to assess the microRNA within known tuberculosis RNA. The microRNA part can be detected and this can be important key information in further study of the p...

  15. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  16. Studying RNA-protein interactions in vivo by RNA immunoprecipitation

    DEFF Research Database (Denmark)

    Selth, Luke A; Close, Pierre; Svejstrup, Jesper Q

    2011-01-01

    and have significant effects on gene expression. RNA immunoprecipitation (RIP) is a powerful technique used to detect direct and indirect interactions between individual proteins and specific RNA molecules in vivo. Here, we describe RIP methods for both yeast and mammalian cells.......The crucial roles played by RNA-binding proteins in all aspects of RNA metabolism, particularly in the regulation of transcription, have become increasingly evident. Moreover, other factors that do not directly interact with RNA molecules can nevertheless function proximally to RNA polymerases...

  17. RNA SURVEILLANCE– AN EMERGING ROLE FOR RNA REGULATORY NETWORKS IN AGING

    OpenAIRE

    Montano, Monty; Long, Kimberly

    2010-01-01

    In this review, we describe recent advances in the field of RNA regulatory biology and relate these advances to aging science. We introduce a new term, RNA surveillance, an RNA regulatory process that is conserved in metazoans, and describe how RNA surveillance represents molecular cross-talk between two emerging RNA regulatory systems – RNA interference and RNA editing. We discuss how RNA surveillance mechanisms influence mRNA and microRNA expression and activity during lifespan. Additionall...

  18. Nuclear Trafficking of Retroviral RNAs and Gag Proteins during Late Steps of Replication

    Directory of Open Access Journals (Sweden)

    Matthew S. Stake

    2013-11-01

    Full Text Available Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell’s quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.

  19. Modeling the structure of RNA molecules with small-angle X-ray scattering data.

    Directory of Open Access Journals (Sweden)

    Michal Jan Gajda

    Full Text Available We propose a novel fragment assembly method for low-resolution modeling of RNA and show how it may be used along with small-angle X-ray solution scattering (SAXS data to model low-resolution structures of particles having as many as 12 independent secondary structure elements. We assessed this model-building procedure by using both artificial data on a previously proposed benchmark and publicly available data. With the artificial data, SAXS-guided models show better similarity to native structures than ROSETTA decoys. The publicly available data showed that SAXS-guided models can be used to reinterpret RNA structures previously deposited in the Protein Data Bank. Our approach allows for fast and efficient building of de novo models of RNA using approximate secondary structures that can be readily obtained from existing bioinformatic approaches. We also offer a rigorous assessment of the resolving power of SAXS in the case of small RNA structures, along with a small multimetric benchmark of the proposed method.

  20. Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles

    International Nuclear Information System (INIS)

    Bavand, M.R.; Laub, O.

    1988-01-01

    Recent studies suggest that hepatitis B virus (HBV), despite being a DNA virus, replicates via an RNA intermediate. The HBV life cycle is therefore a permuted version of the RNA retroviral life cycle. Sequence homology between retroviral reverse transcriptase and the putative HBV polymerase gene product suggests the presence of an HBV reverse transcriptase. As yet, there has been no direct evidence that reverse transcriptase activity is present in the viral particle. The authors used activity gel analysis to detect the in situ catalytic activities of DNA polymerases after sodium dodecyl sulfate-polyacrylamide gel electrophorsis. These studies demonstrated that HBV-like particles secreted by a differentiated human hepatoma cell line tranfected with genomic HBV DNA contain two major polymerase activities which migrate as ∼90- and ∼70-kilodalton (kDa) proteins. This demonstrated, for the first time, that HBV-like particles contain a novel DNA polymerase-reverse transcriptase activity. Furthermore, they propose that the 70-kDa reverse transcriptase may be produced by proteolytic self-cleavage of the 90-kDa precursor protein

  1. Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    NARCIS (Netherlands)

    Kluiver, Joost; Gibcus, Johan H.; Hettinga, Chris; Adema, Annelies; Richter, Mareike K. S.; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and

  2. Natural History of Serum HBV-RNA in Chronic HBV Infection.

    Science.gov (United States)

    Wang, Jing; Yu, Yiqi; Li, Guojun; Shen, Chuan; Li, Jing; Chen, Shaolong; Zhang, Xiao; Zhu, Mengqi; Zheng, Jiangjiang; Song, Zhangzhang; Wu, Jing; Shao, Lingyun; Zhefeng, Meng; Wang, Xuanyi; Huang, Yuxian; Zhang, Jiming; Qiu, Chao; Zhang, Wenhong

    2018-04-10

    Virus-like particles encapsulating HBV-RNA represent a serum biomarker for assessing viral replication activity in clinical practice. However, baseline levels of serum HBV-RNA and their associations with viral replicative intermediates and liver disease in phases of chronic hepatitis B remain unknown. In this cross-sectional study, 102 patients were categorized into immune tolerant (IT), HBeAg-positive immune active (HBeAg+IA), inactive carrier (IC), and HBeAg-negative immune active (HBeAg-IA) phases. HBV-RNA in serum samples and in 66 paired liver biopsies were quantified and correlated with serum ALT levels, histopathological scores, and the levels of other viral replicative intermediates. Mean levels of serum HBV-RNA differed among phases, with the highest levels among IT (6.78±0.83 log 10 copies mL -1 ) patients, followed by HBeAg+IA (5.73±1.16 log 10 copies mL -1 ), HBeAg-IA (4.52±1.25 log 10 copies mL -1 ), and IC (2.96±0.40 log 10 copies mL -1 ) patients. Serum HBV-RNA levels correlated with HBV DNA in all phases, though correlations with other viral replicative intermediates weakened or disappeared when cases were stratified into phases. Distinct compositions of viral products were found among phases: the ratio of HBsAg to serum HBV-RNA was highest in IC patients, while the ratio of serum HBV-RNA to intrahepatic HBV-RNA and the ratio of intrahepatic HBV-DNA to intrahepatic HBV-RNA were significantly higher in IT patients. In conclusion, baseline levels of HBV-RNA and the composition of viral replicative intermediates differ significantly across the natural course of chronic HBV infection. These findings shed light on the nature of viral replication and pathogenesis of disease among different phases of chronic HBV infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. RNA and Proteins: Mutual Respect [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Kathleen B. Hall

    2017-03-01

    Full Text Available Proteins and RNA are often found in ribonucleoprotein particles (RNPs, where they function in cellular processes to synthesize proteins (the ribosome, chemically modify RNAs (small nucleolar RNPs, splice pre-mRNAs (the spliceosome, and, on a larger scale, sequester RNAs, degrade them, or process them (P bodies, Cajal bodies, and nucleoli. Each RNA–protein interaction is a story in itself, as both molecules can change conformation, compete for binding sites, and regulate cellular functions. Recent studies of Xist long non-coding RNP, the U4/5/6 tri-small nuclear RNP complex, and an activated state of a spliceosome reveal new features of RNA interactions with proteins, and, although their stories are incomplete, they are already fascinating.

  4. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.

    Science.gov (United States)

    Toczyski, D P; Steitz, J A

    1993-01-01

    EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232

  5. Noninfectious virus-like particles produced by Moloney murine leukemia virus-based retrovirus packaging cells deficient in viral envelope become infectious in the presence of lipofection reagents

    Science.gov (United States)

    Sharma, Sanjai; Murai, Fukashi; Miyanohara, Atsushi; Friedmann, Theodore

    1997-01-01

    Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 105 colony-forming units per ml. PMID:9380714

  6. Noninfectious virus-like particles produced by Moloney murine leukemia virus-based retrovirus packaging cells deficient in viral envelope become infectious in the presence of lipofection reagents.

    Science.gov (United States)

    Sharma, S; Murai, F; Miyanohara, A; Friedmann, T

    1997-09-30

    Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 10(5) colony-forming units per ml.

  7. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  8. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  9. Nano-siRNA Particles and Combination Therapies for Ovarian Tumor Targeting

    Science.gov (United States)

    2014-08-01

    accumulate in tumors, and can silence gene expression in cancer cells. The sponge-like microporous particles we refer to as RNAi microsponges (RNAi MS...Transmission electron microscopy (JEOL 2010 and 2000FX) was utilized to observe the internal structure of the ODN-MSs and LbL-ODN-NPs. Images were...C.; Chan, V.; Pal, A.; Mayes, A.; Rubner, M. Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 2000, 16, 5017-5023

  10. Effective Anti-miRNA Oligonucleotides Show High Releasing Rate of MicroRNA from RNA-Induced Silencing Complex.

    Science.gov (United States)

    Ariyoshi, Jumpei; Matsuyama, Yohei; Kobori, Akio; Murakami, Akira; Sugiyama, Hiroshi; Yamayoshi, Asako

    2017-10-01

    MicroRNAs (miRNAs) regulate gene expression by forming RNA-induced silencing complexes (RISCs) and have been considered as promising therapeutic targets. MiRNA is an essential component of RISC for the modulation of gene expression. Therefore, the release of miRNA from RISC is considered as an effective method for the inhibition of miRNA functions. In our previous study, we reported that anti-miRNA oligonucleotides (AMOs), which are composed of the 2'-O-methyl (2'-OMe) RNA, could induce the release of miRNA from RISC. However, the mechanisms underlying the miRNA-releasing effects of chemically modified AMOs, which are conventionally used as anti-cancer drugs, are still unclear. In this study, we investigated the relationship between the miRNA releasing rate from RISC and the inhibitory effect on RISC activity (IC 50 ) using conventional chemically modified AMOs. We demonstrated that the miRNA-releasing effects of AMOs are directly proportional to the IC 50 values, and AMOs, which have an ability to promote the release of miRNA from RISC, can effectively inhibit RISC activity in living cells.

  11. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells.

    Science.gov (United States)

    Rea, Ilaria; Martucci, Nicola M; De Stefano, Luca; Ruggiero, Immacolata; Terracciano, Monica; Dardano, Principia; Migliaccio, Nunzia; Arcari, Paolo; Taté, Rosarita; Rendina, Ivo; Lamberti, Annalisa

    2014-12-01

    Diatomite is a natural porous biomaterial of sedimentary origin, formed by fragments of diatom siliceous skeletons, called "frustules". Due to large availability in many areas of the world, chemical stability, and non-toxicity, these fossil structures have been widespread used in lot of industrial applications, such as food production, water extracting agent, production of cosmetics and pharmaceutics. However, diatomite is surprisingly still rarely used in biomedical applications. In this work, we exploit diatomite nanoparticles for small interfering ribonucleic acid (siRNA) transport inside human epidermoid cancer cells (H1355). Morphology and composition of diatomite microfrustules (average size lower than 40μm) are investigated by scanning electron microscopy equipped by energy dispersive X-ray spectroscopy, Fourier transform infrared analysis, and photoluminescence measurements. Nanometric porous particles (average size lower than 450nm) are obtained by mechanical crushing, sonication, and filtering of micrometric frustules. siRNA bioconjugation is performed on both micrometric and nanometric fragments by silanization. In-vitro experiments show very low toxicity on exposure of the cells to diatomite nanoparticle concentration up to 300μg/ml for 72h. Confocal microscopy imaging performed on cancer cells incubated with siRNA conjugated nanoparticles demonstrates a cytoplasmatic localization of vectors. Gene silencing by delivered siRNA is also demonstrated. Our studies endorse diatomite nanoparticles as non-toxic nanocarriers for siRNA transport in cancer cells. siRNA is a powerful molecular tool for cancer treatment but its delivery is inefficient due to the difficulty to penetrate the cell membrane. siRNA-diatomite nanoconjugate may be well suited for delivery of therapeutic to cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated micro......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  13. Role of the CCA bulge of prohead RNA of bacteriophage ø29 in DNA packaging.

    Science.gov (United States)

    Zhao, Wei; Morais, Marc C; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley

    2008-11-14

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.

  14. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions.

    Science.gov (United States)

    Mann, Martin; Wright, Patrick R; Backofen, Rolf

    2017-07-03

    The IntaRNA algorithm enables fast and accurate prediction of RNA-RNA hybrids by incorporating seed constraints and interaction site accessibility. Here, we introduce IntaRNAv2, which enables enhanced parameterization as well as fully customizable control over the prediction modes and output formats. Based on up to date benchmark data, the enhanced predictive quality is shown and further improvements due to more restrictive seed constraints are highlighted. The extended web interface provides visualizations of the new minimal energy profiles for RNA-RNA interactions. These allow a detailed investigation of interaction alternatives and can reveal potential interaction site multiplicity. IntaRNAv2 is freely available (source and binary), and distributed via the conda package manager. Furthermore, it has been included into the Galaxy workflow framework and its already established web interface enables ad hoc usage. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants

    DEFF Research Database (Denmark)

    Rougemaille, Mathieu; Gudipati, Rajani Kanth; Olesen, Jens Raabjerg

    2007-01-01

    by appending oligo(A)-tails onto structured substrates. Another role of the nuclear exosome is that of mRNA surveillance. In strains harboring a mutated THO/Sub2p system, involved in messenger ribonucleoprotein particle biogenesis and nuclear export, the exosome-associated 3' 5' exonuclease Rrp6p is required...

  16. Genetic relatedness of orbiviruses by RNA-RNA blot hybridization

    International Nuclear Information System (INIS)

    Bodkin, D.K.

    1985-01-01

    RNA-RNA blot hybridization was developed in order to identify type-specific genes among double-stranded (ds) RNA viruses, to assess the genetic relatedness of dsRNA viruses and to classify new strains. Viral dsRNA segments were electrophoresed through 10% polyacrylamide gels, transferred to membranes, and hybridized to [5' 32 P]-pCp labeled genomic RNA from a related strain. Hybridization was performed at 52 0 C, 50% formamide, 5X SSC. Under these conditions heterologous RNA species must share ≥ 74% sequence homology in order to form stable dsRNA hybrids. Cognate genes of nine members of the Palyam serogroup of orbiviruses were identified and their sequence relatedness to the prototype. Palyam virus, was determined. Reciprocal blot hybridizations were performed using radiolabeled genomic RNA of all members of the Palyam serogroup. Unique and variant genes were identified by lack of cross-homology or by weak homology between segments. Since genes 2 and 6 exhibited the highest degree of sequence variability, response to the vertebrate immune system may be a major cause of sequence divergence among members of a single serogroup. Changuinola serogroup isolates were compared by dot-blot hybridization, while Colorado tick fever (CTF) serogroup isolates were compared by the RNA-RNA blot hybridization procedure described for reovirus and Palyam serogroup isolates. Preliminary blot hybridization data were also obtained on the relatedness of members of different Orbivirus serogroups

  17. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice.

    Science.gov (United States)

    Judge, Adam D; Robbins, Marjorie; Tavakoli, Iran; Levi, Jasna; Hu, Lina; Fronda, Anna; Ambegia, Ellen; McClintock, Kevin; MacLachlan, Ian

    2009-03-01

    siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in both hepatic and subcutaneous tumor models. This was correlated with target gene silencing following a single intravenous administration that was sufficient to cause extensive mitotic disruption and tumor cell apoptosis. Our siRNA formulations induced no measurable immune response, minimizing the potential for nonspecific effects. Additionally, RNAi-specific mRNA cleavage products were found in tumor cells, and their presence correlated with the duration of target mRNA silencing. Histological biomarkers confirmed that RNAi-mediated gene silencing effectively inhibited the target's biological activity. This report supports an RNAi-mediated mechanism of action for siRNA antitumor effects, suggesting a new methodology for targeting other key genes in cancer development with siRNA-based therapeutics.

  18. A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes.

    Directory of Open Access Journals (Sweden)

    Baodong Wu

    2009-03-01

    Full Text Available Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA-RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA-RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA-based interaction spanning approximately 3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes.

  19. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    International Nuclear Information System (INIS)

    Zhdanov, Vladimir P

    2008-01-01

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation

  20. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    Science.gov (United States)

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  1. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    Science.gov (United States)

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations.

    Science.gov (United States)

    Bielski, Elizabeth; Zhong, Qian; Mirza, Hamad; Brown, Matthew; Molla, Ashura; Carvajal, Teresa; da Rocha, Sandro R P

    2017-07-15

    The regulation of genes utilizing the RNA interference (RNAi) mechanism via the delivery of synthetic siRNA has great potential in the treatment of a variety of lung diseases. However, the delivery of siRNA to the lungs is challenging due to the poor bioavailability of siRNA when delivered intraveneously, and difficulty in formulating and maintaining the activity of free siRNA when delivered directly to the lungs using inhalation devices. The use of non-viral vectors such as cationic dendrimers can help enhance the stability of siRNA and its delivery to the cell cytosol. Therefore, in this work, we investigate the ability of a triphenylphosphonium (TPP) modified generation 4 poly(amidoamine) (PAMAM) dendrimer (G4NH 2 -TPP) to enhance the in vitro transfection efficiency of siRNA in a model of the pulmonary epithelium and their aerosol formulations in pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs). Complexes of siRNA and G4NH 2 -TPP were prepared with varying TPP densities and increasing N/P ratios. The complexation efficiency was modulated by the presence of the TPP on the dendrimer surface, allowing for a looser complexation compared to unmodified dendrimer as determined by gel electrophoresis and polyanion competition assay. An increase in TPP density and N/P ratio led to an increase in the in vitro gene knockdown of stably green fluorescent protein (eGFP) expressing lung alveolar epithelial (A549) cells. G4NH 2 -12TPP dendriplexes (G4NH 2 PAMAM dendrimers containing 12 TPP molecules on the surface complexed with siRNA) at N/P ratio 30 showed the highest in vitro gene knockdown efficiency. To assess the potential of TPP-dendriplexes for pulmonary use, we also developed micron particle technologies for both pMDIs and DPIs and determined their aerosol characteristics utilizing an Andersen Cascade Impactor (ACI). Mannitol microparticles encapsulating 12TPP-dendriplexes were shown to be effective in producing aerosols suitable for deep lung

  3. How the RNA isolation method can affect microRNA microarray results

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Litman, Thomas

    2011-01-01

    RNA microarray analysis on porcine brain tissue. One method is a phenol-guanidine isothiocyanate-based procedure that permits isolation of total RNA. The second method, miRVana™ microRNA isolation, is column based and recovers the small RNA fraction alone. We found that microarray analyses give different results...... that depend on the RNA fraction used, in particular because some microRNAs appear very sensitive to the RNA isolation method. We conclude that precautions need to be taken when comparing microarray studies based on RNA isolated with different methods.......The quality of RNA is crucial in gene expression experiments. RNA degradation interferes in the measurement of gene expression, and in this context, microRNA quantification can lead to an incorrect estimation. In the present study, two different RNA isolation methods were used to perform micro...

  4. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex

    Directory of Open Access Journals (Sweden)

    Steven J. Schnell

    2014-11-01

    Full Text Available The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE. Plenty of nuclear pore complexes (NPCs embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.

  5. The integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism.

    Science.gov (United States)

    Wang, Na; Wang, Ruoqing; Wang, Renkai; Tian, Yongsheng; Shao, Changwei; Jia, Xiaodong; Chen, Songlin

    2017-01-01

    Albinism, a phenomenon characterized by pigmentation deficiency on the ocular side of Japanese flounder (Paralichthys olivaceus), has caused significant damage. Limited mRNA and microRNA (miRNA) information is available on fish pigmentation deficiency. In this study, a high-throughput sequencing strategy was employed to identify the mRNA and miRNAs involved in P. olivaceus albinism. Based on P. olivaceus genome, RNA-seq identified 21,787 know genes and 711 new genes by transcripts assembly. Of those, 235 genes exhibited significantly different expression pattern (fold change ≥2 or ≤0.5 and q-value≤0.05), including 194 down-regulated genes and 41 up-regulated genes in albino versus normally pigmented individuals. These genes were enriched to 81 GO terms and 9 KEGG pathways (p≤0.05). Among those, the pigmentation related pathways-Melanogenesis and tyrosine metabolism were contained. High-throughput miRNA sequencing identified a total of 475 miRNAs, including 64 novel miRNAs. Furthermore, 33 differentially expressed miRNAs containing 13 up-regulated and 20 down-regulated miRNAs were identified in albino versus normally pigmented individuals (fold change ≥1.5 or ≤0.67 and p≤0.05). The next target prediction discovered a variety of putative target genes, of which, 134 genes including Tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1), Microphthalmia-associated transcription factor (MITF) were overlapped with differentially expressed genes derived from RNA-seq. These target genes were significantly enriched to 254 GO terms and 103 KEGG pathways (p<0.001). Of those, tyrosine metabolism, lysosomes, phototransduction pathways, etc., attracted considerable attention due to their involvement in regulating skin pigmentation. Expression patterns of differentially expressed mRNA and miRNAs were validated in 10 mRNA and 10 miRNAs by qRT-PCR. With high-throughput mRNA and miRNA sequencing and analysis, a series of interested mRNA and miRNAs involved in fish

  6. Switching off small RNA regulation with trap-mRNA

    DEFF Research Database (Denmark)

    Overgaard, Martin; Johansen, Jesper; Møller-Jensen, Jakob

    2009-01-01

    to operate at the level of transcription initiation. By employing a highly sensitive genetic screen we uncovered a novel RNA-based regulatory principle in which induction of a trap-mRNA leads to selective degradation of a small regulatory RNA molecule, thereby abolishing the sRNA-based silencing of its...

  7. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  8. Cytoplasmic Z-RNA

    International Nuclear Information System (INIS)

    Zarling, D.A.; Calhoun, C.J.; Hardin, C.C.; Zarling, A.H.

    1987-01-01

    Specific immunochemical probes for Z-RNA were generated and characterized to search for possible Z-RNA-like double helices in cells. Z-RNA was detected in the cytoplasm of fixed protozoan cells by immunofluorescence microscopy using these anti-Z-RNA IgCs. In contrast, autoimmune or experimentally elicited anti-DNA antibodies, specifically reactive with B-DNA or Z-DNA, stained the nuclei. Pre-or nonimmune IgGs did not bind to the cells. RNase A or T1 digestion eliminated anti-Z-RNA IgG binding to cytoplasmic determinants; however, DNase I or mung bean nuclease had no effect. Doxorubicin and ethidium bromide prevented anti-Z-RNA antibody binding; however, actinomycin D, which does not bind double-stranded RNA, did not. Anti-Z-RNA immunofluorescence was specifically blocked in competition assays by synthetic Z-RNA but not Z-DNA, A-RNA, or single-stranded RNAs. Thus, some cytoplasmic sequences in fixed cells exist in the left-handed Z-RNA conformation

  9. RNA Interference - Towards RNA becoming a Medicine -42 ...

    Indian Academy of Sciences (India)

    research. A brief history of the development ofRNAi is shown in. Box 2. Mechanism of ... new RNA strand using target RNA as the template and thereby converting it ... thought to excise precursor stRNA from their -70 nt stem loop precursor to ...

  10. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k.

    Science.gov (United States)

    Condezo, Gabriela N; Marabini, Roberto; Ayora, Silvia; Carazo, José M; Alba, Raúl; Chillón, Miguel; San Martín, Carmen

    2015-09-01

    Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in the capsid and the

  11. Role of RNase MRP in viral RNA degradation and RNA recombination.

    Science.gov (United States)

    Jaag, Hannah M; Lu, Qiasheng; Schmitt, Mark E; Nagy, Peter D

    2011-01-01

    RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.

  12. Chitosan/Hyaluronic Acid Nanoparticles: Rational Design Revisited for RNA Delivery.

    Science.gov (United States)

    Lallana, Enrique; Rios de la Rosa, Julio M; Tirella, Annalisa; Pelliccia, Maria; Gennari, Arianna; Stratford, Ian J; Puri, Sanyogitta; Ashford, Marianne; Tirelli, Nicola

    2017-07-03

    Chitosan/hyaluronic acid (HA) nanoparticles can be used to deliver an RNA/DNA cargo to cells overexpressing HA receptors such as CD44. For these systems, unequivocal links have not been established yet between chitosan macromolecular (molecular weight; degree of deacetylation, i.e., charge density) and nanoparticle variables (complexation strength, i.e., stability; nucleic acid protection; internalization rate) on one hand, and transfection efficiency on the other hand. Here, we have focused on the role of avidity on transfection efficiency in the CD44-expressing HCT-116 as a cellular model; we have employed two differently sized payloads (a large luciferase-encoding mRNA and a much smaller anti-Luc siRNA), and a small library of chitosans (variable molecular weight and degree of deactylation). The RNA avidity for chitosan showed-as expected-an inverse relationship: higher avidity-higher polyplex stability-lower transfection efficiency. The avidity of chitosan for RNA appears to lead to opposite effects: higher avidity-higher polyplex stability but also higher transfection efficiency. Surprisingly, the best transfecting particles were those with the lowest propensity for RNA release, although this might be a misleading relationship: for example, the same macromolecular parameters that increase avidity can also boost chitosan's endosomolytic activity, with a strong enhancement in transfection. The performance of these nonviral vectors appears therefore difficult to predict simply on the basis of carrier- or payload-related variables, and a more holistic consideration of the journey of the nanoparticle, from cell uptake to cytosolic bioavailability of payload, is needed. It is also noteworthy that the nanoparticles used in this study showed optimal performance under slightly acidic conditions (pH 6.4), which is promising for applications in a tumoral extracellular environment. It is also worth pointing out that under these conditions we have for the first time

  13. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Risom, Lotte

    2004-07-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  14. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  15. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis.

    Science.gov (United States)

    Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Fan, Bo; Kang, Lin; Gao, Zhonggao

    Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis.

  16. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests.

    Science.gov (United States)

    Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F

    2017-01-01

    Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  17. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    Directory of Open Access Journals (Sweden)

    François-Xavier Gillet

    2017-04-01

    Full Text Available Genetically modified (GM crops producing double-stranded RNAs (dsRNAs are being investigated largely as an RNA interference (RNAi-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis, we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain combined with dsRNA forms a ribonucleoprotein particle (RNP that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  18. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    Science.gov (United States)

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  19. Magnetic particles as powerful purification tool for high sensitive mass spectrometric screening procedures.

    Science.gov (United States)

    Peter, Jochen F; Otto, Angela M

    2010-02-01

    The effective isolation and purification of proteins from biological fluids is the most crucial step for a successful protein analysis when only minute amounts are available. While conventional purification methods such as dialysis, ultrafiltration or protein precipitation often lead to a marked loss of protein, SPE with small-sized particles is a powerful alternative. The implementation of particles with superparamagnetic cores facilitates the handling of those particles and allows the application of particles in the nanometer to low micrometer range. Due to the small diameters, magnetic particles are advantageous for increasing sensitivity when using subsequent MS analysis or gel electrophoresis. In the last years, different types of magnetic particles were developed for specific protein purification purposes followed by analysis or screening procedures using MS or SDS gel electrophoresis. In this review, the use of magnetic particles for different applications, such as, the extraction and analysis of DNA/RNA, peptides and proteins, is described.

  20. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Köster, Tino

    2017-04-13

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  1. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Kö ster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee

    2017-01-01

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  2. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

    Science.gov (United States)

    Kranz, Lena M.; Diken, Mustafa; Haas, Heinrich; Kreiter, Sebastian; Loquai, Carmen; Reuter, Kerstin C.; Meng, Martin; Fritz, Daniel; Vascotto, Fulvia; Hefesha, Hossam; Grunwitz, Christian; Vormehr, Mathias; Hüsemann, Yves; Selmi, Abderraouf; Kuhn, Andreas N.; Buck, Janina; Derhovanessian, Evelyna; Rae, Richard; Attig, Sebastian; Diekmann, Jan; Jabulowsky, Robert A.; Heesch, Sandra; Hassel, Jessica; Langguth, Peter; Grabbe, Stephan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-06-01

    Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.

  3. RNA-dependent RNA polymerases from cowpea mosaic virus-infected cowpea leaves

    NARCIS (Netherlands)

    Dorssers, L.

    1983-01-01

    The aim of the research described in this thesis was the purification and identification of the RNA-dependent RNA polymerase engaged in replicating viral RNA in cowpea mosaic virus (CPMV)- infected cowpea leaves.

    Previously, an RNA-dependent RNA polymerase produced upon infection of

  4. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  5. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles

    International Nuclear Information System (INIS)

    Kim, Hee-Young; Kim, Hye-Young; Jung, Jaesung; Park, Sun; Shin, Ho-Joon; Kim, Kyongmin

    2008-01-01

    Our recent observation that hepatitis B virus (HBV) DNA polymerase (P) might initiate minus-strand DNA synthesis without primer [Kim et al., (2004) Virology 322, 22-30], raised a possibility that HBV P protein may have the potential to function as an RNA polymerase. Thus, we mutated Phe 436, a bulky amino acid with aromatic side chain, at the putative dNTP-binding cleft in reverse transcriptase (RT) domain of P protein to smaller amino acids (Gly or Val), and examined RNA polymerase activity. HBV core particles containing RT dNTP-binding cleft mutant P protein were able to incorporate 32 P-ribonucleotides, but not HBV core particles containing wild type (wt), priming-deficient mutant, or RT-deficient mutant P proteins. Since all the experiments were conducted with core particles isolated from transfected cells, our results indicate that the HBV RT mutant core particles containing RT dNTP-binding cleft mutant P protein could incorporate both deoxyribonucleotides and ribonucleotides in replicating systems

  6. Extraction of total nucleic acid based on silica-coated magnetic particles for RT-qPCR detection of plant RNA virus/viroid.

    Science.gov (United States)

    Sun, Ning; Deng, Congliang; Zhao, Xiaoli; Zhou, Qi; Ge, Guanglu; Liu, Yi; Yan, Wenlong; Xia, Qiang

    2014-02-01

    In this study, a nucleic acid extraction method based on silica-coated magnetic particles (SMPs) and RT-qPCR assay was developed to detect Arabis mosaic virus (ArMV), Lily symptomless virus (LSV), Hop stunt viroid (HSVd) and grape yellow speckle viroid 1 (GYSVd-1). The amplification sequences of RT-qPCR were reversely transcribed in vitro as RNA standard templates. The standard curves covered six or seven orders of magnitude with a detection limit of 100 copies per each assay. Extraction efficiency of the SMPs method was evaluated by recovering spiked ssRNAs from plant samples and compared to two commercial kits (TRIzol and RNeasy Plant mini kit). Results showed that the recovery rate of SMPs method was comparable to the commercial kits when spiked ssRNAs were extracted from lily leaves, whereas it was two or three times higher than commercial kits when spiked ssRNAs were extracted from grapevine leaves. SMPs method was also used to extract viral nucleic acid from15 ArMV-positive lily leaf samples and 15 LSV-positive lily leaf samples. SMPs method did not show statistically significant difference from other methods on detecting ArMV, but LSV. The SMPs method has the same level of virus load as the TRIzol, and its mean virus load of was 0.5log10 lower than the RNeasy Plant mini kit. Nucleic acid was extracted from 19 grapevine-leaf samples with SMPs and the two commercial kits and subsequently screened for HSVd and GYSVd-1 by RT-qPCR. Regardless of HSVd or GYSVd-1, SMPs method outperforms other methods on both positive rate and the viroid load. In conclusion, SMPs method was able to efficiently extract the nucleic acid of RNA viruses or viroids, especially grapevine viroids, from lily-leaf or grapevine-leaf samples for RT-qPCR detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A Novel Association between Two Trypanosome-Specific Factors and the Conserved L5-5S rRNA Complex

    Science.gov (United States)

    Ciganda, Martin; Prohaska, Kimberly; Hellman, Kristina; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis. PMID:22859981

  8. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  9. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Directory of Open Access Journals (Sweden)

    Chuan Hong

    2014-12-01

    Full Text Available Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  10. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Science.gov (United States)

    Hong, Chuan; Oksanen, Hanna M; Liu, Xiangan; Jakana, Joanita; Bamford, Dennis H; Chiu, Wah

    2014-12-01

    Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  11. Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase.

    Science.gov (United States)

    Heck, Julie A; Meng, Xiao; Frick, David N

    2009-04-01

    Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B [Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005;19:111-22]. We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis.

  12. Fast prediction of RNA-RNA interaction using heuristic algorithm.

    Science.gov (United States)

    Montaseri, Soheila

    2015-01-01

    Interaction between two RNA molecules plays a crucial role in many medical and biological processes such as gene expression regulation. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing stable interactions with it. Some algorithms have been formed to predict the structure of the RNA-RNA interaction. High computational time is a common challenge in most of the presented algorithms. In this context, a heuristic method is introduced to accurately predict the interaction between two RNAs based on minimum free energy (MFE). This algorithm uses a few dot matrices for finding the secondary structure of each RNA and binding sites between two RNAs. Furthermore, a parallel version of this method is presented. We describe the algorithm's concurrency and parallelism for a multicore chip. The proposed algorithm has been performed on some datasets including CopA-CopT, R1inv-R2inv, Tar-Tar*, DIS-DIS, and IncRNA54-RepZ in Escherichia coli bacteria. The method has high validity and efficiency, and it is run in low computational time in comparison to other approaches.

  13. The RNA synthesis machinery of negative-stranded RNA viruses

    International Nuclear Information System (INIS)

    Ortín, Juan; Martín-Benito, Jaime

    2015-01-01

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes

  14. The RNA synthesis machinery of negative-stranded RNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ortín, Juan, E-mail: jortin@cnb.csic.es [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid (Spain); Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es [Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid (Spain)

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  15. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Yujing Li

    2016-10-01

    Full Text Available Polyethylenimine (PEI as a cationic polymer is commonly used as a carrier for gene delivery. PEI-800 is less toxic than PEI-25K but it is also less efficient. A novel nanocarrier was developed by combining PEI-800 with a pH-sensitive lipid to form polymer-lipid hybrid nanoparticles (P/LNPs. They were synthesized by microfluidic focusing (MF. Two microfluidic devices were used to synthesize P/LNPs loaded with VEGF siRNA. A series of P/LNPs with different particle sizes and distributions were obtained by altering the flow rate and geometry of microfluidic chips, and introducing sonication. Furthermore, the P/LNPs can be loaded with VEGF siRNA efficiently and were stable in serum for 12 h. Finally, P/LNPs produced by the microfluidic chip showed greater cellular uptake as well as down-regulation of VEGF protein level in both A549 and MCF-7 with reduced cellular toxicity. All in all, the P/LNPs produced by MF method were shown to be a safe and efficient carrier for VEGF siRNA, with potential application for siRNA therapeutics.

  16. Release of newly synthesized nucleoplasmic ribosomal subunits or their precursor particles from isolated nuclei of regenerating rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Usami, K; Ogata, K [Niigata Univ. (Japan). School of Medicine

    1930-06-16

    The authors present the time course of the labeling of RNA and protein moieties of these particles in vivo as well as the pattern of one-dimensional acrylamide gel electrophoresis of their protein moieties labeled with (/sup 35/S)methionine in vivo, which shows that released 60 S particles are newly synthesized ribosomal large subunits or their precursor particles in the nucleoplasm on their way from the nucleolus to the cytoplasm. It appears likely that released 40 S particles contain newly synthesized ribosomal small subunits or their precursors in the nucleoplasm.

  17. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes

    KAUST Repository

    Salazar, Guillem; Cornejo-Castillo, Francisco M.; Borrull, Encarna; Dí ez-Vives, Cristina; Lara, Elena; Vaqué , Dolors; Arrieta, J M; Duarte, Carlos M.; Gasol, Josep M.; Acinas, Silvia G.

    2015-01-01

    The free-living (FL) and particle-attached (PA) marine microbial communities have repeatedly been proved to differ in their diversity and composition in the photic ocean and also recently in the bathypelagic ocean at a global scale. However, although high taxonomic ranks exhibit preferences for a PA or FL mode of life, it remains poorly understood whether two clear lifestyles do exist and how these are distributed across the prokaryotic phylogeny. We studied the FL (<0.8 μm) and PA (0.8 – 20 μm) prokaryotes at 30 stations distributed worldwide within the bathypelagic oceanic realm (2,150 – 4,000 m depth) using high throughput sequencing of the small subunit ribosomal RNA gene (16S rRNA). A high proportion of the bathypelagic prokaryotes were mostly found either attached to particles or freely in the surrounding water but rarely in both types of environments. In particular, this trait was deeply conserved through their phylogeny suggesting that the deep-ocean particles and the surrounding water constitute two highly distinct niches and that transitions from one to the other have been rare at an evolutionary time-scale. As a consequence, PA and FL communities had clear alpha- and beta-diversity differences that exceeded the global-scale geographical variation. Our study organizes the bathypelagic prokaryotic diversity into a reasonable number of ecologically coherent taxa regarding their association to particles, a first step for understanding which are the microbes responsible for the processing of the dissolved and particulate pools of organic matter that have a very different biogeochemical role in the deep ocean.

  18. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes

    KAUST Repository

    Salazar, Guillem

    2015-10-13

    The free-living (FL) and particle-attached (PA) marine microbial communities have repeatedly been proved to differ in their diversity and composition in the photic ocean and also recently in the bathypelagic ocean at a global scale. However, although high taxonomic ranks exhibit preferences for a PA or FL mode of life, it remains poorly understood whether two clear lifestyles do exist and how these are distributed across the prokaryotic phylogeny. We studied the FL (<0.8 μm) and PA (0.8 – 20 μm) prokaryotes at 30 stations distributed worldwide within the bathypelagic oceanic realm (2,150 – 4,000 m depth) using high throughput sequencing of the small subunit ribosomal RNA gene (16S rRNA). A high proportion of the bathypelagic prokaryotes were mostly found either attached to particles or freely in the surrounding water but rarely in both types of environments. In particular, this trait was deeply conserved through their phylogeny suggesting that the deep-ocean particles and the surrounding water constitute two highly distinct niches and that transitions from one to the other have been rare at an evolutionary time-scale. As a consequence, PA and FL communities had clear alpha- and beta-diversity differences that exceeded the global-scale geographical variation. Our study organizes the bathypelagic prokaryotic diversity into a reasonable number of ecologically coherent taxa regarding their association to particles, a first step for understanding which are the microbes responsible for the processing of the dissolved and particulate pools of organic matter that have a very different biogeochemical role in the deep ocean.

  19. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    International Nuclear Information System (INIS)

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  20. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J

    2010-10-18

    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  1. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna J Moser

    2010-10-01

    Full Text Available GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA-mediated messenger RNA (mRNA silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC. To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1 miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2 astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3 miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4 the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  2. Cancer-Related Triplets of mRNA-lncRNA-miRNA Revealed by Integrative Network in Uterine Corpus Endometrial Carcinoma

    Directory of Open Access Journals (Sweden)

    Chenglin Liu

    2017-01-01

    Full Text Available The regulation of transcriptome expression level is a complex process involving multiple-level interactions among molecules such as protein coding RNA (mRNA, long noncoding RNA (lncRNA, and microRNA (miRNA, which are essential for the transcriptome stability and maintenance and regulation of body homeostasis. The availability of multilevel expression data enables a comprehensive view of the regulatory network. In this study, we analyzed the coding and noncoding gene expression profiles of 301 patients with uterine corpus endometrial carcinoma (UCEC. A new method was proposed to construct a genome-wide integrative network based on variance inflation factor (VIF regression method. The cross-regulation relations of mRNA, lncRNA, and miRNA were then selected based on clique-searching algorithm from the network, when any two molecules of the three were shown as interacting according to the integrative network. Such relation, which we call the mRNA-lncRNA-miRNA triplet, demonstrated the complexity in transcriptome regulation process. Finally, six UCEC-related triplets were selected in which the mRNA participates in endometrial carcinoma pathway, such as CDH1 and TP53. The multi-type RNAs are proved to be cross-regulated as to each of the six triplets according to literature. All the triplets demonstrated the association with the initiation and progression of UCEC. Our method provides a comprehensive strategy for the investigation of transcriptome regulation mechanism.

  3. Viral RNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis

    International Nuclear Information System (INIS)

    Kolakofsky, Daniel; Le Mercier, Philippe; Iseni, Frederic; Garcin, Dominique

    2004-01-01

    mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in that the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template

  4. On RNA-RNA interaction structures of fixed topological genus.

    Science.gov (United States)

    Fu, Benjamin M M; Han, Hillary S W; Reidys, Christian M

    2015-04-01

    Interacting RNA complexes are studied via bicellular maps using a filtration via their topological genus. Our main result is a new bijection for RNA-RNA interaction structures and a linear time uniform sampling algorithm for RNA complexes of fixed topological genus. The bijection allows to either reduce the topological genus of a bicellular map directly, or to lose connectivity by decomposing the complex into a pair of single stranded RNA structures. Our main result is proved bijectively. It provides an explicit algorithm of how to rewire the corresponding complexes and an unambiguous decomposition grammar. Using the concept of genus induction, we construct bicellular maps of fixed topological genus g uniformly in linear time. We present various statistics on these topological RNA complexes and compare our findings with biological complexes. Furthermore we show how to construct loop-energy based complexes using our decomposition grammar. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Novel targeted siRNA-loaded hybrid nanoparticles: preparation, characterization and in vitro evaluation.

    Science.gov (United States)

    Dim, Nneka; Perepelyuk, Maryna; Gomes, Olukayode; Thangavel, Chellappagounder; Liu, Yi; Den, Robert; Lakshmikuttyamma, Ashakumary; Shoyele, Sunday A

    2015-09-26

    siRNAs have a high potential for silencing critical molecular pathways that are pathogenic. Nevertheless, their clinical application has been limited by a lack of effective and safe nanotechnology-based delivery system that allows a controlled and safe transfection to cytosol of targeted cells without the associated adverse effects. Our group recently reported a very effective and safe hybrid nanoparticle delivery system composing human IgG and poloxamer-188 for siRNA delivery to cancer cells. However, these nanoparticles need to be optimized in terms of particle size, loading capacity and encapsulation efficiency. In the present study, we explored the effects of certain production parameters on particle size, loading capacity and encapsulation efficiency. Further, to make these nanoparticles more specific in their delivery of siRNA, we conjugated anti-NTSR1-mAb to the surface of these nanoparticles to target NTSR1-overexpressing cancer cells. The mechanism of siRNA release from these antiNTSR1-mAb functionalized nanoparticles was also elucidated. It was demonstrated that the concentration of human IgG in the starting nanoprecipitation medium and the rotation speed of the magnetic stirrer influenced the encapsulation efficiency, loading capacity and the size of the nanoparticles produced. We also successfully transformed these nanoparticles into actively targeted nanoparticles by functionalizing with anti-NTSR1-mAb to specifically target NTSR1-overexpressing cancer cells, hence able to avoid undesired accumulation in normal cells. The mechanism of siRNA release from these nanoparticles was elucidated to be by Fickian diffusion. Using flow cytometry and fluorescence microscopy, we were able to confirm the active involvement of NTSR1 in the uptake of these anti-NTSR1-mAb functionalized hybrid nanoparticles by lung adenocarcinoma cells. This hybrid nanoparticle delivery system can be used as a platform technology for intracellular delivery of siRNAs to NTSR1

  7. Changes in rRNA levels during stress invalidates results from mRNA blotting: Fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels

    DEFF Research Database (Denmark)

    Hansen, M.C.; Nielsen, A.K.; Molin, Søren

    2001-01-01

    obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting...... the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell...... decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes...

  8. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    International Nuclear Information System (INIS)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin; Xiong, Wei; Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying; Liu, Hongrong; Huang, Xiaojun; Ji, Gang; Sun, Fei; Zheng, Congyi; Zhu, Ping

    2014-01-01

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process

  9. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Xiong, Wei [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Hongrong [College of Physics and Information Science, Hunan Normal University, Changsha, Hunan 410081 (China); Huang, Xiaojun; Ji, Gang; Sun, Fei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Zheng, Congyi, E-mail: cctcc202@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Zhu, Ping, E-mail: zhup@ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.

  10. RNA-Catalyzed Polymerization and Replication of RNA

    Science.gov (United States)

    Horning, D. P.; Samantha, B.; Tjhung, K. F.; Joyce, G. F.

    2017-07-01

    In an effort to reconstruct RNA-based life, in vitro evolution was used to obtain an RNA polymerase ribozyme that can synthesize a variety of complex functional RNAs and can catalyze the exponential amplification of short RNAs.

  11. RNA Packing Specificity and Folding during Assembly of the Bacteriophage MS2

    Directory of Open Access Journals (Sweden)

    Ottar Rolfsson

    2008-01-01

    Full Text Available Using a combination of biochemistry, mass spectrometry, NMR spectroscopy and cryo-electron microscopy (cryo-EM, we have been able to show that quasi-equivalent conformer switching in the coat protein (CP of an RNA bacteriophage (MS2 is controlled by a sequence-specific RNA–protein interaction. The RNA component of this complex is an RNA stem-loop encompassing just 19 nts from the phage genomic RNA, which is 3569 nts in length. This binding results in the conversion of a CP dimer from a symmetrical conformation to an asymmetric one. Only when both symmetrical and asymmetrical dimers are present in solution is assembly of the T = 3 phage capsid efficient. This implies that the conformers, we have characterized by NMR correspond to the two distinct quasi-equivalent conformers seen in the 3D structure of the virion. An icosahedrally-averaged single particle cryo-EM reconstruction of the wild-type phage (to ∼9 Å resolution has revealed icosahedrally ordered density encompassing up to 90% of the single-stranded RNA genome. The RNA is seen with a novel arrangement of two concentric shells, with connections between them along the 5-fold symmetry axes. RNA in the outer shell interacts with each of the 90 CP dimers in the T = 3 capsid and although the density is icosahedrally averaged, there appears to be a different average contact at the different quasi-equivalent protein dimers: precisely the result that would be expected if protein conformer switching is RNA-mediated throughout the assembly pathway. This unprecedented RNA structure provides new constraints for models of viral assembly and we describe experiments aimed at probing these. Together, these results suggest that viral genomic RNA folding is an important factor in efficient assembly, and further suggest that RNAs that could sequester viral CPs but not fold appropriately could act as potent inhibitors of viral assembly.

  12. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle.

    Science.gov (United States)

    Xue, Song; Wang, Ruiying; Yang, Fangping; Terns, Rebecca M; Terns, Michael P; Zhang, Xinxin; Maxwell, E Stuart; Li, Hong

    2010-09-24

    Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein

    OpenAIRE

    Pinder, Benjamin D; Smibert, Craig A

    2012-01-01

    Argonaute 1 directly interacts with the RNA binding protein Smaug in Drosophila, is thereby recruited to the Smaug target nanos mRNA and is required for Smaug-mediated translational repression of the nanos mRNA.

  14. TargetRNA: a tool for predicting targets of small RNA action in bacteria

    OpenAIRE

    Tjaden, Brian

    2008-01-01

    Many small RNA (sRNA) genes in bacteria act as posttranscriptional regulators of target messenger RNAs. Here, we present TargetRNA, a web tool for predicting mRNA targets of sRNA action in bacteria. TargetRNA takes as input a genomic sequence that may correspond to an sRNA gene. TargetRNA then uses a dynamic programming algorithm to search each annotated message in a specified genome for mRNAs that evince basepair-binding potential to the input sRNA sequence. Based on the calculated basepair-...

  15. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    Science.gov (United States)

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications.

    Science.gov (United States)

    Haque, Farzin; Pi, Fengmei; Zhao, Zhengyi; Gu, Shanqing; Hu, Haibo; Yu, Hang; Guo, Peixuan

    2018-01-01

    In recent years, RNA has attracted widespread attention as a unique biomaterial with distinct biophysical properties for designing sophisticated architectures in the nanometer scale. RNA is much more versatile in structure and function with higher thermodynamic stability compared to its nucleic acid counterpart DNA. Larger RNA molecules can be viewed as a modular structure built from a combination of many 'Lego' building blocks connected via different linker sequences. By exploiting the diversity of RNA motifs and flexibility of structure, varieties of RNA architectures can be fabricated with precise control of shape, size, and stoichiometry. Many structural motifs have been discovered and characterized over the years and the crystal structures of many of these motifs are available for nanoparticle construction. For example, using the flexibility and versatility of RNA structure, RNA triangles, squares, pentagons, and hexagons can be constructed from phi29 pRNA three-way-junction (3WJ) building block. This review will focus on 2D RNA triangles, squares, and hexamers; 3D and 4D structures built from basic RNA building blocks; and their prospective applications in vivo as imaging or therapeutic agents via specific delivery and targeting. Methods for intracellular cloning and expression of RNA molecules and the in vivo assembly of RNA nanoparticles will also be reviewed. WIREs RNA 2018, 9:e1452. doi: 10.1002/wrna.1452 This article is categorized under: RNA Methods > RNA Nanotechnology RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs. © 2017 Wiley Periodicals, Inc.

  17. MicroRNA-target binding structures mimic microRNA duplex structures in humans.

    Directory of Open Access Journals (Sweden)

    Xi Chen

    Full Text Available Traditionally, researchers match a microRNA guide strand to mRNA sequences using sequence comparisons to predict its potential target genes. However, many of the predictions can be false positives due to limitations in sequence comparison alone. In this work, we consider the association of two related RNA structures that share a common guide strand: the microRNA duplex and the microRNA-target binding structure. We have analyzed thousands of such structure pairs and found many of them share high structural similarity. Therefore, we conclude that when predicting microRNA target genes, considering just the microRNA guide strand matches to gene sequences may not be sufficient--the microRNA duplex structure formed by the guide strand and its companion passenger strand must also be considered. We have developed software to translate RNA binding structure into encoded representations, and we have also created novel automatic comparison methods utilizing such encoded representations to determine RNA structure similarity. Our software and methods can be utilized in the other RNA secondary structure comparisons as well.

  18. TruSeq Stranded mRNA and Total RNA Sample Preparation Kits

    Science.gov (United States)

    Total RNA-Seq enabled by ribosomal RNA (rRNA) reduction is compatible with formalin-fixed paraffin embedded (FFPE) samples, which contain potentially critical biological information. The family of TruSeq Stranded Total RNA sample preparation kits provides a unique combination of unmatched data quality for both mRNA and whole-transcriptome analyses, robust interrogation of both standard and low-quality samples and workflows compatible with a wide range of study designs.

  19. Primer-dependent and primer-independent initiation of double stranded RNA synthesis by purified arabidopsis RNA-dependent RNA polymerases RDR2 and RDR6

    DEFF Research Database (Denmark)

    Devert, Anthony; Fabre, Nicolas; Floris, Maina Huguette Joséphine

    2015-01-01

    ) targeted by RNA silencing. The dsRNA is subsequently cleaved by the ribonuclease DICER-like into secondary small interfering RNAs (siRNAs) that reinforce and/or maintain the silenced state of the target RNA. Models of RNA silencing propose that RDRs could use primer-independent and primer......Cellular RNA-dependent RNA polymerases (RDRs) are fundamental components of RNA silencing in plants and many other eukaryotes. In Arabidopsis thaliana genetic studies have demonstrated that RDR2 and RDR6 are involved in the synthesis of double stranded RNA (dsRNA) from single stranded RNA (ssRNA......-dependent initiation to generate dsRNA from a transcript targeted by primary siRNA or microRNA (miRNA). However, the biochemical activities of RDR proteins are still partly understood. Here, we obtained active recombinant RDR2 and RDR6 in a purified form. We demonstrate that RDR2 and RDR6 have primer...

  20. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.

    Science.gov (United States)

    Nina, Mafalda; Fonné-Pfister, Raymonde; Beaudegnies, Renaud; Chekatt, Habiba; Jung, Pierre M J; Murphy-Kessabi, Fiona; De Mesmaeker, Alain; Wendeborn, Sebastian

    2005-04-27

    Thermodynamic and structural properties of a chemically modified DNA-RNA hybrid in which a phosphodiester linkage is replaced by a neutral amide-3 linkage (3'-CH(2)-CONH-5') were investigated using UV melting experiments, molecular dynamics simulations in explicit water, and continuum solvent models. van't Hoff analysis of the experimental UV melting curves suggests that the significant increase of the thermodynamic stability of a 15-mer DNA-RNA with seven alternated amide-3 modifications (+11 degrees C) is mainly due to an increased binding enthalpy. To further evaluate the origin in the observed affinities differences, the electrostatic contribution to the binding free energy was calculated by solving the Poisson-Boltzmann equation numerically. The nonelectrostatic contribution was estimated as the product of a hydrophobic surface tension coefficient and the surface area that is buried upon double strand formation. Structures were taken from 10 ns molecular dynamics simulations computed in a consistent fashion using explicit solvent, counterions, and the particle-mesh Ewald procedure. The present preliminary thermodynamic study suggests that the favorable binding free energy of the amide-3 DNA single strand to the complementary RNA is equally driven by electrostatic and nonpolar contributions to the binding compared to their natural analogues. In addition, molecular dynamics simulations in explicit water were performed on an amide-3 DNA single strand and the corresponding natural DNA. Results from the conformations cluster analysis of the simulated amide-3 DNA single strand ensembles suggest that the 25% of the population sampled within 10 ns has a pre-organized conformation where the sugar C3' endo pucker is favored at the 3'-flanking nucleotides. These structural and thermodynamic features contribute to the understanding of the observed increased affinities of the amide-3 DNA-RNA hybrids at the microscopic level.

  1. A Method to Predict the Structure and Stability of RNA/RNA Complexes.

    Science.gov (United States)

    Xu, Xiaojun; Chen, Shi-Jie

    2016-01-01

    RNA/RNA interactions are essential for genomic RNA dimerization and regulation of gene expression. Intermolecular loop-loop base pairing is a widespread and functionally important tertiary structure motif in RNA machinery. However, computational prediction of intermolecular loop-loop base pairing is challenged by the entropy and free energy calculation due to the conformational constraint and the intermolecular interactions. In this chapter, we describe a recently developed statistical mechanics-based method for the prediction of RNA/RNA complex structures and stabilities. The method is based on the virtual bond RNA folding model (Vfold). The main emphasis in the method is placed on the evaluation of the entropy and free energy for the loops, especially tertiary kissing loops. The method also uses recursive partition function calculations and two-step screening algorithm for large, complicated structures of RNA/RNA complexes. As case studies, we use the HIV-1 Mal dimer and the siRNA/HIV-1 mutant (T4) to illustrate the method.

  2. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome.

    Science.gov (United States)

    Konevega, Andrey L; Fischer, Niels; Semenkov, Yuri P; Stark, Holger; Wintermeyer, Wolfgang; Rodnina, Marina V

    2007-04-01

    During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.

  3. RNA precursor pool metabolism and RNA synthesis in X-irradiated Tetrahymena

    International Nuclear Information System (INIS)

    Stephens, R.E.; Paul, I.J.; Zimmerman, A.M.

    1976-01-01

    The incorporation of a radioactive RNA precursor ( 3 H-uridine) has been used in many studies as an index for measuring the synthesis of RNA, yet there is a distinct possibility that the results so obtained were significantly influenced by radiation-induced effects on the metabolism of this precursor into UTP (the primary immediate precursor of RNA) before its incorporation into RNA. A direct examination was therefore undertaken of the effects of X-irradiation on the metabolism of 3 H-uridine and its relationship to RNA synthesis as determined by incorporation. X-irradiation of logarithmically growing Tetrahymena pyriformis caused a dose-dependent depression of total cellular RNA synthesis. Ribosomal RNA (which comprises about 80 per cent of total cellular RNA) synthesis was also depressed by X-irradiation in a dose-dependent manner. Measurements of the levels of radioactivity present in the UTP precursor pool of both irradiated and unirradiated cells were obtained by means of DEAE-cellulose column chromatography of the extracted free nucleotides. Metabolism of 3 H-uridine into UMP, UDP and UTP was depressed by 40%, 26% and 27% respectively, whereas incorporation of 3 H-uridine into RNA was depressed by 77%. The results show that about one-third of the observed (apparent) depression in RNA synthesis was due to radiation-induced effects on the precursor pool, and the remaining two-thirds due to some definite effect of radiation at the transcription level leading to depressed synthesis of RNA. (U.K.)

  4. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2016-03-01

    Full Text Available Wilms tumor (WT is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT.

  5. Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors

    Science.gov (United States)

    Kaddis Maldonado, Rebecca J.; Parent, Leslie J.

    2016-01-01

    Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag–Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison. PMID:27657110

  6. dPORE-miRNA: Polymorphic regulation of microRNA genes

    KAUST Repository

    Schmeier, Sebastian; Schaefer, Ulf; MacPherson, Cameron R.; Bajic, Vladimir B.

    2011-01-01

    Background: MicroRNAs (miRNAs) are short non-coding RNA molecules that act as post-transcriptional regulators and affect the regulation of protein-coding genes. Mostly transcribed by PolII, miRNA genes are regulated at the transcriptional level similarly to protein-coding genes. In this study we focus on human miRNAs. These miRNAs are involved in a variety of pathways and can affect many diseases. Our interest is on possible deregulation of the transcription initiation of the miRNA encoding genes, which is facilitated by variations in the genomic sequence of transcriptional control regions (promoters). Methodology: Our aim is to provide an online resource to facilitate the investigation of the potential effects of single nucleotide polymorphisms (SNPs) on miRNA gene regulation. We analyzed SNPs overlapped with predicted transcription factor binding sites (TFBSs) in promoters of miRNA genes. We also accounted for the creation of novel TFBSs due to polymorphisms not present in the reference genome. The resulting changes in the original TFBSs and potential creation of new TFBSs were incorporated into the Dragon Database of Polymorphic Regulation of miRNA genes (dPORE-miRNA). Conclusions: The dPORE-miRNA database enables researchers to explore potential effects of SNPs on the regulation of miRNAs. dPORE-miRNA can be interrogated with regards to: a/miRNAs (their targets, or involvement in diseases, or biological pathways), b/SNPs, or c/transcription factors. dPORE-miRNA can be accessed at http://cbrc.kaust.edu.sa/dpore and http://apps.sanbi.ac.za/dpore/. Its use is free for academic and non-profit users. © 2011 Schmeier et al.

  7. dPORE-miRNA: Polymorphic regulation of microRNA genes

    KAUST Repository

    Schmeier, Sebastian

    2011-02-04

    Background: MicroRNAs (miRNAs) are short non-coding RNA molecules that act as post-transcriptional regulators and affect the regulation of protein-coding genes. Mostly transcribed by PolII, miRNA genes are regulated at the transcriptional level similarly to protein-coding genes. In this study we focus on human miRNAs. These miRNAs are involved in a variety of pathways and can affect many diseases. Our interest is on possible deregulation of the transcription initiation of the miRNA encoding genes, which is facilitated by variations in the genomic sequence of transcriptional control regions (promoters). Methodology: Our aim is to provide an online resource to facilitate the investigation of the potential effects of single nucleotide polymorphisms (SNPs) on miRNA gene regulation. We analyzed SNPs overlapped with predicted transcription factor binding sites (TFBSs) in promoters of miRNA genes. We also accounted for the creation of novel TFBSs due to polymorphisms not present in the reference genome. The resulting changes in the original TFBSs and potential creation of new TFBSs were incorporated into the Dragon Database of Polymorphic Regulation of miRNA genes (dPORE-miRNA). Conclusions: The dPORE-miRNA database enables researchers to explore potential effects of SNPs on the regulation of miRNAs. dPORE-miRNA can be interrogated with regards to: a/miRNAs (their targets, or involvement in diseases, or biological pathways), b/SNPs, or c/transcription factors. dPORE-miRNA can be accessed at http://cbrc.kaust.edu.sa/dpore and http://apps.sanbi.ac.za/dpore/. Its use is free for academic and non-profit users. © 2011 Schmeier et al.

  8. Alterations in messenger RNA and small nuclear RNA metabolism resulting from fluorouracil incorporation

    International Nuclear Information System (INIS)

    Armstrong, R.D.; Cadman, E.C.

    1985-01-01

    Studies were completed to examine the effect of 5-fluorouracil (FUra) incorporation on messenger RNA (mRNA) and small molecular weight nuclear RNA (SnRNA) metabolism. Studies of mRNA were completed using cDNA-mRNA hybridization methods to specifically examine dihydrofolate reductase (DHFR) mRNA. C 3 -L5178Y murine leukemia cells which are gene-amplified for DHFR, were exposed to FUra for 6, 12 or 24 hr, and the nuclear and cytoplasmic levels of DHFR-mRNA determined by hybridization with 32 P-DHFR-cDNA. FUra produced a dose-dependent increase in nuclear DHFR-mRNA levels, while total cytoplasmic DHFR-mRNA levels appeared to be unchanged. To examine only mRNA synthesized during FUra exposure, cells were also treated concurrently with [ 3 H] cytidine, and the [ 3 H]mRNA-cDNA hybrids measured following S 1 -nuclease treatment. FUra produced a concentration-dependent increase in nascent nuclear DHFR-mRNA levels, and a decrease in nascent cytoplasmic DHFR-mRNAs levels. These results suggest that FUra produces either an inhibition of mRNA processing, or an inhibition of nuclear-cytoplasmic transport. Preliminary experiments to examine ATP-dependent mRNA transport were completed with isolated nuclei from cells treated with FUra for 1 or 24 hr and then pulse-labeled for 1 hr with [ 3 H] cytidine. The results demonstrate a FUra-concentration and time-dependent inhibition of ATP-mediated mRNA efflux

  9. RNA decay by messenger RNA interferases

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Overgaard, Martin; Winther, Kristoffer Skovbo

    2008-01-01

    Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mR...... cleaving enzymes such as RelE of Escherichia coli and the corresponding antitoxin RelB. In particular, we describe a set of plasmid vectors useful for the detailed analysis of cleavage sites in model mRNAs.......Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mRNA...

  10. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  11. Transcriptome Profiles in Normal Human Bronchial Epithelial Cells after Exposure to gamma-rays and different HZE particles

    Data.gov (United States)

    National Aeronautics and Space Administration — Distinct transcriptome profiles in response to low-LET and high-LET and different radiation qualities of HZE particles. Total RNA obtained from HBEC3KT cells after 1...

  12. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum.

    Science.gov (United States)

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki; Inui, Masayuki

    2017-03-01

    Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum , SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3'-to-5' exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3' maturation of 4.5S RNA in C. glutamicum The mature form of 4.5S RNA was inefficiently formed in Δ rneG Δ pnp mutant cells, suggesting the existence of an alternative pathway for the 3' maturation of 4.5S RNA. Primer extension analysis also revealed that the 5' mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δ pnp , Δ rneG , and Δ ybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum , which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3' maturation of the SRP RNA (4.5S RNA) in

  13. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    Science.gov (United States)

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs

  14. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    Science.gov (United States)

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  15. RAID: a comprehensive resource for human RNA-associated (RNA–RNA/RNA–protein) interaction

    Science.gov (United States)

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-01-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA–RNA/RNA–protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA–RNA interactions and 1619 RNA–protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA–RNA/RNA–protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA–RNA/RNA–protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  16. Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase

    Science.gov (United States)

    Theuser, Matthias; Höbartner, Claudia; Wahl, Markus C.; Santos, Karine F.

    2016-01-01

    The Brr2 RNA helicase disrupts the U4/U6 di-small nuclear RNA–protein complex (di-snRNP) during spliceosome activation via ATP-driven translocation on the U4 snRNA strand. However, it is unclear how bound proteins influence U4/U6 unwinding, which regions of the U4/U6 duplex the helicase actively unwinds, and whether U4/U6 components are released as individual molecules or as subcomplexes. Here, we set up a recombinant Brr2-mediated U4/U6 di-snRNP disruption system, showing that sequential addition of the U4/U6 proteins small nuclear ribonucleoprotein-associated protein 1 (Snu13), pre-mRNA processing factor 31 (Prp31), and Prp3 to U4/U6 di-snRNA leads to a stepwise decrease of Brr2-mediated U4/U6 unwinding, but that unwinding is largely restored by a Brr2 cofactor, the C-terminal Jab1/MPN domain of the Prp8 protein. Brr2-mediated U4/U6 unwinding was strongly inhibited by mutations in U4/U6 di-snRNAs that diminish the ability of U6 snRNA to adopt an alternative conformation but leave the number and kind of U4/U6 base pairs unchanged. Irrespective of the presence of the cofactor, the helicase segregated a Prp3-Prp31-Snu13-U4/U6 RNP into an intact Prp31-Snu13-U4 snRNA particle, free Prp3, and free U6 snRNA. Together, these observations suggest that Brr2 translocates only a limited distance on the U4 snRNA strand and does not actively release RNA-bound proteins. Unwinding is then completed by the partially displaced U6 snRNA adopting an alternative conformation, which leads to dismantling of the Prp3-binding site on U4/U6 di-snRNA but leaves the Prp31- and Snu13-binding sites on U4 snRNA unaffected. In this fashion, Brr2 can activate the spliceosome by stripping U6 snRNA of all precatalytic binding partners, while minimizing logistic requirements for U4/U6 di-snRNP reassembly after splicing. PMID:27354531

  17. Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing.

    Science.gov (United States)

    Zhao, Zhehao; Yu, Siran; Li, Min; Gui, Xin; Li, Ping

    2018-03-21

    In this study, the presence of microRNAs in coconut water was identified by real-time polymerase chain reaction (PCR) based on the results of high-throughput small RNA sequencing. In addition, the differences in microRNA content between immature and mature coconut water were compared. A total of 47 known microRNAs belonging to 25 families and 14 new microRNAs were identified in coconut endosperm. Through analysis using a target gene prediction software, potential microRNA target genes were identified in the human genome. Real-time PCR showed that the level of most microRNAs was higher in mature coconut water than in immature coconut water. Then, exosome-like nanoparticles were isolated from coconut water. After ultracentrifugation, some particle structures were seen in coconut water samples using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate fluorescence staining. Subsequent scanning electron microscopy observation and dynamic light scattering analysis also revealed some exosome-like nanoparticles in coconut water, and the mean diameters of the particles detected by the two methods were 13.16 and 59.72 nm, respectively. In conclusion, there are extracellular microRNAs in coconut water, and their levels are higher in mature coconut water than in immature coconut water. Some exosome-like nanoparticles were isolated from coconut water, and the diameter of these particles was smaller than that of animal-derived exosomes.

  18. Orthoretroviral-like prototype foamy virus gag-pol expression is compatible with viral replication

    Directory of Open Access Journals (Sweden)

    Reh Juliane

    2011-08-01

    Full Text Available Abstract Background Foamy viruses (FVs unlike orthoretroviruses express Pol as a separate precursor protein and not as a Gag-Pol fusion protein. A unique packaging strategy, involving recognition of briding viral RNA by both Pol precursor and Gag as well as potential Gag-Pol protein interactions, ensures Pol particle encapsidation. Results Several Prototype FV (PFV Gag-Pol fusion protein constructs were generated to examine whether PFV replication is compatible with an orthoretroviral-like Pol expression. During their analysis, non-particle-associated secreted Pol precursor protein was discovered in extracellular wild type PFV particle preparations of different origin, copurifying in simple virion enrichment protocols. Different analysis methods suggest that extracellular wild type PFV particles contain predominantly mature p85PR-RT and p40IN Pol subunits. Characterization of various PFV Gag-Pol fusion constructs revealed that PFV Pol expression in an orthoretroviral manner is compatible with PFV replication as long as a proteolytic processing between Gag and Pol proteins is possible. PFV Gag-Pol translation by a HIV-1 like ribosomal frameshift signal resulted in production of replication-competent virions, although cell- and particle-associated Pol levels were reduced in comparison to wild type. In-frame fusion of PFV Gag and Pol ORFs led to increased cellular Pol levels, but particle incorporation was only marginally elevated. Unlike that reported for similar orthoretroviral constructs, a full-length in-frame PFV Gag-Pol fusion construct showed wildtype-like particle release and infectivity characteristics. In contrast, in-frame PFV Gag-Pol fusion with C-terminal Gag ORF truncations or non-removable Gag peptide addition to Pol displayed wildtype particle release, but reduced particle infectivity. PFV Gag-Pol precursor fusion proteins with inactivated protease were highly deficient in regular particle release, although coexpression of p71Gag

  19. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells.

    Directory of Open Access Journals (Sweden)

    John L Goodier

    Full Text Available MOV10 protein, a putative RNA helicase and component of the RNA-induced silencing complex (RISC, inhibits retrovirus replication. We show that MOV10 also severely restricts human LINE1 (L1, Alu, and SVA retrotransposons. MOV10 associates with the L1 ribonucleoprotein particle, along with other RNA helicases including DDX5, DHX9, DDX17, DDX21, and DDX39A. However, unlike MOV10, these other helicases do not strongly inhibit retrotransposition, an activity dependent upon intact helicase domains. MOV10 association with retrotransposons is further supported by its colocalization with L1 ORF1 protein in stress granules, by cytoplasmic structures associated with RNA silencing, and by the ability of MOV10 to reduce endogenous and ectopic L1 expression. The majority of the human genome is repetitive DNA, most of which is the detritus of millions of years of accumulated retrotransposition. Retrotransposons remain active mutagens, and their insertion can disrupt gene function. Therefore, the host has evolved defense mechanisms to protect against retrotransposition, an arsenal we are only beginning to understand. With homologs in other vertebrates, insects, and plants, MOV10 may represent an ancient and innate form of immunity against both infective viruses and endogenous retroelements.

  20. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes

    Directory of Open Access Journals (Sweden)

    Caroline Vindry

    2017-08-01

    Full Text Available Pat1 RNA-binding proteins, enriched in processing bodies (P bodies, are key players in cytoplasmic 5′ to 3′ mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA. Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3′ UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.

  1. Effects of F virus in Bombyx mori L., 1758 (Lep., bombycidae) and site determination of the viral RNA synthesis by auto-radiography

    International Nuclear Information System (INIS)

    Almeida, I.M.G. de.

    1980-01-01

    Some aspects of the pathological process of the infectious flacherie virus in the midgut epithelial cells of the silkworm (Bombyx mori L., 1758 (Lep., Bombycidae)) as well as the site of the viral RNA synthesis were investigated. Electron microscope observation of these inclusion bodies showed that they were surrounded by a single membrane and containing many vesicles and virus particles. The nucleus of the cells infected with the virus exhibited higher electron dense masses than the healthy ones. The site of the viral RNA synthesis. Actinomycin D, at the used concentration, selectively blocked the cell RNA synthesis without affecting the virus RNA synthesis. The inhibition found was about 60%. The data obtained indicated that the viral RNA synthesis occurs in the nucleus of the midgut epithelial cells of the silkworm larvae. (author)

  2. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements

    OpenAIRE

    Huang, Hsi-Yuan; Chien, Chia-Hung; Jen, Kuan-Hua; Huang, Hsien-Da

    2006-01-01

    Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized. The regulatory RNA motifs supported in RegRNA are categorized into several classes: (i) motifs in mRNA 5′-untra...

  3. Quantification of RNA in bacteriophage MS2-like viruses in solution by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Kuzmanovic, Deborah A.; Elashvili, Ilya; Wick, Charles; O'Connell, Catherine; Krueger, Susan

    2006-01-01

    Recombinant forms of bacteriophage MS2 virus particles, wild-type MS2 and MS2 capsids have been examined in solution using small-angle X-ray scattering (SAXS). SAXS was used to determine the overall size of the virus particles and to quantify the amount of encapsulated viral RNA. These studies show that analysis of natural and recombinant forms of MS2 virus by SAXS can be used as both a quantitative measure of nucleic acid content in situ and diagnostic indicator of sample integrity

  4. A simple fluorescence based assay for quantification of human immunodeficiency virus particle release

    Directory of Open Access Journals (Sweden)

    Heuser Anke-Mareil

    2010-04-01

    Full Text Available Abstract Background The assembly and release of human immunodeficiency virus (HIV particles from infected cells represent attractive, but not yet exploited targets for antiretroviral therapy. The availability of simple methods to measure the efficiency of these replication steps in tissue culture would facilitate the identification of host factors essential for these processes as well as the screening for lead compounds acting as specific inhibitors of particle formation. We describe here the development of a rapid cell based assay for quantification of human immunodeficiency virus type 1 (HIV-1 particle assembly and/or release. Results Using a fluorescently labelled HIV-derivative, which carries an eYFP domain within the main viral structural protein Gag in the complete viral protein context, the release of virus like particles could be monitored by directly measuring the fluorescence intensity of the tissue culture supernatant. Intracellular Gag was quantitated in parallel by direct fluorescence analysis of cell lysates, allowing us to normalize for Gag expression efficiency. The assay was validated by comparison with p24 capsid ELISA measurements, a standard method for quantifying HIV-1 particles. Optimization of conditions allowed the robust detection of particle amounts corresponding to 50 ng p24/ml in medium by fluorescence spectroscopy. Further adaptation to a multi-well format rendered the assay suitable for medium or high throughput screening of siRNA libraries to identify host cell factors involved in late stages of HIV replication, as well as for random screening approaches to search for potential inhibitors of HIV-1 assembly or release. Conclusions The fast and simple fluorescence based quantification of HIV particle release yielded reproducible results which were comparable to the well established ELISA measurements, while in addition allowing the parallel determination of intracellular Gag expression. The protocols described here

  5. Compactness of viral genomes: effect of disperse and localized random mutations

    Science.gov (United States)

    Lošdorfer Božič, Anže; Micheletti, Cristian; Podgornik, Rudolf; Tubiana, Luca

    2018-02-01

    Genomes of single-stranded RNA viruses have evolved to optimize several concurrent properties. One of them is the architecture of their genomic folds, which must not only feature precise structural elements at specific positions, but also allow for overall spatial compactness. The latter was shown to be disrupted by random synonymous mutations, a disruption which can consequently negatively affect genome encapsidation. In this study, we use three mutation schemes with different degrees of locality to mutate the genomes of phage MS2 and Brome Mosaic virus in order to understand the observed sensitivity of the global compactness of their folds. We find that mutating local stretches of their genomes’ sequence or structure is less disruptive to their compactness compared to inducing randomly-distributed mutations. Our findings are indicative of a mechanism for the conservation of compactness acting on a global scale of the genomes, and have several implications for understanding the interplay between local and global architecture of viral RNA genomes.

  6. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double

  7. Minimal alteration in the ratio of circulatory fetal DNA to fetal corticotropin-releasing hormone mRNA level in preeclampsia.

    Science.gov (United States)

    Zhong, Xiao Yan; Holzgreve, Wolfgang; Gebhardt, Stefan; Hillermann, Renate; Tofa, Kashefa Carelse; Gupta, Anurag Kumar; Huppertz, Berthold; Hahn, Sinuhe

    2006-01-01

    We have recently observed that fetal DNA and fetal corticotropin-releasing hormone (CRH) mRNA are associated with in vitro generated syncytiotrophoblast-derived microparticles, and that the ratio of fetal DNA to mRNA (CRH) varied according to whether the particles were derived by predominantly apoptotic, apo-necrotic or necrotic pathways. Hence, we examined whether these ratios varied in maternal plasma samples taken from normotensive and preeclamptic pregnancies in vivo. Maternal plasma samples were collected from 18 cases with preeclampsia and 29 normotensive term controls. Circulatory fetal CRH mRNA and DNA levels were quantified by real-time PCR and RT-PCR. Circulatory fetal mRNA and fetal DNA levels were significantly elevated in the preeclampsia study group when compared to normotensive controls. Alterations in the fetal mRNA to DNA ratio between the study and control groups were minimal, even when stratified into early (34 weeks of gestation) onset preeclampsia. Our data suggest that although circulatory fetal DNA and mRNA levels are significantly elevated in preeclampsia, the ratios in maternal plasma are not dramatically altered. Copyright 2006 S. Karger AG, Basel.

  8. Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules.

    Science.gov (United States)

    Schnettler, Esther; Hemmes, Hans; Huismann, Rik; Goldbach, Rob; Prins, Marcel; Kormelink, Richard

    2010-11-01

    The tospovirus NSs protein was previously shown to suppress the antiviral RNA silencing mechanism in plants. Here the biochemical analysis of NSs proteins from different tospoviruses, using purified NSs or NSs containing cell extracts, is described. The results showed that all tospoviral NSs proteins analyzed exhibited affinity to small double-stranded RNA molecules, i.e., small interfering RNAs (siRNAs) and micro-RNA (miRNA)/miRNA* duplexes. Interestingly, the NSs proteins from tomato spotted wilt virus (TSWV), impatiens necrotic spot virus (INSV), and groundnut ringspot virus (GRSV) also showed affinity to long double-stranded RNA (dsRNA), whereas tomato yellow ring virus (TYRV) NSs did not. The TSWV NSs protein was shown to be capable of inhibiting Dicer-mediated cleavage of long dsRNA in vitro. In addition, it suppressed the accumulation of green fluorescent protein (GFP)-specific siRNAs during coinfiltration with an inverted-repeat-GFP RNA construct in Nicotiana benthamiana. In vivo interference of TSWV NSs in the miRNA pathway was shown by suppression of an enhanced GFP (eGFP) miRNA sensor construct. The ability to stabilize miRNA/miRNA* by different tospovirus NSs proteins in vivo was demonstrated by increased accumulation and detection of both miRNA171c and miRNA171c* in tospovirus-infected N. benthamiana. All together, these data suggest that tospoviruses interfere in the RNA silencing pathway by sequestering siRNA and miRNA/miRNA* molecules before they are uploaded into their respective RNA-induced silencing complexes. The observed affinity to long dsRNA for only a subset of the tospoviruses studied is discussed in light of evolutional divergence and their ancestral relation to the animal-infecting members of the Bunyaviridae.

  9. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation

    Directory of Open Access Journals (Sweden)

    Kubota K

    2017-07-01

    lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment. Keywords: nanoformulation, siRNA, cryo-TEM, confocal microscopy, endocytosis, immune stimulation

  10. Effect of single base changes and the absence of modified bases in 16S RNA on the reconstitution and function of Escherichia coli 30S ribosomes

    International Nuclear Information System (INIS)

    Denman, R.; Krzyzosiak, W.; Nurse, K.; Ofengand, J.

    1987-01-01

    The gene coding for E. coli 16S rRNA was placed in pUC19 under the control of the strong class III T7 promoter, phi 10, by ligation of the 1490 bp BclI/BstEII fragment of the rrnB operon with appropriate synthetic oligodeoxynucleotides. Such constructs allowed efficient in vitro synthesis of full-length transcripts (up to 900 mol RNA/mol template) free of modified bases. The synthetic RNA could be assembled into 30S subunits upon addition of E. coli 30S ribosomal proteins. The particles co-sedimented with authentic 30S particles and were electron microscopically indistinguishable from them. Upon addition of 50S subunits, codon-dependent P-site binding of tRNA and codon-dependent polypeptide synthesis were >80% of 30S reconstituted from natural 16S RNA and >50% of isolated 30S. UV-induced crosslinking of P-site bound AcVal-tRNA to residue C 1400 was preserved. Changing C 1400 to A had little effect on reconstitution, P-site binding, or polypeptide synthesis. However, the substitution of C 1499 by G markedly inhibited assembly. The effect on P-site binding and polypeptide synthesis is under study. These results show (1) none of the modified bases of 16S RNA are essential for protein synthesis, (2) substitution of A for C 1400 has little functional effect, and (3) position 1400 may be important for ribosome assembly

  11. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    Science.gov (United States)

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for

  12. Rescue of Infectious Particles from Preassembled Alphavirus Nucleocapsid Cores▿†

    OpenAIRE

    Snyder, Jonathan E.; Azizgolshani, Odisse; Wu, Bingbing; He, Yingpei; Lee, Aih Cheun; Jose, Joyce; Suter, Daniel M.; Knobler, Charles M.; Gelbart, William M.; Kuhn, Richard J.

    2011-01-01

    Alphaviruses are small, spherical, enveloped, positive-sense, single-stranded, RNA viruses responsible for considerable human and animal disease. Using microinjection of preassembled cores as a tool, a system has been established to study the assembly and budding process of Sindbis virus, the type member of the alphaviruses. We demonstrate the release of infectious virus-like particles from cells expressing Sindbis virus envelope glycoproteins following microinjection of Sindbis virus nucleoc...

  13. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion.

    Science.gov (United States)

    Zhao, Shanrong; Zhang, Ying; Gamini, Ramya; Zhang, Baohong; von Schack, David

    2018-03-19

    To allow efficient transcript/gene detection, highly abundant ribosomal RNAs (rRNA) are generally removed from total RNA either by positive polyA+ selection or by rRNA depletion (negative selection) before sequencing. Comparisons between the two methods have been carried out by various groups, but the assessments have relied largely on non-clinical samples. In this study, we evaluated these two RNA sequencing approaches using human blood and colon tissue samples. Our analyses showed that rRNA depletion captured more unique transcriptome features, whereas polyA+ selection outperformed rRNA depletion with higher exonic coverage and better accuracy of gene quantification. For blood- and colon-derived RNAs, we found that 220% and 50% more reads, respectively, would have to be sequenced to achieve the same level of exonic coverage in the rRNA depletion method compared with the polyA+ selection method. Therefore, in most cases we strongly recommend polyA+ selection over rRNA depletion for gene quantification in clinical RNA sequencing. Our evaluation revealed that a small number of lncRNAs and small RNAs made up a large fraction of the reads in the rRNA depletion RNA sequencing data. Thus, we recommend that these RNAs are specifically depleted to improve the sequencing depth of the remaining RNAs.

  14. Totally asymmetric exclusion processes with particles of arbitrary size

    International Nuclear Information System (INIS)

    Lakatos, Greg; Chou, Tom

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d ≥ 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results

  15. Totally asymmetric exclusion processes with particles of arbitrary size

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Greg; Chou, Tom [Department of Biomathematics and Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095 (United States)

    2003-02-28

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d {>=} 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results.

  16. RDE-4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA.

    Science.gov (United States)

    Parker, Greg S; Eckert, Debra M; Bass, Brenda L

    2006-05-01

    In organisms ranging from Arabidopsis to humans, Dicer requires dsRNA-binding proteins (dsRBPs) to carry out its roles in RNA interference (RNAi) and micro-RNA (miRNA) processing. In Caenorhabditis elegans, the dsRBP RDE-4 acts with Dicer during the initiation of RNAi, when long dsRNA is cleaved to small interfering RNAs (siRNAs). RDE-4 is not required in subsequent steps, and how RDE-4 distinguishes between long dsRNA and short siRNA is unclear. We report the first detailed analysis of RDE-4 binding, using purified recombinant RDE-4 and various truncated proteins. We find that, similar to other dsRBPs, RDE-4 is not sequence-specific. However, consistent with its in vivo roles, RDE-4 binds with higher affinity to long dsRNA. We also observe that RDE-4 is a homodimer in solution, and that the C-terminal domain of the protein is required for dimerization. Using extracts from wild-type and rde-4 mutant C. elegans, we show that the C-terminal dimerization domain is required for the production of siRNA. Our findings suggest a model for RDE-4 function during the initiation of RNAi.

  17. Reconstruction and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in rheumatoid arthritis.

    Science.gov (United States)

    Jiang, Hui; Ma, Rong; Zou, Shubiao; Wang, Yongzhong; Li, Zhuqing; Li, Weiping

    2017-06-01

    Rheumatoid arthritis (RA) is an autoimmune disease with an unknown etiology, occurring in approximately 1.0% of general population. More and more studies have suggested that long non-coding RNAs (lncRNAs) could play important roles in various biological processes and be associated with the pathogenesis of different kinds of diseases including RA. Although a large number of lncRNAs have been found, our knowledge of their function and physiological/pathological significance is still in its infancy. In order to reveal functional lncRNAs and identify the key lncRNAs in RA, we reconstructed a global triple network based on the competitive endogenous RNA (ceRNA) theory using the data from National Center for Biotechnology Information Gene Expression Omnibus and our previous paper. Meanwhile, Gene Ontology (GO) and pathway analysis were performed using Cytoscape plug-in BinGO and Database for Annotation, Visualization, and Integration Discovery (DAVID), respectively. We found that the lncRNA-miRNA-mRNA network was composed of 7 lncRNA nodes, 90 mRNA nodes, 24 miRNA nodes, and 301 edges. The functional assay showed that 147 GO terms and 23 pathways were enriched. In addition, three lncRNAs (S5645.1, XR_006437.1, J01878) were highly related to RA, and therefore, were selected as key lncRNAs. This study suggests that specific lncRNAs are associated with the development of RA, and three lncRNAs (S5645.1, XR_006437.1, J01878) could be used as potential diagnostic biomarkers and therapeutic targets.

  18. Cap-independent translation mechanism of red clover necrotic mosaic virus RNA2 differs from that of RNA1 and is linked to RNA replication.

    Science.gov (United States)

    Mizumoto, Hiroyuki; Iwakawa, Hiro-Oki; Kaido, Masanori; Mise, Kazuyuki; Okuno, Tetsuro

    2006-04-01

    The genome of Red clover necrotic mosaic virus (RCNMV) in the genus Dianthovirus is divided into two RNA molecules of RNA1 and RNA2, which have no cap structure at the 5' end and no poly(A) tail at the 3' end. The 3' untranslated region (3' UTR) of RCNMV RNA1 contains an essential RNA element (3'TE-DR1), which is required for cap-independent translation. In this study, we investigated a cap-independent translational mechanism of RNA2 using a firefly luciferase (Luc) gene expression assay system in cowpea protoplasts and a cell-free lysate (BYL) prepared from evacuolated tobacco BY2 protoplasts. We were unable to detect cis-acting RNA sequences in RNA2 that can replace the function of a cap structure, such as the 3'TE-DR1 of RNA1. However, the uncapped reporter RNA2, RNA2-Luc, in which the Luc open reading frame (ORF) was inserted between the 5' UTR and the movement protein ORF, was effectively translated in the presence of p27 and p88 in protoplasts in which RNA2-Luc was replicated. Time course experiments in protoplasts showed that the translational activity of RNA2-Luc did not reflect the amount of RNA2. Mutations in cis-acting RNA replication elements of RNA2 abolished the cap-independent translational activity of RNA2-Luc, suggesting that the translational activity of RNA2-Luc is coupled to RNA replication. Our results show that the translational mechanism differs between two segmented genomic RNAs of RCNMV. We present a model in which only RNA2 that is generated de novo through the viral RNA replication machinery functions as mRNA for translation.

  19. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  20. Overview of methods in RNA nanotechnology: synthesis, purification, and characterization of RNA nanoparticles.

    Science.gov (United States)

    Haque, Farzin; Guo, Peixuan

    2015-01-01

    RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.

  1. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    Science.gov (United States)

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  2. The ViennaRNA web services.

    Science.gov (United States)

    Gruber, Andreas R; Bernhart, Stephan H; Lorenz, Ronny

    2015-01-01

    The ViennaRNA package is a widely used collection of programs for thermodynamic RNA secondary structure prediction. Over the years, many additional tools have been developed building on the core programs of the package to also address issues related to noncoding RNA detection, RNA folding kinetics, or efficient sequence design considering RNA-RNA hybridizations. The ViennaRNA web services provide easy and user-friendly web access to these tools. This chapter describes how to use this online platform to perform tasks such as prediction of minimum free energy structures, prediction of RNA-RNA hybrids, or noncoding RNA detection. The ViennaRNA web services can be used free of charge and can be accessed via http://rna.tbi.univie.ac.at.

  3. RNA-SeQC: RNA-seq metrics for quality control and process optimization.

    Science.gov (United States)

    DeLuca, David S; Levin, Joshua Z; Sivachenko, Andrey; Fennell, Timothy; Nazaire, Marc-Danie; Williams, Chris; Reich, Michael; Winckler, Wendy; Getz, Gad

    2012-06-01

    RNA-seq, the application of next-generation sequencing to RNA, provides transcriptome-wide characterization of cellular activity. Assessment of sequencing performance and library quality is critical to the interpretation of RNA-seq data, yet few tools exist to address this issue. We introduce RNA-SeQC, a program which provides key measures of data quality. These metrics include yield, alignment and duplication rates; GC bias, rRNA content, regions of alignment (exon, intron and intragenic), continuity of coverage, 3'/5' bias and count of detectable transcripts, among others. The software provides multi-sample evaluation of library construction protocols, input materials and other experimental parameters. The modularity of the software enables pipeline integration and the routine monitoring of key measures of data quality such as the number of alignable reads, duplication rates and rRNA contamination. RNA-SeQC allows investigators to make informed decisions about sample inclusion in downstream analysis. In summary, RNA-SeQC provides quality control measures critical to experiment design, process optimization and downstream computational analysis. See www.genepattern.org to run online, or www.broadinstitute.org/rna-seqc/ for a command line tool.

  4. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine

    Directory of Open Access Journals (Sweden)

    Chiranjib Chakraborty

    2017-09-01

    Full Text Available In the past few years, therapeutic microRNA (miRNA and small interfering RNA (siRNA are some of the most important biopharmaceuticals that are in commercial space as future medicines. This review summarizes the patents of miRNA- and siRNA-based new drugs, and also provides a snapshot about significant biopharmaceutical companies that are investing for the therapeutic development of miRNA and siRNA molecules. An insightful view about individual siRNA and miRNA drugs has been depicted with their present status, which is gaining attention in the therapeutic landscape. The efforts of the biopharmaceuticals are discussed with the status of their preclinical and/or clinical trials. Here, some of the setbacks have been highlighted during the biopharmaceutical development of miRNA and siRNA as individual therapeutics. Finally, a snapshot is illustrated about pharmacokinetics, pharmacodynamics with absorption, distribution, metabolism, and excretion (ADME, which is the fundamental development process of these therapeutics, as well as the delivery system for miRNA- and siRNA-based drugs. Keywords: miRNA, siRNA, drug development

  5. 5S rRNA-derived and tRNA-derived SINEs in fruit bats.

    Science.gov (United States)

    Gogolevsky, Konstantin P; Vassetzky, Nikita S; Kramerov, Dmitri A

    2009-05-01

    Most short retroposons (SINEs) descend from cellular tRNA of 7SL RNA. Here, four new SINEs were found in megabats (Megachiroptera) but neither in microbats nor in other mammals. Two of them, MEG-RS and MEG-RL, descend from another cellular RNA, 5S rRNA; one (MEG-T2) is a tRNA-derived SINE; and MEG-TR is a hybrid tRNA/5S rRNA SINE. Insertion locus analysis suggests that these SINEs were active in the recent fruit bat evolution. Analysis of MEG-RS and MEG-RL in comparison with other few 5S rRNA-derived SINEs demonstrates that the internal RNA polymerase III promoter is their most invariant region, while the secondary structure is more variable. The mechanisms underlying the modular structure of these and other SINEs as well as their variation are discussed. The scenario of evolution of MEG SINEs is proposed.

  6. Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins

    Science.gov (United States)

    de Beauchene, Isaure Chauvot; de Vries, Sjoerd J.; Zacharias, Martin

    2016-01-01

    Abstract Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins. PMID:27131381

  7. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    Science.gov (United States)

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-02-04

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  8. Impedimetric Zika and Dengue Biosensor based on Functionalized Graphene Oxide Wrapped Silica Particles

    Science.gov (United States)

    Jin, Seon-Ah; Marinero, Ernesto E.; Stanciu, Lia A. Stanciu; Poudyal, Shishir; Kuhn, Richard J.

    A composite of 3-Aminopropyltriethoxysilane (APTES) functionalized graphene oxide (APTES-GO) wrapped on SiO2 particles (SiO2@APTES-GO) was prepared via self-assembly. Transmission electron microscopy (TEM) and ATR-Fourier Transform Infrared spectroscopy (ATR-FTIR) confirmed wrapping of the SiO2 particles by the APTES-GO sheets. An impedimetric biosensor was constructed and used to sensitively detect Zika and dengue DNA and RNA via primer hybridization using different oligonucleotide sequences. The results demonstrate that the SiO2@APTES-GO electrode materials provide enhanced RNA detection sensitivity with selectivity and detection limit (1 femto-Molar), compared to both APTES-GO and APTES-SiO2. The three-dimensional structure, higher contact area, electrical properties and the ability for rapid hybridization offered by the SiO2@APTES-GO resulted in a successful design of a Zika and dengue biosensor with the lowest detection limit reported to date. We are in the process of developing a platform for multiple viral detection for point-of-care diagnostics for arthropode borne viral infectious diseases.

  9. Lowering the quantification limit of the QubitTM RNA HS assay using RNA spike-in.

    Science.gov (United States)

    Li, Xin; Ben-Dov, Iddo Z; Mauro, Maurizio; Williams, Zev

    2015-05-06

    RNA quantification is often a prerequisite for most RNA analyses such as RNA sequencing. However, the relatively low sensitivity and large sample consumption of traditional RNA quantification methods such as UV spectrophotometry and even the much more sensitive fluorescence-based RNA quantification assays, such as the Qubit™ RNA HS Assay, are often inadequate for measuring minute levels of RNA isolated from limited cell and tissue samples and biofluids. Thus, there is a pressing need for a more sensitive method to reliably and robustly detect trace levels of RNA without interference from DNA. To improve the quantification limit of the Qubit™ RNA HS Assay, we spiked-in a known quantity of RNA to achieve the minimum reading required by the assay. Samples containing trace amounts of RNA were then added to the spike-in and measured as a reading increase over RNA spike-in baseline. We determined the accuracy and precision of reading increases between 1 and 20 pg/μL as well as RNA-specificity in this range, and compared to those of RiboGreen(®), another sensitive fluorescence-based RNA quantification assay. We then applied Qubit™ Assay with RNA spike-in to quantify plasma RNA samples. RNA spike-in improved the quantification limit of the Qubit™ RNA HS Assay 5-fold, from 25 pg/μL down to 5 pg/μL while maintaining high specificity to RNA. This enabled quantification of RNA with original concentration as low as 55.6 pg/μL compared to 250 pg/μL for the standard assay and decreased sample consumption from 5 to 1 ng. Plasma RNA samples that were not measurable by the Qubit™ RNA HS Assay were measurable by our modified method. The Qubit™ RNA HS Assay with RNA spike-in is able to quantify RNA with high specificity at 5-fold lower concentration and uses 5-fold less sample quantity than the standard Qubit™ Assay.

  10. The early history of tRNA recognition by aminoacyl-tRNA synthetases

    Indian Academy of Sciences (India)

    Madhu

    2006-10-04

    Oct 4, 2006 ... Discovery of aminoacyl-tRNA synthetases and importance ... The pioneering work of Fritz Lipmann on the high-energy ... the peculiar structural and functional relationships tRNAs ... a bulk of only 20 families of tRNA molecules in contrast ...... balance of tRNA and aminoacyl-tRNA synthetase; Science 242.

  11. Stability and assembly in vitro of bacteriophage PP7 virus-like particles

    Directory of Open Access Journals (Sweden)

    Peabody David S

    2007-11-01

    Full Text Available Abstract Background The stability of a virus-like particle (VLP is an important consideration for its use in nanobiotechnology. The icosahedral capsid of the RNA bacteriophage PP7 is cross-linked by disulfide bonds between coat protein dimers at its 5-fold and quasi-6-fold symmetry axes. This work determined the effects of these disulfides on the VLP's thermal stability. Results Measurements of the thermal denaturation behavior of PP7 VLPs in the presence and absence of a reducing agent show that disulfide cross-links substantially stabilize them against thermal denaturation. Although dimers in the capsid are linked to one another by disulfides, the two subunits of dimers themselves are held together only by non-covalent interactions. In an effort to confer even greater stability a new cross-link was introduced by genetically fusing two coat protein monomers, thus producing a "single-chain dimer" that assembles normally into a completely cross-linked VLP. However, subunit fusion failed to increase the thermal stability of the particles, even though it stabilized the isolated dimer. As a step toward gaining control of the internal composition of the capsid, conditions that promote the assembly of PP7 coat protein dimers into virus-like particles in vitro were established. Conclusion The presence of inter-dimer disulfide bonds greatly stabilizes the PP7 virus-like particle against thermal denaturation. Covalently cross-linking the subunits of the dimers themselves by genetically fusing them through a dipeptide linker sequence, offers no further stabilization of the VLP, although it does stabilize the dimer. PP7 capsids readily assemble in vitro in a reaction that requires RNA.

  12. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage

    Science.gov (United States)

    Hao, Chenhui; Li, Xiang; Tian, Cheng; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-05-01

    RNA nanotechnology promises rational design of RNA nanostructures with wide array of structural diversities and functionalities. Such nanostructures could be used in applications such as small interfering RNA delivery and organization of in vivo chemical reactions. Though having impressive development in recent years, RNA nanotechnology is still quite limited and its programmability and complexity could not rival the degree of its closely related cousin: DNA nanotechnology. Novel strategies are needed for programmed RNA self-assembly. Here, we have assembled RNA nanocages by re-engineering a natural, biological RNA motif: the packaging RNA of phi29 bacteriophage. The resulting RNA nanostructures have been thoroughly characterized by gel electrophoresis, cryogenic electron microscopy imaging and dynamic light scattering.

  13. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.

    Science.gov (United States)

    Ehret, Fabian; Zhou, Cun Yu; Alexander, Seth C; Zhang, Dongyang; Devaraj, Neal K

    2018-03-05

    Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.

  14. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    Science.gov (United States)

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-09-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.

  15. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    Science.gov (United States)

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. RNase-assisted RNA chromatography

    Science.gov (United States)

    Michlewski, Gracjan; Cáceres, Javier F.

    2010-01-01

    RNA chromatography combined with mass spectrometry represents a widely used experimental approach to identify RNA-binding proteins that recognize specific RNA targets. An important drawback of most of these protocols is the high background due to direct or indirect nonspecific binding of cellular proteins to the beads. In many cases this can hamper the detection of individual proteins due to their low levels and/or comigration with contaminating proteins. Increasing the salt concentration during washing steps can reduce background, but at the cost of using less physiological salt concentrations and the likely loss of important RNA-binding proteins that are less stringently bound to a given RNA, as well as the disassembly of protein or ribonucleoprotein complexes. Here, we describe an improved RNA chromatography method that relies on the use of a cocktail of RNases in the elution step. This results in the release of proteins specifically associated with the RNA ligand and almost complete elimination of background noise, allowing a more sensitive and thorough detection of RNA-binding proteins recognizing a specific RNA transcript. PMID:20571124

  17. Engineering a CTL-Tailored Replicon RNA Vaccine against PRRSV

    DEFF Research Database (Denmark)

    Welner, Simon; Werder, Simea; Nielsen, Morten

    The development of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) has been hampered by the high mutation rate and the multiple immunoevasive strategies of the virus. With the overall aim of designing a broad coverage vaccine that induces an effective CTL response aga...... will be available for IVIS. This study exemplifies how bioinformatics epitope prediction, recombinant SLA molecules and RNA virus replicon design can be used to engineer a replicating non-propagating vaccine tailored to deliver conserved and immunogenic CTL epitopes....... against PRRSV, we have used a bioinformatics approach to identify common PRRSV type 2 epitopes predicted to react broadly with predominant swine MHC (SLA) alleles. All possible 9- and 10-mer peptides derived from 104 wild-type strains were analyzed in silico for their predicted binding affinity to 3...... cloned into a classical swine fever virus (CSFV)-derived replicon vector. Virus replicon particles (VRP) were rescued by transfection of a complementing cell line with replicon RNA. Polyepitope expression and subsequent proteasomal degradation was confirmed indirectly by increased FLAG-tagged protein...

  18. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase

    Directory of Open Access Journals (Sweden)

    Kim Chan-Mi

    2007-07-01

    Full Text Available Abstract Background Japanese encephalitis virus (JEV NS5 is a viral nonstructural protein that carries both methyltransferase and RNA-dependent RNA polymerase (RdRp domains. It is a key component of the viral RNA replicase complex that presumably includes other viral nonstructural and cellular proteins. The biochemical properties of JEV NS5 have not been characterized due to the lack of a robust in vitro RdRp assay system, and the molecular mechanisms for the initiation of RNA synthesis by JEV NS5 remain to be elucidated. Results To characterize the biochemical properties of JEV RdRp, we expressed in Escherichia coli and purified an enzymatically active full-length recombinant JEV NS5 protein with a hexahistidine tag at the N-terminus. The purified NS5 protein, but not the mutant NS5 protein with an Ala substitution at the first Asp of the RdRp-conserved GDD motif, exhibited template- and primer-dependent RNA synthesis activity using a poly(A RNA template. The NS5 protein was able to use both plus- and minus-strand 3'-untranslated regions of the JEV genome as templates in the absence of a primer, with the latter RNA being a better template. Analysis of the RNA synthesis initiation site using the 3'-end 83 nucleotides of the JEV genome as a minimal RNA template revealed that the NS5 protein specifically initiates RNA synthesis from an internal site, U81, at the two nucleotides upstream of the 3'-end of the template. Conclusion As a first step toward the understanding of the molecular mechanisms for JEV RNA replication and ultimately for the in vitro reconstitution of viral RNA replicase complex, we for the first time established an in vitro JEV RdRp assay system with a functional full-length recombinant JEV NS5 protein and characterized the mechanisms of RNA synthesis from nonviral and viral RNA templates. The full-length recombinant JEV NS5 will be useful for the elucidation of the structure-function relationship of this enzyme and for the

  19. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...

  20. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes.

    Science.gov (United States)

    Aizawa, Shu; Fujiwara, Yuuki; Contu, Viorica Raluca; Hase, Katsunori; Takahashi, Masayuki; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2016-01-01

    Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.

  1. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla

    International Nuclear Information System (INIS)

    Brussaard, C.P.D.; Noordeloos, A.A.M.; Sandaa, R.-A.; Heldal, M.; Bratbak, G.

    2004-01-01

    We report the isolation of the first double-stranded (ds) RNA virus in the family Reoviridae that infects a protist (microalga Micromonas pusilla, Prasinophyceae). The dsRNA genome was composed of 11 segments ranging between 0.8 and 5.8 kb, with a total size of approximately 25.5 kb. The virus (MpRNAV-01B) could not be assigned to the genus level because host type, genome size, and number of segments smaller than 2 kb did not correspond to either of the two existing 11-segmented dsRNA genera Rotavirus and Aquareovirus. MpRNAV-01B has a particle size of 65-80 nm, a narrow host range, a latent period of 36 h, and contains five major proteins (120, 95, 67, 53, and 32 kDa). MpRNAV-01B was stable to freeze-thawing, resistant to chloroform, ether, nonionic detergents, chelating and reducing agents. The virus was inactivated at temperatures above 35 deg. C and by ionic detergent, ethanol, acetone, and acidic conditions (pH 2-5)

  2. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    Science.gov (United States)

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  3. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Science.gov (United States)

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  4. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  5. Novel siRNA delivery system using a ternary polymer complex with strong silencing effect and no cytotoxicity.

    Science.gov (United States)

    Kodama, Yukinobu; Shiokawa, Yumi; Nakamura, Tadahiro; Kurosaki, Tomoaki; Aki, Keisei; Nakagawa, Hiroo; Muro, Takahiro; Kitahara, Takashi; Higuchi, Norihide; Sasaki, Hitoshi

    2014-01-01

    We developed a novel small interfering RNA (siRNA) delivery system using a ternary complex with polyethyleneimine (PEI) and γ-polyglutamic acid (γ-PGA), which showed silencing effect and no cytotoxicity. The binary complexes of siRNA with PEI were approximately 73-102 nm in particle size and 45-52 mV in ζ-potential. The silencing effect of siRNA/PEI complexes increased with an increase of PEI, and siRNA/PEI complexes with a charge ratio greater than 16 showed significant luciferase knockdown in a mouse colon carcinoma cell line regularly expressing luciferase (Colon26/Luc cells). However, strong cytotoxicity and blood agglutination were observed in the siRNA/Lipofectamine complex and siRNA/PEI16 complex. Recharging cationic complexes with an anionic compound was reported to be a promising method for overcoming these toxicities. We therefore prepared ternary complexes of siRNA with PEI (charge ratio 16) by the addition of γ-PGA to reduce cytotoxicity and deliver siRNA. As expected, the cytotoxicity of the ternary complexes decreased with an increase of γ-PGA content, which decreased the ζ-potential of the complexes. A strong silencing effect comparable to siRNA/Lipofectamine complex was discovered in ternary complexes including γ-PGA with an anionic surface charge. The high incorporation of ternary complexes into Colon26/Luc cells was confirmed with fluorescence microcopy. Having achieved knockdown of an exogenously transfected gene, the ability of the complex to mediate knockdown of an endogenous housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was assessed in B16-F10 cells. The ternary complex (siRNA/PEI16/γ-PGA12 complex) exhibited a significant GAPDH knockdown effect. Thus, we developed a useful siRNA delivery system.

  6. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod

    2017-05-19

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  7. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod; Martins, Patricia; Croissant, Jonas G.; Patil, Sachin; Omar, Haneen; Khashab, Niveen M.

    2017-01-01

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  8. [Satellite RNA (RNA3) of tomato black ring virus is found with one of the 2 major RNAs (RNA2) in a new capsid nucleoprotein].

    Science.gov (United States)

    Doz, B; Dunez, J; Bove, J M

    1977-12-19

    Tomato Black Ring Virus (TBRV) like other NEPOviruses posseses two nucleoproteins M and B and two major RNAs, RNA1 and RNA2 respectively distributed in B and M. A new nucleoprotein has just been discovered and comprises one molecule of RNA2 associated with one molecule of RNA3. RNA3 is a small RNA of molecular weight 500,000 d considered to be a satellite RNA. Its level appears to depend on the infection stage, local or systemic. RNA3 is able to modify the relative proportions of nucleoproteins M and B and their respective RNAs. The satellite RNA, might be part of the genome and represent a monocistronic mRNA for protein capsid synthesis. However it seems perhaps more tempting to correlate TBRV-RNA3 with satellite RNA5 of certain strains of Cucumber mosaic virus.

  9. Working with RNA

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    Working with RNA is not a special discipline in molecular biology. However, RNA is chemically and structurally different from DNA and a few simple work rules have to be implemented to maintain the integrity of the RNA. Alkaline pH, high temperatures, and heavy metal ions should be avoided when po...

  10. Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data.

    Science.gov (United States)

    Zhao, Zheng; Bai, Jing; Wu, Aiwei; Wang, Yuan; Zhang, Jinwen; Wang, Zishan; Li, Yongsheng; Xu, Juan; Li, Xia

    2015-01-01

    Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological processes and diseases. However, the combinatorial effects of these molecules in a specific biological function are poorly understood. Identifying co-expressed protein-coding genes of lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we have developed Co-LncRNA, which is a web-based computational tool that allows users to identify GO annotations and KEGG pathways that may be affected by co-expressed protein-coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes were first identified in publicly available human RNA-Seq datasets, including 241 datasets across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA combinatorial effects in a given GO annotations or KEGG pathways are taken into account by the simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets, which is realized by enrichment analysis. In addition, this software provides a graphical overview of pathways that are modulated by lncRNAs, as well as a specific tool to display the relevant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA also supports users in uploading their own lncRNA and protein-coding gene expression profiles to investigate the lncRNA combinatorial effects. It will be continuously updated with more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a web-based application for investigating lncRNA combinatorial effects, which could shed light on their biological roles and could be a valuable resource for this community. Database URL: http://www.bio-bigdata.com/Co-LncRNA/. © The Author(s) 2015. Published by Oxford University Press.

  11. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases.

    Science.gov (United States)

    Hernández, Armando R; Peterson, Larryn W; Kool, Eric T

    2012-08-17

    Understanding the interactions between small interfering RNAs (siRNAs) and the RNA-induced silencing complex (RISC), the key protein complex of RNA interference (RNAi), is of great importance to the development of siRNAs with improved biological and potentially therapeutic function. Although various chemically modified siRNAs have been reported, relatively few studies with modified nucleobases exist. Here we describe the synthesis and hybridization properties of siRNAs bearing size-expanded RNA (xRNA) nucleobases and their use as a novel and systematic set of steric probes in RNAi. xRNA nucleobases are expanded by 2.4 Å using benzo-homologation and retain canonical Watson-Crick base-pairing groups. Our data show that the modified siRNA duplexes display small changes in melting temperature (+1.4 to -5.0 °C); substitutions near the center are somewhat destabilizing to the RNA duplex, while substitutions near the ends are stabilizing. RNAi studies in a dual-reporter luciferase assay in HeLa cells revealed that xRNA nucleobases in the antisense strand reduce activity at some central positions near the seed region but are generally well tolerated near the ends. Most importantly, we observed that xRNA substitutions near the 3'-end increased activity over that of wild-type siRNAs. The data are analyzed in terms of site-dependent steric effects in RISC. Circular dichroism experiments show that single xRNA substitutions do not significantly distort the native A-form helical structure of the siRNA duplex, and serum stability studies demonstrated that xRNA substitutions protect siRNAs against nuclease degradation.

  12. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer

    Directory of Open Access Journals (Sweden)

    Calin George A

    2007-08-01

    Full Text Available Abstract Background Colorectal cancer develops through two main genetic instability pathways characterized by distinct pathologic features and clinical outcome. Results We investigated colon cancer samples (23 characterized by microsatellite stability, MSS, and 16 by high microsatellite instability, MSI-H for genome-wide expression of microRNA (miRNA and mRNA. Based on combined miRNA and mRNA gene expression, a molecular signature consisting of twenty seven differentially expressed genes, inclusive of 8 miRNAs, could correctly distinguish MSI-H versus MSS colon cancer samples. Among the differentially expressed miRNAs, various members of the oncogenic miR-17-92 family were significantly up-regulated in MSS cancers. The majority of protein coding genes were also up-regulated in MSS cancers. Their functional classification revealed that they were most frequently associated with cell cycle, DNA replication, recombination, repair, gastrointestinal disease and immune response. Conclusion This is the first report that indicates the existence of differences in miRNA expression between MSS versus MSI-H colorectal cancers. In addition, the work suggests that the combination of mRNA/miRNA expression signatures may represent a general approach for improving bio-molecular classification of human cancer.

  13. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation. © 2017 Goldfarb and Cech; Published by Cold Spring Harbor Laboratory Press.

  14. Mutational analysis of Sep-tRNA:Cys-tRNA synthase reveals critical residues for tRNA-dependent cysteine formation.

    Science.gov (United States)

    Helgadóttir, Sunna; Sinapah, Sylvie; Söll, Dieter; Ling, Jiqiang

    2012-01-02

    In methanogenic archaea, Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). The mechanism of tRNA-dependent cysteine formation remains unclear due to the lack of functional studies. In this work, we mutated 19 conserved residues in Methanocaldococcus jannaschii SepCysS, and employed an in vivo system to determine the activity of the resulting variants. Our results show that three active-site cysteines (Cys39, Cys42 and Cys247) are essential for SepCysS activity. In addition, combined with structural modeling, our mutational and functional analyses also reveal multiple residues that are important for the binding of PLP, Sep and tRNA. Our work thus represents the first systematic functional analysis of conserved residues in archaeal SepCysSs, providing insights into the catalytic and substrate binding mechanisms of this poorly characterized enzyme. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Circular RNA (circRNA) was an important bridge in the switch from the RNA world to the DNA world.

    Science.gov (United States)

    Soslau, Gerald

    2018-06-14

    The concept that life on Earth began as an RNA world has been built upon extensive experimentation demonstrating that many of the building blocks required for living cells could be synthesized in the laboratory under conditions approximating our primordial world. Many of the building blocks for life have also been found in meteorites indicating that meteors may have been a source for these molecules, or more likely, that they represent the chemical library present in most/all bodies in the universe after the big bang. Perhaps the most important support for the concept comes from the fact that some RNA species possess catalytic activity, ribozymes, and that RNA could be reverse transcribe to DNA. The thrust of numerous papers on this topic has been to explore how the available molecules on Earth, at its birth, gave rise to life as we know it today. This paper focuses more on a reverse view of the topic. The "how" molecular building blocks were synthesized is not addressed nor how the "first" RNA molecules were synthesized. We can clearly speculate on the variable environmental conditions and chemistry available on Earth billions of years ago. However, we can never truly replicate the changing conditions or know the chemical composition of Earth at the beginning of time. We can, however, confirm that over millions, perhaps billions of years the basic building blocks for life accumulated sufficiently to initiate evolution to an RNA world followed by our RNA/DNA world. Here we are attempting to take the information from our current knowledge of biology and by inference and extrapolation work backward to hypothesize biological events in the march forward from RNA to DNA. It is proposed that the primordial replicating RNA cell, the ribocyte, evolved from liposomes encompassing required reactants and products for "life" and that ribonucleopeptide complexes formed membrane pores to support bidirectional ion and molecular transport to maintain biological functions and

  16. tRNA-like structure regulates translation of Brome mosaic virus RNA.

    Science.gov (United States)

    Barends, Sharief; Rudinger-Thirion, Joëlle; Florentz, Catherine; Giegé, Richard; Pleij, Cornelis W A; Kraal, Barend

    2004-04-01

    For various groups of plant viruses, the genomic RNAs end with a tRNA-like structure (TLS) instead of the 3' poly(A) tail of common mRNAs. The actual function of these TLSs has long been enigmatic. Recently, however, it became clear that for turnip yellow mosaic virus, a tymovirus, the valylated TLS(TYMV) of the single genomic RNA functions as a bait for host ribosomes and directs them to the internal initiation site of translation (with N-terminal valine) of the second open reading frame for the polyprotein. This discovery prompted us to investigate whether the much larger TLSs of a different genus of viruses have a comparable function in translation. Brome mosaic virus (BMV), a bromovirus, has a tripartite RNA genome with a subgenomic RNA4 for coat protein expression. All four RNAs carry a highly conserved and bulky 3' TLS(BMV) (about 200 nucleotides) with determinants for tyrosylation. We discovered TLS(BMV)-catalyzed self-tyrosylation of the tyrosyl-tRNA synthetase but could not clearly detect tyrosine incorporation into any virus-encoded protein. We established that BMV proteins do not need TLS(BMV) tyrosylation for their initiation. However, disruption of the TLSs strongly reduced the translation of genomic RNA1, RNA2, and less strongly, RNA3, whereas coat protein expression from RNA4 remained unaffected. This aberrant translation could be partially restored by providing the TLS(BMV) in trans. Intriguingly, a subdomain of the TLS(BMV) could even almost fully restore translation to the original pattern. We discuss here a model with a central and dominant role for the TLS(BMV) during the BMV infection cycle.

  17. RNA2DMut: a web tool for the design and analysis of RNA structure mutations.

    Science.gov (United States)

    Moss, Walter N

    2018-03-01

    With the widespread application of high-throughput sequencing, novel RNA sequences are being discovered at an astonishing rate. The analysis of function, however, lags behind. In both the cis - and trans -regulatory functions of RNA, secondary structure (2D base-pairing) plays essential regulatory roles. In order to test RNA function, it is essential to be able to design and analyze mutations that can affect structure. This was the motivation for the creation of the RNA2DMut web tool. With RNA2DMut, users can enter in RNA sequences to analyze, constrain mutations to specific residues, or limit changes to purines/pyrimidines. The sequence is analyzed at each base to determine the effect of every possible point mutation on 2D structure. The metrics used in RNA2DMut rely on the calculation of the Boltzmann structure ensemble and do not require a robust 2D model of RNA structure for designing mutations. This tool can facilitate a wide array of uses involving RNA: for example, in designing and evaluating mutants for biological assays, interrogating RNA-protein interactions, identifying key regions to alter in SELEX experiments, and improving RNA folding and crystallization properties for structural biology. Additional tools are available to help users introduce other mutations (e.g., indels and substitutions) and evaluate their effects on RNA structure. Example calculations are shown for five RNAs that require 2D structure for their function: the MALAT1 mascRNA, an influenza virus splicing regulatory motif, the EBER2 viral noncoding RNA, the Xist lncRNA repA region, and human Y RNA 5. RNA2DMut can be accessed at https://rna2dmut.bb.iastate.edu/. © 2018 Moss; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. The nuclear export protein of H5N1 influenza A viruses recruits Matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export.

    Science.gov (United States)

    Brunotte, Linda; Flies, Joe; Bolte, Hardin; Reuther, Peter; Vreede, Frank; Schwemmle, Martin

    2014-07-18

    In influenza A virus-infected cells, replication and transcription of the viral genome occurs in the nucleus. To be packaged into viral particles at the plasma membrane, encapsidated viral genomes must be exported from the nucleus. Intriguingly, the nuclear export protein (NEP) is involved in both processes. Although NEP stimulates viral RNA synthesis by binding to the viral polymerase, its function during nuclear export implicates interaction with viral ribonucleoprotein (vRNP)-associated M1. The observation that both interactions are mediated by the C-terminal moiety of NEP raised the question whether these two features of NEP are linked functionally. Here we provide evidence that the interaction between M1 and the vRNP depends on the NEP C terminus and its polymerase activity-enhancing property for the nuclear export of vRNPs. This suggests that these features of NEP are linked functionally. Furthermore, our data suggest that the N-terminal domain of NEP interferes with the stability of the vRNP-M1-NEP nuclear export complex, probably mediated by its highly flexible intramolecular interaction with the NEP C terminus. On the basis of our data, we propose a new model for the assembly of the nuclear export complex of Influenza A vRNPs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Targeted siRNA Delivery and mRNA Knockdown Mediated by Bispecific Digoxigenin-binding Antibodies

    Directory of Open Access Journals (Sweden)

    Britta Schneider

    2012-01-01

    Full Text Available Bispecific antibodies (bsAbs that bind to cell surface antigens and to digoxigenin (Dig were used for targeted small interfering RNA (siRNA delivery. They are derivatives of immunoglobulins G (IgGs that bind tumor antigens, such as Her2, IGF1-R, CD22, and LeY, with stabilized Dig-binding variable domains fused to the C-terminal ends of the heavy chains. siRNA that was digoxigeninylated at its 3′end was bound in a 2:1 ratio to the bsAbs. These bsAb–siRNA complexes delivered siRNAs specifically to cells that express the corresponding antigen as demonstrated by flow cytometry and confocal microscopy. The complexes internalized into endosomes and Dig-siRNAs separated from bsAbs, but Dig-siRNA was not released into the cytoplasm; bsAb-targeting alone was thus not sufficient for effective mRNA knockdown. This limitation was overcome by formulating the Dig-siRNA into nanoparticles consisting of dynamic polyconjugates (DPCs or into lipid-based nanoparticles (LNPs. The resulting complexes enabled bsAb-targeted siRNA-specific messenger RNA (mRNA knockdown with IC50 siRNA values in the low nanomolar range for a variety of bsAbs, siRNAs, and target cells. Furthermore, pilot studies in mice bearing tumor xenografts indicated mRNA knockdown in endothelial cells following systemic co-administration of bsAbs and siRNA formulated in LNPs that were targeted to the tumor vasculature.

  20. Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy

    Directory of Open Access Journals (Sweden)

    Liu Lin

    2009-12-01

    Full Text Available Abstract Background microRNAs (miRNAs regulate target gene expression by controlling their mRNAs post-transcriptionally. Increasing evidence demonstrates that miRNAs play important roles in various biological processes. However, the functions and precise regulatory mechanisms of most miRNAs remain elusive. Current research suggests that miRNA regulatory modules are complicated, including up-, down-, and mix-regulation for different physiological conditions. Previous computational approaches for discovering miRNA-mRNA interactions focus only on down-regulatory modules. In this work, we present a method to capture complex miRNA-mRNA interactions including all regulatory types between miRNAs and mRNAs. Results We present a method to capture complex miRNA-mRNA interactions using Bayesian network structure learning with splitting-averaging strategy. It is designed to explore all possible miRNA-mRNA interactions by integrating miRNA-targeting information, expression profiles of miRNAs and mRNAs, and sample categories. We also present an analysis of data sets for epithelial and mesenchymal transition (EMT. Our results show that the proposed method identified all possible types of miRNA-mRNA interactions from the data. Many interactions are of tremendous biological significance. Some discoveries have been validated by previous research, for example, the miR-200 family negatively regulates ZEB1 and ZEB2 for EMT. Some are consistent with the literature, such as LOX has wide interactions with the miR-200 family members for EMT. Furthermore, many novel interactions are statistically significant and worthy of validation in the near future. Conclusions This paper presents a new method to explore the complex miRNA-mRNA interactions for different physiological conditions using Bayesian network structure learning with splitting-averaging strategy. The method makes use of heterogeneous data including miRNA-targeting information, expression profiles of miRNAs and

  1. Efficient and nontoxic biological response carrier delivering TNF-α shRNA for gene silencing in a murine model of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Jialin Song

    2016-08-01

    Full Text Available Small interfering RNA (siRNA is an effective and specific method for silencing genes. However, an efficient and nontoxic carrier is needed to deliver the siRNA into the target cells. Tumor necrosis factor α (TNF-α plays a central role in the occurrence and progression of rheumatoid arthritis. In this study, we pre-synthetized a degradable cationic polymer (PDAPEI from 2,6-pyridinedicarboxaldehyde and low molecular weight polyethyleneimine (PEI, Mw=1.8 kDa as a gene vector for the delivery of TNF-α shRNA. The PDAPEI/pDNA complex showed a suitable particle size and stable zeta potential for transfection. In vitro study of the PDAPEI/pDNA complex revealed a lower cytotoxicity and higher transfection efficiency when transfecting TNF-α shRNA to macrophages by significantly down-regulating the expression of TNF-α. Moreover, the complex was extremely efficient in decreasing the severity of arthritis in mice with collagen-induced arthritis (CIA. PDAPEI delivered TNF-α shRNA has great potential in the treatment of rheumatoid arthritis.

  2. Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal

    OpenAIRE

    Narayanan, Krishna; Chen, Chun-Jen; Maeda, Junko; Makino, Shinji

    2003-01-01

    For any of the enveloped RNA viruses studied to date, recognition of a specific RNA packaging signal by the virus's nucleocapsid (N) protein is the first step described in the process of viral RNA packaging. In the murine coronavirus a selective interaction between the viral transmembrane envelope protein M and the viral ribonucleoprotein complex, composed of N protein and viral RNA containing a short cis-acting RNA element, the packaging signal, determines the selective RNA packaging into vi...

  3. Mapping protein-RNA interactions by RCAP, RNA-cross-linking and peptide fingerprinting.

    Science.gov (United States)

    Vaughan, Robert C; Kao, C Cheng

    2015-01-01

    RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein-RNA contacts within virions.

  4. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Anne T.; Bornholdt, Jette; Dybdahl, Marianne; Sharma, Anoop K.; Vogel, Ulla; Wallin, Haakan [National Institute of Occupational Health, Copenhagen (Denmark); Loft, Steffen [Copenhagen University, Institute of Public Health, Copenhagen (Denmark)

    2005-03-01

    Particle-induced carcinogenicity is not well understood, but might involve inflammation. The proinflammatory cytokine tumor necrosis factor (TNF) is considered to be an important mediator in inflammation. We investigated its role in particle-induced inflammation and DNA damage in mice with and without TNF signaling. TNF-/- mice and TNF+/+ mice were exposed by inhalation to 20 mg m{sup -3} carbon black (CB), 20 mg m{sup -3} diesel exhaust particles (DEP), or filtered air for 90 min on each of four consecutive days. DEP, but not CB particles, induced infiltration of neutrophilic granulocutes into the lung lining fluid (by the cellular fraction in the bronchoalveolar lavage fluid), and both particle types induced interleukin-6 mRNA in the lung tissue. Surprisingly, TNF-/- mice were intact in these inflammatory responses. There were more DNA strand breaks in the BAL cells of DEP-exposed TNF-/- mice and CB-exposed mice compared with the air-exposed mice. Thus, the CB-induced DNA damage in BAL-cells was independent of neutrophil infiltration. The data indicate that an inflammatory response was not a prerequisite for DNA damage, and TNF was not required for the induction of inflammation by DEP and CB particles. (orig.)

  5. RNA İNTERFERANS (RNAİ)

    OpenAIRE

    GÜNDOĞDU, Ramazan; ÇELİK, Venhar

    2009-01-01

    RNA interferans, uygun çift zincirli RNA’nın hücreye girdiği zaman, endojenik komplementer mRNA dizisinin parçalanmasına yol açan, transkripsiyon sonrası gen susturma mekanizmasıdır. RNA interferans, Dicer adı verilen bir RNase III enzimi tarafından çift zincirli RNA’nın küçük engelleyici RNA’lara (siRNA) kesilmesi ile başlamaktadır. Bu siRNA’lar daha sonra, bir multiprotein-RNA nükleaz kompleksi olan, RNA- indükleyici baskılama kompleksine (RISC) bağlanır. RISC, siRNA’ları komplementer mRNA’...

  6. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells.

    Science.gov (United States)

    Alshehri, Abdullah; Grabowska, Anna; Stolnik, Snow

    2018-02-28

    Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement - a stage between initial cellular internalization and final gene silencing of siRNA delivery systems.

  7. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation.

    Science.gov (United States)

    Alsaweed, Mohammed; Hepworth, Anna R; Lefèvre, Christophe; Hartmann, Peter E; Geddes, Donna T; Hassiotou, Foteini

    2015-10-01

    MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column-based phenol-free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  8. Affinity maturation of a portable Fab–RNA module for chaperone-assisted RNA crystallography

    Science.gov (United States)

    Koirala, Deepak; Shelke, Sandip A; Dupont, Marcel; Ruiz, Stormy; DasGupta, Saurja; Bailey, Lucas J; Benner, Steven A; Piccirilli, Joseph A

    2018-01-01

    Abstract Antibody fragments such as Fabs possess properties that can enhance protein and RNA crystallization and therefore can facilitate macromolecular structure determination. In particular, Fab BL3–6 binds to an AAACA RNA pentaloop closed by a GC pair with ∼100 nM affinity. The Fab and hairpin have served as a portable module for RNA crystallization. The potential for general application make it desirable to adjust the properties of this crystallization module in a manner that facilitates its use for RNA structure determination, such as ease of purification, surface entropy or binding affinity. In this work, we used both in vitro RNA selection and phage display selection to alter the epitope and paratope sides of the binding interface, respectively, for improved binding affinity. We identified a 5′-GNGACCC-3′ consensus motif in the RNA and S97N mutation in complimentarity determining region L3 of the Fab that independently impart about an order of magnitude improvement in affinity, resulting from new hydrogen bonding interactions. Using a model RNA, these modifications facilitated crystallization under a wider range of conditions and improved diffraction. The improved features of the Fab–RNA module may facilitate its use as an affinity tag for RNA purification and imaging and as a chaperone for RNA crystallography. PMID:29309709

  9. Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes.

    Science.gov (United States)

    Boivin, Vincent; Deschamps-Francoeur, Gabrielle; Couture, Sonia; Nottingham, Ryan M; Bouchard-Bourelle, Philia; Lambowitz, Alan M; Scott, Michelle S; Abou-Elela, Sherif

    2018-07-01

    Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. S tructured n on c oding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing. © 2018 Boivin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.

    Science.gov (United States)

    Hadd, Andrew; Perona, John J

    2014-12-19

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl-tRNA pairing specificities of bacterial glutaminyl-tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNA(Gln) by over 10(5)-fold compared to the wild-type enzyme. Better optimized designs of the protein-RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl-tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology.

  11. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.

    Science.gov (United States)

    Zaborowska, Justyna; Taylor, Alice; Roeder, Robert G; Murphy, Shona

    2012-01-01

    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

  12. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  13. Methods for RNA Analysis

    DEFF Research Database (Denmark)

    Olivarius, Signe

    of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...

  14. Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach.

    Science.gov (United States)

    Cambronne, Xiaolu A; Shen, Rongkun; Auer, Paul L; Goodman, Richard H

    2012-12-11

    Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.

  15. Mycobacterium smegmatis HelY Is an RNA-Activated ATPase/dATPase and 3'-to-5' Helicase That Unwinds 3'-Tailed RNA Duplexes and RNA:DNA Hybrids.

    Science.gov (United States)

    Uson, Maria Loressa; Ordonez, Heather; Shuman, Stewart

    2015-10-01

    Mycobacteria have a large and distinctive ensemble of DNA helicases that function in DNA replication, repair, and recombination. Little is known about the roster of RNA helicases in mycobacteria or their roles in RNA transactions. The 912-amino-acid Mycobacterium smegmatis HelY (MSMEG_3885) protein is a bacterial homolog of the Mtr4 and Ski2 helicases that regulate RNA 3' processing and turnover by the eukaryal exosome. Here we characterize HelY as an RNA-stimulated ATPase/dATPase and an ATP/dATP-dependent 3'-to-5' helicase. HelY requires a 3' single-strand RNA tail (a loading RNA strand) to displace the complementary strand of a tailed RNA:RNA or RNA:DNA duplex. The findings that HelY ATPase is unresponsive to a DNA polynucleotide cofactor and that HelY is unable to unwind a 3'-tailed duplex in which the loading strand is DNA distinguish HelY from other mycobacterial nucleoside triphosphatases/helicases characterized previously. The biochemical properties of HelY, which resemble those of Mtr4/Ski2, hint at a role for HelY in mycobacterial RNA catabolism. RNA helicases play crucial roles in transcription, RNA processing, and translation by virtue of their ability to alter RNA secondary structure or remodel RNA-protein interactions. In eukarya, the RNA helicases Mtr4 and Ski2 regulate RNA 3' resection by the exosome. Mycobacterium smegmatis HelY, a bacterial homolog of Mtr4/Ski2, is characterized here as a unidirectional helicase, powered by RNA-dependent ATP/dATP hydrolysis, that tracks 3' to 5' along a loading RNA strand to displace the complementary strand of a tailed RNA:RNA or RNA:DNA duplex. The biochemical properties of HelY suggest a role in bacterial RNA transactions. HelY homologs are present in pathogenic mycobacteria (e.g., M. tuberculosis and M. leprae) and are widely prevalent in Actinobacteria and Cyanobacteria but occur sporadically elsewhere in the bacterial domain. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    Science.gov (United States)

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-03-16

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.

  17. mRNA decay proteins are targeted to poly(A+ RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Itzel López-Rosas

    Full Text Available In higher eukaryotes, mRNA degradation and RNA-based gene silencing occur in cytoplasmic foci referred to as processing bodies (P-bodies. In protozoan parasites, the presence of P-bodies and their putative role in mRNA decay have yet to be comprehensively addressed. Identification of P-bodies might provide information on how mRNA degradation machineries evolved in lower eukaryotes. Here, we used immunofluorescence and confocal microscopy assays to investigate the cellular localization of mRNA degradation proteins in the human intestinal parasite Entamoeba histolytica and found evidence of the existence of P-bodies. Two mRNA decay factors, namely the EhXRN2 exoribonuclease and the EhDCP2 decapping enzyme, were localized in cytoplasmic foci in a pattern resembling P-body organization. Given that amoebic foci appear to be smaller and less rounded than those described in higher eukaryotes, we have named them "P-body-like structures". These foci contain additional mRNA degradation factors, including the EhCAF1 deadenylase and the EhAGO2-2 protein involved in RNA interference. Biochemical analysis revealed that EhCAF1 co-immunoprecipitated with EhXRN2 but not with EhDCP2 or EhAGO2-2, thus linking deadenylation to 5'-to-3' mRNA decay. The number of EhCAF1-containing foci significantly decreased after inhibition of transcription and translation with actinomycin D and cycloheximide, respectively. Furthermore, results of RNA-FISH assays showed that (i EhCAF1 colocalized with poly(A(+ RNA and (ii during silencing of the Ehpc4 gene by RNA interference, EhAGO2-2 colocalized with small interfering RNAs in cytoplasmic foci. Our observation of decapping, deadenylation and RNA interference proteins within P-body-like foci suggests that these structures have been conserved after originating in the early evolution of eukaryotic lineages. To the best of our knowledge, this is the first study to report on the localization of mRNA decay proteins within P

  18. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  19. Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus. PMID:16707664

  20. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.

  1. ARMOUR - A Rice miRNA: mRNA Interaction Resource.

    Science.gov (United States)

    Sanan-Mishra, Neeti; Tripathi, Anita; Goswami, Kavita; Shukla, Rohit N; Vasudevan, Madavan; Goswami, Hitesh

    2018-01-01

    ARMOUR was developed as A Rice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of miRNA:mRNA interactome in regulation of functional cellular machinery is supported by the sequence information of the mature and hairpin structures. ARMOUR provides flexibility to users in querying the database using multiple ways like known gene identifiers, gene ontology identifiers, KEGG identifiers and also allows on the fly fold change analysis and sequence search query with inbuilt BLAST algorithm. ARMOUR database provides a cohesive platform for novel and mature miRNAs and their expression in different experimental conditions and allows searching for their interacting mRNA targets, GO annotation and their involvement in various biological pathways. The ARMOUR database includes a provision for adding more experimental data from users, with an aim to develop it as a platform for sharing and comparing experimental data contributed by research groups working on rice.

  2. Flock House virus subgenomic RNA3 is replicated and its replication correlates with transactivation of RNA2

    International Nuclear Information System (INIS)

    Eckerle, Lance D.; Albarino, Cesar G.; Ball, L. Andrew.

    2003-01-01

    The nodavirus Flock House virus has a bipartite genome composed of RNAs 1 and 2, which encode the catalytic component of the RNA-dependent RNA polymerase (RdRp) and the capsid protein precursor, respectively. In addition to catalyzing replication of the viral genome, the RdRp also transcribes from RNA1 a subgenomic RNA3, which is both required for and suppressed by RNA2 replication. Here, we show that in the absence of RNA1 replication, FHV RdRp replicated positive-sense RNA3 transcripts fully and copied negative-sense RNA3 transcripts into positive strands. The two nonstructural proteins encoded by RNA3 were dispensable for replication, but sequences in the 3'-terminal 58 nucleotides were required. RNA3 variants that failed to replicate also failed to transactivate RNA2. These results imply that RNA3 is naturally produced both by transcription from RNA1 and by subsequent RNA1-independent replication and that RNA3 replication may be necessary for transactivation of RNA2

  3. The use of 125iodine-labeled RNA for detection of the RNA binding to ribosomes

    International Nuclear Information System (INIS)

    Mori, Tomohiko; Fukuda, Mitsuru

    1975-01-01

    The in vitro labeling of RNA with radioactive iodine is the efficient method to obtain the RNA with high specific activity. The present paper reports on the application of this technique to the production of iodine-labeled RNA for use in the experiment of binding RNA to ribosomes. Tobacco mosaic virus (TMV) RNA was used as natural mRNA, and E. coli S-30 preparation was used as a source of ribosomes. The TMV-RNA was prepared by bentonite-phenol extraction from TMV, and the method used for the iodation of RNA was based on the procedure described by Getz et al. The iodine-labeled RNA was incubated in a cell-free protein synthesizing system (S-30) prepared from E. coli K-12. After the incubation, the reaction mixture was layered onto sucrose gradient, centrifuged, and fractionated into 18 fractions. Optical density at 260 nm was measured, and radioactivity was counted, for each fraction. The binding of mRNA to ribosomes occurred even at 0 deg C, and the occurrence of the nonspecific binding was also shown. Consequently, the specific binding, i.e. the formation of the initiation complex being involved in amino acid incorporation, may be estimated by subtracting the radioactivity associated with monosomes in the presence of both rRNA and ATA from that in the presence of rRNA only. It was shown that the iodine-labeled RNA can be used for the studies of binding RNA to ribosomes. (Kako, I.)

  4. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site.

    Science.gov (United States)

    Calviño, Fabiola R; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-04-07

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP.

  5. Conformational Selection and Induced Fit for RNA Polymerase and RNA/DNA Hybrid Backtracked Recognition

    Directory of Open Access Journals (Sweden)

    Haifeng eChen

    2015-11-01

    Full Text Available RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15 and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS P test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein.

  6. Characterization of complete particles (VSV-G/SIN-GFP) and empty particles (VSV-G/EMPTY) in human immunodeficiency virus type 1-based lentiviral products for gene therapy: potential applications for improvement of product quality and safety.

    Science.gov (United States)

    Zhao, Yuan; Keating, Kenneth; Dolman, Carl; Thorpe, Robin

    2008-05-01

    Lentiviral vectors persist in the host and are therefore ideally suited for long-term gene therapy. To advance the use of lentiviral vectors in humans, improvement of their production, purification, and characterization has become increasingly important and challenging. In addition to cellular contaminants derived from packaging cells, empty particles without therapeutic function are the major impurities that compromise product safety and efficacy. Removal of empty particles is difficult because of their innate similarity in particle size and protein composition to the complete particles. We propose that comparison of the properties of lentiviral products with those of purposely expressed empty particles may reveal potential differences between empty and complete particles. For this, three forms of recombinant lentiviral samples, that is, recombinant vesicular stomatitis virus glycoprotein (VSV-G) proteins, empty particles (VSV-G/Empty), and complete particles (VSV-G/SIN-GFP) carrying viral RNA, were purified by size-exclusion chromatography (SEC). The SEC-purified samples were further analyzed by immunoblotting with six antibodies to examine viral and cellular proteins associated with the particles. This study has demonstrated, for the first time, important differences between VSV-G/Empty particles and complete VSV-G/SIN-GFP particles. Differences include the processing of Gag protein and the inclusion of cellular proteins in the particles. Our findings support the development of improved production, purification, and characterization methods for lentiviral products.

  7. Intrinsic noise of microRNA-regulated genes and the ceRNA hypothesis.

    Directory of Open Access Journals (Sweden)

    Javad Noorbakhsh

    Full Text Available MicroRNAs are small noncoding RNAs that regulate genes post-transciptionally by binding and degrading target eukaryotic mRNAs. We use a quantitative model to study gene regulation by inhibitory microRNAs and compare it to gene regulation by prokaryotic small non-coding RNAs (sRNAs. Our model uses a combination of analytic techniques as well as computational simulations to calculate the mean-expression and noise profiles of genes regulated by both microRNAs and sRNAs. We find that despite very different molecular machinery and modes of action (catalytic vs stoichiometric, the mean expression levels and noise profiles of microRNA-regulated genes are almost identical to genes regulated by prokaryotic sRNAs. This behavior is extremely robust and persists across a wide range of biologically relevant parameters. We extend our model to study crosstalk between multiple mRNAs that are regulated by a single microRNA and show that noise is a sensitive measure of microRNA-mediated interaction between mRNAs. We conclude by discussing possible experimental strategies for uncovering the microRNA-mRNA interactions and testing the competing endogenous RNA (ceRNA hypothesis.

  8. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  9. A small RNA activates CFA synthase by isoform-specific mRNA stabilization.

    Science.gov (United States)

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-11-13

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.

  10. Species-independent MicroRNA Gene Discovery

    KAUST Repository

    Kamanu, Timothy K.

    2012-12-01

    MicroRNA (miRNA) are a class of small endogenous non-coding RNA that are mainly negative transcriptional and post-transcriptional regulators in both plants and animals. Recent studies have shown that miRNA are involved in different types of cancer and other incurable diseases such as autism and Alzheimer’s. Functional miRNAs are excised from hairpin-like sequences that are known as miRNA genes. There are about 21,000 known miRNA genes, most of which have been determined using experimental methods. miRNA genes are classified into different groups (miRNA families). This study reports about 19,000 unknown miRNA genes in nine species whereby approximately 15,300 predictions were computationally validated to contain at least one experimentally verified functional miRNA product. The predictions are based on a novel computational strategy which relies on miRNA family groupings and exploits the physics and geometry of miRNA genes to unveil the hidden palindromic signals and symmetries in miRNA gene sequences. Unlike conventional computational miRNA gene discovery methods, the algorithm developed here is species-independent: it allows prediction at higher accuracy and resolution from arbitrary RNA/DNA sequences in any species and thus enables examination of repeat-prone genomic regions which are thought to be non-informative or ’junk’ sequences. The information non-redundancy of uni-directional RNA sequences compared to information redundancy of bi-directional DNA is demonstrated, a fact that is overlooked by most pattern discovery algorithms. A novel method for computing upstream and downstream miRNA gene boundaries based on mathematical/statistical functions is suggested, as well as cutoffs for annotation of miRNA genes in different miRNA families. Another tool is proposed to allow hypotheses generation and visualization of data matrices, intra- and inter-species chromosomal distribution of miRNA genes or miRNA families. Our results indicate that: miRNA and miRNA

  11. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    Directory of Open Access Journals (Sweden)

    Nikki van Bel

    Full Text Available The viral integrase (IN is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs. Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  12. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    Science.gov (United States)

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  13. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    Science.gov (United States)

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  14. Orotidine-Containing RNA: Implications for the Hierarchical Selection (Systems Chemistry Emergence) of RNA.

    Science.gov (United States)

    Kim, Eun-Kyong; Martin, Vincent; Krishnamurthy, Ramanarayanan

    2017-09-12

    The prebiotic synthesis of canonical nucleobases from HCN is a cornerstone for the RNA world hypothesis. However, their role in the primordial pathways to RNA is still debated. The very same process starting from HCN also gives rise to orotic acid, which (via orotidine) plays a crucial role in extant biology in the de novo synthesis of uridine and cytidine, the informational base-pairs in RNA. However, orotidine itself is absent in RNA. Given the prebiotic and biological relevance of orotic acid vis-à-vis uracil, we investigated orotidine-containing RNA oligonucleotides and show that they have severely compromised base-pairing properties. While not unexpected, these results suggest that the emergence of extant RNA cannot just be a consequence of the plausible prebiotic formation of its chemical constituents/building blocks. In combination with other investigations on alternative prebiotic nucleobases, sugars, and linkers, these findings imply that the selection of the components of extant RNA occurred at a higher hierarchical level of an oligomer/polymer based on its functional properties-pointing to a systems chemistry emergence of RNA from a library of precursors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yih-Horng Shiao

    Full Text Available BACKGROUND: Ribosomal RNA (rRNA is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1 and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014. During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014. Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. CONCLUSIONS/SIGNIFICANCE: The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  16. miRNA-mediated 'tug-of-war' model reveals ceRNA propensity of genes in cancers.

    Science.gov (United States)

    Swain, Arpit Chandan; Mallick, Bibekanand

    2018-06-01

    Competing endogenous RNA (ceRNA) are transcripts that cross-regulate each other at the post-transcriptional level by competing for shared microRNA response elements (MREs). These have been implicated in various biological processes impacting cell-fate decisions and diseases including cancer. There are several studies that predict possible ceRNA pairs by adopting various machine-learning and mathematical approaches; however, there is no method that enables us to gauge as well as compare the propensity of the ceRNA of a gene and precisely envisages which among a pair exerts a stronger pull on the shared miRNA pool. In this study, we developed a method that uses the 'tug of war of genes' concept to predict and quantify ceRNA potential of a gene for the shared miRNA pool in cancers based on a score represented by SoCeR (score of competing endogenous RNA). The method was executed on the RNA-Seq transcriptional profiles of genes and miRNA available at TCGA along with CLIP-supported miRNA-target sites to predict ceRNA in 32 cancer types which were validated with already reported cases. The proposed method can be used to determine the sequestering capability of the gene of interest as well as in ranking the probable ceRNA candidates of a gene. Finally, we developed standalone applications (SoCeR tool) to aid researchers in easier implementation of the method in analysing different data sets or diseases. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  17. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    Science.gov (United States)

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  18. Enzymatic activities of the GB virus-B RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Ranjith-Kumar, C.T.; Santos, Jan Lee; Gutshall, Lester L.; Johnston, Victor K.; Juili, L.-G.; Kim, M.-J.; Porter, David J.; Maley, Derrick; Greenwood, Cathy; Earnshaw, David L.; Baker, Audrey; Gu Baohua; Silverman, Carol; Sarisky, Robert T.; Kao Cheng

    2003-01-01

    The GB virus-B (GBV-B) nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) with greater than 50% sequence similarity to the hepatitis C virus (HCV) NS5B. Recombinant GBV-B NS5B was reported to possess RdRp activity (W. Zhong et al., 2000, J. Viral Hepat. 7, 335-342). In this study, the GBV-B RdRp was examined more thoroughly for different RNA synthesis activities, including primer-extension, de novo initiation, template switch, terminal nucleotide addition, and template specificity. The results can be compared with previous characterizations of the HCV RdRp. The two RdRps share similarities in terms of metal ion and template preference, the abilities to add nontemplated nucleotides, perform both de novo initiation and extension from a primer, and switch templates. However, several differences in RNA synthesis between the GBV-B and HCV RdRps were observed, including (i) optimal temperatures for activity, (ii) ranges of Mn 2+ concentration tolerated for activity, and (iii) cation requirements for de novo RNA synthesis and terminal transferase activity. To assess whether the recombinant GBV-B RdRp may represent a relevant surrogate system for testing HCV antiviral agents, two compounds demonstrated to be active at nanomolar concentrations against HCV NS5B were tested on the GBV RdRp. A chain terminating nucleotide analog could prevent RNA synthesis, while a nonnucleoside HCV inhibitor was unable to affect RNA synthesis by the GBV RdRp

  19. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure.

    Science.gov (United States)

    Zhang, Jinwei; Landick, Robert

    2016-04-01

    The vectorial (5'-to-3' at varying velocity) synthesis of RNA by cellular RNA polymerases (RNAPs) creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived, pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here, we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNAP and nascent RNA structure. We categorize and rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. RNA-DNA Differences Are Generated in Human Cells within Seconds after RNA Exits Polymerase II

    Directory of Open Access Journals (Sweden)

    Isabel X. Wang

    2014-03-01

    Full Text Available RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs in nascent RNA. Our results show that RDDs begin to occur in RNA chains ∼55 nt from the RNA polymerase II (Pol II active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.

  1. Deletions in cox2 mRNA result in loss of splicing and RNA editing and gain of novel RNA editing sites.

    Directory of Open Access Journals (Sweden)

    Stefanie Grüttner

    Full Text Available As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.

  2. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  3. Non-Target Effects of Green Fluorescent Protein (GFP-Derived Double-Stranded RNA (dsRNA-GFP Used in Honey Bee RNA Interference (RNAi Assays

    Directory of Open Access Journals (Sweden)

    Francis M. F. Nunes

    2013-01-01

    Full Text Available RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP-derived double-stranded RNA (dsRNA-GFP is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  4. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays.

    Science.gov (United States)

    Nunes, Francis M F; Aleixo, Aline C; Barchuk, Angel R; Bomtorin, Ana D; Grozinger, Christina M; Simões, Zilá L P

    2013-01-04

    RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  5. A biologically inspired two-species exclusion model: effects of RNA polymerase motor traffic on simultaneous DNA replication

    Science.gov (United States)

    Ghosh, Soumendu; Mishra, Bhavya; Patra, Shubhadeep; Schadschneider, Andreas; Chowdhury, Debashish

    2018-04-01

    We introduce a two-species exclusion model to describe the key features of the conflict between the RNA polymerase (RNAP) motor traffic, engaged in the transcription of a segment of DNA, concomitant with the progress of two DNA replication forks on the same DNA segment. One of the species of particles (P) represents RNAP motors while the other (R) represents the replication forks. Motivated by the biological phenomena that this model is intended to capture, a maximum of two R particles only are allowed to enter the lattice from two opposite ends whereas the unrestricted number of P particles constitutes a totally asymmetric simple exclusion process (TASEP) in a segment in the middle of the lattice. The model captures three distinct pathways for resolving the co-directional as well as head-on collision between the P and R particles. Using Monte Carlo simulations and heuristic analytical arguments that combine exact results for the TASEP with mean-field approximations, we predict the possible outcomes of the conflict between the traffic of RNAP motors (P particles engaged in transcription) and the replication forks (R particles). In principle, the model can be adapted to experimental conditions to account for the data quantitatively.

  6. TGF-β Suppression of HBV RNA through AID-Dependent Recruitment of an RNA Exosome Complex

    Science.gov (United States)

    Kitamura, Kouichi; Wang, Zhe; Chowdhury, Sajeda; Monjurul, Ahasan Md; Wakae, Kousho; Koura, Miki; Shimadu, Miyuki; Kinoshita, Kazuo; Muramatsu, Masamichi

    2015-01-01

    Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner. PMID:25836330

  7. Chimira: analysis of small RNA sequencing data and microRNA modifications.

    Science.gov (United States)

    Vitsios, Dimitrios M; Enright, Anton J

    2015-10-15

    Chimira is a web-based system for microRNA (miRNA) analysis from small RNA-Seq data. Sequences are automatically cleaned, trimmed, size selected and mapped directly to miRNA hairpin sequences. This generates count-based miRNA expression data for subsequent statistical analysis. Moreover, it is capable of identifying epi-transcriptomic modifications in the input sequences. Supported modification types include multiple types of 3'-modifications (e.g. uridylation, adenylation), 5'-modifications and also internal modifications or variation (ADAR editing or single nucleotide polymorphisms). Besides cleaning and mapping of input sequences to miRNAs, Chimira provides a simple and intuitive set of tools for the analysis and interpretation of the results (see also Supplementary Material). These allow the visual study of the differential expression between two specific samples or sets of samples, the identification of the most highly expressed miRNAs within sample pairs (or sets of samples) and also the projection of the modification profile for specific miRNAs across all samples. Other tools have already been published in the past for various types of small RNA-Seq analysis, such as UEA workbench, seqBuster, MAGI, OASIS and CAP-miRSeq, CPSS for modifications identification. A comprehensive comparison of Chimira with each of these tools is provided in the Supplementary Material. Chimira outperforms all of these tools in total execution speed and aims to facilitate simple, fast and reliable analysis of small RNA-Seq data allowing also, for the first time, identification of global microRNA modification profiles in a simple intuitive interface. Chimira has been developed as a web application and it is accessible here: http://www.ebi.ac.uk/research/enright/software/chimira. aje@ebi.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  8. Shielding the messenger (RNA): microRNA-based anticancer therapies

    Science.gov (United States)

    Sotillo, Elena; Thomas-Tikhonenko, Andrei

    2011-01-01

    It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21–22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded. PMID:21514318

  9. Transfer RNA and human disease

    Directory of Open Access Journals (Sweden)

    Jamie A Abbott

    2014-06-01

    Full Text Available Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA genes are hotspots for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase, mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing. Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  10. Transfer RNA and human disease.

    Science.gov (United States)

    Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M

    2014-01-01

    Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  11. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA–microRNA regulatory network in nasopharyngeal carcinoma model systems

    Directory of Open Access Journals (Sweden)

    Carol Ying-Ying Szeto

    2014-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein–Barr virus (EBV-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA–mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL, single nucleotide variant (SNV, and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies.

  12. A Comprehensive tRNA Deletion Library Unravels the Genetic Architecture of the tRNA Pool

    Science.gov (United States)

    Bloom-Ackermann, Zohar; Navon, Sivan; Gingold, Hila; Towers, Ruth; Pilpel, Yitzhak; Dahan, Orna

    2014-01-01

    Deciphering the architecture of the tRNA pool is a prime challenge in translation research, as tRNAs govern the efficiency and accuracy of the process. Towards this challenge, we created a systematic tRNA deletion library in Saccharomyces cerevisiae, aimed at dissecting the specific contribution of each tRNA gene to the tRNA pool and to the cell's fitness. By harnessing this resource, we observed that the majority of tRNA deletions show no appreciable phenotype in rich medium, yet under more challenging conditions, additional phenotypes were observed. Robustness to tRNA gene deletion was often facilitated through extensive backup compensation within and between tRNA families. Interestingly, we found that within tRNA families, genes carrying identical anti-codons can contribute differently to the cellular fitness, suggesting the importance of the genomic surrounding to tRNA expression. Characterization of the transcriptome response to deletions of tRNA genes exposed two disparate patterns: in single-copy families, deletions elicited a stress response; in deletions of genes from multi-copy families, expression of the translation machinery increased. Our results uncover the complex architecture of the tRNA pool and pave the way towards complete understanding of their role in cell physiology. PMID:24453985

  13. Small Molecule Modifiers of the microRNA and RNA Interference Pathway

    OpenAIRE

    Deiters, Alexander

    2009-01-01

    Recently, the RNA interference (RNAi) pathway has become the target of small molecule inhibitors and activators. RNAi has been well established as a research tool in the sequence-specific silencing of genes in eukaryotic cells and organisms by using exogenous, small, double-stranded RNA molecules of approximately 20 nucleotides. Moreover, a recently discovered post-transcriptional gene regulatory mechanism employs microRNAs (miRNAs), a class of endogenously expressed small RNA molecules, whic...

  14. Analysis of intermolecular RNA-RNA recombination by rubella virus

    International Nuclear Information System (INIS)

    Adams, Sandra D.; Tzeng, W.-P.; Chen, M.-H.; Frey, Teryl K.

    2003-01-01

    To investigate whether rubella virus (RUB) undergoes intermolecular RNA-RNA recombination, cells were cotransfected with pairs of in vitro transcripts from genomic cDNA plasmid vectors engineered to contain nonoverlapping deletions: the replicative transcript maintained the 5'-proximal nonstructural (NS) ORF (which contained the replicase, making it RNA replication competent), had a deletion in the 3'-proximal structural protein (SP) ORF, and maintained the 3' end of the genome, including the putative 3' cis-acting elements (CSE), while the nonreplicative transcript consisted of the 3' half of the genome including the SP-ORF and 3' CSE. Cotransfection yielded plaque-forming virus that synthesized the standard genomic and subgenomic RNAs and thus was generated by RNA-RNA recombination. Using transcripts tagged with a 3'-terminal deletion, it was found that recombinants contained the 3' end derived from the replicative strand, indicating a cis-preference for initiation of negative-strand synthesis. In cotransfections in which the replicative transcript lacked the 3' CSE, recombination occurred, albeit at lower efficiency, indicating that initiation in trans from the NS-ORF can occur. The 3' CSE was sufficient as a nonreplicative transcript, showing that it can serve as a promoter for negative-strand RNA synthesis. While deletion mutagenesis showed that the presence of the junction untranslated region (J-UTR) between the ORFs appeared to be necessary on both transcripts for recombination in this region of the genome, analysis with transcripts tagged with restriction sites showed that the J-UTR was not a hot spot for recombination compared to neighboring regions in both ORFs. Sequence analysis of recombinants revealed that both precise (homologous) and imprecise recombination (aberrant, homologous resulting in duplications) occurred; however, imprecise recombination only involved the J-UTR or the 3' end of the NS-ORF and the J-UTR (maintaining the NS-ORF), indicating

  15. ncRNA-class Web Tool: Non-coding RNA feature extraction and pre-miRNA classification web tool

    KAUST Repository

    Kleftogiannis, Dimitrios A.; Theofilatos, Konstantinos A.; Papadimitriou, Stergios; Tsakalidis, Athanasios K.; Likothanassis, Spiridon D.; Mavroudi, Seferina P.

    2012-01-01

    Until recently, it was commonly accepted that most genetic information is transacted by proteins. Recent evidence suggests that the majority of the genomes of mammals and other complex organisms are in fact transcribed into non-coding RNAs (ncRNAs), many of which are alternatively spliced and/or processed into smaller products. Non coding RNA genes analysis requires the calculation of several sequential, thermodynamical and structural features. Many independent tools have already been developed for the efficient calculation of such features but to the best of our knowledge there does not exist any integrative approach for this task. The most significant amount of existing work is related to the miRNA class of non-coding RNAs. MicroRNAs (miRNAs) are small non-coding RNAs that play a significant role in gene regulation and their prediction is a challenging bioinformatics problem. Non-coding RNA feature extraction and pre-miRNA classification Web Tool (ncRNA-class Web Tool) is a publicly available web tool ( http://150.140.142.24:82/Default.aspx ) which provides a user friendly and efficient environment for the effective calculation of a set of 58 sequential, thermodynamical and structural features of non-coding RNAs, plus a tool for the accurate prediction of miRNAs. © 2012 IFIP International Federation for Information Processing.

  16. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    Science.gov (United States)

    Kundu, Anup K; Iyer, Swathi V; Chandra, Sruti; Adhikari, Amit S; Iwakuma, Tomoo; Mandal, Tarun K

    2017-01-01

    The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line. The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP) and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency. Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent. This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  17. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Anup K Kundu

    Full Text Available The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line.The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency.Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent.This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  18. miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy.

    Directory of Open Access Journals (Sweden)

    Alexander S Baras

    Full Text Available Small RNA RNA-seq for microRNAs (miRNAs is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the level of raw reads in addition to reads per million (RPM. Reads for all other RNA species (tRNA, rRNA, snoRNA, mRNA are provided, which is useful for identifying potential contaminants and optimizing small RNA purification strategies. miRge was designed to optimally identify miRNA isomiRs and employs an entropy based statistical measurement to identify differential production of isomiRs. This allowed us to identify decreasing entropy in isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench, omiRAs, miRDeep2, Chimira, UEA small RNA Workbench, miRge was faster (4 to 32-fold and was among the top-two methods in maximally aligning miRNAs reads per sample. Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simultaneously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated analysis of miRNA expression across all samples. As miRge was designed for analysis of single as well as multiple samples, miRge is an ideal tool for high and low-throughput users. miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html.

  19. Application of shRNA-containing herpes simplex virus type 1 (HSV-1)-based gene therapy for HSV-2-induced genital herpes.

    Science.gov (United States)

    Liu, Zhihong; Xiang, Yang; Wei, Zhun; Yu, Bo; Shao, Yong; Zhang, Jie; Yang, Hong; Li, Manmei; Guan, Ming; Wan, Jun; Zhang, Wei

    2013-11-01

    HSV-1-based vectors have been widely used to achieve targeted delivery of genes into the nervous system. In the current study, we aim to use shRNA-containing HSV-1-based gene delivery system for the therapy of HSV-2 infection. Guinea pigs were infected intravaginally with HSV-2 and scored daily for 100 days for the severity of vaginal disease. HSV-2 shRNA-containing HSV-1 was applied intravaginally daily between 8 and 14 days after HSV-2 challenge. Delivery of HSV-2 shRNA-containing HSV-1 had no effect on the onset of disease and acute virus shedding in animals, but resulted in a significant reduction in both the cumulative recurrent lesion days and the number of days with recurrent disease. Around half of the animals in the HSV-2 shRNA group did not develop recurrent disease 100 days post HSV-2 infection. In conclusion, HSV-2 shRNA-containing HSV-1 particles are effective in reducing the recurrence of genital herpes caused by HSV-2. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.

    Science.gov (United States)

    Matkovich, Scot J; Dorn, Gerald W

    2015-01-01

    MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.