WorldWideScience

Sample records for enantioselective synthesis application

  1. Application of enantioselective radical reactions: synthesis of (+)-ricciocarpins A and B.

    Science.gov (United States)

    Sibi, Mukund P; He, Liwen

    2004-05-27

    Enantioselective synthesis of (+)-ricciocarpins A and B has been achieved in 41 and 45% overall yields, respectively, starting from a beta-substituted oxazolidinone. The key steps in the strategy are an enantioselective conjugate radical addition and the addition of a furyl organometallic to a key aldehyde intermediate. [reaction--see text

  2. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Science.gov (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  3. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal...

  4. Enantioselective biotransformations of nitriles in organic synthesis.

    Science.gov (United States)

    Wang, Mei-Xiang

    2015-03-17

    The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by

  5. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    Science.gov (United States)

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described.

  6. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  7. Design, Synthesis and Biological Activity of Novel Reversible Peptidyl FVIIa Inhibitors Rh-Catalyzed Enantioselective Synthesis of Diaryl Amines

    DEFF Research Database (Denmark)

    Storgaard, Morten

    functional group tolerance. Unfortunately, these -aryl tetramic acids were too unreactive and ring opening toward the synthesis of the building block did not succeed. However, -aryl tetramic acids are still interesting compounds due to their potential biological activity. The building block 3.15 (P1......-catalyzed enantioselective synthesis of diaryl amines, which is an important class of compounds (Chapter 4). For example it is found in the third generation anti-histaminic agent levocetirizine. Development of efficient synthetic routes is therefore of considerably interest. The rhodium-catalyzed enantioselective synthesis...

  8. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  9. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enantioselective synthesis of no-carrier added (NCA) 6-[18F]Fluoro-L-Dopa

    International Nuclear Information System (INIS)

    Duanzhi Yin; Lan Zhang; Yongxian Wang; Ganghua Tang; First Military Medical Univ., Guangzhou; Xiaolan Tang

    2003-01-01

    6-[ 18 F]Fluoro-L-Dopa (6-FDOPA) is the analogue of L-Dopa, the biosynthesis precursor for dopamine. As a PET tracer, it was widely applied for the presynaptic dopamine function studies in human brain. The application of a chiral phase-transfer-catalyst (PTC) in enantioselective synthesis of N.C.A. 6-[ 18 F]Fluoro-L-Dopa has been developed recently. An improved procedure was described. The labeling precursor (6-Trimethylammoniumveratraldehyde Triflate) and PTC (O-Allyl-N-(9)-anthracenylcinchonidinium Bromide) were synthesized. A successful synthesis route was developed for the preparation of 6-[ 18 F]Fluoro-L-Dopa with high radiochemical yields (4-9%, decay uncorrected) and short synthesis time(80min). The radiochemical purity was over 99% and no D-isomer was detected by HPLC analysis using a chiral mobile phase. (author)

  11. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.

    Science.gov (United States)

    Craig, Ryan; Sorrentino, Emiliano; Connon, Stephen J

    2018-03-26

    A new bifunctional phase-transfer catalyst that employs hydrogen bonding as a control element was developed to promote efficient enantioselective S N 2 reactions for the construction all-carbon quaternary stereocenters in high yield and excellent enantioselectivity (up to 97 % ee) utilizing the alkylation of a malleable oxindole substrate. The utility of the methodology was demonstrated through a concise and highly enantioselective synthesis of (-)-debromoflustramine B. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enantioselective carbenoid insertion into C(sp3–H bonds

    Directory of Open Access Journals (Sweden)

    J. V. Santiago

    2016-05-01

    Full Text Available The enantioselective carbenoid insertion into C(sp3–H bonds is an important tool for the synthesis of complex molecules due to the high control of enantioselectivity in the formation of stereogenic centers. This paper presents a brief review of the early issues, related mechanistic studies and recent applications on this chemistry area.

  13. Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds

    International Nuclear Information System (INIS)

    Maltsev, O V; Beletskaya, Irina P; Zlotin, Sergei G

    2011-01-01

    Recent applications of organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds: natural products, pharmaceutical agents and plant protection agents are reviewed. The key mechanisms of stereoinduction, types of organocatalysts and reagents used in these reactions are considered. The material is classified according to the type of newly formed bonds incorporating the asymmetric carbon atom, and the information for the most numerous C–C coupling reactions is systematized according to the natures of the electrophile and the nucleophile. The bibliography includes 433 references.

  14. A Green, Enantioselective Synthesis of Warfarin for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Wong, Terence C.; Sultana, Camille M.; Vosburg, David A.

    2010-01-01

    The enantioselective synthesis of drugs is of fundamental importance in the pharmaceutical industry. In this experiment, students synthesize either enantiomer of warfarin, a widely used anticoagulant, in a single step from inexpensive starting materials. Stereoselectivity is induced by a commercial organocatalyst, ("R","R")- or…

  15. Enantioselective Synthesis of (-)-Vallesine: Late-Stage C17-Oxidation via Complex Indole Boronation.

    Science.gov (United States)

    Antropow, Alyssa H; Garcia, Nicholas R; White, Kolby L; Movassaghi, Mohammad

    2018-06-04

    The first enantioselective total synthesis of (-)-vallesine via a strategy that features a late-stage regioselective C17-oxidation followed by a highly stereoselective transannular cyclization is reported. The versatility of this approach is highlighted by the divergent synthesis of the archetypal alkaloid of this family, (+)-aspidospermidine, and an A-ring-oxygenated derivative, (+)-deacetylaspidospermine, the precursor to (-)-vallesine, from a common intermediate.

  16. Catalytic Enantioselective Synthesis of 3,4-Unsubstituted Thiochromenes through Sulfa-Michael/Julia-Kocienski Olefination Cascade Reaction.

    Science.gov (United States)

    Simlandy, Amit Kumar; Mukherjee, Santanu

    2017-05-05

    A highly enantioselective cascade sulfa-Michael/Julia-Kocienski olefination reaction between 2-mercaptobenzaldehydes and β-substituted vinyl PT-sulfones has been realized for the synthesis of 3,4-unsubstituted 2H-thiochromenes. This reaction, catalyzed by diphenylprolinol TMS ether, proceeds through an aromatic iminium intermediate and furnishes a wide range of 2-substiuted 2H-thiochromenes with excellent enantioselectivities (up to 99:1 er).

  17. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger; Knop, Nils; Rueping, Magnus

    2016-01-01

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted

  18. Enantioselective synthesis of chiral 3-aryl-1-indanones through rhodium-catalyzed asymmetric intramolecular 1,4-addition.

    Science.gov (United States)

    Yu, Yue-Na; Xu, Ming-Hua

    2013-03-15

    Enantioselective synthesis of potentially useful chiral 3-aryl-1-indanones was achieved through a rhodium-catalyzed asymmetric intramolecular 1,4-addition of pinacolborane chalcone derivatives using extraordinary simple MonoPhos as chiral ligand under relatively mild conditions. This novel protocol offers an easy access to a wide variety of enantioenriched 3-aryl-1-indanone derivatives in high yields (up to 95%) with excellent enantioselectivities (up to 95% ee).

  19. The enantioselective total synthesis of (+)-clusianone.

    Science.gov (United States)

    Horeischi, Fiene; Guttroff, Claudia; Plietker, Bernd

    2015-02-11

    (+)-Clusianone, an exo-type B PPAP with reported anti-HIV and chemoprotective activities, was synthesized in eleven steps with 97% ee starting from acetylacetone. An enantioselective decarboxylative Tsuji-Trost-allylation and a Ru-catalyzed ring-closing metathesis-decarboxylative allylation were used to control both diastereo- and enantioselectivity.

  20. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes.

    Science.gov (United States)

    Taylor, Buck L H; Swift, Elizabeth C; Waetzig, Joshua D; Jarvo, Elizabeth R

    2011-01-26

    Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols.

  1. Bicyclic Guanidine Catalyzed Asymmetric Tandem Isomerization Intramolecular-Diels-Alder Reaction: The First Catalytic Enantioselective Total Synthesis of (+)-alpha-Yohimbine.

    Science.gov (United States)

    Feng, Wei; Jiang, Danfeng; Kee, Choon-Wee; Liu, Hongjun; Tan, Choon-Hong

    2016-02-04

    Hydroisoquinoline derivatives were prepared in moderate to good enantioselectivities via a bicyclic guanidine-catalyzed tandem isomerization intramolecular-Diels-Alder (IMDA) reaction of alkynes. With this synthetic method, the first enantioselective synthesis of (+)-alpha-yohimbine was completed in 9 steps from the IMDA products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Computer-Assisted Design and Synthetic Applications of Chiral Enol Borinates: Novel, Highly Enantioselective Aldol Reagents

    Directory of Open Access Journals (Sweden)

    Gennari Cesare

    1998-01-01

    Full Text Available We have recently described the development of a quantitative transition state model for the prediction of stereoselectivity in the boron-mediated aldol reaction. This model provides qualitative insights into the factors contributing to the stereochemical outcome of a variety of reactions of synthetic importance. The force field model was used to assist the design and preparation of new chiral boron ligands derived from menthone. The chiral boron enolates were employed in various stereoselective processes, including the addition to chiral aldehydes and the reagent-controlled total synthesis of (3S,4S-statine. The chiral enolates derived from alpha-halo and alpha-oxysubstituted thioacetates were added to aldehydes and imines. Addition to imines leads to the enantioselective synthesis of chiral aziridines, a formal total synthesis of (+-thiamphenicol, and a new highly efficient synthesis of the paclitaxel (taxol® C-13 side-chain and taxol semisynthesis from baccatin III. The stereochemical outcome of the addition to imines was rationalised with the aid of computational studies. Enantioselective addition reactions of the chiral boron enolate derived from thioacetate have successfully been applied to solid phase bound aldehydes to give aldol products in comparable yields and enantioselectivities to the usual solution conditions.

  3. Graphene-based hybrid for enantioselective sensing applications.

    Science.gov (United States)

    Zor, Erhan; Morales-Narváez, Eden; Alpaydin, Sabri; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben

    2017-01-15

    Chirality is a major field of research of chemical biology and is essential in pharmacology. Accordingly, approaches for distinguishing between different chiral forms of a compound are of great interest. We report on an efficient and generic enantioselective sensor that is achieved by coupling reduced graphene oxide with γ-cyclodextrin (rGO/γ-CD). The enantioselective sensing capability of the resulting structure was operated in both electrical and optical mode for of tryptophan enantiomers (D-/L-Trp). In this sense, voltammetric and photoluminescence measurements were conducted and the experimental results were compared to molecular docking method. We gain insight into the occurring recognition mechanism with selectivity toward D- and L-Trp as shown in voltammetric, photoluminescence and molecular docking responses. As an enantioselective solid phase on an electrochemical transducer, thanks to the different dimensional interaction of enantiomers with hybrid material, a discrepancy occurs in the Gibbs free energy leading to a difference in oxidation peak potential as observed in electrochemical measurements. The optical sensing principle is based on the energy transfer phenomenon that occurs between photoexcited D-/L-Trp enantiomers and rGO/γ-CD giving rise to an enantioselective photoluminescence quenching due to the tendency of chiral enantiomers to form complexes with γ-CD in different molecular orientations as demonstrated by molecular docking studies. The approach, which is the first demonstration of applicability of molecular docking to show both enantioselective electrochemical and photoluminescence quenching capabilities of a graphene-related hybrid material, is truly new and may have broad interest in combination of experimental and computational methods for enantiosensing of chiral molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chiral amides via copper-catalysed enantioselective conjugate addition

    NARCIS (Netherlands)

    Schoonen, Anne K.; Fernández-Ibáñez, M. Ángeles; Fañanás-Mastral, Martín; Teichert, Johannes F.; Feringa, Bernard

    2014-01-01

    A highly enantioselective one pot procedure for the synthesis of beta-substituted amides was developed starting from the corresponding alpha,beta-unsaturated esters. This new methodology is based on the copper-catalysed enantioselective conjugate addition of Grignard reagents to

  5. Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst.

    Science.gov (United States)

    Vara, Brandon A; Struble, Thomas J; Wang, Weiwei; Dobish, Mark C; Johnston, Jeffrey N

    2015-06-17

    Carbon dioxide exhibits many of the qualities of an ideal reagent: it is nontoxic, plentiful, and inexpensive. Unlike other gaseous reagents, however, it has found limited use in enantioselective synthesis. Moreover, unprecedented is a tool that merges one of the simplest biological approaches to catalysis-Brønsted acid/base activation-with this abundant reagent. We describe a metal-free small molecule catalyst that achieves the three component reaction between a homoallylic alcohol, carbon dioxide, and an electrophilic source of iodine. Cyclic carbonates are formed enantioselectively.

  6. Iridium-Catalyzed Asymmetric Intramolecular Allylic Amidation : Enantioselective Synthesis of Chiral Tetrahydroisoquinolines and Saturated Nitrogen Heterocycles

    NARCIS (Netherlands)

    Teichert, Johannes F.; Fañanás-Mastral, Martín; Feringa, Bernard

    2011-01-01

    For the first time iridium catalysis has been used for the synthesis of chiral tetrahydroisoquinolines with excellent yields and high enantioselectivities (see scheme; cod=1,5-cyclooctadiene, DBU=1,8-diazabicyclo[5.4.0]undec-7-ene). These products are important chiral building blocks for the

  7. A Readily Accessible Class of Chiral Cp Ligands and their Application in RuII -Catalyzed Enantioselective Syntheses of Dihydrobenzoindoles.

    Science.gov (United States)

    Wang, Shou-Guo; Park, Sung Hwan; Cramer, Nicolai

    2018-05-04

    Chiral cyclopentadienyl (Cp x ) ligands have a large application potential in enantioselective transition-metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two-step synthesis of a novel class of chiral Cp x ligands with tunable steric properties that can be readily used for complexation, giving Cp x Rh I , Cp x Ir I , and Cp x Ru II complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl-derived Cp x ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis

    Directory of Open Access Journals (Sweden)

    Dario Perdicchia

    2015-12-01

    Full Text Available 2-Piperidineethanol (1 and its corresponding N-protected aldehyde (2 were used for the synthesis of several natural and synthetic compounds. The existence of a stereocenter at position 2 of the piperidine skeleton and the presence of an easily-functionalized group, such as the alcohol, set 1 as a valuable starting material for enantioselective synthesis. Herein, are presented both synthetic and enzymatic methods for the resolution of the racemic 1, as well as an overview of synthesized natural products starting from the enantiopure 1.

  9. Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

    International Nuclear Information System (INIS)

    Kim, Cheolwoong; Seo, Seung Woo; Lee, Yona; Kim, Sunggon

    2014-01-01

    We have developed the synthetic methodology of enantioenriched benzindoloquinolizidines based on the organocatalytic enantioselective conjugate addition-cyclization cascade reaction of o-N-(3-indoleacetyl)amino-cinnamaldehydes with malonates followed by an acid-catalyzed intramolecular Pictet-Spengler type cyclization. The asymmetric reaction using diphenylprolinol TMS ether as an organocatalyst produces the desired products with good to excellent yields and high enantioselectivities (up to 98% ee). The evaluation of the applications of this synthetic methodology for generating enantioenriched benzindolo-quinolizidines and studies on the biological activity of these compounds against human prostate cancer in particular are now in progress. Results of these studies will be presented in due course. Many new types of chemical reactions have been developed to facilitate easier synthesis of complex compounds. Among the strategies, domino reactions, which have been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process, are widely used due to their high synthetic efficiency by reducing both the number of synthetic operation required and the quantities of chemicals and solvents used

  10. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    Science.gov (United States)

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enantioselective synthesis of the novel chiral sulfoxide derivative as a glycogen synthase kinase 3beta inhibitor.

    Science.gov (United States)

    Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Yamano, Toru; Itoh, Fumio; Kori, Masakuni

    2010-09-01

    Glycogen synthase kinase 3beta (GSK-3beta) inhibitors are expected to be attractive therapeutic agents for the treatment of Alzheimer's disease (AD). Recently we discovered sulfoxides (S)-1 as a novel GSK-3beta inhibitor having in vivo efficacy. We investigated practical asymmetric preparation methods for the scale-up synthesis of (S)-1. The highly enantioselective synthesis of (S)-1 (94% ee) was achieved by titanium-mediated oxidation with D-(-)-diethyl tartrate on gram scale.

  12. A Convergent Enantioselective Total Synthesis of (-)-Perhydrohistrionicotoxin with an Intramolecular Imino Ene-type Reaction as a Key Step

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars

    1998-01-01

    A convergent enantioselective total synthesis of the neurotoxic spirocyclic alkaloid (-)-perhydrohistrionicotoxin (2) is described. A Lewis acid-mediated intramolecular imine ene-type reaction was used for the key spirocyclisation step (14 to 3, with 3 being obtained as a single diastereoisomer...

  13. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products.

    Science.gov (United States)

    Ghislieri, Diego; Green, Anthony P; Pontini, Marta; Willies, Simon C; Rowles, Ian; Frank, Annika; Grogan, Gideon; Turner, Nicholas J

    2013-07-24

    The development of cost-effective and sustainable catalytic methods for the production of enantiomerically pure chiral amines is a key challenge facing the pharmaceutical and fine chemical industries. This challenge is highlighted by the estimate that 40-45% of drug candidates contain a chiral amine, fueling a demand for broadly applicable synthetic methods that deliver target structures in high yield and enantiomeric excess. Herein we describe the development and application of a "toolbox" of monoamine oxidase variants from Aspergillus niger (MAO-N) which display remarkable substrate scope and tolerance for sterically demanding motifs, including a new variant, which exhibits high activity and enantioselectivity toward substrates containing the aminodiphenylmethane (benzhydrylamine) template. By combining rational structure-guided engineering with high-throughput screening, it has been possible to expand the substrate scope of MAO-N to accommodate amine substrates containing bulky aryl substituents. These engineered MAO-N biocatalysts have been applied in deracemization reactions for the efficient asymmetric synthesis of the generic active pharmaceutical ingredients Solifenacin and Levocetirizine as well as the natural products (R)-coniine, (R)-eleagnine, and (R)-leptaflorine. We also report a novel MAO-N mediated asymmetric oxidative Pictet-Spengler approach to the synthesis of (R)-harmicine.

  14. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    Science.gov (United States)

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  15. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Nová k, Zoltá n; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  16. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  17. Enhancing the potential of enantioselective organocatalysis with light

    Science.gov (United States)

    Silvi, Mattia; Melchiorre, Paolo

    2018-02-01

    Organocatalysis—catalysis mediated by small chiral organic molecules—is a powerful technology for enantioselective synthesis, and has extensive applications in traditional ionic, two-electron-pair reactivity domains. Recently, organocatalysis has been successfully combined with photochemical reactivity to unlock previously inaccessible reaction pathways, thereby creating new synthetic opportunities. Here we describe the historical context, scientific reasoning and landmark discoveries that were essential in expanding the functions of organocatalysis to include one-electron-mediated chemistry and excited-state reactivity.

  18. Chiral gold(I vs chiral silver complexes as catalysts for the enantioselective synthesis of the second generation GSK-hepatitis C virus inhibitor

    Directory of Open Access Journals (Sweden)

    María Martín-Rodríguez

    2011-07-01

    Full Text Available The synthesis of a GSK 2nd generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I and gold(I catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.

  19. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    Science.gov (United States)

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  20. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    Science.gov (United States)

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of l-threitol-based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions.

    Science.gov (United States)

    Rapi, Zsolt; Nemcsok, Tamás; Pálvölgyi, Ádám; Keglevich, György; Grün, Alajos; Bakó, Péter

    2017-06-01

    A few new l-threitol-based lariat ethers incorporating a monoaza-15-crown-5 unit were synthesized starting from diethyl l-tartrate. These macrocycles were used as phase transfer catalysts in asymmetric Michael addition reactions under mild conditions to afford the adducts in a few cases in good to excellent enantioselectivities. The addition of 2-nitropropane to trans-chalcone, and the reaction of diethyl acetamidomalonate with β-nitrostyrene resulted in the chiral Michael adducts in good enantioselectivities (90% and 95%, respectively). The substituents of chalcone had a significant impact on the yield and enantioselectivity in the reaction of diethyl acetoxymalonate. The highest enantiomeric excess (ee) values (99% ee) were measured in the case of 4-chloro- and 4-methoxychalcone. The phase transfer catalyzed cyclopropanation reaction of chalcone and benzylidene-malononitriles using diethyl bromomalonate as the nucleophile (MIRC reaction) was also developed. The corresponding chiral cyclopropane diesters were obtained in moderate to good (up to 99%) enantioselectivities in the presence of the threitol-based crown ethers. © 2017 Wiley Periodicals, Inc.

  2. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines

    Directory of Open Access Journals (Sweden)

    Erli Sugiono

    2013-11-01

    Full Text Available A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  3. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    Science.gov (United States)

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  4. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  5. Enantioselective Synthesis of Aminodiols by Sequential Rhodium-Catalysed Oxyamination/Kinetic Resolution: Expanding the Substrate Scope of Amidine-Based Catalysis.

    Science.gov (United States)

    Guasch, Joan; Giménez-Nueno, Irene; Funes-Ardoiz, Ignacio; Bernús, Miguel; Matheu, M Isabel; Maseras, Feliu; Castillón, Sergio; Díaz, Yolanda

    2018-03-26

    Regio- and stereoselective oxyamination of dienes through a tandem rhodium-catalysed aziridination-nucleophilic opening affords racemic oxazolidinone derivatives, which undergo a kinetic resolution acylation process with amidine-based catalysts (ABCs) to achieve s values of up to 117. This protocol was applied to the enantioselective synthesis of sphingosine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals

    Science.gov (United States)

    Kern, Nicolas; Plesniak, Mateusz P.; McDouall, Joseph J. W.; Procter, David J.

    2017-12-01

    The rapid generation of molecular complexity from simple starting materials is a key challenge in synthesis. Enantioselective radical cyclization cascades have the potential to deliver complex, densely packed, polycyclic architectures, with control of three-dimensional shape, in one step. Unfortunately, carrying out reactions with radicals in an enantiocontrolled fashion remains challenging due to their high reactivity. This is particularly the case for reactions of radicals generated using the classical reagent, SmI2. Here, we demonstrate that enantioselective SmI2-mediated radical cyclizations and cascades that exploit a simple, recyclable chiral ligand can convert symmetrical ketoesters to complex carbocyclic products bearing multiple stereocentres with high enantio- and diastereocontrol. A computational study has been used to probe the origin of the enantioselectivity. Our studies suggest that many processes that rely on SmI2 can be rendered enantioselective by the design of suitable ligands.

  7. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.; Kolding, Helene; Alleva, Jennifer L.; Stoltz, Brian M.

    2011-01-01

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.

    2011-06-10

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hydrothermal synthesis, crystal structures, and enantioselective adsorption property of bis(L-histidinato)nickel(II) monohydrate

    Science.gov (United States)

    Ramos, Christian Paul L.; Conato, Marlon T.

    2018-05-01

    Despite the numerous researches in metal-organic frameworks (MOFs), there are only few reports on biologically important amino acids, histidine in particular, on its use as bridging ligand in the construction of open-framework architectures. In this work, hydrothermal synthesis was used to prepare a compound based on Ni2+ and histidine. The coordination assembly of imidazole side chain of histidine with divalent nickel ions in aqueous condition yielded purple prismatic solids. Single crystal X-ray diffraction (XRD) analysis of the product revealed structure for Ni(C6H8N3O2)2 • H2O that has a monoclinic (C2) structure with lattice parameters, a = 29.41, b = 8.27, c = 6.31 Å, β = 90.01 ˚. Circular dichroism - optical rotatory dispersion (CD-ORD), Powder X-ray diffraction (PXRD) and Fourier transform - infrared spectroscopy (FT-IR) analyses are conducted to further characterize the crystals. Enantioselective adsorption analysis using racemic mixture of 2-butanol confirmed bis(L-histidinato)nickel(II) monohydrate MOF crystal's enantioselective property preferentially favoring the adsorption of (S)-2-butanol isomer.

  10. Application of diazene-directed fragment assembly to the total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids

    OpenAIRE

    Lathrop, Stephen; Movassaghi, Mohammad

    2013-01-01

    We describe the first application of our methodology for heterodimerization via diazene fragmentation towards the total synthesis of (−)-calycanthidine, meso-chimonanthine, and (+)-desmethyl-meso-chimonanthine. Our syntheses of these alkaloids feature an improved route to C3a-aminocyclotryptamines, an enhanced method for sulfamide synthesis and oxidation, in addition to a late-stage diversification leading to the first enantioselective total synthesis of (+)-desmethyl-meso-chimonanthine and i...

  11. Enantioselective 1,3-dipolar cycloadditions of diazoacetates with electron-deficient olefins.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Soeta, Takahiro

    2007-04-12

    [reaction: see text] A general strategy for highly enantioselective 1,3-dipolar cycloaddition of diazoesters to beta-substituted, alpha-substituted, and alpha,beta-disubstituted alpha,beta-unsaturated pyrazolidinone imides is described. Cycloadditions utilizing less reactive alpha,beta-disubstituted dipolarophiles require elevated reaction temperatures, but still provide the corresponding pyrazolines with excellent enantioselectivities. Finally, an efficient synthesis of (-)-manzacidin A employing this cycloaddition methodology as a key step is illustrated.

  12. Quinine-Promoted, Enantioselective Boron-Tethered Diels-Alder Reaction by Anomeric Control of Transition State Conformation.

    Science.gov (United States)

    Scholl, Katie; Dillashaw, John; Timpy, Evan; Lam, Yu-Hong; DeRatt, Lindsey; Benton, Tyler R; Powell, Jacqueline P; Houk, Kendall N; Morgan, Jeremy B

    2018-05-01

    Diels-Alder reactions of tethered vinyl-metal species offer the opportunity to fashion highly functionalized diol intermediates for synthesis. We have developed the first enantioselective boron-tethered Diels-Alder reaction using quinine as a chiral promoter. Quinine recovery, enantioselectivity enhancement, and manipulation of the cyclohexene core are also investigated. DFT modeling calculations confirm the role of quinine as a bidentate ligand enhancing reaction rates. The enantioselectivity of the cycloaddition is proposed to originate from a boron-centered anomeric effect.

  13. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    Science.gov (United States)

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  14. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B.

    Science.gov (United States)

    Panish, Robert A; Chintala, Srinivasa R; Fox, Joseph M

    2016-04-11

    A novel, mixed-ligand chiral rhodium(II) catalyst, Rh2(S-NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S-NTTL)3(dCPA) reveals a "chiral crown" conformation with a bulky dicyclohexylphenyl acetate ligand and three N-naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium-catalyzed bicyclobutanation/ copper-catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8% overall yield and 92% ee. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Organocatalysts for enantioselective synthesis of fine chemicals: definitions, trends and developments

    Directory of Open Access Journals (Sweden)

    Chiara Palumbo

    2015-02-01

    Full Text Available Organocatalysis, that is the use of small organic molecules to catalyze organic transformations, has been included among the most successful concepts in asymmetric catalysis, and it has been used for the enantioselective construction of C–C, C–N, C–O, C–S, C–P and C–halide bonds. Since the seminal works in early 2000, the scientific community has been paying an ever-growing attention to the use of organocatalysts for the synthesis, with high yields and remarkable stereoselectivities, of optically active fine chemicals of interest for the pharmaceutical industry. A brief overview is here presented about the two main classes of substrate activation by the catalyst: covalent organocatalysis and non-covalent organocatalysis, with a more stringent focus on some recent outcomes in the field of the latter and of hydrogen bond-based catalysis. Finally, some successful examples of heterogenization of organocatalysts are also discussed, in the view of a potential industrial exploitation.

  16. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  17. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  18. Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents.

    Science.gov (United States)

    Nicolaou, K C; Pulukuri, Kiran Kumar; Rigol, Stephan; Buchman, Marek; Shah, Akshay A; Cen, Nicholas; McCurry, Megan D; Beabout, Kathryn; Shamoo, Yousif

    2017-11-08

    An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.

  19. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    Science.gov (United States)

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  20. Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation

    Directory of Open Access Journals (Sweden)

    Yiyang Liu

    2014-10-01

    Full Text Available Pd-catalyzed enantioselective alkylation in conjunction with further synthetic elaboration enables the formal total syntheses of a number of “classic” natural product target molecules. This publication highlights recent methods for setting quaternary and tetrasubstituted tertiary carbon stereocenters to address the synthetic hurdles encountered over many decades across multiple compound classes spanning carbohydrate derivatives, terpenes, and alkaloids. These enantioselective methods will impact both academic and industrial settings, where the synthesis of stereogenic quaternary carbons is a continuing challenge.

  1. Enantioselective Rhodium Enolate Protonations. A New Methodology for the Synthesis of β2-Amino Acids

    Science.gov (United States)

    Sibi, Mukund P.; Tatamidani, Hiroto; Patil, Kalyani

    2008-01-01

    Rhodium catalyzed conjugate addition of an aryl boronic acid to α-methylamino acrylates followed by enantioselective protonation of the oxa-π-allylrhodium intermediate provides access to aryl substituted β2-amino acids. The impact of the different variables of the reaction on the levels of enantioselectivity has been assessed. PMID:15957893

  2. Chemoenzymatic synthesis of statine side chain building blocks and application in the total synthesis of the cholesterol-lowering compound solistatin.

    Science.gov (United States)

    Rieder, Oliver; Wolberg, Michael; Foegen, Silke E; Müller, Michael

    2017-09-20

    The synthesis and enzymatic reduction of several 6-substituted dioxohexanoates are presented. Two-step syntheses of tert-butyl 6-bromo-3,5-dioxohexanoate and the corresponding 6-hydroxy compound have been achieved in 89% and 59% yield, respectively. Regio- and enantioselective reduction of these diketones and of the 6-chloro derivative with alcohol dehydrogenase from Lactobacillus brevis (LBADH) gave the (5S)-5-hydroxy-3-oxo products with enantiomeric excesses of 91%, 98.4%, and >99.5%, respectively. Chain elongation of the reduction products by one carbon via cyanide addition, and by more than one carbon by Julia-Kocienski olefination, gave access to well-established statine side-chain building blocks. Application in the synthesis of the cholesterol-lowering natural compound solistatin is given. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Enantioselective rhodium enolate protonations. A new methodology for the synthesis of beta2-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Tatamidani, Hiroto; Patil, Kalyani

    2005-06-23

    [reaction: see text] Rhodium-catalyzed conjugate addition of an aryl boronic acid to alpha-methylamino acrylates followed by enantioselective protonation of the oxa-pi-allylrhodium intermediate provides access to aryl-substituted beta(2)-amino acids. The impact of the different variables of the reaction on the levels of enantioselectivity has been assessed.

  4. Enantioselective synthesis of alpha,beta-disubstituted-beta-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Prabagaran, Narayanasamy; Ghorpade, Sandeep G; Jasperse, Craig P

    2003-10-01

    Highly diastereoselective and enantioselective addition of N-benzylhydroxylamine to imides 17 and 20-30 produces alpha,beta-trans-disubstituted N-benzylisoxazolidinones 19 and 31-41. These reactions proceed in 60-96% ee with 93-99% de's using 5 mol % of Mg(NTf2)2 and ligand 18. The product isoxazolidinones can be hydrogenolyzed directly to provide alpha,beta-disubstituted-beta-amino acids.

  5. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  6. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.; Widger, Peter C. B.; Ahmed, Syud M.; Jeske, Ryan C.; Hirahata, Wataru; Lobkovsky, Emil B.; Coates, Geoffrey W.

    2010-01-01

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  7. An enantioselective synthesis of S-γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-14C] hydrochloride, an important metabolite of fluoxetine hydrochloride

    International Nuclear Information System (INIS)

    Wheeler, W.J.

    1992-01-01

    The S-enantiomer of γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3- 14 C] hydrochloride has been prepared in eight steps from acetophenone-[carbonyl- 14 C]. The key step in the synthesis involved the enantioselective reduction of R-2-chloroacetophenone-[1- 14 C]with (-)-diisopinocampheyl-chloroborane in an 86.5% yield. The chlorohydrin was converted to R-phenyloxirane-[1- 14 C], which was subsequently converted to the corresponding R-cyanohydrin by reaction with TMS-CN/CaO. Borane reduction and arylation, followed by salt formation yielded S-γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3- 14 C] hydrochloride. (author)

  8. Enantioselective radical addition/trapping reactions with alpha,beta-disubstituted unsaturated imides. Synthesis of anti-propionate aldols.

    Science.gov (United States)

    Sibi, Mukund P; Petrovic, Goran; Zimmerman, Jake

    2005-03-02

    This manuscript describes a highly diastereo- and enantioselective intermolecular radical addition/hydrogen atom transfer to alpha,beta-disubstituted enoates. Additionally, we show that anti-propionate aldol-like products can be easily prepared from alpha-methyl-beta-acyloxyenoates in good yields and high diastereo- and enantioselectivities.

  9. The Brønsted Acid-Catalyzed, Enantioselective Aza-Diels-Alder Reaction for the Direct Synthesis of Chiral Piperidones.

    Science.gov (United States)

    Weilbeer, Claudia; Sickert, Marcel; Naumov, Sergei; Schneider, Christoph

    2017-01-12

    We disclose herein the first enantioselective aza-Diels-Alder reaction of β-alkyl-substituted vinylketene silyl-O,O-acetals and imines furnishing a broad range of optically highly enriched 4-alkyl-substituted 2-piperidones. As a catalyst for this one-pot reaction we employed a chiral phosphoric acid which effects a vinylogous Mannich reaction directly followed by ring-closure to the lactam. Subsequent fully diastereoselective transformations including hydrogenation, enolate alkylation, and lactam alkylation/reduction processes converted the cycloadducts into various highly substituted piperidines of great utility for the synthesis of natural products and medicinally active compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Catalytic enantioselective alkene aminohalogenation/cyclization involving atom transfer.

    Science.gov (United States)

    Bovino, Michael T; Chemler, Sherry R

    2012-04-16

    Problem solved: the title reaction was used for the synthesis of chiral 2-bromo, chloro, and iodomethyl indolines and 2-iodomethyl pyrrolidines. Stereocenter formation is believed to occur by enantioselective cis aminocupration and C-X bond formation is believed to occur by atom transfer. The ultility of the products as versatile synthetic intermediates was demonstrated, as was a radical cascade cyclization sequence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2catalyzed by cinchona alkaloids under mild conditions

    International Nuclear Information System (INIS)

    Chen, Bao-Li; Tu, Zhuo-Ying; Zhu, Hong-Wei; Sun, Wen-Wen; Wang, Huan; Lu, Jia-Xing

    2014-01-01

    Highlights: •Cinchona alkaloids catalysis achieve enantioselective electrocarboxylation of racemic aromatic ketones. •The applications of CO 2 enantioselective electrochemical fixation into optically active hydroxyl carboxylic acids have been expanded. •The applications of alkaloids have been expanded. •The applications of asymmetric synthesis by electrochemical methodology have been expanded. -- Abstract: The enantioselective electrocarboxylation of pro-chiral aromatic ketones (2-acetonaphthone, 1-(6-methoxy-2-naphthyl)ethanone, 1-(4-methoxy-1-naphthyl)ethanone) with atmospheric pressure of CO 2 catalyzed by cinchona alkaloids in the presence of phenol was investigated in an undivided cell for the first time to give optically active 2-hydroxy-2-arylpropionic acid. For the model compound 2-acetonaphthone, the influence of various reaction conditions, such as cathode material, current density, catalyst type, ratio of proton to catalyst and catalyst quantity, on the enantiomeric excesses (ee) and yield has been investigated. Under the optimized conditions of 2-acetonaphthone, all the aromatic ketones examined are converted into corresponding optically active 2-hydroxy-2-arylpropionic acids in moderate yield (32.2% - 41.3%) and ee (48.1% - 48.6%). In addition, the electrochemical behavior of 2-acetonaphthone has been studied by cyclic voltammetry (CV) in the absence and presence of CO 2 . Moreover, the probable reaction pathway was proposed accordingly

  12. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  13. Enantioselective organocatalyzed Oxa-Michael-Aldol cascade reactions: Construction of chiral 4H-chromenes with a trifluoromethylated tetrasubstituted carbon stereocenter

    KAUST Repository

    Zhang, Jing

    2015-03-13

    The first organocatalytic asymmetric synthesis of 4H-chromenes bearing a trifluoromethylated tetrasubstituted carbon center is presented. Chiral secondary amines promote the oxa-Michael-aldol cascade reaction between alkynals and 2-trifluoroacetylphenols via iminium-allenamine activation to produce pharmaceutically important heterocycles with excellent enantioselectivities. The proposed reaction can be scaled-up easily with maintenance of the excellent enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  15. Development of Environment-Friendly Insecticides Based on Enantioselectivity: Bifenthrin as a Case.

    Science.gov (United States)

    Qian, Yi; Zhou, Peixue; Zhang, Quan

    2017-01-01

    Chiral insecticides significantly contribute to the environmental pollutions recently. As the development of industry and agriculture, increasing number of chiral insecticides are to be introduced into the market. However, their enantioselective toxicology to ecosystem still remains uncertain. In this review, we embarked on a structured search of bibliographic databases for peer-reviewed articles regarding the enantioselective effects of bifenthrin, a typical chiral insecticide, on both target and non-target species. With this enantioselective property of chiral insecticides, they often exhibit adverse effects on non-target species enantioselectively. Specifically, the enantioselective effects of bifenthrin on target and non-target organisms were discussed. In target species, R-bifenthrin exerts more significant activities in deinsectization, compared with S-bifenthrin. On the other hand, Sbifenthrin is more toxic to non-target species than R-bifenthrin, which suggests that the application of sole enantiomer is more efficient and environment-friendly than that of racemate. This review confirms the choice of environment-friendly insecticides from the perspective of the enantioselectivity of chiral insecticides. To make insecticides more efficient to target species and less toxic to non-target species, further research should be done to investigated the potential effects of targetactive enantiomers on non-target organisms as well as the enantioselective fate of enantiomers in multiple environmental matrix.

  16. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel

    2011-03-04

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  17. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel; McDougal, Nolan T.; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  18. An enantioselective synthesis of S-[gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride, an important metabolite of fluoxetine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, W.J. (Lilly (Eli) and Co., Indianapolis, IN (United States). Lilly Research Labs.)

    1992-06-01

    The S-enantiomer of [gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride has been prepared in eight steps from acetophenone-[carbonyl-[sup 14]C]. The key step in the synthesis involved the enantioselective reduction of R-2-chloroacetophenone-[1-[sup 14]C]with (-)-diisopinocampheyl-chloroborane in an 86.5% yield. The chlorohydrin was converted to R-phenyloxirane-[1-[sup 14]C], which was subsequently converted to the corresponding R-cyanohydrin by reaction with TMS-CN/CaO. Borane reduction and arylation, followed by salt formation yielded S-[gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride. (author).

  19. Efficient and highly enantioselective formation of the all-carbon quaternary stereocentre of lyngbyatoxin A

    DEFF Research Database (Denmark)

    Vital, Paulo J.V.; Tanner, David

    2006-01-01

    Indole 25, an advanced intermediate in a projected enantioselective total synthesis of lyngbyatoxin A 1, was prepared from allylic alcohol 11 in 9 steps and >95% ee, key transformations being the enantiospecific rearrangement of vinyl epoxide 14 and the Hemetsberger-Knittel reaction of azide 24....

  20. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  1. Aziridino Alcohols as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kornø, Hanne Tøfting; Guijarro, David

    1998-01-01

    The chiral aziridino alcohols 1 -3 have been prepared either from amino acids (1a from serine; 1b - 1i and 3 from threonine; 2a - 2e from allo-threonine) or via asymmetric synthesis (1j, 1k, 1l and 2f from methyl cinnamate). These easily available ligands act as catalysts for the enantioselective...

  2. Diastereoselective and enantioselective reduction of tetralin-1,4-dione

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available BackgroundThe chemistry of tetralin-1,4-dione, the stable tautomer of 1,4-dihydroxynaphthalene, has not been explored previously. It is readily accessible and offers interesting opportunities for synthesis.ResultsThe title reactions were explored. L-Selectride reduced the diketone to give preferentially the cis-diol (d.r. 84 : 16. Red-Al gave preferentially the trans-diol (d.r. 13 : 87. NaBH4, LiAlH4, and BH3 gave lower diastereoselectivities (yields: 76–98%. Fractional crystallization allowed isolation of the cis-diol and the trans-diol (55% and 66% yield, respectively. Borane was used to cleanly give the mono-reduction product. Highly enantioselective CBS reductions afforded the trans-diol (72% yield, 99% ee and the mono-reduction product (81%, 95% ee.ConclusionDiastereoselective and enantioselective reductions of the unexplored tetralin-1,4-dione provides a very convenient entry into a number of synthetically highly attractive 1,4-tetralindiols and 4-hydroxy-1-tetralone.

  3. Diastereoselective and enantioselective reduction of tetralin-1,4-dione.

    Science.gov (United States)

    Kündig, E Peter; Enriquez-Garcia, Alvaro

    2008-01-01

    The chemistry of tetralin-1,4-dione, the stable tautomer of 1,4-dihydroxynaphthalene, has not been explored previously. It is readily accessible and offers interesting opportunities for synthesis. The title reactions were explored. L-Selectride reduced the diketone to give preferentially the cis-diol (d.r. 84 : 16). Red-Al gave preferentially the trans-diol (d.r. 13 : 87). NaBH(4), LiAlH(4), and BH(3) gave lower diastereoselectivities (yields: 76-98%). Fractional crystallization allowed isolation of the cis-diol and the trans-diol (55% and 66% yield, respectively). Borane was used to cleanly give the mono-reduction product. Highly enantioselective CBS reductions afforded the trans-diol (72% yield, 99% ee) and the mono-reduction product (81%, 95% ee). Diastereoselective and enantioselective reductions of the unexplored tetralin-1,4-dione provides a very convenient entry into a number of synthetically highly attractive 1,4-tetralindiols and 4-hydroxy-1-tetralone.

  4. Organocatalytic Enantioselective Pictet-Spengler Approach to Biologically Relevant 1-Benzyl-1,2,3,4-Tetrahydroisoquinoline Alkaloids

    NARCIS (Netherlands)

    Ruiz-Olalla, A.; Würdemann, M.A.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2015-01-01

    A general procedure for the synthesis of 1-benzyl-1,2,3,4-tetrahydroisoquinolines was developed, based on organocatalytic, regio- and enantioselective Pictet-Spengler reactions (86-92% ee) of N-(o-nitrophenylsulfenyl)-2-arylethyl-amines with arylacetaldehydes. The presence of the

  5. Efficient total synthesis of (S)-14-azacamptothecin.

    Science.gov (United States)

    Liu, Guan-Sai; Yao, Yuan-Shan; Xu, Peng; Wang, Shaozhong; Yao, Zhu-Jun

    2010-06-01

    An efficient total synthesis of (S)-14-azacamptothecin has been accomplished in 10 steps and 56% overall yield from 5H-pyrano[4,3-d]pyrimidine 8. A mild Hendrickson reagent-triggered intramolecular cascade cyclization, a highly enantioselective dihydroxylation, and an efficient palladium-catalyzed transformation of an O-allyl into N-allyl group are the key steps in the synthesis. This work provides a much higher overall yield than the previous achievement and shows sound flexibility for the further applications that will lead to new bioactive analogues.

  6. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  7. Enantioselective synthesis of possible diastereomers of heptadeca-1-ene-4,6-diyne-3,8,9,10-tetrol; putative structure of a conjugated diyne natural product isolated from Hydrocotyle leucocephala.

    Science.gov (United States)

    Prasad, Kavirayani R; Swain, Bandita

    2011-04-01

    Enantioselective synthesis of possible diastereomers of heptadeca-1-ene-4,6-diyne-3,8,9,10-tetrol, a structure proposed for the natural product isolated from Hydrocotyle leucocephala is accomplished. The reported spectral data of the natural product did not match those of any of the isomers that were synthesized and established that the structure proposed for the natural product is not correct and requires revision.

  8. Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides

    Directory of Open Access Journals (Sweden)

    Ryota Miyaji

    2017-08-01

    Full Text Available Bifunctional organocatalysts bearing amino and urea functional groups in a chiral molecular skeleton were applied to the enantioselective synthesis of axially chiral benzamides via aromatic electrophilic bromination. The results demonstrate the versatility of bifunctional organocatalysts for the enantioselective construction of axially chiral compounds. Moderate to good enantioselectivities were afforded with a range of benzamide substrates. Mechanistic investigations were also carried out.

  9. Enantioselectivity in environmental risk assessment of modern chiral pesticides

    International Nuclear Information System (INIS)

    Ye Jing; Zhao Meirong; Liu Jing; Liu Weiping

    2010-01-01

    Chiral pesticides comprise a new and important class of environmental pollutants nowadays. With the development of industry, more and more chiral pesticides will be introduced into the market. But their enantioselective ecotoxicology is not clear. Currently used synthetic pyrethroids, organophosphates, acylanilides, phenoxypropanoic acids and imidazolinones often behave enantioselectively in agriculture use and they always pose unpredictable enantioselective ecological risks on non-target organisms or human. It is necessary to explore the enantioselective toxicology and ecological fate of these chiral pesticides in environmental risk assessment. The enantioselective toxicology and the fate of these currently widely used pesticides have been discussed in this review article. - Chiral pesticides could pose unpredictable enantioselective toxicity on non-target organisms.

  10. Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred

    It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2

  11. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enantioselective desymmetrization of prochiral cyclohexanones by organocatalytic intramolecular Michael additions to α,β-unsaturated esters.

    Science.gov (United States)

    Gammack Yamagata, Adam D; Datta, Swarup; Jackson, Kelvin E; Stegbauer, Linus; Paton, Robert S; Dixon, Darren J

    2015-04-13

    A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83-99% ee) and in good yields (60-90%). Calculations revealed that stepwise C-C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enantioselective pharmacokinetics of sibutramine in rat.

    Science.gov (United States)

    Noh, Keumhan; Bae, Kyoungjin; Min, Bokyoung; Kim, Eunyoung; Kwon, Kwang-il; Jeong, Taecheon; Kang, Wonku

    2010-02-01

    Racemic sibutramine is widely used to treat obesity owing to its inhibition of serotonin and noradrenaline reuptake in synapses. Although the enantioselective effects of sibutramine and its two active desmethyl-metabolites, monodesmethylsibutramine (MDS) and didesmethylsibutramine (DDS), on anorexia and energy expenditure have been elucidated, the enantioselective pharmacokinetics of sibutramine are still unclear. Therefore, we aimed to characterize the enantioselective pharmacokinetics of sibutramine and its metabolites in plasma and urine following an intravenous and a single oral administration of sibutramine in rats. The absolute bioavailability of sibutramine was only about 7%. The pharmacologically less effective S-isomer of DDS was predominant in the plasma: the C ( max ) and the AUC ( inf ) were 28 and 30 times higher than those of the R-isomer, respectively (psibutramine metabolites MDS and DDS were present at lower concentrations, owing to their rapid biotransformation to hydroxylated and/or carbamoylglucuronized forms and their faster excretion in the urine. The present study is the first to elucidate the enantioselective pharmacokinetics of sibutramine in rats.

  14. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  15. Tin-free enantioselective radical reactions using silanes.

    Science.gov (United States)

    Sibi, Mukund P; Yang, Yong-Hua; Lee, Sunggi

    2008-12-04

    Readily available hexyl silane is an excellent choice as a H-atom donor and a chain carrier in Lewis acid mediated enantioselective radical reactions. Conjugate radical additions to alpha,beta-unsaturated imides at room temperature proceed in good yields and excellent enantioselectivities.

  16. Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles.

    Science.gov (United States)

    Haydl, Alexander M; Hilpert, Lukas J; Breit, Bernhard

    2016-05-04

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with internal and terminal alkynes features an utmost chemo-, regio-, and enantioselective access to enantiopure allylic pyrazoles, readily available for incorporation in small-molecule pharmaceuticals. This methodology is distinguished by a broad substrate scope, resulting in a remarkable compatability with a variety of different functional groups. It furthermore exhibits an intriguing case of regio-, position-, and enantioselectivity in just one step, underscoring the sole synthesis of just one out of up to six possible products in a highly flexible approach to allylated pyrazoles by emanating from various internal and terminal alkynes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio

    2010-10-01

    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  18. Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jing [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Ying [Department of Environmental Science, East China Normal University, Shanghai 200241 (China); Chen, Shengwen [School of Urban Development and Environment Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Liu, Chaonan; Zhu, Yongqiang [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Liu, Weiping, E-mail: wliu@zju.edu.cn [MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China)

    2014-01-15

    Highlights: •The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa. •Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer. •Lifecycle analysis of chiral pollutants needs more attention in environmental assessment. -- Abstract: Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides.

  19. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity.

    Science.gov (United States)

    Thomas, John Meurig; Raja, Robert

    2008-06-01

    In the mid-1990s, it became possible to prepare high-area silicas having pore diameters controllably adjustable in the range ca. 20-200 Å. Moreover, the inner walls of these nanoporous solids could be functionalized to yield single-site, chiral, catalytically active organometallic centers, the precise structures of which could be determined using in situ X-ray absorption and FTIR and multinuclear magic angle spinning (MAS) NMR spectroscopy. This approach opened up the prospect of performing heterogeneous enantioselective conversions in a novel manner, under the spatial restrictions imposed by the nanocavities within which the reactions occur. In particular, it suggested an alternative method for preparing pharmaceutically and agrochemically useful asymmetric products by capitalizing on the notion, initially tentatively perceived, that spatial confinement of prochiral reactants (and transition states formed at the chiral active center) would provide an altogether new method of boosting the enantioselectivity of the anchored chiral catalyst. Initially, we anchored chiral single-site heterogeneous catalysts to nanopores covalently via a ligand attached to Pd(II) or Rh(I) centers. Later, we employed a more convenient and cheaper electrostatic method, relying in part on strong hydrogen bonding. This Account provides many examples of these processes, encompassing hydrogenations, oxidations, and aminations. Of particular note is the facile synthesis from methyl benzoylformate of methyl mandelate, which is a precursor in the synthesis of pemoline, a stimulant of the central nervous system; our procedure offers several viable methods for reducing ketocarboxylic acids. In addition to relying on earlier (synchrotron-based) in situ techniques for characterizing catalysts, we have constructed experimental procedures involving robotically controlled catalytic reactors that allow the kinetics of conversion and enantioselectivity to be monitored continually, and we have access to

  20. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin; Falivene, Laura; Drinkel, Emma E.; Grant, Sharday; Linden, Anthony; Cavallo, Luigi; Dorta, Reto

    2012-01-01

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.; Stewart, Ian C.; Seashore-Ludlow, Brinton A.; Grubbs, Robert H.; Stoltz, Brian M.

    2010-01-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  3. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.

    2010-06-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  4. Enantioselective addition of nitrones to activated cyclopropanes.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Jasperse, Craig P

    2005-04-27

    In this paper, we demonstrate the first examples of chiral Lewis acid catalysis in the formation of tetrahydro-1,2-oxazines with very high enantioselectivity starting with diactivated cyclopropanes and nitrones (>90% yields and ee). Reactions with racemic substituted cyclopropanes provide approximately 1:1 diastereomeric tetrahydro-1,2-oxazine products with high enantioselectivity. Mechanistic information for the formation of the tetrahydro-1,2-oxazines is also detailed.

  5. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    Science.gov (United States)

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs

  6. P(O)R2-Directed Enantioselective C-H Olefination toward Chiral Atropoisomeric Phosphine-Olefin Compounds.

    Science.gov (United States)

    Li, Shi-Xia; Ma, Yan-Na; Yang, Shang-Dong

    2017-04-07

    An effective synthesis of chiral atropoisomeric biaryl phosphine-olefin compounds via palladium-catalyzed enantioselective C-H olefination has been developed for the first time. The reactions are operationally simple, tolerate wide functional groups, and have a good ee value. Notably, P(O)R 2 not only acts as the directing group to direct C-H activation in order to make a useful ligand but also serves to facilitate composition of the product in a useful manner in this transformation.

  7. Enzymatic routes for the synthesis of ursodeoxycholic acid.

    Science.gov (United States)

    Eggert, Thorsten; Bakonyi, Daniel; Hummel, Werner

    2014-12-10

    Ursodeoxycholic acid, a secondary bile acid, is used as a drug for the treatment of various liver diseases, the optimal dose comprises the range of 8-10mg/kg/day. For industrial syntheses, the structural complexity of this bile acid requires the use of an appropriate starting material as well as the application of regio- and enantio-selective enzymes for its derivatization. Most strategies for the synthesis start from cholic acid or chenodeoxycholic acid. The latter requires the conversion of the hydroxyl group at C-7 from α- into β-position in order to obtain ursodeoxycholic acid. Cholic acid on the other hand does not only require the same epimerization reaction at C-7 but the removal of the hydroxyl group at C-12 as well. There are several bacterial regio- and enantio-selective hydroxysteroid dehydrogenases (HSDHs) to carry out the desired reactions, for example 7α-HSDHs from strains of Clostridium, Bacteroides or Xanthomonas, 7β-HSDHs from Clostridium, Collinsella, or Ruminococcus, or 12α-HSDH from Clostridium or from Eggerthella. However, all these bioconversion reactions need additional steps for the regeneration of the coenzymes. Selected multi-step reaction systems for the synthesis of ursodeoxycholic acid are presented in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Infrared-thermographic screening of the activity and enantioselectivity of enzymes.

    Science.gov (United States)

    Reetz, M T; Hermes, M; Becker, M H

    2001-05-01

    The infrared radiation caused by the heat of reaction of an enantioselective enzyme-catalyzed transformation can be detected by modern photovoltaic infrared (IR)-thermographic cameras equipped with focal-plane array detectors. Specifically, in the lipase-catalyzed enantioselective acylation of racemic 1-phenylethanol, the (R)- and (S)-substrates are allowed to react separately in the wells of microtiter plates, the (R)-alcohol showing hot spots in the IR-thermographic images. Thus, highly enantioselective enzymes can be identified at kinetic resolution.

  9. Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of beta-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2006-02-20

    We have investigated the effect of nitrogen protecting groups in radical addition trapping experiments leading to beta(2)-amino acids. Of the three N-protecting groups examined, the phthalimido group was optimal with respect to both yields and enantioselectivity. Additionally, radical additions to more complex acrylates were also investigated, which provided access to functionalized beta(2)-amino acids in modest selectivity.

  10. Application of 7-azaisatins in enantioselective Morita–Baylis–Hillman reaction

    Directory of Open Access Journals (Sweden)

    Qing He

    2016-02-01

    Full Text Available 7-Azaisatin and 7-azaoxindole skeletons are valuable building blocks in diverse biologically active substances. Here 7-azaisatins turned out to be more efficient electrophiles than the analogous isatins in the enantioselective Morita–Baylis–Hillman (MBH reactions with maleimides using a bifunctional tertiary amine, β-isocupreidine (β-ICD, as the catalyst. This route allows a convenient approach to access multifunctional 3-hydroxy-7-aza-2-oxindoles with high enantiopurity (up to 94% ee. Other types of activated alkenes, such as acrylates and acrolein, could also be efficiently utilized.

  11. DNA-based catalytic enantioselective intermolecular oxa-Michael addition reactions

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2012-01-01

    Using the DNA-based catalysis concept, a novel Cu(II) catalyzed enantioselective oxa-Michael addition of alcohols to enones is reported. Enantioselectivities of up to 86% were obtained. The presence of water is important for the reactivity, possibly by reverting unwanted side reactions such as

  12. Enzymatic stereoselective synthesis of B-amino acids

    CSIR Research Space (South Africa)

    Chhiba, V

    2014-06-01

    Full Text Available The use of enzymes for the enantioselective synthesis of single enantiomer ß-subsituted compounds is of interest, as this structural motif occurs commonly in compounds of pharmaceutical importance, such as adrenergic agents, antidiabetics...

  13. Total Synthesis of balanol, Part 2

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kelly, Nicholas; Tedenborg, Lars

    1997-01-01

    A convergent enantioselective total synthesis of the natural product (-)-balanol (1) is described. In addition to benzophenone fragment 8, key intermediates are chiral bicyclic aziridine 3 and the corresponding epoxide 4, both of which undergo highly regio- and stereoselective nucleophilic ring...

  14. Application of the aza-Diels-Alder reaction in the synthesis of natural products.

    Science.gov (United States)

    Cao, Min-Hui; Green, Nicholas J; Xu, Sheng-Zhen

    2017-04-11

    The Diels-Alder reaction that involves a nitrogen atom in the diene or dienophile is termed the aza-Diels-Alder reaction. As well as the powerful all-carbon Diels-Alder reaction, the aza-Diels-Alder reaction has also played an important role in the total synthesis of natural products. Herein, we review various natural products using an aza-Diels-Alder reaction as a key step to their total synthesis, and divide the syntheses into inter- and intra-molecular aza-Diels-Alder reactions and a retro-aza-Diels-Alder reaction. Inter- and intra-molecular aza-Diels-Alder reactions involve an imine as an electron deficient dienophile and an imine as an electron deficient azadiene. The significance of the aza-Diels-Alder reaction for the construction of a six-membered ring containing nitrogen is tremendous, but the development of asymmetric, in particular catalytic enantioselective intramolecular aza-Diels-Alder reaction in the total synthesis of natural products remains highly challenging, and will no doubt see enormous advances in the future.

  15. Copper(II)-catalyzed exo and enantioselective cycloadditions of azomethine imines.

    Science.gov (United States)

    Sibi, Mukund P; Rane, Digamber; Stanley, Levi M; Soeta, Takahiro

    2008-07-17

    A strategy for exo and enantioselective 1,3-dipolar cycloaddition of azomethine imines to 2-acryloyl-3-pyrazolidinone is described. The corresponding cycloadducts are isolated with high diastereoselectivities (up to >96:4 exo/endo) and enantioselectivities (up to 98% ee).

  16. Nickel(0)-catalyzed enantioselective annulations of alkynes and arylenoates enabled by a chiral NHC ligand: efficient access to cyclopentenones.

    Science.gov (United States)

    Ahlin, Joachim S E; Donets, Pavel A; Cramer, Nicolai

    2014-11-24

    Cyclopentenones are versatile structural motifs of natural products as well as reactive synthetic intermediates. The nickel-catalyzed reductive [3+2] cycloaddition of α,β-unsaturated aromatic esters and alkynes constitutes an efficient method for their synthesis. Here, nickel(0) catalysts comprising a chiral bulky C1-symmetric N-heterocyclic carbene ligand were shown to enable an efficient asymmetric synthesis of cyclopentenones from mesityl enoates and internal alkynes under mild conditions. The bulky NHC ligand provided the cyclopentenone products in very high enantioselectivity and led to a regioselective incorporation of unsymmetrically substituted alkynes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    Directory of Open Access Journals (Sweden)

    Katherine M. Byrd

    2015-04-01

    Full Text Available The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  18. Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of β2-amino acids

    Science.gov (United States)

    Sibi, Mukund P.; Patil, Kalyani

    2006-01-01

    We have investigated the effect of nitrogen protecting groups in radical addition trapping experiments leading to β2-amino acids. Of the three N-protecting groups examined, the phthalimido group was optimal with respect to both yields and enantioselectivity. Additionally, radical additions to more complex acrylates were also investigated, which provided access to functionalized β2-amino acids in modest selectivity. PMID:16799704

  19. Calcium(ii)-catalyzed enantioselective conjugate additions of amines.

    Science.gov (United States)

    Uno, Brice E; Dicken, Rachel D; Redfern, Louis R; Stern, Charlotte M; Krzywicki, Greg G; Scheidt, Karl A

    2018-02-14

    The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA] 2 )-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed. This mild catalytic system represents a significant advance towards the general convergent asymmetric amination of α,β-unsaturated electrophiles, providing medicinally relevant chiral aminosuccinimide products in high yields and enantioselectivities. Furthermore, the catalyst can be reused directly from a previously chromatographed reaction and still maintain both high yield and selectivity.

  20. Nickel-catalyzed regio- and enantioselective aminolysis of 3,4-epoxy alcohols.

    Science.gov (United States)

    Wang, Chuan; Yamamoto, Hisashi

    2015-04-08

    The first catalytic regio- and enantioselective aminolysis of 3,4-epoxy alcohols has been accomplished. Under the catalysis of Ni(ClO4)2·6H2O, the C4 selective ring opening of various 3,4-epoxy alcohols proceeded in a stereospecific manner with high regioselectivities. Furthermore, with the Ni-BINAM catalytic system the enantioselective ring opening of 3,4-epoxy alcohols furnished various γ-hydroxy-δ-amino alcohols as products with complete regiocontrol and high enantioselectivities (up to 94% ee).

  1. Fluxional additives: a second generation control in enantioselective catalysis.

    Science.gov (United States)

    Sibi, Mukund P; Manyem, Shankar; Palencia, Hector

    2006-10-25

    The concept of "fluxional additives", additives that can adopt enantiomeric conformations depending on the chiral information in the ligand, is demonstrated in enantioselective Diels-Alder and nitrone cycloaddition reactions. The additive design is modular, and diverse structures are accessible in three steps. Chiral Lewis acids from main group and transition metals show enhancements in enantioselectivity in the presence of these additives.

  2. Enantioselective analysis of propranolol and 4-hydroxypropranolol by CE with application to biotransformation studies employing endophytic fungi.

    Science.gov (United States)

    Borges, Keyller Bastos; Pupo, Mônica Tallarico; Bonato, Pierina Sueli

    2009-11-01

    A CE method is described for the enantioselective analysis of propranolol (Prop) and 4-hydroxypropranolol (4-OH-Prop) in liquid Czapek medium with application in the study of the enantioselective biotransformation of Prop by endophytic fungi. The electrophoretic conditions previously optimized were as follows: an uncoated fused-silica capillary, 4% w/v carboxymethyl-beta-CD in 25 mmol/L triethylamine/phosphoric acid (H(3)PO(4)) buffer at pH 9 as running electrolyte and 17 kV of voltage. UV detection was carried out at 208 nm. Liquid-liquid extraction using diethyl ether: ethyl acetate (1:1 v/v) as extractor solvent was employed for sample preparation. The calibration curves were linear over the concentration range of 0.25-10.0 microg/mL for each 4-OH-Prop enantiomer and 0.10-10.0 microg/mL for each Prop enantiomer (r>or=0.995). Within-day and between-day relative standard deviations and relative errors for precision and accuracy were lower than 15% for all the enantiomers. Finally, the validated method was used to evaluate Prop biotransformation in its mammalian metabolite 4-OH-Prop by some selected endophytic fungi. The screening of five strains of endophytic fungi was performed and all of them could biotransform Prop to some extent. Specifically, Glomerella cingulata (VA1) biotransformed 47.8% of (-)-(S)-Prop to (-)-(S)-4-OH-Prop with no formation of (+)-(R)-4-OH-Prop in 72 h of incubation.

  3. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  4. Cyclopalladated complexes in enantioselective catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dunina, Valeria V; Gorunova, Olga N; Zykov, P A; Kochetkov, Konstantin A

    2011-01-31

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  5. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Meirong [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Fang [College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Wang Cui; Zhang Quan [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Gan Jianying [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Liu Weiping, E-mail: wliu@zjut.edu.c [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2010-05-15

    The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (-)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study. - Chiral contaminants should consider multiple effects and relate directions of enantioselectivity to their interplaying processes.

  6. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids

    International Nuclear Information System (INIS)

    Zhao Meirong; Chen Fang; Wang Cui; Zhang Quan; Gan Jianying; Liu Weiping

    2010-01-01

    The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (-)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study. - Chiral contaminants should consider multiple effects and relate directions of enantioselectivity to their interplaying processes.

  7. Enantioselective [2+2+2] cycloisomerisation of alkynes in the synthesis of helicenes: the search for effective chiral ligands

    Czech Academy of Sciences Publication Activity Database

    Stará, Irena G.; Andronova, Angelina; Kollárovič, Adrian; Vyskočil, Š.; Jugé, S.; Lloyd-Jones, G. C.; Guiry, P. J.; Starý, Ivo

    2011-01-01

    Roč. 76, č. 12 (2011), s. 2005-2022 ISSN 0010-0765 R&D Projects: GA ČR GA203/09/1766; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : helicenes * enantioselectivity * cycloisomerisation Subject RIV: CC - Organic Chemistry Impact factor: 1.283, year: 2011

  8. Enantioselective Cytotoxicity Profile of o,p’-DDT in PC 12 Cells

    Science.gov (United States)

    Zhang, Chunlong; Wen, Yuezhong; Liu, Weiping

    2012-01-01

    Background The continued uses of dichlordiphenyltrichloroethane (DDT) for indoor vector control in some developing countries have recently fueled intensive debates toward the global ban of this persistent legacy contaminant. Current approaches for ecological and health risk assessment has ignored the chiral nature of DDT. In this study by employing an array of cytotoxicity related endpoints, we investigated the enantioselective cytotoxicity of o,p’-DDT. Principal Findings we demonstrated for the first time that R-(−)-o,p’-DDT caused more neuron cell death by inducing more severe oxidative stress, which selectively imbalanced the transcription of stress-related genes (SOD1, SOD2, HSP70) and enzyme (superoxide dismutase and lactate dehydrogenase) activities, and greater cellular apoptosis compared to its enantiomer S-(+)-o,p’-DDT at the level comparable to malaria area exposure (parts per million). We further elucidated enantioselective modes of action using microarray combined with enzyme-linked immunosorbent assay. The enantioselective apoptosis might involve three signaling pathways via caspase 3, tumor protein 53 (p53) and NFkB. Conclusions Based on DDT stereochemistry and results reported for other chiral pesticides, our results pointed to the same directional enantioselectivity of chiral DDT toward mammalian cells. We proposed that risk assessment on DDT should consider the enantiomer ratio and enantioselectivities. PMID:22937105

  9. Improved synthesis of (S)-N-Boc-5-oxaproline for protein synthesis with the α-ketoacid-hydroxylamine (KAHA) ligation.

    Science.gov (United States)

    Murar, Claudia E; Harmand, Thibault J; Bode, Jeffrey W

    2017-09-15

    We describe a new route for the synthesis of (S)-N-Boc-5-oxaproline. This building block is a key element for the chemical synthesis of proteins with the α-ketoacid-hydroxylamine (KAHA) ligation. The new synthetic pathway to the enantiopure oxaproline is based on a chiral amine mediated enantioselective conjugate addition of a hydroxylamine to trans-4-oxo-2-butenoate. This route is practical, scalable and economical and provides decagram amounts of material for protein synthesis and conversion to other protected forms of (S)-oxaproline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2017-06-28

    Enantioselective catalytic methods allowing the addition of both a nucleophile and an electrophile onto diazo compounds give a fast access into important building blocks. Herein, we report the highly enantioselective oxyalkynylation of diazo compounds using ethynylbenziodoxol-(on)e reagents and a simple copper bisoxazoline catalyst. The obtained α-benzoyloxy propargylic esters are useful building blocks, which are difficult to synthesize in enantiopure form using other methods. The obtained products could be efficiently transformed into vicinal diols and α-hydroxy propargylic esters without loss in enantiopurity.

  11. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  12. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-01-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  13. Evaluation of achiral templates with fluxional Brønsted basic substituents in enantioselective conjugate additions.

    Science.gov (United States)

    Adachi, Shinya; Takeda, Norihiko; Sibi, Mukund P

    2014-12-19

    Enantioselective conjugate addition of malononitrile to pyrazolidinone-derived enoates proceeds in excellent yields and high enantioselectivities. A comparison of fluxional substituents with and without a Brønsted basic site and their impact on selectivity is detailed. Molecular sieves as an additive were found to be essential to achieve high enantioselectivity.

  14. Flexible Enantioselectivity of Tryptophanase Attributable to Benzene Ring in Heterocyclic Moiety of D-Tryptophan

    Directory of Open Access Journals (Sweden)

    Akihiko Shimada

    2012-05-01

    Full Text Available The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or function as inhibitors even though they are bound to the active site, the inhibition behavior of D-tryptophan and several inhibitors involved in this process was examined in terms of kinetics to explain the reason for this flexible enantioselectivity in the presence of diammonium hydrogenphosphate. Diammonium hydrogenphosphate gave tryptophanase a small conformational change so that D-tryptophan could work as a substrate. As opposed to other D-amino acids, D-tryptophan is a very bulky amino acid with a benzene ring in its heterocyclic moiety, and so we suggest that this structural feature makes the catalysis of D-tryptophan degradation possible, consequently leading to the flexible enantioselectivity. The present results not only help to understand the mechanism of enzyme enantioselectivity, but also shed light on the origin of homochirality.

  15. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  16. Enantioselective H-atom transfer reaction: a strategy to synthesize formaldehyde aldol products.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2005-04-14

    [reaction: see text] Enantioselective radical alkylation of Baylis-Hillman adducts furnished aldol products in good yield and selectivity. The results illustrate that the selectivity in the hydrogen atom transfer is dependent on the size of the ester substituent, with smaller substituents providing better enantioselectivity.

  17. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  18. Stereocontrolled Synthesis of the C(1)-C(11) Subunit of the Iejimalides

    DEFF Research Database (Denmark)

    Mendlik, Matthew T.; Cottard, Muriel; Rein, Tobias

    1997-01-01

    An enantioselective synthesis of the C(1)-C(11) subunit of the iejimalides has been accomplished through a combination of an asymmetric Homer-Wadsworth-Emmons condensation and a chiral pool approach. (C) 1997 Elsevier Science Ltd....

  19. Catalytic Enantioselective Alkylation of β-Keto Esters with Xanthydrol in the Presence of Chiral Palladium Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Yeon; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-01-15

    Our research interest has been directed toward the development of synthetic methods for the enantioselective construction of stereogenic carbon centers. Recently, we explored the catalytic enantioselective functionalization of active methines in the presence of chiral palladium(II) complexes. In conclusion, we have accomplished the efficient catalytic enantioselective alkylation of β-keto esters 1 with xanthydrol 2 with high yields and excellent enantioselectivity (up to 98% ee). It should be noted that this alkyaltion reaction proceeds well using air- and moisture-stable chiral palladium com- plexes with low loading (1 mol%)

  20. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    Science.gov (United States)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  1. Chiral 1,3,2-oxazaborolidines in asymmetric synthesis: recent advances

    International Nuclear Information System (INIS)

    Glushkov, Vladimir A; Tolstikov, Alexander G

    2004-01-01

    The use of chiral 1,3,2-oxazaborolidines in asymmetric organic synthesis, particularly, in enantioselective reduction of ketones, imines and oxime ethers, asymmetric Diels-Alder reactions, aldol condensation and atroposelective reduction of lactones is reviewed. Reactions of immobilised 1,3,2-oxazaborolidines are also considered.

  2. Kinetic investigation on enantioselective hydrolytic resolution of ...

    African Journals Online (AJOL)

    Kinetic investigation on enantioselective hydrolytic resolution of epichlorohydrin by crude epoxide hydrolase from domestic duck liver. X Ling, D Lu, J Wang, J Chen, L Ding, J Chen, H Chai, P Ouyang ...

  3. Synthesis of allocolchicinoids: a 50 year journey

    International Nuclear Information System (INIS)

    Sitnikov, N S; Fedorov, A Yu

    2013-01-01

    Published data on the stereo- and enantioselective synthesis of allocolchicinoids, which are of interest as antitumour agents, are summarized. The stereochemistry of these compounds is described. Two key approaches to their preparation are considered, namely, the synthesis from natural colchicine and total synthesis from commercially available reagents. Various total syntheses of N-acetylcolchicinol are performed using biaryl oxidative and reductive coupling, cyclopropanation–ring expansion and Nicholas reaction. The synthetic routes to allocolchicine are based on Diels–Alder cycloaddition, combination of metathesis and Diels–Alder reaction and direct catalytic CH-arylation. Analogues of the colchicine site ligands incorporating heteroaromatic rings are briefly considered; their structural features and methods of synthesis are discussed. The bibliography includes 144 references.

  4. Aminooxylated Carbohydrates: Synthesis and Applications.

    Science.gov (United States)

    Pifferi, Carlo; Daskhan, Gour Chand; Fiore, Michele; Shiao, Tze Chieh; Roy, René; Renaudet, Olivier

    2017-08-09

    Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.

  5. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    Science.gov (United States)

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. Copyright © 2013 Wiley Periodicals, Inc.

  6. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dolmatov, Valerii Yu [Federal State Unitary Enterprise Special Design-Technology Bureau (FSUE SDTB) ' ' Tekhnolog' ' at the St Petersburg State Institute of Technology (Technical University) (Russian Federation)

    2007-04-30

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  7. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    International Nuclear Information System (INIS)

    Dolmatov, Valerii Yu

    2007-01-01

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  8. Enantioselective synthesis of α-phenyl- and α-(dimethylphenylsilyl)alkylboronic esters by ligand mediated stereoinductive reagent-controlled homologation using configurationally labile carbenoids.

    Science.gov (United States)

    Barsamian, Adam L; Wu, Zhenhua; Blakemore, Paul R

    2015-03-28

    Chain extension of boronic esters by the action of configurationally labile racemic lithium carbenoids in the presence of scalemic bisoxazoline ligands was explored for the enantioselective synthesis of the two title product classes. Enantioenriched 2° carbinols generated by oxidative work-up (NaOOH) of initial α-phenylalkylboronate products were obtained in 35-83% yield and 70-96% ee by reaction of B-alkyl and B-aryl neopentyl glycol boronates with a combination of O-(α-lithiobenzyl)-N,N-diisopropylcarbamate and ligand 3,3-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl] pentane in toluene solvent (-78 °C to rt) with MgBr2·OEt2 additive. Enantioenriched α-(dimethylsilylphenylsilyl)alkylboronates were obtained in 35-69% yield and 9-57% ee by reaction of B-alkyl pinacol boronates with a combination of lithio(dimethylphenylsilyl)methyl 2,4,6-triisopropylbenzoate and ligand 2,2-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl]propane in cumene solvent (-45 °C to -95 °C to rt). The stereochemical outcome of the second type of reaction depended on the temperature history of the organolithium·ligand complex indicating that the stereoinduction mechanism in this case involves some aspect of dynamic thermodynamic resolution.

  9. Exo selective enantioselective nitrone cycloadditions.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Jasperse, Craig P

    2004-01-28

    We have developed a novel method for accessing exo adducts with high enantioselectivity in nitrone cycloadditions to enoates. Pyrazolidinones proved to be effective achiral templates in the cycloadditions, providing exo adducts typically in >15:1 selectivity and 90-98% ee. The use of Lewis acids that form square planar complexes, such as copper triflate, was important for obtaining high exo selectivity.

  10. Application of a Heterogeneous Chiral Titanium Catalyst Derived from Silica-Supported 3-Aryl H8-BINOL to Enantioselective Alkylation and Arylation of Aldehydes.

    Science.gov (United States)

    Akai, Junichiro; Watanabe, Satoshi; Michikawa, Kumiko; Harada, Toshiro

    2017-07-07

    A 3-aryl H 8 -BINOL was grafted on the surface of silica gel using a hydrosilane derivative as a precursor, and the resulting silica-supported ligand (6 mol %) was employed in the enantioselective alkylation and arylation of aldehydes in the presence of Ti(O i Pr) 4 . The reactions using Et 2 Zn, Et 3 B, and aryl Grignard reagents all afforded the corresponding adducts in high enantioselectivities and yields. The silica-immobilized titanium catalyst could be reused up to 14 times without appreciable deterioration of the activity.

  11. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  12. Palladium-Catalyzed Enantioselective C-H Olefination of Diaryl Sulfoxides through Parallel Kinetic Resolution and Desymmetrization.

    Science.gov (United States)

    Zhu, Yu-Chao; Li, Yan; Zhang, Bo-Chao; Zhang, Feng-Xu; Yang, Yi-Nuo; Wang, Xi-Sheng

    2018-03-07

    The first example of Pd II -catalyzed enantioselective C-H olefination with non-chiral or racemic sulfoxides as directing groups was developed. A variety of chiral diaryl sulfoxides were synthesized with high enantioselectivity (up to 99 %) through both desymmetrization and parallel kinetic resolution (PKR). This is the first report of Pd II -catalyzed enantioselective C(sp 2 )-H functionalization through PKR, and it represents a novel strategy to construct sulfur chiral centers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enantioselective synthesis of 6-[18F] fluoro-L-DOPA

    International Nuclear Information System (INIS)

    Zhang Lan; Tang Ganghua; Zhou Wei; Li Junling; Yin Duanzhi; Wang Yongxian; Tang Xiaolan; Huang Zuhan

    2002-01-01

    Trimethylammonium veratraldehyde triflate was synthesized and used as a precurser for the synthesis of 6-[ 18 F] Fluoro-L-DOPA by using the chiral phase-transfer catalyst, O-Allyl-N-(9)-anthracenylcinchonidinium bromide which was also synthesized in this study. Based on these, 6-[ 18 F] Fluoro-L-DOPA was prepared with acceptable radiochemical yield (10 ± 3)% in short synthesis time (80 min), with high radiochemical purity, specific activity and chemical purity

  14. Isoindolinones as Michael Donors under Phase Transfer Catalysis: Enantioselective Synthesis of Phthalimidines Containing a Tetrasubstituted Carbon Stereocenter

    Directory of Open Access Journals (Sweden)

    Francesco Scorzelli

    2015-05-01

    Full Text Available Readily available chiral ammonium salts derived from cinchona alkaloids have proven to be effective phase transfer catalysts in the asymmetric Michael reaction of 3-substituted isoindolinones. This protocol provides a convenient method for the construction of valuable asymmetric 3,3-disubstituted isoindolinones in high yields and  moderate to good enantioselectivity. Diastereoselectivity was also investigated in the construction of contiguous tertiary and quaternary stereocenters. The use of acrolein as Michael acceptor led to an interesting tricyclic derivative, a pyrroloisoindolinone analogue, via a tandem conjugated addition/cyclization reaction.

  15. Enantioselective copper-catalysed propargylic substitution: synthetic scope study and application in formal total syntheses of (+)-anisomycin and (-)-cytoxazone

    NARCIS (Netherlands)

    Detz, R.J.; Abiri, Z.; le Griel, R.; Hiemstra, H.; van Maarseveen, J.H.

    2011-01-01

    A copper catalyst with a chiral pyridine-2,6-bisoxazoline (pybox) ligand was used to convert a variety of propargylic esters with different side chains (R=Ar, Bn, alkyl) into their amine counterparts in very high yields and with good enantioselectivities (up to 90 % enantiomeric excess (ee)).

  16. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    Science.gov (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  17. Stereoselective synthesis of a-hydroxy-b-amino acids: the chiral pool approach

    Directory of Open Access Journals (Sweden)

    RADOMIR N. SAICIC

    2004-11-01

    Full Text Available A method for the stereoselective homologation of a-amino acids into syn-a-hydroxy-b-amino acids is described, based on the conversion of stereoisomeric cyanohydrins into trans-oxazolines. The synthetic potential of the method is illustrated in the enantioselective formal synthesis of Bestatin.

  18. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)2 and chiral amino alcohols

    NARCIS (Netherlands)

    Vries, André H.M. de; Feringa, Bernard

    1997-01-01

    Co(acac)2 in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved.

  19. Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines

    KAUST Repository

    Zhang, Yan

    2011-01-01

    An amino-indanol derived chiral guanidine was developed as an efficient Brønsted base catalyst for the desymmetrization of meso-aziridines with both thiols and carbamodithioic acids as nucleophiles, which provided 1,2-difunctionalized ring-opened products in high yields and enantioselectivities. © The Royal Society of Chemistry.

  20. Combining Organometallic Catalysis and Organocatalysis for the Synthesis of Heterocyclic Scaffolds

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke

    The main work presented in this thesis describes the development of efficient and novel methodologies for the synthesis of pharmaceutically interesting indolecontaining alkaloids, i.e., the 1,2,3,4-tetrahydro-β-carboline and the 1,2,3,4-tetrahydrocarbazole scaffolds. The synthesis of 1...... to the nitrogen in the allylic system proved to be highly important for the enantioselectivity. Enantiomeric excesses up to 57% was obtained. The synthesis of 1,2,3,4-tetrahydrocarbazole relied on novel Brønsted acidcatalyzed Friedel-Crafts-type reactions. Three different kinds of 1,2,3,4-tetrahydrocarbazole...

  1. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)(2) and chiral amino alcohols

    NARCIS (Netherlands)

    de Vries, A.H.M.; Feringa, B.L.

    1997-01-01

    Co(acac)(2) in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved. (C) 1997 Elsevier Science Ltd.

  2. Influence of biochar on the enantioselective behavior of the chiral fungicide metalaxyl in soil

    Science.gov (United States)

    Gámiz, Beatriz; Pignatello, Joseph J.; Hermosín, María Carmen; Cox, Lucía; Celis, Rafael

    2015-04-01

    Chiral pesticides comprise an emerging and important class of organic pollutants currently, accounting for more than a quarter of used pesticides. Consequently, the contamination problems caused by chiral pesticides are concern matter and factors affecting enantioselective processes of chiral pesticides in soil need to be understood. For example, certain soil management practices, such as the use of organic amendments, can affect the enantioselective behavior of chiral pesticides in soils. Recently, biochar (BC), i.e. organic matter subjected to pyrolysis, has been proposed as organic amendment due to beneficial properties such as its high stability against decay in soil environments and its apparent ability to influence the availability of nutrients. BC is considered to be more biologically inert as compared to otherforms of organic carbon. However, its side-effects on the enantioselectivity of processes affecting the fate of chiral pesticides is unknown. The aim of this study was to assess the effect of biochar (BC) on the enantioselectivity of sorption, degradation, and leaching of the chiral fungicide metalaxyl in an agricultural soil. Amending the soil with BC (2% w/w) resulted in 3 times higher sorption of metalaxyl enantiomers compared to unamended soil, but no enantioselectivity in the process was observed. Moreover, both enantiomers showed some resistance to be desorbed in BC-amended soil compared to unamended soil. Dissipation studies revealed that the degradation of metalaxylwas more enantioselective in the unamended soil than in BC-amended soil. In unamended soil, R-metalaxyl(biologically active) and S- metalaxyl had half-lives (t1/2) of 3 and 34 days, respectively. BC enhanced the persistence of both enantiomers in the soil, with R-metalaxyl being degraded faster (t1/2=43 days) than S-metalaxyl (t1/2= 100 days). The leaching of both S-and R-metalaxyl was almost suppressed after amending the soil with BC; less than 10% of the fungicide applied to soil

  3. 天然产物Brosimacutins H和I的对映选择性全合成%First Enantioselective Synthesis of Brosimacutins H and I

    Institute of Scientific and Technical Information of China (English)

    叶子平; 杨金会; 冯尧; 马涛; 牛明杰

    2016-01-01

    Brosimacutins H和I是从巴西的Brosimum acutifolium Huber树皮中分离出的两个具有相似结构的黄酮类化合物.此树皮被巴西当地居民作为抗发炎和抗风湿的药物,并且这两种化合物具有一定的细胞活性.以廉价的羟苯乙酮和羟苯甲醛为原料完成了黄酮化合物Brosimacutins H和I的对映选择性合成.所有新化合物的结构都经过NMR,HRMS确认.%Brosimacutins H and I,isolated from the bark of brosimum acutifolium huber,are flavanoid compounds with similar structures.The bark of this plant is used in Brazilian folk medicine as an anti-inflammatory and anti-rheumatic agent,and cellular activities were reported for these two compounds.Herein the first enantio-selective synthesis of brosimacutins H and I from cheap starting material hydroxyl-acetophenone and hydroxyl benzene formaldehyde was reported.All new compounds in this study were confirmed by NMR and HRMS.

  4. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  5. Evaluation of reversible interconversion in comprehensive two-dimensional gas chromatography using enantioselective columns in first and second dimensions.

    Science.gov (United States)

    Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J

    2015-07-24

    The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers

  6. Enantioselective properties of induced lipases from Geotrichum

    Czech Academy of Sciences Publication Activity Database

    Zarevúcka, Marie; Kejík, Z.; Šaman, David; Wimmer, Zdeněk; Demnerová, K.

    2005-01-01

    Roč. 37, - (2005), s. 481-486 ISSN 0141-0229 R&D Projects: GA MŠk(CZ) OC D30.001; GA MŠk(CZ) OC D13.10 Institutional research plan: CEZ:AV0Z40550506 Keywords : Geotrichum * lipase * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 1.705, year: 2005

  7. Lanthanide Lewis acid-mediated enantioselective conjugate radical additions.

    Science.gov (United States)

    Sibi, Mukund P; Manyem, Shankar

    2002-08-22

    [reaction: see text] Lanthanide triflates along with proline-derived ligands have been found to be efficient catalysts for enantioselective conjugate addition of nucleophilic radicals to enoates. N-Acyl oxazolidinones, when used as achiral additives, gave meaningful enhancements in the ees for the product.

  8. Lithium Enolates in the Enantioselective Construction of Tetrasubstituted Carbon Centers with Chiral Lithium Amides as Noncovalent Stereodirecting Auxiliaries.

    Science.gov (United States)

    Yu, Kai; Lu, Ping; Jackson, Jeffrey J; Nguyen, Thuy-Ai D; Alvarado, Joseph; Stivala, Craig E; Ma, Yun; Mack, Kyle A; Hayton, Trevor W; Collum, David B; Zakarian, Armen

    2017-01-11

    Lithium enolates derived from carboxylic acids are ubiquitous intermediates in organic synthesis. Asymmetric transformations with these intermediates, a central goal of organic synthesis, are typically carried out with covalently attached chiral auxiliaries. An alternative approach is to utilize chiral reagents that form discrete, well-defined aggregates with lithium enolates, providing a chiral environment conducive of asymmetric bond formation. These reagents effectively act as noncovalent, or traceless, chiral auxiliaries. Lithium amides are an obvious choice for such reagents as they are known to form mixed aggregates with lithium enolates. We demonstrate here that mixed aggregates can effect highly enantioselective transformations of lithium enolates in several classes of reactions, most notably in transformations forming tetrasubstituted and quaternary carbon centers. Easy recovery of the chiral reagent by aqueous extraction is another practical advantage of this one-step protocol. Crystallographic, spectroscopic, and computational studies of the central reactive aggregate, which provide insight into the origins of selectivity, are also reported.

  9. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples.

    Science.gov (United States)

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Havránek, Emil; Mikuš, Peter

    2015-12-01

    A new multidimensional analytical approach for the ultra-trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on-line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean-up) in a large injection volume (1-10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP - chiral CZE-QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Intramolecular Nicholas reactions in the synthesis of dibenzocycloheptanes. Synthesis of allocolchicine NSC 51046 and analogues and the formal synthesis of (-)-allocolchicine.

    Science.gov (United States)

    Djurdjevic, Sinisa; Yang, Fei; Green, James R

    2010-12-03

    The preparation of dibenzocycloheptyne-Co(2)(CO)(6) complexes by intramolecular Nicholas reactions of biaryl-2-propargyl alcohol-Co(2)(CO)(6) derivatives is described. Reductive decomplexation of the dibenzocycloheptyne-Co(2)(CO)(6) complexes affords the corresponding dibenzocycloheptenes, individual members of which have been employed in a formal total synthesis of (-)-allocolchicine, the preparation of 6,7-dihydro-3,4,9,10,11-pentamethoxy-5H-dibenzo[a,c]cyclohepten-5-one, and the enantioselective total syntheses of NSC 51046 and its 3,8,9,10-tetramethoxy regioisomer.

  11. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo; Zhang, Wen; Lee, Richmond; Han, Zhiqiang; Yang, Wenguo; Tan, Davin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3

  12. Recyclable enantioselective catalysts based on copper(II) complexes of 2-(pyridine-2-yl)imidazolidine-4-thione: their application in asymmetric Henry reactions

    Czech Academy of Sciences Publication Activity Database

    Nováková, G.; Drabina, P.; Frumarová, Božena; Sedlák, M.

    2016-01-01

    Roč. 358, č. 15 (2016), s. 2541-2552 ISSN 1615-4150 Institutional support: RVO:61389013 Keywords : asymmetric catalysis * enantioselectivity * heterogeneous catalysis Subject RIV: CC - Organic Chemistry Impact factor: 5.646, year: 2016

  13. A New Mn–Salen Micellar Nanoreactor for Enantioselective Epoxidation of Alkenes in Water

    Directory of Open Access Journals (Sweden)

    Francesco P. Ballistreri

    2018-03-01

    Full Text Available A new chiral Mn–salen catalyst, functionalized with a long aliphatic chain and a choline group, able to act as surfactant catalyst for green epoxidation in water, is here described. This catalyst was employed with a commercial surfactant (CTABr leading to a nanoreactor for the enantioselective epoxidation of some selected alkenes in water, using NaClO as oxidant. This is the first example of a nanoreactor for enantioselective epoxidation of non-functionalized alkenes in water.

  14. An investigation of nitrile transforming enzymes in the chemo-enzymatic synthesis of the taxol sidechain

    Czech Academy of Sciences Publication Activity Database

    Wilding, B.; Veselá, Alicja Barbara; Perry, J.B.J.; Black, W.G.; Zhang, M.; Martínková, Ludmila; Klempier, N.

    2015-01-01

    Roč. 13, č. 28 (2015), s. 7803-7812 ISSN 1477-0520 R&D Projects: GA ČR(CZ) GAP504/11/0394 Institutional support: RVO:61388971 Keywords : LIPASE -CATALYZED TRANSESTERIFICATION * HIGHLY ENANTIOSELECTIVE SYNTHESIS * BIOLOGICAL EVALUATION Subject RIV: CC - Organic Chemistry Impact factor: 3.559, year: 2015

  15. Development of tartaric acid derived chiral guanidines and their application to catalytic enantioselective α-hydroxylation of β-dicarbonyl compounds.

    Science.gov (United States)

    Zou, Liwei; Wang, Baomin; Mu, Hongfang; Zhang, Huanrui; Song, Yuming; Qu, Jingping

    2013-06-21

    A novel library of chiral guanidines featuring a tartaric acid skeleton was developed from diethyl l-tartrate. These guanidines are easily accessed with tunable steric and electronic properties. The utilities of the guanidines were highlighted by their ability to catalyze the α-hydroxylation of β-ketoesters and β-diketones with remarkable efficiency and excellent enantioselectivity.

  16. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin; Wang, Fei; Lee, Richmond; Lv, Yunbo; Huang, Kuo-Wei; Zhong, Guofu

    2014-01-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study

  17. Enantioselective Organocatalysis in Microreactors: Continuous Flow Synthesis of a (S-Pregabalin Precursor and (S-Warfarin

    Directory of Open Access Journals (Sweden)

    Riccardo Porta

    2015-08-01

    Full Text Available Continuous flow processes have recently emerged as a powerful technology for performing chemical transformations since they ensure some advantages over traditional batch procedures. In this work, the use of commercially available and affordable PEEK (Polyetheretherketone and PTFE (Polytetrafluoroethylene HPLC (High Performance Liquid Chromatography tubing as microreactors was exploited to perform organic reactions under continuous flow conditions, as an alternative to the commercial traditional glass microreactors. The wide availability of tubing with different sizes allowed quickly running small-scale preliminary screenings, in order to optimize the reaction parameters, and then to realize under the best experimental conditions a reaction scale up for preparative purposes. The gram production of some Active Pharmaceutical Ingredients (APIs such as (S-Pregabalin and (S-Warfarin was accomplished in short reaction time with high enantioselectivity, in an experimentally very simple procedure.

  18. Enantioselective cycloadditions with alpha,beta-disubstituted acrylimides.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Itoh, Kennosuke; Prabagaran, Narayanasamy; Jasperse, Craig P

    2005-06-09

    [reaction: see text] The use of N-H imide templates provides a solution to the problem of rotamer control in Lewis acid catalyzed reactions of alpha,beta-disubstituted acryloyl imides. Reactions proceed through the s-cis rotamer and with improved reactivity because A(1,3) strain is avoided. Enantioselective nitrone, nitrile oxide, and Diels-Alder cycloadditions demonstrate the principle.

  19. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  20. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  1. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes.

  2. Alilação e crotilação catalítica e enantiosseletiva de aldeídos

    Directory of Open Access Journals (Sweden)

    Ângelo de Fátima

    2006-10-01

    Full Text Available The field of chiral catalysis has experienced explosive growth over the last two decades. By now, many of the classical reactions in organic synthesis can be carried out efficiently in asymmetric manner. As one of the fundamental and powerful C-C bond-forming reactions, enantioselective catalytic allylation (ECA and crotylation (ECC of aldehydes has attracted considerable attention. In this article, we present an overview about the importance of chiral Lewis acids and bases in catalytic enantioselective addition of allyl- and crotyl metals to aldehydes and the application of this methodology in the total synthesis of natural and non-natural products.

  3. Alilação e crotilação catalítica e enantiosseletiva de aldeídos

    Directory of Open Access Journals (Sweden)

    Fátima Ângelo de

    2006-01-01

    Full Text Available The field of chiral catalysis has experienced explosive growth over the last two decades. By now, many of the classical reactions in organic synthesis can be carried out efficiently in asymmetric manner. As one of the fundamental and powerful C-C bond-forming reactions, enantioselective catalytic allylation (ECA and crotylation (ECC of aldehydes has attracted considerable attention. In this article, we present an overview about the importance of chiral Lewis acids and bases in catalytic enantioselective addition of allyl- and crotyl metals to aldehydes and the application of this methodology in the total synthesis of natural and non-natural products.

  4. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2017-01-01

    Full Text Available In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA and partitial least-squares discriminant analysis (PLS-DA directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  5. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase.

    Science.gov (United States)

    Siódmiak, Tomasz; Mangelings, Debby; Vander Heyden, Yvan; Ziegler-Borowska, Marta; Marszałł, Michał Piotr

    2015-03-01

    Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.

  6. Multigram Synthesis of a Chiral Substituted Indoline Via Copper-Catalyzed Alkene Aminooxygenation.

    Science.gov (United States)

    Sequeira, Fatima C; Bovino, Michael T; Chipre, Anthony J; Chemler, Sherry R

    2012-05-01

    (S)-5-Fluoro-2-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-1-tosylindoline, a 2-methyleneoxy-substituted chiral indoline, was synthesized on multigram scale using an efficient copper-catalyzed enantioselective intramolecular alkene aminooxygenation. The synthesis is accomplished in four steps and the indoline is obtained in 89% ee (>98% after one recrystallization). Other highlights include efficient gram-scale synthesis of the (4R,5S)-di-Ph-box ligand and efficient separation of a monoallylaniline from its bis(allyl)aniline by-product by distillation under reduced pressure.

  7. Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel

    2004-01-01

    Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.

  8. Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot.

    Science.gov (United States)

    Wechsler, Cindy; Meyer, Danilo; Loschonsky, Sabrina; Funk, Lisa-Marie; Neumann, Piotr; Ficner, Ralf; Brodhun, Florian; Müller, Michael; Tittmann, Kai

    2015-12-01

    Enantioselective bond making and breaking is a hallmark of enzyme action, yet switching the enantioselectivity of the reaction is a difficult undertaking, and typically requires extensive screening of mutant libraries and multiple mutations. Here, we demonstrate that mutational diversification of a single catalytic hot spot in the enzyme pyruvate decarboxylase gives access to both enantiomers of acyloins acetoin and phenylacetylcarbinol, important pharmaceutical precursors, in the case of acetoin even starting from the unselective wild-type protein. Protein crystallography was used to rationalize these findings and to propose a mechanistic model of how enantioselectivity is controlled. In a broader context, our studies highlight the efficiency of mechanism-inspired and structure-guided rational protein design for enhancing and switching enantioselectivity of enzymatic reactions, by systematically exploring the biocatalytic potential of a single hot spot. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  10. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  11. Insight into the stereospecificity of short-chain thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A

    2010-04-01

    The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.

  12. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    ... in numerous synthesis processes. This review outlines the work being carried out on synthesis of iron oxides in nano form and their various applications. Keywords: nano iron oxides, synthesis, catalysts, magnetic properties, biomedical application. International Journal of Engineering, Science and Technology, Vol. 2, No.

  13. Effects of metals on enantioselective toxicity and biotransformation of cis-bifenthrin in zebrafish.

    Science.gov (United States)

    Yang, Ye; Ji, Dapeng; Huang, Xin; Zhang, Jianyun; Liu, Jing

    2017-08-01

    Co-occurrence of pyrethroids and metals in watersheds previously has been reported to pose great risk to aquatic species. Pyrethroids are a class of chiral insecticides that have been shown to have enantioselective toxicity and biotransformation. However, the influence of metals on enantioselectivity of pyrethroids has not yet been evaluated. In the present study, the effects of cadmium (Cd), copper (Cu), and lead (Pb) on the enantioselective toxicity and metabolism of cis-bifenthrin (cis-BF) were investigated in zebrafish at environmentally relevant concentrations. The addition of Cd, Cu, or Pb significantly increased the mortality of zebrafish in racemate and R-enantiomer of cis-BF-treated groups. In rac-cis-BF- or 1R-cis-BF-treated groups, the addition of Cd, Cu, or Pb caused a decrease in enantiomeric fraction (EF) and an increased ratio of R-enantiomer residues in zebrafish. In 1S-cis-BF-treated groups, coexposure to Cd led to a lower EF and decreased residue levels of S-enantiomer. In addition, coexposure to the 3 metals resulted in different biodegradation characteristics of each enantiomer accompanied with differential changes in the expression of cytochrome P450 (CYP)1, CYP2, and CYP3 genes, which might be responsible for the enantioselective biodegradation of cis-BF in zebrafish. These results suggest that the influence of coexistent metals should be considered in the ecological risk assessment of chiral pyrethroids in aquatic environments. Environ Toxicol Chem 2017;36:2139-2146. © 2017 SETAC. © 2017 SETAC.

  14. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Directory of Open Access Journals (Sweden)

    Patrícia de O. Carvalho

    2005-08-01

    Full Text Available Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S-active acid (ee = 6.1% and conversion value (c = 20% in the esterification of (R,S-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2 and commercial lipase from Candida antarctica (E = 20 were employed.

  15. Asymmetric Hydrogenation of Seven-Membered C=N-containing Heterocycles and Rationalization of the Enantioselectivity.

    Science.gov (United States)

    Balakrishna, Bugga; Bauzá, Antonio; Frontera, Antonio; Vidal-Ferran, Anton

    2016-07-18

    Iridium(I) complexes with phosphine-phosphite ligands efficiently catalyze the enantioselective hydrogenation of diverse seven-membered C=N-containing heterocyclic compounds (eleven examples; up to 97 % ee). The P-OP ligand L3, which incorporates an ortho-diphenyl substituted octahydrobinol phosphite fragment, provided the highest enantioselectivities in the hydrogenation of most of the heterocyclic compounds studied. The observed stereoselection was rationalized by means of DFT calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  17. Enantioselective Degradation and Chiral Stability of Metalaxyl-M in Tomato Fruits.

    Science.gov (United States)

    Jing, Xu; Yao, Guojun; Wang, Peng; Liu, Donghui; Qi, Yanli; Zhou, Zhiqiang

    2016-05-01

    Metalaxyl is an important chiral acetanilide fungicide, and the activity almost entirely originates from the R-enantiomer. Racemic metalaxyl has been gradually replaced by the enantiopure R-enantiomer (metalaxyl-M). In this study a chiral residue analysis method for metalaxyl and the metabolite metalaxyl acid was set up based on high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS). The enantioselective degradation and chiral stability of metalaxyl-M in tomato fruits in two geographically distinct regions of China (Heilongjiang and Hunan Province) were evaluated and the enantioselectivity of metalaxyl acid was also investigated. Tomato plants grew under field conditions with a one-time spray application of metalaxyl-M wettable powder. It was found that R-metalaxyl was not chirally stable and the inactive S-metalaxyl was detected in tomato fruits. At day 40, S-metalaxyl derived from R-metalaxyl accounted for 32% and 26% of the total amount of metalaxyl, respectively. The metabolites R-metalaxyl acid and S-metalaxyl acid were both observed in tomato, and the ratio of S-metalaxyl acid to the sum of S- and R-metalaxyl acid was 36% and 28% at day 40, respectively. For both metalaxyl and metalaxyl acid, the half-life of the S-enantiomer was longer than the R-enantiomer. The results indicated that the enantiomeric conversion should be considered in the bioactivity evaluation and environmental pollution assessment. Chirality 28:382-386, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Enantioselective Construction of 3-Hydroxypiperidine Scaffolds by Sequential Action of Light and Rhodium upon N-Allylglyoxylamides.

    Science.gov (United States)

    Ishida, Naoki; Nečas, David; Masuda, Yusuke; Murakami, Masahiro

    2015-06-15

    3-Hydroxypiperidine scaffolds were enantioselectively constructed in an atom-economical way by sequential action of light and rhodium upon N-allylglyoxylamides. In a formal sense, the allylic C-H bond was selectively cleaved and enantioselectively added across the ketonic carbonyl group with migration of the double bond (carbonyl-ene-type reaction). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Copper-Catalyzed Asymmetric Allylic Alkylation of Halocrotonates : Efficient Synthesis of Versatile Chiral Multifunctional Building Blocks

    NARCIS (Netherlands)

    Hartog, Tim den; Maciá, Beatriz; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    The highly enantioselective synthesis of α-methyl-substituted esters is reported in up to 90% yield and up to 99% ee using copper-TaniaPhos as chiral catalyst. The transformation proved scalable to at least 6.6 mmol (1.7 g scale). The products of this transformation have been further elaborated to

  20. Cyclic aldimines as superior electrophiles for Cu-catalyzed decarboxylative Mannich reaction of β-ketoacids with a broad scope and high enantioselectivity.

    Science.gov (United States)

    Zhang, Heng-Xia; Nie, Jing; Cai, Hua; Ma, Jun-An

    2014-05-02

    A novel Cu-catalyzed enantioselective decarboxylative Mannich reaction of cyclic aldimines with β-ketoacids is described. The cyclic structure of these aldimines, in which the C═N bond is constrained in the Z geometry, appears to be important, allowing Mannich condensation to proceed in high yields with excellent enantioselectivities. A chiral chroman-4-amine was synthesized from the decarboxylative Mannich product in several steps without loss of enantioselectivity.

  1. Enantioselective degradation and enantiomerization of indoxacarb in soil.

    Science.gov (United States)

    Sun, Dali; Pang, Junxiao; Qiu, Jing; Li, Li; Liu, Chenglan; Jiao, Bining

    2013-11-27

    In this study, the enantioselective degradation and enantiomerizaton of indoxacarb were investigated in two soils under nonsterilized and sterilized conditions using a chiral OD-RH column on a reversed-phase HPLC. Under nonsterilized conditions, the degradation of indoxacarb in two soils was enantioselective. In acidic soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 10.43 and 14.00 days, respectively. Acidic soil was preferential to the degradation of R-(-)-indoxacarb. In alkaline soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 12.14 and 4.88 days, respectively. S-(+)-Indoxacarb was preferentially degraded. Under sterilized conditions, approximately 5-10% of the initial concentration degraded after 75 days of incubation in acidic soil, whereas in alkaline soil, approximately half of the initial concentration degraded due to chemical hydrolysis under alkaline conditions. Enantiomerization was also discovered in acidic and alkaline soils. The results showed that mutual transformation existed between two enantiomers and that S-(+)-indoxacarb had a significantly higher inversion rate to R-(-)-indoxacarb than its antipode.

  2. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α-Diazo Pyrazoleamides.

    Science.gov (United States)

    Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2018-03-07

    Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.

  3. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter

    NARCIS (Netherlands)

    Tang, Lixia; Lutje Spelberg, Jeffrey H.; Fraaije, Marco W.; Janssen, DB

    2003-01-01

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic

  4. Enantioselective conjugate radical addition to alpha'-hydroxy enones.

    Science.gov (United States)

    Lee, Sunggi; Lim, Chae Jo; Kim, Sunggak; Subramaniam, Rajesh; Zimmerman, Jake; Sibi, Mukund P

    2006-09-14

    Enantioselective conjugate radical addition to alpha'-hydroxy alpha,beta-unsaturated ketones, compounds containing bidentate donors, has been investigated. It has been found that radical additions to alpha'-hydroxy alpha,beta-unsaturated ketones in the presence of Mg(NTf2)2 and bisoxazoline ligand 5a proceeded cleanly, yielding the addition products in high chemical yields and good enantiomeric excesses.

  5. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui; Guo, Donghui; Munkerup, Kristin; Huang, Kuo-Wei; Li, Fangyi; Wang, Jian

    2018-01-01

    on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a

  6. Cu(I)-Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with 2-Aryl-N-sulfonylaziridines as Alkylating Agents.

    Science.gov (United States)

    Ge, Chen; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-07-01

    A highly enantioselective Friedel-Crafts alkylation of indoles with N-sulfonylaziridines as alkylating agents has been developed by utilizing the complex of Cu(CH3CN)4BF4/(S)-Segphos as a catalyst. A range of optically active tryptamine derivatives are obtained in good to excellent yields and enantioselectivities (up to >99% ee) via a kinetic resolution process.

  7. Thermophilic archaeal enzymes and applications in biocatalysis.

    Science.gov (United States)

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  8. Asymmetric total synthesis of a putative sex pheromone component from the parasitoid wasp Trichogramma turkestanica

    NARCIS (Netherlands)

    Geerdink, Danny; Buter, Jeffrey; van Beek, Teris A.; Minnaard, Adriaan J.

    2014-01-01

    Virgin females of the parasitoid wasp Trichogramma turkestanica produce minute amounts of a sex pheromone, the identity of which has not been fully established. The enantioselective synthesis of a putative component of this pheromone, (6S,8S,10S)-4,6,8,10-tetramethyltrideca-2E,4E-dien-1-ol (2), is

  9. Synthesis and Application of Graphene Based Nanomaterials

    Science.gov (United States)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  10. Carbon and oxide nanostructures. Synthesis, characterisation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Noorhana [Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia). Dept. of Fundamental and Applied Sciences

    2010-07-01

    This volume covers all aspects of carbon and oxide based nanostructured materials. The topics include synthesis, characterization and application of carbon-based namely carbon nanotubes, carbon nanofibres, fullerenes, carbon filled composites etc. In addition, metal oxides namely, ZnO, TiO2, Fe2O3, ferrites, garnets etc., for various applications like sensors, solar cells, transformers, antennas, catalysts, batteries, lubricants, are presented. The book also includes the modeling of oxide and carbon based nanomaterials. The book covers the topics: - Synthesis, characterization and application of carbon nanotubes, carbon nanofibres, fullerenes - Synthesis, characterization and application of oxide based nanomaterials. - Nanostructured magnetic and electric materials and their applications. - Nanostructured materials for petro-chemical industry. - Oxide and carbon based thin films for electronics and sustainable energy. - Theory, calculations and modeling of nanostructured materials. (orig.)

  11. DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications

    NARCIS (Netherlands)

    Falcicchio, P.; Wolterink-van Loo, S.; Franssen, M.C.R.; Oost, van der J.

    2014-01-01

    Generating new carbon-carbon (C-C) bonds in an enantioselective way is one of the big challenges in organic synthesis. Aldolases are a natural tool for stereoselective C-C bond formation in a green and sustainable way. This review will focus on thermophilic aldolases in general and on

  12. Enantioselective Addition of Allyltin Reagents to Amino Aldehydes Catalyzed with Bis(oxazolinylphenylrhodium(III Aqua Complexes

    Directory of Open Access Journals (Sweden)

    Hisao Nishiyama

    2011-06-01

    Full Text Available Bis(oxazolinylphenylrhodium(III aqua complexes, (PheboxRhX2(H2O [X = Cl, Br], were found to be efficient Lewis acid catalysts for the enantioselective addition of allyl- and methallyltributyltin reagents to amino aldehydes. The reactions proceed smoothly in the presence of 5–10 mol % of (PheboxRhX2(H2O complex at ambient temperature to give the corresponding amino alcohols with modest to good enantioselectivity (up to 94% ee.

  13. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    International Nuclear Information System (INIS)

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko; Takeshita, Daijiro; Kumashiro, Shoko; Uzura, Atsuko; Urano, Nobuyuki; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity

  14. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  15. The asymmetric total synthesis of (+)- and (-)-trypargine via Noyori asymmetric transfer hydrogenation

    International Nuclear Information System (INIS)

    Pilli, Ronaldo A.; Rodrigues Junior, Manoel Trindade

    2009-01-01

    A concise and efficient total synthesis of (+)- and (-)-trypargine (6 steps and 38% overall yield), a 1-substituted β-carboline guanidine alkaloid isolated from the skin of the African frog K. senegalensis, was developed based on the construction of the b-carboline moiety via Bischler-Napieralski reaction and the enantioselective reduction of the dihydro-β-carboline intermediate via an asymmetric transfer hydrogenation reaction using Noyori's protocol. (author)

  16. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  17. Ultrasound-Assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-Like Nanobioreactor

    Directory of Open Access Journals (Sweden)

    Baiyi An

    2016-04-01

    Full Text Available A flower-like nanobioreactor was prepared for resolution of ibuprofen in organic solvents. Ultrasound irradiation has been used to improve the enzyme performance of APE1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1 in the enantioselective esterification. Under optimum reaction conditions (ultrasound power, 225 W; temperature, 45 °C; water activity, 0.21, the immobilized APE1547 showed an excellent catalytic performance (enzyme activity, 13.26 μmol/h/mg; E value, 147.1. After ten repeated reaction batches, the nanobioreactor retained almost 100% of its initial enzyme activity and enantioselectivity. These results indicated that the combination of the immobilization method and ultrasound irradiation can enhance the enzyme performance dramatically.

  18. Enantioselective γ-Alkylation of α,β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement

    OpenAIRE

    Liu, Wen-Bo; Okamoto, Noriko; Alexy, Eric J.; Hong, Allen Y.; Tran, Kristy; Stoltz, Brian M.

    2016-01-01

    A catalytic, enantioselective ? -alkylation of ?,?-unsaturated malonates and ketoesters is reported. This strategy entails a highly regio- and enantioselective iridium-catalyzed ?-alkylation of an extended enolate, and a subsequent translocation of chirality to the ?-position via a Cope rearrangement.

  19. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  20. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Shulin, E-mail: shulin@zju.edu.cn [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Zhang, Zhisheng [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Wenjing; Bao, Lingling [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Zhang, Hu [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 210021 (China)

    2015-02-15

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  1. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zhuang, Shulin; Zhang, Zhisheng; Zhang, Wenjing; Bao, Lingling; Xu, Chao; Zhang, Hu

    2015-01-01

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  2. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  3. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  4. New One-Pot Methodologies for the Modification or Synthesis of Alkaloid Scaffolds

    Directory of Open Access Journals (Sweden)

    Amir E. Wahba

    2010-08-01

    Full Text Available There are several avenues by which promising bioactive natural products can be produced in sufficient quantities to enable lead optimization and medicinal chemistry studies. The total synthesis of natural products is an important, but sometimes difficult, approach and requires the development of innovative synthetic methodologies to simplify the synthesis of complex molecules. Various classes of natural product alkaloids are both common and widely distributed in plants, bacteria, fungi, insects and marine organisms. This mini-review will discuss the scope, mechanistic insights and enantioselectivity aspects of selected examples of recently developed one-pot methods that have been published in 2009 for the synthesis of substituted piperidines, quinolizidines, pyrrolidines, hexahydropyrrolizines, octahydroindolizines and g-lactams. In addition, progress on the synthesis of b-carboline (manzamine alkaloids will also be discussed.

  5. Pyrones to pyrans: enantioselective radical additions to acyloxy pyrones.

    Science.gov (United States)

    Sibi, Mukund P; Zimmerman, Jake

    2006-10-18

    This paper describes a highly site-, diastereo-, and enantioselective intermolecular radical addition/hydrogen atom transfer to hydroxypyrone pyromeconic and kojic acids. The methodology can be extended to the formation of chiral quaternary centers. The products obtained are densely functionalized pyran moieties. The products contain structural features amenable for the introduction of additional substituents.

  6. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-15

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  7. Design, Synthesis, and Applications of Carbon Nanohoops

    Science.gov (United States)

    2016-05-23

    rings via one electron reduction reactions was feasible. Therefore, the synthesis and spectroscopic investigations of these ring systems by reducing...Release; Distribution Unlimited UU UU UU UU 23-05-2016 15-Feb-2012 14-Feb-2016 Final Report: Design, Synthesis , and Applications of Carbon Nanohoops The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Caron Nanohoops, paracyclophanes, carbon nanotubes, organic synthesis REPORT

  8. Pd(II)-Catalyzed Enantioselective C-H Olefination of Diphenylacetic Acids

    Science.gov (United States)

    Shi, Bing-Feng; Zhang, Yang-Hui; Lam, Jonathan K.; Wang, Dong-Hui; Yu, Jin-Quan

    2009-01-01

    Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acid substrates has been achieved through the use of mono-protected chiral amino acid ligands. The absolute configuration of the resulting olefinated products is consistent with that of a proposed C-H insertion intermediate. PMID:20017549

  9. Palladium-catalyzed asymmetric alkylation in the synthesis of cyclopentanoid and cycloheptanoid core structures bearing all-carbon quaternary stereocenters

    KAUST Repository

    Hong, Allen Y.

    2011-12-01

    General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems.

  10. α-Haloaldehydes: versatile building blocks for natural product synthesis.

    Science.gov (United States)

    Britton, Robert; Kang, Baldip

    2013-02-01

    The diastereoselective addition of organometallic reagents to α-chloroaldehydes was first reported in 1959 and occupies a historically significant role as the prototypical reaction for Cornforth's model of stereoinduction. Despite clear synthetic potential for these reagents, difficulties associated with producing enantiomerically enriched α-haloaldehydes limited their use in natural product synthesis through the latter half of the 20th century. In recent years, however, a variety of robust, organocatalytic processes have been reported that now provide direct access to optically enriched α-haloaldehydes and have motivated renewed interest in their use as building blocks for natural product synthesis. This Highlight summarizes the methods available for the enantioselective preparation of α-haloaldehydes and their stereoselective conversion into natural products.

  11. Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line

    International Nuclear Information System (INIS)

    Liu Huigang; Zhao Meirong; Zhang Cong; Ma Yun; Liu Weiping

    2008-01-01

    Synthetic pyrethroids (SPs) are used in preference to organochlorines and organophosphates due to their high efficiency, low toxicity to mammals, and ready biodegradability. Previous studies reported that enantioselective toxicity of SPs occurs in aquatic toxicity. Several studies have indicated that SPs could lead to oxidative damage in humans or animals which was associated with their toxic effects. Little is known about the differences in the effects of chronic toxicity induced by individual stereoisomers of chiral SPs. The present study was therefore undertaken to evaluate the enantioselectivity in cytotoxicity, genotoxicity caused by bifenthrin (BF) on human amnion epithelial (FL) cell lines and pesticidal activity on target organism. The cell proliferation and cytoflow analysis indicated that 1S-cis-BF presented more toxic effects than 1R-cis-BF above the concentration of 7.5 mg L -1 (p > 0.05). FL cells incubated with 1S-cis-BF exhibited a dose-dependent accumulation of intracellular reactive oxygen species (ROS). In the comet assay, the number of cells with damaged DNA incubated with 1S-cis-BF was more than that with 1R-cis-BF (p 50 values of enantiomer to the target pest on Pieris rapae L. show that 1R-cis-BF was 300 times more active than 1S-cis-BF. These results indicate that the enantioselective toxicity and activity of BF between non-target organism and target organism was reversal. These implications together suggest that assessment of the environmental safety and new pesticides development with chiral centers should consider enantioselectivity

  12. Highly Efficient Catalytic Synthesis of α-Amino Acids under Phase-Transfer Conditions with a Novel Catalyst/Substrate Pair

    NARCIS (Netherlands)

    Belokon, Yuri N.; Kochetkov, Konstantin A.; Churkina, Tatiana D.; Ikonnikov, Nikolai S.; Larionov, Oleg V.; Harutyunyan, Syuzanna R.; Vyskočil, Štepán; North, Michael; Kagan, Henri B.

    2001-01-01

    A facile and fast enantioselective synthesis of α-amino acids with high ee values was achieved by the asymmetric alkylation of the glycine derivative under phase-transfer conditions with (R)- or (S)-2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN). The ee value of the catalyst can be as little as 40 %

  13. BIOACCUMULATION AND ENANTIOSELECTIVE BIOTRANSFORMATION OF FIPRONIL BY RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Dietary accumulation and enantioselective biotransformation was determined for rainbow trout (Oncorhynchus mykiss) exposed to fipronil, a widely used chiral pesticide. Measurement of the fish carcass tissue (whole fish minus GI tract and liver) showed a rapid accumulation of fip...

  14. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    Science.gov (United States)

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  15. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption.

    Science.gov (United States)

    Kasten, Chelsea R; Blasingame, Shelby N; Boehm, Stephen L

    2015-02-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dual Enantioselective Control using D-phenylglycine-L-proline-derived Catalysts for the Enantioselective Addition of Diethylzinc to Aldehyde

    International Nuclear Information System (INIS)

    Kang, Seock Yong; Park, Yong Sun

    2016-01-01

    Dipeptide-derived catalysts are of great interest in various asymmetric transformations because of their short and simple preparation and easy modification of their modular structure by using different α-amino acids. We recently reported the first example of dipeptide-catalyzed enantioselective addition of dialkylzinc to aldehydes. We have developed a novel D-Phg-L-Pro dipeptide-derived catalyst for the addition of diethylzinc to aromatic aldehydes. We also disclosed an effective chiral switching by simply modifying nonchiral part of D-Phg-L-Pro dipeptide.

  17. Enantioselective Evans-Tishchenko Reduction of b-Hydroxyketone Catalyzed by Lithium Binaphtholate

    Directory of Open Access Journals (Sweden)

    Makoto Nakajima

    2011-06-01

    Full Text Available Lithium diphenylbinaphtholate catalyzed the enantioselective Evans-Tishchenko reduction of achiral b-hydroxyketones to afford monoacyl-protected 1,3-diols with high stereoselectivities. In the reaction of racemic b-hydroxyketones, kinetic optical resolution occurred in a highly stereoselective manner.

  18. PHENYLSULFONYL-SUBSTITUTED 5-ALKOXY-2(5H)-FURANONES - A NEW CLASS OF HIGHLY REACTIVE CHIRAL DIENOPHILES

    NARCIS (Netherlands)

    DEJONG, JC; VANDENBERG, KJ; FERINGA, BL; van Leusen, A.M.

    1991-01-01

    The synthesis of enantiomerically pure (5S)-5-(d-menthyloxy)-4-(phenylsulfonyl)-2(5H)-furanone (4) and the application of 4 as efficient dienophile in Diels-Alder reactions under mild conditions with enantioselectivities > 98% e.e. are described.

  19. Ferroic materials synthesis and applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    Ferroics is the generic name given to the study of ferromagnets, ferroelectrics, and ferroelastics. The basis of this study is to understand the large changes in physical characteristics that occur over a very narrow temperature range. In recent years, a new class of ferroic materials has been attracting increased interest. These multiferroics exhibit more than one ferroic property simultaneously in a single phase. The present volume: ""Ferroic Materials: Synthesis and Applications"" has ten Chapters, spread over areas as diverse as Magnetic Oxide Nanomaterials, Ferrites Synthesis, Hexaferrite

  20. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  1. Stereoselective, nitro-Mannich/lactamisation cascades for the direct synthesis of heavily decorated 5-nitropiperidin-2-ones and related heterocycles

    Directory of Open Access Journals (Sweden)

    Pavol Jakubec

    2012-04-01

    Full Text Available A versatile nitro-Mannich/lactamisation cascade for the direct stereoselective synthesis of heavily decorated 5-nitropiperidin-2-ones and related heterocycles has been developed. A highly enantioenriched substituted 5-nitropiperidin-2-one was synthesised in a four component one-pot reaction combining an enantioselective organocatalytic Michael addition with the diastereoselective nitro-Mannich/lactamisation cascade. Protodenitration and chemoselective reductive manipulation of the heterocycles was used to install contiguous and fully substituted stereocentres in the synthesis of substituted piperidines.

  2. [Development of boomerang-type intramolecular cascade reactions and application to natural product synthesis].

    Science.gov (United States)

    Takasu, K

    2001-12-01

    Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.

  3. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    Science.gov (United States)

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  4. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  5. Synthesis and optical resolution of the neurotoxin 2-amino-3-([15N]-methylamino)propanoic acid (BMAA)

    International Nuclear Information System (INIS)

    Yulin Hu; Ziffer, H.

    1990-01-01

    The synthesis of 2-amino-3-([ 15 N]-methylamino)propanoic acid (synonyms, BMAA, β-N-mehylamino-alanine) from α-acetamidoacrylic acid and [ 15 N]-methylamine is described. Enantioselective hydrolysis of the acetamide group, mediated by the enzyme Acylase 1 (EC 3.5.1.14), yielded (R)-BMAA and the (S)-α-acetamido derivative. Acid hydrolysis of the latter compound yielded (S)-BMAA. (author)

  6. Enantioselective ProPhenol-catalyzed addition of 1,3-diynes to aldehydes to generate synthetically versatile building blocks and diyne natural products.

    Science.gov (United States)

    Trost, Barry M; Chan, Vincent S; Yamamoto, Daisuke

    2010-04-14

    A highly enantioselective method for the catalytic addition of terminal 1,3-diynes to aldehydes was developed using our dinuclear zinc ProPhenol (1) system. Furthermore, triphenylphosphine oxide was found to interact synergistically with the catalyst to substantially enhance the chiral recognition. The generality of this catalytic transformation was demonstrated with aryl, alpha,beta-unsaturated and saturated aldehydes, of which the latter were previously limited in alkynyl zinc additions. The chiral diynol products are also versatile building blocks that can be readily elaborated; this was illustrated through highly selective trans-hydrosilylations, which enabled the synthesis of a beta-hydroxyketone and enyne. Additionally, the development of this method allowed for the rapid total syntheses of several biologically important diynol-containing natural products.

  7. New chiral phosphinephosphinite ligands: Application to stereoselective synthesis of a key intermediate of 1{beta}-methyl carbapenems by Rh(I)-catalyzed asymmetric hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takao; Yoshida, Akifumi; Matsumura, Kazuhiko [Takasago International Corp., Kanagawa (Japan)] [and others

    1995-12-31

    Transition metal catalyzed asymmetric hydroformylation is an attractive and highly useful homologation process for organic synthesis. Recently, the authors reported that the Rh(I) complexes of phosphinephosphite BINAPHOS are highly efficient catalysts for enantioselective hydroformylation of a variety of olefins. This time, the authors have designed and synthesized new chiral phosphinephosphinite ligands having binaphthyl backbone, (R)-2-diarylphosphino-2{prime}-diarylphosphinoxy-1,1{prime}-binaphthy1 (hereafter abbreviated (R)-BIPNITE). The Rh(I) complexes of these ligands are effective catalysts for the asymmetric hydroformylation of 4-vinylazetidin-2-one to give the corresponding oxo-aldehyde 3{beta} as the major product in very high diastereoselectivities and in good regioselectivities. Interestingly, modifications of the aryl substituents in phosphine and phosphinite moieties afforded higher selectivities. Aldehyde 3{beta} was easily oxidized with NaClO{sub 2} to 4, a key intermediate of 1{beta}-methyl carbapenems. Thus, the present method provides a new practical route to a versatile key intermediate for the synthesis of carbapenem antibiotics.

  8. Synthesis and application of intelligent hydrogels

    International Nuclear Information System (INIS)

    Kaetsu, I.; Uchida, K.; Sutani, K.; Nakayama, H.; Tamori, A.

    2000-01-01

    The authors have studied synthesis and application of stimule-sensitive and responsive hydrogels. In this report, two kinds of investigations were carried out on the intelligent hydrogels and the applications with radiation techniques. 1. Synthesis of temperature responsive sol-gel transition polymer and the application to drug delivery systems. Polysopropyl acrylamide is a typical temperature responsive polymers and the copolymers show broad variation of LCST (sol-gel transition temperature). The various copolymers of isopropyl acrylamide were synthesized by UV or radiation. 2. Surface curing of pH and electric field responsive hydrogel and the application to drug delivery systems. Electrolyte monomers such as acrylic acid was coated on the surface of polymer membrane (porous or non-porous) including drugs, and cured by UV or radiation various enzymes were immobilized in the coating layer in many cases. The product showed pH, electro-field and substrate responsive releases of model drug under on-off switching of environmental conditions. (J.P.N.)

  9. Synthesis and application of intelligent hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kaetsu, I.; Uchida, K.; Sutani, K.; Nakayama, H.; Tamori, A. [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    2000-03-01

    The authors have studied synthesis and application of stimule-sensitive and responsive hydrogels. In this report, two kinds of investigations were carried out on the intelligent hydrogels and the applications with radiation techniques. 1. Synthesis of temperature responsive sol-gel transition polymer and the application to drug delivery systems. Polysopropyl acrylamide is a typical temperature responsive polymers and the copolymers show broad variation of LCST (sol-gel transition temperature). The various copolymers of isopropyl acrylamide were synthesized by UV or radiation. 2. Surface curing of pH and electric field responsive hydrogel and the application to drug delivery systems. Electrolyte monomers such as acrylic acid was coated on the surface of polymer membrane (porous or non-porous) including drugs, and cured by UV or radiation various enzymes were immobilized in the coating layer in many cases. The product showed pH, electro-field and substrate responsive releases of model drug under on-off switching of environmental conditions. (J.P.N.)

  10. Low-Mode Conformational Search Method with Semiempirical Quantum Mechanical Calculations: Application to Enantioselective Organocatalysis.

    Science.gov (United States)

    Kamachi, Takashi; Yoshizawa, Kazunari

    2016-02-22

    A conformational search program for finding low-energy conformations of large noncovalent complexes has been developed. A quantitatively reliable semiempirical quantum mechanical PM6-DH+ method, which is able to accurately describe noncovalent interactions at a low computational cost, was employed in contrast to conventional conformational search programs in which molecular mechanical methods are usually adopted. Our approach is based on the low-mode method whereby an initial structure is perturbed along one of its low-mode eigenvectors to generate new conformations. This method was applied to determine the most stable conformation of transition state for enantioselective alkylation by the Maruoka and cinchona alkaloid catalysts and Hantzsch ester hydrogenation of imines by chiral phosphoric acid. Besides successfully reproducing the previously reported most stable DFT conformations, the conformational search with the semiempirical quantum mechanical calculations newly discovered a more stable conformation at a low computational cost.

  11. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.

    2011-02-24

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  12. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.; Krout, Michael R.; Jensen, Thomas; Bennett, Nathan B.; Harned, Andrew M.; Stoltz, Brian M.

    2011-01-01

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  13. Rhodium-catalyzed enantioselective intramolecular C-H silylation for the syntheses of planar-chiral metallocene siloles.

    Science.gov (United States)

    Zhang, Qing-Wei; An, Kun; Liu, Li-Chuan; Yue, Yuan; He, Wei

    2015-06-01

    Reported herein is the rhodium-catalyzed enantioselective C-H bond silylation of the cyclopentadiene rings in Fe and Ru metallocenes. Thus, in the presence of (S)-TMS-Segphos, the reactions took place under very mild conditions to afford metallocene-fused siloles in good to excellent yields and with ee values of up to 97%. During this study it was observed that the steric hindrance of chiral ligands had a profound influence on the reactivity and enantioselectivity of the reaction, and might hold the key to accomplishing conventionally challenging asymmetric C-H silylations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An enantioselective approach toward 3,4-dihydroisocoumarin through the bromocyclization of styrene-type carboxylic acids.

    Science.gov (United States)

    Chen, Jie; Zhou, Ling; Tan, Chong Kiat; Yeung, Ying-Yeung

    2012-01-20

    A facile and enantioselective approach toward 3,4-dihydroisocoumarin was developed. The method involved an amino-thiocarbamate catalyzed enantioselective bromocyclization of styrene-type carboxylic acids, yielding 3-bromo-3,4-dihydroisocoumarins with good yields and ee's. 3-Bromo-3,4-dihydroisocoumarins are versatile building blocks for various dihydroisocoumarin derivatives in which the Br group can readily be modified to achieve biologically important 4-O-type and 4-N-type 3,4-dihydroisocoumarin systems. In addition, studies indicated that, by refining some parameters, the synthetically useful 5-exo phthalide products could be achieved with good yields and ee's.

  15. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles

    Science.gov (United States)

    Chuprakov, Stepan; Kwok, Sen Wai; Zhang, Li; Lercher, Lukas; Fokin, Valery V.

    2009-01-01

    N-Sulfonyl 1,2,3-triazoles readily form rhodium(II) azavinyl carbenes, which react with olefins to produce cyclopropanes with excellent diastereo- and enantioselectivity and in high yield. PMID:19928917

  16. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  17. Optimisation of stabilised carboxylesterase NP for enantioselective hydrolysis of naproxen methyl ester

    CSIR Research Space (South Africa)

    Steenkamp, Lucia H

    2008-12-01

    Full Text Available Although the enantioselective kinetic resolution of ester racemates of the non-steroidal antiinflammatory drug naproxen ([2-(6-methoxy-2-naphthyl) propionic acid]) is a common demonstration for biocatalysis, the enantiomeric excess of the reactions...

  18. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent.

    Science.gov (United States)

    Wikmark, Ylva; Svedendahl Humble, Maria; Bäckvall, Jan-E

    2015-03-27

    A method for determining lipase enantioselectivity in the transacylation of sec-alcohols in organic solvent was developed. The method was applied to a model library of Candida antarctica lipase A (CalA) variants for improved enantioselectivity (E values) in the kinetic resolution of 1-phenylethanol in isooctane. A focused combinatorial gene library simultaneously targeting seven positions in the enzyme active site was designed. Enzyme variants were immobilized on nickel-coated 96-well microtiter plates through a histidine tag (His6-tag), screened for transacylation of 1-phenylethanol in isooctane, and analyzed by GC. The highest enantioselectivity was shown by the double mutant Y93L/L367I. This enzyme variant gave an E value of 100 (R), which is a dramatic improvement on the wild-type CalA (E=3). This variant also showed high to excellent enantioselectivity for other secondary alcohols tested. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  19. A concise enantioselective synthesis of the guaiane sesquiterpene (−-oxyphyllol

    Directory of Open Access Journals (Sweden)

    Martin Zahel

    2013-10-01

    Full Text Available (−-Oxyphyllol was prepared in only 4 steps from an epoxy enone that already served as an intermediate for the total synthesis of the anticancer guaiane (−-englerin A. A regio- and diastereoselective Co(II-catalyzed hydration of the olefin and a transannular epoxide opening were used as the key reactions.

  20. DNA-based asymmetric catalysis : Sequence-dependent rate acceleration and enantioselectivity

    NARCIS (Netherlands)

    Boersma, Arnold J.; Klijn, Jaap E.; Feringa, Ben L.; Roelfes, Gerard

    2008-01-01

    This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to

  1. Enantioselective Characteristics and Montmorillonite-Mediated Removal Effects of α-Hexachlorocyclohexane in Laying Hens.

    Science.gov (United States)

    Liu, Xueke; Shen, Zhigang; Wang, Peng; Liu, Chang; Yao, Guojun; Zhou, Zhiqiang; Liu, Donghui

    2016-06-07

    α-Hexachlorocyclohexane (α-HCH) is a chiral organochlorine pesticide that is often ubiquitously detected in various environmental matrices and may be absorbed by the human body via food consumption, with serious detriments to human health. In this study, enantioselective degradation kinetics and residues of α-HCH in laying hens were investigated after a single dose of exposure to the pesticide, whereas enantioselectivity and residues of α-HCH in eggs, droppings, and various tissues were investigated after long-term exposure. Meanwhile, montmorillonite (MMT), a feed additive with high capacity of adsorption, was investigated for its ability to remove α-HCH from laying hens. Most non-brain tissues enantioselectively accumulated (-)-α-HCH, while (+)-α-HCH was preferentially accumulated in the brain. The enantiomer fractions (EFs) in most tissues gradually decreased, implying continuous depletion of (+)-α-HCH in laying hens. After 30 days of exposure and 31 days of elimination, the concentration of α-HCH in eggs and tissues of laying hens with MMT-containing feed was lower than that with MMT-free feed, indicating the removal effects of MMT for α-HCH in laying hens. The findings presented herein suggest that modified MMT may potentially be useful in reducing the enrichment of α-HCH in laying hens and eggs, thus lowering the risk of human intake of α-HCH.

  2. Synthesis of chirals regioisomers from D-mannitol: obtainment of a acetylenic alcohols mixture

    International Nuclear Information System (INIS)

    Cito, Antonia Maria das Gracas Lopes; Araujo, Bruno Quirino; Lopes, Jose Arimateia Dantas; Magalhes, Aderbal Farias; Magalhes, Eva Goncalves

    2009-01-01

    The synthesis of chiral acetylenic regioisomers was described by using an appropriate intermediate such as isopropylidene glycerol, a synthon widely used in the enantioselective syntheses. This intermediate was prepared from D-mannitol. The nine obtained compounds have been characterized by their respective spectral data. The mixture of chiral acetylenic alcohols showed activity against Escherichia coli when tested through the monitoring of CO 2 released during microbial respiration by using a conductimetric system. (author)

  3. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were

  4. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  5. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Enantioselectivity of Odor Sensation: Some Examples for Undergraduate Chemistry Courses

    Science.gov (United States)

    Kraft, Philip; Mannschreck, Albrecht

    2010-01-01

    This article discusses seven chiral odorants that demonstrate the enantioselectivity of odor sensation: carvone, Celery Ketone, camphor, Florhydral, 3-methyl-3-sulfanylhexan-1-ol, muscone, and methyl jasmonate. After a general introduction of the odorant-receptor interaction and the combinatorial code of olfaction, the olfactory properties of the…

  7. The role of the achiral template in enantioselective transformations. Radical conjugate additions to alpha-methacrylates followed by hydrogen atom transfer.

    Science.gov (United States)

    Sibi, Mukund P; Sausker, Justin B

    2002-02-13

    We have evaluated various achiral templates (1a-g, 10, and 16) in conjunction with chiral Lewis acids in the conjugate addition of nucleophilic radicals to alpha-methacrylates followed by enantioselective H-atom transfer. Of these, a novel naphthosultam template (10) gave high enantioselectivity in the H-atom-transfer reactions with ee's up to 90%. A chiral Lewis acid derived from MgBr(2) and bisoxazoline (2) gave the highest selectivity in the enantioselective hydrogen-atom-transfer reactions. Non-C(2) symmetric oxazolines (20-25) have also been examined as ligands, and of these, compound 25 gave optimal results (87% yield and 80% ee). Insights into rotamer control in alpha-substituted acrylates and the critical role of the tetrahedral sulfone moiety in realizing high selectivity are discussed.

  8. Metal-free, mild, nonepimerizing, chemo- and enantio- or diastereoselective N-alkylation of amines by alcohols via oxidation/imine-iminium formation/reductive amination: a pragmatic synthesis of octahydropyrazinopyridoindoles and higher ring analogues.

    Science.gov (United States)

    Khan, Imran A; Saxena, Anil K

    2013-12-06

    A mild step and atom-economical nonepimerizing chemo- and enantioselective N-alkylating procedure has been developed via oxidation/imine-iminium formation/reduction cascade using TEMPO-BAIB-HEH-Brønsted acid catalysis in DMPU as solvent and a stoichiometric amount of amine. The optimized conditions were further extended for the nonenzymatic kinetic resolution of the chiral amine thus formed under nonenzymatic in situ hydrogen-transfer conditions using VAPOL-derived phosphoric acid (VAPOL-PA) as the Brønsted acid catalyst. The enantioselective cascade of the presented reaction was successfully utilized in the synthesis of octahydropyrazinopyridoindole and its higher ring analogues.

  9. Regio-, Diastereo-, and Enantioselective Nitroso-Diels-Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids.

    Science.gov (United States)

    Pous, Jonathan; Courant, Thibaut; Bernadat, Guillaume; Iorga, Bogdan I; Blanchard, Florent; Masson, Géraldine

    2015-09-23

    Chiral phosphoric acid-catalyzed asymmetric nitroso-Diels-Alder reaction of nitrosoarenes with carbamate-dienes afforded cis-3,6-disubstituted dihydro-1,2-oxazines in high yields with excellent regio-, diastereo-, and enantioselectivities. Interestingly, we observed that the catalyst is able not only to control the enantioselectivity but also to reverse the regioselectivity of the noncatalyzed nitroso-Diels-Alder reaction. The regiochemistry reversal and asynchronous concerted mechanism were confirmed by DFT calculations.

  10. Enantioselective accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte Lemna minor.

    Science.gov (United States)

    Wang, Fang; Yi, Xiaotong; Qu, Han; Chen, Li; Liu, Donghui; Wang, Peng; Zhou, Zhiqiang

    2017-09-01

    Pesticides are frequently detected in water bodies due to the agricultural application, which may pose impacts on aquatic organisms. The enantioselective bioaccumulation and metabolism of the herbicide lactofen in aquatic floating macrophyte Lemna minor (L. minor) were studied and the potential L. minor phytoremediation was investigated. Ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS-MS) analysis for lactofen and its two known metabolites in L. minor was performed. The initial concentrations of racemic lactofen, R-lactofen and S-lactofen were all 30μgL -1 in the growth solution. The distribution of lactofen and its metabolites in growth solution and L. minor was determined throughout a 5-d laboratory trial. It was observed that S-lactofen was preferentially taken up and metabolized in L. minor. After rac-lactofen exposure, the accumulation amount of S-lactofen was approximately 3-fold more than that of R-lactofen in L. minor and the metabolism rate of S-lactofen (T 1/2 =0.92 d) was significantly faster than R-lactofen (T 1/2 =1.55 d). L. minor could only slightly accelerate the metabolism and removal of lactofen in the growth solution. As for the metabolites, desethyl lactofen was found to be the major metabolite in L. minor and the growth solution, whereas the metabolite acifluorfene was undetectable. No interconversion of the two enantiomers was observed after individual enantiomer exposure, indicating they were configurationally stable. The findings of this work represented that the accumulation and metabolism of lactofen in L. minor were enantioselective, and L. minor had limited capacity for the removal of lactofen and its metabolite in water. Copyright © 2017. Published by Elsevier Inc.

  11. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M200

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Kyslík, Pavel

    2006-01-01

    Roč. 1760, - (2006), s. 245-252 ISSN 0006-3002 Institutional research plan: CEZ:AV0Z50200510 Keywords : epoxide hydrolase * enantioselectivity * aspergillus niger Subject RIV: EE - Microbiology, Virology

  12. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system.

    Science.gov (United States)

    Huang, Xiaoqiang; Luo, Shipeng; Burghaus, Olaf; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2017-10-01

    We report an unusual reaction design in which a chiral bis-cyclometalated rhodium(iii) complex enables the stereocontrolled chemistry of photo-generated carbon-centered radicals and at the same time catalyzes an enantioselective sulfonyl radical addition to an alkene. Specifically, employing inexpensive and readily available Hantzsch esters as the photoredox mediator, Rh-coordinated prochiral radicals generated by a selective photoinduced single electron reduction are trapped by allyl sulfones in a highly stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed fragmented sulfonyl radicals are utilized via an enantioselective radical addition to form chiral sulfones, which minimizes waste generation.

  13. Enantioselective synthesis of both (-)-(R)-and (+)-(S)-angustureine controlled by enzymatic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Gaspar, E-mail: gaspardm@qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Qumica; Diaz, Marisa A.N. [Universidade Federal de Vicosa, MG (Brazil). Dept. de Bioquimica e Biologia Molecular; Reis, Marco A. [Centro Federal de Educacao Tecnologica (CEFET), Belo Horizonte, MG (Brazil). Dept. de Quimica

    2013-09-15

    The present study describes a new synthesis of (-)-(R)- and (+)-(S)-angustureine enantiomers, as well as of racemate ({+-})-angustureine, from a racemic {beta}-amino ester controlled by kinetic enzymatic resolution. This strategy allowed to incorporate the basic skeleton, as well as to control the single stereocenter at carbon 2 in both enantiomers. The sequence of five steps starting from the chiral {beta}-amino ester and sodium carboxylate for the synthesis of both alkaloids achieved overall yields of 80 and 44%, respectively, and produced excellent enantiomeric excesses (95 and 96%, respectively) with no protection of functional groups in any of the steps. (author)

  14. Enantioselective synthesis of both (-)-(R)-and (+)-(S)-angustureine controlled by enzymatic resolution

    International Nuclear Information System (INIS)

    Diaz, Gaspar; Diaz, Marisa A.N.; Reis, Marco A.

    2013-01-01

    The present study describes a new synthesis of (-)-(R)- and (+)-(S)-angustureine enantiomers, as well as of racemate (±)-angustureine, from a racemic β-amino ester controlled by kinetic enzymatic resolution. This strategy allowed to incorporate the basic skeleton, as well as to control the single stereocenter at carbon 2 in both enantiomers. The sequence of five steps starting from the chiral β-amino ester and sodium carboxylate for the synthesis of both alkaloids achieved overall yields of 80 and 44%, respectively, and produced excellent enantiomeric excesses (95 and 96%, respectively) with no protection of functional groups in any of the steps. (author)

  15. Analogues of amphibian alkaloids: total synthesis of (5R,8S,8aS-(--8-methyl-5-pentyloctahydroindolizine (8-epi-indolizidine 209B and [(1S,4R,9aS-(--4-pentyloctahydro-2H-quinolizin-1-yl]methanol

    Directory of Open Access Journals (Sweden)

    de Koning Charles B

    2008-01-01

    Full Text Available Abstract Background Prior work from these laboratories has centred on the development of enaminones as versatile intermediates for the synthesis of alkaloids and other nitrogen-containing heterocycles. In this paper we describe the enantioselective synthesis of indolizidine and quinolizidine analogues of bicyclic amphibian alkaloids via pyrrolidinylidene- and piperidinylidene-containing enaminones. Results Our previously reported synthesis of racemic 8-epi-indolizidine 209B has been extended to the laevorotatory enantiomer, (--9. Attempts to adapt the synthetic route in order to obtain quinolizidine analogues revealed that a key piperidinylidene-containing enaminone intermediate (+-28 was less tractable than its pyrrolidinylidene counterpart, thereby necessitating modifications that included timing changes and additional protection-deprotection steps. A successful synthesis of [(1S,4R,9aS-4-pentyloctahydro-2H-quinolizin-1-yl]methanol (--41 from the chiral amine tert-butyl (3R-3-{benzyl [(1R-1-phenylethyl]amino}octanoate (+-14 was achieved in 14 steps and an overall yield of 20.4%. Conclusion The methodology reported in this article was successfully applied to the enantioselective synthesis of the title compounds. It paves the way for the total synthesis of a range of cis-5,8-disubstituted indolizidines and cis-1,4-disubstituted quinolizidines, as well as the naturally occurring trans-disubstituted alkaloids.

  16. A DFT exploration of the enantioselective rearrangement of cyclohexene oxide to cyclohexenol

    DEFF Research Database (Denmark)

    Brandt, Peter; Norrby, Per-Ola; Andersson, Pher G.

    2003-01-01

    In this paper, we present computational results for the (1S,3R,4R)-3-(pyrrolidinyl)-methyl-2-azabicyclo[2.2.1]heptane mediated rearrangement of cyclohexene oxide. The results nicely explain the differences in enantioselectivities between catalytic and stoichiometric mode between different ligands...

  17. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  18. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  19. Enantioselective apoptosis induced by individual isomers of bifenthrin in Hep G2 cells.

    Science.gov (United States)

    Liu, Huigang; Li, Juan

    2015-03-01

    Bifenthrin (BF) has been used in racemate for agricultural purposes against soil insects, leading to increased inputs into soil environments. However, most of the studies about the toxicology research on BF were performed in its racemic form. The aim of the present study was to evaluate the enantiomer-specific cis-BF-induced apoptosis and intracellular reactive oxygen species (ROS) generation on human hepatocarcinoma cells (Hep G2). The results of cell viability assay and cytoflow assay indicated an obvious enantioselective hepatocyte toxicity of 1S-cis-BF in Hep G2 cells. 1S-cis-BF also induced ROS production, up-regulated Bax protein expression and down-regulated Bcl-2 expression levels. The present study suggested that enantioselective toxicity should be evaluated on currently used chiral pesticides, such as synthetic pyrethroids. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A catalytic reactor for the organocatalyzed enantioselective continuous flow alkylation of aldehydes.

    Science.gov (United States)

    Porta, Riccardo; Benaglia, Maurizio; Puglisi, Alessandra; Mandoli, Alessandro; Gualandi, Andrea; Cozzi, Pier Giorgio

    2014-12-01

    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95% ee at 25 °C), and high productivity (more than 3800 h(-1) ) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David); Archer, Lynden A.; Yang, Zichao

    2008-01-01

    for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic

  2. Enantioselective effect of bifenthrin on antioxidant enzyme gene expression and stress protein response in PC12 cells.

    Science.gov (United States)

    Lu, Xianting

    2013-07-01

    Enantioselectivity in toxicology and the health risk of chiral xenobiotics have become frontier topics interfacing chemistry and toxicology. Our previous results showed that cis-bifenthrin (cis-BF) induced cytotoxicity and apoptosis in vitro in an enantioselective manner. However, the exact molecular mechanisms of synthetic pyrethroid-induced enantioselective apoptosis and cytotoxicity have so far received limited research attention. In the present study, the expression patterns of different genes encoding heat shock protein and antioxidant enzymes were investigated by real-time quantitative PCR in rat adrenal pheochromocytoma (PC12) cells after exposure to cis-BF and its enantiomers. The results showed that exposure to 1S-cis-BF resulted in increased transcription of HSP90, HSP70, HSP60, Cu-Zn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione-s-transferase at a concentration of 5 µm and above, while exposure to 1R-cis-BF and rac-cis-BF exhibited these effects to lesser degrees. In addition, induction of antioxidant enzyme gene expression produced by 1S-cis-BF might occur, at least in part, through activation of p38 mitogen-activated protein kinases (MAPK) and extracellular regulated kinases, while increase in stress protein response produced by 1S-cis-BF might occur through the p38 MAPK signaling pathway. The results not only suggest that enantioselectivity should be considered in evaluating the ecotoxicological effects and health risk of chiral contaminants, but also will improve the understanding of molecular mechanism for chiral chemical-induced cytotoxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    Science.gov (United States)

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  4. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.; Ahmed, Syud M.; Coates, Geoffrey W.

    2011-01-01

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  5. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  6. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei

    2016-10-13

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  8. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Nina Kann

    2010-09-01

    Full Text Available Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  9. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.

    Science.gov (United States)

    Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A; Schomaker, Jennifer M

    2017-08-07

    Asymmetric nitrene-transfer reactions are a powerful tool for the preparation of enantioenriched amine building blocks. Reported herein are chemo- and enantioselective silver-catalyzed aminations which transform di- and trisubstituted homoallylic carbamates into [4.1.0]-carbamate-tethered aziridines in good yields and with ee values of up to 92 %. The effects of the substrate, silver counteranion, ligand, solvent, and temperature on both the chemoselectivity and ee value were explored. Stereochemical models were proposed to rationalize the observed absolute stereochemistry of the aziridines, which undergo nucleophilic ring opening to yield enantioenriched amines with no erosion in stereochemical integrity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chiral separation and enantioselective degradation of vinclozolin in soils.

    Science.gov (United States)

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  11. Combining silver- and organocatalysis: an enantioselective sequential catalytic approach towards pyrano-annulated pyrazoles.

    Science.gov (United States)

    Hack, Daniel; Chauhan, Pankaj; Deckers, Kristina; Mizutani, Yusuke; Raabe, Gerhard; Enders, Dieter

    2015-02-11

    A one-pot asymmetric Michael addition/hydroalkoxylation sequence, catalyzed by a sequential catalytic system consisting of a squaramide and a silver salt, provides a new series of chiral pyrano-annulated pyrazole derivatives in excellent yields (up to 95%) and high enantioselectivities (up to 97% ee).

  12. A new enantioselective CE method for determination of oxcarbazepine and licarbazepine after fungal biotransformation.

    Science.gov (United States)

    Bocato, Mariana Zuccherato; Bortoleto, Marcela Armelim; Pupo, Mônica Tallarico; de Oliveira, Anderson Rodrigo Moraes

    2014-10-01

    The present work describes, for the first time, the simultaneous separation of oxcarbazepine (OXC) and its active metabolite 10-hydroxy-10,11-dihydrocarbamazepine (licarbazepine, Lic) by chiral CE. The developed method was employed to monitor the enantioselective biotransformation of OXC into its active metabolite by fungi. The electrophoretic separations were performed using 10 mmol/L of a Tris-phosphate buffer solution (pH 2.5) containing 1% w/v of β-CD phosphate sodium salt (P-β-CD) as running electrolyte, -20 kV of applied voltage and a 15°C capillary temperature. The method was linear over the concentration range of 1000-30 000 ng/mL for OXC and 75-900 ng/mL for each Lic enantiomer (r ≥ 0.9952). Within-day precision and accuracy evaluated by RSD and relative errors, respectively, were lower than 15% for all analytes. The validated method was used to evaluate the enantioselective biotransformation of OXC, mediated by fungi, into its active metabolite Lic. This study showed that the fungi Glomerella cingulata (VA1) and Beuveria bassiana were able to enantioselectively metabolize the OXC into Lic after 360 h of incubation. Biotransformation by the fungus Beuveria bassiana showed 79% enantiomeric excess for (S)-(+)-Lic, while VA1 gave an enantiomeric excess of 100% for (S)-(+)-Lic. This study opens a new route to the drug (S)-(+)-licarbazepine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Uncovering Key Structural Features of an Enantioselective Peptide-Catalyzed Acylation Utilizing Advanced NMR Techniques

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Kolmer, A.; Ilgen, J.; Schwab, M.; Kaltschnee, L.; Fredersdorf, M.; Schmidts, V.; Wende, R. C.; Schreiner, P. R.; Thiele, C. M.

    2016-01-01

    Roč. 55, č. 51 (2016), s. 15754-15759 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : conformational analysis * enantioselective acylations * NMR spectroscopy * pure shift NMR * RDCs Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  14. The limits to biocatalysis: pushing the envelope.

    Science.gov (United States)

    Sheldon, Roger A; Brady, Dean

    2018-06-12

    In the period 1985 to 1995 applications of biocatalysis, driven by the need for more sustainable manufacture of chemicals and catalytic, (enantio)selective methods for the synthesis of pharmaceutical intermediates, largely involved the available hydrolases. This was followed, in the next two decades, by revolutionary developments in protein engineering and directed evolution for the optimisation of enzyme function and performance that totally changed the biocatalysis landscape. In the same period, metabolic engineering and synthetic biology revolutionised the use of whole cell biocatalysis in the synthesis of commodity chemicals by fermentation. In particular, developments in the enzymatic enantioselective synthesis of chiral alcohols and amines are highlighted. Progress in enzyme immobilisation facilitated applications under harsh industrial conditions, such as in organic solvents. The emergence of biocatalytic or chemoenzymatic cascade processes, often with co-immobilised enzymes, has enabled telescoping of multi-step processes. Discovering and inventing new biocatalytic processes, based on (meta)genomic sequencing, evolving enzyme promiscuity, chemomimetic biocatalysis, artificial metalloenzymes, and the introduction of non-canonical amino acids into proteins, are pushing back the limits of biocatalysis function. Finally, the integral role of biocatalysis in developing a biobased carbon-neutral economy is discussed.

  15. Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR

    CSIR Research Space (South Africa)

    Brady, D

    2004-03-04

    Full Text Available In a biocatalytic reaction the immobilized lipase ChiroCLEC-CR enantioselectively hydrolysed a naproxen ethyl ester racemate, yielding (S)-naproxen with an enantiomeric excess of more than 98%, an enantiomeric ratio (E) of more than 100...

  16. Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Jonathan D Bohbot

    2009-09-01

    Full Text Available Enantiomers differ only in the left or right handedness (chirality of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8 acts as a chiral selective receptor for the (R-(--enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs.

  17. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  18. Catalytic Asymmetric Total Synthesis of (+)- and (-)-Paeoveitol via a Hetero-Diels-Alder Reaction.

    Science.gov (United States)

    Li, Tian-Ze; Geng, Chang-An; Yin, Xiu-Juan; Yang, Tong-Hua; Chen, Xing-Long; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun

    2017-02-03

    The first catalytic asymmetric total synthesis of (+)- and (-)-paeoveitol has been accomplished in 42% overall yield via a biomimetic hetero-Diels-Alder reaction. The chiral phosphoric acid catalyzed hetero-Diels-Alder reaction showed excellent diastereo- and enantioselectivity (>99:1 dr and 90% ee); two rings and three stereocenters were constructed in a single step to produce (-)-paeoveitol on a scale of 452 mg. This strategy enabled us to selectively synthesize both paeoveitol enantiomers from the same substrates by simply changing the enantiomer of the catalyst.

  19. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    Science.gov (United States)

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Concise and Straightforward Asymmetric Synthesis of a Cyclic Natural Hydroxy-Amino Acid

    Directory of Open Access Journals (Sweden)

    Mario J. Simirgiotis

    2014-11-01

    Full Text Available An enantioselective total synthesis of the natural amino acid (2S,4R,5R-4,5-di-hydroxy-pipecolic acid starting from D-glucoheptono-1, 4-lactone is presented. The best sequence employed as a key step the intramolecular nucleophilic displacement by an amino function of a 6-O-p-toluene-sulphonyl derivative of a methyl D-arabino-hexonate and involved only 12 steps with an overall yield of 19%. The structures of the compounds synthesized were elucidated on the basis of comprehensive spectroscopic (NMR and MS and computational analysis.

  1. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.

    Science.gov (United States)

    Wu, Yubo; Guo, Huimin; James, Tony D; Zhao, Jianzhang

    2011-07-15

    We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of

  2. A dual Lewis base activation strategy for enantioselective carbene-catalyzed annulations.

    Science.gov (United States)

    Izquierdo, Javier; Orue, Ane; Scheidt, Karl A

    2013-07-24

    A dual activation strategy integrating N-heterocyclic carbene (NHC) catalysis and a second Lewis base has been developed. NHC-bound homoenolate equivalents derived from α,β-unsaturated aldehydes combine with transient reactive o-quinone methides in an enantioselective formal [4 + 3] fashion to access 2-benzoxopinones. The overall approach provides a general blueprint for the integration of carbene catalysis with additional Lewis base activation modes.

  3. Synthesis of γ-Valerolactone from Carbohydrates and its Applications.

    Science.gov (United States)

    Zhang, Zehui

    2016-01-01

    γ-Valerolactone (GVL) is a valuable chemical intermediate that can be obtained by catalytic reduction of levulinic acid (LA) or alkyl levulinates (AL). There are many reports on the synthesis of GVL from LA or AL. However, the demand for the large-scale synthesis of GVL requires more environmentally friendly and cost-effective production processes. This article focuses on the recent advance in the synthesis of GVL from carbohydrates or lignocellulosic biomass. In addition, application of GVL as the reaction solvents, fuel additives, and as precursor for the synthesis of jet fuel and polymer monomers is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet-Spengler reaction

    NARCIS (Netherlands)

    Kerschgens, I. P.; Claveau, E.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2012-01-01

    The pharmacologically interesting indole alkaloids (-)-mitragynine, (+)-paynantheine and (+)-speciogynine were synthesised in nine steps from 4-methoxytryptamine by a route featuring (i) an enantioselective thiourea-catalysed Pictet-Spengler reaction, providing the tetrahydro-β-carboline ring and

  5. Different effects of clopidogrel and clarithromycin on the enantioselective pharmacokinetics of sibutramine and its active metabolites in healthy subjects.

    Science.gov (United States)

    Shinde, Dhananjay D; Kim, Ho-Sook; Choi, Jae-Seok; Pan, Wei; Bae, Soo Kyung; Yeo, Chang-Woo; Shon, Ji-Hong; Kim, Dong-Hyun; Shin, Jae Gook

    2013-05-01

    In this study, we assessed the effects of clopidogrel and clarithromycin, known CYP2B6 and CYP3A inhibitors, respectively, on the enantioselective disposition of racemic sibutramine in conjunction with CYP2B6 polymorphisms in humans. Sibutramine showed enantioselective plasma profiles with consistently higher concentrations of R-enantiomers. Clopidogrel and clarithromycin significantly increased the sibutramine plasma concentration, but their effects differed between enantiomers; a 2.2-fold versus 4.1-fold increase in the AUC in S-enantiomer and 1.8-fold versus 2.0-fold for the R-enantiomer, respectively. The AUCs of S- and R-desmethyl metabolites changed significantly during the clopidogrel phase (P sibutramine was higher in subjects with the CYP2B6*6/*6 genotype, but no statistical difference was observed among the CYP2B6 genotypes. These results suggest that the enantioselective disposition of sibutramine and its active metabolites are influenced by the altered genetic and environmental factors of CYP2B6 and CYP3A activity in vivo. © The Author(s) 2013.

  6. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated l-Alanine Peptides

    Science.gov (United States)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2017-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of l-alanine peptides ( l-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+( d-Trp)( l-Ala n ) and homochiral H+( l-Trp)( l-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+( l-Trp)( l-Ala3), indicating that the proton is attached to the l-alanine peptide, and H2O loss occurs from H+( l-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+( d-Trp)( l-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+( d-Trp)( l-Ala3), the protonation site is the amino group of d-Trp, and NH3 loss and (H2O + CO) loss occur from H+( d-Trp). l-Ala peptides recognize d-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+( d-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+( d-Trp)( l-Ala3) at room temperature, whereas l-Trp dissociation was not observed in homochiral H+( l-Trp)( l-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of l-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  7. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  8. Simple Aziridino Alcohols as Chiral Ligands. Enantioselective Additions of Diethylzinc to N-Diphenylphosphinoylimines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Andersson, Pher G.; Guijarro, David

    1996-01-01

    Simple chiral aziridino alcohols 2-5, easily available from L-serine, L-threonine or L-allo-threonine, have been used as ligands to promote the addition of Et(2)Zn to the diphenylphosphinoylimine 1 (Ar=Ph). Enantioselectivities of up to 94% could be obtained by proper choice of the substituents...

  9. In-silico driven engineering of enantioselectivity of a penicillin G acylase towards active pharmaceutical ingredients

    Czech Academy of Sciences Publication Activity Database

    Grulich, Michal; Brezovský, J.; Štěpánek, Václav; Palyzová, Andrea; Marešová, Helena; Zahradník, Jiří; Kyslíková, Eva; Kyslík, Pavel

    2016-01-01

    Roč. 133, Supplement 1 (2016), s. 53-59 ISSN 1381-1177 Institutional support: RVO:61388971 Keywords : Docking experiments * Enantioselectivity * Penicillin G acylase Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.269, year: 2016

  10. Chiral ferrocenes in asymmetric catalysis: synthesis and applications

    National Research Council Canada - National Science Library

    Dai, Li-Xin; Hou, Xue-Long

    2010-01-01

    .... It provides a thorough overview of the synthesis and characterization of different types of chiral ferrocene ligands, their application to various catalytic asymmetric reactions, and versatile chiral...

  11. Stereoselective reactions. XXXII. Enantioselective deprotonation of 4-tert-butylcyclohexanone by fluorine-containing chiral lithium amides derived from 1-phenylethylamine and 1-(1-naphthyl)ethylamine.

    Science.gov (United States)

    Aoki, K; Koga, K

    2000-04-01

    Enantioselective deprotonation of 4-tert-butylcyclohexanone was examined using 1-phenylethylamine- and 1-(1-naphthyl)ethylamine-derived chiral lithium amides having an alkyl or a fluoroalkyl substituent at the amide nitrogen. The lithium amides having a 2,2,2-trifluoroethyl group on the amide nitrogen are easily accessible in both enantiomeric forms, and were found to induce good enantioselectivity in the present reaction.

  12. Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Alex W. Kawczak

    2008-09-01

    The nanocomposite energy applications for plasma reactor produced nanoparticles are reviewed. Nanoparticles are commonly defined as particles less than 100 nm in diameter. Due to this small size, nanoparticles have a high surface-to-volume ratio. This increases the surface energy compared to the bulk material. The high surface-to-volume ratio and size effects (quantum effects) give nanoparticles distinctive chemical, electronic, optical, magnetic and mechanical properties from those of the bulk material. Nanoparticles synthesis can be grouped into 3 broad approaches. The first one is wet phase synthesis (sol-gel processing), the second is mechanical attrition, and the third is gas-phase synthesis (aerosol). The properties of the final product may differ significantly depending on the fabrication route. Currently, there are no economical large-scale production processes for nanoparticles. This hinders the widespread applications of nanomaterials in products. The Idaho National Laboratory (INL) is engaging in research and development of advanced modular hybrid plasma reactors for low cost production of nanoparticles that is predicted to accelerate application research and enable the formation of technology innovation alliances that will result in the commercial production of nanocomposites for alternative energy production devices such as fuel cells, photovoltaics and electrochemical double layer capacitors.

  13. Enantioselective analysis of proteinogenic amino acids in cerebrospinal fluid by capillary electrophoresis–mass spectrometry

    NARCIS (Netherlands)

    Prior, Amir; Sánchez-Hernández, Laura; Sastre-Toraño, Javier; Marina, Maria Luisa; de Jong, Gerhardus J.; Somsen, Govert W.

    2016-01-01

    d-Amino acids (AAs) are increasingly being recognized as essential molecules in biological systems. Enantioselective analysis of proteinogenic AAs in biological samples was accomplished by CE–MS employing β-CD as chiral selector and ESI via sheath-liquid (SL) interfacing. Prior to analysis, AAs were

  14. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2016-05-01

    Full Text Available Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity 

  15. Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae.

    Science.gov (United States)

    Liu, Chen; LV, Xiao Tian; Zhu, Wen Xue; QU, Hao Yang; Gao, Yong Xin; Guo, Bao Yuan; Wang, Hui Li

    2013-12-01

    The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer. © 2013 Wiley Periodicals, Inc.

  16. Design and synthesis of mixed oxides nanoparticles for biofuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Senniang [Iowa State Univ., Ames, IA (United States)

    2010-05-15

    The work in this dissertation presents the synthesis of two mixed metal oxides for biofuel applications and NMR characterization of silica materials. In the chapter 2, high catalytic efficiency of calcium silicate is synthesized for transesterfication of soybean oil to biodisels. Chapter 3 describes the synthesis of a new Rh based catalyst on mesoporous manganese oxides. The new catalyst is found to have higher activity and selectivity towards ethanol. Chapter 4 demonstrates the applications of solid-state Si NMR in the silica materials.

  17. Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qing; Shi, Haiyan; Gao, Beibei; Tian, Mingming; Hua, Xiude; Wang, Minghua, E-mail: wangmha@njau.edu.cn

    2016-01-15

    An effective method for the enantioselective determination of ethiprole enantiomers in agricultural and environmental samples was developed. The effects of solvent extraction, mobile phase and thermodynamic parameters for chiral recognition were fully investigated. Complete enantioseparation of the ethiprole enantiomers was achieved on a Lux Cellulose-2 column. The stereochemical structures of ethiprole enantiomers were also determined, and (R)-(+)-ethiprole was first eluted. The average recoveries were 82.7–104.9% with intra-day RSD of 1.7–8.2% in soil, cucumber, spinach, tomato, apple and peach under optimal conditions. Good linearity (R{sup 2} ≥ 0.9991) was obtained for all the matrix calibration curves within a range of 0.1 to 10 mg L{sup −1}. The limits of detection for both enantiomers were estimated to be 0.008 mg kg{sup −1} in soil, cucumber, spinach and tomato and 0.012 mg kg{sup −1} in apple and peach, which were lower than the maximum residue levels established in Japan. The results indicate that the proposed method is convenient and reliable for the enantioselective detection of ethiprole in agricultural and environmental samples. The behavior of ethiprole in soil was studied under field conditions and the enantioselective degradation was observed with enantiomer fraction values varying from 0.494 to 0.884 during the experiment. The (R)-(+)-ethiprole (t{sub 1/2} = 11.6 d) degraded faster than (S)-(−)-ethiprole (t{sub 1/2} = 34.7 d). This report is the first describe a chiral analytical method and enantioselective behavior of ethiprole, and these results should be extremely useful for the risk evaluation of ethiprole in food and environmental safety. - Highlights: • The ethiprole enantiomers were completely separated. • A novel method for enantioselective determination of ethiprole was developed. • The absolute configurations of ethiprole enantiomers were firstly determined. • The (R)-(+)-ethiprole was preferentially degraded in

  18. Resolution of alpha/beta-amino acids by enantioselective penicillin G acylase from Achromobacter sp

    Czech Academy of Sciences Publication Activity Database

    Grulich, Michal; Brezovský, J.; Štěpánek, Václav; Palyzová, Andrea; Kyslíková, Eva; Kyslík, Pavel

    2015-01-01

    Roč. 122, DEC 2015 (2015), s. 240-247 ISSN 1381-1177 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Penicillin G acylase * Enantioselectivity * Homologous model Subject RIV: CE - Biochemistry Impact factor: 2.189, year: 2015

  19. DNA-Accelerated Copper Catalysis of Friedel-Crafts Conjugate Addition/Enantioselective Protonation Reactions in Water

    NARCIS (Netherlands)

    García-Fernández, Almudena; Megens, Rik P.; Villarino, Lara; Roelfes, Gerard

    2016-01-01

    DNA-induced rate acceleration has been identified as one of the key elements for the success of the DNA-based catalysis concept. Here we report on a novel DNA-based catalytic Friedel-Crafts conjugate addition/enantioselective protonation reaction in water, which represents the first example of a

  20. An ylide transformation of rhodium(I) carbene: enantioselective three-component reaction through trapping of rhodium(I)-associated ammonium ylides by β-nitroacrylates.

    Science.gov (United States)

    Ma, Xiaochu; Jiang, Jun; Lv, Siying; Yao, Wenfeng; Yang, Yang; Liu, Shunying; Xia, Fei; Hu, Wenhao

    2014-11-24

    The chiral Rh(I)-diene-catalyzed asymmetric three-component reaction of aryldiazoacetates, aromatic amines, and β-nitroacrylates was achieved to obtain γ-nitro-α-amino-succinates in good yields and with high diastereo- and enantioselectivity. This reaction is proposed to proceed through the enantioselective trapping of Rh(I)-associated ammonium ylides by nitroacrylates. This new transformation represents the first example of Rh(I)-carbene-induced ylide transformation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of Biochemical Applications on Digital Microfluidic Biochips with Operation Execution Time Variability

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul

    2015-01-01

    that each biochemical operation in an application is characterized by a worst-case execution time (wcet). However, during the execution of the application, due to variability and randomness in biochemical reactions, operations may finish earlier than their wcetswcets, resulting in unexploited slack...... in the schedule. In this paper, we first propose an online synthesis strategy that re-synthesizes the application at runtime when operations experience variability in their execution time, exploiting thus the slack to obtain shorter application completion times. We also propose a quasi-static synthesis strategy...... approaches have been proposed for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. Researchers have assumed...

  2. Enantioselective organo-photocatalysis mediated by atropisomeric thiourea derivatives.

    Science.gov (United States)

    Vallavoju, Nandini; Selvakumar, Sermadurai; Jockusch, Steffen; Sibi, Mukund P; Sivaguru, Jayaraman

    2014-05-26

    Can photocatalysis be performed without electron or energy transfer? To address this, organo-photocatalysts that are based on atropisomeric thioureas and display lower excited-state energies than the reactive substrates have been developed. These photocatalysts were found to be efficient in promoting the [2+2] photocycloaddition of 4-alkenyl-substituted coumarins, which led to the corresponding products with high enantioselectivity (77-96% ee) at low catalyst loading (1-10 mol%). The photocatalytic cycle proceeds by energy sharing via the formation of both static and dynamic complexes (exciplex formation), which is aided by hydrogen bonding. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium-catalyzed intermolecular Heck coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Norrby, Per-Ola; Kaukoranta, Päivi

    2008-01-01

    . The steric interactions in this transition state fully account for the enantioselectivity observed with the ligands studied. The calculations also predict relative reactivity and nonlinear mixing effects for the investigated ligands; these predictions are fully validated by experimental testing. Finally......The asymmetric Heck reaction using P,N-ligands has been studied by a combination of theoretical and experimental methods. The reaction follows Halpern-style selectivity; that is, the major isomer is produced from the least favored form of the pre-insertion intermediate. The initially formed Ph......, the low conversion observed with some catalysts was found to be caused by inactivation due to weak binding of the ligand to Pd(0). Adding monodentate PPh3 alleviated the precipitation problem without deteriorating the enantioselectivity and led to one of the most effective catalytic systems to date....

  4. Enantioselective N-Heterocyclic Carbene Catalysis via the Dienyl Acyl Azolium.

    Science.gov (United States)

    Gillard, Rachel M; Fernando, Jared E M; Lupton, David W

    2018-04-16

    Herein we report the enantioselective N-heterocyclic carbene catalyzed (4+2) annulation of the dienyl acyl azolium with enolates. The reaction exploits readily accessible acyl fluorides and TMS enol ethers to give a range of highly enantio- and diastereo-enriched cyclohexenes (most >97:3 er and >20:1 dr). The reaction was found to require high nucleophilicity NHC catalysts with mechanistic studies supporting a stepwise 1,6-addition/β-lactonization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Metabolism of styrene in the human liver in vitro: interindividual variation and enantioselectivity

    NARCIS (Netherlands)

    Wenker, M. A.; Kezić, S.; Monster, A. C.; de Wolff, F. A.

    2001-01-01

    1. The interindividual variation and enantioselectivity of the in vitro styrene oxidation by cytochrome P450 have been investigated in 20 human microsomal liver samples. Liver samples were genotyped for the CYP2E1*6 and CYP2E1*5B alleles. 2. Kinetic analysis indicated the presence of at least two

  6. One pot 'click' reactions : tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Szymanski, Wiktor; Postema, Christiaan P.; Dierckx, Rudi A.; Elsinga, Philip H.; Janssen, Dick B.; Feringa, Ben L.

    2010-01-01

    Halohydrin dehalogenase (HheC) can perform enantioselective azidolysis of aromatic epoxides to 1,2-azido alcohols which are subsequently ligated to alkynes producing chiral hydroxy triazoles in a one-pot procedure with excellent enantiomeric excess.

  7. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    Science.gov (United States)

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis, Characterization and Applications in Catalysis of Polyoxometalate/Zeolite Composites

    Directory of Open Access Journals (Sweden)

    Frédéric Lefebvre

    2016-05-01

    Full Text Available An overview of the synthesis, characterization and catalytic applications of polyoxometalates/zeolites composites is given. The solids obtained by direct synthesis of the polyoxometalate in the presence of the zeolite are first described with their applications in catalysis. Those obtained by a direct mixing of the two components are then reviewed. In all cases, special care is taken in the localization of the polyoxometalate, inside the zeolite crystal, in mesopores or at the external surface of the crystals, as deduced from the characterization methods.

  9. Enantioselective analysis of citalopram and escitalopram in postmortem blood together with genotyping for CYP2D6 and CYP2C19.

    Science.gov (United States)

    Carlsson, Björn; Holmgren, Anita; Ahlner, Johan; Bengtsson, Finn

    2009-03-01

    Citalopram is marketed as a racemate (50:50) mixture of the S(+)-enantiomer and R(-)-enantiomer and the active S(+)-enantiomer (escitalopram) that possess inhibitory effects. Citalopram was introduced in Sweden in 1992 and is the most frequently used antidepressant to date in Sweden. In 2002, escitalopram was introduced onto the Swedish market for treatment of depression and anxiety disorders. The main objective of this study was to investigate S(+)-citalopram [i.e., the racemic drug (citalopram) or the enantiomer (escitalopram)] present in forensic autopsy cases positive for the presence of citalopram in routine screening using a non-enantioselective bioanalytical method. Fifty out of the 270 samples found positive by gas chromatography-nitrogen-phosphorus detection were further analyzed using enantioselective high-performance liquid chromatography. The 50 cases were genotyped for CYP2D6 and CYP2C19, as these isoenzymes are implicated in the metabolism of citalopram and escitalopram. In samples positive for racemic citalopram using the screening method for forensic autopsy cases, up to 20% would have been misinterpreted in the absence of an enantioselective method. An enantioselective method is thus necessary for correct interpretation of autopsy cases, after the enantiomer has been introduced onto the market. The percentage of poor metabolizers was 6% for CYP2D6 and 8% for CYP2C19.

  10. Graphene: from synthesis to engineering to biosensor applications

    Science.gov (United States)

    Singh, Jagpreet; Rathi, Aditi; Rawat, Mohit; Gupta, Manoj

    2018-03-01

    Graphene is a fascinating material of recent origin whose first isolation was being made possible through micromechanical cleavage of a graphite crystal. Owing to its fascinating properties, graphene has garnered significant attention in the research community for multiple applications. A number of methods have been employed for the synthesis of single-layer and multi-layer graphene. The extraordinary properties of graphene such as its Hall effect at room temperature, high surface area, tunable bandgap, high charge mobility and excellent electrical, conducting and thermal properties allow for the development of sensors of various types and also opened the doors for its use in nanoelectronics, supercapacitors and batteries. Biological aspects of graphene have also been investigated with particular emphasis on its toxicity and drug delivery. In this review, many of the salient aspects of graphene, such as from synthesis to its applications, primarily focusing on sensor applications which are of current interest, are covered.

  11. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    Science.gov (United States)

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dissipation and enantioselective degradation of plant growth retardants paclobutrazol and uniconazole in open field, greenhouse, and laboratory soils.

    Science.gov (United States)

    Wu, Chengwang; Sun, Jianqiang; Zhang, Anping; Liu, Weiping

    2013-01-15

    Greenhouses are increasingly important in human food supply. Pesticides used in greenhouses play important roles in horticulture; however, little is known about their behavior in greenhouse environments. This work investigates the dissipation and enantioselctive degradation of plant growth retardants including paclobutrazol and uniconazole in soils under three conditions (i.e., open field, greenhouse, and laboratory). The dissipation and enantioselective degradation of paclobutrazol and uniconazole in greenhouse were different from those in open field; they were more persistent in greenhouse than in open field soil. Leaching produced by rainfall is responsible for the difference in dissipation. Thus, local environmental impacts may occur more easily inside greenhouses, while groundwater may be more contaminated in open field. Spike concentrations of 5, 10, and 20 times the concentrations of native residues were tested for the enantioselective dissipation of the two pesticides; the most potent enantioselective degradation of paclobutrazol and uniconazole occurred at the 10 times that of the native residues in the greenhouse environments and at 20 times native residues in open field environments. The higher soil activity in greenhouses than in open fields was thought to be responsible for such a difference. The environmental risk and regulation of paclobutrazol and uniconazole should be considered at the enantiomeric level.

  13. ‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis

    Science.gov (United States)

    Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.

    2010-01-01

    The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205

  14. An entry to a chiral dihydropyrazole scaffold: enantioselective [3 + 2] cycloaddition of nitrile imines.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Jasperse, Craig P

    2005-06-15

    We have developed a versatile strategy to access dihydropyrazoles in highly enantioenriched form. Dipolar cycloaddition of electron-deficient acceptors and in situ-generated nitrile imines proceeds with high regio- and enantioselectivity using 10 mol % chiral Lewis acid catalyst. A variety of dihydropyrazoles that incorporate functionality for further manipulation have been prepared.

  15. Application of lean manufacturing concepts to drug discovery: rapid analogue library synthesis.

    Science.gov (United States)

    Weller, Harold N; Nirschl, David S; Petrillo, Edward W; Poss, Michael A; Andres, Charles J; Cavallaro, Cullen L; Echols, Martin M; Grant-Young, Katherine A; Houston, John G; Miller, Arthur V; Swann, R Thomas

    2006-01-01

    The application of parallel synthesis to lead optimization programs in drug discovery has been an ongoing challenge since the first reports of library synthesis. A number of approaches to the application of parallel array synthesis to lead optimization have been attempted over the years, ranging from widespread deployment by (and support of) individual medicinal chemists to centralization as a service by an expert core team. This manuscript describes our experience with the latter approach, which was undertaken as part of a larger initiative to optimize drug discovery. In particular, we highlight how concepts taken from the manufacturing sector can be applied to drug discovery and parallel synthesis to improve the timeliness and thus the impact of arrays on drug discovery.

  16. Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1

    NARCIS (Netherlands)

    Jong, René M. de; Rozeboom, Henriëtte J.; Kalk, Kor H.; Tang, Lixia; Janssen, Dick B.; Dijkstra, Bauke W.

    2002-01-01

    Halohydrin dehalogenases are key enzymes in the bacterial degradation of vicinal halopropanols and structurally related nematocides. Crystals of the enantioselective halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1 have been obtained at room temperature from hanging-drop

  17. Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1

    NARCIS (Netherlands)

    de Jong, RM; Rozeboom, HJ; Kalk, KH; Tang, Lixia; Janssen, DB; Dijkstra, BW

    Halohydrin dehalogenases are key enzymes in the bacterial degradation of vicinal halopropanols and structurally related nematocides. Crystals of the enantioselective halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1 have been obtained at room temperature from hanging-drop

  18. Film grain synthesis and its application to re-graining

    Science.gov (United States)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  19. New Chiral Zwitterionic Phosphorus Heterocycles: Synthesis, Structure, Properties and Application as Chiral Solvating Agents

    Czech Academy of Sciences Publication Activity Database

    Sheshenev, A. E.; Boltukhina, E. V.; Grishina, Anastasia; Císařová, I.; Lyapkalo, Ilya; Hii, K. K.

    2013-01-01

    Roč. 19, č. 25 (2013), s. 8136-8143 ISSN 0947-6539 Grant - others:7th European Community Framework Programme(XE) FP7-252247 Institutional support: RVO:61388963 Keywords : binding constants * chirality * enantioselectivity * NMR spectroscopy * phosphorus heterocycles * zwitterions Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  20. Asymmetric synthesis of a potent, aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV inhibitor.

    Science.gov (United States)

    Xu, Feng; Corley, Edward; Zacuto, Michael; Conlon, David A; Pipik, Brenda; Humphrey, Guy; Murry, Jerry; Tschaen, David

    2010-03-05

    A practical asymmetric synthesis of a novel aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV (DPP-4) inhibitor 1 has been developed. Application of a unique three-component cascade coupling with chiral nitro diester 7, which is easily accessed via a highly enantioselective Michael addition of dimethyl malonate to a nitrostyrene, allows for the assembly of the functionalized piperidinone skeleton in one pot. Through a base-catalyzed, dynamic crystallization-driven process, the cis-piperidionone 16a is epimerized to the desired trans isomer 16b, which is directly crystallized from the crude reaction stream in high yield and purity. Isomerization of the allylamide 16b in the presence of RhCl(3) is achieved without any epimerization of the acid/base labile stereogenic center adjacent to the nitro group on the piperidinone ring, while the undesired enamine intermediate is consumed to <0.5% by utilizing a trace amount of HCl generated from RhCl(3). The amino lactam 4, obtained through hydrogenation and hydrolysis, is isolated as its crystalline pTSA salt from the reaction solution directly, as such intramolecular transamidation has been dramatically suppressed via kinetic control. Finally, a Cu(I) catalyzed coupling-cyclization allows for the formation of the tricyclic structure of the potent DPP-4 inhibitor 1. The synthesis, which is suitable for large scale preparation, is accomplished in 23% overall yield.

  1. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo

    2013-05-03

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3-hydroxy-2-oxindole derivatives (e.g., CPC-1). Computational studies indicated that the observed stereoselectivity is a result of favorable secondary π-π* and H-bonding interactions in the transition state. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    Science.gov (United States)

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  3. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  4. Rhodium/chiral diene-catalyzed asymmetric 1,4-addition of arylboronic acids to chromones: a highly enantioselective pathway for accessing chiral flavanones.

    Science.gov (United States)

    He, Qijie; So, Chau Ming; Bian, Zhaoxiang; Hayashi, Tamio; Wang, Jun

    2015-03-01

    Chromone has been noted to be one of the most challenging substrates in the asymmetric 1,4-addition of α,β-unsaturated carbonyl compounds. By employing the rhodium complex associated with a chiral diene ligand, (R,R)-Ph-bod*, the 1,4-addition of a variety of arylboronic acids was realized to give high yields of the corresponding flavanones with excellent enantioselectivities (≥97% ee, 99% ee for most substrates). Ring-opening side products, which would lead to erosion of product enantioselectivity, were not observed under the stated reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.

    2012-11-13

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  6. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.; Vagin, Sergei; Anderson, Carly E.; Rieger, Bernhard

    2012-01-01

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  7. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  8. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions.

    Science.gov (United States)

    Denmark, Scott E; Kalyani, Dipannita; Collins, William R

    2010-11-10

    A systematic investigation into the Lewis base catalyzed, asymmetric, intramolecular selenoetherification of olefins is described. A critical challenge for the development of this process was the identification and suppression of racemization pathways available to arylseleniranium ion intermediates. This report details a thorough study of the influences of the steric and electronic modulation of the arylselenenyl group on the configurational stability of enantioenriched seleniranium ions. These studies show that the 2-nitrophenyl group attached to the selenium atom significantly attenuates the racemization of seleniranium ions. A variety of achiral Lewis bases catalyze the intramolecular selenoetherification of alkenes using N-(2-nitrophenylselenenyl)succinimide as the electrophile along with a Brønsted acid. Preliminary mechanistic studies suggest the intermediacy of ionic Lewis base-selenium(II) adducts. Most importantly, a broad survey of chiral Lewis bases revealed that 1,1'-binaphthalene-2,2'-diamine (BINAM)-derived thiophosphoramides catalyze the cyclization of unsaturated alcohols in the presence of N-(2-nitrophenylselenenyl)succinimide and methanesulfonic acid. A variety of cyclic seleno ethers were produced in good chemical yields and in moderate to good enantioselectivities, which constitutes the first catalytic, enantioselective selenofunctionalization of unactivated olefins.

  9. Enantioselective Intramolecular CH-Insertions upon Cu-Catalyzed Decomposition of Phenyliodonium Ylides

    Directory of Open Access Journals (Sweden)

    Christelle Boléa

    2001-02-01

    Full Text Available The Cu-catalyzed intramolecular CH insertion of phenyliodonium ylide 5b has been investigated at 0° C in the presence of several chiral ligands. Enantioselectivities vary in the range of 38–72 %, and are higher than those resulting from reaction of the diazo compound 5c at 65° C. The results are consistent with a carbenoid mechanism for Cu-catalyzed decomposition of phenyliodonium ylides.

  10. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  11. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu

    2010-01-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  12. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  13. Enantioselective total synthesis of (+)-brefeldin A and 7-epi-brefeldin A.

    Science.gov (United States)

    Wu, Yikang; Shen, Xin; Yang, Yong-Qing; Hu, Qi; Huang, Jia-Hui

    2004-05-28

    A convergent enantioselective route to brefeldin A (BFA) and 7-epi-BFA was developed. The key C-4/C-5 chiral centers were established by using chiral auxiliary induced intermolecular asymmetric aldolization in the presence of TiCl(4) and TMEDA. The results with the thiazolidinethione/TiCl(4) mediated intermolecular asymmetric aldolization added some new information about the scope and limitations to the existing knowledge of that type of reactions (which so far was essentially limited to the reactions with N-propionyl thiazolidinethiones). During the course a method for protecting the liable aldol hydroxyl groups by using inexpensive TBSCl in DMF with 2,6-lutidine as the base was developed to replace the otherwise unavoidable TBSOTf procedure. Due to the excessive steric hindrance, removal of the auxiliary was much more difficult than most literature cases. Cleavage of the oxazolidinone by reduction was almost impossible. The thiazolidinethione auxiliary was relatively easier to remove. However, several reactions reported for facile removal of thiazolidinethione auxiliaries in the literature still failed. Reductive removal of the thiazolidinethione auxiliary was most effectively realized with LiBH(4) in diethyl ether in the presence of 1 equiv of MeOH (a modification of a literature procedure for removal of oxazolidinone auxiliaries in less hindered substrates). Apart from the auxiliary removal, oxidation of the alcohol into aldehyde and the deprotection of the dithiolane protecting group were also rather difficult in the present context. A range of methods were screened before final solutions were found. The five-membered ring was constructed by employing an intramolecular Mukaiyama reaction after many attempts with the intramolecular aldolization under a variety of conditions failed. The rate of elimination of the alkoxyl to form the alpha,beta-double bond of the key intermediate cyclopentenone 49 with DBU was highly solvent dependent (very sluggish in CH(2)Cl(2

  14. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes.

    Science.gov (United States)

    Haydl, Alexander M; Xu, Kun; Breit, Bernhard

    2015-06-08

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with terminal allenes gives access to enantioenriched secondary and tertiary allylic pyrazoles, which can be employed for the synthesis of medicinally important targets. The reaction tolerates a large variety of functional groups and labelling experiments gave insights into the reaction mechanism. This new methodology was further applied in a highly efficient synthesis of JAK 1/2 inhibitor (R)-ruxolitinib. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Equilibrium Studies on Enantioselective Liquid-Liquid Amino Acid Extraction Using a Cinchona Alkaloid Extractant

    NARCIS (Netherlands)

    Schuur, Boelo; Winkelman, Jozef G. M.; Heeres, Hero J.

    2008-01-01

    The enantioselective extraction of aqueous 3,5-dinitrobenzoyl-R,S-leucine (A(R,S)) by a cinchona alkaloid extractant (C) in 1,2-dichloroethane was studied at room temperature (294 K) in a batch system for a range of intake concentrations (10(-4)-10(-3) mol/L) and pH values (3.8-6.6). The

  17. A brief review on synthesis & applications of β-enamino carbonyl compounds

    Directory of Open Access Journals (Sweden)

    yellajyosula L N Murthy

    2012-01-01

    Full Text Available Owing to the wide range applications of β-enamino esters (enamines of β–dicarbonyl compounds in pharmaceuticals and as building blocks for the synthesis of a variety of heterocyclic compounds, β-amino esters, β-amino acids, γ-amino alcohols, peptides and alkaloids a number of methods have been developed so far for the synthesis of these compounds. Due to the importance of these compounds as intermediates in organic synthesis, a concised review is presented.

  18. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  19. Enantioselective analysis of drugs: contributions of high-performance liquid chromatography and capillary electrophoresis

    OpenAIRE

    Bonato, Pierina Sueli; Jabor, Valquíria Aparecida Polisel; Gaitani, Cristiane Masetto de

    2005-01-01

    The demand for analytical methods suitable for accurate and reproducible determination of drug enantiomers has increased significantly in the last years. High-performance liquid chromatography (HPLC) using chiral stationary phases and capillary electrophoresis (CE) are the most important techniques used for this purpose. In this paper, the fundamental aspects of chiral separations using both techniques are presented. Some important aspects for the development of enantioselective methods, part...

  20. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  1. Sustainable and Continuous Synthesis of Enantiopure l-Amino Acids by Using a Versatile Immobilised Multienzyme System.

    Science.gov (United States)

    Velasco-Lozano, Susana; da Silva, Eunice S; Llop, Jordi; López-Gallego, Fernando

    2018-02-16

    The enzymatic synthesis of α-amino acids is a sustainable and efficient alternative to chemical processes, through which achieving enantiopure products is difficult. To more address this synthesis efficiently, a hierarchical architecture that irreversibly co-immobilises an amino acid dehydrogenase with polyethyleneimine on porous agarose beads has been designed and fabricated. The cationic polymer acts as an irreversible anchoring layer for the formate dehydrogenase. In this architecture, the two enzymes and polymer colocalise across the whole microstructure of the porous carrier. This multifunctional heterogeneous biocatalyst was kinetically characterised and applied to the enantioselective synthesis of a variety of canonical and noncanonical α-amino acids in both discontinuous (batch) and continuous modes. The co-immobilised bienzymatic system conserves more than 50 % of its initial effectiveness after five batch cycles and 8 days of continuous operation. Additionally, the environmental impact of this process has been semiquantitatively calculated and compared with the state of the art. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrochemically Active Biofilms Assisted Nanomaterial Synthesis for Environmental Applications

    KAUST Repository

    Ahmed, Elaf

    2017-01-01

    Nanomaterials have a great potential for environmental applications due to their high surface areas and high reactivity. This dissertation investigated the use of electrochemically active biofilms (EABs) as a synthesis approach for the fabrication

  3. Fundamentals and applications of organic electrochemistry synthesis, materials, devices

    CERN Document Server

    Fuchigami, Toshio; Inagi, Shinsuke

    2014-01-01

    This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry.  The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and phy...

  4. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  5. Rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes.

    Science.gov (United States)

    Li, Changkun; Kähny, Matthias; Breit, Bernhard

    2014-12-08

    A rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes to give branched N-allyl 2-pyridones is reported. Preliminary mechanistic studies support the hypothesis that the reaction was initiated from the more acidic 2-hydroxypyridine form, and the initial kinetic O-allylation product was finally converted into the thermodynamically more stable N-allyl 2-pyridones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

    Directory of Open Access Journals (Sweden)

    Yu Han-Young

    2010-01-01

    Full Text Available Abstract We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  7. Nano crystals-Related Synthesis, Assembly, and Energy Applications

    International Nuclear Information System (INIS)

    Dai, Q.; Hu, M.Z.; Yu, B.Z.; William, W.; Seo, J.

    2011-01-01

    Fundamental material properties have been dramatically altered in the nano scale regime because of quantum confinement effect. The unique size-tunable functionalities of nano materials make them involved in an extensive variety of energy applications, such as light-emitting diodes and solar cells. These applications have been demonstrated to cut energy consumption. In response to the ever-growing energy demands as well as the concerns of global warming, researchers are actively placing their enormous emphasis on the exploration of energy savings. During this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals in terms of size uniformity and superior optical/electronic properties. Especially, there is a need to seek green-chemistry approaches for the synthesis of environmentally benign and user-friendly nano crystals. Another recent area of focus is the use of individual nano crystals as building blocks for self-assembly, providing new opportunities to improve the nano crystal performance

  8. Engineering and Applications of fungal laccases for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2008-11-01

    Full Text Available Abstract Laccases are multi-copper containing oxidases (EC 1.10.3.2, widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed.

  9. Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis

    NARCIS (Netherlands)

    Droge, MJ; Bos, R; Quax, WJ

    Carboxylesterase NP of Bacillus subtilis Thai 1-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene

  10. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The Conducting Polymer project funded by the AIM Materials Program is developing new methods for the synthesis of electronically conducting polymers and is evaluating new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1994 are electrochemical capacitors and membranes for gas separation. As an active material in electrochemical capacitors, conducting polymers have the potential of storing large amounts of electrical energy in low cost materials. Such devices are needed in electronics for power failure back-up and peak power, in power supplies for filtering, and in electric vehicles for peak power and load leveling. As a gas electrically adapt the membrane for specific gas combinations. Potential energy savings in the US. for this application are estimated at 1 to 3 quads/yr.

  11. Influence of gasoline inhalation on the enantioselective pharmacokinetics of fluoxetine in rats.

    Science.gov (United States)

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; Lepera, José Salvador

    2013-03-01

    Fluoxetine is used clinically as a racemic mixture of (+)-(S) and (-)-(R) enantiomers for the treatment of depression. CYP2D6 catalyzes the metabolism of both fluoxetine enantiomers. We aimed to evaluate whether exposure to gasoline results in CYP2D inhibition. Male Wistar rats exposed to filtered air (n = 36; control group) or to 600 ppm of gasoline (n = 36) in a nose-only inhalation exposure chamber for 6 weeks (6 h/day, 5 days/week) received a single oral 10-mg/kg dose of racemic fluoxetine. Fluoxetine enantiomers in plasma samples were analyzed by a validated analytical method using LC-MS/MS. The separation of fluoxetine enantiomers was performed in a Chirobiotic V column using as the mobile phase a mixture of ethanol:ammonium acetate 15 mM. Higher plasma concentrations of the (+)-(S)-fluoxetine enantiomer were found in the control group (enantiomeric ratio AUC((+)-(S)/(-)-(R)) = 1.68). In animals exposed to gasoline, we observed an increase in AUC(0-∞) for both enantiomers, with a sharper increase seen for the (-)-(R)-fluoxetine enantiomer (enantiomeric ratio AUC((+)-(S)/(-)-(R)) = 1.07), resulting in a loss of enantioselectivity. Exposure to gasoline was found to result in the loss of enantioselectivity of fluoxetine, with the predominant reduction occurring in the clearance of the (-)-(R)-fluoxetine enantiomer (55% vs. 30%). Copyright © 2013 Wiley Periodicals, Inc.

  12. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    Science.gov (United States)

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  13. Poly(o-aminophenol) film electrodes synthesis, transport properties and practical applications

    CERN Document Server

    Tucceri, Ricardo

    2014-01-01

    This review book is concerned with the synthesis, charge transport properties and practical applications of poly (o-aminophenol) (POAP) film electrodes. It is divided into three parts. The first one has a particular emphasis on problems of synthesis and structure of POAP. The second part deals with the mechanism of charge transfer and charge transport processes occurring in the course of the redox reactions of POAP. The third part describes the promising applications of POAP in the different fields of sensors, electrocatalysis, bioelectrochemistry, corrosion protection, among others. This review covers the literature on POAP in the time period comprised between 1987 and 2013.

  14. Polymer Brushes: Synthesis, Characterization, Applications

    Science.gov (United States)

    Advincula, Rigoberto C.; Brittain, William J.; Caster, Kenneth C.; Rühe, Jürgen

    2004-09-01

    Materials scientists, polymer chemists, surface physicists and materials engineers will find this book a complete and detailed treatise on the field of polymer brushes, their synthesis, characterization and manifold applications. In a first section, the various synthetic pathways and different surface materials are introduced and explained, followed by a second section covering important aspects of characterization and analysis in both flat surfaces and particles. These specific surface initiated polymerization (SIP) systems such as linear polymers, homopolymers, block copolymers, and hyperbranched polymers are unique compared to previously reported systems by chemisorption or physisorption. They have found their way in both large-scale and miniature applications of polymer brushes, which is covered in the last section. Such 'hairy' surfaces offer fascinating opportunities for addressing numerous problems of both academic and, in particular, industrial interest: high-quality, functional or protective coatings, composite materials, surface engineered particles, metal-organic interfaces, biological applications, micro-patterning, colloids, nanoparticles, functional devices, and many more. It is the desire of the authors that this book will be of benefit to readers who want to "brush-up on polymers".

  15. Stereo-controlled synthesis of polyheterocycles via the diene-transmissive hetero-Diels-Alder reaction of β,γ-unsaturated α-keto esters.

    Science.gov (United States)

    Otani, Takashi; Tamai, Yumiko; Seki, Kazunori; Kikuchi, Tomohiro; Miyazawa, Taiichiro; Saito, Takao

    2015-06-07

    We describe the stereoselective synthesis of polyring-fused heterocyclic compounds based on diene-transmissive hetero-Diels-Alder reactions utilizing β,γ-unsaturated α-keto esters. This protocol involves the initial endo- or exo-selective Diels-Alder (DA) reactions with electron-rich dienophiles, methylenation of the ester carbonyl groups with the Tebbe reagent, and a stereoselective second DA reaction with electron-deficient dienophiles. The use of enantioselective DA reactions in the initial reaction enables access to chiral polyring-fused heterocyclic compounds with multiple chiral centres.

  16. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The methodol...... the Suzuki cross-coupling reaction to the isomerization/N-acyliminium cyclization sequence. Finally, diastereo- and enantioselective versions of the title reaction have been examined using substrate control (with dr >15: 1) and asymmetric catalysis (ee up to 57%), respectively...

  17. Synthesis of boron nitride nanotubes and their applications

    Directory of Open Access Journals (Sweden)

    Saban Kalay

    2015-01-01

    Full Text Available Boron nitride nanotubes (BNNTs have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification strategies are first discussed, and then their toxicity and application studies are summarized. Finally, a perspective for the future use of these novel materials is discussed.

  18. Nanosilicon properties, synthesis, applications, methods of analysis and control

    CERN Document Server

    Ischenko, Anatoly A; Aslalnov, Leonid A

    2015-01-01

    Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control examines the latest developments on the physics and chemistry of nanosilicon. The book focuses on methods for producing nanosilicon, its electronic and optical properties, research methods to characterize its spectral and structural properties, and its possible applications. The first part of the book covers the basic properties of semiconductors, including causes of the size dependence of the properties, structural and electronic properties, and physical characteristics of the various forms of silicon. It presents theoretical and experimental research results as well as examples of porous silicon and quantum dots. The second part discusses the synthesis of nanosilicon, modification of the surface of nanoparticles, and properties of the resulting particles. The authors give special attention to the photoluminescence of silicon nanoparticles. The third part describes methods used for studying and controlling the structure and pro...

  19. Synthesis of New Chiral Ligands Based on Thiophene Derivatives for Use in Catalytic Asymmetric Oxidation of Sulfides

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Dae Jun; Lee, Woo Sun; Lee, Seung Han; Ahn, Kwang Hyun

    2011-01-01

    We discovered that the vanadium complexes of new Schiff base ligands and prepared from thiophene derivatives efficiently catalyze the asymmetric oxidation of sulfides by hydrogen peroxide to provide sulfoxides with enantioselectivities up to 79% ee and in yields up to 89%. Notably, Schiff base showed better or similar enantioselectivity than the well-studied Schiff base. These results suggest possible applications of Schiff bases derived from and in other catalytic asymmetric reactions. Chiral sulfoxides are important functional groups for various applications. For example, the biological activities of sulfoxide containing drugs such as omeprazole are strongly related to the chirality of the sulfoxide group; for this reason, esomeprazole, the enantiomerically pure form of omeprazole, was later developed. There are several chiral sulfoxide based drugs that have been introduced by the pharmaceutical industry including armodafinil, aprikalim, oxisurane, and ustiloxin. Chiral sulfoxides have also been utilized as chiral auxiliaries in asymmetric syntheses of chiral intermediates

  20. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2012-02-01

    Full Text Available Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing.

  1. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    Science.gov (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  2. Separation of racemic mixture by ultrafiltration of enantioselective micelles. 1 Effect of pH on separation and regeneration

    NARCIS (Netherlands)

    Overdevest, P.E.M.; Bruin, de T.J.M.; Riet, van 't K.; Keurentjes, J.T.F.; Padt, van der A.

    2001-01-01

    Many enantiomer separation systems are studied to meet the increasing demand for enantiopure compounds. One way to obtain pure enantiomers is to apply enantioselective micelles in ultrafiltration systems. We have studied the separation of phenylalanine (Phe) enantiomers by the ultrafiltration of

  3. Application of ionizing radiation for metal nanoclusters synthesis

    International Nuclear Information System (INIS)

    Smietanko-Chmielewska, D.K.; Chmielewski, A.G.; Warsaw University of Technology, Warsaw

    2011-01-01

    Complete text of publication follows. Possibility of ionizing radiation application in nanotechnology has been observed from very beginning when this field of science and technology was named. The lithography is based on electron and ion beam applications, and metal clusters synthesis by radiation induced radicals was reported many years ago. International Atomic Energy Agency was the first organization which has started coordinated programs on radiation applications in nanotechnology which are being continued in the frame of regional cooperation project RER8014. Some of applications led to patented technical solutions. Then review papers and chapters in the books have been published. The main applications beside of lithography deal with metal nanoclusters and nano-composites synthesis. Polymer composites containing metal nanoparticles have attracted a great interest due to their unique chemical and physical properties. 'Green' chemistry promotes application of natural fibers in such structures, among them cellulose is one of the most frequently used. However, cellulose fabric have ability to absorb moisture, so under certain conditions of humidity and temperature they can be subjected to microbial attack. One of the most popular and best known antibacterial agents is silver, which serves as a potential antibacterial material acting against an exceptionally broad spectrum of bacteria including activity against antibiotic-resistant bacteria. Silver nanoparticles (Ag NPs) were grown at the cellulose fibers surface by direct reduction of AgNO 3 with electron beam (EB) application. The big field of development concerns nano composites, possibility of e/X units application enlarge this possibility to industrial scale product manufacturing. Acknowledgement: This work was supported by the IAEA, regional project RER/8/014 and by the Ministry of Science and Higher Education, project DPN/W14/IAEA/2009.

  4. An Approach to Preparation of trans-DHQs via Ring-Opening of meso-N-Sulfonylaziridines

    DEFF Research Database (Denmark)

    Nolsøe, Jens Mortansson Jelstrup; Riegert, David; Müller, Paul

    2011-01-01

    As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13 was obtai......As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13...

  5. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2018-02-01

    Full Text Available Zinc oxide (ZnO thin films have been widely investigated due to their multifunctional properties, i.e., catalytic, semiconducting and optical. They have found practical use in a wide number of application fields. However, the presence of a compact micro/nanostructure has often limited the resulting material properties. Moreover, with the advent of low-dimensional ZnO nanostructures featuring unique physical and chemical properties, the interest in studying ZnO thin films diminished more and more. Therefore, the possibility to combine at the same time the advantages of thin-film based synthesis technologies together with a high surface area and a porous structure might represent a powerful solution to prepare ZnO thin films with unprecedented physical and chemical characteristics that may find use in novel application fields. Within this scope, this review offers an overview on the most successful synthesis methods that are able to produce ZnO thin films with both framework and textural porosities. Moreover, we discuss the related applications, mainly focused on photocatalytic degradation of dyes, gas sensor fabrication and photoanodes for dye-sensitized solar cells.

  6. Synthesis and applications of radiolabelled drugs in pharmaceutical development

    International Nuclear Information System (INIS)

    Landvatter, S.W.; Heys, J.R.; Garner, K.T.; Mack, J.F.; Senderoff, S.G.; Shu, A.Y.; Villani, A.J.; Saunders, D.

    1994-01-01

    Radiolabelled drugs play a vital role in the development of new pharmaceuticals including application in drug discovery, pre-clinical development and clinical development. The synthesis of these pharmaceuticals in tritium or carbon-14 labelled form poses many challenges for the synthetic organic chemist. The actual choice of synthetic route must take into account the small scale, limited choice and high cost of labelled precursors, and the positioning of the label into a metabolically stable position. There are, however, a number of synthetic strategies available for overcoming these constraints. Although in some C-14 syntheses the requisite labelled raw material can be purchased and the existing synthesis adapted for labelling, frequently the synthetic challenge is the synthesis of a structurally simple, yet commercially unavailable, labelled precursor (e.g., γ-butyrolactone-[2- 14 C], cyclohexanone-[ 3 H], CuCN-[ 14 C], 2-furancarboxaldehyde-[ 14 C]). Another useful strategy in C-14 synthesis is the conversion of an advanced intermediate, or perhaps the unlabelled product itself, into a precursor which can then be reconverted into the labelled version of the intermediate. Occasionally, a new total synthesis must be developed. In addition to these strategies, tritium labelling can uniquely take advantage of exchange labelling techniques, synthesis and reduction of unsaturated precursors, or tritium-halogen replacement reactions. Examples of these strategies and use of the labelled products are discussed

  7. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  8. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  9. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects

    Science.gov (United States)

    Prabhu, Sukumaran; Poulose, Eldho K.

    2012-10-01

    Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.

  10. Enantioselective HPLC determination of oxiracetam enantiomers and application to a pharmacokinetic study in beagle dogs.

    Science.gov (United States)

    Zhang, Qiuyang; Yang, Wei; Zhang, Qing; Yang, Yue; Li, Junxiu; Lu, Yang; Zheng, Yi; He, Jiake; Zhao, Di; Chen, Xijing

    2015-07-01

    An enantioselective high-performance liquid chromatography method was developed and validated for the determination of oxiracetam enantiomers, a cognition and memory enhancer, in beagle dog plasma. The plasma samples were prepared by methanol extraction from 200μL plasma, and then the baseline resolution was achieved on a Chiralpak ID column (250mm×4.6mm, 5μm) with mobile phase of hexane-ethanol-trifluoroacetic acid (78:22:0.1, v/v/v) at flow rate of 1.0mL/min. The column elute was monitored using ultraviolet detection at 214nm. The method was linear over concentration range 0.50-100μg/mL for both enantiomers. The relative standard deviation values for intra- and inter-day precision were 0.78-13.61 and 0.74-8.92% for (R)- and (S)-oxiracetam, respectively. The relative error values of accuracy ranged from -4.74 to 10.48% for (R)-oxiracetam and from -0.19 to 11.48% for (S)-oxiracetam. The method was successfully applied to a pharmacokinetic study of individual enantiomer and racemic oxiracetam in beagle dogs after oral administration. The disposition of the two enantiomers was not stereoselective and chiral inversion was not observed in beagle dogs. The pharmacokinetic profiles of (S)-oxiracetam were similar with racemic oxiracetam in beagle dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2011-05-01

    Full Text Available Organobismuth chemistry was emphasized in this review article due to the low price, low toxicity and low radioactivity characteristics of bismuth. As an environmentally-friendly class of organometallic compounds, different types of organobismuth compounds have been used in organic synthesis, catalysis, materials, etc. The synthesis and property characterization of many organobismuth compounds had been summarized. This review article also presented a survey of various applications of organobismuth compounds in organic transformations, as reagents or catalysts. The reactivity, reaction pathways and mechanisms of reactions with organobismuths were discussed. Less common and limiting aspects of organobismuth compounds were also briefly mentioned.

  12. Enantioselective behaviour of tetraconazole during strawberry wine-making process.

    Science.gov (United States)

    Liu, Na; Pan, Xinglu; Zhang, Shuang; Ji, Mingshan; Zhang, Zhihong

    2018-05-01

    The fate of tetraconazole enantiomers in strawberries during wine-making process was studied. The residues were determined by ultra-performance convergence chromatography tandem triple quadrupole mass spectrometry after each process steps. Results indicated that there was significant enantioselective dissipation of tetraconazole enantiomers during the fermentation process. And (-)-tetraconazole degraded faster than (+)-tetraconazole. The half-lives of (-)-tetraconazole and (+)-tetraconazole were 3.12, 3.76 days with washing procedure and 3.18, 4.05 days without washing procedure. The processing factors of strawberry wine samples after each step were generally less than 1. In particular, the processing factors of the fermentation process were the lowest. The results could help facilitate more accurate risk assessments of tetraconazole during wine-making process. © 2018 Wiley Periodicals, Inc.

  13. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    Science.gov (United States)

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  14. Asymmetric Synthesis of Potential Precursors of the HIV Drug MC1220 and Its Analogues by Hydrogenation of (1-Arylvinyl)pyrimidines

    DEFF Research Database (Denmark)

    Loksha, Yasser M.; Pedersen, Erik B.

    2018-01-01

    Because MC1220 is a promising microbicide with anti-HIV-1 activity, the possibility for asymmetric synthesis of its potential precursors is explored. Here, we investigate asymmetric reduction of the vinyl double bond of 6-(1-arylvinyl)pyrimidine derivatives to their corresponding ethylidene analo...... analogues. Catalysts with ligands bearing trivalent phosphorus ligating the soft metals rhodium(I), ruthenium(II), or iridium(I) are used for asymmetric reduction of the vinyl derivatives 5a-e. The enantioselective reduction reaches 92% ee and about 71% conversion for reduction of the 6...

  15. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography.

    Science.gov (United States)

    Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock

    2016-11-10

    Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  16. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  17. Review on the progress in synthesis and application of magnetic carbon nanocomposites

    Science.gov (United States)

    Zhu, Maiyong; Diao, Guowang

    2011-07-01

    This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.

  18. Polyfuran Conducting Polymers: Synthesis, Properties, and Applications.

    OpenAIRE

    González-Tejera, M.J.; Sánchez de la Blanca, Emilia; Carrillo Ramiro, Isabel

    2008-01-01

    In this review, polyfuran (PFu) synthesis methods and the nucleation mechanism; the electrochemical, structural, morphological, and magnetic properties of PFu; thermal behavior; theoretical calculations on PFu, as well as its applications reported to date, have been compiled. Not only PFu homopolymers have been reviewed, but also PFu co-polymers, PFu bipolymers, and PFu composites. The results are listed, discussed, and compared. It is hoped that this assembly of all the relevant data might e...

  19. Soft chemical synthesis of silicon nanosheets and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hideyuki; Ikuno, Takashi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2016-12-15

    Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat and smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.

  20. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    Science.gov (United States)

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. © 2013 Wiley Periodicals, Inc.

  1. Instant synthesis of gold nanoparticles at room temperature and SERS applications

    International Nuclear Information System (INIS)

    Britto Hurtado, R.; Cortez-Valadez, M.; Ramírez-Rodríguez, L.P.; Larios-Rodriguez, Eduardo; Alvarez, Ramón A.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Arizpe-Chávez, H.; Hernández-Martínez, A.R.; Flores-Acosta, M.

    2016-01-01

    Nowadays, gold nanoparticles (AuNps) can be used in a variety of applications, thus efficient methods to produce them are necessary. Several methods have been proposed in this area, but NPs production time is one limitation of these approaches. In this study, we propose a high competitive method to synthesize gold colloidal nanoparticles, instantaneously, using no-toxic reducing agents. These substances allow the instantaneous synthesis at room temperature, even without magnetic stirrers, ovens or ultrasonic baths. Optic analysis showed two absorption bands, associated with surface Plasmon as function of HAuCl_4 concentration. The nanoparticles synthesized have a 10–20 nm size, seen by the transmission electron microscopy (TEM). Therefore, it was possible to obtain several geometric patterns of AuNps, and the synthesis was performed reducing significantly processing time. Additionally, Mie and Fuchs theories were used to predict the location of the absorption bands linked to the plasmon surface in gold nanoparticles. The Surface Enhanced Raman Spectroscopy (SERS) effect was analyzed considering natural zeolite (Chabazite) as analyte, in order to determinate its possible application in soil analysis. - Highlights: • Cubic and spherical morphologies in AuNp. • Surface plasmon prediction in cubic and spherical AuNp. • Instant synthesis of AuNp. • SERS applications in soil analysis.

  2. Instant synthesis of gold nanoparticles at room temperature and SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Britto Hurtado, R. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx [CONACYT-Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Ramírez-Rodríguez, L.P. [Departamento de Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Larios-Rodriguez, Eduardo [Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora (Mexico); Alvarez, Ramón A.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Arizpe-Chávez, H. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Hernández-Martínez, A.R. [Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro C.P. 76130 (Mexico); Flores-Acosta, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico)

    2016-08-06

    Nowadays, gold nanoparticles (AuNps) can be used in a variety of applications, thus efficient methods to produce them are necessary. Several methods have been proposed in this area, but NPs production time is one limitation of these approaches. In this study, we propose a high competitive method to synthesize gold colloidal nanoparticles, instantaneously, using no-toxic reducing agents. These substances allow the instantaneous synthesis at room temperature, even without magnetic stirrers, ovens or ultrasonic baths. Optic analysis showed two absorption bands, associated with surface Plasmon as function of HAuCl{sub 4} concentration. The nanoparticles synthesized have a 10–20 nm size, seen by the transmission electron microscopy (TEM). Therefore, it was possible to obtain several geometric patterns of AuNps, and the synthesis was performed reducing significantly processing time. Additionally, Mie and Fuchs theories were used to predict the location of the absorption bands linked to the plasmon surface in gold nanoparticles. The Surface Enhanced Raman Spectroscopy (SERS) effect was analyzed considering natural zeolite (Chabazite) as analyte, in order to determinate its possible application in soil analysis. - Highlights: • Cubic and spherical morphologies in AuNp. • Surface plasmon prediction in cubic and spherical AuNp. • Instant synthesis of AuNp. • SERS applications in soil analysis.

  3. Activation of lipase from .I.Geotrichum candidum./I. and its enantioselectivity towards xenobiotic substrates

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Zarevúcka, Marie; Demnerová, K.

    2003-01-01

    Roč. 97, č. 5 (2003), s. 293-294 ISSN 0009-2770. [Sigma-Aldrich konference mladých chemiků, biochemiků a molekulárních biologů /3./. 04.06.2003-07.06.2003, Devět skal - Žďárské vrchy] R&D Projects: GA MŠk OC D13.10 Institutional research plan: CEZ:AV0Z4055905 Keywords : lipase * enantioselectivity Subject RIV: CC - Organic Chemistry

  4. Catalytic asymmetric synthesis of enantiopure isoprenoid building blocks : application in the synthesis of apple leafminer pheromones

    NARCIS (Netherlands)

    Summeren, Ruben P. van; Reijmer, Sven J.W.; Minnaard, Adriaan J.; Feringa, Bernard

    2005-01-01

    The first catalytic asymmetric procedure capable of preparing all 4 diastereoisomers (ee > 99%, de > 98%) of a versatile saturated isoprenoid building block was developed and the value of this new method was demonstrated in its application to the concise total synthesis of two pheromones.

  5. Synthesis of New Chiral 2,2'-bipyridine ligands and their application in copper-catalyzed asymmetric allylic oxidation and cyclopropanation

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Pernazza, D.; Bell, M.; Bella, M.; Massa, A.; Teplý, Filip; Meghani, P.; Kočovský, P.

    2003-01-01

    Roč. 68, č. 12 (2003), s. 4727-4742 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z4055905 Keywords : optically-active bipyridine * enantioselective cyclopropanation * allylic oxidation Subject RIV: CC - Organic Chemistry Impact factor: 3.297, year: 2003

  6. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is Enantioselectively Oxidized to Hydroxylated Metabolites by Rat Liver Microsomes

    Science.gov (United States)

    Wu, Xianai; Pramanik, Ananya; Duffel, Michael W.; Hrycay, Eugene G.; Bandiera, Stelvio M.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela

    2011-01-01

    Developmental exposure to multiple-ortho substituted polychlorinated biphenyls (PCBs) causes adverse neurodevelopmental outcomes in laboratory animals and humans by mechanisms involving the sensitization of Ryanodine receptors (RyRs). In the case of PCB 136, the sensitization of RyR is enantiospecific, with only (-)-PCB 136 being active. However, the role of enantioselective metabolism in the developmental neurotoxicity of PCB 136 is poorly understood. The present study employed hepatic microsomes from phenobarbital (PB-), dexamethasone (DEX-) and corn oil (VEH-)treated male Sprague-Dawley rats to investigate the hypothesis that PCB 136 atropisomers are enantioselectively metabolized by P450 enzymes to potentially neurotoxic, hydroxylated PCB 136 metabolites. The results demonstrated the time- and isoform-dependent formation of three metabolites, with 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) being the major metabolite. The formation of 5-OH-PCB 136 increased with the activity of P450 2B enzymes in the microsomal preparation, which is consistent with PCB 136 metabolism by rat P450 2B1. The minor metabolite 4-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol) was produced by a currently unidentified P450 enzymes. An enantiomeric enrichment of (-)-PCB 136 was observed in microsomal incubations due to the preferential metabolism of (+)-PCB 136 to the corresponding 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) atropisomer. 4-OH-PCB 136 displayed an enrichment of the atropisomer formed from (-)-PCB 136; however, the enrichment of this metabolite atropisomer didn't affect the enantiomeric enrichment of the parent PCB because 4-OH-PCB 136 is only a minor metabolite. Although the formation of 5- and 4-OH-PCB 136 atropisomers increased with time, the enantioselective formation of the OH-PCB metabolites resulted in constant enantiomeric enrichment, especially at later incubation times. These observations not only demonstrate that the chiral signatures of

  7. Synthesis and application of a new fluorous-tagged ammonia equivalent

    DEFF Research Database (Denmark)

    Nielsen, Simon Dalsgaard; Smith, Garrick; Begtrup, Mikael

    2010-01-01

    A novel fluorous-tagged ammonia equivalent has been developed. It is based on a nitrogen-oxygen bond, which can be cleaved in a traceless manner by a molybdenum complex or samarium diiodide. The application in the synthesis of ureas, amides, sulfonamides, and carbamates is described. The scope of...... of the fluorous N--O linker is exemplified by the synthesis of itopride, a drug used for the treatment of functional dyspepsia. Itopride was synthesized with the aid of fluorous purification methods and the product was isolated in good overall yield, with high purity....

  8. Nucleophilic Tetrafluoroethylation Employing in Situ Formed Organomagnesium Reagents

    Czech Academy of Sciences Publication Activity Database

    Budinská, A.; Václavík, Jiří; Matoušek, V.; Beier, P.

    2016-01-01

    Roč. 18, č. 22 (2016), s. 5844-5847 ISSN 1523-7060 Institutional support: RVO:61388971 Keywords : ENANTIOSELECTIVE SYNTHESIS * FLUORINATED SULFONES * ORGANIC-SYNTHESIS Subject RIV: EE - Microbiology, Virology Impact factor: 6.579, year: 2016

  9. Nucleophilic Tetrafluoroethylation Employing in Situ Formed Organomagnesium Reagents

    Czech Academy of Sciences Publication Activity Database

    Budinská, Alena; Václavík, Jiří; Matoušek, V.; Beier, Petr

    2016-01-01

    Roč. 18, č. 22 (2016), s. 5844-5847 ISSN 1523-7060 Institutional support: RVO:61388963 Keywords : enantioselective synthesis * fluorinated sulfones * organic synthesis Subject RIV: CC - Organic Chemistry Impact factor: 6.579, year: 2016

  10. Distribution, industrial applications, and enzymatic synthesis of D-amino acids.

    Science.gov (United States)

    Gao, Xiuzhen; Ma, Qinyuan; Zhu, Hailiang

    2015-04-01

    D-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, D-amino acids have recently received more and more attention. Enzymes including D-hydantoinase, N-acyl-D-amino acid amidohydrolase, D-amino acid amidase, D-aminopeptidase, D-peptidase, L-amino acid oxidase, D-amino acid aminotransferase, and D-amino acid dehydrogenase can be used for D-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, D-amino acid dehydrogenase method not only produces D-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.

  11. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  12. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    International Nuclear Information System (INIS)

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  13. Combining the [2,3] Sigmatropic Rearrangement and Ring-Closing Metathesis Strategies for the Synthesis of Spirocyclic Alkaloids. A Short and Efficient Route to (+/-)-Perhydrohistrionicotoxin

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars; Poulsen, Anders

    1999-01-01

    This paper describes the use of selenium-based [2,3] sigmatropic rearrangement in combination with ruthenium-catalyzed ring-closing metathesis (RCM) for the synthesis of azaspiro ring systems, as exemplified by the reactions of model substrates 5 and 6. The methodology has been applied to a short...... is potentially enantioselective, and key steps were the [2,3] sigmatropic rearrangement of 11 to 12 via the corresponding allylic selenide (86% yield) and ruthenium-catalyzed RCM of 13 to 14 (80%). (C) 1999 Elsevier Science Ltd. All rights reserved....

  14. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications

    Directory of Open Access Journals (Sweden)

    Thomas Hanemann

    2010-05-01

    Full Text Available The addition of inorganic spherical nanoparticles to polymers allows the modification of the polymers physical properties as well as the implementation of new features in the polymer matrix. This review article covers considerations on special features of inorganic nanoparticles, the most important synthesis methods for ceramic nanoparticles and nanocomposites, nanoparticle surface modification, and composite formation, including drawbacks. Classical nanocomposite properties, as thermomechanical, dielectric, conductive, magnetic, as well as optical properties, will be summarized. Finally, typical existing and potential applications will be shown with the focus on new and innovative applications, like in energy storage systems.

  15. Proof of concept for continuous enantioselective liquid-liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent

    NARCIS (Netherlands)

    Susanti, S.; Meinds, Tim G.; Pinxterhuis, Erik B.; Schuur, Boelo; De Vries, Johannes G.; Feringa, Ben L.; Winkelman, Jozef G.M.; Yue, Jun; Heeres, Hero J.

    2017-01-01

    The use of capillary microreactors for enantioselective liquid-liquid extraction (ELLE) was successfully demonstrated using a model system consisting of a buffered aqueous amino acid derivative (3,5-dinitrobenzoyl-(R,S)-leucine) solution (phosphate buffer, pH 6.58) and a chiral cinchona alkaloid

  16. Predicting when precipitation-driven synthesis is feasible : application to biocatalysis

    NARCIS (Netherlands)

    Ulijn, R.V.; Janssen, A.E.M.; Moore, B.D.; Halling, P.J.

    2001-01-01

    Precipitation-driven synthesis offers the possibility of obtaining high reaction yields using very low volume reactors and is finding increasing applications in biocatalysis. Here, a model that allows straightforward prediction of when such a precipitation-driven reaction will be thermodynamically

  17. Synthesis and application of trifluoroethoxy-substituted phthalocyanines and subphthalocyanines

    Directory of Open Access Journals (Sweden)

    Satoru Mori

    2017-10-01

    Full Text Available Phthalocyanines and subphthalocyanines are attracting attention as functional dyes that are applicable to organic solar cells, photodynamic therapy, organic electronic devices, and other applications. However, phthalocyanines are generally difficult to handle due to their strong ability to aggregate, so this property must be controlled for further applications of phthalocyanines. On the other hand, trifluoroethoxy-substituted phthalocyanines are known to suppress aggregation due to repulsion of the trifluoroethoxy group. Furthermore, the electronic characteristics of phthalocyanines are significantly changed by the strong electronegativity of fluorine. Therefore, it is expected that trifluoroethoxy-substituted phthalocyanines can be applied to new industrial fields. This review summarizes the synthesis and application of trifluoroethoxy-substituted phthalocyanine and subphthalocyanine derivatives.

  18. Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary.

    Science.gov (United States)

    Yao, Qi-Jun; Zhang, Shuo; Zhan, Bei-Bei; Shi, Bing-Feng

    2017-06-01

    Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed C-H olefination, using tert-leucine as an inexpensive, catalytic, and transient chiral auxiliary, has been realized. This strategy provides a highly efficient and straightforward access to a broad range of enantioenriched biaryls in good yields (up to 98 %) with excellent enantioselectivities (95 to >99 % ee). Kinetic resolution of trisubstituted biaryls bearing sterically more demanding substituents is also operative, thus furnishing the optically active olefinated products with excellent selectivity (95 to >99 % ee, s-factor up to 600). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly Enantioselective Production of Chiral Secondary Alcohols Using Lactobacillus paracasei BD101 as a New Whole Cell Biocatalyst and Evaluation of Their Antimicrobial Effects.

    Science.gov (United States)

    Yılmaz, Durmuşhan; Şahin, Engin; Dertli, Enes

    2017-11-01

    Chiral secondary alcohols are valuable intermediates for many important enantiopure pharmaceuticals and biologically active molecules. In this work, we studied asymmetric reduction of aromatic ketones to produce the corresponding chiral secondary alcohols using lactic acid bacteria (LAB) as new biocatalysts. Seven LAB strains were screened for their ability to reduce acetophenones to their corresponding alcohols. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful at reducing the ketones to the corresponding alcohols. The reaction conditions were further systematically optimized for this strain and high enantioselectivity (99%) and very good yields were obtained. These secondary alcohols were further tested for their antimicrobial activities against important pathogens and significant levels of antimicrobial activities were observed although these activities were altered depending on the secondary alcohols as well as their enantiomeric properties. The current methodology demonstrates a promising and alternative green approach for the synthesis of chiral secondary alcohols of biological importance in a cheap, mild, and environmentally useful process. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  20. Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm.

    Science.gov (United States)

    Chang, Jing; Wang, Yinghuan; Wang, Huili; Li, Jianzhong; Xu, Peng

    2016-02-01

    In this study, the bioavailability and enantioselectivity differences between bifenthrin (BF, typeⅠpyrethroid) and lambad-cyhalothrin (LCT, type Ⅱ pyrethroid) in earthworm (Eisenia fetida) were investigated. The bio-soil accumulation factors (BSAFs) of BF was about 4 times greater than that of LCT. LCT was degraded faster than BF in soil while eliminated lower in earthworm samples. Compound sorption plays an important role on bioavailability in earthworm, and the soil-adsorption coefficient (K(oc)) of BF and LCT were 22 442 and 42 578, respectively. Metabolic capacity of earthworm to LCT was further studied as no significant difference in the accumulation of LCT between the high and low dose experiment was found. 3-phenoxybenzoic acid (PBCOOH), a metabolite of LCT produced by earthworm was detected in soil. The concentration of PBCOOH at high dose exposure was about 4.7 times greater than that of in low dose level at the fifth day. The bioaccumulation of BF and LCT were both enantioselective in earthworm. The enantiomer factors of BF and LCT in earthworm were approximately 0.12 and 0.65, respectively. The more toxic enantiomers ((+)-BF and (-)-LCT) had a preferential degradation in earthworm and leaded to less toxicity on earthworm for racemate exposure. In combination with other studies, a liner relationship between Log BSAF(S) and Log K(ow) was observed, and the Log BSAF(S) decreased with the increase of Log K(ow). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography

    Directory of Open Access Journals (Sweden)

    Nicole Riddell

    2016-11-01

    Full Text Available Hexabromocyclododecane (HBCDD is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+ and (− enantiomers of α-, β-, and γ-HBCDD were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD, was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  2. Vinylphosphonium and 2-aminovinylphosphonium salts – preparation and applications in organic synthesis

    Directory of Open Access Journals (Sweden)

    Anna Kuźnik

    2017-12-01

    Full Text Available The main synthetic routes towards vinylphosphonium salts and their wide applications in organic synthesis are discussed in this review. Particular attention is paid to the use of these compounds as building blocks for the synthesis of carbo- and heterocyclic systems after their prior transformation into the corresponding phosphorus ylides, followed by the intramolecular Wittig reaction with various types of nucleophiles containing a carbonyl function in their structures.

  3. Synthesis and application of a new fluorous-tagged ammonia equivalent.

    Science.gov (United States)

    Nielsen, Simon D; Smith, Garrick; Begtrup, Mikael; Kristensen, Jesper L

    2010-04-19

    A novel fluorous-tagged ammonia equivalent has been developed. It is based on a nitrogen-oxygen bond, which can be cleaved in a traceless manner by a molybdenum complex or samarium diiodide. The application in the synthesis of ureas, amides, sulfonamides, and carbamates is described. The scope of the fluorous N-O linker is exemplified by the synthesis of itopride, a drug used for the treatment of functional dyspepsia. Itopride was synthesized with the aid of fluorous purification methods and the product was isolated in good overall yield, with high purity. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Relational Constraint Driven Test Case Synthesis for Web Applications

    Directory of Open Access Journals (Sweden)

    Xiang Fu

    2010-09-01

    Full Text Available This paper proposes a relational constraint driven technique that synthesizes test cases automatically for web applications. Using a static analysis, servlets can be modeled as relational transducers, which manipulate backend databases. We present a synthesis algorithm that generates a sequence of HTTP requests for simulating a user session. The algorithm relies on backward symbolic image computation for reaching a certain database state, given a code coverage objective. With a slight adaptation, the technique can be used for discovering workflow attacks on web applications.

  5. Electrochemically Active Biofilms Assisted Nanomaterial Synthesis for Environmental Applications

    KAUST Repository

    Ahmed, Elaf

    2017-12-01

    Nanomaterials have a great potential for environmental applications due to their high surface areas and high reactivity. This dissertation investigated the use of electrochemically active biofilms (EABs) as a synthesis approach for the fabrication and environmental applications of different nanomaterials. Bacteria in EABs generate electrons upon consuming electron donor and have the ability to transport these electrons to solid or insoluble substrates through extracellular electron transport (EET) mechanism. The extracellularly transported electrons, once utilized, can lead to nanoparticle synthesis. In this dissertation, noble metal (i.e., Au, Pd, and Pt) ultra-small nanoparticles (USNPs) were first synthesized with the assistance by the EABs. The assynthesized USNPs had a size range between 2 and 7 nm and exhibited excellent catalytic performance in dye decomposition. Also in this research, a two-dimensional (2D) cobalt nanosheet was successfully synthesized in the presence of EABs. A simple biogenic route led to the transformation of cobalt acetate to produce a green, toxic free homogeneous 2D cobalt nanosheet structure. Further, TiO2 nanotubes were successfully combined with the noble metal USNPs to enhance their photocatalytic activity. In this work, for the first time, the noble metal USNPs were directly reduced and decorated on the internal surfaces of the TiO2 nanotubes structure assisted by the EABs. The USNPs modified TiO2 nanotubes generated significantly improved photoelectrocatatlyic performances. This dissertation shines lights on the use of EABs in ultra-small nanoparticle synthesis.

  6. Enantioselective copper catalysed intramolecular C-H insertion reactions of α-diazo-β-keto sulfones, α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones; the influence of the carbene substituent.

    Science.gov (United States)

    Shiely, Amy E; Slattery, Catherine N; Ford, Alan; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R

    2017-03-22

    Enantioselectivities in C-H insertion reactions, employing the copper-bis(oxazoline)-NaBARF catalyst system, leading to cyclopentanones are highest with sulfonyl substituents on the carbene carbon, and furthermore, the impact is enhanced by increased steric demand on the sulfonyl substituent (up to 91%ee). Enantioselective intramolecular C-H insertion reactions of α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones are reported for the first time.

  7. A Simple Primary Amine Catalyst for Enantioselective α-Hydroxylations and α-Fluorinations of Branched Aldehydes

    OpenAIRE

    Witten, Michael R.; Jacobsen, Eric N.

    2015-01-01

    A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields and with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in the results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mec...

  8. Facile synthesis and application of a carbon foam with large mesopores

    KAUST Repository

    Fu, Liling

    2013-01-01

    By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries. © 2013 the Owner Societies.

  9. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Wadia, Cyrus; Ma, Wanli; Sadtler, Bryce; Alivisatos, A.Paul

    2008-06-24

    We present the rational synthesis of colloidal copper(I) sulfide nanocrystals and demonstrate their application as an active light absorbing component in combination with CdS nanorods to make a solution-processed solar cell with 1.6percent power conversion efficiency on both conventional glass substrates and flexible plastic substrates with stability over a 4 month testing period.

  10. Enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7.

    Science.gov (United States)

    Fang, Zhong-Ze; Wang, Haina; Cao, Yun-Feng; Sun, Dong-Xue; Wang, Li-Xuan; Hong, Mo; Huang, Ting; Chen, Jian-Xing; Zeng, Jia

    2015-03-01

    UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 μM and 31.1 μM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 μM and 3.1 μM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism. © 2014 Wiley Periodicals, Inc.

  11. [Progress in synthesis technologies and application of aviation biofuels].

    Science.gov (United States)

    Sun, Xiaoying; Liu, Xiang; Zhao, Xuebing; Yang, Ming; Liu, Dehua

    2013-03-01

    Development of aviation biofuels has attracted great attention worldwide because that the shortage of fossil resources has become more and more serious. In the present paper, the development background, synthesis technologies, current application status and existing problems of aviation biofuels were reviewed. Several preparation routes of aviation biofuels were described, including Fischer-Tropsch process, catalytic hydrogenation and catalytic cracking of bio-oil. The status of flight tests and commercial operation were also introduced. Finally the problems for development and application of aviation biofuels were stated, and some accommodation were proposed.

  12. Biocatalytic Asymmetric Synthesis of (1R, 2S)-N-Boc-vinyl-ACCA Ethyl Ester with a Newly Isolated Sphingomonas aquatilis.

    Science.gov (United States)

    Zhu, Shaozhou; Shi, Ying; Zhang, Xinyu; Zheng, Guojun

    2018-02-01

    1-amino cyclopropane-1-carboxylic acid (ACCA) and its derivatives are essential pharmacophoric unit that widely used in drug research and development. Specifically, (1R, 2S)-N-Boc-vinyl-ACCA ethyl ester (vinyl-ACCA) is a key chiral intermediate in the synthesis of highly potent hepatitis C virus (HCV) NS3/4A protease inhibitors such as asunaprevir and simeprevir. Developing strategies for the asymmetric synthesis of vinyl-ACCA is thus extremely high demand. In this study, 378 bacterial strains were isolated from soil samples using N-Boc-vinyl-ACCA ethyl ester as the sole carbon source and were screened for esterase activity. Fourteen of which worked effectively for the asymmetric synthesis of (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester. The strain CY-2, identified as Sphingomonas aquatilis, which showed the highest stability and enantioselectivity was selected as whole cell biocatalyst for further study. A systematic study of all factors influencing the enzymatic hydrolysis was performed. Under optimized conditions, resolution of rac-vinyl-ACCA to (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester with 88.2% ee and 62.4% conversion (E = 9) was achieved. Besides, S. aquatilis was also used to transform other 10 different substrates. Notably, it was found that 7 of them could be stereoselectively hydrolyzed, especially for (1R,2S)-1-amino-vinyl-ACCA ethyl ester hydrochloride (99.6% ee, E>200). Our investigations provide a new efficient whole cell biocatalyst for resolution of ACCA and might be developed for industry application.

  13. Interspecies differences in the enantioselectivity of epoxide hydrolases in Cryptococcus laurentii (Kufferath) C.E. Skinner and Cryptococcus podzolicus (Bab'jeva & Reshetova) Golubev

    CSIR Research Space (South Africa)

    Botes, AL

    2005-01-01

    Full Text Available Isolates representing Cryptococcus laurentii and Cryptococcus podzolicus, originating from soil of a heath land indigenous to South Africa, were screened for the presence of enantioselective epoxide hydrolases for 2, 2-disubstituted epoxides...

  14. Synthesis optimization of calcium aluminate cement phases for biomedical applications

    International Nuclear Information System (INIS)

    Andrade, T.L.; Santos, G.L.; Oliveira, I.R.; Pandolfelli, V.C.

    2011-01-01

    Calcium aluminate cement (CAC) has been studied as a potential material for applications in the areas of health such as, endodontics and bone reconstruction. These studies have been based on commercial products consisting of a mixture of phases. Improvements can be attained by investigating the synthesis routes of CAC aiming the proper balance between the phases and the control of impurities that may impair its performance for biomedical applications. Thus, the aim of this work was to study the CAC synthesis routes in the Al 2 O 3 -CaCO 3 and Al 2 O 3 -CaO systems, as well as the phase characterization attained by means of X ray analysis. The Al 2 O 3 -CaO route enabled the production of the target phases (CA, CA 2 , C 3 A and C 12 A 7 ) with a higher purity compared to the Al2O3-CaCO3 one. As a result the particular properties of these phases can be evaluated to define a more suitable composition that results in better properties for an endodontic cement and other applications. (author)

  15. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ali Mostofizadeh

    2011-01-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. Carbon nanomaterials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional carbon nanomaterials (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nanomaterials.

  16. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview

    International Nuclear Information System (INIS)

    Zhang Donghua; Wang Yangyong

    2006-01-01

    This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory

  17. Enantioselective Crystallization of Sodium Chlorate in the Presence of Racemic Hydrophobic Amino Acids and Static Magnetic Fields

    Directory of Open Access Journals (Sweden)

    María-Paz Zorzano

    2014-06-01

    Full Text Available We study the bias induced by a weak (200 mT external magnetic field on the preferred handedness of sodium chlorate crystals obtained by slow evaporation at ambient conditions of its saturated saline solution with 20 ppm of added racemic (dl hydrophobic amino acids. By applying the Fisher test to pairs of experiments with opposing magnetic field orientation we conclude, with a confidence level of 99.7%, that at the water-air interface of this saline solution there is an enantioselective magnetic interaction that acts upon racemic mixtures of hydrophobic chiral amino acids. This interaction has been observed with the three tested racemic hydrophobic amino acids: dl-Phe, dl-Try and dl-Trp, at ambient conditions and in spite of the ubiquitous chiral organic contamination. This enantioselective magnetic dependence is not observed when there is only one handedness of added chiral amino-acid, if the added amino acid is not chiral or if there is no additive. This effect has been confirmed with a double blind test. This novel experimental observation may have implications for our view of plausible initial prebiotic scenarios and of the roles of the geomagnetic field in homochirality in the biosphere.

  18. Reductive decarboxylation of bicyclic prolinic systems: a new approach to the enantioselective synthesis of the Geissman-Waiss lactone. X-ray structure determination of a key lactone intermediate

    Directory of Open Access Journals (Sweden)

    Ambrósio João Carlos L.

    2003-01-01

    Full Text Available Two concise and enantioselective syntheses of the necine base precursors (1R,5R-N-Cbz and N-Boc-2-oxa-6-azabicyclo[3.3.0]octan-3-ones (Geissman-Waiss lactones were carried out from two enantiomerically pure endocyclic five-membered enecarbamates with overall yields of 23% and 26%, respectively. The synthetic strategy made use of a highly effective and stereoselective [2+2]cycloaddition of enantiomerically pure endocyclic enecarbamates with dichloroketene, as well as an efficient decarboxylation step of a bicyclic alpha-amino acid employing Boger's acyl selenide protocol employing tributyltin hydride. Interesting aspects concerning the regiochemical outcome of Baeyer-Villiger oxidations of bicyclic cyclobutanones are also reported, in which the usual stereoelectronic bias of Baeyer-Villiger oxidation seems to be counterbalanced by steric effects on the putative Criegee intermediate.

  19. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols.

    Science.gov (United States)

    Ma, Jiajia; Harms, Klaus; Meggers, Eric

    2016-08-09

    A rhodium-based chiral Lewis acid catalyst combined with [Ru(bpy)3](PF6)2 as a photoredox sensitizer allows for the visible-light-activated redox coupling of α-silylamines with 2-acyl imidazoles to afford, after desilylation, 1,2-amino-alcohols in yields of 69-88% and with high enantioselectivity (54-99% ee). The reaction is proposed to proceed via an electron exchange between the α-silylamine (electron donor) and the rhodium-chelated 2-acyl imidazole (electron acceptor), followed by a stereocontrolled radical-radical reaction. Substrate scope and control experiments reveal that the trimethylsilyl group plays a crucial role in this reductive umpolung of the carbonyl group.

  20. Application of methods of discrete mathematics at modular synthesis of mechatronic devices

    OpenAIRE

    Nikiforov, S.; Nikiforov, B.; Mandarov, E.; Rabdanova, N.

    2010-01-01

    The article is devoted to application of methods of discrete mathematics (the theory of counts, the method of matrix code and others) and synthesis of executive mechanisms of mechatronic handling devices

  1. DSP Based System for Real time Voice Synthesis Applications Development

    OpenAIRE

    Arsinte, Radu; Ferencz, Attila; Miron, Costin

    2008-01-01

    This paper describes an experimental system designed for development of real time voice synthesis applications. The system is composed from a DSP coprocessor card, equipped with an TMS320C25 or TMS320C50 chip, voice acquisition module (ADDA2),host computer (IBM-PC compatible), software specific tools.

  2. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    OpenAIRE

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...

  3. Microbial synthesis of poly(epsilon-lysine) and its various applications.

    Science.gov (United States)

    Shih, Ing-Lung; Shen, Ming-Haw; Van, Yi-Tsong

    2006-06-01

    This review article deals with the microbial synthesis, physiochemical properties, and potential applications of poly-epsilon-lysine (epsilon-PL), which is a naturally occurring biomaterial that is water soluble, biodegradable, edible and non-toxic toward humans and the environment. The potential applications of epsilon-PL as food preservatives, emulsifying agent, dietary agent, biodegradable fibers, highly water absorbable hydrogels, drug carriers, anticancer agent enhancer, biochip coatings in the fields of food, medicine, agriculture and electronics are also discussed in this review.

  4. Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

    International Nuclear Information System (INIS)

    Shafioul, Azam Sharif Mohammed; Cheong, Chan Seong

    2012-01-01

    Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = 80 ± 3) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = 27 ± 1) for R-(+)-2-(3- methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/ n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one

  5. Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

    Energy Technology Data Exchange (ETDEWEB)

    Shafioul, Azam Sharif Mohammed [University of Science and Technology, Daejeon (Korea, Republic of); Cheong, Chan Seong [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-02-15

    Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = 80 ± 3) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = 27 ± 1) for R-(+)-2-(3- methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/ n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one.

  6. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    Science.gov (United States)

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  7. Enantioselective N-demethylation and hydroxylation of sibutramine in human liver microsomes and recombinant cytochrome p-450 isoforms.

    Science.gov (United States)

    Shinde, Dhananjay D; Kim, Min-Jung; Jeong, Eun-Sook; Kim, Yang-Weon; Lee, Ji-Woo; Shin, Jae-Gook; Kim, Dong-Hyun

    2014-01-01

    The enantioselective metabolism of sibutramine was examined using human liver microsomes (HLM) and recombinant cytochrome P-450 (CYP) isoforms. This drug is metabolized to N-mono-desmethyl- (M1) and N,N-di-desmethylsibutramine (M2), and subsequent hydroxylation results in hydroxyl M1 (HM1) and hydroxyl M2 (HM2). No significant difference was noted in formation of M1from sibutramine between R- and S-sibutramine in HLM. However, S-enantiomers of M1 and M2 were preferentially metabolized to M2, HM1, and HM2compared to R-enantiomers in HLM, and intrinsic clearance (Clint) ratios of S-enantiomers/R-enantiomers were 1.97, 4.83, and 9.94 for M2, HM1, and HM2, respectively. CYP3A4 and CYP3A5 were only involved in the formation of M1, whereas CYP2B6 and CYP2C19 were responsible for all metabolic reactions of sibutramine. CYP2C19 and CYP3A5 displayed catalytic preference for S-sibutramine to S-M1, whereas CYP2B6 and CYP3A4 showed little or no stereoselectivity in metabolism of sibutramine to M1. In the case of M2 formation, CYP2B6 metabolized S-M1 more rapidly than R-M1 with a Clint ratio of 2.14. However, CYP2C19 catalyzed less S-M1 than R-M1 and the Clint ratio of S-M1 to R-M1 was 0.65. The most significant enantioselectivity was observed in formation of HM1 from M1, and HM2 from M2. CYP2B6 and CYP2C19 exhibited preferential catalysis of formation of hydroxyl metabolites from S-enantiomers rather than R-enantiomers. These results indicate that S-sibutramine was more rapidly metabolized by CYP isoforms than R-sibutramine, and that enantioselective metabolism needs to be considered in drug interactions involving sibutramine and co-administered drugs.

  8. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond; Zhong, Fangrui; Zheng, Bin; Meng, Yuezhong; Lu, Yixin; Huang, Kuo-Wei

    2013-01-01

    in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  9. Enantioselective Access to Spirocyclic Sultams by Chiral Cp(x) -Rhodium(III)-Catalyzed Annulations.

    Science.gov (United States)

    Pham, Manh V; Cramer, Nicolai

    2016-02-12

    Chiral spirocyclic sultams are a valuable compound class in organic and medicinal chemistry. A rapid entry to this structural motif involves a [3+2] annulation of an N-sulfonyl ketimine and an alkyne. Although the directing-group properties of the imino group for C-H activation have been exploited, the developments of related asymmetric variants have remained very challenging. The use of rhodium(III) complexes equipped with a suitable atropchiral cyclopentadienyl ligand, in conjunction with a carboxylic acid additive, enables an enantioselective and high yielding access to such spirocyclic sultams. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  11. Sequential rhodium/palladium catalysis: enantioselective formation of dihydroquinolinones in the presence of achiral and chiral ligands.

    Science.gov (United States)

    Zhang, Lei; Qureshi, Zafar; Sonaglia, Lorenzo; Lautens, Mark

    2014-12-08

    Compatible combinations of achiral and chiral ligands can be used in rhodium/palladium catalysis to achieve highly enantioselective domino reactions. The difference in rates of catalysis and minimal effects of ligand interference confer control in the domino sequence. The "all-in-one" 1,4-conjugate arylation and C-N cross-coupling through sequential Rh/Pd catalysis provides access to enantioenriched dihydroquinolinone building blocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Exploring asymmetric catalytic transformations

    NARCIS (Netherlands)

    Guduguntla, Sureshbabu

    2017-01-01

    In Chapter 2, we report a highly enantioselective synthesis of β-alkyl-substituted alcohols through a one-pot Cu- catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of γ-alkyl-substituted alcohols was also achieved through Cu-catalyzed

  13. A Tunable and Enantioselective Hetero-Diels-Alder Reaction Provides Access to Distinct Piperidinoyl Spirooxindoles.

    Science.gov (United States)

    Jayakumar, Samydurai; Louven, Kathrin; Strohmann, Carsten; Kumar, Kamal

    2017-12-11

    The active complexes of chiral N,N'-dioxide ligands with dysprosium and magnesium salts catalyze the hetero-Diels-Alder reaction between 2-aza-3-silyloxy-butadienes and alkylidene oxindoles to selectively form 3,3'- and 3,4'-piperidinoyl spirooxindoles, respectively, in very high yields and with excellent enantioselectivities. The exo-selective asymmetric cycloaddition successfully regaled the construction of sp 3 -rich and highly substituted natural-product-based spirooxindoles supporting many chiral centers, including contiguous all-carbon quaternary centers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Specific synthesis of Pt nanowires for catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, Daniela; Kehres, Jan; Al-Shamery, Katharina [IRAC, University Oldenburg (Germany); Center of Interface Science, CIS (Germany); Borchert, Holger; Kolny-Olesiak, Joanna [EHF, University Oldenburg (Germany); Center of Interface Science, CIS (Germany); Baeumer, Marcus [IAPC, University Bremen (Germany); Center of Interface Science, CIS (Germany)

    2008-07-01

    Metallic nanomaterials are of great interest in the last years due to their interesting properties as new materials for optical, electronic, magnetic or catalytic applications. Particularly size and morphology of such nanoparticulate systems offer also high potential for material improvement. A promising issue is the preparation of platinum nanowires by means of colloidal chemistry which allows obtaining particles with well-defined size and shape by use of stabilizing ligands. Recent efforts have been focused on the development of synthesis to obtain these nanowires. Therefore we were able to prepare dodecylamine-capped Pt nanowires with 2 nm in diameter and several multiple in length in varying the synthesis conditions. The influence of temperature, stabilisers and reducing agents on the morphology has been investigated. The catalytic activity of such nanowires immobilized at different oxidic supports could also be demonstrated on the example of CO oxidation and are compared to spherical Pt and bimetallic colloidal nanoparticles.

  15. Vacancy-impurity centers in diamond: prospects for synthesis and applications

    Science.gov (United States)

    Ekimov, E. A.; Kondrin, M. V.

    2017-06-01

    The bright luminescence of impurity-vacancy complexes, combined with high chemical and radiation resistance, makes diamond an attractive platform for the production of single-photon emitters and luminescent biomarkers for applications in nanoelectronics and medicine. Two representatives of this kind of defects in diamond, silicon-vacancy (SiV) and germanium-vacancy (GeV) centers, are discussed in this review; their similarities and differences are demonstrated in terms of the more thoroughly studied nitrogen-vacancy (NV) complexes. The recent discovery of GeV luminescent centers opens a unique opportunity for the controlled synthesis of single-photon emitters in nanodiamonds. We demonstrate prospects for the high-pressure high-temperature (HPHT) technique to create single-photon emitters, not only as an auxiliary to chemical vapor deposition (CVD) and ion-implantation methods but also as a primary synthesis tool for producing color centers in nanodiamonds. Besides practical applications, comparative studies of these two complexes, which belong to the same structural class of defects, have a fundamental importance for deeper understanding of shelving levels, the electronic structure, and optical properties of these centers. In conclusion, we discuss several open problems regarding the structure, charge state, and practical application of these centers, which still require a solution.

  16. Materials Research Society Symposium Proceedings Volume 635. Anisotropic Nanoparticles - Synthesis, Characterization and Applications

    National Research Council Canada - National Science Library

    Lyon, L

    2000-01-01

    This volume contains a series of papers originally presented at Symposium C, "Anisotropic Nanoparticles Synthesis, Characterization and Applications," at the 2000 MRS Fall Meeting in Boston, Massachusetts...

  17. Synthesis, Characterization and Applications of One-Dimensional Metal Oxide Nanostructures

    Science.gov (United States)

    Santulli, Alexander

    Nanomaterials have been of keen research interest, owing to their exciting and unique properties (e.g. optical, magnetic, electronic, and mechanical). These properties allow nanomaterials to have many applications in areas of medicine, alternative energy, catalysis, and information storage. In particular, one-dimensional (1D) nanomaterials are highly advantageous, owing to the inherent anisotropic nature, which allows for effective transport and study of properties on the nanoscale. More specifically, 1D metal oxide nanomaterials are of particular interest, owing to their high thermal and chemical stability, as well as their intriguing optical, electronic, and magnetic properties. Herein, we will investigate the synthesis and characterization of vanadium oxide, lithium niobate and chromium oxide. We will explore the methodologies utilized for the synthesis of these materials, as well as the overall properties of these unique nanomaterials. Furthermore, we will explore the application of titanium dioxide nanomaterials as the electron transport layer in dye sensitized solar cells (DSSCs), with an emphasis on the effect of the nanoscale morphology on the overall device efficiency.

  18. Assessing the stereoselectivity of Serratia marcescens CECT 977 2,3-butanediol dehydrogenase

    NARCIS (Netherlands)

    Medici, R.; Stammes, J.K.; Otten, L.G.; Hanefeld, U.; Kwakernaak, Stender

    2017-01-01

    α-Hydroxy ketones and vicinal diols constitute well-known building blocks in organic synthesis. Here we describe one enzyme that enables the enantioselective synthesis of both building blocks starting from diketones. The enzyme 2,3-butanediol dehydrogenase (BudC) from S. marcescens CECT 977 belongs

  19. Direct, enantioselective α-alkylation of aldehydes using simple olefins.

    Science.gov (United States)

    Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  20. Enantioselective Effect of Flurbiprofen on Lithium Disposition in Rats.

    Science.gov (United States)

    Uwai, Yuichi; Matsumoto, Masashi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2017-01-01

    Lithium is administered for treating bipolar disorders and is mainly excreted into urine. Nonsteroidal anti-inflammatory drugs inhibit this process. In this study, we examined the enantioselective effect of flurbiprofen on the disposition of lithium in rats. Pharmacokinetic experiments with lithium were performed. Until 60 min after the intravenous administration of lithium chloride at 30 mg/kg as a bolus, 17.8% of lithium injected was recovered into the urine. Its renal clearance was calculated to be 1.62 mL/min/kg. Neither creatinine clearance (Ccr) nor pharmacokinetics of lithium was affected by the simultaneous injection of (R)-flurbiprofen at 20 mg/kg. (S)-flurbiprofen impaired the renal function and interfered with the urinary excretion of lithium. The ratio of renal clearance of lithium to Ccr was decreased by the (S)-enantiomer. This study clarified that the (S)-flurbiprofen but not (R)-flurbiprofen inhibited the renal excretion of lithium in rats. © 2017 S. Karger AG, Basel.

  1. Nanoporous ionic organic networks: from synthesis to materials applications

    OpenAIRE

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-01-01

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of specia...

  2. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology.

    Science.gov (United States)

    Hocek, Michal

    2014-11-07

    The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.

  3. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-01-01

    Due in part to the use of labeled glycerol for the 13 C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide (∼53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific 13 C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of 13 C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of 13 C-labeled DHA to DHAP. We are especially interested in 13 C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  4. Design and Synthesis of a Novel Class of Flavonoid Derivatives via Sequential Phosphorylation and its Application for Greener Nanoparticle Synthesis

    Science.gov (United States)

    Osonga, Francis Juma

    Flavonoids exhibit arrays of biological effects that are beneficial to humans, including anti-viral, anti-oxidative, anti-inflammatory and anti-carcinogenic effects. However, these applications have been hindered by their poor stability and solubility in common solvents. Consequently, there is significant interest in the modification of flavonoids to improve their solubility. This poor solubility is also believed to be responsible for its permeability and bioavailability. Hence the central goal of this work is to design synthetic strategies for the sequential protection of the -OH groups in order to produce phosphorylated quercetin and apigenin derivatives. This work is divided into two parts: the first part presents the design, synthesis, and characterization of novel flavonoid derivatives via global and sequential phosphorylation. The second part focuses on the application of the synthesized derivatives for greener nanoparticle synthesis. This work shows for the first time that sequential phosphorylation of Quercetin is feasible through the design of 4 new derivatives namely: 5,4'-O-Quercetin Diphosphate (QDPI), 4'-O-phosphate Quercetin (4'-QPI), 5,4'-Quercetin Diphosphate (5,4'-QDP) and monophosphate 4-QP. The synthesis of 4'-QP and 5, 4'-QDP was successful with 85% and 60.5% yields respectively. In addition, the progress towards the total synthesis of apigenin phosphate derivatives (7, 4'-ADP and 7-AP) is presented. The synthesized derivatives were characterized using 1H, 13C, and 31P NMR. The phosphorylated derivatives were subsequently explored as reducing agents for sustainable synthesis of gold, silver and copper nanoparticles. We have successfully demonstrated the photochemical synthesis of gold nanoplates of sizes ranging from 10 - 200 nm using water soluble QDP in the presence of sunlight. This work contributes immensely in promoting the ideals of green nanosynthesis by (i) eliminating the use of organic solvents in the nanosynthesis, (ii) exploiting the

  5. Enantioselective skin permeation of ibuprofen enantiomers: mechanistic insights from ATR-FTIR and CLSM studies based on synthetic enantiomers as naphthalimide fluorescent probes.

    Science.gov (United States)

    Che, Qi-en; Quan, Peng; Mu, Mao; Zhang, Xinfu; Zhao, Hanqing; Zhang, Yu; You, Song; Xiao, Yi; Fang, Liang

    2014-10-01

    The aim of this study was to investigate the mechanisms of different skin permeability of ibuprofen racemate and enantiomers. The percutaneous permeation of ibuprofen racemate and enantiomers through rabbit normal skin and damaged skin (without stratum corneum [SC]) was investigated in vitro using side-by-side diffusion cells. With the melting temperature-membrane transport model, the flux ratio of enantiomer/racemate was calculated from their thermodynamic properties obtained by differential scanning calorimetry. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) study was performed to evaluate the interaction between the enantiomers and the SC. New fluorescent probes were designed and utilized in confocal laser scanning microscopy (CLSM) study for visualization of the enantioselective permeation of the enantiomers through the intact rabbit skin. The flux of (S)-ibuprofen through normal skin was significantly higher than that of (RS)-ibuprofen and (R)-ibuprofen (p skin, there was no significant difference (p > 0.05). The predicted flux ratio of (S)-ibuprofen/(RS)-ibuprofen (2.50) was in close agreement with the experimentally determined ratio (2.48). These results were supported by ATR-FTIR and CLSM studies that indicated that a chiral environment of the skin led to the enantioselective permeation of enantiomers. The chiral nature of the SC and the different physicochemical properties of the enantiomers should be taken into account in the assessment of different skin permeability of the racemate and enantiomers. The synthetic fluorescent probes used in this study could visualize the enantioselective permeation of the chiral compounds across the skin.

  6. Catalytic Kinetic Resolution of Biaryl Compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Sibi, Mukund P

    2015-08-10

    Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Monofunctional gold nanoparticles: synthesis and applications

    International Nuclear Information System (INIS)

    Huo Qun; Worden, James G.

    2007-01-01

    The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review

  8. One pot electrochemical synthesis of polymer/CNT/metal nanoparticles for fuel cell applications

    Science.gov (United States)

    Ventrapragada, Lakshman; Zhu, Jingyi; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Nanomaterials center Team

    Carbon nanotubes (CNTs) have become a key player in the design of materials for energy applications. They gained their popularity in industrial and scientific research due to their unique properties like excellent conductivity, high surface area, etc. Here we used chemical vapor deposition (CVD) to synthesize two types of CNTs namely, helically coiled CNTs and vertically aligned CNTs. These CNTs were subsequently used to make composites with conducting polymers and metal nanoparticles. One pot electrochemical synthesis was designed to electropolymerize aniline, pyrrole etc. on the surface of the electrode with simultaneous deposition of platinum and gold metal nanoparticles, and CNTs in the polymer matrix. The as synthesized composite materials were characterized with scanning electron microscope for surface morphology and spectroscopic techniques like Raman, UV-Vis for functionality. These were used to study electrocatalytic oxidation of methanol and ethanol for alkaline fuel cell applications. Electrodes fabricated from these composites not only showed good kinetics but also exhibited excellent stability. Uniqueness of this composite lies in its simple two step synthesis and it doesn't involve any surfactants unlike conventional chemical synthesis routes.

  9. Surface capped fluorescent semiconductor nanoparticles: radiolytic synthesis and some of its biological applications

    International Nuclear Information System (INIS)

    Saha, A.

    2006-01-01

    Semiconductor nanocrystals or colloidal quantum dots (QD's) have generated great research interest because of their unusual properties arising out of quantum confinement effects. Many researchers in the field of nanotechnology focus on the 'high quality' semiconductor quantum dots. A good synthetic route should yield nanoparticles with narrow size distribution, good crystallinity, high photostability, desired surface properties and high photoluminescence quantum efficiency. In the domain of colloidal chemistry, reverse micellar synthesis, high temperature thermolysis using organometallic precursors and synthesis in aqueous media using polyphosphates or thiols as stabilizers are the most prominent ones. In contrast, γ-radiation assisted synthesis can offer a simplified approach to prepare size-controlled nanoparticles at room temperature. Syntheses of thiol-capped II-VI nanoparticles by radiolytic method, its characterization and some of its luminescence-based applications of biological relevance will be presented. The versatility of thiols (RSH) can be emphasized here as changing the R-group imparts different functionality to the particles and thus chemical behavior of the particles can be manipulated according to the application intended for. (authors)

  10. Synthesis, characterization and applications of graphene architectures

    Science.gov (United States)

    Thomas, Abhay Varghese

    Graphene, a two--dimensional sheet of sp2 hybridized carbon atoms arranged in a honeycomb lattice structure, has garnered tremendous interest from the scientific community for its unique combination of properties. It has interesting electrical, thermal, optical and mechanical properties that scientists and engineers are trying to understand and harness to improve current products as well as focus on disruptive technologies that can be made possible by this next generation material. In this thesis the synthesis, characterization and applications of various graphene architectures were explored from the context of a bottom--up and top--down synthesis approach. The work is divided into three main chapters and each one deals with a unique architecture of graphene as well as its properties and an application to a real world problem. In Chapter 2, we focus on bottom--up synthesis of graphene sheets by chemical vapor deposition. We then studied the wetting properties of graphene coated surfaces. More specifically the wetting properties of single and multilayer graphene films on flat and nanoscale rough surfaces are explored and the insights gained are used in improving heat transfer performance of copper surfaces. Single layer graphene, on certain flat surfaces, was shown to exhibit `wetting transparency' as a result of its sheer thinness and this property is of interest in various wetting related applications. Surface protection from corrosion and/or oxidation without change in wetting properties is tremendously useful in multiple fields and we looked to apply this property to dehumidification of copper surfaces. The short time scales results demonstrated that graphene indeed served to prevent oxidation of the surface which in turn promoted increased heat transfer co--efficients with respect to the oxidized copper surfaces. Closer inspection of the surface over long time scales however revealed that the oxide layer changed the wetting properties and this was detrimental

  11. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  12. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  13. Optical nanoparticles: synthesis and biomedical application

    International Nuclear Information System (INIS)

    Nhung Tran, Hong; Lien Nghiem, Thi Ha; Duong Vu, Thi Thuy; Ha Chu, Viet; Hoa Do, Quang; Vu, Duong; Nghia Nguyen, Trong; Tan Pham, Minh; Son Vu, Van; Nguyen, Thi Thuy; Ngoc Nguyen, Thi Bich; Duc Tran, Anh; Trinh, Thi Thuong; Huan Le, Quang; Thuan Tong, Kim; Thuy Tran, Thanh; Hoang, Thi My Nhung; Thanh Nguyen, Lai; Nguyen Duong, Cao; Minh Pham, Duc

    2015-01-01

    This paper presents a summary of our results on studies of synthesis and biomedical application of optical nanoparticles. Gold, dye-doped silica based and core–shell multifunctional multilayer (SiO_2/Au, Fe_3O_4/SiO_2, Fe_3O_4/SiO_2/Au) water-monodispersed nanoparticles were synthesized by chemical route and surface modified with proteins and biocompatible chemical reagents. The particles were conjugated with antibody or aptamer for specific detecting and imaging bacteria and cancer cells. The photothermal effects of gold nanoshells (SiO_2/Au and Fe_3O_4/SiO_2/Au) on cells and tissues were investigated. The nano silver substrates were developed for surface enhanced Raman scattering (SERS) spectroscopy to detect melamine. (review)

  14. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun

    2014-06-26

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new class of porous solid materials, MOFs are attractive for a variety of industrial applications including separation membranes-a rapidly developing research area. Many reports have discussed the synthesis and applications of MOFs and MOF thin films, but relatively few have addressed MOF membranes. This critical review provides an overview of the diverse MOF membranes that have been prepared, beginning with a brief introduction to the current techniques for the fabrication of MOF membranes. Gas and liquid separation applications with different MOF membranes are also included (175 references). This journal is © the Partner Organisations 2014.

  15. Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications

    International Nuclear Information System (INIS)

    Khandelwal, Apratim; Mani, Karthick; Karigerasi, Manohar Harsha; Lahiri, Indranil

    2017-01-01

    Highlights: • Reviews recent progress in phosphorene research, a new 2D material. • Anisotropic properties are reviewed and compared with other 2D materials. • Synthesis methods of black phosphorus and phosphorene are discussed. • Prospective applications inspired from the intrinsic properties are also discussed. • Challenges and future scope for this promising material is included. - Abstract: Black phosphorus (BP) is known to human beings for almost a century. It started receiving more attention of scientists and researchers worldwide in last three years, with its ability to exist in two-dimensional (2D) form, popularly known as phosphorene. In the post-graphene-discovery period, phosphorene is probably receiving most attention, owing to its excellent properties and hence, high potential for practical applications in the field of electronics, energy and infrastructure. In this article, attractive properties of phosphorene, which makes it unique and comparable with graphene or transition metal dichalcogenides (TMDs), are highlighted. As the question of its environmental instability remains critical, a comprehensive overview of synthesis methods of phosphorene and black phosphorus are presented, to inspire in-situ methods of phosphorene synthesis and fabrication towards improving further investigation into this wonder material. In addition, the article also focuses on opportunities in nano-electronics, optoelectronics, energy conversion/storage, sensors etc arising from phosphorene’s remarkable properties.

  16. Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khandelwal, Apratim; Mani, Karthick; Karigerasi, Manohar Harsha; Lahiri, Indranil, E-mail: indrafmt@iitr.ac.in

    2017-07-15

    Highlights: • Reviews recent progress in phosphorene research, a new 2D material. • Anisotropic properties are reviewed and compared with other 2D materials. • Synthesis methods of black phosphorus and phosphorene are discussed. • Prospective applications inspired from the intrinsic properties are also discussed. • Challenges and future scope for this promising material is included. - Abstract: Black phosphorus (BP) is known to human beings for almost a century. It started receiving more attention of scientists and researchers worldwide in last three years, with its ability to exist in two-dimensional (2D) form, popularly known as phosphorene. In the post-graphene-discovery period, phosphorene is probably receiving most attention, owing to its excellent properties and hence, high potential for practical applications in the field of electronics, energy and infrastructure. In this article, attractive properties of phosphorene, which makes it unique and comparable with graphene or transition metal dichalcogenides (TMDs), are highlighted. As the question of its environmental instability remains critical, a comprehensive overview of synthesis methods of phosphorene and black phosphorus are presented, to inspire in-situ methods of phosphorene synthesis and fabrication towards improving further investigation into this wonder material. In addition, the article also focuses on opportunities in nano-electronics, optoelectronics, energy conversion/storage, sensors etc arising from phosphorene’s remarkable properties.

  17. Triboluminescence theory, synthesis, and application

    CERN Document Server

    Okoli, Okenwa; Fontenot, Ross; Hollerman, William

    2016-01-01

    This book expounds on progress made over the last 35 years in the theory, synthesis, and application of triboluminescence for creating smart structures. It presents in detail the research into utilization of the triboluminescent properties of certain crystals as new sensor systems for smart engineering structures, as well as triboluminescence-based sensor systems that have the potential to enable wireless, in-situ, real time and distributed (WIRD) structural health monitoring of composite structures. The sensor component of any structural health monitoring (SHM) technology — measures the effects of the external load/event and provides the necessary inputs for appropriate preventive/corrective action to be taken in a smart structure — sits at the heart of such a system. This volume explores advances in materials properties and structural behavior underlying creation of smart composite structures and sensor systems for structural health monitoring of critical engineering structures, such as bridges, aircraf...

  18. The role of achiral pyrazolidinone templates in enantioselective Diels-Alder reactions: scope, limitations, and conformational insights.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Nie, Xiaoping; Venkatraman, Lakshmanan; Liu, Mei; Jasperse, Craig P

    2007-01-17

    We have evaluated the role of achiral pyrazolidinone templates in conjunction with chiral Lewis acids in room temperature, enantioselective Diels-Alder cycloadditions. The role of the fluxional N(1) substituent was examined, with the bulky 1-naphthylmethyl group providing enantioselectivities up to 99% ee, while templates with smaller fluxional groups gave lower selectivities. High selectivities were also observed in reactions of 7d with chiral Lewis acids derived from relatively small chiral ligands, suggesting the pyrazolidinone templates are capable of relaying stereochemical information from the ligand to the reaction center. Lewis acids capable of adapting square planar geometries, such as Cu(OTf)2, Cu(ClO4)2, and Pd(ClO4)2, were found to be particularly effective at providing high selectivities. Additionally, substitution at the C-5 position of the pyrazolidinone templates has been shown to be critical for optimal selectivity. Reactions of the optimal pyrazolidinone appended with a number of common dienophiles and various dienes demonstrate the utility of this achiral template. Furthermore, catalytic loadings could be lowered to 2.5 mol % with essentially no loss in selectivity. Pi-Pi interactions were evaluated as a means to explain the unusually high selectivity observed at room temperature. Finally, non-C2-symmetric ligands were employed as a test to determine if chiral relay was operative.

  19. Enantioselective biotransformation of propranolol to the active metabolite 4-hydroxypropranolol by endophytic fungi

    Directory of Open Access Journals (Sweden)

    Keyller Bastos Borges

    2011-01-01

    Full Text Available The enantioselective biotransformation of propranolol (Prop by the endophytic fungi Phomopsis sp., Glomerella cingulata, Penicillium crustosum, Chaetomium globosum and Aspergillus fumigatus was investigated by studying the kinetics of the aromatic hydroxylation reaction with the formation of 4-hydroxypropranolol (4-OH-Prop. Both Prop enantiomers were consumed by the fungi in the biotransformation process, but the 4-hydroxylation reaction yielded preferentially (--(S-4-OH-Prop. The quantity of metabolites biosynthesized varied slightly among the evaluated endophytic fungi. These results show that all investigated endophytic fungi could be used as biosynthetic tools in biotransformation processes to obtain the enantiomers of 4-OH-Prop.

  20. Thermocleavable pi-Conjugated polymers. Synthesis and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, M

    2009-10-15

    Polymer solar cells (plastic solar cells) have seen remarkable improvements in recent years where power conversion efficiencies of up to 6% have been reported for small area devices. However in terms of stability polymer solar cells degrade during illumination and in the dark leading to operational lifetimes that are generally very poor. There has been a recent interest in the operational stability of devices and more importantly on the understanding of why devices and materials break down. This has lead to the discovery of a new class of materials that enable exceptionally long device lifetimes (>20000 hours). This Ph.D. thesis describes the synthesis, characterization and photovoltaic applications of these novel polymer materials. A key feature of these materials is that solubilizing thermocleavable alkyl ester side chains are introduced on the polymer backbone. The side chains make the polymer soluble in organic solvents and allow film formation via solution processing. Subsequently they can be removed by heating in a post-processing step forming a harder insoluble material with enhanced stability. These new thermocleavable materials can potentially offer higher chromophore density, higher level processing and improved stability in a solar cell device. Methods are developed for the incorporation of alkoxy chains and thermocleavable ester groups on the benzothiadiazole and the thiophene units in an attempt to evolve the PDTBT system to a more advanced level. The synthesis and photovoltaic applications of the PDTTP and PDTBT systems is described. (author)

  1. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  2. Synthesis of Disintegrable Metal Composite for Oilfield Applications

    Science.gov (United States)

    Zhang, Zhihui; Salinas, Bobby; Newman, Caleb; Xu, Zhiyue

    Lightweight metal composites were traditionally developed for weight-critical applications. Recently, significant efforts have been made to improve the corrosion performance. In this study we report the synthesis of a novel type of high-strength metal composites with enhanced corrosion rate for use in self-disintegratable tools in oil and gas wells. The composites were fabricated through a powder metallurgy procedure by consolidating reactive metal powders that were coated with nanoscale metallic and/or ceramic coatings. The interaction between the metal matrix and coating was studied using X-ray diffraction, differential scanning calorimetry, and electron microscopy. The composites exhibit simultaneous high strength (up to 460 MPa) and two orders of magnitude increase in the corrosion rate (i.e., 250 mg/cm2/hr) under saline water. The corrosion behavior and associated field applications are described.

  3. Radiation Synthesis and Application of Absorbent Hydrogels to Enhance the Quality of Basadiesel

    International Nuclear Information System (INIS)

    Nguyen Duy Hang; Pham Thi Le Ha; Tran Thi Thuy; Le Hai; Nguyen Tan Man; Le Huu Tu; Nguyen Trong Hoanh Phong; Tran Thi Tam; Tran Thu Hong; Pham Thi Sam; Nguyen Tuong Li Lan

    2013-01-01

    Studying on the using ability of radiation synthesis hydrogels to enhance the quality of the biodiesel produced from Basa fish oil was implemented. Radiation synthesis of absorbent hydrogels and their application to removal of contaminants from biodiesel produced from fish oil were the major problems. The preparation of the super absorbent hydrogel obtained by radiation induced cross linking of polyacrylamide and polyacrylic was investigated and its application in removal of water, catalyst from the basadiesel emulsion is reported. The hydrogels were characterized in terms of gel content, swelling, character of water and mineral catalyst removal were studied. The effect of temperature, NaOH and KOH content of solution on the swelling degree of hydrogels was also determined. The results showed that the gel fraction of PAAm/PAAc hydrogel with PAAm/AAc (1/4) ratio and dose of 20 kGy was used to synthesized the Gel of A-311. Studies also made on the application of Gel A-311 during the refining process in Basadiesel industry. (author)

  4. Optimisation of aqueous synthesis of iron oxide nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Debora; Hofmann, Heinrich; Mionic Ebersold, Marijana, E-mail: Marijana.Mionic-Ebersold@chuv.ch [Ecole polytechnique fédérale de Lausanne (EPFL), Powder Technology Laboratory, Institute of Materials, School of Engineering (Switzerland)

    2016-12-15

    Iron oxide nanoparticles (IONPs) were prepared via aqueous synthesis which combines alkaline co-precipitation (CP) of ferric and ferrous precursors with mild hydrothermal (HT) treatment without cupping agents (CA). In this novel synthesis route, CP + HT, we found the optimal synthesis conditions to obtain IONPs without a second phase and with the size larger than in standard CP: the equal number of Fe(II) and Fe(III) ions are co-precipitated with 6 M ammonia and further HT treated in mild conditions (120 °C for 24 h) without CA. The IONPs obtained by novel CP + HT route had faceted rectangular morphology, a mean TEM diameter of 21.5 ± 6.3 nm, a hydrodynamic diameter of 30.2 ± 9.1 nm and a zeta potential at pH 4 of 48.2 ± 0.6 mV. After the subsequent oxidation step, the final product (IONPs) was studied by XRD, FTIR and XPS, which confirmed the desired structure of γ-Fe{sub 2}O{sub 3}. Importantly, this synthesis was especially planned for the preparation of IONPs for biomedical applications. Thus, our novel synthesis was designed to be compliant with the regulations of nano-safety: no special atmosphere, no complex multistep size separation, no organic solvents or solvent exchange, no CA and their washing and the use of low temperature in the final optimised conditions. In addition, this simple synthesis route combines the CP and HT methods, which are both proven to be scalable. Moreover, repeatability and reproducibility of the optimal CP + HT synthesis were confirmed on the lab-scale; more than 100 repetitions with different dishes, different operators and different batches of chemicals were performed.

  5. Evaluation of (+)-sparteine-like diamines for asymmetric synthesis.

    Science.gov (United States)

    Dearden, Michael J; McGrath, Matthew J; O'Brien, Peter

    2004-08-20

    Three new (+)-sparteine-like diamines were prepared from (-)-cytisine and evaluated as sparteine surrogates in the alpha-lithiation rearrangement of cyclooctene oxide and the palladium(II)/diamine catalyzed oxidative kinetic resolution of 1-indanol. The new diamines exhibited opposite enantioselectivity to that observed with (-)-sparteine but increasing the steric hindrance of the N-alkyl group beyond N-Et had a detrimental effect on enantioselectivity. The optimal N-Me diamine was evaluated with much success in five other (-)-sparteine-mediated processes involving different metals (lithium, magnesium, and copper) and different types of reaction mechanisms. Copyright 2004 American Chemical Society

  6. Synthesis of New Chiral Benzimidazolylidene–Rh Complexes and Their Application in Asymmetric Addition Reactions of Organoboronic Acids to Aldehydes

    Directory of Open Access Journals (Sweden)

    Weiping He

    2016-09-01

    Full Text Available A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC–Rh based on benzimidazole have been prepared, and all of the NHC–Rh complexes were fully characterized by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric 1,2-addition of organoboronic acids to aldehydes, affording chiral diarylmethanols with high yields and moderate enantioselectivities.

  7. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.

    Science.gov (United States)

    Wang, Jidong; Chen, Wenwen; Sun, Jiashu; Liu, Chao; Yin, Qifang; Zhang, Lu; Xianyu, Yunlei; Shi, Xinghua; Hu, Guoqing; Jiang, Xingyu

    2014-05-21

    This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications.

  8. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols.

    Science.gov (United States)

    Nacsa, Eric D; MacMillan, David W C

    2018-03-07

    Nature routinely engages alcohols as leaving groups, as DNA biosynthesis relies on the removal of water from ribonucleoside diphosphates by a radical-mediated "spin-center shift" (SCS) mechanism. Alcohols, however, remain underused as alkylating agents in synthetic chemistry due to their low reactivity in two-electron pathways. We report herein an enantioselective α-benzylation of aldehydes using alcohols as alkylating agents based on the mechanistic principle of spin-center shift. This strategy harnesses the dual activation modes of photoredox and organocatalysis, engaging the alcohol by SCS and capturing the resulting benzylic radical with a catalytically generated enamine. Mechanistic studies provide evidence for SCS as a key elementary step, identify the origins of competing reactions, and enable improvements in chemoselectivity by rational photocatalyst design.

  9. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  10. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    Science.gov (United States)

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  11. Voice synthesis application

    Science.gov (United States)

    Lightstone, P. C.; Davidson, W. M.

    1982-04-01

    The military detection assessment laboratory houses an experimental field system which assesses different alarm indicators such as fence disturbance sensors, MILES cables, and microwave Racons. A speech synthesis board which could be interfaced, by means of a computer, to an alarm logger making verbal acknowledgement of alarms possible was purchased. Different products and different types of voice synthesis were analyzed before a linear predictive code device produced by Telesensory Speech Systems of Palo Alto, California was chosen. This device is called the Speech 1000 Board and has a dedicated 8085 processor. A multiplexer card was designed and the Sp 1000 interfaced through the card into a TMS 990/100M Texas Instrument microcomputer. It was also necessary to design the software with the capability of recognizing and flagging an alarm on any 1 of 32 possible lines. The experimental field system was then packaged with a dc power supply, LED indicators, speakers, and switches, and deployed in the field performing reliably.

  12. Synthesis Polysulfone-Acetylethanol Ultrafiltration Membranes. Application to Oily Wastewater Treatment

    OpenAIRE

    Masuelli, Martin Alberto

    2016-01-01

    Chemical functionalization of polymers after the synthesis of membranes has great importance for various applications separative processes of industrial or environmental interest. Polysulfone (PSf) is one of the most applied polymers for separative processes used especially in membrane technology, due to its excellent chemical, mechanical and thermal properties. The functionalization of PSf makes it very attractive to give special characteristics due to their high hydrophobicity and membrane ...

  13. Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes

    Science.gov (United States)

    Wu, Hao; Radomkit, Suttipol; O’Brien, Jeannette M.; Hoveyda, Amir H.

    2012-01-01

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C–B bond forming reactions are promoted in the presence of 2.5–7.5 mol % of a readily accessible C1-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B2(pin)2], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides and aldehydes can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50–66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene or aldehyde). PMID:22559866

  14. Chiral Pyridinium Phosphoramide as a Dual Brønsted Acid Catalyst for Enantioselective Diels-Alder Reaction.

    Science.gov (United States)

    Nishikawa, Yasuhiro; Nakano, Saki; Tahira, Yuu; Terazawa, Kanako; Yamazaki, Ken; Kitamura, Chitoshi; Hara, Osamu

    2016-05-06

    Chiral pyridinium phosphoramide 1·HX was designed to be a new class of chiral Brønsted acid catalyst in which both the pyridinium proton and the adjacent imide-like proton activated by the electron-withdrawing pyridinium moiety could work cooperatively as strong dual proton donors. The potential of 1·HX was shown in the enantioselective Diels-Alder reactions of 1-amino dienes with various dienophiles including N-unsubstituted maleimide, which has yet to be successfully used in an asymmetric Diels-Alder reaction.

  15. Enantioselective silver nanoclusters: Preparation, characterization and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farrag, Mostafa, E-mail: mostafafarrag@aun.edu.eg

    2016-09-01

    Herein, we report a new wet-synthesis method to separate some water-soluble chiral silver nanoclusters with high yield. The cluster material was obtained by the reduction of silver nitrate with NaBH{sub 4} in the presence of three ligands L-penicillamine (L-pen), D-penicillamine (D-pen) and racemic mixture of penicillamine (rac-pen), functioning as capping ligand. For characterizing all silver cluster samples, the particle size was assessed by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) and their average chemical formula was determined from thermogravimetric analysis (TGA) and elemental analysis (EA). The particles sizes of all three clusters are 2.1 ± 0.2 nm. The optical properties of the samples were studied by four different methods: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL) and circular dichroism (CD) spectroscopy. The spectra are dominated by the typical and intense plasmon peak at 486 nm accompanied by a small shoulder at 540 nm. Infrared spectroscopy was measured for the free ligand and protected silver nanoclusters, where the disappearance of the S-H vibrational band (2535–2570 cm{sup −1}) in the silver nanoclusters confirmed anchoring of ligand to the cluster surface through the sulfur atom. PL studies yielded the fluorescent properties of the samples. The main focus of this work, however, lies in the chirality of the particles. For all silver clusters CD spectra were recorded. While for clusters capped with one of the two enantiomers (D- or L-form) typical CD spectra were observed, no significant signals were detected for a racemic ligand mixture. Furthermore, silver clusters show quite large asymmetry factors (up to 3 × 10{sup −4}) in comparison to most other ligand protected clusters. These large factors and bands in the visible range of the spectrum suggest a strong chiral induction from the ligand to the metal core. Textural features of the

  16. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  17. Nano crystals-Related Synthesis, Assembly, and Energy Applications 2012

    International Nuclear Information System (INIS)

    Zou, B.; Yu, W.W.; Seo, J.; Zhu, T.; Hu, M.Z.

    2012-01-01

    During the past decades, nano crystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nano materials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nano materials is still an important goal in modern materials physics and chemistry. Especially, the world's demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate change due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nano materials to provide the authors with a platform and readers with the latest achievements of nano crystals-related synthesis, assembly, and energy applications.

  18. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.

    Science.gov (United States)

    Sayin, Serkan; Akoz, Enise; Yilmaz, Mustafa

    2014-09-14

    In this study, two types of nanoparticles have been used as additives for the encapsulation of Candida rugosa lipase via the sol-gel method. In one case, the nanoparticles were covalently linked with a new synthesized calix[8]arene octa valeric acid derivative (C[8]-C4-COOH) to produce new calix[8]arene-adorned magnetite nanoparticles (NP-C[8]-C4-COOH), and then NP-C[8]-C4-COOH was used as an additive in the sol-gel encapsulation process. In the other case, iron oxide nanoparticles were directly added into the sol-gel encapsulation process in order to interact electrostatically with both C[8]-C4-COOH and Candida rugosa lipase. The catalytic activities and enantioselectivities of two novel encapsulated lipases (Enc-NP-C[8]-C4-COOH and Enc-C[8]-C4-COOH@Fe3O4) in the hydrolysis reaction of racemic naproxen methyl ester were evaluated. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives. Indeed, the encapsulated lipases have an excellent rate of enantioselectivity, with E = 371 and 265, respectively, as compared to the free enzyme (E = 137). The lipases encapsulated with C[8]-C4-COOH and iron oxide nanoparticles (Enc-C[8]-C4-COOH@Fe3O4) retained more than 86% of their initial activities after 5 repeated uses and 92% with NP-C[8]-C4-COOH.

  19. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Five-, Six-, and Seven-Membered β-Substituted Cyclic Enones: Enantioselective Construction of All-Carbon Quaternary Stereocenters

    KAUST Repository

    Kikushima, Kotaro; Holder, Jeffrey C.; Gatti, Michele; Stoltz, Brian M.

    2011-01-01

    The first enantioselective Pd-catalyzed construction of all-carbon quaternary stereocenters via 1,4-addition of arylboronic acids to β-substituted cyclic enones is reported. Reaction of a wide range of arylboronic acids and cyclic enones using a

  20. 3,3'-Diaryl-BINOL phosphoric acids as enantioselective extractants of benzylic primary amines.

    Science.gov (United States)

    Verkuijl, Bastiaan J V; de Vries, Johannes G; Feringa, Ben L

    2011-01-01

    We report that 3,3'-diaryl-BINOL phosphoric acids are effective enantioselective extractants in chiral separation methods based on reactive liquid-liquid extraction. These new extractants are capable of separating racemic benzylic primary amine substrates. The effect of the nature of the substituents at the 3,3'-positions of the host were examined as well as the structure of the substrate, together with important parameters such as the organic solvent, the pH of the aqueous phase, and the host stoichiometry. Titration of the substrate with the host was monitored by FTIR, NMR, UV-Vis, and CD spectroscopy, which provided insight into the structure of the host-guest complex involved in extraction. Copyright © 2010 Wiley-Liss, Inc.