WorldWideScience

Sample records for enantioselective borohydride reduction

  1. Sodium borohydride reduction of aromatic carboxylic acids via ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 5. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters. Aamer Saeed Zaman Ashraf. Volume 118 ... Author Affiliations. Aamer Saeed1 Zaman Ashraf1. Department of Chemistry, Quaid-I-Azam University 45320, Islamabad, Pakistan ...

  2. Probing the pH dependent optical properties of aquatic, terrestrial and microbial humic substances by sodium borohydride reduction

    Science.gov (United States)

    Chemically reducing humic (HA) and fulvic acids (FA) provides insight into spectroscopically identifiable structural moieties generating the optical properties of HA/FA from aquatic, microbial and terrestrial sources. Sodium borohydride reduction provides targeted reduction of carbonyl groups. The...

  3. The enantioselective b-keto ester reductions by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HASSAN TAJIK

    2006-09-01

    Full Text Available The enantioselective yeast reduction of aromatic b-keto esters, by use of potassium dihydrogen phosphate, calcium phosphate (monobasic, magnesium sulfate and ammonium tartrate (diammonium salt (10:1:1:50 in water at pH 7 as a buffer for 72–120 h with 45–90 % conversion to the corresponding aromatic -hydroxy esters was achieved by means of Saccharomyces cerevisiae.

  4. Catalytic enantioselective reductions and allylations of prochiral ketones

    CERN Document Server

    Cunningham, A

    2002-01-01

    The use of LiGaH sub 4 in combination with the S,O-chelate 2-hydroxy-2'-mercapto-1,1'-binaphthyl (monothiobinaphthol, MTBH sub 2), forms an active catalyst (2 mol %) for the asymmetric reduction of prochiral ketones, when using catecholborane as the hydride source. This catalyst has successfully been applied to the enantioselective reduction of aryl/n-alkyl ketones, providing the chiral sec-alcohols in yields of 82 - 96% and with enantiomeric excess values of 59 - 93%. Alkyl/methyl ketones are reduced in yields of 72 - 93% and in 46 - 79% enantiomeric excess. Enantioface differentiation is on the basis of the steric requirements of the ketone substituents. The X-ray structure of the pre-catalyst, Li(THF) sub 3 Ga(MTB) sub 2 has been determined and in solution is in equilibrium with a dimeric species of constitution Li sub 2 Ga sub 2 (MTB) sub 4. An indium analogue whose X-ray structure was determined as Li sub 2 (THF) sub 5 lnCI(MTB) sub 2 has also been prepared. The indium- based catalyst does not form an en...

  5. Enantioselective Evans-Tishchenko Reduction of b-Hydroxyketone Catalyzed by Lithium Binaphtholate

    Directory of Open Access Journals (Sweden)

    Makoto Nakajima

    2011-06-01

    Full Text Available Lithium diphenylbinaphtholate catalyzed the enantioselective Evans-Tishchenko reduction of achiral b-hydroxyketones to afford monoacyl-protected 1,3-diols with high stereoselectivities. In the reaction of racemic b-hydroxyketones, kinetic optical resolution occurred in a highly stereoselective manner.

  6. Enantioselective reduction of ketoimines promoted by easily available (S-proline derivatives

    Directory of Open Access Journals (Sweden)

    Martina Bonsignore

    2013-04-01

    Full Text Available The behavior of readily synthesized and even commercially available (S-proline derivatives, was studied in the trichlorosilane-mediated reduction of ketoimines. A small library of structurally and electronically modified chiral Lewis bases was considered; such compounds were shown to promote the enantioselective reduction of different substrates in good chemical yields. In the HSiCl3 addition to the model substrate N-phenylacetophenone imine, the organocatalyst of choice led to the formation of the corresponding amine with good stereoselectivity, up to 75% ee. Theoretical studies were also performed in order to elucidate the origin of the stereoselection.

  7. (Diisopinocampheyl)borane-Mediated Reductive Aldol Reactions of Acrylate Esters: Enantioselective Synthesis of Anti-Aldols

    Science.gov (United States)

    Allais, Christophe; Nuhant, Philippe; Roush, William R.

    2013-01-01

    The (diisopinocampheyl)borane promoted reductive aldol reaction of acrylate esters 4 is described. Isomerization of the kinetically formed Z(O)-enolborinate 5Z to the thermodynamic E(O)-enolborinate 5E via 1,3-boratropic shifts, followed by treatment with representative achiral aldehydes, leads to anti-α-methyl-β-hydroxy esters 9 or 10 with excellent diastereo- (up to ≥20:1 dr) and enantioselectivity (up to 87% ee). Results of double asymmetric reactions of 5E with several chiral aldehydes are also presented. PMID:23885946

  8. A direct approach to amines with remote stereocenters by enantioselective CuH-catalysed reductive relay hydroamination

    Science.gov (United States)

    Zhu, Shaolin; Niljianskul, Nootaree; Buchwald, Stephen L.

    2015-01-01

    Amines with remote stereocenters (stereocenters that are three or more bonds away from the C–N bond) are important structural elements in many pharmaceutical agents and natural products. However, previously reported methods to prepare these compounds in an enantioselective manner are indirect and require multistep synthesis. Here we report a copper hydride-catalysed, enantioselective synthesis of γ- or δ-chiral amines from readily available allylic alcohols, esters, and ethers using a reductive relay hydroamination strategy (a net reductive process in which an amino group is installed at a site remote from the original C–C double bond). The protocol was suitable for substrates containing a wide range of functional groups and provided remote chiral amine products with high levels of regio- and enantioselectivity. Sequential amination of substrates containing several carbon-carbon double bonds could be achieved, demonstrating the high chemoselectivity of this process. PMID:26791897

  9. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  10. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    Ammonium borohydride, NH4BH4, has a very high gravimetric (ρm = 24.5 wt% H2) and volumetric (157.3 g·H2/L) hydrogen content and releases 18.4 wt% H2 below 170 °C. However, NH4BH4 is metastable at RT and ambient pressure, with a half-life of ~6 h. The decomposition is strongly exothermic; therefore...... resolution powder X-ray diffraction obtained at synchrotron facilities and will be presented. These ammonium metal borohydrides have high gravimetric hydrogen contents (9.32-22.1 wt % H2), which makes them interesting as hydrogen storage materials....

  11. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  12. Enantioselective Reduction of Citral Isomers in NCR Ene Reductase: Analysis of an Active-Site Mutant Library.

    Science.gov (United States)

    Kress, Nico; Rapp, Johanna; Hauer, Bernhard

    2017-04-18

    A deeper understanding of the >99 % S-selective reduction of both isomers of citral catalyzed by NCR ene reductase was achieved by active-site mutational studies and docking simulation. Though structurally similar, the E/Z isomers of citral showed a significantly varying selectivity response to introduced mutations. Although it was possible to invert (E)-citral reduction enantioselectivity to ee 46 % (R) by introducing mutation W66A, for (Z)-citral it remained ≥88 % (S) for all single-residue variants. Residue 66 seems to act as a lever for opposite binding modes. This was underlined by a W66A-based double-mutant library that enhanced the (E)-citral derived enantioselectivity to 63 % (R) and significantly lowered the S selectivity for (Z)-citral to 44 % (S). Formation of (R)-citronellal from an (E/Z)-citral mixture is a desire in industrial (-)-menthol synthesis. Our findings pave the way for a rational enzyme engineering solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  14. Reaction Engineering of Biocatalytic Enantioselective Reduction: A Case Study for Aliphatic Ketones

    DEFF Research Database (Denmark)

    Leuchs, Susanne; Lima-Ramos, Joana; Greiner, Lasse

    2013-01-01

    Previously, it could be demonstrated, that the monophasic, enzymatic reduction of aliphatic 2-ketones into the corresponding (R)-2-alcohols is an adequate and viable method as carried out in a cascade of two enzyme–membrane reactors (Leuchs, S.; Na’amnieh, S. N.; Greiner, L. Green Chemistry 2013,...

  15. Systematic investigations on the reduction of 4-aryl-4-oxoesters to 1-aryl-1,4-butanediols with methanolic sodium borohydride

    Directory of Open Access Journals (Sweden)

    Subrata Kumar Chaudhuri

    2010-09-01

    Full Text Available 4-Aryl-4-oxoesters undergo facile reduction of both the keto and the ester groups with methanolic NaBH4 at room temperature to yield the corresponding 1-aryl-1,4-butanediols whereas 4-alkyl-4-oxoesters furnish the corresponding 1,4-butanolides via selective reduction of the keto moiety. Results of a detailed and systematic investigation of the reaction are described.

  16. Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems

    Directory of Open Access Journals (Sweden)

    Zhang Bo-Bo

    2012-08-01

    Full Text Available Abstract Background Biocatalytic asymmetric reductions with whole cells can offer high enantioselectivity, environmentally benign processes and energy-effective operations and thus are of great interest. The application of whole cell-mediated bioreduction is often restricted if substrate and product have low water solubility and/or high toxicity to the biocatalyst. Many studies have shown that a biphasic system is often useful in this instance. Hence, we developed efficient biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs, to improve the biocatalytic anti-Prelog enantioselective reduction of acetyltrimethylsilane (ATMS to (R-1-trimethylsilylethanol {(R-1-TMSE}, which is key synthon for a large number of silicon-containing drugs, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst. Results It was found that the substrate ATMS and the product 1-TMSE exerted pronounced toxicity to immobilized Candida parapsilosis CCTCC M203011 cells. The biocompatible water-immiscible ILs can be applied as a substrate reservoir and in situ extractant for the product, thus greatly enhancing the efficiency of the biocatalytic process and the operational stability of the cells as compared to the IL-free aqueous system. Various ILs exerted significant but different effects on the bioreduction and the performances of biocatalysts were closely related to the kinds and combination of cation and anion of ILs. Among all the water-immiscible ILs investigated, the best results were observed in 1-butyl-3-methylimidazolium hexafluorophosphate (C4mim·PF6/buffer biphasic system. Furthermore, it was shown that the optimum substrate concentration, volume ratio of buffer to IL, buffer pH, reaction temperature and shaking rate for the bioreduction were 120 mM, 8/1 (v/v, 6.0, 30°C and 180 r/min, respectively. Under these optimized conditions, the initial reaction rate, the maximum yield and the product e.e. were 8.1

  17. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  18. Ballmilling of metal borohydrides for hydrogen storage

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    of the renewable energy sources [2]. Borohydrides have received great attention as energy carrier due to their high gravimetric content of hydrogen, though unfortunately they are currently not applicable for industrial use due to high thermal stability and poor recycling. The purpose of the investigation...

  19. Enantioselective organocatalytic reduction of β-trifluoromethyl nitroalkenes: an efficient strategy for the synthesis of chiral β-trifluoromethyl amines.

    Science.gov (United States)

    Massolo, Elisabetta; Benaglia, Maurizio; Orlandi, Manuel; Rossi, Sergio; Celentano, Giuseppe

    2015-02-23

    An efficient organocatalytic stereoselective reduction of β-trifluoromethyl-substituted nitroalkenes, mediated by 3,5-dicarboxylic ester-dihydropyridines (Hantzsch ester type), has been successfully developed. A multifunctional thiourea-based (S)-valine derivative was found to be the catalyst of choice, promoting the reaction in up to 97% ee. The methodology has been applied to a wide variety of substrates, leading to the formation of differently substituted precursors of enantiomerically enriched β-trifluoromethyl amines. The mechanism of the reaction and the mode of action of the metal-free catalytic species were computationally investigated; on the basis of DFT transition-state (TS) analysis, a model of stereoselection was also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CATALYTIC ENANTIOSELECTIVE ALLYLIC OXIDATION

    NARCIS (Netherlands)

    Rispens, Minze T.; Zondervan, Charon; Feringa, Bernard

    Several chiral Cu(II)-complexes of cyclic amino acids catalyse the enantioselective allylic oxidation of cyclohexene to cyclohexenyl esters. Cyclohexenyl propionate was obtained in 86% yield with e.e.'s up to 61%.

  1. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. SHORT COMMUNICATION FACILE ENANTIOSELECTIVE ...

    African Journals Online (AJOL)

    FACILE ENANTIOSELECTIVE PALLADIUM CATALYSED TRANSFER. HYDROGENATION OF α-METHYLCINNAMIC ACID IN THE PRESENCE OF. OPTICAL PURE ORGANIC ACIDS. Reginah N. Bwire, Runner R. T. Majinda and Ishmael B. Masesane*. Chemistry Department, University of Botswana, P/Bag UB00704, ...

  3. THE STABILITY AND REVERSIBILITY OF METALLIC BOROHYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Au, M

    2007-07-27

    In effort to develop reversible metallic borohydrides with high hydrogen storage capacity and low dehydriding temperature, several new materials have been synthesized by modifying LiBH{sub 4} with various metal halides and hydrides. The investigation shows that the halide modification effectively reduced the dehydriding temperature through ion exchange interaction. The effective halides are TiCl{sub 3}, TiF{sub 3}, ZnF{sub 2} and AlF{sub 3}. The material LiBH{sub 4}+0.1TiF{sub 3} desorbs 3.5wt% and 8.5wt% hydrogen at 150 C and 450 C respectively. It re-absorbed 6wt% hydrogen at 500 C and 70 bar after dehydrogenation. The XRD of the rehydrided samples confirmed the formation of LiBH{sub 4}. It indicates that the materials are reversible at the conditions given. However, a number of other halides: MgF{sub 2}, MgCl{sub 2}, CaCl{sub 2}, SrCl{sub 2} and FeCl{sub 3}, did not reduce dehydriding temperature of LiBH{sub 4} significantly. TGA-RGA analysis indicated that some halide modified lithium borohydrides such as LiBH{sub 4}+0.1ZnF{sub 2} evolved diborane during dehydrogenation, but some did not such as LiBH{sub 4}+0.1TiCl{sub 3}. The formation of diborane caused unrecoverable capacity loss resulting in irreversibility. It is suggested that the lithium borohydrides modified by the halides containing the metals that can not form metal borides with boron are likely to evolve diborane during dehydriding. It was discovered that halide modification reduces sensitivity of LiBH{sub 4}. The materials such as LiBH{sub 4}+0.1TiCl{sub 3} and LiBH{sub 4}+0.5TiCl{sub 3} can be handled in open air without visible reaction.

  4. Quaternary ammonium borohydride adsorption in mesoporous silicate MCM-48

    Energy Technology Data Exchange (ETDEWEB)

    Wolverton, Michael J [Los Alamos National Laboratory; Daemen, Luke L [Los Alamos National Laboratory; Hartl, Monika A [Los Alamos National Laboratory

    2010-01-01

    Inorganic borohydrides have a high gravimetric hydrogen density but release H2 only under energetically unfavorable conditions. Surface chemistry may help in lowering thermodynamic barriers, but inclusion of inorganic borohydrides in porous silica materials has proved hitherto difficult or impossible. We show that borohydrides with a large organic cation are readily adsorbed inside mesoporous silicates, particularly after surface treatment. Thermal analysis reveals that the decomposition thermodynamics of tetraalkylammonium borohydrides are substantially affected by inclusion in MCM-48. Inelastic neutron scattering (INS) data show that the compounds adsorb on the silica surface. Evidence of pore loading is supplemented by DSC/TGA, XRD, FTIR, and BET isotherm measurements. Mass spectrometry shows significant hydrogen release at lower temperature from adsorbed borohydrides in comparison with the bulk borohydrides. INS data measured for partially decomposed samples indicates that the decomposition of the cation and anion is likely simultaneous. Additionally, these data confirm the formation of Si-H bonds on the silica surface upon decomposition of adsorbed tetramethylammonium borohydride.

  5. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. NMR study of borohydrides for hydrogen storage applications

    Science.gov (United States)

    Shane, David Timothy

    There is great interest today in developing a hydrogen economy, and hydrogen powered vehicles to replace vehicles powered by fossil fuels. This presents many challenges for researchers, and one of the biggest is developing materials that could be used to store the hydrogen on-vehicle. We used nuclear magnetic resonance to study the atomic motions in many hydrogen storage materials, including sodium magnesium hydride, lithium borohydride, and magnesium borohydride. We also examined the effects of nanoscaffold incorporation on the latter two materials.

  7. Enantioselective Hydroformylation of Aniline Derivatives

    Science.gov (United States)

    Joe, Candice L.; Tan, Kian L.

    2011-01-01

    We have developed a ligand that reversibly binds to aniline substrates allowing for the control of regioselectivity and enantioselectivity in hydroformylation. In this paper we address how the electronics of the aniline ring affect both binding of the substrate to the ligand and the enantioselectivity in this reaction. PMID:21842847

  8. Oscillatory instabilities in the electrooxidation of borohydride on platinum

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Eduardo G.; Varela, Hamilton, E-mail: varela@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2014-03-15

    The borohydride ion has been pointed as a promising alternative fuel. Most of the investigation on its electrochemistry is devoted to the electrocatalytic aspects of its electrooxidation on platinum and gold surfaces. Besides the known kinetic limitations and intricate mechanism, our Group has recently found the occurrence of two regions of bi-stability and autocatalysis in the electrode potential during the open circuit interaction of borohydride and oxidized platinum surfaces. Following this previous contribution, the occurrence of more complicated phenomena is here presented: namely the presence of electrochemical oscillations during the electrooxidation of borohydride on platinum in alkaline media. Current oscillations were found to be associated to two distinct instability windows and characterized in the resistance-potential parameter plane. The dynamic features of such oscillations suggest the existence of distinct mechanisms according to the potential region. Previously published results obtained under non-oscillatory regime were used to give some hints on the surface chemistry behind the observed dynamics. (author)

  9. Metal borohydrides and derivatives - synthesis, structure and properties

    DEFF Research Database (Denmark)

    Paskevicius, Mark; Jepsen, Lars Haahr; Schouwink, Pascal

    2017-01-01

    review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery...... within the energy storage field due to their extremely high hydrogen density and possible uses in batteries as solid state ion conductors. Recently, new types of physical properties have been explored in lanthanide-bearing borohydrides related to solid state phosphors and magnetic refrigeration. Two...... of new metal borohydrides with tailored properties towards the rational design of novel functional materials. This review also demonstrates that there is still room for discovering new combinations of light elements including boron and hydrogen, leading to complex hydrides with extreme flexibility...

  10. Enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven.

    Science.gov (United States)

    Siegel, Dustin S; Piizzi, Grazia; Piersanti, Giovanni; Movassaghi, Mohammad

    2009-12-18

    We report our full account of the enantioselective total synthesis of (-)-acylfulvene (1) and (-)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor agents. We discuss (1) the application of an Evans Cu-catalyzed aldol addition reaction using a strained cyclopropyl ketenethioacetal, (2) an efficient enyne ring-closing metathesis cascade reaction in a challenging setting, (3) the reagent IPNBSH for a late-stage reductive allylic transposition reaction, and (4) the final RCM/dehydrogenation sequence for the formation of (-)-acylfulvene (1) and (-)-irofulven (2).

  11. Sodium borohydride reduction of aromatic carboxylic acids via ...

    Indian Academy of Sciences (India)

    Unknown

    C J, Jung S H, Kishi Y, Matelich M C, Ireland R E,. Armstrong J D III, Lebreton J, Meissner R S and. Rizzacasa M A 1993 J. Am. Chem. Soc. 115 7152. 12. Brown H C and Subba Rao B C 1955 J. Am. Chem. Soc. 77 3164. 13. Guida W C, Entreken E E and Guida A R 1984 J. Org. Chem. 49 3024. 14. Daluge S M, Martin M T, ...

  12. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  13. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    Unknown

    initial formation of an acid-base complex followed by a Michael reaction and then an enantioselective cyclization. Such enantioselective cyclizations probably occur on the surface of S-proline crystals. Keywords. Enantioselective annulation; cyclization; S-proline; S-phenylalanine; d-camphorsulphonic acid. 1. Introduction.

  14. Dynamic kinetic asymmetric ring-opening/reductive amination sequence of racemic nitroepoxides with chiral amines: enantioselective synthesis of chiral vicinal diamines.

    Science.gov (United States)

    Agut, Juan; Vidal, Andreu; Rodríguez, Santiago; González, Florenci V

    2013-06-07

    We report a highly diastereoselective synthesis of vicinal diamines by the treatment of nitroepoxides with primary amines and then a reducing agent. When using a chiral primary amine, racemic nitroepoxides are transformed into chiral diamines as a single enantiomers (>95:5 er) through a dynamic kinetic asymmetric transformation (DYKAT). The overall process is a one-pot procedure combining the exposure of nitroepoxides to chiral amines to afford diastereomeric mixtures of aminoimines and subsequent stereoselective imine reduction.

  15. Reduções enantiosseletivas de cetonas utilizando-se fermento de pão Enantioselective reductions of ketones using baker's yeast

    Directory of Open Access Journals (Sweden)

    José Augusto R. Rodrigues

    2001-12-01

    Full Text Available Baker's yeast has been successful employed to reduce carbonyl compounds carrying appropriated substituents at distances under the electronic influence of the keto group. High yields and enantiomeric excess (ee were obtained with 1,2-alkanedione, 1,2-alkanedione (2-O-methyloxime and 1,3-alkanedione. Potential chiral building blocks were obtained and applied for stereoselective synthesis of valuable compounds. Evidence for a free radical chain process was obtained with baker's yeast reduction of a-iodoacetophenone using radical inhibitors.

  16. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    of the rare-earth metal borohydrides are found, all crystallizing in the α- and β-Y(BH4)3 structure (except for La(BH4)3). The synthesis pathway start with hydrogenation of the metal. The formed metal hydride is then activated by high energy ball milling to increase reactivity. The next step involves solvent...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X......-ray diffraction. Rehydrogenation properties are investigated for Tb(BH4)3 and Lu(BH4)3 using in-house PCT equipment. The decomposition pathway of the rare-earth metal borohydrides seems similar, but Lu(BH4)3 stands out by decomposing in two steps, in contrast to the one-step decomposition that are observed...

  17. Method of generating hydrogen gas from sodium borohydride

    Science.gov (United States)

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  18. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    Science.gov (United States)

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  19. Cyclopalladated complexes in enantioselective catalysis

    Science.gov (United States)

    Dunina, Valeria V.; Gorunova, Olga N.; Zykov, P. A.; Kochetkov, Konstantin A.

    2011-01-01

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  20. Improving the direct borohydride fuel cell performance with thiourea as the additive in the sodium borohydride solution

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Cenk; Sarac, Halil Ibrahim [Department of Mechanical Engineering, Kocaeli University, 41380 Kocaeli (Turkey); Boyaci San, Fatma Gul [TUeBiTAK Marmara Research Centre, Energy Institute, 41470 Gebze, Kocaeli (Turkey)

    2010-08-15

    In this study, the effects of the additive thiourea (TU) have been investigated under steady state/steady-flow and uniform state/uniform-flow systems with the aim of minimizing the anodic hydrogen evolution on Pd in order to increase the performance of a direct borohydride fuel cell. The fuel cell has consisted of Pd/C anode, Pt/C cathode and Na{sup +} form Nafion membrane as the electrolyte. There has been a small improvement in peak power density and fuel utilization ratio by addition of TU (1.6 x 10{sup -3} M) into the sodium borohydride solution; the peak power densities of 14.4 and 15.1 mW cm{sup -2}, and fuel utilization ratios of 21.6% and 23.2% have been obtained without and with TU, respectively. (author)

  1. A composite of borohydride and super absorbent polymer for hydrogen generation

    Science.gov (United States)

    Li, Z. P.; Liu, B. H.; Liu, F. F.; Xu, D.

    To develop a hydrogen source for underwater applications, a composite of sodium borohydride and super absorbent polymer (SAP) is prepared by ball milling sodium borohydride powder with SAP powder, and by dehydrating an alkaline borohydride gel. When sodium polyacrylate (NaPAA) is used as the SAP, the resulting composite exhibits a high rate of borohydride hydrolysis for hydrogen generation. A mechanism of hydrogen evolution from the NaBH 4-NaPAA composite is suggested based on structure analysis by X-ray diffraction and scanning electron microscopy. The effects of water and NiCl 2 content in the precursor solution on the hydrogen evolution behavior are investigated and discussed.

  2. Utilization of sodium borohydride (NaBH4) in kraft pulping process.

    Science.gov (United States)

    Istek, Abdullah; Gonteki, Erdem

    2009-11-01

    Aim of this study is to investigate the effect of adding sodium borohydride (NaBH4) in kraft pulping. First of all, six kraft cooks were carried out for varying active alkali and sulfidity. Then, kraft methods for K1 and K6 cooks were modified by adding 1, 2 and 3% NaBH4. The results indicated that modifying kraft method (K1) by adding 3% NaBH4 (KB13) resulted in 9.97% (relative percentage) yield increase and 10.1% (relative percentage) kappa reduction. Although the mechanical properties of NaBH4 modified pulps were lower compared to the kraft pulps, NaBH4 modified pulps were much brighter.

  3. Enantioselective Thiourea-Catalyzed Cationic Polycyclizations

    Science.gov (United States)

    Knowles, Robert R.; Lin, Song

    2010-01-01

    A new thiourea catalyst is reported for the enantioselective cationic polycyclization of hydroxylactams. Both the yield and enantioselectivity of this transformation were found to vary strongly with the identity of a single aromatic residue on a common catalyst framework, with more expansive and polarizable arenes proving optimal. Evidence is presented for a mechanism in which stabilizing cation-π interactions are a principal determinant of enantioselectivity. PMID:20369901

  4. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  5. The direct borohydride fuel cell for UUV propulsion power

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, J. Barry; Rose, Abigail; Pointon, Kevin D.; Browning, Darren J. [Physical Sciences, Dstl Porton Down, Salisbury SP4 0QR (United Kingdom); Lovell, Keith V.; Waring, Susan C.; Horsfall, Jackie A. [Department of Materials & amp; Medical Sciences, Cranfield University, Shrivenham Campus, Swindon SN6 8LA (United Kingdom)

    2006-11-22

    The development of proton exchange membrane and direct methanol fuel cell stacks is now well advanced for many applications. However, the significant performance advantages that these have over the battery for small to moderate scale applications will not be realised until a credible fuel source has been developed. The deficiencies of the PEMFC and DMFC can be eliminated by cation or anion-conducting membranes incorporated into a direct sodium borohydride fuel cell (DSBFC). The characterisation of membranes for the DSBFC is discussed. Novel membranes have been prepared which have resistance of an equal magnitude to the commercially available Nafion{sup R} membrane. (author)

  6. Seventh Topical Report on The Reactions of Borohydrides and Aluminohydrides with Wolfram (VI) Halides and Eighth Topical Report on Preparation and Properties of Thorium Borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Bragdon, Robert W.

    1950-11-08

    (1) A comprehensive investigation of methods for the preparation of hydrides of wolfram has been made. A wolfram (IV) hydride-aluminum hydride mixture has been prepared and its N{sub H} and thermal stability determined for its evaluation as a nuclear radiation shield material. Aluminum borohydride has been shown to reduce wolfram (VI) chloride to a subchloride. The alkali borohydrides also reduce hexavalent wolfram, but in no case has a wolfram borohydride been isolated. (2) An investigation of the chemical and physical properties of thorium borohydride, which pertain to its use as alow-temperature nuclear radiatin shield, is presented. Values are taken from the literature when available and are supplemented where necessary by our experimental investigation.

  7. Separate Determination of Borohydride, Borate, Hydroxide, and Carbonate in the Borohydride Fuel Cell by Acid-Base and Iodometric Potentiometric Titration

    OpenAIRE

    A. V. Churikov; S. L. Shmakov; V. O. Romanova; K. V. Zapsis; A. V. Ushakov; A. V. Ivanishchev; M. A. Churikov

    2014-01-01

    A methodology for quantitative chemical analysis of the complex “borohydride-borate-hydroxide-carbonate-water” mixtures used as fuel in the borohydride fuel cell was developed and optimized. The methodology includes the combined usage of the acid-base and iodometric titration methods. The acid-base titration method, which simultaneously uses the technique of differentiation and computer simulation of titration curves, allows one to determine the contents of hydroxide (alkali), carbonate, and ...

  8. Enantioselective Transport by a Steroidal Guanidinium Receptor

    NARCIS (Netherlands)

    Baragaña, Beatriz; Blackburn, Adrian G.; Breccia, Perla; Davis, Anthony P.; Mendoza, Javier de; Padrón-Carrillo, José M.; Prados, Pilar; Riedner, Jens; Vries, Johannes G. de

    2002-01-01

    The cationic steroidal receptors 9 and 11 have been synthesized from cholic acid 3. Receptor 9 extracts N-acetyl-α-amino acids from aqueous media into chloroform with enantioselectivities (L:D) of 7-10:1. The lipophilic variant 11 has been employed for the enantioselective transport of

  9. Tertiary Aminourea-Catalyzed Enantioselective Iodolactonization

    Science.gov (United States)

    Veitch, Gemma E.

    2010-01-01

    Binding the anion: A highly enantioselective iodolactonization of 5-hexenoic acids has been achieved using a tertiary aminourea-catalyst. The use of catalytic iodine in this process is critical to enhancing both the reactivity and enantioselectivity of the stoichiometric I+source.The mechanism is proposed to involve binding of an iodonium imidate intermediate by the H-bond donor catalyst. PMID:20803601

  10. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    The enantioselective cyclization of the prochiral cyclic substrates 1 to 7 and 26, can be carried out in the neat using -proline as catalyst. The substrates 18 to 22 and 27 could not be cyclized with S-proline but could be cyclized with a mixture of -phenylalanine and -camphorsulphonic acid. The enantioselective ...

  11. In situ infrared (FTIR) study of the borohydride oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Concha, B. Molina; Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie, des Materiaux et des Interfaces (LEPMI), UMR 5631 CNRS/Grenoble-INP/UJF, 1130 Rue de la Piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); Coutanceau, C.; Hahn, F. [Laboratoire de Catalyse en Chimie Organique (LACCO), UMR 6503 CNRS, Universite de Poitiers, 40 Av. du, Recteur Pineau, 86000 Poitiers (France)

    2009-01-15

    The direct borohydride fuel cell (DBFC) is an interesting alternative for the electrochemical power generation at lower temperatures due to its high anode theoretical specific capacity (5 A h g{sup -1}). However, the borohydride oxidation reaction (BOR) is a very complex eight-electron reaction, influenced by the nature of the electrode material (catalytic or not with respect to BH{sub 4}{sup -} hydrolysis), the [BH{sub 4}{sup -}][OH{sup -}] ratio and the temperature. In order to understand the BOR mechanism, we performed in situ infrared reflectance spectroscopy measurements (SPAIRS technique) in 1 M NaOH/1 M NaBH{sub 4} with the aim to study intermediate reactions occurring on a gold electrode (a poor BH{sub 4}{sup -} hydrolysis catalyst). We monitored several bands in B-H (1184 cm{sup -1}) and B-O bond regions (1326 and 1415 cm{sup -1}), appearing sequentially with increasing electrode polarisation. Thanks to these experimental findings, we propose possible initial elementary steps for the BOR. (author)

  12. Life time test in direct borohydride fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Jamard, Romain [Commissariat a l' Energie Atomique (CEA), LITEN-DTNM-LCH, 17 av. des martyrs, 38054 Grenoble Cedex 9 (France); Centre National de la Recherche Scientifique (CNRS), Laboratoire de Catalyse en Chimie Organique LACCO UMR6503, 40 av. du Recteur Pineau, 86022 Poitiers (France); Salomon, Jeremie; Martinent-Beaumont, Audrey [Commissariat a l' Energie Atomique (CEA), LITEN-DTNM-LCH, 17 av. des martyrs, 38054 Grenoble Cedex 9 (France); Coutanceau, Christophe [Centre National de la Recherche Scientifique (CNRS), Laboratoire de Catalyse en Chimie Organique LACCO UMR6503, 40 av. du Recteur Pineau, 86022 Poitiers (France)

    2009-09-05

    The electric performances of direct borohydride fuel cells (DBFCs) are evaluated in terms of power density and life time with respect to the NaBH{sub 4} concentration. A DBFC constituted of an anionic membrane, a 0.6 mg{sub Pt} cm{sup -2} anode and a commercial non-platinum based cathode led to performances as high as 200 mW cm{sup -2} at room temperature and with natural convection of air. Electrochemical life time test at 0.55 mA cm{sup -2} with a 5 M NaBH{sub 4}/1 M NaOH solution shows a voltage diminution of 1 mV h{sup -1} and a drastic drop of performances after 250 h. The life time is twice longer with 2 M NaBH{sub 4}/1 M NaOH solution (450 h) and the voltage decrease is 0.5 mV h{sup -1}. Analyses of the components after life time tests indicate that voltage loss is mainly due to the degradation of the cathode performance. Crystallisation of carbonate and borate is observed at the cathode side, although the anionic membrane displays low permeability to borohydride. (author)

  13. Investigation of the characteristics of a stacked direct borohydride fuel cell for portable applications

    Science.gov (United States)

    Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong

    To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.

  14. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    DEFF Research Database (Denmark)

    Singh, Vishvanath P.; Badiger, Nagappa M.; Gerward, Leif

    2016-01-01

    at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable......Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting...... combination of low-and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors....

  15. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  16. Recent Progress in Metal Borohydrides for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Craig M. Jensen

    2011-01-01

    Full Text Available The prerequisite for widespread use of hydrogen as an energy carrier is the development of new materials that can safely store it at high gravimetric and volumetric densities. Metal borohydrides M(BH4n (n is the valence of metal M, in particular, have high hydrogen density, and are therefore regarded as one such potential hydrogen storage material. For fuel cell vehicles, the goal for on-board storage systems is to achieve reversible store at high density but moderate temperature and hydrogen pressure. To this end, a large amount of effort has been devoted to improvements in their thermodynamic and kinetic aspects. This review provides an overview of recent research activity on various M(BH4n, with a focus on the fundamental dehydrogenation and rehydrogenation properties and on providing guidance for material design in terms of tailoring thermodynamics and promoting kinetics for hydrogen storage.

  17. Metal Borohydrides synthesized from metal borides and metal hydrides

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    Aarhus C, Denmark email: gallafogh@hotmail.com / sanna-sommer@hotmail.com Magnesium boride, MgB2, ball milled with MH (M = Li, Na, Ca) followed by hydrogenation under high hydrogen pressure, readily forms the corresponding metal borohydrides, M(BH4)x (M = Li, Na, Ca) and MgH2 according to reaction scheme...... crystallization processes. In situ SR-PXD of the systems was the most promising, revealing the formation of β-Ca(BH4)2 similar to the the MgB2 – CaH2 system [5]. This connection stems from the similarities in the crystal structure of AlB2 and MgB2. MgB2 has also shown ability to form LiBH4 and NaBH4. However...

  18. Reductive decarboxylation of bicyclic prolinic systems: a new approach to the enantioselective synthesis of the Geissman-Waiss lactone. X-ray structure determination of a key lactone intermediate

    Directory of Open Access Journals (Sweden)

    Ambrósio João Carlos L.

    2003-01-01

    Full Text Available Two concise and enantioselective syntheses of the necine base precursors (1R,5R-N-Cbz and N-Boc-2-oxa-6-azabicyclo[3.3.0]octan-3-ones (Geissman-Waiss lactones were carried out from two enantiomerically pure endocyclic five-membered enecarbamates with overall yields of 23% and 26%, respectively. The synthetic strategy made use of a highly effective and stereoselective [2+2]cycloaddition of enantiomerically pure endocyclic enecarbamates with dichloroketene, as well as an efficient decarboxylation step of a bicyclic alpha-amino acid employing Boger's acyl selenide protocol employing tributyltin hydride. Interesting aspects concerning the regiochemical outcome of Baeyer-Villiger oxidations of bicyclic cyclobutanones are also reported, in which the usual stereoelectronic bias of Baeyer-Villiger oxidation seems to be counterbalanced by steric effects on the putative Criegee intermediate.

  19. Concise enantioselective synthesis of duloxetine via direct catalytic asymmetric aldol reaction of thioamide.

    Science.gov (United States)

    Suzuki, Yuta; Iwata, Mitsutaka; Yazaki, Ryo; Kumagai, Naoya; Shibasaki, Masakatsu

    2012-05-04

    Direct catalytic asymmetric aldol reaction of thioamide offers a new entry to the concise enantioselective synthesis of duloxetine. The direct aldol protocol was scalable (>20 g) to afford the aldol product in 92% ee after LiAlH(4) reduction, and 84% of the chiral ligand was recovered after recrystallization. The following four steps of transformation delivered duloxetine.

  20. Enantioselective environmental toxicology of chiral pesticides.

    Science.gov (United States)

    Ye, Jing; Zhao, Meirong; Niu, Lili; Liu, Weiping

    2015-03-16

    The enantioselective environmental toxic effect of chiral pesticides is becoming more important. As the industry develops, increasing numbers of chiral insecticides and herbicides will be introduced into use, potentially posing toxic effects on nontarget living beings. Chiral pesticides, including herbicides such as acylanilides, phenoxypropanoic acids, and imidazolinones, and insecticides such as synthetic pyrethroids, organophosphates, and DDT often behave enantioselectively during agricultural use. These compounds also pose unpredictable enantioselective ecological threats to nontarget living beings and/or humans, affecting the food chain and entire ecosystems. Thus, to investigate the enantioselective toxic effects of chiral insecticides and herbicides is necessary during environmental protection. The environmental toxicology of chiral pesticides, especially the findings obtained from studies conducted in our laboratory during the past 10 years, is reviewed.

  1. Enantioselective Addition of Grignard Reagents to Aldehydes

    Directory of Open Access Journals (Sweden)

    Norma Nudelman

    2000-03-01

    Full Text Available The addition of Grignard reagents to aldehydes in the presence of chiral aminoalcohols shows a moderate enantioselectivity. The study carried out with a series of ligands allows the correlation between the structural characteristics and their reactivity.

  2. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    Science.gov (United States)

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  3. Separate Determination of Borohydride, Borate, Hydroxide, and Carbonate in the Borohydride Fuel Cell by Acid-Base and Iodometric Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    A. V. Churikov

    2014-01-01

    Full Text Available A methodology for quantitative chemical analysis of the complex “borohydride-borate-hydroxide-carbonate-water” mixtures used as fuel in the borohydride fuel cell was developed and optimized. The methodology includes the combined usage of the acid-base and iodometric titration methods. The acid-base titration method, which simultaneously uses the technique of differentiation and computer simulation of titration curves, allows one to determine the contents of hydroxide (alkali, carbonate, and total “borate + borohydride” content. The iodometric titration method allows one to selectively determine borohydride, so the content of each of OH-, BH4-, BO2-, and CO32- anions in the fuel becomes estimated. The average determination error depends on the number and ratio of compounds in a mixture. Specific details of the analysis of various fuel mixtures are discussed.

  4. Enantioselective decarboxylative chlorination of ?-ketocarboxylic acids

    OpenAIRE

    Shibatomi, Kazutaka; Kitahara, Kazumasa; Sasaki, Nozomi; Kawasaki, Yohei; Fujisawa, Ikuhide; Iwasa, Seiji

    2017-01-01

    Stereoselective halogenation is a highly useful organic transformation for multistep syntheses because the resulting chiral organohalides can serve as precursors for various medicinally relevant derivatives. Even though decarboxylative halogenation of aliphatic carboxylic acids is a useful and fundamental synthetic method for the preparation of a variety of organohalides, an enantioselective version of this reaction has not been reported. Here we report a highly enantioselective decarboxylati...

  5. Spontaneous mirror symmetry breaking via enantioselective autocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Avetisov, V.A. [N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, ul.Kossvgina 4, 11-7977 Moscow (Russia)

    1996-07-01

    The conditions for spontaneous generation of optically active product under autocatalytic type reactions is considered on the base of the general kinetic model of enantioselective autocatalytic stages. It is shown that the spontaneous generation of optical activity mostly depends on the enantioselectivity of catalytic transformations. The properties of autocatalytic reactions, which are needed for an experiment, as well as the necessary chemical conditions, are discussed. {copyright} {ital 1996 American Institute of Physics.}

  6. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    Science.gov (United States)

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  7. Preparation and spectroscopic properties of three new actinide (IV) borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.H.

    1979-12-01

    New tetrakis-borohydrides of Pa, Np, and Pu have been synthesized. The crystal structure of Pa(BH/sub 4/)/sub 4/ is isostructural to those of Th(BH/sub 4/)/sub 4/ and U(BH/sub 4/)/sub 4/ and is of the tetragonal space group P4/sub 3/2/sub 1/2, where a = 7.53 (3) A, c = 13.22 (5) A, and Z = 4. Its calculated density is 2.57 gm-cm/sup -3/. Pa(BH/sub 4/)/sub 4/ is an orange, air-sensitive compound which is soluble in THF and sublimes at 55/sup 0/ in vacuum. Due to the thermal instabilities of Np(BH/sub 4/)/sub 4/ and Pu(BH/sub 4/)/sub 4/, their reaction temperatures are maintained at 0/sup 0/ and the compounds must be stored at low temperature. Low temperature x-ray diffraction studies have shown that Np(BH/sub 4/)/sub 4/ and Pu(BH/sub 4/)/sub 4/ are isomorphous and exhibit a unique crystal structure which is very similar to that of Zr(BH/sub 4/)/sub 4/. The details of this new structure were determined by single crystal x-ray diffraction methods at 130K for Np(BH/sub 4/)/sub 4/. Neptunium borohydride is monomeric and crystallizes into the tetragonal space group P4/sub 2//nmc, where a = 8.559 (9) A, c = 6.017 (9) A, and Z = 2. The 12 coordinate Np atom is triply hydrogen-bridged bonded to four terminal BH/sub 4//sup -/ groups disposed tetrahedrally around it giving Np-B distances of 2.46 (3) A. Solid-state, low temperature infrared (25-7400 cm/sup -1/) and Raman (100-2600 cm/sup -1/) spectra were taken for Np(BH/sub 4/)/sub 4/ and Np(BD/sub 4/)/sub 4/. A normal coordinate analysis was carried out using the assigned fundamental frequencies obtained from the spectra and determined a reasonable set of force constants and calculated values for the frequencies of the unobserved T/sub 1/ modes. Based on results of the analysis, isotopic impurity, overtone, and combination bands were identified in the infrared spectra.

  8. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal cat...

  9. Rotating disk electrode study of borohydride oxidation in a molten eutectic electrolyte and advancements in the intermediate temperature borohydride battery

    Science.gov (United States)

    Wang, Andrew; Gyenge, Előd L.

    2017-08-01

    The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.

  10. New phosphine-diamine and phosphine-amino-alcohol tridentate ligands for ruthenium catalysed enantioselective hydrogenation of ketones and a concise lactone synthesis enabled by asymmetric reduction of cyano-ketones

    Directory of Open Access Journals (Sweden)

    Fuentes José A

    2012-12-01

    Full Text Available Abstract Enantioselective hydrogenation of ketones is a key reaction in organic chemistry. In the past, we have attempted to deal with some unsolved challenges in this arena by introducing chiral tridentate phosphine-diamine/Ru catalysts. New catalysts and new applications are presented here, including the synthesis of phosphine-amino-alcohol P,N,OH ligands derived from (R,S-1-amino-2-indanol, (S,S-1-amino-2-indanol and a new chiral P,N,N ligand derived from (R,R-1,2-diphenylethylenediamine. Ruthenium pre-catalysts of type [RuCl2(L(DMSO] were isolated and then examined in the hydrogenation of ketones. While the new P,N,OH ligand based catalysts are poor, the new P,N,N system gives up to 98% e.e. on substrates that do not react at all with most catalysts. A preliminary attempt at realising a new delta lactone synthesis by organocatalytic Michael addition between acetophenone and acrylonitrile, followed by asymmetric hydrogenation of the nitrile functionalised ketone is challenging in part due to the Michael addition chemistry, but also since Noyori pressure hydrogenation catalysts gave massively reduced reactivity relative to their performance for other acetophenone derivatives. The Ru phosphine-diamine system allowed quantitative conversion and around 50% e.e. The product can be converted into a delta lactone by treatment with KOH with complete retention of enantiomeric excess. This approach potentially offers access to this class of chiral molecules in three steps from the extremely cheap building blocks acrylonitrile and methyl-ketones; we encourage researchers to improve on our efforts in this potentially useful but currently flawed process.

  11. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  12. Enantioselective Esterification of Ibuprofen under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Dantong Zhao

    2013-05-01

    Full Text Available Enantioselective esterification of ibuprofen has been successfully carried out in an organic solvent catalyzed by recombinant APE 1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1. Here we used microwave irradiation (MW as the mode of heating to improve the enzyme performance. Under the optimum conditions, the enzyme activity of APE 1547 was 4.16 μmol/mg/h and the enantioselectivity (E value was 52.9. Compared with conventional heating, the enzyme activity and the enantioselectivity were increased about 21.9-fold and 1.4-fold, respectively. The results also indicated that APE 1547 can maintain 95% of its activity even after being used five times, suggesting that the enzyme is stable under low power MW conditions.

  13. Reação da cânfora com boroidreto de sódio: uma estratégia para o estudo da estereoquímica da reação de redução Reaction of camphor with sodium borohydride: a strategy to introduce the stereochemical issues of a reduction reaction

    Directory of Open Access Journals (Sweden)

    Péricles B. Alves

    2010-01-01

    Full Text Available Reduction of camphor to a mixture of borneol and isoborneol was performed using NaBH4 as the reducing agent under suitable conditions. Although more effective reduction was accomplished using toxic methanol, an alternative non-toxic ethanolic system is described. This experiment is important to introduce undergraduate students in reductive procedures, and can be used to show details on stereoselective procedures on carbonyl moieties (facial diastereoselectivity, Bürgi-Dunitz trajectory, diastereomeric excess.

  14. Enantioselective Total Synthesis of Secalonic Acid E.

    Science.gov (United States)

    Ganapathy, Dhandapani; Reiner, Johannes R; Löffler, Lorenz E; Ma, Ling; Gnanaprakasam, Boopathy; Niepötter, Benedikt; Koehne, Ingo; Tietze, Lutz F

    2015-11-16

    The first enantioselective synthesis of a secalonic acid containing a dimeric tetrahydroxanthenone skeleton is described, using a Wacker-type cyclization of a methoxyphenolic compound to form a chiral chroman with a quaternary carbon stereogenic center with >99% ee. Further steps are a Sharpless dihydroxylation and a Dieckmann condensation to give a tetrahydroxanthenone. A late-stage one-pot palladium-catalyzed Suzuki-dimerization reaction leads to the 2,2'-biphenol linkage to complete the enantioselective total synthesis of secalonic acid E in 18 steps with 8% overall yield. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    Science.gov (United States)

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel.

  16. Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes - experimental and modelling insights

    Science.gov (United States)

    Olu, Pierre-Yves; Bonnefont, Antoine; Braesch, Guillaume; Martin, Vincent; Savinova, Elena R.; Chatenet, Marian

    2018-01-01

    The Borohydride Oxidation Reaction (BOR), the anode reaction in a Direct borohydride fuel cell (DBFC), is complex and still poorly understood, which impedes the development and deployment of the DBFC technology. In particular, no practical electrocatalyst is capable to prevent gaseous hydrogen generation and escape from its anode upon operation, which lowers the fuel-efficiency of the DBFC and raises safety issues in operation. The nature of the anode electrocatalysts strongly influences the hydrogen escape characteristics of the DBFC, which demonstrates how important it is to isolate the BOR mechanism in conditions relevant to DBFC operation. In this paper, from a selected literature review and BOR experiments performed in differential electrochemical mass spectrometry (DEMS) in a wide range of NaBH4 concentration (5-500 mM), a microkinetic model of the BOR for both Pt and Au surfaces is proposed; this model takes into account the hydrogen generation and escape.

  17. Optimization of enantioselective production of chiral epichlorohydrin ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Tech. 12: 225-228. Choi WJ, Lee EY, Yoon SJ, Yang ST, Choi CY (1999). Biocatalytic production of chiral epichlorohydrin in organic solvents. J. Biosci. Bioeng. 88: 339-341. De Vries EJ, Janssen DB (2003).

  18. An enantioselective artificial metallo-hydratase

    NARCIS (Netherlands)

    Bos, Jeffrey; Garcia-Herraiz, Ana; Roelfes, Gerard

    2013-01-01

    Direct addition of water to alkenes to generate important chiral alcohols as key motif in a variety of natural products still remains a challenge in organic chemistry. Here, we report the first enantioselective artificial metallo-hydratase, based on the transcription factor LmrR, which catalyses the

  19. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.

    2011-06-10

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Catalytic enantioselective conjugate addition with Grignard reagents

    NARCIS (Netherlands)

    Lopez, Fernando; Minnaard, Adriaan J.; Feringa, Ben L.

    In this Account, recent advances in catalytic asymmetric conjugate addition of Grignard reagents are discussed. Synthetic methodology to perform highly enantioselective Cu-catalyzed conjugate addition of Grignard reagents to cyclic enones with ee's up to 96% was reported in 2004 from our

  1. Thiourea-Catalyzed Enantioselective Cyanosilylation of Ketones

    Science.gov (United States)

    Fuerst, Douglas E.; Jacobsen, Eric N.

    2011-01-01

    The new chiral amino thiourea catalyst 3d promotes the highly enantioselective cyanosilylation of a wide variety of ketones. The hindered tertiary amine substituent plays a crucial role both with regard to stereoinduction and reactivity, suggesting a cooperative mechanism involving electrophile activation by thiourea and nucleophile activation by the amine. PMID:15969569

  2. Directed evolution of an enantioselective lipase

    NARCIS (Netherlands)

    Liebeton, Klaus; Zonta, Albin; Schimossek, Klaus; Nardini, Marco; Lang, Dietmar; Dijkstra, Bauke W.; Reetz, Manfred T.; Jaeger, Karl-Erich

    Background: The biocatalytic production of enantiopure compounds is of steadily increasing importance to the chemical and biotechnological industry. In most cases, however, it is impossible to identify an enzyme that possesses the desired enantioselectivity. Therefore, there is a strong need to

  3. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines.

    Science.gov (United States)

    Sugiono, Erli; Rueping, Magnus

    2013-01-01

    A continuous-flow asymmetric organocatalytic photocyclization-transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  4. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines

    Directory of Open Access Journals (Sweden)

    Erli Sugiono

    2013-11-01

    Full Text Available A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  5. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride

    Science.gov (United States)

    Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.

    2017-01-01

    In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…

  6. Hydrogen rotational and translational diffusion in calcium borohydride from quasielastic neutron scattering and DFT

    DEFF Research Database (Denmark)

    Blanchard, Didier; Riktor, M.D.; Maronsson, Jon Bergmann

    2010-01-01

    Hydrogen dynamics in crystalline calcium borohydride can be initiated by long-range diffusion or localized motion such as rotations, librations, and vibrations. Herein, the rotational and translational diffusion were studied by quasielastic neutron scattering (QENS) by using two instruments with ...

  7. The Concept about the Regeneration of Spent Borohydrides and Used Catalysts from Green Electricity

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Liu

    2015-06-01

    Full Text Available Currently, the Brown-Schlesinger process is still regarded as the most common and mature method for the commercial production of sodium borohydride (NaBH4. However, the metallic sodium, currently produced from the electrolysis of molten NaCl that is mass-produced by evaporation of seawater or brine, is probably the most costly raw material. Recently, several reports have demonstrated the feasibility of utilizing green electricity such as offshore wind power to produce metallic sodium through electrolysis of seawater. Based on this concept, we have made improvements and modified our previously proposed life cycle of sodium borohydride (NaBH4 and ammonia borane (NH3BH3, in order to further reduce costs in the conventional Brown-Schlesinger process. In summary, the revision in the concept combining the regeneration of the spent borohydrides and the used catalysts with the green electricity is reflected in (1 that metallic sodium could be produced from NaCl of high purity obtained from the conversion of the byproduct in the synthesis of NH3BH3 to devoid the complicated purification procedures if produced from seawater; and (2 that the recycling and the regeneration processes of the spent NaBH4 and NH3BH3 as well as the used catalysts could be simultaneously carried out and combined with the proposed life cycle of borohydrides.

  8. Lewis Base Complexes of Magnesium Borohydride: Enhanced Kinetics and Product Selectivity upon Hydrogen Release

    Directory of Open Access Journals (Sweden)

    Marina Chong

    2017-12-01

    Full Text Available Tetrahydofuran (THF complexed to magnesium borohydride has been found to have a positive effect on both the reactivity and selectivity, enabling release of H2 at <200 °C and forms Mg(B10H10 with high selectivity.

  9. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.

    2010-06-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  10. Palladium-Catalyzed, Enantioselective Heine Reaction.

    Science.gov (United States)

    Punk, Molly; Merkley, Charlotte; Kennedy, Katlyn; Morgan, Jeremy B

    2016-07-01

    Aziridines are important synthetic intermediates for the generation of nitrogen-containing molecules. N-Acylaziridines undergo rearrangement by ring expansion to produce oxazolines, a process known as the Heine reaction. The first catalytic, enantioselective Heine reaction is reported for meso-N-acylaziridines where a palladium(II)-diphosphine complex is employed. The highly enantioenriched oxazoline products are valuable organic synthons and potential ligands for transition-metal catalysis.

  11. Chiral separation by enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Schuur, B.; Verkuijl, B. J. V.; Minnaard, A. J.; De Vries, J. G.; Heeres, H. J.; Feringa, B. L.

    2011-01-01

    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and

  12. Suppressing diborane production during the hydrogen release of metal borohydrides: The example of alloyed Al(BH$_4$)$_3$

    OpenAIRE

    Harrison, D.; Thonhauser, T.

    2016-01-01

    Aluminum borohydride (Al(BH$_4$)$_3$) is an example of a promising hydrogen storage material with exceptional hydrogen densities by weight and volume and a low hydrogen desorption temperature. But, unfortunately, its production of diborane (B$_2$H$_6$) gases upon heating to release the hydrogen restricts its practical use. To elucidate this issue, we investigate the properties of a number of metal borohydrides with the same problem and find that the electronegativity of the metal cation is no...

  13. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    Science.gov (United States)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  14. Comments on the paper 'Electrooxidation of borohydride on platinum and gold electrodes: Implications for direct borohydride fuel cell' by E. Gyenge, Electrochim. Acta 49 (2004) 965: Thiourea, a poison for the anode metallic electrocatalyst of the direct borohydride fuel cell?

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, Ue.B. [Laboratoire des Materiaux et Procedes pour la Catalyse (LMSPC), UMR 7515 CNRS, Universite Louis Pasteur, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)

    2007-04-20

    The present discussion paper deals with the Gyenge's [E. Gyenge, Electrochim. Acta 49 (2004) 965] suggestion to add thiourea (H{sub 2}N-CS-NH{sub 2}) to the borohydride fuel of the direct borohydride fuel cell (DBFC). It is expected that thiourea inhibits the hydrogen evolution (stem from the borohydride hydrolysis, a side reaction) that occurs at the anode of the DBFC where in fact it is expected the direct oxidation of borohydride. However, thiourea is an organic sulphur compound and it is well known that the sulphur species are poisons for the metallic catalysts. Hence, the present discussion paper asks a question: may thiourea and the sulphur species stem from its decomposition act as poisons of metallic sites of catalysts used as DBFC anodes? (author)

  15. Electrochemical oxidation of borohydride on platinum electrodes: The influence of thiourea in direct fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Martins, J.I.; Bazzaoui, M. [Departamento de Engenharia Quimica, FEUP, Rua Roberto Frias, 4200-465 Porto (Portugal); Nunes, M.C.; Koch, R. [Departamento de Engenharia Electrotecnica, Laboratorio de Electroquimica, FEUP, Rua Roberto Frias, 4200-465 Porto (Portugal); Martins, L. [Centre de Recherche Public de la Sante, 18 rue Dicks (Luxembourg)

    2007-07-10

    The electrochemical behaviour of sodium borohydride on a platinum electrode in the absence and presence of thiourea (TU) was investigated by cyclic voltammetry. In the absence of thiourea, several overlapping peaks associated with the hydrolysis of BH{sub 4}{sup -} appear in the domain of hydrogen oxidation, i.e., in the potential range of -1.25 to -0.50 V versus Ag/AgCl. As a consequence of secondary reactions, the borohydride oxidation in 3 M NaOH solution shows a four to six-electron process, according to its concentration, in direct fuel cells. A conveyable TU/NaBH{sub 4} concentration ratio of 0.6 inhibits the delivery of hydrogen simultaneously with catalytic hydrolysis of BH{sub 4}{sup -}. Thus, the coulombic efficiency in direct fuel cell discharge was increased showing an about eight-electron process for the oxidation of BH{sub 4}{sup -}. (author)

  16. The Performance of a Direct Borohydride/Peroxide Fuel Cell Using Graphite Felts as Electrodes

    OpenAIRE

    Heng-Yi Lee; Yi-Hsuan Hsu; Po-Hong Tsai; Jiunn-Yih Lee; Yong-Song Chen

    2017-01-01

    A direct borohydride/peroxide fuel cell (DBPFC) generates electrical power by recirculating liquid anolyte and catholyte between the stack and reservoirs, which is similar to the operation of flow batteries. To enhance the accessibility of the catalyst layer to the liquid anolyte/catholyte, graphite felts are employed as the porous diffusion layer of a single-cell DBPFC instead of carbon paper/cloth. The effects of the type of anode alkaline solution and operating conditions, including flow r...

  17. Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage.

    Science.gov (United States)

    Jepsen, Lars H; Ley, Morten B; Filinchuk, Yaroslav; Besenbacher, Flemming; Jensen, Torben R

    2015-04-24

    A series of halide-free ammine manganese borohydrides, Mn(BH4 )2 ⋅nNH3 , n=1, 2, 3, and 6, a new bimetallic compound Li2 Mn(BH4 )4 ⋅6NH3 , and the first ammine metal borohydride solid solution Mg1-x Mnx (BH4 )2 ⋅6NH3 are presented. Four new crystal structures have been determined by synchrotron radiation powder X-ray diffraction and the thermal decomposition is systematically investigated for all the new compounds. The solid-gas reaction between Mn(BH4 )2 and NH3 provides Mn(BH4 )2 ⋅6NH3 . The number of NH3 per Mn has been varied by mechanochemical treatment of Mn(BH4 )2 ⋅6NH3 -Mn(BH4 )2 mixtures giving rise to increased hydrogen purity for n/m≤1 for M(BH4 )m ⋅nNH3 . The structures of Mg(BH4 )2 ⋅3NH3 and Li2 Mg(BH4 )4 ⋅6NH3 have been revisited and new structural models are presented. Finally, we demonstrate that ammonia destabilizes metal borohydrides with low electronegativity of the metal (χp ∼1.6) are generally stabilized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of high-performance cathode catalyst of polypyrrole modified carbon supported CoOOH for direct borohydride fuel cell

    Science.gov (United States)

    He, Yan; Zhu, Cai; Chen, Kaijian; Wang, Juan; Qin, Haiying; Liu, Jiabin; Yan, Shuai; Yang, Ke; Li, Aiguo

    2017-01-01

    Polypyrrole modified carbon supported CoOOH electrocatalyst (CoOOH-PPy-C) is prepared by impregnation-chemical method, and the catalytic properties for the oxygen reduction reaction (ORR) in alkaline media are investigated. The X-ray diffraction and transmission electron microscopy results confirm the presence of the expected CoOOH. The electrochemical tests show that the CoOOH-PPy-C catalyst exhibits good electrocatalytic activity towards ORR. The direct borohydride fuel cell using CoOOH-PPy-C as the cathode catalyst demonstrates a good stability performance. There is only 4% decrease of the cell voltage after 80-h operation. The ORR occurs an average 4-electron transfer pathway on the CoOOH-PPy-C catalyst. The good catalytic activity towards ORR benefits from the Cosbnd N bond, which is identified by X-ray photoelectron spectroscopy test. X-ray absorption fine structure experiments further show that two nearest O atoms are substituted by two N atoms bonding to Co ion at a distance of 1.64 Å. The CoOOH-PPy-C exhibits better electrochemical properties than the Co(OH)2 counterpart even though the valence state of Co ion is +3 in CoOOH-PPy-C. Those results indicate that the bonding of Co ion with N atoms should be a key issue regardless the valence of Co ion.

  19. Conjugate addition–enantioselective protonation reactions

    Directory of Open Access Journals (Sweden)

    James P. Phelan

    2016-06-01

    Full Text Available The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals.

  20. Chiral amides via copper-catalysed enantioselective conjugate addition.

    Science.gov (United States)

    Schoonen, Anne K; Fernández-Ibáñez, M Ángeles; Fañanás-Mastral, Martín; Teichert, Johannes F; Feringa, Ben L

    2014-01-07

    A highly enantioselective one pot procedure for the synthesis of β-substituted amides was developed starting from the corresponding α,β-unsaturated esters. This new methodology is based on the copper-catalysed enantioselective conjugate addition of Grignard reagents to α,β-unsaturated esters and subsequent direct formation of amides by quenching the corresponding enolates with different amines. Various primary and secondary amines bearing alkyl or aryl substituents can be used giving rise to a large variety of β-substituted amides with excellent enantioselectivities.

  1. Iminium and enamine catalysis in enantioselective photochemical reactions

    Science.gov (United States)

    Hörmann, Fabian M.

    2018-01-01

    Although enantioselective catalysis under thermal conditions has been well established over the last few decades, the enantioselective catalysis of photochemical reactions is still a challenging task resulting from the complex enantiotopic face differentiation in the photoexcited state. Recently, remarkable achievements have been reported by a synergistic combination of organocatalysis and photocatalysis, which have led to the expedient construction of a diverse range of enantioenriched molecules which are generally not easily accessible under thermal conditions. In this tutorial review, we summarize and highlight the most significant advances in iminium and enamine catalysis of enantioselective photochemical reactions, with an emphasis on catalytic modes and reaction types. PMID:29155908

  2. Different enantioselective degradation of pyraclofos in soils.

    Science.gov (United States)

    Xu, Yuxin; Zhang, Hu; Zhuang, Shulin; Yu, Man; Xiao, Hua; Qian, Mingrong

    2012-05-02

    This study investigated the enantioselective degradation behavior of pyraclofos in three soils (NC, HZ, and ZZ) under native and sterilized conditions. The absolute configuration of pyraclofos enantiomers has been determined by the combination of experimental and calculated electronic circular dichroism spectra. S-(+)- and R-(-)-Pyraclofos were separated and determined on a cellulose tri-(4-chloro-3-methylphenylcarbamate) (Lux Cellulose-4) chiral column by reversed-phase high-performance liquid chromatography-tandem mass spectrometry. Pyraclofos enantiomers were configurationally stable in three soils and no interconversion was observed during the incubation of enantiopure S-(+)- or R-(-)-pyraclofos under native conditions. The enantioselective degradation behavior of chiral pyraclofos was dramatically different in three soils under native conditions, with half-lives (t(1/2)) of pyraclofos in NC, HZ, and ZZ soils of 2.6, 13.4, and 7.8 days for S-(+)-pyraclofos and 9.2, 9.3, and 8.2 days for R-(-)-pyraclofos. Compared to the half-lives (t(1/2)) of rac-pyraclofos of 21.5, 55.9, and 14.4 days in sterilized NC, HZ and ZZ soils, the degradation velocity was greatly improved in native soils, indicating that degradation was greatly attributed to microbially mediated processes in agricultural cultivating soils.

  3. Enantioselective separation on chiral Au nanoparticles.

    Science.gov (United States)

    Shukla, Nisha; Bartel, Melissa A; Gellman, Andrew J

    2010-06-30

    The surfaces of chemically synthesized Au nanoparticles have been modified with d- or l-cysteine to render them chiral and enantioselective for adsorption of chiral molecules. Their enantioselective interaction with chiral compounds has been probed by optical rotation measurements during exposure to enantiomerically pure and racemic propylene oxide. The ability of optical rotation to detect enantiospecific adsorption arises from the fact that the specific rotation of polarized light by (R)- and (S)-propylene oxide is enhanced by interaction with Au nanoparticles. This effect is related to previous observations of enhanced circular dichroism by Au nanoparticles modified by chiral adsorbates. More importantly, chiral Au nanoparticles modified with either d- or l-cysteine selectively adsorb one enantiomer of propylene oxide from a solution of racemic propylene oxide, thus leaving an enantiomeric excess in the solution phase. Au nanoparticles modified with l-cysteine (d-cysteine) selectively adsorb the (R)-propylene oxide ((S)-propylene oxide). A simple model has been developed that allows extraction of the enantiospecific equilibrium constants for (R)- and (S)-propylene oxide adsorption on the chiral Au nanoparticles.

  4. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride.

    Science.gov (United States)

    Hosseini, Mir Ghasem; Mahmoodi, Raana

    2017-08-15

    The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH4- oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92AgPt-1) in comparison with a catalyst prepared in the presence of SDS (17766.15AgPt-1) in NaBH4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH4 and 2M H2O2 (133.38mWcm-2). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Enantioselective Fluorination of Spirocyclic β-Prolinals Using Enamine Catalysis

    DEFF Research Database (Denmark)

    Fjelbye, Kasper; Marigo, Mauro; Clausen, Rasmus Prætorius

    2017-01-01

    A series of spirocyclic carbaldehydes were successfully fluorinated using enamine catalysis, furnishing the corresponding tertiary fluorides in both high yields and enantioselectivities. The fluorinated spirocycles provide a set of novel building blocks interesting from a medicinal chemistry point...

  6. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter

    NARCIS (Netherlands)

    Tang, Lixia; Lutje Spelberg, Jeffrey H.; Fraaije, Marco W.; Janssen, DB

    2003-01-01

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic

  7. Enantioselective synthesis of anti-β-hydroxy-α-amido esters by asymmetric transfer hydrogenation in emulsions.

    Science.gov (United States)

    Seashore-Ludlow, Brinton; Villo, Piret; Somfai, Peter

    2012-06-04

    Herein, we present two methods for an asymmetric transfer hydrogenation through the dynamic kinetic resolution of α-amido-β-ketoesters. These procedures yield the corresponding anti-β-hydroxy-α-amido esters in good yields and with good diastereo- and enantioselectivities. First, the scope of the reduction of α-amido-β-ketoesters by using triethylammonium formate azeotrope is examined. Then, an emulsion technology with sodium formate is explored, which allows for broader substrate scope, faster reaction times, and lower catalyst loading. Furthermore, these reactions are operationally simple and can be set up in air. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enantioselective Total Synthesis of (−)-Acylfulvene and (−)-Irofulven

    Science.gov (United States)

    Siegel, Dustin S.; Piizzi, Grazia; Piersanti, Giovanni; Movassaghi, Mohammad

    2009-01-01

    We report our full account of the enantioselective total synthesis of (−)-acylfulvene (1) and (−)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor agents. We discuss (1) the application of an Evans’ Cu-catalyzed aldol addition reaction using a strained cyclopropyl ketenethioacetal, (2) an efficient enyne ring-closing metathesis (EYRCM) cascade reaction in a challenging setting, (3) the reagent IPNBSH for a late stage reductive allylic transposition reaction, and (4) the final RCM/dehydrogenation sequence for the formation of (−)-acylfulvene (1) and (−)-irofulven (2). PMID:19938810

  9. Low temperature decomposition of metal borohydride drives autogenous synthesis of MgB2

    Science.gov (United States)

    Mackinnon, I. D. R.; Shahbazi, M.; Alarco, J. A.; Talbot, P. C.

    2017-05-01

    We describe a low temperature, autogenous pressure method to synthesise mm-scale MgB2 aggregates with highly connected grains. The decomposition of metal borohydrides such as NaBH4 and KBH4 at low temperature (i.e. 30 min then a ramp to 450 °C Magnetic measurements of MgB2 aggregates show a grain connectivity comparable to powders produced at higher temperature (> 800 °C) and suggests that this synthesis approach may be effective for ex situ wire production.

  10. A Self-Supported Direct Borohydride-Hydrogen Peroxide Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Ashok K. Shukla

    2009-04-01

    Full Text Available A self-supported direct borohydride-hydrogen peroxide fuel cell system with internal manifolds and an auxiliary control unit is reported. The system, while operating under ambient conditions, delivers a peak power of 40 W with about 2 W to run the auxiliary control unit. A critical cause and effect analysis, on the data for single cells and stack, suggests the optimum concentrations of fuel and oxidant to be 8 wt. % NaBH4 and 2 M H2O2, respectively in extending the operating time of the system. Such a fuel cell system is ideally suited for submersible and aerospace applications where anaerobic conditions prevail.

  11. High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells

    Science.gov (United States)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar

    2012-07-01

    Novel, cost-effective, and environmentally benign polymer electrolyte membranes (PEMs) consisting of ionically cross-linked chitosan (CS) hydrogel is reported for direct borohydride fuel cells (DBFCs). The membranes have been prepared by ionic cross-linking of CS with sulfate and hydrogen phosphate salts of sodium. Use of Na2SO4 and Na2HPO4 as cross-linking agents in the preparation of ionically cross-linked CS hydrogel membrane electrolytes (ICCSHMEs) not only enhances cost-effectiveness but also environmental friendliness of fuel cell technologies. The DBFCs have been assembled with a composite of nickel and carbon-supported palladium as anode catalyst, carbon-supported platinum as cathode catalyst and ICCSHMEs as electrolytes-cum-separators. The DBFCs have been studied by using an aqueous alkaline solution of sodium borohydride as fuel in flowing mode using a peristaltic pump and oxygen as oxidant. A maximum peak power density of about 810 mW cm-2 has been achieved for the DBFC employing Na2HPO4-based ICCSHME and operating at a cell temperature of 70 °C.

  12. A direct borohydride fuel cell employing a sago gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Jamaludin, A.; Ahmad, Z.; Ahmad, Z.A.; Mohamad, A.A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-10-15

    The electrochemistry of a direct borohydride fuel cell based on a gel polymer electrolyte was studied. Sago is a type of natural polymer, was employed as the polymer host for the electrolyte. An electrolyte with a composition of sago + 6 M KOH + 2 M NaBH{sub 4} was prepared and evaluated as a novel gel polymer electrolyte for a direct borohydride fuel cell system because it exhibited a high electrical conductivity of 0.270 S cm{sup -1}. The rate at which oxygen was consumed at the cathode can be related to the electric current by comparing the calculated number of electrons reacted per molecule of oxygen for different currents supplied to the fuel cell. From the oxygen consumption data, it was deduced that four electrons reacted per molecule of oxygen. The performance of the fuel cell was measured in terms of its current-voltage, discharge and open circuit voltage measurements. The maximum power density obtained was 8.818 mW cm{sup -2} at a discharge performance of {proportional_to}230 mA h and nominal voltage of 0.806 V. The open circuit voltage of the cells was about 0.900 V and sustained for 23 h. (author)

  13. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  14. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  15. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.

    Science.gov (United States)

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  16. Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries

    Science.gov (United States)

    Roedern, Elsa; Kühnel, Ruben-Simon; Remhof, Arndt; Battaglia, Corsin

    2017-04-01

    Solid-state magnesium ion conductors with exceptionally high ionic conductivity at low temperatures, 5 × 10-8 Scm-1 at 30 °C and 6 × 10-5 Scm-1 at 70 °C, are prepared by mechanochemical reaction of magnesium borohydride and ethylenediamine. The coordination complexes are crystalline, support cycling in a potential window of 1.2 V, and allow magnesium plating/stripping. While the electrochemical stability, limited by the ethylenediamine ligand, must be improved to reach competitive energy densities, our results demonstrate that partially chelated Mg2+ complexes represent a promising platform for the development of an all-solid-state magnesium battery.

  17. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    Science.gov (United States)

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160

  18. Enantioselective decarboxylative chlorination of β-ketocarboxylic acids

    Science.gov (United States)

    Shibatomi, Kazutaka; Kitahara, Kazumasa; Sasaki, Nozomi; Kawasaki, Yohei; Fujisawa, Ikuhide; Iwasa, Seiji

    2017-01-01

    Stereoselective halogenation is a highly useful organic transformation for multistep syntheses because the resulting chiral organohalides can serve as precursors for various medicinally relevant derivatives. Even though decarboxylative halogenation of aliphatic carboxylic acids is a useful and fundamental synthetic method for the preparation of a variety of organohalides, an enantioselective version of this reaction has not been reported. Here we report a highly enantioselective decarboxylative chlorination of β-ketocarboxylic acids to obtain α-chloroketones under mild organocatalytic conditions. The present method is also applicable for the enantioselective synthesis of tertiary α-chloroketones. The conversions of the resulting α-chloroketones into α-aminoketones and α-thio-substituted ketones via SN2 reactions at the tertiary carbon centres are also demonstrated. These results constitute an efficient approach for the synthesis of chiral organohalides and are expected to enhance the availability of enantiomerically enriched chiral compounds with heteroatom-substituted chiral stereogenic centres. PMID:28580951

  19. Enantioselective Iodolactonization of Disubstituted Olefinic Acids Using a Bifunctional Catalyst

    Science.gov (United States)

    Fang, Chao; Paull, Daniel H.; Hethcox, J. Caleb; Shugrue, Christopher R.; Martin, Stephen F.

    2012-01-01

    The enantioselective iodolactonizations of a series of diversely-substituted olefinic carboxylic acids are promoted by a BINOL-derived, bifunctional catalyst. Reactions involving 5-alkyl- and 5-aryl-4(Z)-pentenoic acids and 6-alkyl- and 6-aryl-5(Z)-hexenoic acids provide the corresponding γ- and δ-lactones having stereogenic C–I bonds in excellent yields and >97:3 er. Significantly, this represents the first organocatalyst that promotes both bromo- and iodolactonization with high enantioselectivities. The potential of this catalyst to induce kinetic resolutions of racemic unsaturated acids is also demonstrated. PMID:23199100

  20. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  1. Enantioselective Organocatalytic Intramolecular Aza-Diels-Alder Reaction.

    Science.gov (United States)

    Jarrige, Lucie; Blanchard, Florent; Masson, Géraldine

    2017-08-21

    A highly efficient catalytic enantioselective intramolecular Povarov reaction was developed with primary anilines as 2-azadiene precursors. A wide variety of angularly fused azacycles were obtained without column chromatography in high to excellent yields and with excellent diastereo- and enantioselectivity (d.r.>99:1 and up to e.r. 99:1). Furthermore, the catalyst loading could be lowered to 1 mol %, and the obtained azacycles could be used as key intermediates for further transformations to generate additional molecular diversity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of gasoline inhalation on the enantioselective pharmacokinetics of fluoxetine in rats.

    Science.gov (United States)

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; Lepera, José Salvador

    2013-03-01

    Fluoxetine is used clinically as a racemic mixture of (+)-(S) and (-)-(R) enantiomers for the treatment of depression. CYP2D6 catalyzes the metabolism of both fluoxetine enantiomers. We aimed to evaluate whether exposure to gasoline results in CYP2D inhibition. Male Wistar rats exposed to filtered air (n = 36; control group) or to 600 ppm of gasoline (n = 36) in a nose-only inhalation exposure chamber for 6 weeks (6 h/day, 5 days/week) received a single oral 10-mg/kg dose of racemic fluoxetine. Fluoxetine enantiomers in plasma samples were analyzed by a validated analytical method using LC-MS/MS. The separation of fluoxetine enantiomers was performed in a Chirobiotic V column using as the mobile phase a mixture of ethanol:ammonium acetate 15 mM. Higher plasma concentrations of the (+)-(S)-fluoxetine enantiomer were found in the control group (enantiomeric ratio AUC((+)-(S)/(-)-(R)) = 1.68). In animals exposed to gasoline, we observed an increase in AUC(0-∞) for both enantiomers, with a sharper increase seen for the (-)-(R)-fluoxetine enantiomer (enantiomeric ratio AUC((+)-(S)/(-)-(R)) = 1.07), resulting in a loss of enantioselectivity. Exposure to gasoline was found to result in the loss of enantioselectivity of fluoxetine, with the predominant reduction occurring in the clearance of the (-)-(R)-fluoxetine enantiomer (55% vs. 30%). Copyright © 2013 Wiley Periodicals, Inc.

  3. Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines

    KAUST Repository

    Zhang, Yan

    2011-01-01

    An amino-indanol derived chiral guanidine was developed as an efficient Brønsted base catalyst for the desymmetrization of meso-aziridines with both thiols and carbamodithioic acids as nucleophiles, which provided 1,2-difunctionalized ring-opened products in high yields and enantioselectivities. © The Royal Society of Chemistry.

  4. Enantioselective Claisen Rearrangements with a Hydrogen-Bond Donor Catalyst

    Science.gov (United States)

    Uyeda, Christopher; Jacobsen, Eric N.

    2008-01-01

    N,N′-Diphenylguanidinium ion associated with the non-coorinating BArF counterion is shown to be an effective catalyst for the [3,3]-sigmatropic rearrangement of a variety of substituted allyl vinyl ethers. Highly enantioselective catalytic Claisen rearrangements of ester-substituted allyl vinyl ethers are then documented using a new C2-symmetric guanidinium ion derivative. PMID:18576616

  5. Preorganization in highly enantioselective diaza-Cope rearrangement reaction.

    Science.gov (United States)

    Kim, Hae-Jo; Kim, Hyunwoo; Alhakimi, Gamil; Jeong, Eui June; Thavarajah, Nirusha; Studnicki, Lisa; Koprianiuk, Alicja; Lough, Alan J; Suh, Junghun; Chin, Jik

    2005-11-30

    Crystal structure and activation entropy data indicate that H-bond directed diaza-Cope rearrangement of chiral diimines takes place with a high degree of preorganization. CD spectroscopy and HPLC data show that there is inversion of stereochemistry for the reaction with excellent enantioselectivity.

  6. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  7. Enantioselective Hydroxylation of 4-Alkylphenols by Vanillyl Alcohol Oxidase

    NARCIS (Netherlands)

    Drijfhout, Falko P.; Fraaije, Marco W.; Jongejan, Hugo; Berkel, Willem J.H. van; Franssen, Maurice C.R.

    1998-01-01

    Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum catalyzes the enantioselective hydroxylation of 4-ethylphenol, 4-propylphenol, and 2-methoxy-4-propylphenol into 1-(4'-hydroxyphenyl)ethanol, 1-(4'-hydroxyphenyl)propanol, and 1-(4'-hydroxy-3'-methoxyphenyl)propanol, respectively, with

  8. Schiff base complex-catalysed enantioselective epoxidation of ...

    Indian Academy of Sciences (India)

    Administrator

    Chiral Ru(II) Schiff base complex-catalysed enantioselective epoxidation of styrene derivatives. R I KURESHY, N H KHAN, S H R ABDI, S T PATEL, P IYER and. R V JASRA. Silicates and Catalysis Discipline, Central Salt and Marine Chemicals. Research Institute, Bhavnagar 364 002, India. Ruthenium(II) chiral Schiff base ...

  9. Enantioselective synthesis of (R)-isocarvone from (S)-perillaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Gamba, Douglas; Pisoni, Diego S.; Costa, Jesse S. da; Petzhold, Cesar L.; Borges, Antonio C.A.; Ceschi, Marco A. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica]. E-mail: mceschi@iq.ufrgs.br

    2008-07-01

    This work describes the enantioselective preparation of (R)-(+)-isocarvone, (S)-(-)-5-isopropenylcyclohex-2-enone and (S)-(-)-3-isopropenylcyclohexanone starting from (S)-(-)-perillaldehyde. These compounds hold the prospect of serving as useful chiral building blocks or intermediates in organic synthesis. (author)

  10. High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix

    Science.gov (United States)

    Marchionni, Andrea; Bevilacqua, Manuela; Filippi, Jonathan; Folliero, Maria G.; Innocenti, Massimo; Lavacchi, Alessandro; Miller, Hamish A.; Pagliaro, Maria V.; Vizza, Francesco

    2015-12-01

    Hydrogen storage and distribution will be two very important aspects of any renewable energy infrastructure that uses hydrogen as energy vector. The chemical storage of hydrogen in compounds like sodium borohydride (NaBH4) could play an important role in overcoming current difficulties associated with these aspects. Sodium borohydride is a very attractive material due to its high hydrogen content. In this paper, we describe a reactor where a stable cobalt based catalyst supported on a commercial Cordierite Honeycomb Monolith (CHM) is employed for the hydrolysis of alkaline stabilized NaBH4 (SBH) aqueous solutions. The apparatus is able to operate at up to 5 bar and 130 °C, providing a hydrogen generation rate of up to 32 L min-1.

  11. Graphene-based hybrid for enantioselective sensing applications.

    Science.gov (United States)

    Zor, Erhan; Morales-Narváez, Eden; Alpaydin, Sabri; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben

    2017-01-15

    Chirality is a major field of research of chemical biology and is essential in pharmacology. Accordingly, approaches for distinguishing between different chiral forms of a compound are of great interest. We report on an efficient and generic enantioselective sensor that is achieved by coupling reduced graphene oxide with γ-cyclodextrin (rGO/γ-CD). The enantioselective sensing capability of the resulting structure was operated in both electrical and optical mode for of tryptophan enantiomers (D-/L-Trp). In this sense, voltammetric and photoluminescence measurements were conducted and the experimental results were compared to molecular docking method. We gain insight into the occurring recognition mechanism with selectivity toward D- and L-Trp as shown in voltammetric, photoluminescence and molecular docking responses. As an enantioselective solid phase on an electrochemical transducer, thanks to the different dimensional interaction of enantiomers with hybrid material, a discrepancy occurs in the Gibbs free energy leading to a difference in oxidation peak potential as observed in electrochemical measurements. The optical sensing principle is based on the energy transfer phenomenon that occurs between photoexcited D-/L-Trp enantiomers and rGO/γ-CD giving rise to an enantioselective photoluminescence quenching due to the tendency of chiral enantiomers to form complexes with γ-CD in different molecular orientations as demonstrated by molecular docking studies. The approach, which is the first demonstration of applicability of molecular docking to show both enantioselective electrochemical and photoluminescence quenching capabilities of a graphene-related hybrid material, is truly new and may have broad interest in combination of experimental and computational methods for enantiosensing of chiral molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of amide-borohydrides: New complex light hydrides for potential hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Chater, Philip A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Anderson, Paul A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: p.a.anderson@bham.ac.uk; Prendergast, James W. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Walton, Allan; Mann, Vicky S.J.; Book, David [Department of Metallurgy and Materials, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); David, William I.F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Johnson, Simon R.; Edwards, Peter P. [Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2007-10-31

    The reactions xLiNH{sub 2} + (1 - x)LiBH{sub 4} and xNaNH{sub 2} + (1 - x)NaBH{sub 4} have been investigated and new phases identified. The lithium amide-borohydride system is dominated by a body centred cubic compound of formula Li{sub 4}BH{sub 4}(NH{sub 2}){sub 3}. In the sodium system, a new hydride of approximate composition Na{sub 2}BH{sub 4}NH{sub 2} has been identified with a primitive cubic structure and lattice parameter a {approx} 4.7 A. The desorption of gases from the two amide-borohydrides on heating followed a similar pattern with the relative proportions of H{sub 2} and NH{sub 3} released depending critically on the experimental set-up: in the IGA, ammonia release occurred in two steps - beginning at 60 and 260 deg. C for Li{sub 4}BH{sub 4}(NH{sub 2}){sub 3} - the second of which was accompanied by hydrogen release; in the TPD system the main desorption product was hydrogen-again at 260 deg. C for Li{sub 4}BH{sub 4}(NH{sub 2}){sub 3} accompanied by around 5% ammonia. We hypothesize that the BH{sub 4}{sup -} anion can play a similar role to LiH in the LiNH{sub 2} + LiH system, where ammonia release is suppressed in favour of hydrogen. The reaction xLiNH{sub 2} + (1 - x)LiAlH{sub 4} did not result in the production of any new phases but TPD experiments show that hydrogen is released from the mixture 2LiNH{sub 2} + LiAlH{sub 4}, over a wide temperature range. We conclude that mixed complex hydrides may provide a means of tuning the dehydrogenation and rehydrogenation reactions to make viable storage systems.

  13. The high utilization of fuel in direct borohydride fuel cells with a PdNix-B/carbon nanotubes-catalysed anode

    Science.gov (United States)

    Zhou, Yaping; Li, Sai; Chen, Yuanzhen; Liu, Yongning

    2017-05-01

    Direct borohydride fuel cells (DBFCs) exhibit the potential for a wide range of applications due to their high energy and power density; however, the hydrolysis of BH4- significantly limits the use of DBFCs. In this paper, PdNix-B/carbon nanotubes (PdNix-B/CNTs) (x = 0, 0.3, 0.6, 0.9) composites have been prepared by a chemical reduction method in which PdNix-B nanoparticles of approximately 3.5 nm are grown on the surface of carbon nanotubes. A cell was assembled with PdNix-B/CNTs as the anode catalyst, a polymer fibre membrane (PFM) as a substitute for the Nafion membrane and LaNiO3 as the cathode catalyst. The results show that the Ni element displays an ability to balance the competition between the hydrolysis and oxidation of BH4-. A peak power density of 105 mW cm-2 (x = 0.9) was achieved at 25 °C. However, the highest fuel efficiency of 69% was achieved at x = 0.3, and the corresponding power density was 87 mW cm-2, which represents the best comprehensive performance of these DBFCs.

  14. Membraneless, room-temperature, direct borohydride/cerium fuel cell with power density of over 0.25 W/cm2.

    Science.gov (United States)

    Da Mota, Nicolas; Finkelstein, David A; Kirtland, Joseph D; Rodriguez, Claudia A; Stroock, Abraham D; Abruña, Héctor D

    2012-04-11

    The widespread adoption and deployment of fuel cells as an alternative energy technology have been hampered by a number of formidable technical challenges, including the cost and long-term stability of electrocatalyst and membrane materials. We present a microfluidic fuel cell that overcomes many of these obstacles while achieving power densities in excess of 250 mW/cm(2). The poisoning and sluggish reaction rate associated with CO-contaminated H(2) and methanol, respectively, are averted by employing the promising, high-energy density fuel borohydride. The high-overpotential reaction of oxygen gas at the cathode is supplanted by the high-voltage reduction of cerium ammonium nitrate. Expensive, ineffective membrane materials are replaced with laminar flow and a nonselective, porous convection barrier to separate the fuel and oxidant streams. The result is a Nafion-free, room-temperature fuel cell that has the highest power density per unit mass of Pt catalyst employed for a non-H(2) fuel cell, and exceeds the power density of a typical H(2) fuel cell by 50%. © 2012 American Chemical Society

  15. The Performance of a Direct Borohydride/Peroxide Fuel Cell Using Graphite Felts as Electrodes

    Directory of Open Access Journals (Sweden)

    Heng-Yi Lee

    2017-08-01

    Full Text Available A direct borohydride/peroxide fuel cell (DBPFC generates electrical power by recirculating liquid anolyte and catholyte between the stack and reservoirs, which is similar to the operation of flow batteries. To enhance the accessibility of the catalyst layer to the liquid anolyte/catholyte, graphite felts are employed as the porous diffusion layer of a single-cell DBPFC instead of carbon paper/cloth. The effects of the type of anode alkaline solution and operating conditions, including flow rate and temperature of the anolyte/catholyte, on DBPFC performance are investigated and discussed. The durability of the DBPFC is also evaluated by galvanostatic discharge at 0.1 A∙cm−2 for over 50 h. The results of this preliminary study show that a DBPFC with porous graphite electrodes can provide a maximum power density of 0.24 W∙cm−2 at 0.8 V. The performance of the DBPFC drops slightly after 50 h of operation; however, the discharge capacity shows no significant decrease.

  16. High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells

    Science.gov (United States)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.

    Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.

  17. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system

    Science.gov (United States)

    Kokail, Christian; von der Linden, Wolfgang; Boeri, Lilia

    2017-12-01

    We investigate the superconducting ternary lithium borohydride phase diagram at pressures of 0 and 200 GPa using methods for evolutionary crystal structure prediction and linear-response calculations for the electron-phonon coupling. Our calculations show that the ground state phase at ambient pressure, LiBH4, stays in the P n m a space group and remains a wide band-gap insulator at all pressures investigated. Other phases along the 1 :1 :x Li:B:H line are also insulating. However, a full search of the ternary phase diagram at 200 GPa revealed a metallic Li2BH6 phase, which is thermodynamically stable down to 100 GPa. This superhydride phase, crystallizing in a F m 3 ¯m space group, is characterized by sixfold hydrogen-coordinated boron atoms occupying the fcc sites of the unit cell. Due to strong hydrogen-boron bonding this phase displays a critical temperature of ˜100 K between 100 and 200 GPa. Our investigations confirm that ternary compounds used in hydrogen-storage applications should exhibit high-Tc conventional superconductivity in diamond anvil cell experiments, and suggest a viable route to optimize the superconducting behavior of high-pressure hydrides, exploiting metallic covalent bonds.

  18. Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yan; Dai, Hong-Bin; Ma, Lai-Peng; Wang, Ping; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-04-15

    The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH{sub 4}) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH{sub 2} functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH{sub 4} and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH{sub 4}. A hydrogen generation rate of 32.3 L min{sup -1} g{sup -1} (Ru) in a 10 wt.% NaBH{sub 4} + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported. (author)

  19. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  20. Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells

    Science.gov (United States)

    Qin, Haiying; Lin, Longxia; Chu, Wen; Jiang, Wei; He, Yan; Shi, Qiao; Deng, Yonghong; Ji, Zhenguo; Liu, Jiabin; Tao, Shanwen

    2018-01-01

    A catalytic material is introduced into the polymer matrix to prepare a novel polymeric alkaline electrolyte membrane (AEM) which simultaneously increases ionic conductivity, reduces the fuel cross-over. In this work, the hydroxide anion exchange membrane is mainly composed of poly(vinylalcohol) and alkaline exchange resin. CoCl2 is added into the poly(vinylalcohol) and alkaline exchange resin gel before casting the membrane to introduce catalytic materials. CoCl2 is converted into CoOOH after the reaction with KOH solution. The crystallinity of the polymer matrix decreases and the ionic conductivity of the composite membrane is notably improved by the introduction of Co-species. A direct borohydride fuel cell using the composite membrane exhibits an open circuit voltage of 1.11 V at 30 °C, which is notably higher than that of cells using other AEMs. The cell using the composite membrane achieves a maximum power density of 283 mW cm-2 at 60 °C while the cell using the membrane without Co-species only reaches 117 mW cm-2 at the same conditions. The outstanding performance of the cell using the composite membrane benefits from impregnation of the catalytic Co-species in the membrane, which not only increases the ionic conductivity but also reduces electrode polarization thus improves the fuel cell performance. This work provides a new approach to develop high-performance fuel cells through adding catalysts in the electrolyte membrane.

  1. Development of catalysts and ligands for enantioselective gold catalysis.

    Science.gov (United States)

    Wang, Yi-Ming; Lackner, Aaron D; Toste, F Dean

    2014-03-18

    During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely

  2. Enantioselective silver nanoclusters: Preparation, characterization and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farrag, Mostafa, E-mail: mostafafarrag@aun.edu.eg

    2016-09-01

    Herein, we report a new wet-synthesis method to separate some water-soluble chiral silver nanoclusters with high yield. The cluster material was obtained by the reduction of silver nitrate with NaBH{sub 4} in the presence of three ligands L-penicillamine (L-pen), D-penicillamine (D-pen) and racemic mixture of penicillamine (rac-pen), functioning as capping ligand. For characterizing all silver cluster samples, the particle size was assessed by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) and their average chemical formula was determined from thermogravimetric analysis (TGA) and elemental analysis (EA). The particles sizes of all three clusters are 2.1 ± 0.2 nm. The optical properties of the samples were studied by four different methods: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL) and circular dichroism (CD) spectroscopy. The spectra are dominated by the typical and intense plasmon peak at 486 nm accompanied by a small shoulder at 540 nm. Infrared spectroscopy was measured for the free ligand and protected silver nanoclusters, where the disappearance of the S-H vibrational band (2535–2570 cm{sup −1}) in the silver nanoclusters confirmed anchoring of ligand to the cluster surface through the sulfur atom. PL studies yielded the fluorescent properties of the samples. The main focus of this work, however, lies in the chirality of the particles. For all silver clusters CD spectra were recorded. While for clusters capped with one of the two enantiomers (D- or L-form) typical CD spectra were observed, no significant signals were detected for a racemic ligand mixture. Furthermore, silver clusters show quite large asymmetry factors (up to 3 × 10{sup −4}) in comparison to most other ligand protected clusters. These large factors and bands in the visible range of the spectrum suggest a strong chiral induction from the ligand to the metal core. Textural features of the

  3. One-pot Reductive Amination of Carbonyl Compounds with NaBH4 ...

    Indian Academy of Sciences (India)

    Abstract. An efficient one-pot procedure for the direct reductive amination of aldehyde and ketones was achieved in the presence of sodium borohydride by using B(OSO3H)3/SiO2(SBSA) as the reusable solid cat- alyst in acetonitrile and solvent-free conditions. Both aromatic and aliphatic aldehyde reacted well to give the.

  4. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    Science.gov (United States)

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  5. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)2 and chiral amino alcohols

    NARCIS (Netherlands)

    Vries, André H.M. de; Feringa, Bernard

    1997-01-01

    Co(acac)2 in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved.

  6. Dynamic control of chirality in phosphine ligands for enantioselective catalysis.

    Science.gov (United States)

    Zhao, Depeng; Neubauer, Thomas M; Feringa, Ben L

    2015-03-25

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly achieved through ligand design with chiral bisphosphines being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is modulated through an external trigger signal, might offer attractive possibilities to change enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes in geometry and helicity of the switchable ligand enable excellent selectivity towards the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization reaction.

  7. Enantioselective epoxide polymerization using a bimetallic cobalt catalyst.

    Science.gov (United States)

    Thomas, Renee M; Widger, Peter C B; Ahmed, Syud M; Jeske, Ryan C; Hirahata, Wataru; Lobkovsky, Emil B; Coates, Geoffrey W

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (k(fast)/k(slow)) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T(m) values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides.

  8. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  9. Enantioselective Polyene Cyclization via Organo-SOMO Catalysis

    Science.gov (United States)

    Rendler, Sebastian; MacMillan, David W. C.

    2010-01-01

    The first organocatalytic enantioselective radical polycyclization has been accomplished using singly occupied molecular orbital (SOMO) catalysis. The presented strategy relies on a selective single-electron oxidation of chiral enamines formed by condensation of polyenals with an imidazolidinone catalyst employing a suitable copper(II) oxidant. The reaction proceeds under mildly acidic conditions at room temperature and shows compatibility with an array of electron-poor as well as electron-rich functional groups. Upon termination by radical arylation, followed by subsequent oxidation and rearomatization, a range of polycyclic aldehydes has been accessed (12 examples, 54-77% yield, 85-93% ee). The enantioselective formation of up to six new carbocycles in a single catalyst-controlled cascade is described. Evidence for a radical-based cascade mechanism is indicated by a series of experimental results. PMID:20334384

  10. Enantioselective degradation of tebuconazole in cabbage, cucumber, and soils.

    Science.gov (United States)

    Wang, Xinquan; Wang, Xuesong; Zhang, Hu; Wu, Changxing; Wang, Xiangyun; Xu, Hao; Wang, Xiaofu; Li, Zhen

    2012-02-01

    The enantioselective degradation of tebuconazole has been investigated to elucidate the behaviors in agricultural soils, cabbage, and cucumber fruit. Rac-tebuconazole was fortified into three types of agricultural soils and sprayed foliage of cabbage and cucumber, respectively. The degradation kinetics, enantiomer fraction and enantiomeric selectivity were determined by reverse-phase high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) on a Lux amylose-2 chiral column. The process of the degradation of tebuconazole enantiomers followed first-order kinetic in the test soils and vegetables. It has been shown that the degradation of tebuconazole was enantioselective. The results indicated that the (+)-S-tebuconazole showed a faster degradation in cabbage, while the (-)-R-tebuconazole dissipated faster than (+)-S-form in cucumber fruit and the test soils. Copyright © 2011 Wiley-Liss, Inc.

  11. Enantioselective aldol reactions catalyzed by chiral phosphine oxides.

    Science.gov (United States)

    Kotani, Shunsuke; Sugiura, Masaharu; Nakajima, Makoto

    2013-08-01

    The development of enantioselective aldol reactions catalyzed by chiral phosphine oxides is described. The aldol reactions presented herein do not require the prior preparation of the masked enol ethers from carbonyl compounds as aldol donors. The reactions proceed through a trichlorosilyl enol ether intermediate, formed in situ from carbonyl compounds, which then acts as the aldol donor. Phosphine oxides activate the trichlorosilyl enol ethers to afford the aldol adducts with high stereoselectivities. This procedure was used to realize a directed cross-aldol reaction between ketones and two types of double aldol reactions (a reaction at one/two α position(s) of a carbonyl group) with high diastereo- and enantioselectivities. Copyright © 2013 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Catalytic diastereo- and enantioselective annulations between transient nitrosoalkenes and indoles.

    Science.gov (United States)

    Zhang, Yu; Stephens, David; Hernandez, Graciela; Mendoza, Rosalinda; Larionov, Oleg V

    2012-12-21

    Caught in transition: an efficient catalytic system is the key to the successful development of the first highly diastereo- and enantioselective annulation reaction between indoles and transient nitrosoalkenes. This robust reaction affords structurally unique architectures with up to three new chiral centers. The products can be readily elaborated into other indoline-based chiral heterocyclic motifs, including those of pyrrolidinoindoline alkaloids. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enantioselective decarboxylative amination: synthesis of axially chiral allenyl amines.

    Science.gov (United States)

    Wan, Baoqiang; Ma, Shengming

    2013-01-02

    Getting axed: synthesis of the title amines, bearing functionality (R(1) and R(2)), involves the enantioselective palladium-catalyzed decarboxylation of allenyl N-tosylcarbamates. The reaction proceeds smoothly using both the chiral ligands (S)- and (R)-DTBM-Segphos (1) to afford the allenyl amines in good yields and with high enantioseletivities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Light-Driven Enantioselective Organocatalytic β-Benzylation of Enals

    OpenAIRE

    Amico, L.; Fernández-Alvarez, V.M.; Maseras, F; P. Melchiorre

    2017-01-01

    Abstract A photochemical organocatalytic strategy for the direct enantioselective ??benzylation of ?,??unsaturated aldehydes is reported. The chemistry capitalizes upon the light?triggered enolization of 2?alkyl?benzophenones to afford hydroxy?o?quinodinomethanes. These fleeting intermediates are stereoselectively intercepted by chiral iminium ions, transiently formed upon condensation of a secondary amine catalyst with enals. Density functional theory (DFT) studies provided an explanation fo...

  15. Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations

    OpenAIRE

    Xue, Ming; Li, Bin; Qiu, Shilun; Chen, Banglin

    2016-01-01

    In recent years, chiral microporous materials with open pores have attracted much attention because of their potential applications in enantioselective separation and catalysis. This review summarizes the recent advances on chiral microporous materials, such as metal-organic frameworks (MOFs), hydrogen-bonded organic frameworks (HOFs) and covalent organic frameworks (COFs). We will introduce the synthetic strategies in detail and highlight the current status of chiral microporous materials on...

  16. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    Science.gov (United States)

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. Copyright © 2013 Wiley Periodicals, Inc.

  17. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  18. Robust, Chiral, and Porous BINAP-Based Metal–Organic Frameworks for Highly Enantioselective Cyclization Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Thacker, Nathan C.; Lin, Zekai; McIsaac, Alexandra R.; Lin, Wenbin (UC)

    2016-05-06

    We report here the design of BINAP-based metal–organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee’s) and 4–7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson–Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson–Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson–Khand cyclization reactions without deterioration of yields or ee’s. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions.

  19. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    Science.gov (United States)

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Palladium(II)/Brønsted Acid-Catalyzed Enantioselective Oxidative Carbocyclization–Borylation of Enallenes**

    Science.gov (United States)

    Jiang, Tuo; Bartholomeyzik, Teresa; Mazuela, Javier; Willersinn, Jochen; Bäckvall, Jan-E

    2015-01-01

    An enantioselective oxidative carbocyclization–borylation of enallenes that is catalyzed by palladium(II) and a Brønsted acid was developed. Biphenol-type chiral phosphoric acids were superior co-catalysts for inducing the enantioselective cyclization. A number of chiral borylated carbocycles were synthesized in high enantiomeric excess. PMID:25808996

  1. Enantioselective α-Arylation of Carbonyls via Cu(I)-Bisoxazoline Catalysis

    Science.gov (United States)

    Harvey, James S.; Simonovich, Scott P.; Jamison, Christopher R.; MacMillan, David W. C.

    2011-01-01

    The enantioselective α-arylation of both lactones and acyl oxazolidones has been accomplished using a combination of diaryliodonium salts and copper catalysis. These mild catalytic conditions provide a new strategy for the enantioselective construction and retention of enolizable α-carbonyl benzylic stereocenters, a valuable synthon for the production of medicinal agents. PMID:21848265

  2. Palladium-Catalyzed Enantioselective Three-Component Synthesis of α-Substituted Amines.

    Science.gov (United States)

    Beisel, Tamara; Manolikakes, Georg

    2015-06-19

    The first general palladium-catalyzed, enantioselective three-component synthesis of α-arylamines starting from sulfonamides, aldehydes, and arylboronic acids has been developed. These reactions generate a wide array of α-arylamines with high yields and enantioselectivities. Notably, this process is tolerant to air and moisture, providing an operationally simple approach for the synthesis of chiral α-arylamines.

  3. Highly enantioselective synthesis of chiral cyclic allylic amines via Rh-catalyzed asymmetric hydrogenation.

    Science.gov (United States)

    Zhou, Ming; Liu, Tang-Lin; Cao, Min; Xue, Zejian; Lv, Hui; Zhang, Xumu

    2014-07-03

    Highly regioselective and enantioselective asymmetric hydrogenation of cyclic dienamides catalyzed by an Rh-DuanPhos complex has been developed, which provides a readily accessible method for the synthesis of chiral cyclic allylic amines in excellent enantioselectivities (up to 99% ee). The products are valuable chiral building blocks and could be easily transformed to multisubstituted cyclohexane derivatives.

  4. Enantioselective Michael Addition of Malonates to Chalcone Derivatives Catalyzed by Dipeptide-derived Multifunctional Phosphonium Salts.

    Science.gov (United States)

    Cao, Dongdong; Fang, Guosheng; Zhang, Jiaxing; Wang, Hongyu; Zheng, Changwu; Zhao, Gang

    2016-10-21

    Highly enantioselective Michael addition of malonates to enones catalyzed by dipeptide-derived multifunctional phosphonium salts has been developed. The newly established catalytic system was characterized with its wide substrate scope featured with aliphatic aldehyde-derived enones and substituted malonates. The gram scale-up synthesis of adducts can also be successfully achieved under optimal conditions with both excellent yield and enantioselectivity.

  5. Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst

    NARCIS (Netherlands)

    Boersma, Arnold J.; Coquière, David; Geerdink, Danny; Rosati, Fiora; Roelfes, Gerard; Feringa, Bernard

    2010-01-01

    The enantioselective addition of water to olefins in an aqueous environment is a common transformation in biological systems, but was beyond the ability of synthetic chemists. Here, we present the first examples of a non-enzymatic catalytic enantioselective hydration of enones, for which we used a

  6. Copper-catalyzed enantioselective conjugate addition of organometallic reagents to acyclic dienones

    NARCIS (Netherlands)

    Sebesta, Radovan; Pizzuti, M. Gabriella; Minnaard, Adriaan J.; Feringa, Ben L.; Šebesta, Radovan

    The enantioselective, copper/phosphoramidite-catalyzed 1,4-addition of dialkylzinc reagents to acyclic dienones is described. The products of this reaction, obtained with enantioselectivities of up to 95%, can be further functionalized by a second conjugate addition, or employed in an enolate

  7. Enantioselective Copper-Catalyzed Arylation-Driven Semipinacol Rearrangement of Tertiary Allylic Alcohols with Diaryliodonium Salts.

    Science.gov (United States)

    Lukamto, Daniel H; Gaunt, Matthew J

    2017-07-12

    A copper-catalyzed enantioselective arylative semipinacol rearrangement of allylic alcohols using diaryliodonium salts is reported. Chiral Cu(II)-bisoxazoline catalysts initiate an electrophilic alkene arylation, triggering a 1,2-alkyl migration to afford a range of nonracemic spirocyclic ketones with high yields, diastereo- and enantioselectivities.

  8. Rhodium/bisphosphine-thiourea-catalyzed enantioselective hydrogenation of α,β-unsaturated N-acylpyrazoles.

    Science.gov (United States)

    Li, Pan; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu

    2016-09-22

    We successfully extended our Rh/bisphosphine-thiourea (ZhaoPhos) catalytic system to asymmetric hydrogenation of α,β-unsaturated N-acylpyrazoles affording products with high yields and excellent enantioselectivities (up to 97% yield, 99% ee). The pyrazole moiety played an important role in providing H-bond acceptor sites, which is critical for achieving high reactivities and enantioselectivities.

  9. An enantioselective synthesis of S-[gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride, an important metabolite of fluoxetine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, W.J. (Lilly (Eli) and Co., Indianapolis, IN (United States). Lilly Research Labs.)

    1992-06-01

    The S-enantiomer of [gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride has been prepared in eight steps from acetophenone-[carbonyl-[sup 14]C]. The key step in the synthesis involved the enantioselective reduction of R-2-chloroacetophenone-[1-[sup 14]C]with (-)-diisopinocampheyl-chloroborane in an 86.5% yield. The chlorohydrin was converted to R-phenyloxirane-[1-[sup 14]C], which was subsequently converted to the corresponding R-cyanohydrin by reaction with TMS-CN/CaO. Borane reduction and arylation, followed by salt formation yielded S-[gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride. (author).

  10. Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsbaek, D.B. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Frommen, C. [Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller (Norway); Reed, D. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Filinchuk, Y. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, 1 Place L. Pasteur, B-1348, Louvain-la-Neuve (Belgium); Sorby, M.; Hauback, B.C. [Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller (Norway); Jakobsen, H.J. [Instrument Centre for Solid-State NMR Spectroscopy and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Book, D. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Besenbacher, F. [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Skibsted, J. [Instrument Centre for Solid-State NMR Spectroscopy and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Jensen, T.R., E-mail: trj@chem.au.dk [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark)

    2011-09-15

    {sub 4}){sub 5}]{sup -}. These parameters agree favorably well with the isotropic triple-quantum shifts, observed in an {sup 11}B MQMAS NMR experiment. The present results may aid in the development and understanding of new borohydride materials for applications as fast ion conductors or as materials for hydrogen storage.

  11. A direct borohydride fuel cell based on poly(vinyl alcohol)/hydroxyapatite composite polymer electrolyte membrane

    Science.gov (United States)

    Yang, Chun-Chen; Li, Yingjeng James; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Huang, Ching-An

    A new poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) composite polymer membrane was synthesized using a solution casting method. Alkaline direct borohydride fuel cells (DBFCs), consisting of an air cathode based on MnO 2/C inks on Ni-foam, anodes based on PtRu black and Au catalysts on Ni-foam, and the PVA/HAP composite polymer membrane, were assembled and investigated for the first time. It was demonstrated that the alkaline direct borohydride fuel cell comprised of this low-cost PVA/HAP composite polymer membrane showed good electrochemical performance. As a result, the maximum power density of the alkaline DBFC based on the PtRu anode (45 mW cm -2) proved higher than that of the DBFC based on the Au anode (33 mW cm -2) in a 4 M KOH + 1 M KBH 4 solution at ambient conditions. This novel PVA/HAP composite polymer electrolyte membrane with high ionic conductivity at the order of 10 -2 S cm -1 has great potential for alkaline DBFC applications.

  12. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride

    Directory of Open Access Journals (Sweden)

    Hilsamar Félix-Rivera

    2011-01-01

    Full Text Available The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt were identified by surface-enhanced Raman scattering (SERS spectroscopy using silver (Ag nanoparticles (NPs reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of “hot spots”, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.

  13. Experimental advances and preliminary mathematical modeling of the Swiss-roll mixed-reactant direct borohydride fuel cell

    Science.gov (United States)

    Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.

    2014-11-01

    The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.

  14. XPS, TEM and SAD investigations of nanosized Co{sub x}B{sub y}H{sub z} particles obtained by two different borohydride methods

    Energy Technology Data Exchange (ETDEWEB)

    Krastev, V. [Bulgarian Acad. of Sci., Sofia (Bulgaria). Inst. of General and Inorg. Chem.; Stoycheva, M. [Central Laboratory of Electrochemical Power Sources, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Lefterova, E. [Central Laboratory of Electrochemical Power Sources, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Dragieva, I. [Central Laboratory of Electrochemical Power Sources, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Stoynov, Z. [Central Laboratory of Electrochemical Power Sources, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria)

    1996-07-01

    The nanosized Co{sub x}B{sub y}H{sub z} particles synthesised by the ``tea`` and ``antigravity`` methods using a borohydride reduction process have been subjected to structure and composition studies by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and selected area diffraction (SAD). The amounts of the elements Co, B, O{sub 2}, H{sub 2} and C as mean volume values, and surface values for the as-prepared particles, as well as after Ar{sup +} etching to a depth of about 15 nm and 30 nm from the initial particle surface, are determined. About 1.5 atoms of cobalt per atom of boron correspond to samples obtained by the ``antigravity`` method. The binding energy (BE) of 1s electrons of boron atoms has only one value. These particles are angular and are in the typical nanocrystalline state. In the case of samples prepared by the ``tea`` method, two atoms of cobalt per atom of boron are found. The presence of two kinds of BE (B{sup I} and B{sup II}) of 1s electrons of boron atoms in the particles obtained by the ``tea`` method is observed and almost equal amounts of these two states are established in the spectrum. The particles` shape and structure are typical of the amorphous state. The fact that there is one peak when the ``antigravity`` method is applied, in contrast to the two peaks with the ``tea`` method indicates the presence of a metal amorphous state in the latter case. (orig.)

  15. Oxy-Allyl Cation Catalysis: An Enantioselective Electrophilic Activation Mode

    Science.gov (United States)

    Liu, Chun; Oblak, E. Zachary; Vander Wal, Mark N.; Dilger, Andrew K.; Almstead, Danielle K.; MacMillan, David W. C.

    2016-01-01

    A generic activation mode for asymmetric LUMO-lowering catalysis has been developed using the long-established principles of oxy-allyl cation chemistry. Here, the enantioselective conversion of racemic α-tosyloxy ketones to optically enriched α-indolic carbonyls has been accomplished using a new amino alcohol catalyst in the presence of electron-rich indole nucleophiles. Kinetic studies reveal that the rate-determining step in this SN1 pathway is the catalyst-mediated α-tosyloxy ketone deprotonation step to form an enantiodiscriminant oxy-allyl cation prior to the stereodefining nucleophilic addition event. PMID:26797012

  16. Synthesis, structure and properties of bimetallic sodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gd

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein; Ravnsbæk, Dorthe B.; Černý, Radovan

    2017-01-01

    Formation, stability and properties of new metal borohydrides within RE(BH4)3-NaBH4, RE = Ce, Pr, Er or Gd is investigated. Three new bimetallic sodium rare-earth borohydrides, NaCe(BH4)4, NaPr(BH4)4 and NaEr(BH4)4 are formed based on an addition reaction between NaBH4 and halide free rare...... to formation of metal hydrides and possibly slower formation of sodium borohydride. The dehydrogenated state clearly contains rare-earth metal borides, which stabilize boron in the dehydrogenated state.......-earth metal borohydrides RE(BH4)3, RE = Ce, Pr, Er. All the new compounds crystallize in the orthorhombic crystal system. NaCe(BH4)4 has unit cell parameters of a = 6.8028(5), b = 17.5181(13), c = 7.2841(5) Å and space group Pbcn. NaPr(BH4)4 is isostructural to NaCe(BH4)4 with unit cell parameters of a = 6...

  17. Nickel-catalyzed regio- and enantioselective aminolysis of 3,4-epoxy alcohols.

    Science.gov (United States)

    Wang, Chuan; Yamamoto, Hisashi

    2015-04-08

    The first catalytic regio- and enantioselective aminolysis of 3,4-epoxy alcohols has been accomplished. Under the catalysis of Ni(ClO4)2·6H2O, the C4 selective ring opening of various 3,4-epoxy alcohols proceeded in a stereospecific manner with high regioselectivities. Furthermore, with the Ni-BINAM catalytic system the enantioselective ring opening of 3,4-epoxy alcohols furnished various γ-hydroxy-δ-amino alcohols as products with complete regiocontrol and high enantioselectivities (up to 94% ee).

  18. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Science.gov (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  19. Chiral separation and enantioselective degradation of vinclozolin in soils.

    Science.gov (United States)

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  20. Cu-catalyzed enantioselective allylic alkylation with organolithium reagents.

    Science.gov (United States)

    Hornillos, Valentín; Guduguntla, Sureshbabu; Fañanás-Mastral, Martín; Pérez, Manuel; Bos, Pieter H; Rudolph, Alena; Harutyunyan, Syuzanna R; Feringa, Ben L

    2017-03-01

    This protocol describes a method for the catalytic enantioselective synthesis of tertiary and quaternary carbon stereogenic centers, which are widely present in pharmaceutical and natural products. The method is based on the direct reaction between organolithium compounds, which are cheap, readily available and broadly used in chemical synthesis, and allylic electrophiles, using chiral copper catalysts. The methodology involves the asymmetric allylic alkylation (AAA) of allyl bromides, chlorides and ethers with organolithium compounds using catalyst systems based on Cu-Taniaphos and Cu-phosphoramidites. The protocol contains a complete description of the reaction setup, a method based on 1 H-NMR, gas chromatography-mass spectrometry (GC-MS) and chiral HPLC for assaying the regioselectivity and enantioselectivity of the product, and isolation, purification and characterization procedures. Six Cu-catalyzed AAA reactions between different organolithium reagents and allylic systems are detailed in the text as representative examples of these procedures. These reactions proceed within 1-10 h, depending on the nature of the allylic substrate (bromide, chloride, or ether and disubstituted or trisubstituted) or the chiral ligand used (Taniaphos or phosphoramidite). However, the entire protocol, including workup and purification, generally requires an additional 4-7 h to complete.

  1. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    Science.gov (United States)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  2. Alloxazine-cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations.

    Science.gov (United States)

    Mojr, Viktor; Buděšínský, Miloš; Cibulka, Radek; Kraus, Tomáš

    2011-11-07

    Four structurally different alloxazine-cyclodextrin conjugates were prepared and tested as catalysts for the enantioselective oxidation of prochiral sulfides to sulfoxides by hydrogen peroxide in aqueous solutions. The alloxazinium unit was appended to the primary face of α- and β-cyclodextrins via a linker with variable length. A series of sulfides was used as substrates: n-alkyl methyl sulfides (n-alkyl = hexyl, octyl, decyl, dodecyl), cyclohexyl methyl sulfide, tert-butyl methyl sulfide, benzyl methyl sulfide and thioanisol. α-Cyclodextrin conjugate having alloxazinium unit attached via a short linker proved to be a suitable catalyst for oxidations of n-alkyl methyl sulfides, displaying conversions up to 98% and enantioselectivities up to 77% ee. β-Cyclodextrin conjugates were optimal catalysts for the oxidation of sulfides carrying bulkier substituents; e.g. tert-butyl methyl sulfide was oxidized with quantitative conversion and 91% ee. Low loadings (0.3-5 mol%) of the catalysts were used. No overoxidation to sulfones was observed in this study.

  3. Enantioselective degradation and enantiomerization of indoxacarb in soil.

    Science.gov (United States)

    Sun, Dali; Pang, Junxiao; Qiu, Jing; Li, Li; Liu, Chenglan; Jiao, Bining

    2013-11-27

    In this study, the enantioselective degradation and enantiomerizaton of indoxacarb were investigated in two soils under nonsterilized and sterilized conditions using a chiral OD-RH column on a reversed-phase HPLC. Under nonsterilized conditions, the degradation of indoxacarb in two soils was enantioselective. In acidic soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 10.43 and 14.00 days, respectively. Acidic soil was preferential to the degradation of R-(-)-indoxacarb. In alkaline soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 12.14 and 4.88 days, respectively. S-(+)-Indoxacarb was preferentially degraded. Under sterilized conditions, approximately 5-10% of the initial concentration degraded after 75 days of incubation in acidic soil, whereas in alkaline soil, approximately half of the initial concentration degraded due to chemical hydrolysis under alkaline conditions. Enantiomerization was also discovered in acidic and alkaline soils. The results showed that mutual transformation existed between two enantiomers and that S-(+)-indoxacarb had a significantly higher inversion rate to R-(-)-indoxacarb than its antipode.

  4. Baker’s Yeast Mediated Reduction of 2-Acetyl-3-methyl Sulfolane

    Directory of Open Access Journals (Sweden)

    Rebecca E. Deasy

    2014-06-01

    Full Text Available The baker’s yeast mediated reduction of 2-acetyl-3-methyl sulfolane 1 to provide the corresponding alcohol 2 is described. Excellent efficiency and enantioselectivity (>98% ee has been achieved under these mild environmentally benign reaction conditions. In direct contrast, the chemical reduction of 1 proceeds with poor yield (≤25% and diastereocontrol.

  5. Mixed Allyl Rare-Earth Borohydride Complexes: Synthesis, Structure, and Application in (Co-)Polymerization Catalysis of Cyclic Esters.

    Science.gov (United States)

    Fadlallah, Sami; Jothieswaran, Jashvini; Capet, Frédéric; Bonnet, Fanny; Visseaux, Marc

    2017-11-07

    A series of new trivalent rare-earth allyl-borohydride complexes with the formula [RE(BH4 )2 (C3 H5 )(thf)x ] (RE=Sc (1), x=2; RE=Y (2) and La (3), x=3) were synthesized by reaction of the corresponding rare-earth trisborohydrides [RE(BH4 )3 (thf)x ] with half an equivalent of bis(allyl)magnesium. The complexes were fully characterized by determining their X-ray structure. Similar to their previously described Nd (4) and Sm (5) analogues, these complexes display a monomeric structure with two terminal trihapto BH4 groups, one π-η3 allyl ligand, three THF molecules for complexes 2 and 3, and two THF molecules for complex 1. The catalytic behavior of complexes 1-5 toward the ring-opening polymerization (ROP) of l-lactide (l-LA) and ϵ-caprolactone (ϵ-CL) was assessed. The Nd complex featured the best activity toward l-LA (turnover frequency (TOF)=1300 h-1 ) and the order was Nd>La>Sm>Y>Sc. Complexes 1-3 were found very active for the ROP of ϵ-CL (TOF=166 000 h-1 ), which is in line with the already established exceptionnally high performance of complexes 4 and 5. With both monomers, it was shown that the borohydride moiety was the preferentially initiating group, rather than the allyl one. The random copolymerization of l-LA and ϵ-CL was performed with complexes 1-5, in the absence or in the presence of benzyl alcohol as a chain-transfer agent, affording copolymers with ϵ-caprolactone up to 62 % inserted. The copolymers synthesized display a variety of microstructures, that is, blocky, random, or quasi-alternating. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimisation of stabilised carboxylesterase NP for enantioselective hydrolysis of naproxen methyl ester

    CSIR Research Space (South Africa)

    Steenkamp, Lucia H

    2008-12-01

    Full Text Available Although the enantioselective kinetic resolution of ester racemates of the non-steroidal antiinflammatory drug naproxen ([2-(6-methoxy-2-naphthyl) propionic acid]) is a common demonstration for biocatalysis, the enantiomeric excess of the reactions...

  7. Enantioselective Addition of Organolithium Reagents to Imines Mediated by C2-Symmetric Bis(aziridine) Ligands

    DEFF Research Database (Denmark)

    Johansson, F.; Tanner, David Ackland

    1998-01-01

    The C-2-symmetric bis(aziridine) ligands 1 - 5 have been screened in the enantioselective addition of organolithium reagents to imines. Ligand 1 (used in stoichiometric amounts) was found to be superior in terms of chemical yield and enantioselectivity, the best result being 90% yield and 89% e.......e. in the addition of vinyllithium to imine 6a. Use of ligand 1 in substoichiometric amounts gave poorer yield and lower enantioselectivity. The enantioselectivity of the reaction was investigated as a function of substrate, reagent, stoichiometry and temperature, but no firm mechanistic conclusions could be drawn....... Preliminary results with deuterium-labelled methyllithium indicate complexation/exchange processes involving ligand, reagent and substrate. (C) 1998 Elsevier Science Ltd. All rights reserved....

  8. Improved Enantioselectivity of Subtilisin Carlsberg towards Secondary Alcohols by Protein Engineering

    DEFF Research Database (Denmark)

    Dorau, Robin; Görbe, Tamas; Svedendahl Humble, Maria

    2017-01-01

    Generally, the catalytic activity of subtilisin Carlsberg (SC) for transacylation reactions with secondary alcohols in organic solvent is low. Enzyme immobilization and protein engineering was performed to improve the enantioselectivity of SC towards secondary alcohols. Possible amino-acid residues...

  9. Identification of Enantioselective Extractants for Chiral Separation of Amines and Amino-Alcohols

    NARCIS (Netherlands)

    Steensma, M.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2006-01-01

    lack of versatile enantioselective extractants. Therefore, a rational approach is developed to transfer the extensive knowledge of chiral selectors reported in the literature on chiral recognition and other chiral separation techniques to extraction. Based on a similarity in separation mechanisms,

  10. Quantum Molecular Interaction Field Models of Substrate Enantioselection in Asymmetric Processes.

    Science.gov (United States)

    Kozlowski, Marisa C; Ianni, James C

    2010-06-01

    Computational models correlating substrate structure to enantioselection with asymmetric catalysts using the QMQSAR program are described. In addition to rapidly providing predictions that could be used to facilitate the screening of catalysts for novel substrates, the QMQSAR program identifies the portions of the substrate that most directly influence the enantioselectivity. The lack underlying relationship between all the substrates in one case, requires two quantitative structure selectivity relationships (QSSR) models to describe all of the experimental results.

  11. Enantioselective α-Vinylation of Aldehydes Via the Synergistic Combination of Copper and Amine Catalysis

    Science.gov (United States)

    Skucas, Eduardas; MacMillan, David W. C.

    2012-01-01

    The enantioselective α-vinylation of aldehydes using vinyl iodonium triflate salts has been accomplished via the synergistic combination of copper and chiral amine catalysis. These mild catalytic conditions provide a direct route for the enantioselective construction of enolizable α-formyl vinylic stereocenters without racemization or olefin transposition. These high-value coupling adducts are readily converted into a variety of useful olefin synthons. PMID:22616631

  12. Biomarkers of Oxidative Stress in the Assessment of Enantioselective Toxicity of Chiral Pesticides.

    Science.gov (United States)

    Ye, Xiaoqing; Liu, Ying; Li, Feixue

    2017-01-01

    In biological systems, the individual stereoisomers of chiral substances possess significantly different biochemical properties because the specific structure-activity relationships are required for a common site on biomolecules. In the past decade, there has been increasing concern over the enantioselective toxicity of environmental chiral pollutants, especially chiral pesticides. Different responses and activities of a pair of enantiomers of chiral pesticides were often observed. Therefore, assessment of the enantioselective toxicological properties of chiral pesticides is a prerequisite in application of single-isomer products and particularly important for environmental protection. The development of biomarkers that can predict enantioselective effects from chiral pesticides has recently been gained more and more attention. The biomarkers of oxidative stress have become a topic of significant interest for toxic assessments. In this review, we summarized current knowledge and advances in the understanding of enantiomeric oxidative processes in biological systems in response to chiral pesticides. The consistent results in two types of chiral insecticides (synthetic pyrethroids and organochlorine pesticides) showed the significant difference in cytotoxicity of enantiomers, suggesting the antioxidant enzymes are reliable biomarkers for the assessment of toxicity of chiral chemicals. Results indicate that antioxidant enzymes are sensitive and valid biomarkers to assess the oxidative damage caused by chiral herbicides. In addition, it can be inferred that the enantioselectivity of chiral herbicides on antioxidant enzymes exists in other species. Compared with insecticides and herbicides, researches about the enantioselectivity of oxidative stress caused by chiral fungicides are quite limited. Only two kinds of chiral fungicides has been used to study the enantioselectivity of oxidative stress by now. The current knowledge that enantioselective processes of oxidative

  13. Enhancement of Enantioselectivity by Altering Alcohol Concentration for Esterification in Supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jau-yann.; Liang, Ming-tsai

    1999-06-01

    This work used Candida rugosa lipase to resolve racemic Naproxen by esterification with ethanol, n-butanol, n-hexanol, or n-decanol in supercritical CO{sub 2}. It was found that the lipase enantioselectively esterified (S)-Naproxen within all systems. The enantiomeric ratio increased four folds by slightly decreasing the alcohol concentration. The effect of the alcohol concentration on the enantioselectivity was greater than of changing acyl acceptors. (author)

  14. Enhancement of Enantioselectivity by Altering Alcohol Concentration for Esterification in Supercritical CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jau-yann.; Liang, Ming-tsai

    1999-06-01

    This work used Candida rugosa lipase to resolve racemic Naproxen by esterification with ethanol, n-butanol, n-hexanol, or n-decanol in supercritical CO[sub 2]. It was found that the lipase enantioselectively esterified (S)-Naproxen within all systems. The enantiomeric ratio increased four folds by slightly decreasing the alcohol concentration. The effect of the alcohol concentration on the enantioselectivity was greater than of changing acyl acceptors. (author)

  15. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  16. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Meirong [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Fang [College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Wang Cui; Zhang Quan [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Gan Jianying [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Liu Weiping, E-mail: wliu@zjut.edu.c [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2010-05-15

    The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (-)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study. - Chiral contaminants should consider multiple effects and relate directions of enantioselectivity to their interplaying processes.

  17. Enantioselective Biosynthesis of l-Phenyllactic Acid by Whole Cells of Recombinant Escherichia coli.

    Science.gov (United States)

    Zhu, Yibo; Wang, Ying; Xu, Jiayuzi; Chen, Jiahao; Wang, Limei; Qi, Bin

    2017-11-15

    l-Phenyllactic acid (l-PLA)-a valuable building block in the pharmaceutical and chemical industry-has recently emerged as an important monomer in the composition of the novel degradable biocompatible material of polyphenyllactic acid. However, both normally chemically synthesized and naturally occurring phenyllactic acid are racemic, and the product yields of reported l-PLA synthesis processes remain unsatisfactory. We developed a novel recombinant Escherichia coli strain, co-expressing l-lactate dehydrogenase (l-LDH) from Lactobacillus plantarum subsp. plantarum and glucose dehydrogenase (GDH) from Bacillus megaterium, to construct a recombinant oxidation/reduction cycle for whole-cell biotransformation of phenylpyruvic acid (PPA) into chiral l-PLA in an enantioselective and continuous manner. During fed-batch bioconversion with intermittent PPA feeding, l-PLA yield reached 103.8 mM, with an excellent enantiomeric excess of 99.7%. The productivity of l-PLA was as high as 5.2 mM·h-1 per OD600 (optical density at 600 nm) of whole cells. These results demonstrate the efficient production of l-PLA by the one-pot biotransformation system. Therefore, this stereoselective biocatalytic process might be a promising alternative for l-PLA production.

  18. Catalytic Enantioselective Alkylation of β-Keto Esters with Xanthydrol in the Presence of Chiral Palladium Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Yeon; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-01-15

    Our research interest has been directed toward the development of synthetic methods for the enantioselective construction of stereogenic carbon centers. Recently, we explored the catalytic enantioselective functionalization of active methines in the presence of chiral palladium(II) complexes. In conclusion, we have accomplished the efficient catalytic enantioselective alkylation of β-keto esters 1 with xanthydrol 2 with high yields and excellent enantioselectivity (up to 98% ee). It should be noted that this alkyaltion reaction proceeds well using air- and moisture-stable chiral palladium com- plexes with low loading (1 mol%)

  19. Enantioselective construction of spirocyclic oxindoles via Tandem michael/Michael reactions catalyzed by multifunctional quaternary phosphonium salt

    National Research Council Canada - National Science Library

    Hongyu Wang; Yongjia Shang; Dongdong Cao; Jiaxing Zhang; Gang Zhao; Changwu Zheng

    2016-01-01

    The enantioselective construction of five-membered spirocyclic oxindoles via a double Michael cascade reaction is described by using dipeptide-based multifunctional quaternary phosphonium salt catalysts...

  20. Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae.

    Science.gov (United States)

    Liu, Chen; LV, Xiao Tian; Zhu, Wen Xue; QU, Hao Yang; Gao, Yong Xin; Guo, Bao Yuan; Wang, Hui Li

    2013-12-01

    The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer. © 2013 Wiley Periodicals, Inc.

  1. An enantioselective cascade reaction between α,β-unsaturated aldehydes and malonic half-thioesters: a rapid access to chiral δ-lactones.

    Science.gov (United States)

    Ren, Qiao; Sun, Shaofa; Huang, Jiayao; Li, Wenjun; Wu, Minghu; Guo, Haibing; Wang, Jian

    2014-06-11

    We disclose a novel efficient enantioselective organocatalytic cascade reaction for the preparation of δ-lactones in good to excellent yields (69-93%) and with high to excellent enantioselectivities (88-96% ee).

  2. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH{sub 4}-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.H. [Department of Materials and Engineering, Zhejiang University (China); Li, Z.P.; Chen, L.L. [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-05-15

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH{sub 4} gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH{sub 4} concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl{sub 2} catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH{sub 4} gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH{sub 4} solution. The NaBH{sub 4} gel also successfully powered a NaBH{sub 4}-air battery. (author)

  3. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    Science.gov (United States)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  4. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  5. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)(2) and chiral amino alcohols

    NARCIS (Netherlands)

    de Vries, A.H.M.; Feringa, B.L.

    1997-01-01

    Co(acac)(2) in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved. (C) 1997 Elsevier Science Ltd.

  6. Parameterization of Acyclic Diaminocarbene Ligands Applied to a Gold(I)-Catalyzed Enantioselective Tandem Rearrangement/Cyclization.

    Science.gov (United States)

    Niemeyer, Zachary L; Pindi, Suresh; Khrakovsky, Dimitri A; Kuzniewski, Christian N; Hong, Cynthia M; Joyce, Leo A; Sigman, Matthew S; Toste, F Dean

    2017-09-20

    Computed descriptors for acyclic diaminocarbene ligands are developed in the context of a gold catalyzed enantioselective tandem [3,3]-sigmatropic rearrangement-[2+2]-cyclization. Surrogate structures enable the rapid identification of parameters that reveal mechanistic characteristics. The observed selectivity trends are validated in a robust multivariate analysis facilitating the development of a highly enantioselective process.

  7. Enantioselective N-heterocyclic carbene-catalyzed synthesis of saccharine-derived dihydropyridinones with cis-selectivity.

    Science.gov (United States)

    Liang, Zhi-Qin; Wang, Dong-Ling; Zhang, Chun-Lin; Ye, Song

    2016-07-06

    The enantioselective N-heterocyclic carbene-catalyzed [2 + 4] cyclocondensation of α-chloroaldehydes and saccharine-derived 1-azadienes was developed, giving the corresponding saccharine-derived dihydropyridinones in good yields with exclusive cis-selectivities and excellent enantioselectivities.

  8. Enantioselective Aza-Sakurai Cyclizations: Dual Role of Thiourea as H-Bond Donor and Lewis Base.

    Science.gov (United States)

    Park, Yongho; Schindler, Corinna S; Jacobsen, Eric N

    2016-11-16

    An enantioselective, catalytic aza-Sakurai cyclization of chlorolactams has been developed as an efficient entry into indolizidine and quinolizidine frameworks. Structure-enantioselectivity relationship studies and mechanistic analysis point to a dual role of the catalyst wherein the thiourea moiety of the catalyst is engaged in both anion binding and Lewis base activation of a substrate.

  9. Enantioselective cytotoxicity profile of o,p'-DDT in PC 12 cells.

    Science.gov (United States)

    Zhao, Meirong; Wang, Cui; Zhang, Chunlong; Wen, Yuezhong; Liu, Weiping

    2012-01-01

    The continued uses of dichlordiphenyltrichloroethane (DDT) for indoor vector control in some developing countries have recently fueled intensive debates toward the global ban of this persistent legacy contaminant. Current approaches for ecological and health risk assessment has ignored the chiral nature of DDT. In this study by employing an array of cytotoxicity related endpoints, we investigated the enantioselective cytotoxicity of o,p'-DDT. we demonstrated for the first time that R-(-)-o,p'-DDT caused more neuron cell death by inducing more severe oxidative stress, which selectively imbalanced the transcription of stress-related genes (SOD1, SOD2, HSP70) and enzyme (superoxide dismutase and lactate dehydrogenase) activities, and greater cellular apoptosis compared to its enantiomer S-(+)-o,p'-DDT at the level comparable to malaria area exposure (parts per million). We further elucidated enantioselective modes of action using microarray combined with enzyme-linked immunosorbent assay. The enantioselective apoptosis might involve three signaling pathways via caspase 3, tumor protein 53 (p53) and NF(k)B. Based on DDT stereochemistry and results reported for other chiral pesticides, our results pointed to the same directional enantioselectivity of chiral DDT toward mammalian cells. We proposed that risk assessment on DDT should consider the enantiomer ratio and enantioselectivities.

  10. Enantioselective cytotoxicity profile of o,p'-DDT in PC 12 cells.

    Directory of Open Access Journals (Sweden)

    Meirong Zhao

    Full Text Available The continued uses of dichlordiphenyltrichloroethane (DDT for indoor vector control in some developing countries have recently fueled intensive debates toward the global ban of this persistent legacy contaminant. Current approaches for ecological and health risk assessment has ignored the chiral nature of DDT. In this study by employing an array of cytotoxicity related endpoints, we investigated the enantioselective cytotoxicity of o,p'-DDT.we demonstrated for the first time that R-(--o,p'-DDT caused more neuron cell death by inducing more severe oxidative stress, which selectively imbalanced the transcription of stress-related genes (SOD1, SOD2, HSP70 and enzyme (superoxide dismutase and lactate dehydrogenase activities, and greater cellular apoptosis compared to its enantiomer S-(+-o,p'-DDT at the level comparable to malaria area exposure (parts per million. We further elucidated enantioselective modes of action using microarray combined with enzyme-linked immunosorbent assay. The enantioselective apoptosis might involve three signaling pathways via caspase 3, tumor protein 53 (p53 and NF(kB.Based on DDT stereochemistry and results reported for other chiral pesticides, our results pointed to the same directional enantioselectivity of chiral DDT toward mammalian cells. We proposed that risk assessment on DDT should consider the enantiomer ratio and enantioselectivities.

  11. Enantioselective Cytotoxicity Profile of o,p’-DDT in PC 12 Cells

    Science.gov (United States)

    Zhang, Chunlong; Wen, Yuezhong; Liu, Weiping

    2012-01-01

    Background The continued uses of dichlordiphenyltrichloroethane (DDT) for indoor vector control in some developing countries have recently fueled intensive debates toward the global ban of this persistent legacy contaminant. Current approaches for ecological and health risk assessment has ignored the chiral nature of DDT. In this study by employing an array of cytotoxicity related endpoints, we investigated the enantioselective cytotoxicity of o,p’-DDT. Principal Findings we demonstrated for the first time that R-(−)-o,p’-DDT caused more neuron cell death by inducing more severe oxidative stress, which selectively imbalanced the transcription of stress-related genes (SOD1, SOD2, HSP70) and enzyme (superoxide dismutase and lactate dehydrogenase) activities, and greater cellular apoptosis compared to its enantiomer S-(+)-o,p’-DDT at the level comparable to malaria area exposure (parts per million). We further elucidated enantioselective modes of action using microarray combined with enzyme-linked immunosorbent assay. The enantioselective apoptosis might involve three signaling pathways via caspase 3, tumor protein 53 (p53) and NFkB. Conclusions Based on DDT stereochemistry and results reported for other chiral pesticides, our results pointed to the same directional enantioselectivity of chiral DDT toward mammalian cells. We proposed that risk assessment on DDT should consider the enantiomer ratio and enantioselectivities. PMID:22937105

  12. Characterization of Diastereo- and Enantioselectivity in Degradation of Synthetic Pyrethroids in Soils.

    Science.gov (United States)

    Li, Shaotong; Li, Zhaoyang; Li, Qiaoling; Zhao, Jiahe; Li, Sen

    2016-01-01

    Permethrin (PM), cypermethrin (CP), and cyfluthrin (CF) are three important synthetic pyrethroids, which contain two, four, and four enantiomeric pairs (diastereomers) and thus have four, eight, and eight stereoisomers, respectively. In this study, the stereo- and enantioselective degradation of PM, CP, and CF in a Shijiazhuang alkaline yellow soil and a Wuhan acidic red soil were studied in detail by a combination of achiral and chiral high-performance liquid chromatography (HPLC). The results showed that PM, CP, and CF degraded faster in Shijiazhuang soil than in Wuhan soil, and the dissipation rate followed an order of PM > CF > CP in both soils. The three pyrethroids exhibited similar diastereomer selectivity, while CP and CF showed higher enantioselectivity than PM. Moreover, the trans-diastereomers degraded faster, and showed higher enantioselectivity than the corresponding cis-diastereomers. For PM, the enantiomer 1S-trans-PM degraded most rapidly in both soils. As for CP and CF, the highest enantioselectivity was observed for diastereomer trans-3, and the insecticidally active enantiomer 1R-trans-αS degraded fastest among the 8 CP or CF stereoisomers in both soils. In addition, the Wuhan acidic soil displayed higher diastereomer and enantiomer selectivity than the Shijiazhuang alkaline soil for the three pyrethroids. Further incubation of CF in an alkaline-treated Wuhan soil showed that the dissipation rate greatly increased and the diastereo- and enantioselectivity significantly decreased after the alkaline treatment process. © 2015 Wiley Periodicals, Inc.

  13. Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida).

    Science.gov (United States)

    Qu, Han; Wang, Peng; Ma, Rui-Xue; Qiu, Xing-Xu; Xu, Peng; Zhou, Zhi-Qiang; Liu, Dong-Hui

    2014-07-01

    The enantioselective acute toxicity to earthworms of racemic fipronil and its individual enantiomers was studied. R-(-)-fipronil was approximately 1.5 times more toxic than the racemate and approximately 2 times more toxic than S-(+)-fipronil after 72 and 96 h of exposure, respectively. Assays of fipronil enantiomer bioaccumulation and degradation in earthworms were conducted. The bio-concentration factors (BCFs) were slightly different between the two enantiomers. The enantiomeric fraction (EF) values in earthworms in the bioaccumulation period were approximately 0.5, which indicated there was no enantioselective bioaccumulation. In contrast, the degradation of fipronil in earthworms was enantioselective: the t1/2 values for R- and S-fipronil were 3.3 and 2.5 days, respectively, in natural soil, and 2.1 and 1.4 days, respectively, in artificial soil. The results of soil analyses showed that the degradation of fipronil was not enantioselective, which suggested that the enantioselectivity of fipronil in earthworms results from the organism's metabolism. The study also demonstrated that the presence of earthworms could accelerate the degradation of fipronil in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction - enantioselective gas chromatography.

    Science.gov (United States)

    Liu, Weiping; Gan, Jay J

    2004-02-25

    Solid phase microextraction (SPME) is an ideal sample preparation technique because of its speed and solvent-free features. Sampling by SPME is selective and only the dissolved concentration is measured, which allows measurement of the bioavailable fraction of a contaminant in aqueous media. One potential application of SPME is for analysis of enantiomers of chiral contaminants in environmental samples. In this study, a method was developed for determining enantiomers of (Z)-cis-bifenthrin and cis-permethrin in water using coupled SPME and enantioselective gas chromatography (GC). Following SPME sampling, enantiomers of (Z)-cis-bifenthrin and cis-permethrin were separated at the baseline on a beta-cyclodextrin-based enantioselective column, and analyte enrichment onto the SPME fiber was not enantioselective. The GC response increased as sampling time was increased from 0 to 240 min, and as sampling temperature was increased from 20 to 40 degrees C. Organic solvents such as methanol, acetone, and acetonitrile enhanced, while soil extracts slightly decreased, the GC response. The integrated SPME-enantioselective GC method was used to analyze surface runoff samples. The analysis showed preferential degradation of the 1S-3S enantiomer over the 1R-3R enantiomer for both (Z)-cis-bifenthrin and cis-permethrin. The concentrations detected by SPME-GC were substantially smaller than those determined following solvent extraction, suggesting that SPME-enantioselective GC analysis selectively measured the dissolved fraction.

  15. Enantioselective Effects of Chiral Pesticides on their Primary Targets and Secondary Targets.

    Science.gov (United States)

    Yang, Ye; Zhang, Jianyun; Yao, Yijun

    2017-01-01

    Enantioselectivity has been well recognized in the environmental fate and effects of chiral pesticides. Enantiospecific action of the optical enantiomers on the biological molecules establishes the mechanistic basis for the enantioselective toxicity of chiral pesticides to both target and non-target organisms. We undertook a structured search of bibliographic databases for research literature concerning the enantioselective effects of chiral pesticides, including insecticides, herbicides and fungicides, on biomolecules in various species by using some key words. The results of the relevant literatures were reviewed in the text and summarized in tables. Pesticides generally exert their activity on the target organisms via disrupting the primary target biomolecules. In non-target species, effects of pesticides on the secondary targets distinguished from the primary ones make great contribution to their toxicity. Recent investigations have provided convincing evidence of enantioselective toxicity of chiral pesticides to both target and non-target species which is recognized to result from their enantiospecific action on the primary or secondary targets in organisms. This review confirms that chiral pesticides have enantiospecific effects on both primary and secondary target biomolecules in organisms. Future studies regarding toxicological effects of chiral pesticides should focus on the relationship between the enantiomeric difference in the compound-biomolecules interaction and the enantioselectivity in their toxicity.

  16. Enantioselective degradation of chiral insecticide dinotefuran in greenhouse cucumber and soil.

    Science.gov (United States)

    Chen, Xiu; Dong, Fengshou; Xu, Jun; Liu, Xingang; Wang, Yunhao; Zheng, Yongquan

    2015-02-01

    The enantioselective degradation behavior of the chiral insecticide dinotefuran in cucumber and soil was investigated under greenhouse conditions based on the method established with a normal-phase high-performance chromatography (HPLC) on a ChromegaChiral CCA column (250 × 4.6 mm, 5 µm, ES Industries). The linearity range, matrix effect, precision, and accuracy of the method were evaluated and the method was then successfully applied for the enantioselective analysis of dinotefuran in cucumber and soil. Significant enantioselectivity of degradation was observed in soil according to the results. The (+)-dinotefuran was more persistent in soil with half-life of 21.7 d, which is much longer than that of (-)-dinotefuran (16.5 d). In cucumber, the (-)-dinotefuran also tended to be preferentially degraded both in foliar and douche treatment. However, the statistical analysis indicated the enantioselectivity of degradation in cucumber was not significant. The research provides the first report concerning the enantioselective degradation of dinotefuran enantiomers and the results can be used for understanding the insect-controlling effect and food safety evaluation. © 2014 Wiley Periodicals, Inc.

  17. Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage

    Science.gov (United States)

    Chen, W.; Ouyang, L. Z.; Liu, J. W.; Yao, X. D.; Wang, H.; Liu, Z. W.; Zhu, M.

    2017-08-01

    Sodium borohydride (NaBH4) hydrolysis is a promising approach for hydrogen generation, but it is limited by high costs, low efficiency of recycling the by-product, and a lack of effective gravimetric storage methods. Here we demonstrate the regeneration of NaBH4 by ball milling the by-product, NaBO2·2H2O or NaBO2·4H2O, with MgH2 at room temperature and atmospheric pressure without any further post-treatment. Record yields of NaBH4 at 90.0% for NaBO2·2H2O and 88.3% for NaBO2·4H2O are achieved. This process also produces hydrogen from the splitting of coordinate water in hydrated sodium metaborate. This compensates the need for extra hydrogen for generating MgH2. Accordingly, we conclude that our unique approach realizes an efficient and cost-effective closed loop system for hydrogen production and storage.

  18. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhaoxia; Zhou, Yin; Li, Guang Bin; Wang, Shaohong; Wang, Mei Han; Hu, Xiaodan; Li, Siming [Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School ofMechanical Engineering, Shenyang University, Shenyang (China)

    2015-06-15

    Graphite oxide was prepared via the modified Hummers’ method and graphene via chemical reduction. Deoxygenation efficiency of graphene oxide was compared among single reductants including sodium borohydride, hydrohalic acids, hydrazine hydrate, and vitamin C. Two-step reduction of graphene oxide was primarily studied. The reduced graphene oxide was characterized by XRD, TG, SEM, XPS, and Raman spectroscopy. Square resistance was measured as well. Results showed that films with single-step N2H4 reduction have the best transmittance and electrical conductivity with square resistance of ~5746 Ω/sq at 70% transmittance. This provided an experimental basis of using graphene for electronic device applications.

  19. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    Science.gov (United States)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  20. Nanoscopic control and quantification of enantioselective optical forces

    Science.gov (United States)

    Zhao, Yang; Saleh, Amr A. E.; van de Haar, Marie Anne; Baum, Brian; Briggs, Justin A.; Lay, Alice; Reyes-Becerra, Olivia A.; Dionne, Jennifer A.

    2017-11-01

    Circularly polarized light (CPL) exerts a force of different magnitude on left- and right-handed enantiomers, an effect that could be exploited for chiral resolution of chemical compounds as well as controlled assembly of chiral nanostructures. However, enantioselective optical forces are challenging to control and quantify because their magnitude is extremely small (sub-piconewton) and varies in space with sub-micrometre resolution. Here, we report a technique to both strengthen and visualize these forces, using a chiral atomic force microscope probe coupled to a plasmonic optical tweezer. Illumination of the plasmonic tweezer with CPL exerts a force on the microscope tip that depends on the handedness of the light and the tip. In particular, for a left-handed chiral tip, transverse forces are attractive with left-CPL and repulsive with right-CPL. Additionally, total force differences between opposite-handed specimens exceed 10 pN. The microscope tip can map chiral forces with 2 nm lateral resolution, revealing a distinct spatial distribution of forces for each handedness.

  1. Enantioselective Henry reaction catalyzed by "ship in a bottle" complexes.

    Science.gov (United States)

    Bania, Kusum K; Karunakar, Galla V; Goutham, Kommuru; Deka, Ramesh C

    2013-07-15

    Two chiral Schiff-base complexes of copper(II) have been successfully encapsulated inside the cavity of zeolite-NaY via a "ship in a bottle" synthesis method. The presence of the two complexes inside the cages of zeolite-Y has been confirmed based on various spectrochemical and physicochemical techniques, viz. FTIR, UV-vis/DRS, ESR, XPS, CV, EDX, SEM, and TGA. Zeolite-encapsulated chiral copper(II) Schiff-base complexes are found to give a high-enantioselective (84% ee, R conformation) nitro-aldol product at -20 °C. The encapsulated copper complexes are found to show higher catalytic efficiency than their homogeneous counterparts under identical conditions. Density functional theory (DFT) calculation has been implemented to understand the effect of the zeolite matrix on structural, electronic, and reactivity properties of the synthesized complexes. Theoretical calculation predicts that upon encapsulation into the zeolite matrix the Cu center becomes more susceptible to nucleophilic attack, favoring a nitro-aldol reaction. A plausible mechanism is suggested based on the experimental and theoretical results. The structures of reaction intermediates and transition state(s) involved in the catalytic cycle are derived using DFT.

  2. Enantioselective dissipation of pyriproxyfen in soils and sand.

    Science.gov (United States)

    Liu, Hui; Wang, Peng; Zhou, Zhiqiang; Liu, Donghui

    2017-07-01

    Under normal conditions, the environmental behaviors of pesticides are affected by complex environmental factors and the manner of administration together with constraints. In order to meet the actual needs, we imitated the experiment and found that the degradation rate of pyriproxyfen in soils rendered complex changes. Rac-pyriproxyfen was successfully chiral separated on an AZ-H column and the residue analysis method was in accord with the demand of pesticide analysis. The results indicated that pyriproxyfen dissipated at a faster rate in Heilongjiang soil and Hainan soil, while at a much slower speed in another three soils and sand. Obvious enantioselective degradation was observed in Hainan soil and Qingdao sand. The results suggested that pyriproxyfen alone had low persistence in soil, but the moisture, soil type, the use of mixture formulation, and second spraying treatment could play important roles in dissipation of pyriproxyfen. Too large and too small moisture content could both make pyriproxyfen persist for a longer period in soil than in soil with 25% moisture content. Residues dissipated much slower after using Ai Qiu, while Shi Dingkang did not have a big effect on degradation, with only a small acceleration effect. Pyriproxyfen also dissipated in Hainan soil with difficulty after the second treatment. © 2017 Wiley Periodicals, Inc.

  3. Enantioselective degradation of dufulin in four types of soil.

    Science.gov (United States)

    Zhang, Kan-Kan; Hu, De-Yu; Zhu, Hui-Jun; Yang, Jin-Chuan; Song, Bao-An

    2014-02-26

    In this study, enantioselective degradation of dufulin in four types of soil (Guiyang silty loam, Nanning silty clay, Hefei silty clay, and Harbin silty clay) was investigated under sterile and nonsterile conditions. Pesticide residues in soil samples were extracted with acetonitrile. S-(+)-Dufulin and R-(-)-dufulin were separated and determined on an amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak IA) chiral column by normal phase high-performance liquid chromatography (HPLC). The absolute configurations of dufulin enantiomers were determined by obtaining experimental and computed circular dichroism spectra. Dufulin enantiomers were found to be configurationally stable in the selected soils, and no interconversion was observed during the incubation of enantiopure S-(+)- or R-(-)-dufulin under nonsterile conditions. Compared to the half-life (t1/2) of dufulin in sterile soils, the degradation rate was higher in nonsterile soils, which suggests that dufulin degradation can be attributed primarily to microbial activity in soils used for agricultural cultivation. Furthermore, enantiopure S-(+)-dufulin degraded more rapidly than its antipode. This suggests that use of enantiopure S-(+)-dufulin could exert less disturbance to soil bioactivity and contribute less to environmental pollution.

  4. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation.

    Science.gov (United States)

    Liu, Yan; Xuan, Weimin; Cui, Yong

    2010-10-01

    Owing to the potential applications in technological areas such as gas storage, catalysis, separation, sensing and nonlinear optics, tremendous efforts have been devoted to the development of porous metal-organic frameworks (MOFs) over the past ten years. Homochiral porous MOFs are particularly attractive candidates as heterogeneous asymmetric catalysts and enantioselective adsorbents and separators for production of optically active organic compounds due to the lack of homochiral inorganic porous materials such as zeolites. In this review, we summarize the recent research progress in homochiral MOF materials, including their synthetic strategy, distinctive structural features and latest advances in asymmetric heterogeneous catalysis and enantioselective separation.

  5. Catalytic enantioselective protonation of nitronates utilizing an organocatalyst chiral only at sulfur.

    Science.gov (United States)

    Kimmel, Kyle L; Weaver, Jimmie D; Lee, Melissa; Ellman, Jonathan A

    2012-06-06

    The highly enantioselective protonation of nitronates formed upon the addition of α-substituted Meldrum's acids to terminally unsubstituted nitroalkenes is described. This work represents the first enantioselective catalytic addition of any type of nucleophile to this class of nitroalkenes. Moreover, for the successful implementation of this method, a new type of N-sulfinyl urea catalyst with chirality residing only at the sulfinyl group was developed, thereby enabling the incorporation of a diverse range of achiral diamine motifs. Finally, the Meldrum's acid addition products were readily converted to pharmaceutically relevant 3,5-disubstituted pyrrolidinones in high yield.

  6. Direct and enantioselective α-allylation of ketones via singly occupied molecular orbital (SOMO) catalysis

    Science.gov (United States)

    Mastracchio, Anthony; Warkentin, Alexander A.; Walji, Abbas M.; MacMillan, David W. C.

    2010-01-01

    The first enantioselective organocatalytic α-allylation of cyclic ketones has been accomplished via singly occupied molecular orbital catalysis. Geometrically constrained radical cations, forged from the one-electron oxidation of transiently generated enamines, readily undergo allylic alkylation with a variety of commercially available allyl silanes. A reasonable latitude in both the ketone and allyl silane components is readily accommodated in this new transformation. Moreover, three new oxidatively stable imidazolidinone catalysts have been developed that allow cyclic ketones to successfully participate in this transformation. The new catalyst platform has also been exploited in the first catalytic enantioselective α-enolation and α-carbooxidation of ketones. PMID:20921367

  7. Enantioselective Synthesis of Acyclic α-Quaternary Carboxylic Acid Derivatives through Iridium-Catalyzed Allylic Alkylation.

    Science.gov (United States)

    Shockley, Samantha E; Hethcox, J Caleb; Stoltz, Brian M

    2017-09-11

    The first highly enantioselective iridium-catalyzed allylic alkylation that provides access to products bearing an allylic all-carbon quaternary stereogenic center has been developed. The reaction utilizes a masked acyl cyanide (MAC) reagent, which enables the one-pot preparation of α-quaternary carboxylic acids, esters, and amides with a high degree of enantioselectivity. The utility of these products is further explored through a series of diverse product transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Estimation of the number of enantioselective sites of bovine serum albumin using frontal chromatography.

    Science.gov (United States)

    Jacobson, S C; Andersson, S; Allenmark, S G; Guiochon, G

    1993-01-01

    On a column with bovine serum albumin (BSA) immobilized covalently to silica, the adsorption isotherms of the enantiomers of mandelic acid, tryptophan, 2-phenylbutyric acid, and N-benzoylalanine are measured using a buffered mobile phase. Knowing the amount of BSA immobilized on the column (36 mg), the ratio of the number of enantiomer molecules needed to saturate the enantioselective retention mechanism to the number of BSA molecules is determined. The mean of the set of eight enantiomers is 0.28. These data confirm that at most one enantioselective site exists for each BSA molecule for the kind of enantiomers studied.

  9. Chiral Dawson-Type Hybrid Polyoxometalate Catalyzes Enantioselective Diels-Alder Reactions.

    Science.gov (United States)

    Xuan, Wen-Jing; Botuha, Candice; Hasenknopf, Bernold; Thorimbert, Serge

    2015-11-09

    Can achiral organocatalysts linked to chiral polyanionic metal oxide clusters provide good selectivity in enantioselective C-C bond formations? The answer to this question is investigated by developing a new active hybrid polyoxometalate-based catalyst for asymmetric Diels-Alder reaction. Chirality transfer from the chiral anionic polyoxometalate to the covalently linked achiral imidazolidinone allows Diels-Alder cycloaddition products to be obtained with good yields and high enantioselectivities when using cyclopentadiene and acrylaldehydes as partners. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Controlled Synthesis of Silver Nanoparticles Using Double Reductants and Its Voltammetric Characteristics Study

    Directory of Open Access Journals (Sweden)

    Yubo Duan

    2016-03-01

    Full Text Available Constructing robust silver nanoparticles (AgNPs with good shape and dispersibility is of particular interest in analytical applications. Herein, monodispersibility AgNPs with the average size of 20 nm have been successfully prepared via one-pot method using sodium borohydride and trisodium citrate as co-reductants. The introduction of sodium borohydride greatly accelerated the rate of nucleation, which can effectively solve the problem of broad size distribution. Both shape and dispersibility of AgNPs can be effectively adjusted by simple control of refluxing time or concentrations of the sodium borohydride. We also studied the voltammetric characteristics of the AgNPs using Ag/AgCl solid-state voltammetry. An intense and stable current peak at a low potential could be obtained, which could provide a unique advantage in analytical applications.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 21st January 2016; Accepted: 22nd January 2016 How to Cite: Duan, Y., Xu, Z., Jiang, X. (2016. Controlled Synthesis of Silver Nanoparticles Using Double Reductants and Its Voltammetric Characteristics Study. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 115-119. (doi:10.9767/bcrec.11.1.433.115-119 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.433.115-119

  11. Preparation of Cu/montmorillonite-chitosan and its catalytic activity for p-nitrophenol reduction

    Science.gov (United States)

    Cai, Keying; Zhou, Yingmei

    2017-04-01

    The Cu/montmorillonite (MT)-chitosan (CS) catalyst was prepared by reduction of Cu2+ adsorbed in MT with sodium borohydride which was modified with CS. The catalyst was characterized with X-ray diffraction and Fourier transform infrared spectrometer, indicating that MT was modified with CS successfully, and the copper particles dispersed uniformly in MT-CS. The activity of Cu/MT-CS composite was investigated for the reduction of p-nitrophenol (4-NP) with excess sodium borohydride at 25 °C. The reusability of Cu/MT-CS composite is poor when CS content in the composite is low. However, the activity of Cu/MT-CS composite is low when CS content in the composite is high. The suitable mass ratio of MT to CS is 30:1. The activity of Cu/MT-CS composite increases with the increasing of copper loading, and the suitable copper loading is 5%. Under the conditions of sodium borohydride to 4-NP molar ratio of 40:1, 0.03 g of 5% Cu/MT-CS, the rate constant can reach 0.604 min-1. The activity of the catalyst can maintain after 9 cycles.

  12. Characterisation of silver nanoparticles produced by three different methods based on Borohydride reducing agent

    Directory of Open Access Journals (Sweden)

    Hani Ramli Roslinda

    2016-01-01

    Full Text Available This work reports the preparation and characterisation of silver nanoparticles (AgNPs through chemical reduction method with three different procedures denote as modified Mulfinger’s Method, Mulfinger’s Method and Malina’s Method. The yellow colloidal solution were characterised and analysed using Field Emission Scanning Electron Microscopy (FESEM, Energy Dispersive X-ray Spectroscopy (EDS, X-Ray Diffraction (XRD. FESEM and EDS analyses confirmed that the formation of AgNPs in Malina’s Method with highest yield of silver (Ag, 67.39 % weight as compared to Mulfinger’s and modified Mulfinger’s Method. The peaks in XRD pattern for Malina’s Method are in good agreement with face-centered-cubic form of metallic silver while modified Mulfinger’s Method and Mulfinger’s Method XRD pattern suggest the halite/sodium chlorate and silver chlorate peaks respectively. Malina’s Method is found to be a suitable method to study AgNPs.

  13. Enantioselective stable isotope analysis (ESIA) of polar Herbicides

    Science.gov (United States)

    Maier, Michael; Qiu, Shiran; Elsner, Martin

    2013-04-01

    The complexity of aquatic systems makes it challenging to assess the environmental fate of chiral micropolutants. As an example, chiral herbicides are frequently detected in the environment (Buser and Muller, 1998); however, hydrological data is needed to determine their degradability from concentration measurements. Otherwise declining concentrations cannot unequivocally be attributed to degradation, but could also be caused by dilution effects. In contrast, isotope ratios or enantiomeric ratios are elegant alternatives that are independent of dilution and can even deliver insights into reaction mechanisms. To combine the advantages of both approaches we developed an enatioselective stable isotope analysis (ESIA) method to investigate the fate of the chiral herbicides 4-CPP ((RS)-2-(4-chlorophenoxy)-propionic acid), mecoprop (2-(4-Chloro-2-methylphenoxy)-propionic acid) and dichlorprop (2-(2,4-Dichlorophenoxy)-propionic acid). After testing the applicable concentration range of the method, enantioselective isotope fractionation was investigated by microbial degradation using dichlorprop as a model compound. The method uses enantioselective gas-chromatography (GC) to separate enantiomers. Subsequently samples are combusted online to CO2 and carbon isotope ratios are determined for each enantiomer by isotope-ratio-mass-spectrometry (IRMS). Because the analytes contain a polar carboxyl-group, samples were derivatised prior to GC-IRMS analysis with methanolic BF3 solution. Precise carbon isotope analysis (2σ ≤0.5‰) was achieved with a high sensitivity of ≥ 7 ng C that is needed on column for one analysis. Microbial degradation of the model compound dichlorprop was conducted with Delftia acidovorans MC1 and pronounced enantiomer fractionation, but no isotope fractionation was detected. The absence of isotope fractionation can be explained by two scenarios: either the degrading enzyme has no isotopic preference, or another step in the reaction without an isotopic

  14. Brønsted acid catalyzed enantioselective indole aza-Claisen rearrangement mediated by an arene CH-O interaction.

    Science.gov (United States)

    Maity, Pradip; Pemberton, Ryan P; Tantillo, Dean J; Tambar, Uttam K

    2013-11-06

    Although the aromatic aza-Claisen rearrangement is a general strategy for accessing substituted aromatic amines, there are no highly enantioselective examples of this process. We report the first Brønsted acid catalyzed enantioselective indole aza-Claisen rearrangement for the synthesis of chiral 3-amino-2-substituted indoles. We present evidence for an arene CH-O interaction as a source of activation and stereoinduction, which is an unprecedented phenomenon in enantioselective Brønsted acid catalysis. The products of this reaction can be transformed into 3-aminooxindoles, which are prevalent in many biologically active small molecules.

  15. A DFT exploration of the enantioselective rearrangement of cyclohexene oxide to cyclohexenol

    DEFF Research Database (Denmark)

    Brandt, Peter; Norrby, Per-Ola; Andersson, Pher G.

    2003-01-01

    In this paper, we present computational results for the (1S,3R,4R)-3-(pyrrolidinyl)-methyl-2-azabicyclo[2.2.1]heptane mediated rearrangement of cyclohexene oxide. The results nicely explain the differences in enantioselectivities between catalytic and stoichiometric mode between different ligands...

  16. Palladium-Catalyzed Enantioselective Addition of Two Distinct Nucleophiles across Alkenes Capable of Quinone Methide Formation

    OpenAIRE

    Jensen, Katrina H.; Pathak, Tejas P.; Zhang, Yang; Sigman, Matthew S.

    2009-01-01

    A sequential intramolecular-intermolecular enantioselective alkene difunctionalization reaction has been developed which is thought to proceed through Pd-catalyzed quinone methide formation. The synthesis of new chiral heterocyclic compounds with adjacent chiral centers is achieved in enantiomeric ratios up to 99:1 and diastereomeric ratios up to 10:1.

  17. Enantioselective analysis of proteinogenic amino acids in cerebrospinal fluid by capillary electrophoresis–mass spectrometry

    NARCIS (Netherlands)

    Prior, Amir; Sánchez-Hernández, Laura; Sastre-Toraño, Javier; Marina, Maria Luisa; de Jong, Gerhardus J.; Somsen, Govert W.

    2016-01-01

    d-Amino acids (AAs) are increasingly being recognized as essential molecules in biological systems. Enantioselective analysis of proteinogenic AAs in biological samples was accomplished by CE–MS employing β-CD as chiral selector and ESI via sheath-liquid (SL) interfacing. Prior to analysis, AAs were

  18. Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis.

    Science.gov (United States)

    Wang, Lei; Tai, Jian-Dong; Wang, Ren; Xun, Er-Na; Wei, Xiao-Fei; Wang, Lei; Wang, Zhi

    2010-05-10

    A novel plasmid (pBSR2) was constructed by incorporating a strong lipase promoter and a terminator into the original pBD64. The lipase gene from Bacillus subtilis strain IFFI10210 was cloned into the plasmid pBSR2 and transformed into B. subtilis A.S.1.1655 to obtain an overexpression strain. The recombinant lipase [BSL2 (B. subtilis lipase 2)] has been expressed from the novel constructed strain and used in kinetic resolution of glycidol through enantioselective transesterification. The effects of reaction conditions on the activity as well as enantioselectivity were investigated. BSL2 showed a satisfying enantioselectivity (E>30) under the optimum conditions [acyl donor: vinyl butyrate; the mole ratio of vinyl butyrate to glycidol was 3:1; organic medium: 1,2-dichloroethane with water activity (a(w))=0.33; temperature 40 degrees C]. The remaining (R)-glycidol with a high enantiomeric purity [ee (enantiomeric excess) >99%] could be obtained when the conversion was approx. 60%. The results clearly show a good potential for industrial application of BSL2 in the resolution of glycidol through enantioselective transesterification.

  19. Lipase Catalyzed Enantioselective Transesterification of 5-Acyloxy-2(5H)-Furanones

    NARCIS (Netherlands)

    Deen, Hanneke van der; Hof, Robert P.; Oeveren, Arjan van; Kellogg, Richard M.; Feringa, Bernard

    1994-01-01

    Several lipases catalyse the transesterification of gamma-acyloxyfuranones in organic solvents with high enantioselectivities. This method has been used for the kinetic resolution of 5-acetoxy-2(5H)-furanone, 5-acetoxy-4-methyl-2(5H)-furanone and 5-propionyloxy-2(5H)-furanone, in e.e.'s ranging from

  20. Biphenol-based phosphoramidite ligands for the enantioselective copper-catalyzed conjugate addition of diethylzinc.

    Science.gov (United States)

    Alexakis, Alexandre; Polet, Damien; Rosset, Stéphane; March, Sébastien

    2004-08-20

    Phosphoramidite ligands, based on ortho-substituted biphenols and a chiral amine, induce high enantioselectivities (ee's up to 99%) in the copper-catalyzed conjugate addition of dialkylzinc reagents to a variety of Michael acceptors. Particularly, the best reported ee's were obtained for acyclic nitroolefins. Copyright 2004 American Chemical Society

  1. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study.

    Science.gov (United States)

    Ahmed, Syud M; Poater, Albert; Childers, M Ian; Widger, Peter C B; LaPointe, Anne M; Lobkovsky, Emil B; Coates, Geoffrey W; Cavallo, Luigi

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands.

  2. Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR

    CSIR Research Space (South Africa)

    Brady, D

    2004-03-04

    Full Text Available In a biocatalytic reaction the immobilized lipase ChiroCLEC-CR enantioselectively hydrolysed a naproxen ethyl ester racemate, yielding (S)-naproxen with an enantiomeric excess of more than 98%, an enantiomeric ratio (E) of more than 100...

  3. Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation.

    Science.gov (United States)

    Qian, Yi; Wang, Cui; Wang, Jinghua; Zhang, Xiaofeng; Zhou, Zhiqiang; Zhao, Meirong; Lu, Chensheng

    2017-05-23

    Enantioselectivity in the aquatic toxicity of chiral pesticides has been widely investigated, while the molecular mechanisms remain unclear. Thus far, few studies has focused on genomic expression related to selective toxicity in chiral pesticide, nor on epigenetic changes, such as DNA methylation. Here, we used fipronil, a broad-spectrum insecticide, as a model chemical to probe its enantioselective toxicity in embryo development. Our results showed that S-(+)-fipronil caused severer developmental toxicity in embryos. The MeDIP-Seq analysis demonstrated that S-(+)-fipronil dysregulated a higher level of genomic DNA methylation than R-(-)-fipronil. Gene Ontology analysis revealed that S-(+)-fipronil caused more differentially methylated genes that are involved in developmental processes. Compared with R-(-)-fipronil, S-(+)-fipronil significantly disrupted 7 signaling pathways (i.e., mitogen-activated protein kinases, tight junctions, focal adhesion, transforming growth factor-β, vascular smooth muscle contraction, and the hedgehog and Wnt signaling pathways) by hyper-methylation of developmentally related genes, which further induced the downregulation of those genes. Together, these data suggest that differences in DNA methylation may partly explain the enantioselectivity of fipronil to zebrafish embryos. The application of epigenetics to investigate the enantioselective toxicity mechanism of chiral chemicals would provide a further understanding of their stereoselectivity biological effects.

  4. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  5. Enantioselectivity Measurements of Copper(II) Amino Acid Complexes Using Isothermal Titration Calorimetry

    NARCIS (Netherlands)

    Bruin, de T.J.M.; Marcelis, A.T.M.; Zuilhof, H.; Sudhölter, E.J.R.

    2000-01-01

    Enantioselectivity experiments for the binding to chiral Cu(II) complexes have been performed for several -amino acids using isothermal titration calorimetry. To a system containing nonionic micelles, Cu(II) ions, and cholesteryl glutamate as chiral selector, either the D- or L-amino acid was

  6. Elucidating steric effects on enantioselective epoxidation catalyzed by (salen)Mn in metal-organic frameworks

    NARCIS (Netherlands)

    Oxford, G.A.E.; Dubbeldam, D.; Broadbelt, L.J.; Snurr, R.Q.

    2011-01-01

    The steric effects of a metal-organic framework (MOF) on the enantioselectivity of a (salen)Mn were studied using classical atomistic modeling. Rotational energy profiles for the approach of 2,2-dimethyl-2H-chromene to the active site of (salen)Mn were mapped for the homogeneous catalyst and the

  7. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were

  8. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis.

    Science.gov (United States)

    Ruiz Espelt, Laura; McPherson, Iain S; Wiensch, Eric M; Yoon, Tehshik P

    2015-02-25

    We report the highly enantioselective addition of photogenerated α-amino radicals to Michael acceptors. This method features a dual-catalyst protocol that combines transition metal photoredox catalysis with chiral Lewis acid catalysis. The combination of these two powerful modes of catalysis provides an effective, general strategy to generate and control the reactivity of photogenerated reactive intermediates.

  9. Asymmetric synthesis of N,O-heterocycles via enantioselective iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Zhao, Depeng; Fananas-Mastral, Martin; Chang, Mu-Chieh; Otten, Edwin; Feringa, Ben L.

    2014-01-01

    Chiral N,O-heterocycles were synthesized in high yields and excellent enantioselectivity up to 97% ee via iridium-catalysed intramolecular allylic substitution with nucleophilic attack by the amide oxygen atom. The resulting benzoxazine derivatives were further transformed into challenging chiral

  10. On the Role of DNA in DNA-based Catalytic Enantioselective Conjugate Addition Reactions

    NARCIS (Netherlands)

    Dijk, Ewold W.; Boersma, Arnold J.; Roelfes, Gerard; Feringa, Bernard

    2010-01-01

    A kinetic study of DNA-based catalytic enantioselective Friedel–Crafts alkylation and Michael addition reactions showed that DNA affects the rate of these reactions significantly. Whereas in the presence of DNA, a large acceleration was found for the Friedel–Crafts alkylation and a modest

  11. An Enantioselective Synthesis of a MEM-Protected Aetheramide A Derivative.

    Science.gov (United States)

    Ghosh, Arun K; Rao, Kalapala Venkateswara; Akasapu, Siddhartha

    2014-09-10

    Aetheramides A and B are very potent anti-HIV agents. An enantioselective synthesis of a MEM-protected aetheramide A derivative is described. The synthesis was accomplished in a convergent and stereoselective manner. The key reactions involved asymmetric dihydroxylation, asymmetric allylation, asymmetric syn-aldol reactions and asymmetric hydrogenation.

  12. ENANTIOSELECTIVE CONJUGATE ADDITION OF DIETHYLZINC TO CHALCONES CATALYZED BY CHIRAL NI(II) AMINOALCOHOL COMPLEXES

    NARCIS (Netherlands)

    DEVRIES, AHM; JANSEN, JFGA; FERINGA, BL

    1994-01-01

    Conjugate addition of diethylzinc to chalcones is catalysed by complexes prepared in situ from Ni(acac)(2) and cis-exo-N,N-dialkyl-3-aminoisoborneols or (+)-cis-endo-N,N-dimethyl-3-aminoborneol ((+)- DAB) (13b). The products are obtained with enantioselectivities up to 84 %. When scalemic

  13. Enantioselective Conjugate Addition of Diethylzinc to Chalcones Catalysed by Chiral Ni(II) Aminoalcohol Complexes

    NARCIS (Netherlands)

    Vries, André H.M. de; Jansen, Johan F.G.A.; Feringa, Bernard

    1994-01-01

    Conjugate addition of diethylzinc to chalcones is catalysed by complexes prepared in situ from Ni(acac)2 and cis-exo-N,N-dialkyl-3-aminoisoborneols or (+)-cis-endo-N,N-dimethyl-3-aminoborneol ((+)-DAB) (13b). The products are obtained with enantioselectivities up to 84 %. When scalemic

  14. Enantioselective formation of a dynamic hydrogen-bonded assembly based on the chiral memory concept

    NARCIS (Netherlands)

    Ish-i Tsutomu, T.I.; Crego Calama, Mercedes; Timmerman, P.; Reinhoudt, David; Shinkai, Seiji

    2002-01-01

    In this paper, we report the enantioselective formation of a dynamic noncovalent double rosette assembly 1a3·(CYA)6 composed of three 2-pyridylcalix[4]arene dimelamines (1a) and six butylcyanuric acid molecules (BuCYA). The six 2-pyridyl functionalities of the assembly interact stereoselectively

  15. DNA-based asymmetric catalysis : Sequence-dependent rate acceleration and enantioselectivity

    NARCIS (Netherlands)

    Boersma, Arnold J.; Klijn, Jaap E.; Feringa, Ben L.; Roelfes, Gerard

    2008-01-01

    This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to

  16. Enantioselective adsorption in homochiral metal-organic frameworks: the pore size influence.

    Science.gov (United States)

    Gu, Zhi-Gang; Grosjean, Sylvain; Bräse, Stefan; Wöll, Christof; Heinke, Lars

    2015-05-28

    Uptake experiments in thin films of isoreticular chiral MOFs of type Cu2(Dcam)2(L) with identical stereogenic centers but different pore dimensions show that the enantioselectivity is significantly influenced by the pore size. The highest selectivity was found for medium pore sizes, roughly corresponding to the extension of the chiral guest molecule, limonene.

  17. Diversity-Oriented Enantioselective Synthesis of Highly Functionalized Cyclic and Bicyclic Alcohols

    NARCIS (Netherlands)

    Mao, Bin; Fananas Mastral, Martin; Lutz, Martin; Feringa, Ben L.

    The copper-catalyzed hetero-allylic asymmetric alkylation (h-AAA) of functionalized Grignard reagents that contain alkene or alkyne moieties has been achieved with excellent regio-and enantioselectivity. The corresponding alkylation products were further transformed into a variety of highly

  18. Catalytic diastereo- and enantioselective additions of versatile allyl groups to N-H ketimines

    Science.gov (United States)

    Jang, Hwanjong; Romiti, Filippo; Torker, Sebastian; Hoveyda, Amir H.

    2017-12-01

    There are many biologically active organic molecules that contain one or more nitrogen-containing moieties, and broadly applicable and efficient catalytic transformations that deliver them diastereoselectively and/or enantioselectively are much sought after. Various methods for enantioselective synthesis of α-secondary amines are available (for example, from additions to protected/activated aldimines), but those involving ketimines are much less common. There are no reported additions of carbon-based nucleophiles to unprotected/unactivated (or N-H) ketimines. Here, we report a catalytic, diastereo- and enantioselective three-component strategy for merging an N-H ketimine, a monosubstituted allene and B2(pin)2, affording products in up to 95% yield, >98% diastereoselectivity and >99:1 enantiomeric ratio. The utility of the approach is highlighted by synthesis of the tricyclic core of a class of compounds that have been shown to possess anti-Alzheimer activity. Stereochemical models developed with the aid of density functional theory calculations, which account for the observed trends and levels of enantioselectivity, are presented.

  19. Catalytic asymmetric trifluoromethylthiolation via enantioselective [2,3]-sigmatropic rearrangement of sulfonium ylides

    Science.gov (United States)

    Zhang, Zhikun; Sheng, Zhe; Yu, Weizhi; Wu, Guojiao; Zhang, Rui; Chu, Wen-Dao; Zhang, Yan; Wang, Jianbo

    2017-10-01

    The trifluoromethylthio (SCF3) functional group has been of increasing importance in drug design and development as a consequence of its unique electronic properties and high stability coupled with its high lipophilicity. As a result, methods to introduce this highly electronegative functional group have attracted considerable attention in recent years. Although significant progress has been made in the introduction of SCF3 functionality into a variety of molecules, there remain significant challenges regarding the enantioselective synthesis of SCF3-containing compounds. Here, an asymmetric trifluoromethylthiolation that proceeds through the enantioselective [2,3]-sigmatropic rearrangement of a sulfonium ylide generated from a metal carbene and sulfide (Doyle-Kirmse reaction) has been developed using chiral Rh(II) and Cu(I) catalysts. This transformation features mild reaction conditions and excellent enantioselectivities (up to 98% yield and 98% e.e.), thus providing a unique, highly efficient and enantioselective method for the construction of C(sp3)-SCF3 bonds bearing chiral centres.

  20. A Green, Enantioselective Synthesis of Warfarin for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Wong, Terence C.; Sultana, Camille M.; Vosburg, David A.

    2010-01-01

    The enantioselective synthesis of drugs is of fundamental importance in the pharmaceutical industry. In this experiment, students synthesize either enantiomer of warfarin, a widely used anticoagulant, in a single step from inexpensive starting materials. Stereoselectivity is induced by a commercial organocatalyst, ("R","R")- or…

  1. Simple Aziridino Alcohols as Chiral Ligands. Enantioselective Additions of Diethylzinc to N-Diphenylphosphinoylimines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Andersson, Pher G.; Guijarro, David

    1996-01-01

    Simple chiral aziridino alcohols 2-5, easily available from L-serine, L-threonine or L-allo-threonine, have been used as ligands to promote the addition of Et(2)Zn to the diphenylphosphinoylimine 1 (Ar=Ph). Enantioselectivities of up to 94% could be obtained by proper choice of the substituents...

  2. Enantioselective gamma- and delta-Borylation of Unsaturated Carbonyl Derivatives: Synthesis, Mechanistic Insights, and Applications

    Science.gov (United States)

    Hoang, Gia L.

    Chiral boronic esters are valuable synthetic intermediates widely used in a variety of stereospecific transformations. Transition metal-catalyzed asymmetric hydroboration (CAHB) of alkenes is among the most popular methods for their preparation. Enantioselective hydroboration of activated alkenes (i.e., vinyl arene derivatives or conjugated carbonyl compounds) have been extensively studied by many research groups. We, on the other hand, are interested in enantioselective hydroboration of unactivated alkenes utilizing coordinating functional groups (e.g., carbonyl derivatives) to give functionalized, chiral boronic esters. While conjugate addition and C-H activation methodologies provide efficient alternatives to CAHB for enantioselective beta-borylation of carbonyl compounds, direct gamma- and delta-borylations were essentially unknown prior to our wok on CAHB. The gamma-borylated products were used for understanding stereochemical aspects of Suzuki-Miyaura cross-coupling reactions resulting in stereoretention and in contrast to similar beta-borylated carbonyl derivatives reported in literature. Some other selected transformations were carried out to construct a number of biologically relevant structural motifs, such as lignan precursors, 1,4-amino alcohols, gamma-amino acid derivatives, 5-substitued-gamma-lactone and lactam ring systems. In addition, collaborative experimental and computational studies of the enantioselective desymmetrization via CAHB gain a better understanding of the mechanistic pathways.

  3. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  4. Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis.

    Science.gov (United States)

    Lv, Tao; Carvalho, Pedro N; Casas, Mònica Escolà; Bollmann, Ulla E; Arias, Carlos A; Brix, Hans; Bester, Kai

    2017-10-01

    Phytoremediation of realistic environmental concentrations (10 μg L-1) of the chiral pesticides tebuconazole and imazalil by Phragmites australis was investigated. This study focussed on removal dynamics, enantioselective mechanisms and transformation products (TPs) in both hydroponic growth solutions and plant tissues. For the first time, we documented uptake, translocation and metabolisation of these pesticides inside wetland plants, using enantioselective analysis. Tebuconazole and imazalil removal efficiencies from water reached 96.1% and 99.8%, respectively, by the end of the experiment (day 24). Removal from the solutions could be described by first-order removal kinetics with removal rate constants of 0.14 d-1 for tebuconazole and 0.31 d-1 for imazalil. Removal of the pesticides from the hydroponic solution, plant uptake, within plant translocation and degradation occurred simultaneously. Tebuconazole and imazalil concentrations inside Phragmites peaked at day 10 and 5d, respectively, and decreased thereafter. TPs of tebuconazole i.e., (5-(4-Chlorophenyl)-2,2-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-1,3-pentanediol and 5-(3-((1H-1,2,4-Triazol-1-yl)methyl)-3-hydroxy-4,4-dimethylpentyl)-2-chlorophenol) were quantified in solution, while the imazalil TPs (α-(2,4-Dichlorophenyl)-1H-imidazole-1-ethanol and 3-[1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethoxy]-1,2-propanediol) were quantified in both solution and plant tissue. Pesticide uptake by Phragmites was positively correlated with evapotranspiration. Pesticide removal from the hydroponic solution was not enantioselective. However, tebuconazole was degraded enantioselectively both in the roots and shoots. Imazalil translocation and degradation inside Phragmites were also enantioselective: R-imazalil translocated faster than S-imazalil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enantioselective degradation and chiral stability of the herbicide fluazifop-butyl in soil and water.

    Science.gov (United States)

    Qi, Yanli; Liu, Donghui; Luo, Mai; Jing, Xu; Wang, Peng; Zhou, Zhiqiang

    2016-03-01

    The stereoselective degradation and transformation of the enantiomers of the herbicide fluazifop-butyl in soil and water were studied to investigate the environmental behavior and chiral stability of the optical pure product. Its main chiral metabolite fluazifop was also monitored. LC/MS/MS with Chiralpak IC chiral column was used to separate the enantiomers of fluazifop-butyl and fluazifop. Validated enantioselective residue analysis methods were established with recoveries ranging from 77.1 to 115.4% and RSDs from 0.85 to 8.9% for the enantiomers. It was found the dissipation of fluazifop-butyl was rapid in the three studied soils (Beijing, Harbin and Anhui soil), and the degradation half-lives of the enantiomers ranged from 0.136 to 2.7 d. Enantioselective degradations were found in two soils. In Beijing soil, R-fluazifop-butyl was preferentially degraded leading to relative enrichment of S-enantiomer, but in Anhui soil, S-fluazifop-butyl dissipated faster. There was no conversion of the R-fluazifop-butyl into S-fluazifop-butyl or vice versa in the soils. The formation of fluazifop in the soils was rapidly accompanied with the fast degradation of fluazifop-butyl, and the enantioselectivity and the transformation of S-fluazifop to R-fluazifop were found. The degradation of fluazifop-butyl in water was also quick, with half-lives of the enantiomers ranging from 0.34 to 2.52 d, and there was no significant enantioselectivity of the degradation of fluazifop-butyl and the formation of fluazifop. The effects of pH on the degradation showed fluazifop-butyl enantiomers degraded faster in alkaline conditions. This study showed an evidence of enantioselective behavior and enantiomerization of the chiral herbicide fluazifop-butyl. Copyright © 2015. Published by Elsevier Ltd.

  6. Temperature effects on the enantioselectivity of basic analytes in capillary EKC using sulfated beta-CDs as chiral selectors.

    Science.gov (United States)

    Peng, Zhen-Lei; Yi, Fei; Guo, Baoyuan; Lin, Jin-Ming

    2007-10-01

    The thermodynamic processes were investigated to reveal the temperature effects during chiral separation by capillary EKC with reversed polarity mode using sulfated beta-CD (S-beta-CD) as chiral selectors. The temperature effects on enantioselectivities of basic analytes (ephedrine, norephedrine, synephrine, and epinephrine) were investigated in detail over a temperature range of 20-60 degrees C. An increase of the capillary temperature produced the decrease of enantioselectivities for ephedrine and norephedrine, but increase of enantioselectivities for synephrine and epinephrine. The thermodynamic variations showed that the interactions between the basic analytes and chiral selectors were always enthalpy- driven. However, the difference in enthalpy and entropy showed that the enantioseparation was an enthalpy-driven process for ephedrine and norephedrine, but an entropydriven process for synephrine and epinephrine. Just because of the different driving forces, there exist two kinds of temperature effects on enantioselectivities mentioned above.

  7. Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1

    NARCIS (Netherlands)

    de Jong, RM; Rozeboom, HJ; Kalk, KH; Tang, Lixia; Janssen, DB; Dijkstra, BW

    Halohydrin dehalogenases are key enzymes in the bacterial degradation of vicinal halopropanols and structurally related nematocides. Crystals of the enantioselective halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1 have been obtained at room temperature from hanging-drop

  8. Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1

    NARCIS (Netherlands)

    Jong, René M. de; Rozeboom, Henriëtte J.; Kalk, Kor H.; Tang, Lixia; Janssen, Dick B.; Dijkstra, Bauke W.

    2002-01-01

    Halohydrin dehalogenases are key enzymes in the bacterial degradation of vicinal halopropanols and structurally related nematocides. Crystals of the enantioselective halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1 have been obtained at room temperature from hanging-drop

  9. Synthesis of Chiral Tertiary Alcohols by Cu(I) -Catalyzed Enantioselective Addition of Organomagnesium Reagents to Ketones

    NARCIS (Netherlands)

    Rong, Jiawei; Pellegrini, Tilde; Harutyunyan, Syuzanna R

    2016-01-01

    Catalytic enantioselective addition of organometallic nucleophiles to ketones is among the most straightforward approaches to the synthesis of chiral tertiary alcohols. The first such catalytic methodologies using the highly reactive organomagnesium reagents, which are the preferred organometallic

  10. One pot 'click' reactions : tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Szymanski, Wiktor; Postema, Christiaan P.; Dierckx, Rudi A.; Elsinga, Philip H.; Janssen, Dick B.; Feringa, Ben L.

    2010-01-01

    Halohydrin dehalogenase (HheC) can perform enantioselective azidolysis of aromatic epoxides to 1,2-azido alcohols which are subsequently ligated to alkynes producing chiral hydroxy triazoles in a one-pot procedure with excellent enantiomeric excess.

  11. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet-Spengler reaction

    NARCIS (Netherlands)

    Kerschgens, I. P.; Claveau, E.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2012-01-01

    The pharmacologically interesting indole alkaloids (-)-mitragynine, (+)-paynantheine and (+)-speciogynine were synthesised in nine steps from 4-methoxytryptamine by a route featuring (i) an enantioselective thiourea-catalysed Pictet-Spengler reaction, providing the tetrahydro-β-carboline ring and

  12. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Ren, Xiaoqian; Tan, Enzhong; Lang, Xiufeng; You, Tingting; Jiang, Li; Zhang, Hongyan; Yin, Penggang; Guo, Lin

    2013-09-14

    In this article, reduction of 4-nitrobenzenthiol (4-NBT) on Au nanoparticles (NPs) was characterized using surface-enhanced Raman scattering (SERS). Plasmon-driven chemical transformation from 4-NBT dimering into p,p'-dimercaptoazobenzene (DMAB) has been investigated on the surface of Au NPs. The laser power-dependent SERS spectra of 4-NBT on the surface of Au substrates were studied, and show that the laser power has an influence on the SERS signals of 4-NBT on Au NPs and production of DMAB by a plasmon-driven surface-catalyzed chemical reaction tends to be much easier under relative high laser power. Furthermore, we have used simple and efficient Au substrates (gold NPs with a size around 45 nm) exhibiting both catalytic properties and SERS activities to monitor the catalytic reaction of surface catalytic reaction process with borohydride solution. The experiments prove that the nitro-to-amino group conversion could be completed by borohydride at ambient conditions on Au substrates. Illuminated with high laser power, 4-NBT molecules and already formed DMAB molecules are further reduced into 4-aminobenzenthiol (4-ABT) by the addition of borohydride, While with low laser power 4-NBT molecules are transformed into 4-ABT with DMAB as the intermediate, which proves Au NPs are a mild and promising catalyst. Our studies might be helpful in extending the understanding of chemical reactions of 4-NBT and related research as well as providing a new strategy synthesis of azo dyes and anilines.

  13. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  14. Dual catalysis for the redox annulation of nitroalkynes with indoles: enantioselective construction of indolin-3-ones bearing quaternary stereocenters.

    Science.gov (United States)

    Liu, Ren-Rong; Ye, Shi-Chun; Lu, Chuan-Jun; Zhuang, Gui-Lin; Gao, Jian-Rong; Jia, Yi-Xia

    2015-09-14

    The enantioselective redox annulation of nitroalkynes with indoles is enabled by gold/chiral phosphoric acid dual catalysis. A range of indolin-3-one derivatives bearing quaternary stereocenters at the C2 position were afforded in good yields and excellent enantioselectivities (up to 96 % ee) from readily available starting materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enantioselective Carbonyl Reverse Prenylation from the Alcohol or Aldehyde Oxidation Level Employing 1,1-Dimethylallene as the Prenyl Donor

    Science.gov (United States)

    Han, Soo Bong; Kim, In Su; Han, Hoon; Krische, Michael J.

    2010-01-01

    Enantioselective transfer hydrogenation of 1,1-dimethylallene 1a in the presence of aromatic, α,β-unsaturated or aliphatic aldehydes 2a-2i mediated by isopropanol and employing a cyclometallated iridium C,O-benzoate derived from allyl acetate, m-nitrobenzoic acid and (S)-SEGPHOS delivers products of reverse prenylation 4a-4i in good to excellent isolated yields (65-96%) and enantioselectivities (87-93% ee). In the absence of isopropanol, enantioselective carbonyl reverse prenylation is achieved directly from the alcohol oxidation level to furnish an equivalent set of adducts 4a-4i in good to excellent isolated yields (68-94%) and enantioselectivities (86-91% ee). Competition and isotopic labeling experiments suggest rapid alcohol-aldehyde redox equilibration in advance of carbonyl addition, and capture of the kinetically formed π-allyl complex at a rate faster than reversible β-hydride elimination-hydrometallation. This protocol represents an alternative to the use of allylboron reagents in enantioselective carbonyl reverse prenylation and represents the first use of allenes in enantioselective C-C bond forming transfer hydrogenation. PMID:19453190

  16. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  17. Enantioselective analysis of ibuprofen and its biotransformation products in water/sediment systems,

    DEFF Research Database (Denmark)

    Sundström, Maria; Escola, Monica; Radke, Michael

    2015-01-01

    As ibuprofen degrades enantioselectively in activated sludge, the same process is assumed to occur in surface lake-water and in river-water based biofilms. Yet, the effects of the wastewater inflow, containing non-racemic ibuprofen, into natural systems have never been studied. The role...... and oxic) from the Baltic Sea (Tvären and B1) were collected. All systems were spiked with ibuprofen and followed during one month (aerated and in darkness). The enantiomers of ibuprofen, 2-hydroxyibuprofen, 1-hydroxyibuprofen and 3-hydroxyibuprofen as well as carboxyibuprofen, were separated by HPLC...... equipped with an enantioselective HPLC-column. The detection was performed by MS/MS. Single first-order kinetics and Weibull distribution models were fitted to the data. Both models indicated that ibuprofen degraded with half-lives around 4-5 and 5-6 days in Largen and Fyrisån respectively and 3-4 and 5...

  18. Palladium(II)/Brønsted Acid-Catalyzed Enantioselective Oxidative Carbocyclization-Borylation of Enallenes.

    Science.gov (United States)

    Jiang, Tuo; Bartholomeyzik, Teresa; Mazuela, Javier; Willersinn, Jochen; Bäckvall, Jan-E

    2015-05-11

    An enantioselective oxidative carbocyclization-borylation of enallenes that is catalyzed by palladium(II) and a Brønsted acid was developed. Biphenol-type chiral phosphoric acids were superior co-catalysts for inducing the enantioselective cyclization. A number of chiral borylated carbocycles were synthesized in high enantiomeric excess. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  19. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  20. Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hitoshi; Thalji, Reema; Bergman, Robert; Ellman, Jonathan

    2008-05-22

    Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe){sub 2}]{sub 2} and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.

  1. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  2. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  3. Ultrasound-Assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-Like Nanobioreactor

    Directory of Open Access Journals (Sweden)

    Baiyi An

    2016-04-01

    Full Text Available A flower-like nanobioreactor was prepared for resolution of ibuprofen in organic solvents. Ultrasound irradiation has been used to improve the enzyme performance of APE1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1 in the enantioselective esterification. Under optimum reaction conditions (ultrasound power, 225 W; temperature, 45 °C; water activity, 0.21, the immobilized APE1547 showed an excellent catalytic performance (enzyme activity, 13.26 μmol/h/mg; E value, 147.1. After ten repeated reaction batches, the nanobioreactor retained almost 100% of its initial enzyme activity and enantioselectivity. These results indicated that the combination of the immobilization method and ultrasound irradiation can enhance the enzyme performance dramatically.

  4. Applications of homochiral metal-organic frameworks in enantioselective adsorption and chromatography separation.

    Science.gov (United States)

    Li, Xianjiang; Chang, Cuilan; Wang, Xin; Bai, Yu; Liu, Huwei

    2014-10-01

    Chiral separation is of great importance for drug development, pharmacology, and biology. Chiral metal-organic frameworks (MOFs) is a new class of porous solid materials with high surface area, large pore size, high chemical stability, uniformly structured cavities, and the availability of modification. The excellent properties of MOFs have attracted intense interest to explore their performance and mechanism in chiral separation. This review summarizes three synthetic strategies of chiral MOFs and their applications in enantioselective adsorption and chromatographic separation. All the experimental and molecular simulation results demonstrated that high enantioselectivity was strongly correlated with a close match between the size of the pore and chiral molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme

    Science.gov (United States)

    Prier, Christopher K.; Zhang, Ruijie K.; Buller, Andrew R.; Brinkmann-Chen, Sabine; Arnold, Frances H.

    2017-07-01

    C-H bonds are ubiquitous structural units of organic molecules. Although these bonds are generally considered to be chemically inert, the recent emergence of methods for C-H functionalization promises to transform the way synthetic chemistry is performed. The intermolecular amination of C-H bonds represents a particularly desirable and challenging transformation for which no efficient, highly selective, and renewable catalysts exist. Here we report the directed evolution of an iron-containing enzymatic catalyst—based on a cytochrome P450 monooxygenase—for the highly enantioselective intermolecular amination of benzylic C-H bonds. The biocatalyst is capable of up to 1,300 turnovers, exhibits excellent enantioselectivities, and provides access to valuable benzylic amines. Iron complexes are generally poor catalysts for C-H amination: in this catalyst, the enzyme's protein framework confers activity on an otherwise unreactive iron-haem cofactor.

  6. Multicomponent, Enantioselective Michael-Michael-Aldol-β-Lactonizations Delivering Complex β-Lactones.

    Science.gov (United States)

    Van, Khoi N; Romo, Daniel

    2018-01-19

    Optically active, tertiary amine Lewis bases react with unsaturated acid chlorides to deliver chiral, α,β-unsaturated acylammonium salts. These intermediates participate in a catalytic, enantioselective, three-component process delivering bi- and tricyclic β-lactones through a Michael-Michael-aldol-β-lactonization. In a single operation, the described multicomponent, organocascade process forms complex bi- and tricyclic β-lactones by generating four new bonds, two rings, and up to four contiguous stereocenters. In the racemic series, yields of 22-75% were achieved using 4-pyrrolidinopyridine as Lewis base. In the enantioselective series employing isothiourea catalysts, a kinetic resolution of the initially formed racemic Michael adduct appears operative, providing yields of 46% to quantitative (based on 50% max) with up to 94:6 er. Some evidence for a dynamic kinetic asymmetric transformation for tricyclic-β-lactone 1d was obtained following optimization (yields up to 61%, 94:6 er) through a presumed reversible Michael.

  7. A possible mechanism for enantioselectivity in the chiral epoxidation of olefins with.

    Science.gov (United States)

    Jacobsen, H; Cavallo, L

    2001-01-01

    The origin of enantioselectivity in the Jacobsen-Katsuki reaction has been investigated by applying density functional calculations in combination with molecular mechanics methodologies. The calculations suggest that a high enantiomeric excess is connected to three specific features: 1) a chiral diimine bridge, which induces folding of the salen ligand(H2salen = bis(salicylidene)ethylenediamine), and hence the formation of a chiral pocket; 2) bulky groups at the 3,3'-positions of the salen ligand, which cause a preferential approach from the side of the aromatic rings; and 3) pi conjugation of the olefinic double bond, which confers regioselectivity and, consequently, enantioselectivity. In combination with experimental studies, the model also provides a rationale for the decrease in ee values when one of these components is missing.

  8. Enantioselective Cytotoxicity Profile of o,p’-DDT in PC 12 Cells

    OpenAIRE

    Meirong Zhao; Cui Wang; Chunlong Zhang; Yuezhong Wen; Weiping Liu

    2012-01-01

    Background The continued uses of dichlordiphenyltrichloroethane (DDT) for indoor vector control in some developing countries have recently fueled intensive debates toward the global ban of this persistent legacy contaminant. Current approaches for ecological and health risk assessment has ignored the chiral nature of DDT. In this study by employing an array of cytotoxicity related endpoints, we investigated the enantioselective cytotoxicity of o,p’-DDT. Principal Findings we demonstrated for ...

  9. Biochemical characterization of an enantioselective esterase from Brevundimonas sp. LY-2.

    Science.gov (United States)

    Zhang, Jing; Zhao, Mengjun; Yu, Die; Yin, Jingang; Zhang, Hao; Huang, Xing

    2017-06-19

    Lactofen, a member of the diphenylether herbicides, has high activity and is commonly used to control broadleaf weeds. As a post-emergent herbicide, it is directly released to the environment, and easily caused the pollution. This herbicide is degraded in soil mainly by microbial activity, but the functional enzyme involved in the biodegradation of lactofen is still not clear now. A novel esterase gene lacH, involved in the degradation of lactofen, was cloned from the strain Brevundimonas sp. LY-2. The gene contained an open reading frame of 921 bp, and a putative signal peptide at the N-terminal was identified with the most likely cleavage site between Ala 28 and Ala 29. The encoded protein, LacH, could catalyze the hydrolysis of lactofen to form acifluorfen. Phylogenetic analysis showed that LacH belong to family V of bacterial lipolytic enzymes. Biochemical characterization analysis showed that LacH was a neutral esterase with an optimal pH of 7.0 and an optimal temperature of 40 °C toward lactofen. Besides, the activity of LacH was strongly inhibited by Hg 2+ and Zn 2+ . LacH preferred short chain p-nitrophenyl esters (C 2 -C 6 ), exhibited maximum activity toward p-nitrophenyl acetate. Furthermore, the enantioselectivity of LacH during lactofen hydrolysis was also studied, and the results show that R-(-)-lactofen was degraded faster than S-(+)-lactofen, indicating the occurrence of enantioselectivity in the enzymatic reaction. Our studies characterized a novel esterase involved in the biodegradation of diphenylether herbicide lactofen. The esterase showed enantioselectivity during lactofen degradation, which revealed the occurrence of enzyme-mediated enantioselective degradation of chiral herbicides.

  10. Highly enantioselective Ag(i)-catalyzed [3 + 2] cycloaddition of azomethine ylides.

    Science.gov (United States)

    Longmire, James M; Wang, Bin; Zhang, Xumu

    2002-11-13

    A highly reactive Ag(I)-catalyzed [3 + 2] cycloaddition of azomethine ylides is founded using AgOAc as the catalytic precursor and phosphines as ligands. Using a new bis-ferrocenyl amide phosphine (FAP) as the ligand, we found that high enantioselectivities (up to 97% ee) have been achieved in the [3 + 2] cycloaddition of azomethine ylides. Up to four stereogenic centers can be established in this multicomponent coupling reaction from readily available materials such as aldehydes, aminoesters, and dipolarophiles.

  11. Enantioselective total syntheses of belactosin A, belactosin C, and its homoanalogue.

    Science.gov (United States)

    Larionov, Oleg V; de Meijere, Armin

    2004-06-24

    [reaction: see text] Enantioselective total syntheses of belactosin A, belactosin C, and its homoanalogue have been accomplished in high overall yields (32% for belactosin A from the amino acid 10, and 35 and 36% for belactosin C and its homoanalogue, respectively). This concise approach comprises a novel sequential acylation/beta-lactonization reaction and allows a facile alteration of the substituents, thus providing a flexible route to a new family of highly active belactosin-based proteasome inhibitors.

  12. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  13. Carbamate-directed benzylic lithiation for the diastereo- and enantioselective synthesis of diaryl ether atropisomers

    Directory of Open Access Journals (Sweden)

    Abigail Page

    2011-09-01

    Full Text Available Diaryl ethers carrying carbamoyloxymethyl groups may be desymmetrised enantio- and diastereoselectively by the use of the sec-BuLi–(−-sparteine complex in diethyl ether. Enantioselective deprotonation of one of the two benzylic positions leads to atropisomeric products with ca. 80:20 e.r.; an electrophilic quench typically provides functionalised atropisomeric diastereoisomers in up to 97:3 d.r.

  14. Catalytic Enantioselective Synthesis of Tetrahydocarbazoles and Exocyclic Pictet-Spengler-Type Reactions

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Ohm, Ragnhild Gaard; Olsen, Lasse Bohn

    2016-01-01

    A synthetic strategy for the synthesis of chiral tetrahydrocarbazoles (THCAs) has been developed. The strategy relies on two types of 6-exo-trig cyclization of 3-substituted indole substrates. Enantioselective domino Friedel-Crafts-type reactions leading to THCAs can be catalyzed by chiral phosph...... phosphoric acid derivatives (with up to >99% ee), and the first examples of exocyclic Pictet-Spengler reactions to form THCAs are reported....

  15. Tertiary thiols from allylic thiocarbamates by tandem enantioselective [3,3]-sigmatropic rearrangement and stereospecific arylation.

    Science.gov (United States)

    Mingat, Gaëlle; MacLellan, Paul; Laars, Marju; Clayden, Jonathan

    2014-02-21

    The synthesis of tertiary thiols in enantiomerically enriched form is accomplished by lithiation of enantiomerically enriched N-aryl allylic thiocarbamates. Formation of an allyllithium derivative promotes intramolecular N to C aryl migration to the position α to sulfur, generally with good stereospecificity. The substrates may themselves be obtained by Pd-catalyzed enantioselective [3,3]-sigmatropic rearrangement of N-aryl O-allyl thiocarbamates. Solvolysis of the product thiocarbamates yields tertiary thiols, which may be converted to sulfide derivatives.

  16. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ligand effect in enantioselective hydrogenation on skeletal copper-palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vedenyapin, A.A.; Kuznetsova, T.I.; Klabunovskii, E.I.

    1987-08-10

    In the continuation of the study of the capacity of skeletal Cu-Pd catalysts modified with RR-tartaric acid and containing no more than 5 at.% Pd, to conduct enantioselective hydrogenation of ethylacetoacetate (EAA) into R-ethyl-..beta..-hydroxybutyrate (R-EHB), they studied this phenomenon in more detail and made the previously obtained data more precise. Pronounced synergism of the asymmetric effect of chiral copper-palladium catalysts related to manifestation of a ligand effect was found.

  18. Catalytic enantioselective vinylogous Mukaiyama-Michael addition of 2-silyloxyfurans to cyclic unsaturated oxo esters.

    Science.gov (United States)

    Jusseau, Xavier; Retailleau, Pascal; Chabaud, Laurent; Guillou, Catherine

    2013-03-15

    The copper-catalyzed asymmetric addition of 2-silyloxyfurans to cyclic unsaturated oxo esters is reported. The reaction proceeds with excellent diastereocontrol (usually dr 99:1) and modest to high enantioselectivity, depending on the nature of the ester group and the substitution of the cyclic oxo ester. We have shown that these substrates can be transformed into a variety of building blocks bearing a γ-butenolide or γ-lactone connected to a cycloalkane or cycoalkene moiety.

  19. Conformational Control of Chiral Amido-Thiourea Catalysts Enables Improved Activity and Enantioselectivity.

    Science.gov (United States)

    Lehnherr, Dan; Ford, David D; Bendelsmith, Andrew J; Kennedy, C Rose; Jacobsen, Eric N

    2016-07-01

    While aryl pyrrolidinoamido-thioureas derived from α-amino acids are effective catalysts in a number of asymmetric transformations, they exist as mixtures of slowly interconverting amide rotamers. Herein, the compromising role of amide bond isomerism is analyzed experimentally and computationally. A modified catalyst structure that exists almost exclusively as a single amide rotamer is introduced. This modification is shown to result in improved reactivity and enantioselectivity by minimizing competing reaction pathways.

  20. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  1. Crystalline-gradient polycarbonates prepared from enantioselective terpolymerization of meso-epoxides with CO2

    Science.gov (United States)

    Liu, Ye; Ren, Wei-Min; He, Ke-Ke; Lu, Xiao-Bing

    2014-12-01

    The development of efficient processes for CO2 transformation into useful products is a long-standing goal for chemists, since CO2 is an abundant, inexpensive and non-toxic renewable C1 resource. Here we describe the enantioselective copolymerization of 3,4-epoxytetrahydrofuran with CO2 mediated by biphenol-linked dinuclear cobalt complex, affording the corresponding polycarbonate with >99% carbonate linkages and excellent enantioselectivity (up to 99% enantiomeric excess). Notably, the resultant isotactic polycarbonate is a typical semicrystalline polymer, possessing a melting point of 271 °C. Furthermore, the enantioselective terpolymerization of 3,4-epoxytetrahydrofuran, cyclopentene oxide and CO2 mediated by this dinuclear cobalt complex gives novel gradient polycarbonates, in which the decrement of one component and the increment of the other component occur sequentially from one chain end to the other end. The resultant terpolymers show perfectly isotactic structure and have unique crystalline-gradient nature, in which the crystallinity continuously varies along the main chain.

  2. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  3. By-design enantioselective self-amplification based on non-covalent product-catalyst interactions.

    Science.gov (United States)

    Storch, Golo; Trapp, Oliver

    2017-02-01

    The synthesis of enantiomerically pure compounds is of great importance in pharmaceuticals, fragrances and biological applications, and functions as a key to many processes in nature. Asymmetric catalysis using enantiomerically pure catalysts represents an efficient synthetic method to achieve this goal. The enantiomeric excess of the reaction product correlates with the enantiomeric purity of the catalysts, except for nonlinear behaviour, therefore the use of stereochemically flexible catalysts seems to complicate the control of stereoselectivity. Self-amplifying catalytic reactions are attractive, but a general rational design is highly challenging. Here we show that product interaction with chiral recognition sites attached to structurally flexible phoshoramidite-type catalysts can sense the chirality and induce enantioselectivity in the catalyst. Structural flexibility along with sensing of the chirality of the product molecules results in a rapid increase of enantioselectivity of the dynamic catalysts (Δe.e. of up to 76%) and a shift out of equilibrium. In contrast to stereodynamic catalysts controlled with cleavable chiral auxiliaries, the enantioselectivity does not decrease.

  4. Computer-Assisted Design and Synthetic Applications of Chiral Enol Borinates: Novel, Highly Enantioselective Aldol Reagents

    Directory of Open Access Journals (Sweden)

    Gennari Cesare

    1998-01-01

    Full Text Available We have recently described the development of a quantitative transition state model for the prediction of stereoselectivity in the boron-mediated aldol reaction. This model provides qualitative insights into the factors contributing to the stereochemical outcome of a variety of reactions of synthetic importance. The force field model was used to assist the design and preparation of new chiral boron ligands derived from menthone. The chiral boron enolates were employed in various stereoselective processes, including the addition to chiral aldehydes and the reagent-controlled total synthesis of (3S,4S-statine. The chiral enolates derived from alpha-halo and alpha-oxysubstituted thioacetates were added to aldehydes and imines. Addition to imines leads to the enantioselective synthesis of chiral aziridines, a formal total synthesis of (+-thiamphenicol, and a new highly efficient synthesis of the paclitaxel (taxol® C-13 side-chain and taxol semisynthesis from baccatin III. The stereochemical outcome of the addition to imines was rationalised with the aid of computational studies. Enantioselective addition reactions of the chiral boron enolate derived from thioacetate have successfully been applied to solid phase bound aldehydes to give aldol products in comparable yields and enantioselectivities to the usual solution conditions.

  5. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  6. Enantioselective bioaccumulation and toxic effects of fipronil in the earthworm Eisenia foetida following soil exposure.

    Science.gov (United States)

    Qin, Fang; Gao, Yongxin; Xu, Peng; Guo, Baoyuan; Li, Jianzhong; Wang, Huili

    2015-04-01

    Enantiomers of chiral pesticides often have different bioactivity, toxicity and environmental behaviours. Fipronil has been used in racemate for agricultural purposes against soil insects, leading to increased inputs into soil environments and complex biota exposures. To understand the potential risk associated with fipronil enantiomer exposure, subchronic toxicity and bioaccumulation tests with earthworms (Eisenia foetida) in fipronil-spiked soils were evaluated under laboratory conditions. Enantioselective toxicity was measured in E. foetida biomass after 28 days of subchronic exposure, with increased toxicity from racemate and S-fipronil compared with R-fipronil. The bioaccumulation of fipronil in earthworm tissues was also enantioselective, with a preferential accumulation of S-fipronil, and the enantiomer fraction was approximately 0.56-0.60. During soil exposure, fipronil was transformed primarily into fipronil sulfide, sulfone and amide, and E. foetida rapidly accumulated fipronil and sulfone. This work demonstrates the enantioselective subchronic toxicity and bioaccumulation of enantiomers of fipronil in E. foetida. The earthworm tissues exhibited a relative enrichment of fipronil and fipronil sulfone, and these compounds might biomagnify (with a biota-to-soil accumulation factor of ≥1.0 kgOCkglip-1), allowing for the possible trophic transfer and/or bioaccumulation of all these chemicals if earthworms were consumed by predator organisms. © 2014 Society of Chemical Industry.

  7. Enantioselective acute toxicity effects and bioaccumulation of furalaxyl in the earthworm (Eisenia foetida).

    Science.gov (United States)

    Qin, Fang; Gao, Yongxin; Guo, Baoyuan; Xu, Peng; Li, Jianzhong; Wang, Huili

    2014-06-01

    The enantioselectivities of individual enantiomers of furalaxyl in acute toxicity and bioaccumulation in the earthworm (Eisenia foetida) were studied. The acute toxicity was tested by filter paper contact test. After 48 h of exposure, the calculated LC50 values of the R-form, rac-form, and S-form were 2.27, 2.08, and 1.22 µg cm(-2), respectively. After 72 h of exposure, the calculated LC50 values were 1.90, 1.54, and 1.00 µg cm(-2), respectively. Therefore, the acute toxicity of furalaxyl enantiomers was enantioselective. During the bioaccumulation experiment, the enantiomer fraction of furalaxyl in earthworm tissue was observed to deviate from 0.50 and maintained a range of 0.55-0.60; in other words, the bioaccumulation of furalaxyl was enantioselective in earthworm tissue with a preferential accumulation of S-furalaxyl. The uptake kinetic of furalaxyl enantiomers fitted the first-order kinetics well and the calculated kinetic parameters were consistent with the low accumulation efficiency. © 2014 Wiley Periodicals, Inc.

  8. Origins of Enantioselectivity during Allylic Substitution Reactions Catalyzed by Metallacyclic Iridium Complexes

    Science.gov (United States)

    Madrahimov, Sherzod T.; Hartwig, John F.

    2012-01-01

    In depth mechanistic studies of iridium catalyzed regioselective and enantioselective allylic substitution reactions are presented. A series of cyclometallated allyliridium complexes that are kinetically and chemically competent to be intermediates in the allylic substitution reactions was prepared and characterized by 1D and 2D NMR spectroscopies and solid state structural analysis. The rates of epimerization of the less thermodynamically stable diastereomeric allyliridium complexes to the thermodynamically more stable allyliridium stereoisomers were measured. The rates of nucleophilic attack by aniline and by N-methylaniline on the isolated allyliridium complexes were also measured. Attack on the thermodynamically less stable allyliridium complex was found to be orders of magnitude faster than attack on the thermodynamically more stable complex, yet the major enantiomer of the catalytic reaction is formed from the more stable diastereomer. Comparison of the rates of nucleophilic attack to the rates of epimerization of the diastereomeric allyliridium complexes containing a weakly-coordinating counterion showed that nucleophilic attack on the less stable allyliridium species is much faster than conversion of the less stable isomer to the more stable isomer. These observations imply that Curtin-Hammett conditions are not met during iridium catalyzed allylic substitution reactions by η3-η1-η3 interconversion. Rather, these data imply that when these conditions exist for this reaction, they are created by reversible oxidative addition and the high selectivity of this oxidative addition step to form the more stable diastereomeric allyl complex leads to the high enantioselectivity. The stereochemical outcome of the individual steps of allylic substitution was assessed by reaction of deuterium-labeled substrates. The reaction was shown to occur by oxidative addition with inversion of configuration, followed by an outer sphere nucleophilic attack that leads to a second

  9. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups

    Science.gov (United States)

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H.

    2016-09-01

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates. Nonetheless, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable because the resulting products could then be subjected to further modifications. However, such reactions, especially when dienoates contain two equally substituted olefins, are scarce and are confined to reactions promoted by a phosphine-copper catalyst (with an alkyl Grignard reagent, dialkylzinc or trialkylaluminium compounds), a diene-iridium catalyst (with arylboroxines), or a bisphosphine-cobalt catalyst (with monosilyl-acetylenes). 1,6-Conjugate additions are otherwise limited to substrates where there is full substitution at the C4 position. It is unclear why certain catalysts favour bond formation at C6, and—although there are a small number of catalytic enantioselective conjugate allyl additions—related 1,6-additions and processes involving a propargyl unit are non-existent. Here we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenyl-boron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 per cent yield, >98:2 diastereomeric ratio (for allyl additions) and 99:1 enantiomeric ratio. We elucidate the mechanistic details, including the origins of high site selectivity (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst

  10. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2017-01-01

    Full Text Available In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA and partitial least-squares discriminant analysis (PLS-DA directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  11. Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid.

    Science.gov (United States)

    Itoh, Toshiyuki; Matsushita, Yuichi; Abe, Yoshikazu; Han, Shi-Hui; Wada, Shohei; Hayase, Shuichi; Kawatsura, Motoi; Takai, Shigeomi; Morimoto, Minoru; Hirose, Yoshihiko

    2006-12-13

    Several types of imidazolium salt ionic liquids were prepared derived from poly(oxyethylene)alkyl sulfate and used as an additive or coating material for lipase-catalyzed transesterification in an organic solvent. A remarkably increased enantioselectivity was obtained when the salt was added at 3-10 mol % versus substrate in the Burkholderia cepacia lipase (lipase PS-C)-catalyzed transesterification of 1-phenylethanol by using vinyl acetate in diisopropyl ether or a hexane solvent system. In particular, a remarkable acceleration was accomplished by the ionic liquid coating with lipase PS in an iPr(2)O solvent system while maintaining excellent enantioselectivity; it reached approximately 500- to 1000-fold acceleration for some substrates with excellent enantioselectivity. A similar acceleration was also observed for IL 1-coated Candida rugosa lipase. MALDI-TOF mass spectrometry experiments of the ionic-liquid-coated lipase PS suggest that ionic liquid binds with lipase protein.

  12. Transition-state charge stabilization through multiple non-covalent interactions in the guanidinium-catalyzed enantioselective Claisen rearrangement.

    Science.gov (United States)

    Uyeda, Christopher; Jacobsen, Eric N

    2011-04-06

    The mechanism by which chiral arylpyrrole-substituted guanidinium ions promote the Claisen rearrangement of O-allyl α-ketoesters and induce enantioselectivity was investigated by experimental and computational methods. In addition to stabilization of the developing negative charge on the oxallyl fragment of the rearrangement transition state by hydrogen-bond donation, evidence was obtained for a secondary attractive interaction between the π-system of a catalyst aromatic substituent and the cationic allyl fragment. Across a series of substituted arylpyrrole derivatives, enantioselectivity was observed to vary predictably according to this proposal. This mechanistic analysis led to the development of a new p-dimethylaminophenyl-substituted catalyst, which afforded improvements in enantioselectivity relative to the parent phenyl catalyst for a representative set of substrates. © 2011 American Chemical Society

  13. Transition State Charge Stabilization Through Multiple Non-Covalent Interactions in the Guanidinium-Catalyzed Enantioselective Claisen Rearrangement

    Science.gov (United States)

    Uyeda, Christopher; Jacobsen, Eric N.

    2011-01-01

    The mechanism by which chiral arylpyrrole-substituted guanidinium ions promote the Claisen rearrangement of O-allyl α-ketoesters and induce enantioselectivity was investigated by experimental and computational methods. In addition to stabilization of the developing negative charge on the oxallyl fragment of the rearrangement transition state by hydrogen-bond donation, evidence was obtained for a secondary attractive interaction between the π-system of a catalyst aromatic substituent and the cationic allyl fragment. Across a series of substituted arylpyrrole derivatives, enantioselectivity was observed to vary predictably according to this proposal. This mechanistic analysis led to the development of a new p-dimethylaminophenyl-substituted catalyst, which afforded improvements in enantioselectivity relative to the parent phenyl catalyst for a representative set of substrates. PMID:21391614

  14. Enantioselective conjugate silyl additions to cyclic and acyclic unsaturated carbonyls catalyzed by Cu complexes of chiral N-heterocyclic carbenes.

    Science.gov (United States)

    Lee, Kang-Sang; Hoveyda, Amir H

    2010-03-10

    An efficient Cu-catalyzed protocol for enantioselective addition of a dimethylphenylsilanyl group to a wide range of cyclic and acyclic unsaturated ketones, esters, acrylonitriles, and alpha,beta,gamma,delta-dienones is disclosed. Reactions are performed in the presence of 1-2 mol % of commercially available and inexpensive CuCl, a readily accessible monodentate imidazolinium salt, and commercially available (dimethylphenylsilyl)pinacolatoboron. Cu-catalyzed enantioselective conjugate additions proceed to completion within only 2 h to afford the desired silanes in 87-97% yield and 90:10-99:1 enantiomeric ratio (er). Use of a proton source (e.g., MeOH) is not required; accordingly, synthetically versatile alpha-silyl boron enolates can be obtained. The special utility of the present protocol, in comparison with the related catalytic enantioselective aldol and boronate conjugate additions, is discussed and illustrated through various functionalizations of the enantiomerically enriched beta-silylcarbonyls.

  15. Enantioselective determination of the chiral pesticide isofenphos-methyl in vegetables, fruits, and soil and its enantioselective degradation in pak choi using HPLC with UV detection.

    Science.gov (United States)

    Gao, Beibei; Zhang, Qing; Tian, Mingming; Zhang, Zhaoxian; Wang, Minghua

    2016-09-01

    An enantioselective method for the simultaneous determination of the chiral pesticide isofenphos-methyl in vegetables, fruits, and soil has been established using high-performance liquid chromatography with UV detection. The complete enantioseparation was conducted by reversed-phase liquid chromatography with a cellulose-tris-(4-methylbenzoate) chiral stationary phase (CSP) (Lux Cellulose-3). The effects of different mobile phase compositions, temperatures, and flow rates on enantioseparation were also investigated. The experimental and calculated electronic circular dichroism spectra indicate that the first peak is (S)-(+)-isofenphos-methyl and the second peak is (R)-(-)-isofenphos-methyl. Alumina-A and Florisil solid-phase extraction (SPE) columns were used to clean up for vegetable, fruit, and soil samples. The mean recoveries of the two enantiomers ranged from 83.2 to 110.9 % with intra-day relative standard deviations (RSDs) from 3.2 to 10.8 % and inter-day RSDs from 3.6 to 10 %. Good linearity (≥0.9992) was obtained for the two enantiomers in all matrix-matched calibration curves in the range of 0.25 to 20 mg L(-1). The limit of detection for two enantiomers in six matrices was in the range of 0.008 to 0.011 mg kg(-1), and the limit of quantification was estimated to range from 0.027 to 0.037 mg kg(-1). The results indicated that this method was a convenient and dependable approach for the simultaneous determination of isofenphos-methyl enantiomers in food and environmental samples. The stereoselective degradation of isofenphos-methyl in pak choi has shown that the (R)-(-)-isofenphos-methyl isomer (half-life t 1/2 = 2.2 days) degraded faster than the (S)-(+)-isomer (t 1/2 = 1.9 days). Graphical Abstract The enantioselective determination and enantioselective degradation of the chiral pesticide isofenphos-methyl.

  16. Facile modulation of enantioselectivity of thermophilic Geobacillus zalihae lipase by regulating hydrophobicity of its Q114 oxyanion.

    Science.gov (United States)

    Abdul Wahab, Roswanira; Basri, Mahiran; Raja Abdul Rahman, Raja Noor Zaliha; Salleh, Abu Bakar; Abdul Rahman, Mohd Basyaruddin; Leow, Thean Chor

    2016-11-01

    Site-directed mutagenesis of the oxyanion-containing amino acid Q114 in the recombinant thermophilic T1 lipase previously isolated from Geobacillus zalihae was performed to elucidate its role in the enzyme's enantioselectivity and reactivity. Substitution of Q114 with a hydrophobic methionine to yield mutant Q114M increased enantioselectivity (3.2-fold) and marginally improved reactivity (1.4-fold) of the lipase in catalysing esterification of ibuprofen with oleyl alcohol. The improved catalytic efficiency of Q114L was concomitant with reduced flexibility in the active site while the decreased enantioselectivity of Q114L could be directly attributed to diminished electrostatic repulsion of the substrate carboxylate ion that rendered partial loss in steric hindrance and thus enantioselectivity. The highest E-values for both Q114L (E-value 14.6) and Q114M (E-value 48.5) mutant lipases were attained at 50°C, after 12-16h, with a molar ratio of oleyl alcohol to ibuprofen of 1.5:1 and at 2.0% (w/v) enzyme load without addition of molecular sieves. Pertinently, site-directed mutagenesis on the Q114 oxyanion of T1 resulted in improved enantioselectivity and such approach may be applicable to other lipases of the same family. We demonstrated that electrostatic repulsion phenomena could affect flexibility/rigidity of the enzyme-substrate complex, aspects vital for enzyme activity and enantioselectivity of T1. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of olive-mill waste addition to agricultural soil on the enantioselective behavior of the chiral fungicide metalaxyl.

    Science.gov (United States)

    Gámiz, Beatriz; Celis, Rafael; Hermosín, M Carmen; Cornejo, Juan

    2013-10-15

    Certain soil management practices can affect the enantioselective behavior of chiral pesticide enantiomers in agricultural soils. In this work, laboratory experiments were conducted to study the effects of olive-mill waste (OMW) addition to a Mediterranean agricultural soil on the enantioselectivity of sorption, degradation, and leaching processes of the chiral fungicide metalaxyl. Sorption-desorption isotherms indicated that the sorption of metalaxyl enantiomers by unamended and OMW-amended soil (2% w/w) was non-enantioselective and that OMW addition had little effect on the extent of sorption of metalaxyl enantiomers by the soil. Soil incubation experiments revealed that the degradation of metalaxyl in unamended soil was highly enantioselective, with R-metalaxyl being degraded faster (t1/2 = 12 days) than S-metalaxyl (t1/2 = 39 days). OMW addition to the soil increased the half-life of the biologically-active R-metalaxyl enantiomer from 12 to 28 days, and decreased the half-life of the non-active S-metalaxyl enantiomer from 39 to 33 days. Consequently, the enantioselectivity of metalaxyl degradation in the soil was greatly reduced upon OMW addition. Column leaching data were consistent with batch sorption and incubation results, showing similar retardation of S- and R-metalaxyl in unamended and OMW-amended soil and enantioselective leaching of the fungicide only in unamended soil. The results have important implications regarding the biological efficacy and environmental impact of the fungicide when applied as a mixture of enantiomers or racemate to OMW-treated soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Enantioselective palladium(II)-catalyzed formal [3,3]-sigmatropic rearrangement of 2-allyloxypyridines and related heterocycles.

    Science.gov (United States)

    Rodrigues, Alessandro; Lee, Ernest E; Batey, Robert A

    2010-01-15

    Enantioselective palladium(II)-catalyzed formal [3,3]-sigmatropic rearrangement of (E)- and (Z)-allyloxy substituted N-heterocycles generates N-allyl N-heterocyclic amides in good yields and high enantioselectivities (up to 96% ee). The chiral palladacycle COP-Cl (5 mol %) is used as a catalyst with silver(I) trifluoroacetate (10 mol %) at 35-45 degrees C. Examples of heterocycles synthesized include 2-pyridones, quinolin-2(1H)-ones, and isoquinolin-1(2H)-ones.

  19. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  20. Novel smart chiral magnetic microspheres for enantioselective adsorption of tryptophan enantiomers

    Science.gov (United States)

    Guo, Lian-Di; Song, Ya-Ya; Yu, Hai-Rong; Pan, Li-Ting; Cheng, Chang-Jing

    2017-06-01

    Multifunctional microspheres simultaneously possessing chirality, magnetism and thermosensitivity show great potentials in direct enantiomeric separation. Herein we report a novel type of smart chiral magnetic microspheres with core/shell/shell structures (Fe3O4@SiO2@PNCD) and its application in enantioselective adsorption of tryptophan (Trp) enantiomers. The prepared Fe3O4@SiO2@PNCD are composed of a Fe3O4 nanoparticle core, an acidic-resistant SiO2 middle shell and a thermosensitive microgel functional shell (PNCD). The PNCD plays an important role in the enantioselective adsorption of Trp enantiomers. The β-cyclodextrin (β-CD) molecules on the PNCD act as smart receptors or chiral selectors, and can selectively recognize and bind L-Trp enantiomers into their cavities by forming host-guest inclusion complexes. The poly(N-isopropylacrylamide) (PNIPAM) chains on the PNCD serve as microenvironmental adjustors for the association constants of β-CD/L-Trp complexes. The fabricated Fe3O4@SiO2@PNCD demonstrate fascinating temperature-responsive chiral recognition and adsorption selectivity toward Trp enantiomers. Most importantly, the desorption of Trp enantiomers and the regeneration of the Fe3O4@SiO2@PNCD can be easily achieved via simply changing the operation temperature. Moreover, the regenerated Fe3O4@SiO2@PNCD can be readily recovered from the amino acids enantiomeric solution under an external magnetic field for reuse. The present study provides a novel strategy for the direct enantioselective adsorption and separation of various enantiomeric compounds.

  1. 3D chiral nanoplasmonics: fabrication, chiroptic engineering, mechanism, and application in enantioselection (Presentation Recording)

    Science.gov (United States)

    Huang, Zhifeng

    2015-09-01

    Chirality does naturally exist, and the building blocks of life (e.g. DNA, proteins, peptides and sugars) are usually chiral. Chirality inherently imposes chemical/biological selectivity on functional molecules; hence the discrimination in molecular chirality from an enantiomer to the other mirror image (i.e. enantioselection) has fundamental and application significance. Enantiomers interact with left and right handed circularly polarized light in a different manner with respect to optical extinction; hence, electronic circular dichroism (ECD) has been widely used for enantioselection. However, enantiomers usually have remarkably low ECD intensity, mainly owing to the small electric transition dipole moment induced by molecular sizes compared to the ECD-active wavelength in the UV-visible-near IR region. To enhance ECD magnitude, recently it has being developed 3D chiral nanoplasmonic structures having a helical path, and the dimensions are comparable to the ECD wavelength. However, it is still ambiguous the origin of 3D chiroplasmonics, and there is a lack of studying the interaction of 3D chiroplasmoncs with enantiomers for the application of enantioselection. Herein, we will present a one-step fabrication of 3D silver nanospirals (AgNSs) via low-substrate-temperature glancing angle deposition. AgNSs can be deposited on a wide range of substrates (including transparent and flexible substrates), in an area on the order of cm2. A set of spiral dimensions (such as spiral pitches, number of turns and handedness) have been easily engineered to tune the chiroptic properties, leading to studying the chiroplasmonic principles together with finite element simulation and the LC model. At the end, it will be demonstrated that 3D chiroplasmonics can differentiate molecular chirality of enantiomers with dramatic enhancement in the anisotropy g factor. This study opens a door to sensitively discriminate enantiomer chirality.

  2. Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis

    Directory of Open Access Journals (Sweden)

    Dario Perdicchia

    2015-12-01

    Full Text Available 2-Piperidineethanol (1 and its corresponding N-protected aldehyde (2 were used for the synthesis of several natural and synthetic compounds. The existence of a stereocenter at position 2 of the piperidine skeleton and the presence of an easily-functionalized group, such as the alcohol, set 1 as a valuable starting material for enantioselective synthesis. Herein, are presented both synthetic and enzymatic methods for the resolution of the racemic 1, as well as an overview of synthesized natural products starting from the enantiopure 1.

  3. Zirconium(IV) and Hafnium(IV)-Catalyzed Highly Enantioselective Epoxidation of Homoallylic and Bishomoallylic Alcohols

    Science.gov (United States)

    Li, Zhi; Yamamoto, Hisashi

    2010-01-01

    In this report, zirconium(IV) and hafnium(IV)-bishydroxamic acid complexes were utilized in the highly enantioselective epoxidation of homoallylic alcohols and bishomoallylic alcohols, which used to be quite difficult substrates for other types of asymmetric epoxidation reactions. The performance of the catalyst was improved by adding polar additive and molecular sieves. For homoallylic alcohols, the reaction could provide epoxy alcohols in up to 81% yield and up to 98% ee, while for bishomoallylic alcohols, up to 75% yield and 99% ee of epoxy alcohols rather than cyclize compounds could be obtained in most cases. PMID:20481541

  4. Zirconium(IV)- and hafnium(IV)-catalyzed highly enantioselective epoxidation of homoallylic and bishomoallylic alcohols.

    Science.gov (United States)

    Li, Zhi; Yamamoto, Hisashi

    2010-06-16

    In this report, zirconium(IV)- and hafnium(IV)-bishydroxamic acid complexes were utilized in the highly enantioselective epoxidation of homoallylic alcohols and bishomoallylic alcohols, which used to be quite difficult substrates for other types of asymmetric epoxidation reactions. The performance of the catalyst was improved by adding polar additive and molecular sieves. For homoallylic alcohols, the reaction could provide epoxy alcohols in up to 83% yield and up to 98% ee, while, for bishomoallylic alcohols, up to 79% yield and 99% ee of epoxy alcohols rather than cyclized tetrahydrofuran compounds could be obtained in most cases.

  5. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Shulin, E-mail: shulin@zju.edu.cn [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Zhang, Zhisheng [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Wenjing; Bao, Lingling [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Zhang, Hu [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 210021 (China)

    2015-02-15

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  6. Enantioselective Total Syntheses of Kuwanon X, Kuwanon Y, and Kuwanol A.

    Science.gov (United States)

    Gao, Lei; Han, Jianguang; Lei, Xiaoguang

    2016-02-05

    The first enantioselective total syntheses of (-)-kuwanon X, (+)-kuwanon Y, and (+)-kuwanol A have been accomplished by using asymmetric Diels-Alder cycloaddition promoted by chiral VANOL or VAPOL/boron Lewis acid. The biosynthesis-inspired asymmetric Diels-Alder cycloaddition shows high exo selectivity (exo/endo = 13/1), which was unprecedented in the previous total syntheses of related prenylflavonoid Diels-Alder natural products. An acid catalyzed intramolecular ketalization process enabled a biomimetic transformation to construct the polycyclic skeleton of kuwanol A efficiently.

  7. Enantioselective Synthesis of Isoquinolines: Merging Chiral-Phosphine and Gold Catalysis.

    Science.gov (United States)

    Gao, Yu-Ning; Shi, Feng-Chen; Xu, Qin; Shi, Min

    2016-05-10

    The highly enantioselective synthesis of dihydroisoquinoline derivatives from aromatic sulfonated imines tethered with an alkyne moiety, through a one-pot asymmetric relay catalysis of chiral-phosphine and gold catalysts, is reported. Enantiomerically enriched dihydroisoquinoline derivatives were afforded in good yields and good-to-excellent ee values under mild conditions, based on the asymmetric aza-Morita-Baylis-Hillman reaction. Dihydroisoquinoline derivatives containing two chiral centers were also synthesized through further transformations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enantioselective Cycloaddition of Münchnones onto [60]Fullerene: Organocatalysis versus Metal Catalysis

    Science.gov (United States)

    2014-01-01

    Novel chiral catalytic systems based on both organic compounds and metal salts have been developed for the enantioselective [3 + 2] cycloaddition of münchnones onto fullerenes and olefins. These two different approaches proved to be efficient and complementary in the synthesis of optically active pyrrolino[3,4:1,2][60]fullerenes with high levels of enantiomeric excess and moderate to good conversions. Further functionalization of the pyrrolinofullerene carboxylic acid derivatives has been carried out by esterification and amidation reactions. PMID:24483247

  9. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    Science.gov (United States)

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  10. Enantioselective Precipitate of Amines, Amino Alcohols, and Amino Acids via Schiff Base Reaction in the Presence of Chiral Ionic Liquid.

    Science.gov (United States)

    Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Pan, Yuanjiang

    2017-10-06

    Two novel chiral ionic liquids are synthesized as the chiral selector. Racemates of amines, amino alcohols, and amino acids could generate enantioselective precipitate with multicomponent self-assemblies under mild conditions. The approach allows for enantioseparation with good yields (79-94%) and excellent ee's (>95%).

  11. Enantioselective synthesis of benzofurans and benzoxazines via an olefin cross-metathesis-intramolecular oxo-Michael reaction.

    Science.gov (United States)

    Zhang, Jun-Wei; Cai, Quan; Gu, Qing; Shi, Xiao-Xin; You, Shu-Li

    2013-09-11

    Chiral phosphoric acid and Hoveyda-Grubbs II were found to catalyze an olefin cross-metathesis-intramolecular oxo-Michael cascade reaction of the ortho-allylphenols and enones to provide a variety of benzofuran and benzoxazine derivatives in moderate to good yields and enantioselectivity.

  12. Co(salen)-mediated enantioselective radiofluorination of epoxides. Synthesis and biological evaluation of both enantiomers of [18F]FMISO

    DEFF Research Database (Denmark)

    Revunov, Evgeny V.

    The purpose of this PhD project was to develop an enantioselective cobalt-mediated radiofluorination of epoxides and apply this methodology for radiosynthesis of the PET radiopharmaceutical [18F]FMISO. The developed procedure utilizes [18F]HF-gas (as an efficient source of nucleophilic 18F-fluori...

  13. Enantioselective lipase-catalysed kinetic resolution of acyloxymethyl and ethoxycarbonylmethyl esters of 1,4-dihydroisonicotinic acid derivatives

    NARCIS (Netherlands)

    Sobolev, A.; Franssen, M.C.R.; Poikans, J.; Duburs, G.; Groot, de Æ.

    2002-01-01

    The lipase-catalysed kinetic resolution of four derivatives of 4-[(acyloxy)methyl] and 4-ethoxycarbonylmethyl 3-methyl 5-propyl 2,6-dimethyl-1,4-dihydro-3,4,5-pyridinetricarboxylates has been investigated. Whereas the enantioselectivity of lipases towards the acyloxymethyl derivatives was rather

  14. Conjugate-base-stabilized Brønsted acids: catalytic enantioselective Pictet-Spengler reactions with unmodified tryptamine.

    Science.gov (United States)

    Mittal, Nisha; Sun, Diana X; Seidel, Daniel

    2014-02-07

    A conjugate-base-stabilized Brønsted acid facilitates catalytic enantioselective Pictet-Spengler reactions with unmodified tryptamine. The chiral carboxylic acid catalyst is readily assembled in just two steps and enables the formation of β-carbolines with up to 92% ee. Achiral acid additives or in situ Boc-protection facilitate catalyst turnover.

  15. Enantioselective disposition of (R)-salmeterol and (S)-salmeterol in urine following inhaled dosing and application to doping control

    DEFF Research Database (Denmark)

    Jacobson, Glenn A; Hostrup, Morten; Narkowicz, Christian K

    2017-01-01

    of salmeterol pharmacokinetics. In this study, subjects inhaled either 50 (n = 6) or 200 µg (n = 4; generally regarded as maximum therapeutic dose) of salmeterol and urine was then collected for 24 h and analyzed by enantioselective ultra performance liquid chromatography-tandem mass spectrometry (UPLC...

  16. Regio- and enantioselective copper-catalyzed allylic alkylation of ortho-substituted cinnamyl bromides with Grignard reagents.

    Science.gov (United States)

    van der Molen, Nathalie C; Tiemersma-Wegman, Theodora D; Fañanás-Mastral, Martín; Feringa, Ben L

    2015-05-15

    A highly efficient method for the copper-catalyzed asymmetric allylic alkylation of ortho-substituted cinnamyl bromides with Grignard reagents is reported. The use of a catalytic system comprising CuBr·SMe2 and TaniaPhos as chiral ligands gives rise to a range of branched products with excellent regio- and enantioselectivity.

  17. The Use of N-Type Ligands in the Enantioselective Liquid–Liquid Extraction of Underivatized Amino Acids

    NARCIS (Netherlands)

    Verkuijl, Bastiaan J.V.; Schoonen, Anne K.; Minnaard, Adriaan J.; Vries, Johannes G. de; Feringa, Bernard

    The first palladium based extraction system using chiral N-based ligands in the enantioselective liquid–liquid extraction (ELLE) of underivatized amino acids, is presented. The system shows the highest selectivity for the ELLE of methionine with metal complexes as hosts reported to date.

  18. Enantioselective α-Alkenylation of Aldehydes with Boronic Acids via the Synergistic Combination of Copper(II) and Amine Catalysis

    Science.gov (United States)

    Stevens, Jason M.

    2013-01-01

    The enantioselective α-alkenylation of aldehydes has been accomplished using boronic acids via the synergistic combination of copper and chiral amine catalysis. The merger of two highly utilized and robust catalytic systems has allowed for the development of a mild and operationally trivial protocol for the direct formation of α-formyl olefins employing common building blocks for organic synthesis. PMID:23889497

  19. Enantioselective synthesis of the C18-C25 segment of lasonolide A by an oxonia-cope prins cascade.

    Science.gov (United States)

    Dalgard, Jackline E; Rychnovsky, Scott D

    2005-04-14

    [reaction: see text] A 2-oxonia-Cope Prins cascade was developed that led to a facile and stereoselective synthesis of the C18-C25 segment of lasonolide A. The strategy nicely handles the introduction of the quaternary center in the tetrahydropyran ring, and all of the stereogenic centers in the product arise from a single stereocenter introduced in a catalytic enantioselective reaction.

  20. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    Science.gov (United States)

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  1. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent.

    Science.gov (United States)

    Wikmark, Ylva; Svedendahl Humble, Maria; Bäckvall, Jan-E

    2015-03-27

    A method for determining lipase enantioselectivity in the transacylation of sec-alcohols in organic solvent was developed. The method was applied to a model library of Candida antarctica lipase A (CalA) variants for improved enantioselectivity (E values) in the kinetic resolution of 1-phenylethanol in isooctane. A focused combinatorial gene library simultaneously targeting seven positions in the enzyme active site was designed. Enzyme variants were immobilized on nickel-coated 96-well microtiter plates through a histidine tag (His6-tag), screened for transacylation of 1-phenylethanol in isooctane, and analyzed by GC. The highest enantioselectivity was shown by the double mutant Y93L/L367I. This enzyme variant gave an E value of 100 (R), which is a dramatic improvement on the wild-type CalA (E=3). This variant also showed high to excellent enantioselectivity for other secondary alcohols tested. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  2. Enantioselective decomposition of chiral alkyl bromides on Cu(6 4 3) R&S: Effects of moving the chiral center

    Science.gov (United States)

    Rampulla, D. M.; Gellman, A. J.

    2006-07-01

    The enantioselective surface chemistry of two chiral alkyl halides, S-1-bromo-2-methylbutane and R-2-bromobutane, have been compared on the naturally chiral Cu(6 4 3) R&S surfaces. Temperature programmed reaction spectroscopy was used to quantify the yields of the various decomposition products during heating. A fraction of the adsorbed alkyl bromides desorb intact while the remainder decomposes by debromination to form either S-2-methyl-1-butyl or R-2-butyl groups on the surfaces. The S-2-methyl-1-butyl group then reacts by β-hydride elimination to form 2-methyl-1-butene or by hydrogenation to form 2-methylbutane. The R-2-butyl group reacts by β-hydride elimination to form butene or by hydrogenation to form butane. This surface chemistry on Cu(6 4 3) R&S is not enantioselective at low coverages but is enantioselective at high coverages. In R-2-bromobutane the chiral carbon atom coincides with the debromination reaction center while the β-hydride elimination centers are achiral. In S-1-bromo-2-methylbutane the chiral carbon atom coincides with the β-hydride elimination reaction center while the center for debromination is achiral. Results show that the enantioselectivities are influenced by the surface structure to a greater extent than they are by the adsorbate structure.

  3. Rhodium-catalyzed enantioselective hydrogenation of α-amino acrylonitriles: an efficient approach to synthesizing chiral α-amino nitriles.

    Science.gov (United States)

    Li, Xiuxiu; You, Cai; Yang, Yusheng; Wang, Fangyuan; Li, Shuailong; Lv, Hui; Zhang, Xumu

    2017-01-19

    An efficient rhodium-catalyzed asymmetric hydrogenation of α-amino acrylonitriles has been developed, affording α-acylamino nitriles with high yields and excellent enantioselectivities (up to 99% yield and >99% ee). This novel methodology provides an efficient and concise synthetic route to chiral α-amino nitriles, which are versatile intermediates in organic synthesis.

  4. Mutation of Residue beta F71 of Escherichia coli Penicillin Acylase Results in Enhanced Enantioselectivity and Improved Catalytic Properties

    NARCIS (Netherlands)

    Shapovalova, I. V.; Alkema, W. B. L.; Jamskova, O. V.; de Vries, E.; Guranda, D. T.; Janssen, D. B.; Svedas, V. K.

    2009-01-01

    Residue phenylalanine 71 of the beta-chain of penicillin acylase from E. coil is involved in substrate binding and chiral discrimination of its enantiomers. Different amino acid residues have been introduced at position beta F71, and the mutants were studied with respect to their enantioselectivity

  5. Mechanism-based enhancement of scope and enantioselectivity for reactions involving a copper-substituted stereogenic carbon centre

    Science.gov (United States)

    Lee, Jaehee; Radomkit, Suttipol; Torker, Sebastian; Del Pozo, Juan; Hoveyda, Amir H.

    2018-01-01

    A rapidly emerging set of catalytic reactions involves intermediates that contain a copper-substituted stereogenic carbon centre. Here, we demonstrate that an intimate understanding of this distinction provides ways for addressing limitations in reaction scope and explaining why unexpected variations in enantioselectivity often occur. By using catalytic enantioselective Cu-boryl addition to alkenes as the model process, we elucidate several key mechanistic principles. We show that higher electrophile concentration can lead to elevated enantioselectivity. This is because diastereoselective Cu-H elimination may be avoided and/or achiral Cu-boryl intermediates can be converted to allyl-B(pin) rather than add to an alkene. We illustrate that lower alkene amounts and/or higher chiral ligand concentration can minimize the deleterious influence of achiral Cu-alkyl species, resulting in improved enantiomeric ratios. Moreover, and surprisingly, we find that enantioselectivities are higher with the less reactive allylphenyl carbonates as chemoselective copper-hydride elimination is faster with an achiral Cu-alkyl species.

  6. Combination of Oxyanion Gln114 Mutation and Medium Engineering to Influence the Enantioselectivity of Thermophilic Lipase from Geobacillus zalihae

    Science.gov (United States)

    Wahab, Roswanira Abdul; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Leow, Thean Chor

    2012-01-01

    The substitution of the oxyanion Q114 with Met and Leu was carried out to investigate the role of Q114 in imparting enantioselectivity on T1 lipase. The mutation improved enantioselectivity in Q114M over the wild-type, while enantioselectivity in Q114L was reduced. The enantioselectivity of the thermophilic lipases, T1, Q114L and Q114M correlated better with log p as compared to the dielectric constant and dipole moment of the solvents. Enzyme activity was good in solvents with log p < 3.5, with the exception of hexane which deviated substantially. Isooctane was found to be the best solvent for the esterification of (R,S)-ibuprofen with oleyl alcohol for lipases Q114M and Q114L, to afford E values of 53.7 and 12.2, respectively. Selectivity of T1 was highest in tetradecane with E value 49.2. Solvents with low log p reduced overall lipase activity and dimethyl sulfoxide (DMSO) completely inhibited the lipases. Ester conversions, however, were still low. Molecular sieves employed as desiccant were found to adversely affect catalysis in the lipase variants, particularly in Q114M. The higher desiccant loading also increased viscosity in the reaction and further reduced the efficiency of the lipase-catalyzed esterifications. PMID:23109876

  7. Lewis acid-Lewis base catalyzed enantioselective hetero-Diels-Alder reaction for direct access to delta-lactones.

    Science.gov (United States)

    Tiseni, Paolo S; Peters, René

    2008-05-15

    A complex formed in situ from Er(OTf)3 and a simple commercially available norephedrine ligand promotes an unprecedented [4 + 2] cycloaddition of alpha,beta-unsaturated acid chlorides with a broad range of aromatic and heteroaromatic aldehydes by a cooperative bifunctional Lewis acid-Lewis base catalytic mode of action providing valuable delta-lactone building blocks with excellent enantioselectivity.

  8. Palladium-Catalyzed Enantioselective C-H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands.

    Science.gov (United States)

    Smalley, Adam P; Cuthbertson, James D; Gaunt, Matthew J

    2017-02-01

    The design of an enantioselective Pd(II)-catalyzed C-H amination reaction is described. The use of a chiral BINOL phosphoric acid ligand enables the conversion of readily available amines into synthetically valuable aziridines in high enantiomeric ratios. The aziridines can be derivatized to afford a range of chiral amine building blocks incorporating motifs readily encountered in pharmaceutically relevant molecules.

  9. Continuous chiral separation of amino acid derivatives by enantioselective liquid-liquid extraction in centrifugal contactor separators

    NARCIS (Netherlands)

    Schuur, Boelo; Floure, Joelle; Hallett, Andrew J.; Winkelman, Jozef G.M.; Vries, Johannes G. de; Heeres, Hero J.

    2008-01-01

    The continuous enantioselective liquid-liquid extraction of aqueous 3,5-dinitrobenzoyl-D,L-leucine (DNB-d,l-leu) by a cinchona alkaloid extractant (CA) in 1,2-dichloroethane using a centrifugal contact separator (CCS) was studied at 294 K. Typical concentrations were in the order of 1 mM for both

  10. Improved enantioselective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutated nucleophile-flanking residue

    NARCIS (Netherlands)

    van Loo, Bert; Kingma, Jaap; Heyman, Gertjan; Wittenaar, Alex; Lutje Spelberg, Jeffrey H.; Sonke, Theo; Janssen, Dick B.

    2009-01-01

    In epoxide hydrolase from Agrobacterium radiobacter (EchA), phenylalanine 108 flanks the nucleophilic aspartate and forms part of the substrate-binding pocket. The influence of mutations at this position on the activity and enantioselectivity of the enzyme was investigated. Screening for improved

  11. Integration of on-column catalysis and EKC analysis: investigation of enantioselective sulfoxidations.

    Science.gov (United States)

    Fuessl, Simone; Trapp, Oliver

    2012-03-01

    A novel technique is presented to investigate catalytic reactions by coupling a fused-silica capillary coated with an immobilized catalyst and a bare fused-silica capillary to achieve separation of the reaction products and to generate an electroosmotic flow, which drives the transport of the reactants and products through the catalytically active capillary. The principle of this technique is illustrated by the enantioselective sulfoxidation of benzylphenylsulfide with hydrogen peroxide to the corresponding sulfoxide in the presence of a vanadium(IV)-salen catalyst, which is immobilized to nonpolar polysiloxane and permanently bonded to the inner surface of the reaction capillary. The enantiomeric ratio of the reaction product is simultaneously determined by electrokinetic chromatography using 150 mg/mL sulfated β-cyclodextrin as chiral additive in 10 mM sodium dihydrogenphosphate background electrolyte at pH 8.3. In contrast to conventional enantioselective sulfoxidations of benzylphenylsulfide using the vanadium(IV)-salen catalyst, which give ees of up to 11%, an ee of up to 23% was achieved by this approach. Furthermore, the presented technique offers many more advantages, such as improved substrate selectivity using the nonpolar polysiloxane phase as a solvent, the feasibility to perform high-throughput kinetic measurements of substrate libraries, rapid screening and investigation of stereolabile compounds, that is, chiral sulfoxides, and screening of reactions using only minute amounts of reagents. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Jonathan D Bohbot

    2009-09-01

    Full Text Available Enantiomers differ only in the left or right handedness (chirality of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8 acts as a chiral selective receptor for the (R-(--enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs.

  13. Enantioselective Transamination in Continuous Flow Mode with Transaminase Immobilized in a Macrocellular Silica Monolith

    Directory of Open Access Journals (Sweden)

    Ludivine van den Biggelaar

    2017-02-01

    Full Text Available ω-Transaminases have been immobilized on macrocellular silica monoliths and used as heterogeneous biocatalysts in a continuous flow mode enantioselective transamination reaction. The support was prepared by a sol-gel method based on emulsion templating. The enzyme was immobilized on the structured silica monoliths both by adsorption, and by covalent grafting using amino-functionalized silica monoliths and glutaraldehyde as a coupling agent. A simple reactor set-up based on the use of a heat-shrinkable Teflon tube is presented and successfully used for the continuous flow kinetic resolution of a chiral amine, 4-bromo-α-methylbenzylamine. The porous structure of the supports ensures effective mass transfer and the reactor works in the plug flow regime without preferential flow paths. When immobilized in the monolith and used in the flow reactor, transaminases retain their activity and their enantioselectivity. The solid biocatalyst is also shown to be stable both on stream and during storage. These essential features pave the way to the successful development of an environmentally friendly process for chiral amines production.

  14. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    Science.gov (United States)

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  15. Enantioselectivity of human AMP, dTMP and UMP-CMP kinases.

    Science.gov (United States)

    Alexandre, Julie A C; Roy, Béatrice; Topalis, Dimitri; Pochet, Sylvie; Périgaud, Christian; Deville-Bonne, Dominique

    2007-01-01

    L-nucleoside analogues such as lamivudine are active for treating viral infections. Like D-nucleosides, the biological activity of the L-enantiomers requires their stepwise phosphorylation by cellular or viral kinases to give the triphosphate. The enantioselectivity of NMP kinases has not been thoroughly studied, unlike that of deoxyribonucleoside kinases. We have therefore investigated the capacity of L-enantiomers of some natural (d)NMP to act as substrates for the recombinant forms of human uridylate-cytidylate kinase, thymidylate kinase and adenylate kinases 1 and 2. Both cytosolic and mitochondrial adenylate kinases were strictly enantioselective, as they phosphorylated only D-(d)AMP. L-dTMP was a substrate for thymidylate kinase, but with an efficiency 150-fold less than D-dTMP. Both L-dUMP and L-(d)CMP were phosphorylated by UMP-CMP kinase although much less efficiently than their natural counterparts. The stereopreference was conserved with the 2'-azido derivatives of dUMP and dUMP while, unexpectedly, the 2'-azido-D-dCMP was a 4-fold better substrate for UMP-CMP kinase than was CMP. Docking simulations showed that the small differences in the binding of D-(d)NMP to their respective kinases could account for the differences in interactions of the L-isomers with the enzymes. This in vitro information was then used to develop the in vivo activation pathway for L-dT.

  16. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.

    2012-11-13

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  17. Regio- and enantioselective microbial hydroxylation and evaluation of cytotoxic activity of β-cyclocitral-derived halolactones.

    Directory of Open Access Journals (Sweden)

    Marcelina Mazur

    Full Text Available Three β-cyclocitral-derived halolactones, which exhibit antifeedant activity towards storage product pests, were subjected to microbial transformation processes. Among the thirty tested strains of filamentous fungi and yeast, the most effective biocatalysts were Absidia cylindrospora AM336, Mortierella isabellina AM212 and Mortierella vinaceae AM149. As a result of regio- and enantioselective hydroxylation four new oxygenated derivatives were obtained. Regardless of the biocatalyst applied, the δ-iodo- and δ-bromo-γ-lactones were hydroxylated in an inactivated position C-5 of cyclohexane ring. The analogous transformation of chlorolactone was observed in Mortierella isabellina AM212 culture but in the case of two other biocatalysts the hydroxy group was introduced at C-3 position. All obtained hydroxylactones were enantiomerically pure (ee = 100% or enriched (ee = 50%. The highest enantioselectivity of hydroxylation was observed for M. isabellina AM212. The cytotoxic activity of halolactones was also examined by WST-1 assay wherein tested compounds did not exhibit significant effect on the viability of tumor HeLa and normal CHO-K1 cells.

  18. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    Science.gov (United States)

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  19. Evaluating the enantioselective distribution, degradation and excretion of epoxiconazole in mice following a single oral gavage.

    Science.gov (United States)

    Wang, Dezhen; Qiu, Jing; Zhu, Wentao; Zhang, Ping; Deng, Nian; Wang, Xinru; Wang, Yao; Zhou, Zhiqiang

    2015-01-01

    1. The enantiomeric enrichment or degradation of epoxiconazole has been reported in grape, soil, tubifex and mealworm beetle. But, little is known about its enantioselective behaviors in mammals. 2. To further understand differences in the distribution, degradation and excretion of epoxiconazole enantiomers in vivo, male CD-1 mice were selected as the test model to investigate the enantioselective behaviors after a single oral gavage. Mice were sacrificed after 1 h, 3 h, 7 h, 12 h, 24 h, 48 h, 72 h treatment, blood, tissues and excretions were collected for epoxiconazole analysis by LC-MS/MS. 3. On the Lux-Cellulose-1 chiral column, an enrichment of the second eluting (+)-epoxiconazole was generally observed, and feces and urine showed similar EF with major tissues. 4. To elucidate the potential role of intestinal bacterial flora in stereospecific degradation of epoxiconazole, mice fecal flora were cultured in vitro and incubated with epoxiconazole for 48 h. Results showed that (-)-epoxiconazole was preferentially degraded by intestinal bacterial. 5. These results may provide useful information for risk assessment of epoxiconazole on non-target animals.

  20. Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols.

    Science.gov (United States)

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki; Fukui, Toshiaki; Xing, Xin-Hui

    2013-04-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent K(m) values for the cofactors NAD(P)(+) and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O-20% 2-propanol and H2O-50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols.

  1. Enantioselective Dissipation of Acephate and Its Metabolite, Methamidophos, during Tea Cultivation, Manufacturing, and Infusion.

    Science.gov (United States)

    Pan, Rong; Chen, Hongping; Wang, Chen; Wang, Qinghua; Jiang, Ying; Liu, Xin

    2015-02-04

    The enantioselective dissipation of acephate and its metabolite, methamidophos, was investigated during tea cultivation, manufacturing, and infusion, using QuEChERS sample preparation technique and gas chromatography coupled with a BGB-176 chiral column. Results showed that (+)-acephate and (-)-acephate dissipated following first-order kinetics in fresh tea leaves with half-lives of 1.8 and 1.9 days, respectively. Acephate was degraded into a more toxic metabolite, methamidophos. Preferential dissipation and translocation of (+)-acephate may exist in tea shoots, and (-)-methamidophos was degraded more rapidly than (+)-methamidophos. During tea manufacturing, drying and spreading (or withering) played important roles in the dissipation of acephate enantiomers. The enantiometic fractions of acephate changed from 0.495-0.496 to 0.479-0.486 (P ≤ 0.0081), whereas those of methamidophos changed from 0.576-0.630 to 0.568-0.645 (P ≤ 0.0366 except for green tea manufacturing on day 1), from fresh tea leaves to made tea. In addition, high transfer rates (>80%) and significant enantioselectivity (P ≤ 0.0042) of both acephate and its metabolite occurred during tea brewing.

  2. Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm.

    Science.gov (United States)

    Chang, Jing; Wang, Yinghuan; Wang, Huili; Li, Jianzhong; Xu, Peng

    2016-02-01

    In this study, the bioavailability and enantioselectivity differences between bifenthrin (BF, typeⅠpyrethroid) and lambad-cyhalothrin (LCT, type Ⅱ pyrethroid) in earthworm (Eisenia fetida) were investigated. The bio-soil accumulation factors (BSAFs) of BF was about 4 times greater than that of LCT. LCT was degraded faster than BF in soil while eliminated lower in earthworm samples. Compound sorption plays an important role on bioavailability in earthworm, and the soil-adsorption coefficient (K(oc)) of BF and LCT were 22 442 and 42 578, respectively. Metabolic capacity of earthworm to LCT was further studied as no significant difference in the accumulation of LCT between the high and low dose experiment was found. 3-phenoxybenzoic acid (PBCOOH), a metabolite of LCT produced by earthworm was detected in soil. The concentration of PBCOOH at high dose exposure was about 4.7 times greater than that of in low dose level at the fifth day. The bioaccumulation of BF and LCT were both enantioselective in earthworm. The enantiomer factors of BF and LCT in earthworm were approximately 0.12 and 0.65, respectively. The more toxic enantiomers ((+)-BF and (-)-LCT) had a preferential degradation in earthworm and leaded to less toxicity on earthworm for racemate exposure. In combination with other studies, a liner relationship between Log BSAF(S) and Log K(ow) was observed, and the Log BSAF(S) decreased with the increase of Log K(ow). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Highly enantioselective organocatalytic oxidative kinetic resolution of secondary alcohols using chiral alkoxyamines as precatalysts: catalyst structure, active species, and substrate scope.

    Science.gov (United States)

    Murakami, Keiichi; Sasano, Yusuke; Tomizawa, Masaki; Shibuya, Masatoshi; Kwon, Eunsang; Iwabuchi, Yoshiharu

    2014-12-17

    The development and characterization of enantioselective organocatalytic oxidative kinetic resolution (OKR) of racemic secondary alcohols using chiral alkoxyamines as precatalysts are described. A number of chiral alkoxyamines have been synthesized, and their structure-enantioselectivity correlation study in OKR has led us to identify a promising precatalyst, namely, 7-benzyl-3-n-butyl-4-oxa-5-azahomoadamantane, which affords various chiral aliphatic secondary alcohols (ee up to >99%, k(rel) up to 296). In a mechanistic study, chlorine-containing oxoammonium species were identified as the active species generated in situ from the alkoxyamine precatalyst, and it was revealed that the chlorine atom is crucial for high reactivity and enantioselectivity. The present OKR is the first successful example applicable to various unactivated aliphatic secondary alcohols, including heterocyclic alcohols with high enantioselectivity, the synthetic application of which is demonstrated by the synthesis of a bioactive compound.

  4. Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol

    Science.gov (United States)

    Krajczewski, Jan; Kołątaj, Karol; Kudelski, Andrzej

    2016-12-01

    Previous investigations of hollow platinum nanoparticles have shown that such nanostructures are more active catalysts than their solid counterparts towards the following electrochemical reactions: reduction of oxygen, evolution of hydrogen, and oxidation of borohydride, methanol and formic acid. In this work we show that synthesised using standard galvanic replacement reaction (with Co templates) hollow platinum nanoparticles exhibit enhanced catalytic activity also towards reduction of 4-nitrophenol by sodium borohydride in water. Unlike in the case of procedures involving hollow platinum catalysts employed so far to carry out this reaction it is not necessary to couple analysed platinum nanoparticles to the surface of an electrode. Simplification of the analyzed reaction may eliminate same experimental errors. We found that the enhanced catalytic activity of hollow Pt nanoparticles is not only connected with generally observed larger surface area of hollow nanostructures, but is also due to the contamination of formed hollow nanostructures with cobalt, from which sacrificial templates used in the synthesis of hollow Pt nanostrustures have been formed. Because using sacrificial templates is a typical method of synthesis of hollow metal nanostructures, formed hollow nanoparticles are probably often contaminated, which may significantly influence their catalytic activity.

  5. Catalytic Reductions and Tandem Reactions of Nitro Compounds Using in Situ Prepared Nickel Boride Catalyst in Nanocellulose Solution.

    Science.gov (United States)

    Prathap, Kaniraj Jeya; Wu, Qiong; Olsson, Richard T; Dinér, Peter

    2017-09-15

    A mild and efficient method for the in situ reduction of a wide range of nitroarenes and aliphatic nitrocompounds to amines in excellent yields using nickel chloride/sodium borohydride in a solution of TEMPO-oxidized nanocellulose in water (0.01 wt %) is described. The nanocellulose has a stabilizing effect on the catalyst, which increases the turnover number and enables low loading of nickel catalyst (0.1-0.25 mol % NiCl2). In addition, two tandem protocols were developed in which the in situ formed amines were either Boc-protected to carbamates or further reacted with an epoxide to yield β-amino alcohols in excellent yields.

  6. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  7. Enantioselective organocatalyzed Oxa-Michael-Aldol cascade reactions: Construction of chiral 4H-chromenes with a trifluoromethylated tetrasubstituted carbon stereocenter

    KAUST Repository

    Zhang, Jing

    2015-03-13

    The first organocatalytic asymmetric synthesis of 4H-chromenes bearing a trifluoromethylated tetrasubstituted carbon center is presented. Chiral secondary amines promote the oxa-Michael-aldol cascade reaction between alkynals and 2-trifluoroacetylphenols via iminium-allenamine activation to produce pharmaceutically important heterocycles with excellent enantioselectivities. The proposed reaction can be scaled-up easily with maintenance of the excellent enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.

    Science.gov (United States)

    Ward, Thomas R

    2011-01-18

    Artificial metalloenzymes are created by incorporating an organometallic catalyst within a host protein. The resulting hybrid can thus provide access to the best features of two distinct, and often complementary, systems: homogeneous and enzymatic catalysts. The coenzyme may be positioned with covalent, dative, or supramolecular anchoring strategies. Although initial reports date to the late 1970s, artificial metalloenzymes for enantioselective catalysis have gained significant momentum only in the past decade, with the aim of complementing homogeneous, enzymatic, heterogeneous, and organic catalysts. Inspired by a visionary report by Wilson and Whitesides in 1978, we have exploited the potential of biotin-avidin technology in creating artificial metalloenzymes. Owing to the remarkable affinity of biotin for either avidin or streptavidin, covalent linking of a biotin anchor to a catalyst precursor ensures that, upon stoichiometric addition of (strept)avidin, the metal moiety is quantitatively incorporated within the host protein. In this Account, we review our progress in preparing and optimizing these artificial metalloenzymes, beginning with catalytic hydrogenation as a model and expanding from there. These artificial metalloenzymes can be optimized by both chemical (variation of the biotin-spacer-ligand moiety) and genetic (mutation of avidin or streptavidin) means. Such chemogenetic optimization schemes were applied to various enantioselective transformations. The reactions implemented thus far include the following: (i) The rhodium-diphosphine catalyzed hydrogenation of N-protected dehydroaminoacids (ee up to 95%); (ii) the palladium-diphosphine catalyzed allylic alkylation of 1,3-diphenylallylacetate (ee up to 95%); (iii) the ruthenium pianostool-catalyzed transfer hydrogenation of prochiral ketones (ee up to 97% for aryl-alkyl ketones and ee up to 90% for dialkyl ketones); (iv) the vanadyl-catalyzed oxidation of prochiral sulfides (ee up to 93%). A number of

  9. Asymmetric Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition of 1-yne-vinylcyclopropanes for bicyclo[3.3.0] compounds with a chiral quaternary carbon stereocenter and density functional theory study of the origins of enantioselectivity.

    Science.gov (United States)

    Lin, Mu; Kang, Guan-Yu; Guo, Yi-An; Yu, Zhi-Xiang

    2012-01-11

    A highly enantioselective Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition of 1-yne-VCPs to bicyclo[3.3.0] compounds with an all-carbon chiral quaternary stereocenter at the bridgehead carbon was developed. DFT calculations of the energy surface of the catalytic cycle (complexation, cyclopropane cleavage, alkyne insertion, and reductive elimination) of the asymmetric [3 + 2] cycloaddition reaction indicated that the rate- and stereo-determining step is the alkyne-insertion step. Analysis of the alkyne-insertion transition states revealed that the serious steric repulsion between the substituents in the alkyne moiety of the substrates and the rigid H(8)-BINAP backbone is responsible for not generating the disfavored [3 + 2] cycloadducts. © 2011 American Chemical Society

  10. Green reduction of graphene oxide by ascorbic acid

    Science.gov (United States)

    Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza

    2018-01-01

    Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.

  11. Highly enantioselective phase-transfer-catalyzed alkylation of protected alpha-amino acid amides toward practical asymmetric synthesis of vicinal diamines, alpha-amino ketones, and alpha-amino alcohols.

    Science.gov (United States)

    Ooi, Takashi; Takeuchi, Mifune; Kato, Daisuke; Uematsu, Yukitaka; Tayama, Eiji; Sakai, Daiki; Maruoka, Keiji

    2005-04-13

    Highly enantioselective alkylation of protected glycine diphenylmethyl (Dpm) amide 1 and Weinreb amide 10 has been realized under phase-transfer conditions by the successful utilization of designer chiral quaternary ammonium salts of type 4 as catalyst. Particularly, remarkable reactivity of the chiral ammonium enolate derived from 1b and 4c allowed the reaction with less reactive simple secondary alkyl halides with high efficiency and enantioselectivity. An additional unique feature of this chiral ammonium enolate is its ability to recognize the chirality of beta-branched primary alkyl halides, which provides impressive levels of kinetic resolution and double stereodifferentiation during the alkylation, allowing for two alpha- and gamma-stereocenters to be controlled. Combined with the subsequent reduction using LiAlH4 in cyclopentyl methyl ether (CPME), this system offers a facile access to structurally diverse optically active vicinal diamines. Furthermore, the optically active alpha-amino acid Weinreb amide 11 can be efficiently converted to the corresponding amino ketone by a simple treatment with Grignard reagents. In addition, reduction and alkylation of the optically active alpha-amino ketone into both syn and anti alpha-amino alcohols with almost complete relative and absolute stereochemical control have been achieved. With (S,S)- and (R,R)-4 in hand, the present approach renders both enantiomers of alpha-amino amides including Weinreb amides readily available with enormous structural variation and also establishes a general and practical route to vicinal diamines, alpha-amino ketones, and alpha-amino alcohols with the desired stereochemistry.

  12. EFFECT OF PRETREATMENT ON PT-CO/C CATHODE CATALYSTS FOR THE OXYGEN-REDUCTION REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.; Colon-Mercado, H.

    2010-01-19

    Carbon supported Pt and Pt-Co electrocatalysts for the oxygen reduction reaction in low temperature fuel cells were prepared by the reduction of the metal salts with sodium borohydride and sodium formate. The effect of surface treatment with nitric acid on the carbon surface and Co on the surface of carbon prior to the deposition of Pt was studied. The catalysts where Pt was deposited on treated carbon the ORR reaction preceded more through the two electron pathway and favored peroxide production, while the fresh carbon catalysts proceeded more through the four electron pathway to complete the oxygen reduction reaction. NaCOOH reduced Pt/C catalysts showed higher activity that NaBH{sub 4} reduced Pt/C catalysts. It was determined that the Co addition has a higher impact on catalyst activity and active surface area when used with NaBH{sub 4} as reducing agent as compared to NaCOOH.

  13. Structure and Dynamics of Individual Diastereomeric Complexes on Platinum: Surface Studies Related to Heterogeneous Enantioselective Catalysis.

    Science.gov (United States)

    Dong, Yi; Goubert, Guillaume; Groves, Michael N; Lemay, Jean-Christian; Hammer, Bjørk; McBreen, Peter H

    2017-05-16

    The modification of heterogeneous catalysts through the chemisorption of chiral molecules is a method to create catalytic sites for enantioselective surface reactions. The chiral molecule is called a chiral modifier by analogy to the terms chiral auxiliary or chiral ligand used in homogeneous asymmetric catalysis. While there has been progress in understanding how chirality transfer occurs, the intrinsic difficulties in determining enantioselective reaction mechanisms are compounded by the multisite nature of heterogeneous catalysts and by the challenges facing stereospecific surface analysis. However, molecular descriptions have now emerged that are sufficiently detailed to herald rapid advances in the area. The driving force for the development of heterogeneous enantioselective catalysts stems, at the minimum, from the practical advantages they might offer over their homogeneous counterparts in terms of process scalability and catalyst reusability. The broader rewards from their study lie in the insights gained on factors controlling selectivity in heterogeneous catalysis. Reactions on surfaces to produce a desired enantiomer in high excess are particularly challenging since at room temperature, barrier differences as low as ∼2 kcal/mol between pathways to R and S products are sufficient to yield an enantiomeric ratio (er) of 90:10. Such small energy differences are comparable to weak interadsorbate interaction energies and are much smaller than chemisorption or even most physisorption energies. In this Account, we describe combined experimental and theoretical surface studies of individual diastereomeric complexes formed between chiral modifiers and prochiral reactants on the Pt(111) surface. Our work is inspired by the catalysis literature on the enantioselective hydrogenation of activated ketones on cinchona-modified Pt catalysts. Using scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations, we probe the structures

  14. Physical-Chemical Properties of the Chiral Fungicide Fenamidone and Strategies for Enantioselective Crystallization.

    Science.gov (United States)

    Kort, Anne-Kathleen; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2016-06-01

    Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid-liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two-step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514-520, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation

    Science.gov (United States)

    Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong

    2014-07-01

    The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.

  16. Toward the Total Synthesis of Amphidinolide O: An Enantioselective Synthesis of C3-C8 Fragment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Minho; Lee, Duckhyung [Sogang Univ., Seoul (Korea, Republic of)

    2013-07-15

    The methyl ester 4, a C3-C8 fragment of am-phidinolide O (1), was prepared enantioselectively via 11 steps in 14% overall yields. The diastereoselective Ireland-Claisen rearrangement of 5 via the corresponding (E)-enolate intermediate was used as a key step in order to implement the C4 and C5 chiral centers. Retrosynthetic analysis was described in Figure 1. Amphi-dinolide O (1) might be assembled from two intermediates 2 and 3 via esterification and ring closing metathesis as key steps. Intermediate 4, a precursor to 3 as well as the target molecule in this paper, involves the γ,δ-unsaturated ester moiety along with α,β-chiral substituents with anti-stereochemical relationship.

  17. The Enantioselective Total Synthesis of Bisquinolizidine Alkaloids: A Modular 'Inside-Out' Approach.

    Science.gov (United States)

    Scharnagel, Dagmar; Goller, Jessica; Deibl, Nicklas; Milius, Wolfgang; Breuning, Matthias

    2018-01-23

    Bisquinolizidine alkaloids are characterized by a chiral bispidine core (3,7-diazabicyclo[3.3.1]nonane) to which combinations of an alpha,N-fused 2-pyridone, an endo- or exo-alpha,N-annulated piperidin(on)e, and an exo-allyl substituent are attached. We developed a modular 'inside-out' approach that permits access to most members of this class. Its applicability was proven in the asymmetric synthesis of 21 natural bisquinolizidine alkaloids, among them more than ten first enantioselective total syntheses. Key steps are the first successful preparation of both enantiomers of C2-symmetric 2,6-dioxobispidine by desymmetrization of a 2,4,6,8-tetraoxo precursor, the construction of the alpha,N-fused 2-pyridone by using an enamine-bromoacrylic acid strategy, and the installation of endo- or, optionally, exo-annulated piperidin(on)es. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photochemically Immobilized 4-Methylbenzoyl Cellulose as a Powerful Chiral Stationary Phase for Enantioselective Chromatography

    Directory of Open Access Journals (Sweden)

    Eric Francotte

    2016-12-01

    Full Text Available A process to immobilize para-methylbenzoyl cellulose (PMBC on silica gel has been developed and applied to prepare chiral stationary phases (CSPs for enantioselective chromatography. The immobilization was achieved by simple irradiation of the polysaccharide derivative with ultraviolet light after coating on a silica gel support. The influence of parameters such as irradiation time and solvent on immobilization effectiveness were investigated. The performance of the prepared immobilized phases were evaluated by injection of a series of racemic compounds onto the packed columns and determination of their chiral recognition ability. By contrast to the classical coated phase, the immobilized CSP can be used under various chromatographic conditions without limitation of organic solvent types as the mobile phase. This extended applicability permits to improve selectivity and to resolve chiral compounds which are not or only poorly soluble in the mobile phases which are compatible with the non-immobilized PMBC stationary phase.

  19. Photochemically Immobilized 4-Methylbenzoyl Cellulose as a Powerful Chiral Stationary Phase for Enantioselective Chromatography.

    Science.gov (United States)

    Francotte, Eric; Huynh, Dan; Zhang, Tong

    2016-12-17

    A process to immobilize para-methylbenzoyl cellulose (PMBC) on silica gel has been developed and applied to prepare chiral stationary phases (CSPs) for enantioselective chromatography. The immobilization was achieved by simple irradiation of the polysaccharide derivative with ultraviolet light after coating on a silica gel support. The influence of parameters such as irradiation time and solvent on immobilization effectiveness were investigated. The performance of the prepared immobilized phases were evaluated by injection of a series of racemic compounds onto the packed columns and determination of their chiral recognition ability. By contrast to the classical coated phase, the immobilized CSP can be used under various chromatographic conditions without limitation of organic solvent types as the mobile phase. This extended applicability permits to improve selectivity and to resolve chiral compounds which are not or only poorly soluble in the mobile phases which are compatible with the non-immobilized PMBC stationary phase.

  20. Fluorous l-Carbidopa Precursors: Highly Enantioselective Synthesis and Computational Prediction of Bioactivity.

    Science.gov (United States)

    Granados, Albert; Olmo, Anna Del; Peccati, Francesca; Billard, Thierry; Sodupe, Mariona; Vallribera, Adelina

    2018-01-05

    New fluorous enantiopure (S)-α-aminated β-keto esters were prepared through a highly enantioselective electrophilic α-amination step in the presence of europium triflate and (R,R)-phenyl-pybox. These compounds are precursors of fluorinated analogues of l-carbidopa, which is known to inhibit DOPA decarboxylase (DDC), a key protein in Parkinson's disease. Fluorination provides better stability for biological applications, which could possibly lead to DDC inhibitors better than l-carbidopa itself. Induced fit docking computational simulations performed on the new structures interacting with DDC highlight that for an efficient binding at the DDC site, at least one hydroxyl substituent must be present at the aromatic ring of the l-carbidopa analogues and show that the presence of fluorine can further fix the position of the ligand in the active site.

  1. Enantioselective Diels-Alder-lactamization organocascades employing a furan-based diene.

    Science.gov (United States)

    Abbasov, Mikail E; Hudson, Brandi M; Kong, Weixu; Tantillo, Dean J; Romo, Daniel

    2017-04-11

    α,β-Unsaturated acylammonium salts are useful dienophiles enabling highly enantioselective and stereodivergent Diels-Alder-initiated organocascades with furan-based dienes. Complex polycyclic systems can thus be obtained from readily prepared dienes, commodity acid chlorides, and a chiral isothiourea organocatalyst under mild conditions. We describe the use of furan-based dienes bearing pendant sulfonamides leading to the generation of oxa-bridged, trans-fused tricyclic γ-lactams. This process constitutes the first highly enantio- and diastereoselective, organocatalytic Diels-Alder cycloadditions with these typically problematic dienes due to their reversibility. Computational studies suggest that the high diastereoselectivity with these furan dienes may be due to a reversible Diels-Alder cycloaddition for the endo adducts. In addition, the utility of this methodology is demonstrated through a concise approach to a core structure with similarity to the natural product isatisine A and a nonpeptidyl ghrelin-receptor inverse agonist.

  2. Enantioselective Organocatalytic Diels-Alder Trapping of Photochemically Generated Hydroxy-o-Quinodimethanes.

    Science.gov (United States)

    Dell'Amico, Luca; Vega-Peñaloza, Alberto; Cuadros, Sara; Melchiorre, Paolo

    2016-03-01

    The photoenolization/Diels-Alder strategy offers straightforward access to synthetically valuable benzannulated carbocyclic products. This historical light-triggered process has never before succumbed to efforts to develop an enantioselective catalytic approach. Herein, we demonstrate how asymmetric organocatalysis provides simple yet effective catalytic tools to intercept photochemically generated hydroxy-o-quinodimethanes with high stereoselectivity. We used a chiral organic catalyst, derived from natural cinchona alkaloids, to activate maleimides toward highly stereoselective Diels-Alder reactions. An unconventional mechanism of stereocontrol is operative, wherein the organocatalyst is actively involved in both the photochemical pathway, by leveraging the formation of the reactive photoenol, and the stereoselectivity-defining event. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Efficicent (R-phenylethanol production with enantioselectivity-alerted (S-carbonyl reductase II and NADPH regeneration.

    Directory of Open Access Journals (Sweden)

    Rongzhen Zhang

    Full Text Available The NADPH-dependent (S-carbonyl reductaseII from Candida parapsilosis catalyzes acetophenone to chiral phenylethanol in a very low yield of 3.2%. Site-directed mutagenesis was used to design two mutants Ala220Asp and Glu228Ser, inside or adjacent to the substrate-binding pocket. Both mutations caused a significant enantioselectivity shift toward (R-phenylethanol in the reduction of acetophenone. The variant E228S produced (R-phenylethanol with an optical purity above 99%, in 80.2% yield. The E228S mutation resulted in a 4.6-fold decrease in the K M value, but nearly 5-fold and 21-fold increases in the k cat and k cat/K M values with respect to the wild type. For NADPH regeneration, Bacillus sp. YX-1 glucose dehydrogenase was introduced into the (R-phenylethanol pathway. A coexpression system containing E228S and glucose dehydrogenase was constructed. The system was optimized by altering the coding gene order on the plasmid and using the Shine-Dalgarno sequence and the aligned spacing sequence as a linker between them. The presence of glucose dehydrogenase increased the NADPH concentration slightly and decreased NADP(+ pool 2- to 4-fold; the NADPH/NADP(+ ratio was improved 2- to 5-fold. The recombinant Escherichia coli/pET-MS-SD-AS-G, with E228S located upstream and glucose dehydrogenase downstream, showed excellent performance, giving (R-phenylethanol of an optical purity of 99.5 % in 92.2% yield in 12 h in the absence of an external cofactor. When 0.06 mM NADP(+ was added at the beginning of the reaction, the reaction duration was reduced to 1 h. Optimization of the coexpression system stimulated an over 30-fold increase in the yield of (R-phenylethanol, and simultaneously reduced the reaction time 48-fold compared with the wild-type enzyme. This report describes possible mechanisms for alteration of the enantiopreferences of carbonyl reductases by site mutation, and cofactor rebalancing pathways for efficient chiral alcohols production.

  4. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    Science.gov (United States)

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Enantioselective Degradation and Chiral Stability of Metalaxyl-M in Tomato Fruits.

    Science.gov (United States)

    Jing, Xu; Yao, Guojun; Wang, Peng; Liu, Donghui; Qi, Yanli; Zhou, Zhiqiang

    2016-05-01

    Metalaxyl is an important chiral acetanilide fungicide, and the activity almost entirely originates from the R-enantiomer. Racemic metalaxyl has been gradually replaced by the enantiopure R-enantiomer (metalaxyl-M). In this study a chiral residue analysis method for metalaxyl and the metabolite metalaxyl acid was set up based on high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS). The enantioselective degradation and chiral stability of metalaxyl-M in tomato fruits in two geographically distinct regions of China (Heilongjiang and Hunan Province) were evaluated and the enantioselectivity of metalaxyl acid was also investigated. Tomato plants grew under field conditions with a one-time spray application of metalaxyl-M wettable powder. It was found that R-metalaxyl was not chirally stable and the inactive S-metalaxyl was detected in tomato fruits. At day 40, S-metalaxyl derived from R-metalaxyl accounted for 32% and 26% of the total amount of metalaxyl, respectively. The metabolites R-metalaxyl acid and S-metalaxyl acid were both observed in tomato, and the ratio of S-metalaxyl acid to the sum of S- and R-metalaxyl acid was 36% and 28% at day 40, respectively. For both metalaxyl and metalaxyl acid, the half-life of the S-enantiomer was longer than the R-enantiomer. The results indicated that the enantiomeric conversion should be considered in the bioactivity evaluation and environmental pollution assessment. Chirality 28:382-386, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Enantioselective Determination of Polycyclic Musks in River and Wastewater by GC/MS/MS

    Directory of Open Access Journals (Sweden)

    Injung Lee

    2016-03-01

    Full Text Available The separation of chiral compounds is an interesting and challenging topic in analytical chemistry, especially in environmental fields. Enantioselective degradation or bioaccumulation has been observed for several chiral pollutants. Polycyclic musks are chiral and are widely used as fragrances in a variety of personal care products such as soaps, shampoos, cosmetics and perfumes. In this study, the gas chromatographic separation of chiral polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclo-penta-γ-2-benzopyrane (HHCB, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetra-hydronaphthalene (AHTN, 6-acetyl-1,1,2,3,3,5-hexamethylindane (AHDI, 5-acetyl-1,1,2,6-tetramethyl-3-iso-propylindane (ATII, and 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H-indanone (DPMI was achieved on modified cyclodextrin stationary phase (heptakis (2,3-di-O-methyl-6-O-tert-butyl-dimethylsilyl-β-CD in DV-1701. Separation techniques are coupled to tandem mass spectrometry (MS-MS, as it provides the sensitivity and selectivity needed. River and wastewaters (influents and effluents of wastewater treatment plants (WWTPs in the Nakdong River were investigated with regard to the concentrations and the enantiomeric ratios of polycyclic musks. HHCB was most frequently detected in river and wastewaters, and an enantiomeric enrichment was observed in the effluents of one of the investigated wastewater treatment plants (WWTPs. We reported the contamination of river and wastewaters in Korea by chiral polycyclic musks. The results of this investigation suggest that enantioselective transformation may occur during wastewater treatment.

  7. Enantioselective assay for therapeutic drug monitoring of eslicarbazepine acetate: no interference with carbamazepine and its metabolites.

    Science.gov (United States)

    Alves, Gilberto; Fortuna, Ana; Sousa, Joana; Direito, Rosa; Almeida, Anabela; Rocha, Marília; Falcão, Amílcar; Soares-da-Silva, Patrício

    2010-08-01

    As add-on therapy, phase III clinical trials of eslicarbazepine acetate (ESL) conducted in patients with refractory partial-onset seizures have shown good efficacy, safety, and tolerability, even in patients taking carbamazepine (CBZ) at baseline (approximately 60% of the enrolled patients). Thus, considering the pharmacological disadvantages of CBZ and the similar efficacy spectrum of CBZ and ESL, switching to ESL may be successful in many patients. As ESL is a prodrug almost instantaneously converted to S-licarbazepine (S-Lic; approximately 95%), an interest in therapeutic drug monitoring (TDM) of S-Lic is likely to develop in the future. This study investigated the plasma concentrations of S-Lic and R-licarbazepine (R-Lic) enantiomers in patients under CBZ long-term treatment to assess the potential interference of CBZ or its metabolites in the enantioselective TDM of ESL (using S-Lic concentrations). A chiral high-performance liquid chromatography assay with ultraviolet detection (HPLC-UV) previously developed and validated by our research group was used. Twenty-four patients admitted to the Coimbra University Hospital and supposedly receiving CBZ long-term treatment were identified. Blood samples were collected from patients and serum CBZ concentrations were measured by the usual TDM protocol. Aliquots of plasma from such patients were also submitted to a chiral HPLC-UV analysis. The bioanalytical data indicated that S-Lic and R-Lic were not present at detectable concentrations in plasma samples of the CBZ-treated patients. The chromatograms generated by the analysis of patient plasma samples, when compared with those obtained from blank plasma samples spiked with S-Lic and R-Lic, clearly showed the absence of interferences at the retention times of both Lic enantiomers. These data support the usefulness of the chiral HPLC-UV method used for the enantioselective TDM of ESL (using S-Lic) for programs in which switching from CBZ to ESL is implemented.

  8. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.

    Science.gov (United States)

    Saha, Sandip; Pal, Anjali; Kundu, Subrata; Basu, Soumen; Pal, Tarasankar

    2010-02-16

    Silver and gold nanoparticles have been grown on calcium alginate gel beads using a green photochemical approach. The gel served as both a reductant and a stabilizer. The nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), energy dispersive X-ray (EDS), and selected area electron diffraction (SAED) analyses. The particles are spherical, crystalline, and the size ranges for both Ag and Au nanoparticles are Ag. The effectiveness of the as-prepared dried alginate-stabilized Ag and Au nanoparticles as a solid phase heterogeneous catalyst has been evaluated, for the first time, on the well-known 4-nitrophenol (4-NP) reduction to 4-aminophenol (4-AP) in the presence of excess borohydride. The reduction was very efficient and followed zero-order kinetics for both Ag and Au nanocomposites. The effects of borohydride, initial 4-NP concentration, and catalyst dose were evaluated. The catalyst efficiency was examined on the basis of turnover frequency (TOF) and recyclability. The catalytic efficiency of alginate-based Ag catalyst was much more compared to that of the Au catalyst. The as-prepared new solid-phase biopolymer-based catalysts are very efficient, stable, easy to prepare, eco-friendly, and cost-effective, and they have the potential for industrial applications.

  9. Helical Oligourea Foldamers as Powerful Hydrogen Bonding Catalysts for Enantioselective C-C Bond-Forming Reactions.

    Science.gov (United States)

    Bécart, Diane; Diemer, Vincent; Salaün, Arnaud; Oiarbide, Mikel; Nelli, Yella Reddy; Kauffmann, Brice; Fischer, Lucile; Palomo, Claudio; Guichard, Gilles

    2017-09-13

    Substantial progress has been made toward the development of metal-free catalysts of enantioselective transformations, yet the discovery of organic catalysts effective at low catalyst loadings remains a major challenge. Here we report a novel synergistic catalyst combination system consisting of a peptide-inspired chiral helical (thio)urea oligomer and a simple tertiary amine that is able to promote the Michael reaction between enolizable carbonyl compounds and nitroolefins with excellent enantioselectivities at exceptionally low (1/10 000) chiral catalyst/substrate molar ratios. In addition to high selectivity, which correlates strongly with helix folding, the system we report here is also highly amenable to optimization, as each of its components can be fine-tuned separately to increase reaction rates and/or selectivities. The predictability of the foldamer secondary structure coupled to the high level of control over the primary sequence results in a system with significant potential for future catalyst design.

  10. Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium-catalyzed intermolecular Heck coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Norrby, Per-Ola; Kaukoranta, Päivi

    2008-01-01

    . The steric interactions in this transition state fully account for the enantioselectivity observed with the ligands studied. The calculations also predict relative reactivity and nonlinear mixing effects for the investigated ligands; these predictions are fully validated by experimental testing. Finally......The asymmetric Heck reaction using P,N-ligands has been studied by a combination of theoretical and experimental methods. The reaction follows Halpern-style selectivity; that is, the major isomer is produced from the least favored form of the pre-insertion intermediate. The initially formed Ph......, the low conversion observed with some catalysts was found to be caused by inactivation due to weak binding of the ligand to Pd(0). Adding monodentate PPh3 alleviated the precipitation problem without deteriorating the enantioselectivity and led to one of the most effective catalytic systems to date....

  11. The Significance of Degenerate Processes to Enantioselective Olefin Metathesis Reactions Promoted by Stereogenic-at-Mo Complexes

    Science.gov (United States)

    Meek, Simon J.; Malcolmson, Steven J.; Li, Bo; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    The present study provides spectroscopic and experimental evidence demonstrating that degenerate metathesis is critical to the effectiveness of this emerging class of chiral catalysts. Isolation and characterization (X-ray) of both diastereomeric complexes, as well as examination of the reactivity and enantioselectivity patterns exhibited by such initiating neophylidenes in promoting RCM processes, are disclosed. Only when sufficient amounts of ethylene are generated and inversion at Mo through degenerate processes occurs at a sufficiently rapid rate, is high enantioselectivity achieved, irrespective of the stereochemical identity of the initiating alkylidene (Curtin-Hammett kinetics). With diastereomeric metal complexes that undergo rapid interconversion, stereomutation at the metal center becomes inconsequential and stereoselective synthesis of a chiral catalyst is not required. PMID:19842640

  12. Mechanism of Amido-Thiourea Catalyzed Enantioselective Imine Hydrocyanation: Transition State Stabilization via Multiple Non-Covalent Interactions

    Science.gov (United States)

    Zuend, Stephan J.

    2009-01-01

    An experimental and computational investigation of amido-thiourea promoted imine hydrocyanation has revealed a new and unexpected mechanism of catalysis. Rather than direct activation of the imine by the thiourea, as had been proposed previously in related systems, the data are consistent with a mechanism involving catalyst-promoted proton transfer from hydrogen isocyanide to imine to generate diastereomeric iminium/cyanide ion pairs that are bound to catalyst through multiple non-covalent interactions; these ion pairs collapse to form the enantiomeric α-aminonitrile products. This mechanistic proposal is supported by the observation of a statistically significant correlation between experimental and calculated enantioselectivities induced by eight different catalysts (P ≪ 0.01). The computed models reveal a basis for enantioselectivity that involves multiple stabilizing and destabilizing interactions between substrate and catalyst, including thiourea-cyanide and amide-iminium interactions. PMID:19778044

  13. Trapping succinimides in aged polypeptides by chemical reduction.

    Science.gov (United States)

    Carter, D A; McFadden, P N

    1994-01-01

    Cyclization of aspartic acid and asparagine to succinimides is thought to be a common spontaneous aging reaction in proteins, but the instability of the succinimide ring has made it difficult to directly measure this structure. Chemical reduction has now been tested as a means of trapping succinimides as stable derivatives, homoserine and isohomoserine. Two succinimide-containing compounds were tested in this manner. First, polysuccinimide was reduced by sodium borohydride to a derivative that contained homoserine and isohomoserine in amounts that were consistent with the content of succinimide determined independently by quantitative hydrolysis. The identity of isohomoserine was confirmed by its resistance to degradation by L-amino acid oxidase, and through its synthesis by an alternate route involving borane reduction of asparagine. Second, in a test of this approach on a peptide mixture with only a trace-content of succinimide, isohomoserine and homoserine were formed as reduction products in amounts equivalent to the trace content of succinimide in the mixture. Detection of the products of the chemical reduction of polypeptides is therefore diagnostic of succinimides, and can be successfully applied at the trace sensitivity necessary for studies of naturally aging proteins. A related study of the reduction of aspartyl and beta-aspartyl residues to, respectively, homoserine and isohomoserine, is described in the accompanying manuscript (Carter and McFadden, 1994).

  14. Enantioselective Synthesis of Biphenols from 1,4-Diketones by Traceless Central-to-Axial Chirality Exchange

    Science.gov (United States)

    Guo, Fenghai; Konkol, Leah C.; Thomson, Regan J.

    2010-01-01

    A method for the enantioselective synthesis of biphenols from readily prepared 1,4-diketones is reported. Key to the success of this method is the highly selective transfer of central to axial chirality during a double aromatization event triggered by BF3•OEt2. Based upon X-ray crystallographic data, a stereochemical model for this chirality exchange process is put forth. PMID:21141997

  15. Enantioselective binding of a lanthanide(III) complex to human serum albumin studied by 1H STD NMR techniques.

    Science.gov (United States)

    Dias, David M; Teixeira, João M C; Kuprov, Ilya; New, Elizabeth J; Parker, David; Geraldes, Carlos F G C

    2011-07-21

    The enantioselective binding of the (SSS)-Δ isomer of an yttrium(III) tetraazatriphenylene complex to 'drug-site II' of human serum albumin (HSA) was detected by the intensity differences of its STD (1)H NMR spectrum relative to the (RRR)-Λ isomer, by the effect of the competitive binder to that site, N-dansyl sarcosine, upon the STD spectrum of each isomer, in the presence of HSA and by 3D docking simulations.

  16. Enhanced anti-Diastereo- and Enantioselectivity in Alcohol Mediated Carbonyl Crotylation Using an Isolable Single Component Iridium Catalyst

    OpenAIRE

    Gao, Xin; Townsend, Ian A.; Krische, Michael J.

    2011-01-01

    The cyclometallated iridium complex (S)-I derived from [Ir(cod)Cl]2, 4-cyano-3-nitrobenzoic acid, allyl acetate and (S)-SEGPHOS is conveniently isolated by precipitation or through conventional silica gel flash chromatography. This single component precatalyst allows alcohol mediated carbonyl crotylations to be performed at significantly lower temperature, resulting in enhanced levels of anti-diastereo- and enantioselectivity. Most significantly, the chromatographically isolated precatalyst (...

  17. Enantioselective Direct Mannich-Type Reactions Catalyzed by Frustrated Lewis Acid/Brønsted Base Complexes.

    Science.gov (United States)

    Shang, Ming; Cao, Min; Wang, Qifan; Wasa, Masayuki

    2017-10-16

    An enantioselective direct Mannich-type reaction catalyzed by a sterically frustrated Lewis acid/Brønsted base complex is disclosed. Cooperative functioning of the chiral Lewis acid and achiral Brønsted base components gives rise to in situ enolate generation from monocarbonyl compounds. Subsequent reaction with hydrogen-bond-activated aldimines delivers β-aminocarbonyl compounds with high enantiomeric purity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Transition State Charge Stabilization Through Multiple Non-Covalent Interactions in the Guanidinium-Catalyzed Enantioselective Claisen Rearrangement

    OpenAIRE

    Uyeda, Christopher; Jacobsen, Eric N.

    2011-01-01

    The mechanism by which chiral arylpyrrole-substituted guanidinium ions promote the Claisen rearrangement of O-allyl α-ketoesters and induce enantioselectivity was investigated by experimental and computational methods. In addition to stabilization of the developing negative charge on the oxallyl fragment of the rearrangement transition state by hydrogen-bond donation, evidence was obtained for a secondary attractive interaction between the π-system of a catalyst aromatic substituent and the c...

  19. Sequential rhodium/palladium catalysis: enantioselective formation of dihydroquinolinones in the presence of achiral and chiral ligands.

    Science.gov (United States)

    Zhang, Lei; Qureshi, Zafar; Sonaglia, Lorenzo; Lautens, Mark

    2014-12-08

    Compatible combinations of achiral and chiral ligands can be used in rhodium/palladium catalysis to achieve highly enantioselective domino reactions. The difference in rates of catalysis and minimal effects of ligand interference confer control in the domino sequence. The "all-in-one" 1,4-conjugate arylation and C-N cross-coupling through sequential Rh/Pd catalysis provides access to enantioenriched dihydroquinolinone building blocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated l-Alanine Peptides

    Science.gov (United States)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2017-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of l-alanine peptides ( l-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+( d-Trp)( l-Ala n ) and homochiral H+( l-Trp)( l-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+( l-Trp)( l-Ala3), indicating that the proton is attached to the l-alanine peptide, and H2O loss occurs from H+( l-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+( d-Trp)( l-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+( d-Trp)( l-Ala3), the protonation site is the amino group of d-Trp, and NH3 loss and (H2O + CO) loss occur from H+( d-Trp). l-Ala peptides recognize d-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+( d-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+( d-Trp)( l-Ala3) at room temperature, whereas l-Trp dissociation was not observed in homochiral H+( l-Trp)( l-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of l-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  1. Kinetic resolution of allyl fluorides by enantioselective allylic trifluoromethylation based on silicon-assisted C-F bond cleavage.

    Science.gov (United States)

    Nishimine, Takayuki; Fukushi, Kazunobu; Shibata, Naoyuki; Taira, Hiromi; Tokunaga, Etsuko; Yamano, Akihito; Shiro, Motoo; Shibata, Norio

    2014-01-07

    Two birds, one stone! The first kinetic resolution of allyl fluorides was achieved by the development of an organocatalyzed enantioselective allylic trifluoromethylation. Two kinds of chiral fluorinated compounds, which incorporate C*F and C*CF3 units, respectively, can thus be accessed by a single transformation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil.

    Science.gov (United States)

    Zhang, Qing; Shi, Haiyan; Gao, Beibei; Tian, Mingming; Hua, Xiude; Wang, Minghua

    2016-01-15

    An effective method for the enantioselective determination of ethiprole enantiomers in agricultural and environmental samples was developed. The effects of solvent extraction, mobile phase and thermodynamic parameters for chiral recognition were fully investigated. Complete enantioseparation of the ethiprole enantiomers was achieved on a Lux Cellulose-2 column. The stereochemical structures of ethiprole enantiomers were also determined, and (R)-(+)-ethiprole was first eluted. The average recoveries were 82.7-104.9% with intra-day RSD of 1.7-8.2% in soil, cucumber, spinach, tomato, apple and peach under optimal conditions. Good linearity (R(2)≥0.9991) was obtained for all the matrix calibration curves within a range of 0.1 to 10 mg L(-1). The limits of detection for both enantiomers were estimated to be 0.008 mg kg(-1) in soil, cucumber, spinach and tomato and 0.012 mg kg(-1) in apple and peach, which were lower than the maximum residue levels established in Japan. The results indicate that the proposed method is convenient and reliable for the enantioselective detection of ethiprole in agricultural and environmental samples. The behavior of ethiprole in soil was studied under field conditions and the enantioselective degradation was observed with enantiomer fraction values varying from 0.494 to 0.884 during the experiment. The (R)-(+)-ethiprole (t1/2=11.6 d) degraded faster than (S)-(-)-ethiprole (t1/2=34.7 d). This report is the first describe a chiral analytical method and enantioselective behavior of ethiprole, and these results should be extremely useful for the risk evaluation of ethiprole in food and environmental safety. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines.

    Science.gov (United States)

    Beaud, Rodolphe; Phipps, Robert J; Gaunt, Matthew J

    2016-10-12

    Catalytic synthesis of nonracemic P-chiral phosphine derivatives remains a significant challenge. Here we report Cu-catalyzed enantioselective arylation of secondary phosphine oxides with diaryliodonium salts for the synthesis of tertiary phosphine oxides with high enantiomeric excess. The new process is demonstrated on a wide range of substrates and leads to products that are well-established P-chiral catalysts and ligands.

  4. Synthesis of CuPF6-(S)-BINAP loaded resin and its enantioselectivity toward phenylalanine enantiomers.

    Science.gov (United States)

    Liu, Xiong; Zhou, Wenqi; Xu, Longqi

    2017-09-01

    A type of resin-anchored CuPF 6 -(S)-BINAP was synthesized and identified. The PS-CuPF 6 -(S)-BINAP resin was used to adsorb the phenylalanine enantiomers. The results showed that the adsorption capacity of PS-CuPF 6 -(S)-BINAP resin toward L-phenylalanine was higher than that of resin toward D-phenylalanine. PS-CuPF 6 -(S)-BINAP resin exhibited good enantioselectivity toward L-phenylalanine and D-phenylalanine. The influence of phenylalanine concentration, pH, adsorption time, and temperature on the enantioselectivity of the resin were investigated. The results showed that the enantioselectivity of the resin increased with increasing the phenylalanine concentration, pH, and adsorption time, while it decreased with an increase in temperature. The causes for these influences are discussed. The highest enantioselectivity (α = 2.81) was obtained when the condition of phenylalanine concentration was 0.05 mmol/mL, pH was 8, adsorption time was 12 h, and temperature 5°C. The desorption test for removing D/L-phenylalanine on PS-CuPF 6 -(S)-BINAP resin was also investigated. The desorption ratios of D-phenylalanine and L-phenylalanine at pH of 1 were 95.7% and 94.3%, respectively. This result indicated that the PS-CuPF 6 -(S)-BINAP resin could be regenerated by shaking with an acidic solution. The reusability of the PS-CuPF 6 -(S)-BINAP resin was also assessed and the resin exhibited considerable reusability. © 2017 Wiley Periodicals, Inc.

  5. Highly efficient enantioselective liquid-liquid extraction of 1,2-amino-alcohols using SPINOL based phosphoric acid hosts.

    Science.gov (United States)

    Pinxterhuis, Erik B; Gualtierotti, Jean-Baptiste; Heeres, Hero J; de Vries, Johannes G; Feringa, Ben L

    2017-09-01

    Access to enantiopure compounds on large scale in an environmentally friendly and cost-efficient manner remains one of the greatest challenges in chemistry. Resolution of racemates using enantioselective liquid-liquid extraction has great potential to meet that challenge. However, a relatively feeble understanding of the chemical principles and physical properties behind this technique has hampered the development of hosts possessing sufficient resolving power for their application to large scale processes. Herein we present, employing the previously untested SPINOL based phosphoric acids host family, an in depths study of the parameters affecting the efficiency of the resolution of amino-alcohols in the optic of further understanding the core principles behind ELLE. We have systematically investigated the dependencies of the enantioselection by parameters such as the choice of solvent, the temperature, as well as the pH and bring to light many previously unsuspected and highly intriguing interactions. Furthermore, utilizing these new insights to our advantage, we developed novel, highly efficient, extraction and resolving protocols which provide remarkable levels of enantioselectivity. It was shown that the extraction is catalytic in host by demonstrating transport in a U-tube and finally it was demonstrated how the solvent dependency could be exploited in an unprecedented triphasic resolution system.

  6. Enhanced activity and enantioselectivity of a hyperthermophilic esterase from archaeon Aeropyrum pernix K1 by acetone treatment.

    Science.gov (United States)

    Cong, Fangdi; Xing, Kezhi; Gao, Renjun; Cao, Shugui; Zhang, Guirong

    2011-10-01

    To improve the activity and enantioselectivity of hyperthermophilic archaeon Aeropyrum pernix K1 esterase (APE1547) and its mutants, they were purified by acetone-treated method. It was found that the acetone treatment not only caused APE1547 and its mutants to display higher activity and enantioselectivity but also saved more than 90% of time spent in purifying them by Ni-chelating column. In hydrolysis of p-nitrophenyl caprylate, the acetone-treated APE1547 and mutant A containing the following substitutions R11G, L36P, V225A, I551L, and A564T showed 5.7- and 6.9-fold active increase, respectively. In the resolution of 2-octanol acetate, the acetone-treated mutant A had a 9-fold enantioselective increase relative to that purified by Ni-chelating column. In addition, the impact of pH, temperature, and chemical reagents on activity of APE1547 and mutant A was discussed in this paper.

  7. The chiral herbicide beflubutamid (II): Enantioselective degradation and enantiomerization in soil, and formation/degradation of chiral metabolites.

    Science.gov (United States)

    Buerge, Ignaz J; Müller, Markus D; Poiger, Thomas

    2013-07-02

    Beflubutamid is a chiral soil herbicide currently marketed as racemate against dicotyledonous weeds in cereals. Biotests have shown that (-)-beflubutamid is at least 1000× more active than (+)-beflubutamid. Potential substitution of the racemate by (-)-beflubutamid should therefore be further considered. Here, we investigated the degradation behavior in soils and formation and degradation of two chiral metabolites. Laboratory incubation experiments were performed with an alkaline and an acidic soil. The compounds were analyzed by enantioselective GC-MS. Degradation rate constants were determined by kinetic modeling. In the alkaline soil, degradation of beflubutamid was slightly enantioselective, with slower degradation of the herbicidally active (-)-enantiomer. In the acidic soil, however, both enantiomers were degraded at similar rates. In contrast, degradation of a phenoxybutanamide metabolite was highly enantioselective. Chiral stability of beflubutamid and its metabolites was studied in separate incubations with the pure enantiomers in the same soils. In these experiments, (-)-beflubutamid was not converted to the nonactive (+)-enantiomer and vice versa. Significant enantiomerization was, however, observed for the major metabolite, a phenoxybutanoic acid. With regard to biological activity and behavior in soils, enantiopure (-)-beflubutamid definitively has the potential to substitute for the racemic herbicide.

  8. Metal halide doped metal borohydrides for hydrogen storage: The case of Ca(BH{sub 4}){sub 2}-CaX{sub 2} (X = F, Cl) mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Youn [Materials/Devices Division, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, Young-Su, E-mail: lee0su@kist.re.k [Materials/Devices Division, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Suh, Jin-Yoo; Shim, Jae-Hyeok; Cho, Young Whan [Materials/Devices Division, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2010-09-17

    Research highlights: {yields} Metal halides, CaF{sub 2} and CaCl{sub 2}, can change dehydrogenation pathway of Ca(BH{sub 4}){sub 2}. {yields} CaCl{sub 2} forms a solid solution with Ca(BH{sub 4}){sub 2}. {yields} CaF{sub 2} does not interact with Ca(BH{sub 4}){sub 2}. {yields} Metal halide and CaH{sub 2} interaction changes thermodynamics of Ca(BH{sub 4}){sub 2}. - Abstract: We have explored metal halide doping in metal borohydrides in order to modify hydrogen desorption/absorption properties of such high-capacity solid-state hydrogen storage materials. The specific application here is 10 mol% addition of CaX{sub 2} (X = F, Cl) to Ca(BH{sub 4}){sub 2}. The materials are analyzed using in-situ X-ray diffraction, differential scanning calorimetry, thermogravimetry, and IR spectroscopy, and the experimental results are compared against theoretical predictions from first-principles. Interestingly, in a fully hydrogenated state, CaCl{sub 2} dissolves into Ca(BH{sub 4}){sub 2} whereas CaF{sub 2} exists as a separate phase. During the course of dehydrogenation, CaH{sub 2}-CaF{sub 2} solid solution, CaHCl, and a new Ca-H-Cl compound are observed. In-situ X-ray diffraction study reveals that CaX{sub 2} interacts with Ca(BH{sub 4}){sub 2} in the early stage of decomposition, which could facilitate a direct decomposition of Ca(BH{sub 4}){sub 2} into CaH{sub 2} and CaB{sub 6} without forming intermediate phases such as CaB{sub 2}H{sub x} which seem to be thermodynamically in close competition with the formation of CaH{sub 2} and CaB{sub 6}. Our first-principles calculation estimates that the decrease in the decomposition temperature due to the CaH{sub 2}-CaX{sub 2} interaction would be less than 10 {sup o}C, and therefore the major contribution of CaX{sub 2} is to change the dehydrogenation pathway rather than the overall thermodynamics.

  9. Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qing; Shi, Haiyan; Gao, Beibei; Tian, Mingming; Hua, Xiude; Wang, Minghua, E-mail: wangmha@njau.edu.cn

    2016-01-15

    An effective method for the enantioselective determination of ethiprole enantiomers in agricultural and environmental samples was developed. The effects of solvent extraction, mobile phase and thermodynamic parameters for chiral recognition were fully investigated. Complete enantioseparation of the ethiprole enantiomers was achieved on a Lux Cellulose-2 column. The stereochemical structures of ethiprole enantiomers were also determined, and (R)-(+)-ethiprole was first eluted. The average recoveries were 82.7–104.9% with intra-day RSD of 1.7–8.2% in soil, cucumber, spinach, tomato, apple and peach under optimal conditions. Good linearity (R{sup 2} ≥ 0.9991) was obtained for all the matrix calibration curves within a range of 0.1 to 10 mg L{sup −1}. The limits of detection for both enantiomers were estimated to be 0.008 mg kg{sup −1} in soil, cucumber, spinach and tomato and 0.012 mg kg{sup −1} in apple and peach, which were lower than the maximum residue levels established in Japan. The results indicate that the proposed method is convenient and reliable for the enantioselective detection of ethiprole in agricultural and environmental samples. The behavior of ethiprole in soil was studied under field conditions and the enantioselective degradation was observed with enantiomer fraction values varying from 0.494 to 0.884 during the experiment. The (R)-(+)-ethiprole (t{sub 1/2} = 11.6 d) degraded faster than (S)-(−)-ethiprole (t{sub 1/2} = 34.7 d). This report is the first describe a chiral analytical method and enantioselective behavior of ethiprole, and these results should be extremely useful for the risk evaluation of ethiprole in food and environmental safety. - Highlights: • The ethiprole enantiomers were completely separated. • A novel method for enantioselective determination of ethiprole was developed. • The absolute configurations of ethiprole enantiomers were firstly determined. • The (R)-(+)-ethiprole was preferentially degraded in

  10. Chiral Pharmaceutical Intermediaries Obtained by Reduction of 2-Halo-1-(4-substituted phenyl)-ethanones Mediated by Geotrichum candidum CCT 1205 and Rhodotorula glutinis CCT 2182

    OpenAIRE

    Fardelone, Lucídio C.; Rodrigues, J Augusto R; Moran, Paulo J. S.

    2011-01-01

    Enantioselective reductions of p-R1-C6H4C(O)CH2R2 (R1 = Cl, Br, CH3, OCH3, NO2 and R2 = Br, Cl) mediated by Geotrichum candidum CCT 1205 and Rhodotorula glutinis CCT 2182 afforded the corresponding halohydrins with complementary R and S configurations, respectively, in excellent yield and enantiomeric excesses. The obtained (R)- or (S)-halohydrins are important building blocks in chemical and pharmaceutical industries.

  11. Chiral Pharmaceutical Intermediaries Obtained by Reduction of 2-Halo-1-(4-substituted phenyl-ethanones Mediated by Geotrichum candidum CCT 1205 and Rhodotorula glutinis CCT 2182

    Directory of Open Access Journals (Sweden)

    Lucídio C. Fardelone

    2011-01-01

    Full Text Available Enantioselective reductions of p-R1-C6H4C(OCH2R2 (R1 = Cl, Br, CH3, OCH3, NO2 and R2 = Br, Cl mediated by Geotrichum candidum CCT 1205 and Rhodotorula glutinis CCT 2182 afforded the corresponding halohydrins with complementary R and S configurations, respectively, in excellent yield and enantiomeric excesses. The obtained (R- or (S-halohydrins are important building blocks in chemical and pharmaceutical industries.

  12. Chiral Pharmaceutical Intermediaries Obtained by Reduction of 2-Halo-1-(4-substituted phenyl)-ethanones Mediated by Geotrichum candidum CCT 1205 and Rhodotorula glutinis CCT 2182

    Science.gov (United States)

    Fardelone, Lucídio C.; Rodrigues, J. Augusto R.; Moran, Paulo J. S.

    2011-01-01

    Enantioselective reductions of p-R1-C6H4C(O)CH2R2 (R1 = Cl, Br, CH3, OCH3, NO2 and R2 = Br, Cl) mediated by Geotrichum candidum CCT 1205 and Rhodotorula glutinis CCT 2182 afforded the corresponding halohydrins with complementary R and S configurations, respectively, in excellent yield and enantiomeric excesses. The obtained (R)- or (S)-halohydrins are important building blocks in chemical and pharmaceutical industries. PMID:21687613

  13. Chiral quizalofop-ethyl and its metabolite quizalofop-acid in soils: Enantioselective degradation, enzymes interaction and toxicity to Eisenia foetida.

    Science.gov (United States)

    Ma, Lin; Liu, Hui; Qu, Han; Xu, Yangguang; Wang, Peng; Sun, Mingjing; Zhou, Zhiqiang; Liu, Donghui

    2016-06-01

    An enantioselective chromatographic method to analyze enantiomers of quizalofop-ethyl and its metabolite quizalofop-acid was established using a high-performance liquid chromatography (HPLC) on (R, R) Whelk-O 1 column. The enantioselective degradation kinetics of quizalofop-ethyl and quizalofop-acid in three soils were investigated. Moreover, the interaction with urease and catalase in the soils and the acute toxicity to Eisenia foetida of quizalofop-ethyl were also determined in order to assess their metabolism mechanism and environmental risk. From the results, quizalofop-ethyl was configurationally stable and was hydrolyzed rapidly to quizalofop-acid, which also degraded enantioselectively but slowly, and the inversion of the S-(-)-quizalofop-acid into the R-(+)-quizalofop-acid was observed in Xinxiang soil. In addition, quizalofop-ethyl and quizalofop-acid enantioselectively affected urease activity but not catalase. The acute toxicity assays to earthworm indicated that the racemic quizalofop-ethyl and quizalofop-acid were more toxic than quizalofop-p-ethyl and quizalofop-p-acid respectively, dramatically, the toxicity of the metabolite was much higher than the parent compound. These results revealed the enantioselective degradation of quizalofop-ethyl and quizalofop-acid, and the differences of toxicity among the enantiomers of the parent compound and the metabolite, which should be considered in future environmental risk evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Rotational disorder in lithium borohydride

    Directory of Open Access Journals (Sweden)

    Remhof Arndt

    2015-01-01

    Full Text Available LiBH4 has been discussed as a promising hydrogen storage material and as a solid-state electrolyte in lithium-ion batteries. It contains 18.5 wt% hydrogen and undergoes a structural phase transition at 381 K which is associated with a large increase in rotational disorder of the [BH4]− anion and the increase of [Li]+ conductivity by three orders of magnitude. We investigated the [BH4]− anion dynamic in bulk LiBH4, in LiBH4-LiI solid solutions and in nano-confined LiBH4 by quasielastic neutron scattering, complemented by DFT calculations. In all cases the H-dynamics is dominated by thermally activated rotational jumps of the [BH4]− anion in the terahertz range. The addition of LiI as well as nano-confinement favours the disordered high temperature phase and lowers the phase transition below room temperatures. The results are discussed on the basis of first principles calculations and in relation to ionic conductivity of [Li]+.

  15. Enantioselective separation of azole compounds by EKC. Reversal of migration order of enantiomers with CD concentration.

    Science.gov (United States)

    Castro-Puyana, María; Crego, Antonio L; Marina, Maria Luisa; García-Ruiz, Carmen

    2007-08-01

    The enantioselective separation of a group of six weak base azole compounds was achieved in this work using EKC with three neutral beta-CDs as chiral selectors. The native beta-CD and two other beta-CD derivatives with different types and positions of the substituents on the CD rim ((2-hydroxy)propyl-beta-CD (HP-beta-CD) and heptakis-2,3,6-tri-O-methyl-beta-CD (TM-beta-CD)) were employed. Apparent binding constants for each pair compound-CD were determined in order to study analyte-CD interactions. The best enantiomeric resolutions for miconazole, econazole, and sulconazole were observed with HP-beta-CD whereas for the separation of the enantiomers of ketoconazole, terconazole, and bifonazole, TM-beta-CD was the best chiral selector. The enantioseparations obtained were discussed on the basis of the structure of the compounds taking into account that inclusion into the hydrophobic CD cavity occurred through the phenyl ring closer to the azole group. In addition, a change in the migration order for the enantiomers of two of the compounds studied (ketoconazole and terconazole) with the concentration of HP-beta-CD was observed for the first time.

  16. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    Science.gov (United States)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  17. Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts

    Science.gov (United States)

    Manville, Nathan; Alite, Hekla; Haeffner, Fredrik; Hoveyda, Amir H.; Snapper, Marc L.

    2013-09-01

    Catalytic enantioselective monosilylations of diols and polyols furnish valuable alcohol-containing molecules in high enantiomeric purity. These transformations, however, require high catalyst loadings (20-30 mol%) and long reaction times (2-5 days). Here, we report that a counterintuitive strategy involving the use of an achiral co-catalyst structurally similar to the chiral catalyst provides an effective solution to this problem. A combination of seemingly competitive Lewis basic molecules can function in concert such that one serves as an achiral nucleophilic promoter and the other performs as a chiral Brønsted base. On the addition of 7.5-20 mol% of a commercially available N-heterocycle (5-ethylthiotetrazole), reactions typically proceed within one hour, and deliver the desired products in high yields and enantiomeric ratios. In some instances, there is no reaction in the absence of the achiral base, yet the presence of the achiral co-catalyst gives rise to facile formation of products in high enantiomeric purity.

  18. Enantioselective analysis of fluoxetine in pharmaceutical formulations by capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Melania Cârcu-Dobrin

    2017-03-01

    Full Text Available Fluoxetine is an antidepressant, a selective serotonin reuptake inhibitor (SSRI used primarily in the treatment of major depression, panic disorder and obsessive compulsive disorder. Chiral separation of racemic fluoxetine is necessary due to its enantioselective metabolism. In order to develop a suitable method for chiral separation of fluoxetine, cyclodextrin (CD modified capillary electrophoresis (CE was employed. A large number of native and derivatized, neutral and ionized CD derivatives were screened to find the optimal chiral selector. As a result of this process, heptakis(2,3,6-tri-O-methyl-β-CD (TRIMEB was selected for enantiomeric discrimination. A factorial analysis study was performed by orthogonal experimental design in which several factors are varied at the same time to optimize the separation method. The optimized method (50 mM phosphate buffer, pH = 5.0, 10 mM TRIMEB, 15 °C, + 20 kV, 50 mbar/1 s, detection at 230 nm was successful for baseline separation of fluoxetine enantiomers within 5 min. Our method was validated according to ICH guidelines and proved to be sensitive, linear, accurate and precise for the chiral separation of fluoxetine.

  19. Contrasting enantioselective DNA preference: chiral helical macrocyclic lanthanide complex binding to DNA

    Science.gov (United States)

    Zhao, Chuanqi; Ren, Jinsong; Gregoliński, Janusz; Lisowski, Jerzy; Qu, Xiaogang

    2012-01-01

    There is great interest in design and synthesis of small molecules which selectively target specific genes to inhibit biological functions in which particular DNA structures participate. Among these studies, chiral recognition has been received much attention because more evidences have shown that conversions of the chirality and diverse conformations of DNA are involved in a series of important life events. Here, we report that a pair of chiral helical macrocyclic lanthanide (III) complexes, (M)-Yb[LSSSSSS]3+ and (P)-Yb[LRRRRRR]3+, can enantioselectively bind to B-form DNA and show remarkably contrasting effects on GC-rich and AT-rich DNA. Neither of them can influence non-B-form DNA, nor quadruplex DNA stability. Our results clearly show that P-enantiomer stabilizes both poly(dG-dC)2 and poly(dA-dT)2 while M-enantiomer stabilizes poly(dA-dT)2, however, destabilizes poly(dG-dC)2. To our knowledge, this is the best example of chiral metal compounds with such contrasting preference on GC- and AT-DNA. Ligand selectively stabilizing or destabilizing DNA can interfere with protein–DNA interactions and potentially affect many crucial biological processes, such as DNA replication, transcription and repair. As such, bearing these unique capabilities, the chiral compounds reported here may shed light on the design of novel enantiomers targeting specific DNA with both sequence and conformation preference. PMID:22675072

  20. Enantioselective degradation of amphetamine-like environmental micropollutants (amphetamine, methamphetamine, MDMA and MDA) in urban water.

    Science.gov (United States)

    Evans, Sian E; Bagnall, John; Kasprzyk-Hordern, Barbara

    2016-08-01

    This paper aims to understand enantioselective transformation of amphetamine, methamphetamine, MDMA (3,4-methylenedioxy-methamphetamine) and MDA (3,4-methylenedioxyamphetamine) during wastewater treatment and in receiving waters. In order to undertake a comprehensive evaluation of the processes occurring, stereoselective transformation of amphetamine-like compounds was studied, for the first time, in controlled laboratory experiments: receiving water and activated sludge simulating microcosm systems. The results demonstrated that stereoselective degradation, via microbial metabolic processes favouring S-(+)-enantiomer, occurred in all studied amphetamine-based compounds in activated sludge simulating microcosms. R-(-)-enantiomers were not degraded (or their degradation was limited) which proves their more recalcitrant nature. Out of all four amphetamine-like compounds studied, amphetamine was the most susceptible to biodegradation. It was followed by MDMA and methamphetamine. Photochemical processes facilitated degradation of MDMA and methamphetamine but they were not, as expected, stereoselective. Preferential biodegradation of S-(+)-methamphetamine led to the formation of S-(+)-amphetamine. Racemic MDMA was stereoselectively biodegraded by activated sludge which led to its enrichment with R-(-)-enantiomer and formation of S-(+)-MDA. Interestingly, there was only mild stereoselectivity observed during MDMA degradation in rivers. This might be due to different microbial communities utilised during activated sludge treatment and those present in the environment. Kinetic studies confirmed the recalcitrant nature of MDMA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. BCL::EMAS — Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR

    Directory of Open Access Journals (Sweden)

    Mariusz Butkiewicz

    2012-08-01

    Full Text Available Stereochemistry is an important determinant of a molecule’s biological activity. Stereoisomers can have different degrees of efficacy or even opposing effects when interacting with a target protein. Stereochemistry is a molecular property difficult to represent in 2D-QSAR as it is an inherently three-dimensional phenomenon. A major drawback of most proposed descriptors for 3D-QSAR that encode stereochemistry is that they require a heuristic for defining all stereocenters and rank-ordering its substituents. Here we propose a novel 3D-QSAR descriptor termed Enantioselective Molecular ASymmetry (EMAS that is capable of distinguishing between enantiomers in the absence of such heuristics. The descriptor aims to measure the deviation from an overall symmetric shape of the molecule. A radial-distribution function (RDF determines a signed volume of tetrahedrons of all triplets of atoms and the molecule center. The descriptor can be enriched with atom-centric properties such as partial charge. This descriptor showed good predictability when tested with a dataset of thirty-one steroids commonly used to benchmark stereochemistry descriptors (r2 = 0.89, q2 = 0.78. Additionally, EMAS improved enrichment of 4.38 versus 3.94 without EMAS in a simulated virtual high-throughput screening (vHTS for inhibitors and substrates of cytochrome P450 (PUBCHEM AID891.

  2. Simple Organic Molecules as Catalysts for Enantioselective Synthesis of Amines and Alcohols

    Science.gov (United States)

    Silverio, Daniel L.; Torker, Sebastian; Pilyugina, Tatiana; Vieira, Erika M.; Snapper, Marc L.; Haeffner, Fredrik; Hoveyda, Amir H.

    2012-01-01

    The discovery of new catalysts that can generate complex organic compounds via enantioselective transformations is central to advances in the life sciences;i for this reason, many chemists try to discover catalysts that can be used to produce chiral molecules with a strong preference for one mirror image isomer.ii The ideal catalyst should be devoid of precious elementsiii and should bring reactions to completion in a few hours using operationally simple procedures. In this manuscript, we introduce a set of small organic molecules that can catalyze reactions of unsaturated organoboron reagents with imines and carbonyls; the products of the reactions are enantiomerically pure amines and alcohols, which can be used to synthesize more complex, biologically active molecules. A distinguishing feature of this new catalyst class is the presence of a 'key' proton embedded within their structure. The catalyst is derived from the abundant amino acid valine and was prepared in large quantities in four steps using inexpensive reagents. Reactions are scalable, do not demand stringent conditions, and can be performed with as little as 0.25 mol % catalyst in less than six hours at room temperature to generate products in >85% yield and ≥97:3 enantiomeric ratio. The efficiency, selectivity and operational simplicity of the transformations and the range of boron-based reagents render this advance vital to future progress in chemistry, biology and medicine. PMID:23407537

  3. Enantioselective synthesis of tatanans A-C and reinvestigation of their glucokinase-activating properties

    Science.gov (United States)

    Xiao, Qing; Jackson, Jeffrey J.; Basak, Ashok; Bowler, Joseph M.; Miller, Brian G.; Zakarian, Armen

    2013-05-01

    The tatanans are members of a novel class of complex sesquilignan natural products recently isolated from the rhizomes of Acorus tatarinowii Schott plants. Tatanans A, B and C have previously been reported to have potent glucokinase-activating properties that exceed the in vitro activity of known synthetic antidiabetic agents. Here, using a series of sequential [3,3]-sigmatropic rearrangements, we report the total synthesis of tatanan A in 13 steps and 13% overall yield. We also complete a concise enantioselective total synthesis of more complex, atropisomeric tatanans B and C via a distinct convergent strategy based on a palladium-catalysed diastereotopic aromatic group differentiation (12 steps, 4% and 8% overall yield, respectively). A plausible biosynthetic relationship between acyclic tatanan A and spirocyclic tatanans B and C is proposed and probed experimentally. With sufficient quantities of the natural products in hand, we undertake a detailed functional characterization of the biological activities of tatanans A-C. Contrary to previous reports, our assays utilizing pure recombinant human enzyme demonstrate that tatanans do not function as allosteric activators of glucokinase.

  4. Enantioselective synthesis of tatanans A–C and reinvestigation of their glucokinase-activating properties

    Science.gov (United States)

    Xiao, Qing; Jackson, Jeffrey J.; Basak, Ashok; Bowler, Joseph M.; Miller, Brian G.; Zakarian, Armen

    2014-01-01

    The tatanans are members of a novel class of complex sesquilignan natural products recently isolated from the rhizomes of Acorus tatarinowii Schott plants. Tatanans A, B and C have previously been reported to have potent glucokinase-activating properties that exceed the in vitro activity of known synthetic antidiabetic agents. Here, using a series of sequential [3,3]-sigmatropic rearrangements, we report the total synthesis of tatanan A in 13 steps and 13% overall yield. We also complete a concise enantioselective total synthesis of more complex, atropisomeric tatanans B and C via a distinct convergent strategy based on a palladium-catalysed diastereotopic aromatic group differentiation (12 steps, 4% and 8% overall yield, respectively). A plausible biosynthetic relationship between acyclic tatanan A and spirocyclic tatanans B and C is proposed and probed experimentally. With sufficient quantities of the natural products in hand, we undertake a detailed functional characterization of the biological activities of tatanans A–C. Contrary to previous reports, our assays utilizing pure recombinant human enzyme demonstrate that tatanans do not function as allosteric activators of glucokinase. PMID:23609092

  5. Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA

    Science.gov (United States)

    Zhao, Andong; Howson, Suzanne E.; Ren, Jinsong; Scott, Peter; Wang, Chunyu

    2017-01-01

    Abstract The design and synthesis of metal complexes that can specifically target DNA secondary structure has attracted considerable attention. Chiral metallosupramolecular complexes (e.g. helicates) in particular display unique DNA-binding behavior, however until recently few examples which are both water-compatible and enantiomerically pure have been reported. Herein we report that one metallohelix enantiomer Δ1a, available from a diastereoselective synthesis with no need for resolution, can enantioselectively stabilize human telomeric hybrid G-quadruplex and strongly inhibit telomerase activity with IC50 of 600 nM. In contrast, no such a preference is observed for the mirror image complex Λ1a. More intriguingly, neither of the two enantiomers binds specifically to human telomeric antiparallel G-quadruplex. To the best of our knowledge, this is the first example of one pair of enantiomers with contrasting selectivity for human telomeric hybrid G-quadruplex. Further studies show that Δ1a can discriminate human telomeric G-quadruplex from other telomeric G-quadruplexes. PMID:28398500

  6. Organocatalysts for enantioselective synthesis of fine chemicals: definitions, trends and developments

    Directory of Open Access Journals (Sweden)

    Chiara Palumbo

    2015-02-01

    Full Text Available Organocatalysis, that is the use of small organic molecules to catalyze organic transformations, has been included among the most successful concepts in asymmetric catalysis, and it has been used for the enantioselective construction of C–C, C–N, C–O, C–S, C–P and C–halide bonds. Since the seminal works in early 2000, the scientific community has been paying an ever-growing attention to the use of organocatalysts for the synthesis, with high yields and remarkable stereoselectivities, of optically active fine chemicals of interest for the pharmaceutical industry. A brief overview is here presented about the two main classes of substrate activation by the catalyst: covalent organocatalysis and non-covalent organocatalysis, with a more stringent focus on some recent outcomes in the field of the latter and of hydrogen bond-based catalysis. Finally, some successful examples of heterogenization of organocatalysts are also discussed, in the view of a potential industrial exploitation.

  7. Enantioselective Degradation Mechanism of Beta-Cypermethrin in Soil From the Perspective of Functional Genes.

    Science.gov (United States)

    Yang, Zhong-Hua; Ji, Guo-Dong

    2015-12-01

    The behavior and mechanisms of the enantioselective degradation of beta-cypermethrin were studied in soil. The four isomers were degraded at different rates, and the enantiomer fractions of alpha-cypermethrin and theta-cypermethrin exceeded 0.5. Moreover, 3-phenoxybenzoic acid, phenol, and protocatechuic acid were detected; based on the presence of these metabolites, we predicted the degradation pathway and identified the functional genes that are related to this degradation process. We established quantitative relationships between the data on degradation kinetics and functional genes; we found that the quantitative relationships between different enantiomers differed even under the same conditions, and the genes pobA and pytH played key roles in limiting the degradation rate. Data obtained using path analysis revealed that the same gene had different direct and indirect effects on the degradation of different isomers. A mechanism was successfully proposed to explain the selective degradation of chiral compounds based on the perspective of functional genes. © 2015 Wiley Periodicals, Inc.

  8. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    Science.gov (United States)

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  9. Catalytic enantioselective aza-Diels-Alder reactions of unactivated acyclic 1,3-dienes with aryl-, alkenyl-, and alkyl-substituted imines.

    Science.gov (United States)

    Hatanaka, Yasuo; Nantaku, Shuuto; Nishimura, Yuhki; Otsuka, Tomoyuki; Sekikaw, Tohru

    2017-08-08

    A catalytic enantioselective aza-Diels-Alder reaction of unactivated acyclic dienes with aryl-, alkenyl-, and alkyl-substituted imines is described. With 5-10 mol% loadings of a new Brønsted acid catalyst, the aza-Diels-Alder reaction of unactivated acyclic dienes proceeded to give the corresponding aza-Diels-Alder adducts in high yields (up to 98%) with excellent enantioselectivity (up to 98% ee). Preliminary DFT calculations suggest that the reaction proceeds through a chiral ion pair intermediate.

  10. Enantioselective synthesis of aziridines using asymmetric transfer hydrogenation as a precursor for chiral derivatives used as bonding agent for rocket solid propellants

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2002-11-01

    Full Text Available A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R-N-(para-toluenesulfonyl-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.

  11. Covalently immobilized lipase on aminoalkyl-, carboxy- and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters.

    Science.gov (United States)

    Zniszczoł, Aurelia; Herman, Artur P; Szymańska, Katarzyna; Mrowiec-Białoń, Julita; Walczak, Krzysztof Z; Jarzębski, Andrzej; Boncel, Sławomir

    2016-06-01

    Aiming at the preparation of efficient, stable on storage and recyclable nanobiocatalysts for enantioselective transesterification, alkaline lipase from Pseudomonas fluorescens was covalently immobilized (up to 8.5wt.%) on functionalized multi-wall carbon nanotubes (f-MWCNTs). f-MWCNTs were synthesized via: (a) (2+1)-cycloaddition of a nitrene to the C-sp(2) nanotube walls (3.2mmolg(-1), a novel synthetic approach) and, (b) oxidative treatments, i.e. Fenton reagent (3.5mmolg(-1)) and nitrating mixture (2.5mmolg(-1)), yielding aminoalkyl-, hydroxyl- and carboxyl-MWCNTs, respectively. Amino- and epoxy- functionalized mesoporous silica (f-SBA-15) were used as the reference supports. Transesterification of vinyl n-butyrate by racemic Solketal with a chromatographically (GC) traced kinetics was selected as the model reaction. The studies revealed that different chemical functionalization of morphologically identical nanotube supports led to various enzyme loadings, catalytic activities and enantioselectivities. MWCNT-NH2-based nanobiocatalyst was found to be the most active composite among all of the tested systems (yield 20%, t=0.5h, 1321Ug(-1)), i.e. 12 times more active than the native enzyme. In turn, lipase immobilized on MWCNT-COOH emerged as the most enantioselective system (ex aequo with SBA-NH2) (eeR=74%, t=0.5h at yield of 3-5%). The activity of the MWCNT-NH2-based nanobiocatalyst after 8 cycles of transesterification dropped to 60% of its initial value, whereas for SBA-NH2-based composite remained unchanged. Importantly, stability on storage was fully maintained for all MWCNT-based nanobiocatalysts or even 'extra-enhanced' for MWCNT-OH. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Enantioselective endocrine disrupting effects of omeprazole studied in the H295R cell assay and by molecular modeling.

    Science.gov (United States)

    Sørensen, Amalie Møller; Hansen, Cecilie Hurup; Bonomo, Silvia; Olsen, Lars; Jørgensen, Flemming Steen; Weisser, Johan Juhl; Kretschmann, Andreas Christopher; Styrishave, Bjarne

    2016-08-01

    Enantiomers possess different pharmacokinetic and pharmacodynamic properties and this may not only influence the therapeutic effect of a drug but also its toxicological effects. In the present work we investigated the potential enantioselective endocrine disrupting effects of omeprazole (OME) and its two enantiomers on the human steroidogenesis using the H295R cell line. Differences in production of 16 steroid hormones were analyzed using LC-MS/MS. Additionally, to evaluate the differences in binding modes of these enantiomers, docking and molecular dynamics (MD) simulations of S-omeprazole (S-OME) and R-omeprazole (R-OME) in CYP17A1, CYP19A1 and CYP21A2 were carried out. Exposing H295R cells to OME and its enantiomers resulted in an increase of progesterone (PRO) and 17α-hydroxy-progesterone (OH-PRO) levels. At the same time, a decrease in the corticosteroid and androgen synthesis was observed, indicating inhibition of CYP21A2 and CYP17A1. In both cases, the effect of R-OME was smaller compared to that of the S-OME and a certain degree of enantioselectivity of CYP17A1 and CYP21A2 was suggested. Docking indicated that the N-containing rings of OME possibly could interact with the iron atom of the heme for S-OME in CYP17A1 and S- and R-OME in CYP21A2. However, density functional theory calculations suggest that the direct N-Fe interaction is weak. The study demonstrates enantioselective differences in the endocrine disrupting potential of chiral drugs such as omeprazole. These findings may have potential implications for drug safety and drug design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jing [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Ying [Department of Environmental Science, East China Normal University, Shanghai 200241 (China); Chen, Shengwen [School of Urban Development and Environment Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Liu, Chaonan; Zhu, Yongqiang [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Liu, Weiping, E-mail: wliu@zju.edu.cn [MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China)

    2014-01-15

    Highlights: •The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa. •Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer. •Lifecycle analysis of chiral pollutants needs more attention in environmental assessment. -- Abstract: Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides.

  14. Predicting CYP2C19 catalytic parameters for enantioselective oxidations using artificial neural networks and a chirality code.

    Science.gov (United States)

    Hartman, Jessica H; Cothren, Steven D; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A; Miller, Grover P

    2013-07-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (k(cat), K(m), and k(cat)/K(m)), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (k(cat) and K(m)) were more consistent with experimental values than those for catalytic efficiency (k(cat)/K(m)). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Enhanced anti-Diastereo- and Enantioselectivity in Alcohol Mediated Carbonyl Crotylation Using an Isolable Single Component Iridium Catalyst

    Science.gov (United States)

    Gao, Xin; Townsend, Ian A.; Krische, Michael J.

    2011-01-01

    The cyclometallated iridium complex (S)-I derived from [Ir(cod)Cl]2, 4-cyano-3-nitrobenzoic acid, allyl acetate and (S)-SEGPHOS is conveniently isolated by precipitation or through conventional silica gel flash chromatography. This single component precatalyst allows alcohol mediated carbonyl crotylations to be performed at significantly lower temperature, resulting in enhanced levels of anti-diastereo- and enantioselectivity. Most significantly, the chromatographically isolated precatalyst (S)-I enables carbonyl crotylations that are not possible under previously reported conditions involving in situ generation of (S)-I. PMID:21375283

  16. Enantioselective semi-preparative HPLC separation of PCB metabolites and their absolute structures determined by electronic and vibrational circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, H.P.; Larsson, C.; Huehnerfuss, H. [Hamburg Univ. (Germany). Inst. fuer Organische Chemie; Hoffmann, F.; Froeba, M. [Giessen Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Bergmann, Aa. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry

    2004-09-15

    The present paper represents a first result of an ongoing systematic study of atropisomeric methylsulfonyl, methylthionyl, hydroxy, and methoxy metabolites of environmentally most relevant PCBs. This involves semi-preparative enantioselective HPLC separation to obtain pure atropisomers from synthesized PCB metabolite standards, their configuration estimation using the electronic circular dichroism (UV-CD) method and the determination / confirmation of these absolute configurations applying the combined vibrational circular dichroism (VCD) / ab initio approach. The following substances have been investigated: 4-HO-, 4-MeO-, 4-MeS-, 4-MeSO2-, 3-MeS- and 3-MeSO{sub 2}-CB149.

  17. Enantioselective Michael Addition of Cyclic β-Diones to α,β-Unsaturated Enones Catalyzed by Quinine-Based Organocatalysts

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2017-06-01

    Full Text Available An enantioselective (52–98% ee Michael addition between cyclic β-diones and α,β-unsaturated enones was established in the presence of quinine-based primary amine or squaramide. A variety of cinnamones were smoothly converted into the desired 3,4-dihydropyrans in moderate to high yields (63–99%. Chalcones were also suitable acceptors and gave rise to the expected adducts in satisfactory yields (31–99%. The resulting adducts readily underwent further modification to form fused 4H-pyran or 2,3-dihydrofuran.

  18. Concise Approach to (ent)-14 β-Hydroxysteroids through Highly Diastereo-/Enantioselective Diels-Alder Reactions.

    Science.gov (United States)

    Peter, Clovis; Ressault, Blandine; Geoffroy, Philippe; Miesch, Michel

    2016-07-25

    14β-Hydroxysteroids, especially 14β-hydroxyandrostane derivatives are closely related to the cardenolide skeletons. The latter were readily available through highly diastero/enantioselective Diels-Alder (DA) reactions requiring high pressure or Lewis acid activation. Moreover, in the presence of (R)- or (S)-carvone as a chiral dienophile, the DA-reaction takes place under chemodivergent parallel kinetic resolution control affording highly enantiomerically enriched 14β-hydroxysteroid derivatives or the corresponding (ent)-14β-hydroxysteroid derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is Enantioselectively Oxidized to Hydroxylated Metabolites by Rat Liver Microsomes

    Science.gov (United States)

    Wu, Xianai; Pramanik, Ananya; Duffel, Michael W.; Hrycay, Eugene G.; Bandiera, Stelvio M.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela

    2011-01-01

    Developmental exposure to multiple-ortho substituted polychlorinated biphenyls (PCBs) causes adverse neurodevelopmental outcomes in laboratory animals and humans by mechanisms involving the sensitization of Ryanodine receptors (RyRs). In the case of PCB 136, the sensitization of RyR is enantiospecific, with only (-)-PCB 136 being active. However, the role of enantioselective metabolism in the developmental neurotoxicity of PCB 136 is poorly understood. The present study employed hepatic microsomes from phenobarbital (PB-), dexamethasone (DEX-) and corn oil (VEH-)treated male Sprague-Dawley rats to investigate the hypothesis that PCB 136 atropisomers are enantioselectively metabolized by P450 enzymes to potentially neurotoxic, hydroxylated PCB 136 metabolites. The results demonstrated the time- and isoform-dependent formation of three metabolites, with 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) being the major metabolite. The formation of 5-OH-PCB 136 increased with the activity of P450 2B enzymes in the microsomal preparation, which is consistent with PCB 136 metabolism by rat P450 2B1. The minor metabolite 4-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol) was produced by a currently unidentified P450 enzymes. An enantiomeric enrichment of (-)-PCB 136 was observed in microsomal incubations due to the preferential metabolism of (+)-PCB 136 to the corresponding 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) atropisomer. 4-OH-PCB 136 displayed an enrichment of the atropisomer formed from (-)-PCB 136; however, the enrichment of this metabolite atropisomer didn't affect the enantiomeric enrichment of the parent PCB because 4-OH-PCB 136 is only a minor metabolite. Although the formation of 5- and 4-OH-PCB 136 atropisomers increased with time, the enantioselective formation of the OH-PCB metabolites resulted in constant enantiomeric enrichment, especially at later incubation times. These observations not only demonstrate that the chiral signatures of

  20. Enantioselective analysis of proteinogenic amino acids in cerebrospinal fluid by capillary electrophoresis-mass spectrometry.

    Science.gov (United States)

    Prior, Amir; Sánchez-Hernández, Laura; Sastre-Toraño, Javier; Marina, Maria Luisa; de Jong, Gerhardus J; Somsen, Govert W

    2016-09-01

    d-Amino acids (AAs) are increasingly being recognized as essential molecules in biological systems. Enantioselective analysis of proteinogenic AAs in biological samples was accomplished by CE-MS employing β-CD as chiral selector and ESI via sheath-liquid (SL) interfacing. Prior to analysis, AAs were fully derivatized with FMOC, improving AA-enantiomer separation and ESI efficiency. In order to optimize the separation and MS detection of FMOC-AAs, the effects of type and concentration of CD in the BGE, the composition of the SL, and MS-interfacing parameters were evaluated. Using a BGE of 10 mM β-CD in 50 mM ammonium bicarbonate (pH 8) containing 15% v/v isopropanol, a SL of isopropanol-water-1 M ammonium bicarbonate (50:50:1, v/v/v) at a flow rate of 3 μL/min, and a nebulizer gas pressure of 2 psi, 15 proteinogenic AAs could be detected with enantioresolutions up to 3.5 and detection limits down to 0.9 μM (equivalent to less than 3 pg AA injected). The selectivity of the method was demonstrated by the analysis of spiked cerebrospinal fluid, allowing specific detection of d-AAs. Repeatability and linearity obtained for cerebrospinal fluid were similar to standard solutions, with peak area and migration-time RSDs (n = 5) below 16.2 and 1.6%, respectively, and a linear response (R(2) ≥ 0.977) in the 3-90 μM range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluating the robustness of the enantioselective stationary phases on the Rosetta mission against space vacuum vaporization

    Science.gov (United States)

    Meierhenrich, Uwe J.; Cason, Julie R. L.; Szopa, Cyril; Sternberg, Robert; Raulin, François; Thiemann, Wolfram H.-P.; Goesmann, Fred

    2013-12-01

    The European Space Agency's Rosetta mission was launched in March 2004 in order to reach comet 67P/Churyumov-Gerasimenko by August 2014. The Cometary Sampling and Composition experiment (COSAC) onboard the Rosetta mission's lander "Philae" has been designed for the cometary in situ detection and quantification of organic molecules using gas chromatography coupled to mass spectrometry (GC-MS). The GC unit of COSAC is equipped with eight capillary columns that will each provide a specific stationary phase for molecular separation. Three of these stationary phases will be used to chromatographically resolve enantiomers, as they are composed of liquid polymers of polydimethylsiloxane (PDMS) to which chiral valine or cyclodextrin units are attached. Throughout the ten years of Rosetta's journey through space to reach comet 67P, these liquid stationary phases have been exposed to space vacuum, as the capillary columns within the COSAC unit were not sealed or filled with carrier gas. Long term exposures to space vacuum can cause damage to such liquid stationary phases as key monomers, volatiles, and chiral selectors can be vaporized and lost in transit. We have therefore exposed identical spare units of COSAC's chiral stationary phases over eight years to vacuum conditions mimicking those experienced in space and we have now investigated their resolution capabilities towards different enantiomers both before and after exposure to space vacuum environments. We have observed that enantiomeric resolution capabilities of these chiral liquid enantioselective stationary phases has not been affected by exposure to space vacuum conditions. Thus we conclude that the three chiral stationary phases of the COSAC experiment onboard the Rosetta mission lander "Philae" can be considered to have maintained their resolution capacities throughout their journey prior to cometary landing in November 2014.

  2. Enantioselective transesterification by Candida antarctica Lipase B immobilized on fumed silica.

    Science.gov (United States)

    Kramer, Martin; Cruz, Juan C; Pfromm, Peter H; Rezac, Mary E; Czermak, Peter

    2010-10-01

    Enzymatic catalysis to produce molecules such as perfumes, flavors, and fragrances has the advantage of allowing the products to be labeled "natural" for marketing in the U.S., in addition to the exquisite selectivity and stereoselectivity of enzymes that can be an advantage over chemical catalysis. Enzymatic catalysis in organic solvents is attractive if solubility issues of reactants or products, or thermodynamic issues (water as a product in esterification) complicate or prevent aqueous enzymatic catalysis. Immobilization of the enzyme on a solid support can address the generally poor solubility of enzymes in most solvents. We have recently reported on a novel immobilization method for Candida antarctica Lipase B on fumed silica to improve the enzymatic activity in hexane. This research is extended here to study the enantioselective transesterification of (RS)-1-phenylethanol with vinyl acetate. The maximum catalytic activity for this preparation exceeded the activity (on an equal enzyme amount basis) of the commercial Novozyme 435(®) significantly. The steady-state conversion for (R)-1-phenylethanol was about 75% as confirmed via forward and reverse reaction. The catalytic activity steeply increases with increasing nominal surface coverage of the support until a maximum is reached at a nominal surface coverage of 230%. We hypothesize that the physical state of the enzyme molecules at a low surface coverage is dominated in this case by detrimental strong enzyme-substrate interactions. Enzyme-enzyme interactions may stabilize the active form of the enzyme as surface coverage increases while diffusion limitations reduce the apparent catalytic performance again at multi-layer coverage. The temperature-, solvent-, and long-term stability for CALB/fumed silica preparations showed that these preparations can tolerate temperatures up to 70°C, continuous exposure to solvents, and long-term storage. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Enantioselective determination of arotinolol in human plasma by HPLC using teicoplanin chiral stationary phase.

    Science.gov (United States)

    Aboul-Enein, Hassan Y; Hefnawy, Mohamed M

    2003-10-01

    A sensitive enantioselective high-performance liquid chromatography (HPLC) method was developed and validated to determine S-(+)- and R-(-)-arotinolol in human plasma. Baseline resolution was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar organic mobile phase consisting of methanol:glacial acetic acid:triethylamine, 100:0.1:0.1, (v/v/v) at a fl ow rate of 0.8 mL/min and UV detection set at 317 nm. Human plasma was spiked with stock solution of arotinolol enantiomers and labetalol as the internal standard. The assay involved the use of liquid-liquid extraction procedure with ethyl ether under alkaline condition for human plasma sample prior to HPLC analysis. Recoveries for S-(+)- and R-(-)-arotinolol enantiomers were in the range 93-103% at 200-1400 ng/mL level. Intra-day and inter-day precision calculated as %RSD was in the ranges 1.3-3.4 and 1.9-4.5% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percentage error were in the ranges 1.2-3.5 and 1.5-6.2% for both enantiomers, respectively. Linear calibration curves in the concentration range 100-1500 ng/mL for each enantiomer showed a correlation coefficient (r) of 0.9998. The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 and 50 ng/mL (S/N = 3), respectively. Copyright 2003 John Wiley & Sons, Ltd.

  4. Learning epistatic interactions from sequence-activity data to predict enantioselectivity

    Science.gov (United States)

    Zaugg, Julian; Gumulya, Yosephine; Malde, Alpeshkumar K.; Bodén, Mikael

    2017-12-01

    Enzymes with a high selectivity are desirable for improving economics of chemical synthesis of enantiopure compounds. To improve enzyme selectivity mutations are often introduced near the catalytic active site. In this compact environment epistatic interactions between residues, where contributions to selectivity are non-additive, play a significant role in determining the degree of selectivity. Using support vector machine regression models we map mutations to the experimentally characterised enantioselectivities for a set of 136 variants of the epoxide hydrolase from the fungus Aspergillus niger (AnEH). We investigate whether the influence a mutation has on enzyme selectivity can be accurately predicted through linear models, and whether prediction accuracy can be improved using higher-order counterparts. Comparing linear and polynomial degree = 2 models, mean Pearson coefficients (r) from 50 {× } 5 -fold cross-validation increase from 0.84 to 0.91 respectively. Equivalent models tested on interaction-minimised sequences achieve values of r=0.90 and r=0.93 . As expected, testing on a simulated control data set with no interactions results in no significant improvements from higher-order models. Additional experimentally derived AnEH mutants are tested with linear and polynomial degree = 2 models, with values increasing from r=0.51 to r=0.87 respectively. The study demonstrates that linear models perform well, however the representation of epistatic interactions in predictive models improves identification of selectivity-enhancing mutations. The improvement is attributed to higher-order kernel functions that represent epistatic interactions between residues.

  5. Enantiomerization and enantioselective bioaccumulation of benalaxyl in Tenebrio molitor larvae from wheat bran.

    Science.gov (United States)

    Gao, Yongxin; Chen, Jinhui; Wang, Huili; Liu, Chen; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2013-09-25

    The enantiomerization and enatioselecive bioaccumulation of benalaxyl by dietary exposure to Tenebrio molitor larvae under laboratory conditions were studied by HPLC-MS/MS. Exposure of enantiopure R-benalaxyl and S-benalaxyl in T. molitor larvae revealed significant enantiomerization with formation of the R enantiomers from the S enantiomers, and vice versa. Enantiomerization was not observed in wheat bran during the period of 21 days. For the bioaccumulation experiment, the enantiomer fraction in T. molitor larvae was maintained approximately at 0.6, whereas the enantiomer fraction in wheat bran was maintained at 0.5; in other words, the bioaccumulation of benalaxyl was enantioselective in T. molitor larvae. Mathematical models for a process of uptake, degradation, and enantiomerization were developed, and the rates of uptake, degradation, and enantiomerization of R-benealaxyl and S-benealaxyl were estimated, respectively. The results were that the rate of uptake of R-benalaxyl (kRa = 0.052 h(-1)) was slightly lower than that of S-benalaxyl (kSa = 0.061 h(-1)) from wheat bran; the rate of degradation of R-benalaxyl (kRd = 0.285 h(-1)) was higher than that of S-benalaxyl (kSd = 0.114 h(-1)); and the rate of enantiomerization of R-benalaxyl (kRS = 0.126 h(-1)) was higher than that of S-benalaxyl (kSR = 0.116 h(-1)). It was suggested that enantioselectivtiy was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of chiral pesticides.

  6. Enantioselective analysis of chiral anteiso fatty acids in the polar and neutral lipids of food.

    Science.gov (United States)

    Hauff, Simone; Hottinger, Georg; Vetter, Walter

    2010-04-01

    Anteiso fatty acids (aFA) are substituted with a methyl group on the antepenultimate carbon of the straight acyl chain. This feature leads to a stereogenic center. The 12-methyltetradecanoic acid (a15:0) and the 14-methylhexadecanoic acid (a17:0) are the most common aFA found in food, although they occur only in very small quantities. In this study we used gas chromatography in combination with a chiral stationary phase to determine the enantiomeric distribution of both a15:0 and a17:0 in the neutral and polar lipids of aquatic food samples and cheese. The best suited column was selected out of four custom-made combinations of heptakis(6-O-tert-butyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin (beta-TBDM) with different amount and polarity of an achiral polysiloxane. After separation of polar and neutral lipids of the food samples by solid phase extraction, fatty acid methyl esters were prepared and the fatty acid methyl esters were fractionated by reversed phase high performance liquid chromatography. Measurements of fractions high in aFA by enantioselective GC/MS in the selected ion monitoring mode verified the dominance of the (S)-enantiomers of a15:0 and a17:0 in both lipid fractions. However (R)-enantiomers were detectable in all samples. The relative proportion of the (R)-enantiomers was up to fivefold higher in the polar lipids than in the neutral lipids. The higher proportions in the polar lipids indicate that microorganisms might be involved in the formation of (R)-aFA.

  7. Lipase AKG mediated resolutions of alpha,alpha-disubstituted 1,2-diols in organic solvents; Remarkably high regio- and enantio-selectivity

    NARCIS (Netherlands)

    Hof, RP; Kellogg, RM

    1996-01-01

    Diols 1, which contain adjacent tertiary and primary hydroxy groups, can be selectively mono-acylated at the primary hydroxy group by many lipases in organic solvents, Since the reaction does not take place at the chiral tertiary centre itself, observed enantioselectivities are usually low. Only the

  8. Efficient Improving the Activity and Enantioselectivity of Candida rugosa Lipase for the Resolution of Naproxen by Enzyme Immobilization on MCM-41 Mesoporous Molecular Sieve

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-09-01

    Full Text Available Lipase from Candida rogusa was immobilized on MCM-41 mesoporous molecular sieves in a trapped aqueous-organic biphase system for the resolution of racemic naproxen methyl ester. It was interesting that the activity and enantioselectivity of the immobilized lipase were improved significantly relative to the free enzyme. The proportion of water (ml/support (g has a dramatic influence on the activity and enantioselectivity of lipase immobilized onto MCM-41 molecular sieves. It was also found that the activity of immobilized lipase was more sensitive to pH value and temperature than the free one. Higher pH value will increase the activity but decrease the enantioselectivity of the immobilized lipase. The enantioselectivity of the immobilized lipase was not altered significantly within the range of tested temperature. The immobilized lipase can be reused for at least 8 batches without significant lose of activity with the aid of methanotrophic bacteria to eliminate the methanol produced during the resolution process.

  9. Lipase AKG mediated resolutions of α,α-disubstituted 1,2-diols in organic solvents; remarkably high regio- and enantio-selectivity

    NARCIS (Netherlands)

    Hof, Robert P.; Kellogg, Richard M.

    1996-01-01

    Diols 1, which contain adjacent tertiary and primary hydroxy groups, can be selectively mono-acylated at the primary hydroxy group by many lipases in organic solvents. Since the reaction does not take place at the chiral tertiary centre itself, observed enantioselectivities are usually low. Only the

  10. Influence of degree of sulfonation of BDPP upon enantioselectivity in rhodium-BDPP catalyzed hydrogenation reactions in a two phase system

    NARCIS (Netherlands)

    Lensink, Cornelis; Rijnberg, Evelien; Vries, Johannes G. de

    1997-01-01

    Asymmetric hydrogenation experiments were carried out with catalysts prepared in situ from [Rh(COD)Cl]2 and 2 eq. of a sulfonated (2S,4S)-bis-2,4-(diphenylphosphino)pentane carrying 0-4 sulfonate groups, in a two phase aqueous organic system. The effect of degree of sulfonation on enantioselectivity

  11. On the mechanism of the copper-catalyzed enantioselective 1,4-addition of grignard reagents to alpha,beta-unsaturated carbonyl compounds

    NARCIS (Netherlands)

    Harutyunyan, Syuzanna R.; Lopez, Fernando; Browne, Wesley R.; Correa, Arkaitz; Pena, Diego; Badorrey, Ramon; Meetsma, Auke; Minnaard, Adriaan J.; Feringa, Ben L.; Lo´pez, F.; Pen~a, D.

    2006-01-01

    The mechanism of the enantioselective 1,4-addition of Grignard reagents to alpha,beta-unsaturated carbonyl compounds promoted by copper complexes of chiral ferrocenyl diphosphines is explored through kinetic, spectroscopic, and electrochemical analysis. On the basis of these studies, a structure of

  12. Co(salen)-mediated enantioselective radiofluorination of epoxides. Radiosynthesis of enantiomerically enriched [18F]F-MISO via kinetic resolution

    DEFF Research Database (Denmark)

    Revunov, Evgeny V.; Zhuravlev, Fedor

    2013-01-01

    The first example of transition metal mediated enantioselective radiofluorination of epoxides is reported. The procedure utilizes gaseous [18F]HF in a combination with (−)tetramisole and (R,R)-Co(salen), giving the corresponding (S,S)-18F-fluorohydrines in 78–93% radiochemical yield (RCY) and 20–...

  13. Palladium-Catalysed Enantioselective Conjugate Addition of Aromatic Amines to α,β-Unsaturated N-Imides. Effect of the Chelating Moiety

    NARCIS (Netherlands)

    Phua, Pim Huat; Vries, Johannes G. de; Hii, King Kuok

    2005-01-01

    Palladium-catalysed enantioselective additions of aromatic amines to α,β-unsaturated N-imides are reported. The N-substituent of the Michael acceptor appears to have an unusual modulating effect on the amine activity. The effects of introducing different substituents are examined. Overall, the yield

  14. Enantioselective analysis of citalopram and escitalopram in postmortem blood together with genotyping for CYP2D6 and CYP2C19.

    Science.gov (United States)

    Carlsson, Björn; Holmgren, Anita; Ahlner, Johan; Bengtsson, Finn

    2009-03-01

    Citalopram is marketed as a racemate (50:50) mixture of the S(+)-enantiomer and R(-)-enantiomer and the active S(+)-enantiomer (escitalopram) that possess inhibitory effects. Citalopram was introduced in Sweden in 1992 and is the most frequently used antidepressant to date in Sweden. In 2002, escitalopram was introduced onto the Swedish market for treatment of depression and anxiety disorders. The main objective of this study was to investigate S(+)-citalopram [i.e., the racemic drug (citalopram) or the enantiomer (escitalopram)] present in forensic autopsy cases positive for the presence of citalopram in routine screening using a non-enantioselective bioanalytical method. Fifty out of the 270 samples found positive by gas chromatography-nitrogen-phosphorus detection were further analyzed using enantioselective high-performance liquid chromatography. The 50 cases were genotyped for CYP2D6 and CYP2C19, as these isoenzymes are implicated in the metabolism of citalopram and escitalopram. In samples positive for racemic citalopram using the screening method for forensic autopsy cases, up to 20% would have been misinterpreted in the absence of an enantioselective method. An enantioselective method is thus necessary for correct interpretation of autopsy cases, after the enantiomer has been introduced onto the market. The percentage of poor metabolizers was 6% for CYP2D6 and 8% for CYP2C19.

  15. An enantioselective catalytic approach to syn deoxypropionate units combining asymmetric Cu-catalyzed 1,6- and 1,4-conjugate addition

    NARCIS (Netherlands)

    Hartog, Tim den; Dijken, Derk Jan van; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    A novel iterative approach to the synthesis of the naturally ubiquitous syn deoxypropionate motif is reported. The route comprises a new Horner–Wadsworth–Emmons reagent to prepare α,β,γ,δ-bisunsaturated thioesters. Next, two Me-substituents are introduced in high yield, regio- and enantioselectivity

  16. Highly enantioselective Friedel-Crafts alkylation reaction catalyzed by rosin-derived tertiary amine-thiourea: synthesis of modified chromanes with anticancer potency.

    Science.gov (United States)

    Jiang, Xianxing; Wu, Lipeng; Xing, Yanhong; Wang, Long; Wang, Shoulei; Chen, Zongyao; Wang, Rui

    2012-01-11

    We present herein for the first time the synthesis and preliminary biological evaluation of various modified chromanes via a rosin-derived tertiary amine-thiourea-catalyzed highly enantioselective Friedel-Crafts alkylation reaction. This journal is © The Royal Society of Chemistry 2012

  17. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn2L(H2O)2] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF3-containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  18. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Directory of Open Access Journals (Sweden)

    Patrícia de O. Carvalho

    2005-08-01

    Full Text Available Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S-active acid (ee = 6.1% and conversion value (c = 20% in the esterification of (R,S-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2 and commercial lipase from Candida antarctica (E = 20 were employed.

  19. Enantioselective Crystallization of Sodium Chlorate in the Presence of Racemic Hydrophobic Amino Acids and Static Magnetic Fields

    Science.gov (United States)

    Zorzano, María-Paz; Osuna-Esteban, Susana; Ruiz-Bermejo, Marta; Menor-Salván, Cesar; Veintemillas-Verdaguer, Sabino

    2014-06-01

    We study the bias induced by a weak (200 mT) external magnetic field on the preferred handedness of sodium chlorate crystals obtained by slow evaporation at ambient conditions of its saturated saline solution with 20 ppm of added racemic (dl) hydrophobic amino acids. By applying the Fisher test to pairs of experiments with opposing magnetic field orientation we conclude, with a confidence level of 99.7%, that at the water-air interface of this saline solution there is an enantioselective magnetic interaction that acts upon racemic mixtures of hydrophobic chiral amino acids. This interaction has been observed with the three tested racemic hydrophobic amino acids: dl-Phe, dl-Try and dl-Trp, at ambient conditions and in spite of the ubiquitous chiral organic contamination. This enantioselective magnetic dependence is not observed when there is only one handedness of added chiral amino-acid, if the added amino acid is not chiral or if there is no additive. This effect has been confirmed with a double blind test. This novel experimental observation may have implications for our view of plausible initial prebiotic scenarios and of the roles of the geomagnetic field in homochirality in the biosphere.

  20. Continuous enantioselective esterification of trans-2-phenyl-1-cyclohexanol using a new Candida rugosa lipase in a packed bed bioreactor.

    Science.gov (United States)

    Sánchez, A; del Río, J L; Valero, F; Lafuente, J; Faus, I; Solà, C

    2001-11-17

    Enantioselective resolution of trans-2-phenyl-1-cyclohexanol (TPCH) by a Candida rugosa lipase, obtained by fermentation in the laboratory, and immobilised on EP100 polypropylene powder has been carried out using isooctane as solvent and propionic acid as esterifying agent. The study have included the utilisation of this biocatalyst in a batch process and the optimisation of the esterification conditions by means of a Box-Hunter-based experimental design. The main variables controlling the process, concentration of acid and alcohol, have been numerically optimised using initial esterification rate as objective function. The optimal concentrations for the batch process were 50 mM for the alcohol and 71 mM for the acid. This esterification reaction kinetics corresponded to a reversible Michaelis-Menten kinetic law for the optimal conditions, which has permitted to select a plug-flow packed bed bioreactor as the most appropriate configuration to minimise the residence time and to avoid shear stress effect on the biocatalyst. The behaviour of the continuous packed bed bioreactor at two different residence times (302 and 582 min) was in accordance with predictions from batch experiments, with slightly deviations (less than 10%). Continuous experiments maintained high values of enantioselectivity (enantiomeric factor was practically 1) and conversion near equilibrium value (35%) when long-time operation was carried out. Besides, long-time stability of biocatalyst has permitted to scale-up the production of enantioenriched (1R,2S)-TPCH propionate to yield gram quantities.

  1. R-enantioselective hydrolysis of 2,2-dimethylcyclopropanecarboxamide by amidase from a newly isolated strain Brevibacterium epidermidis ZJB-07021.

    Science.gov (United States)

    Jin, S-J; Zheng, R-C; Zheng, Y-G; Shen, Y-C

    2008-10-01

    To isolate new micro-organisms with R-stereospecific amidase activity and to examine their potential as biocatalysts in enantioselective hydrolysis of 2,2-dimethylcyclopropanecarboxamide (1). A novel R-stereospecific amidase-producing strain ZJB-07021 was isolated through a sophisticated colorimetric screening method. Based on morphology, physiological tests, Biolog system (GP2) and 16S rRNA sequence, the new isolate was identified as Brevibacterium epidermidis. After 70 min of bioconversion at 35 degrees C, kinetic resolution of (R,S)-1 by the amidase afforded (S)-1 in 41.1% yield (>99% ee) and (R)-2 in 49.9% yield (69.7% ee) with an average E-value of 23. The enantioselectivity was found to be temperature dependent and enhanced from 12.6 at 45 degrees C to 65.9 at 14 degrees C. A novel bacterial strain of B. epidermidis ZJB-07021 producing R-stereospecific amidase was isolated and characterized. The isolate exhibited high E values for kinetic resolution of racemic-1 to (S)-1. To our knowledge, this was the first report on the species B. epidermidis that harboured R-stereospecific amidase. Strain ZJB-07021 could be further improved as a suitable biocatalyst for the stereoselective bioconversion of racemic-1 after optimization of culture and biotransformation process.

  2. Enantioselective Crystallization of Sodium Chlorate in the Presence of Racemic Hydrophobic Amino Acids and Static Magnetic Fields

    Directory of Open Access Journals (Sweden)

    María-Paz Zorzano

    2014-06-01

    Full Text Available We study the bias induced by a weak (200 mT external magnetic field on the preferred handedness of sodium chlorate crystals obtained by slow evaporation at ambient conditions of its saturated saline solution with 20 ppm of added racemic (dl hydrophobic amino acids. By applying the Fisher test to pairs of experiments with opposing magnetic field orientation we conclude, with a confidence level of 99.7%, that at the water-air interface of this saline solution there is an enantioselective magnetic interaction that acts upon racemic mixtures of hydrophobic chiral amino acids. This interaction has been observed with the three tested racemic hydrophobic amino acids: dl-Phe, dl-Try and dl-Trp, at ambient conditions and in spite of the ubiquitous chiral organic contamination. This enantioselective magnetic dependence is not observed when there is only one handedness of added chiral amino-acid, if the added amino acid is not chiral or if there is no additive. This effect has been confirmed with a double blind test. This novel experimental observation may have implications for our view of plausible initial prebiotic scenarios and of the roles of the geomagnetic field in homochirality in the biosphere.

  3. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    Science.gov (United States)

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  4. Immobilization and Characterization of a New Regioselective and Enantioselective Lipase Obtained from a Metagenomic Library

    Science.gov (United States)

    Alnoch, Robson Carlos; Martini, Viviane Paula; Glogauer, Arnaldo; Costa, Allen Carolina dos Santos; Piovan, Leandro; Muller-Santos, Marcelo; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Mitchell, David Alexander; Krieger, Nadia

    2015-01-01

    In previous work, a new lipase and its cognate foldase were identified and isolated from a metagenomic library constructed from soil samples contaminated with fat. This new lipase, called LipG9, is a true lipase that shows specific activities that are comparable to those of well-known industrially-used lipases with high activity against long-chain triglycerides. In the present work, LipG9 was co-expressed and co-immobilized with its foldase, on an inert hydrophobic support (Accurel MP1000). We studied the performance of this immobilized LipG9 (Im-LipG9) in organic media, in order to evaluate its potential for use in biocatalysis. Im-LipG9 showed good stability, maintaining a residual activity of more than 70% at 50°C after incubation in n-heptane (log P 4.0) for 8 h. It was also stable in polar organic solvents such as ethanol (log P -0.23) and acetone (log P -0.31), maintaining more than 80% of its original activity after 8 h incubation at 30°C. The synthesis of ethyl esters was tested with fatty acids of different chain lengths in n-heptane at 30 °C. The best conversions (90% in 3 h) were obtained for medium and long chain saturated fatty acids (C8, C14 and C16), with the maximum specific activity, 29 U per gram of immobilized preparation, being obtained with palmitic acid (C16). Im-LipG9 was sn-1,3-specific. In the transesterification of the alcohol (R,S)-1-phenylethanol with vinyl acetate and the hydrolysis of the analogous ester, (R,S)-1-phenylethyl acetate, Im-LipG9 showed excellent enantioselectivity for the R-isomer of both substrates (E> 200), giving an enantiomeric excess (ee) of higher than 95% for the products at 49% conversion. The results obtained in this work provide the basis for the development of applications of LipG9 in biocatalysis. PMID:25706996

  5. Immobilization and characterization of a new regioselective and enantioselective lipase obtained from a metagenomic library.

    Directory of Open Access Journals (Sweden)

    Robson Carlos Alnoch

    Full Text Available In previous work, a new lipase and its cognate foldase were identified and isolated from a metagenomic library constructed from soil samples contaminated with fat. This new lipase, called LipG9, is a true lipase that shows specific activities that are comparable to those of well-known industrially-used lipases with high activity against long-chain triglycerides. In the present work, LipG9 was co-expressed and co-immobilized with its foldase, on an inert hydrophobic support (Accurel MP1000. We studied the performance of this immobilized LipG9 (Im-LipG9 in organic media, in order to evaluate its potential for use in biocatalysis. Im-LipG9 showed good stability, maintaining a residual activity of more than 70% at 50 °C after incubation in n-heptane (log P 4.0 for 8 h. It was also stable in polar organic solvents such as ethanol (log P -0.23 and acetone (log P -0.31, maintaining more than 80% of its original activity after 8 h incubation at 30 °C. The synthesis of ethyl esters was tested with fatty acids of different chain lengths in n-heptane at 30 °C. The best conversions (90% in 3 h were obtained for medium and long chain saturated fatty acids (C8, C14 and C16, with the maximum specific activity, 29 U per gram of immobilized preparation, being obtained with palmitic acid (C16. Im-LipG9 was sn-1,3-specific. In the transesterification of the alcohol (R,S-1-phenylethanol with vinyl acetate and the hydrolysis of the analogous ester, (R,S-1-phenylethyl acetate, Im-LipG9 showed excellent enantioselectivity for the R-isomer of both substrates (E> 200, giving an enantiomeric excess (ee of higher than 95% for the products at 49% conversion. The results obtained in this work provide the basis for the development of applications of LipG9 in biocatalysis.

  6. Improvement for enantioselectivity of esterification by the change of alcohol concentration in supercritical CO{sub 2}; Arukoru nodo henka ni yoru chorinkai CO{sub 2} nai esuteruka hanno kyozotai sentakusei no kojo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tau-yann; Liang, Ming-tsai

    1999-07-05

    This work used Candid rugosa lipase to resolve racemic Naproxen by esterification with ethanol, n-butanol, n-hexanol, or n-decanol in supercritical CO{sub 2}. It was found that the lipase enantioselectively esterified S-Naproxen within all systems. The enantiomeric ratio increased four folds by slightly decreasing the alcohol concentration. The effect of the alcohol concentration on the enantioselectivity was greater than that of changing acyl acceptors. (author)

  7. Evaluation of fast enantioselective multidimensional gas chromatography methods for monoterpenic compounds: Authenticity control of Australian tea tree oil.

    Science.gov (United States)

    Wong, Yong Foo; West, Rachel N; Chin, Sung-Tong; Marriott, Philip J

    2015-08-07

    This work demonstrates the potential of fast multiple heart-cut enantioselective multidimensional gas chromatography (GC-eGC) and enantioselective comprehensive two-dimensional gas chromatography (eGC×GC), to perform the stereoisomeric analysis of three key chiral monoterpenes (limonene, terpinen-4-ol and α-terpineol) present in tea tree oil (TTO). In GC-eGC, separation was conducted using a combination of mid-polar first dimension ((1)D) column and a chiral second dimension ((2)D) column, providing interference-free enantioresolution of the individual antipodes of each optically active component. A combination of (1)D chiral column and (2)D polar columns (ionic liquid and wax phases) were tested for the eGC×GC study. Quantification was proposed based on summation of two major modulated peaks for each antipode, displaying comparable results with those derived from GC-eGC. Fast chiral separations were achieved within 25min for GC-eGC andfree enantiomer separation. The suitability of using these two enantioselective multidimensional approaches for the routine assessment of chiral monoterpenes in TTO was evaluated and discussed. Exact enantiomeric composition of chiral markers for authentic TTOs was proposed by analysing a representative number of pure TTOs sourced directly from plantations of known provenance in Australia. Consistent enantiomeric fractions of 61.6±1.5% (+):38.4±1.5% (-) for limonene, 61.7±1.6% (+):38.3±1.6% (-) for terpinen-4-ol and 79.6±1.4% (+):20.4±1.4% (-) for α-terpineol were obtained for the 57 authentic Australian TTOs. The results were compared (using principle component analysis) with commercial TTOs (declared as derived from Melaleuca alternifolia) obtained from different continents. Assessing these data to determine adulteration, or additives that affect the enantiomeric ratios, in commercially sourced TTOs is discussed. The proposed method offers distinct advantages over eGC, especially in terms of analysis times and selectivity

  8. Catalytic Reductive Degradation of Methyl Orange Using Air Resilient Copper Nanostructures

    Directory of Open Access Journals (Sweden)

    Razium Ali Soomro

    2015-01-01

    Full Text Available The study describes the application of oxidation resistant copper nanostructures as an efficient heterogeneous catalyst for the treatment of organic dye containing waste waters. Copper nanostructures were synthesized in an aqueous environment using modified surfactant assisted chemical reduction route. The synthesized nanostructures have been characterized by UV-Vis, Fourier transform infrared spectroscopy FTIR spectroscopy, Atomic force microscopy (AFM, Scanning Electron Microscopy (SEM, and X-ray diffractometry (XRD. These surfactant capped Cu nanostructures have been used as a heterogeneous catalyst for the comparative reductive degradation of methyl orange (MO in the presence of sodium borohydride (NaBH4 used as a potential reductant. Copper nanoparticles (Cu NPs were found to be more efficient compared to copper nanorods (Cu NRds with the degradation reaction obeying pseudofirst order reaction kinetics. Shape dependent catalytic efficiency was further evaluated from activation energy (EA of reductive degradation reaction. The more efficient Cu NPs were further employed for reductive degradation of real waste water samples containing dyes collected from the drain of different local textile industries situated in Hyderabad region, Pakistan.

  9. Nitrate reduction

    Science.gov (United States)

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  10. Enantioselective endocrine disrupting effects of omeprazole studied in the H295R cell assay and by molecular modeling

    DEFF Research Database (Denmark)

    Sørensen, Amalie Møller; Hansen, Cecilie Hurup; Bonomo, Silvia

    2016-01-01

    Enantiomers possess different pharmacokinetic and pharmacodynamic properties and this may not only influence the therapeutic effect of a drug but also its toxicological effects. In the present work we investigated the potential enantioselective endocrine disrupting effects of omeprazole (OME......) and its two enantiomers on the human steroidogenesis using the H295R cell line. Differences in production of 16 steroid hormones were analyzed using LC-MS/MS. Additionally, to evaluate the differences in binding modes of these enantiomers, docking and molecular dynamics (MD) simulations of S-omeprazole (S......-OME) and R-omeprazole (R-OME) in CYP17A1, CYP19A1 and CYP21A2 were carried out. Exposing H295R cells to OME and its enantiomers resulted in an increase of progesterone (PRO) and 17α-hydroxy-progesterone (OH-PRO) levels. At the same time, a decrease in the corticosteroid and androgen synthesis was observed...

  11. Lithium Enolates in the Enantioselective Construction of Tetrasubstituted Carbon Centers with Chiral Lithium Amides as Noncovalent Stereodirecting Auxiliaries.

    Science.gov (United States)

    Yu, Kai; Lu, Ping; Jackson, Jeffrey J; Nguyen, Thuy-Ai D; Alvarado, Joseph; Stivala, Craig E; Ma, Yun; Mack, Kyle A; Hayton, Trevor W; Collum, David B; Zakarian, Armen

    2017-01-11

    Lithium enolates derived from carboxylic acids are ubiquitous intermediates in organic synthesis. Asymmetric transformations with these intermediates, a central goal of organic synthesis, are typically carried out with covalently attached chiral auxiliaries. An alternative approach is to utilize chiral reagents that form discrete, well-defined aggregates with lithium enolates, providing a chiral environment conducive of asymmetric bond formation. These reagents effectively act as noncovalent, or traceless, chiral auxiliaries. Lithium amides are an obvious choice for such reagents as they are known to form mixed aggregates with lithium enolates. We demonstrate here that mixed aggregates can effect highly enantioselective transformations of lithium enolates in several classes of reactions, most notably in transformations forming tetrasubstituted and quaternary carbon centers. Easy recovery of the chiral reagent by aqueous extraction is another practical advantage of this one-step protocol. Crystallographic, spectroscopic, and computational studies of the central reactive aggregate, which provide insight into the origins of selectivity, are also reported.

  12. Determination of levamisole and tetramisole in seized cocaine samples by enantioselective high-performance liquid chromatography and circular dichroism detection.

    Science.gov (United States)

    Bertucci, Carlo; Tedesco, Daniele; Fabini, Edoardo; Di Pietra, Anna Maria; Rossi, Francesca; Garagnani, Marco; Del Borrello, Elia; Andrisano, Vincenza

    2014-10-10

    Levamisole, an anthelmintic drug, has been increasingly employed as an adulterant of illicit street cocaine over the last decade; recently, the use of tetramisole, the racemic mixture of levamisole and its enantiomer dexamisole, was also occasionally observed. A new enantioselective high-performance liquid chromatography (HPLC) method, performed on cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases in normal-phase mode, was validated to determine the enantiomeric composition of tetramisole enantiomers in seized cocaine samples. Furthermore, the hyphenation of the validated HPLC method with a circular dichroism (CD) detection system allowed the direct determination of elution order and a selective monitoring of levamisole and dexamisole in the presence of possible interferences. The method was applied to the identification and quantitation of the two enantiomers of tetramisole in seized street cocaine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Enantioselective GC-MS analysis of volatile components from rosemary (Rosmarinus officinalis L.) essential oils and hydrosols.

    Science.gov (United States)

    Tomi, Kenichi; Kitao, Makiko; Konishi, Norihiro; Murakami, Hiroshi; Matsumura, Yasuki; Hayashi, Takahiro

    2016-05-01

    Essential oils and hydrosols were extracted from rosemary harvested in different seasons, and the chemical compositions of volatile components in the two fractions were analyzed by gas chromatography-mass spectrometry (GC-MS). Enantiomers of some volatile components were also analyzed by enantioselective GC-MS. Classification of aroma components based on chemical groups revealed that essential oils contained high levels of monoterpene hydrocarbons but hydrosols did not. Furthermore, the enantiomeric ratios within some volatile components were different from each other; for example, only the (S)-form was observed for limonene and the (R)-form was dominant for verbenone. These indicate the importance of determining the enantiomer composition of volatile components for investigating the physiological and psychological effects on humans. Overall, enantiomeric ratios were determined by volatile components, with no difference between essential oils and hydrosols or between seasons.

  14. Design, Synthesis and Biological Activity of Novel Reversible Peptidyl FVIIa Inhibitors Rh-Catalyzed Enantioselective Synthesis of Diaryl Amines

    DEFF Research Database (Denmark)

    Storgaard, Morten

    complicated by antibodies. FVIIa is a serine protease and hence liquid formulations are not stable due to autoproteolysis. A reversible inhibitor would stabilize FVIIa making a liquid formulation possible, representing an important follow-up product for Novo Nordisk. Peptidyl benzyl ketones was chosen...... solubility in aqueous media. A SAR study revealed that especially a bulky aromatic Cbz-terminal was crucial for potency. In the view of potency and selectivity, 3.50 seems to be a promising candidate for future development of liquid formulations of NovoSeven R . The second project deals with the rhodium...... catalyst is air-stable, commercially available and inexpensive. [RhCl(cod)]2 and (R,R)-deguPHOS was preincubated prior to use to secure excellent enantioselectivity. A cannulation technique was implemented for application outside the glovebox. A low content of boroxine in the batch of arylboronic acid...

  15. Biphenyl-derived phosphepines as chiral nucleophilic catalysts: enantioselective [4+1] annulations to form functionalized cyclopentenes.

    Science.gov (United States)

    Ziegler, Daniel T; Riesgo, Lorena; Ikeda, Takuya; Fujiwara, Yuji; Fu, Gregory C

    2014-11-24

    Because of the frequent occurrence of cyclopentane subunits in bioactive compounds, the development of efficient catalytic asymmetric methods for their synthesis is an important objective. Introduced herein is a new family of chiral nucleophilic catalysts, biphenyl-derived phosphepines, and we apply them to an enantioselective variant of a useful [4+1] annulation. A range of one-carbon coupling partners can be employed, thereby generating cyclopentenes which bear a fully substituted stereocenter [either all-carbon or heteroatom-substituted (sulfur and phosphorus)]. Stereocenters at the other four positions of the cyclopentane ring can also be introduced with good stereoselectivity. An initial mechanistic study indicates that phosphine addition to the electrophilic four-carbon coupling partner is not the turnover-limiting step of the catalytic cycle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enantioselective total syntheses of the proposed structures of prevezol B and evaluation of anti-cancer activity.

    Science.gov (United States)

    Leung, Anna E; Rubbiani, Riccardo; Gasser, Gilles; Tuck, Kellie L

    2014-11-07

    The first enantioselective total syntheses of the proposed structures of the natural product prevezol B are reported. The reported syntheses complement the previously-reported syntheses of the proposed structures of prevezol C, a stereoisomer of prevezol B. It was previously shown that the structure of the naturally occurring prevezol C had been incorrectly assigned. This work has led us to conclude that the proposed structures of prevezol B are also incorrect and major revision of both of the structures of the prevezols B and C is required. Cytotoxicity studies on the human cervical cancer cell line HeLa revealed that the synthesized prevezol B and C compounds were not active even at the highest concentration used (100 μM). However, one of the synthetic precursors was shown to have modest potency against HeLa cells (IC50 = 23.5 ± 1.8 μM).

  17. Highly enantioselective epoxidation of 2-methylnaphthoquinone (vitamin K3) mediated by new cinchona alkaloid phase-transfer catalysts.

    Science.gov (United States)

    Berkessel, Albrecht; Guixà, Maria; Schmidt, Friederike; Neudörfl, Jörg M; Lex, Johann

    2007-01-01

    In the area of catalytic asymmetric epoxidation, the highly enantioselective transformation of cyclic enones and quinones is an extremely challenging target. With the aim to develop new and highly effective phase-transfer catalysts for this purpose, we conducted a systematic structural variation of PTCs based on quinine and quinidine. In the total of 15 new quaternary ammonium PTCs, modifications included, for example, the exchange of the quinine methoxy group for a free hydroxyl or other alkoxy substituents, and the introduction of additional elements of chirality through alkylation of the alkaloid quinuclidine nitrogen atom by chiral electrophiles. For example, the well-established 9- anthracenylmethyl group was exchanged for a "chiral" anthracene in the form of 9-chloromethyl-[(1,8-S;4,5-R)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene. The asymmetric epoxidation of vitamin K(3) was used as the test reaction for our novel PTCs. The readily available PTC 10 (derived from quinine in three convenient and high-yielding steps) proved to be the most enantioselective catalyst for this purpose known to date: At a catalyst loading of only 2.50 mol %, the quinone epoxide was obtained in 76 % yield and with 85 % ee (previously: bleach (aqueous sodium hypochlorite) as the oxidant. To rationalize the sense of induction effected by our novel phase-transfer catalysts, a computational analysis of steric interactions in the intermediate chlorooxy enolate-PTC ion pair was conducted. Based on this analysis, the sense of induction for all 15 novel PTCs could be consistently explained.

  18. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-15

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98–532.72 ng mL{sup −1}, with the minimum detection limit of 1.73–1.79 ng mL{sup −1} (S/N = 3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL{sup −1}) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Highlights: • We have adopted surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. • This approach takes advantage of the nanostructured ultrathin imprinted film. • Successful enantioselective sensing and ultratrace analysis of D- and L-aspartic acid. • Stringent detection limit without any non-specific false-positive contribution.

  19. Enantioselective determination of triazole fungicide tebuconazole in vegetables, fruits, soil and water by chiral liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Li, Yuanbo; Dong, Fengshou; Liu, Xingang; Xu, Jun; Li, Jing; Kong, Zhiqiang; Chen, Xiu; Zheng, Yongquan

    2012-01-01

    A novel and sensitive method was developed for the determination of tebuconazole enantioselectively using reversed-phase LC-MS/MS. The separation and determination were performed using on an amylose-based chiral stationary phase, a Lux 3u Amylose-2 column (150 mm×2.0 mm), under isocratic conditions at 0.3 mL/min flow rate. A series of chiral stationary phases were investigated and the effect of mobile phase composition on the enantioseparation was discussed. Parameters including the matrix effect, linearity, precision, accuracy and stability were evaluated. Under optimal conditions, the overall mean recoveries for two enantiomers from the soil, tomato, cucumber, pear and apple samples were 79.3-101.1% with 2.8-11.5% intra-day relative standard deviations (RSDs) and 4.1-8.6% inter-day RSDs at 5, 25 and 50 μg/kg levels; the mean enantiomer recoveries from the water samples were 89.6-101.9% with 3.3-10.2% intra-day RSDs and 5.1-7.7% inter-day RSDs at 0.25, 0.5 and 2.5 μg/kg levels. The limits of detection (LODs) for all enantiomers in tomato, cucumber, pear, apple, soil and water were less than 0.6 μg/kg, whereas the limit of quantification (LOQ) did not exceed 2.0 μg/kg. The results indicate that this proposed method is convenient and reliable for the enantioselective determination of tebuconazole enantiomers in foods and environment samples. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianguo, E-mail: ljg712@yahoo.com.c [Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiangyou; Zeng Xiaoyan [Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2010-04-02

    Ag nanoparticles were prepared in a water-phase system with a mixture of silver-ammonia complex, sodium borohydride, and lauric acid according to molar feed ratio of approximately 6:3:1. The mechanism of preparation and separation by chemical reduction-protection method was explored. The as-synthesized Ag nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis spectroscopy, respectively. It was found that the size of high purity Ag particles was ranging from 30 to 50 nm with slight agglomeration. In addition, the as-synthesized wet Ag nanoparticles were dispersed stably in organic vehicle to formulate electrically conductive nanopaste. Upon direct-written and sintered, the array pattern of the nanopaste with the resolution of about 30 {mu}m was achieved with the electrical resistivity in the order of magnitude of 10{sup -5} {Omega} cm.

  1. Visualization of enzyme-catalyzed reactions using pH indicators: rapid screening of hydrolase libraries and estimation of the enantioselectivity.

    Science.gov (United States)

    Morís-Varas, F; Shah, A; Aikens, J; Nadkarni, N P; Rozzell, J D; Demirjian, D C

    1999-10-01

    The use of pH indicators to monitor hydrolase-catalyzed reactions is described. The formation of acid following an enzyme-mediated hydrolysis causes a drop in the pH that can be visualized by a change in the color of the indicator-containing solution. The best indicators are those showing a color transition within the operational pH range of the hydrolases, like bromothymol blue and phenol red. The enantioselectivity of lipases and esterases can be estimated using single isomers under the same conditions and comparing the color turnover for each one. The method has been tested to quickly evaluate the enantioselectivity of a lipase towards a set of ester substrates and applied to the hierarchical screening of a library of thermophilic esterases.

  2. Chiral gold(I vs chiral silver complexes as catalysts for the enantioselective synthesis of the second generation GSK-hepatitis C virus inhibitor

    Directory of Open Access Journals (Sweden)

    María Martín-Rodríguez

    2011-07-01

    Full Text Available The synthesis of a GSK 2nd generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I and gold(I catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.

  3. Expression of a lipase on the cell-surface of Escherichia coli using the OmpW anchoring motif and its application to enantioselective reactions.

    Science.gov (United States)

    Lee, Hyuk; Park, Si Jae; Han, Mee-Jung; Eom, Gyeong Tae; Choi, Min-Jung; Kim, Seong Ho; Oh, Young Hoon; Song, Bong Keun; Lee, Seung Hwan

    2013-10-01

    Microbial-surface display is the expression of proteins or peptides on the surface of cells by fusing an appropriate protein as an anchoring motif. Here, the outer membrane protein W (OmpW) was selected as a fusion partner for functional expression of Pseudomonas fluorescence SIK W1 lipase (TliA) on the cell-surface of Escherichia coli. Localization of the truncated OmpW-TliA fusion protein on the cell-surface was confirmed by immunoblotting and functional assay of lipase activity. Enantioselective hydrolysis of rac-phenylethyl butanoate by the displayed lipase resulted in optically active (R)-phenyl ethanol with 96% enantiomeric excess and 44% of conversion in 5 days. Thus, a small outer membrane protein OmpW, is a useful anchoring motif for displaying an active enzyme of ~50 kDa on the cell-surface and the surface-displayed lipase can be employed as an enantioselective biocatalyst in organic synthesis.

  4. Theoretical Mechanism Studies on the Enantioselectivity of aza-MBH-type Reaction of Nitroalkene to N-tosylimine Catalyzed by Thiourea-tertiary Amine

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Nan; Wang, Huatian; Wang, Yangping [Shandong Agricultural Univ., Taian (China)

    2013-12-15

    The enantioselective aza-Morita Baylis Hillman reaction of nitroalkene and N-tosylimine catalyzed by thiourea-tertiary amine has been investigated using density functional theory. Enantioselectivity is dominated by the cooperative effect of non-covalent and weak covalent interactions imposed by different units of catalyst. As Lewis base, the tertiary amine unit activates nitroalkene via weak covalent bond. The weak covalent interaction orients the reaction in a major path with smaller variations of this bond. The aromatic ring unit activates N-tosylimine via π-π stacking. The non-covalent interaction selects the major path with smaller changes of the efficient packing areas. Thiourea unit donates more compact H-bonded network for species of the major path. The calculated ee value in xylene solution phase (97.6%) is much higher than that in N,N-Dimethylformamide (27.2%). Our conclusion is also supported by NBO analysis.

  5. Enantioselective synthesis of all-carbon quaternary stereogenic centers via copper-catalyzed asymmetric allylic alkylation of (Z)-allyl bromides with organolithium reagents.

    Science.gov (United States)

    Fañanás-Mastral, Martín; Vitale, Romina; Pérez, Manuel; Feringa, Ben L

    2015-03-09

    A copper/phosphoramidite catalyzed asymmetric allylic alkylation of Z trisubstituted allyl bromides with organolithium reagents is reported. The reaction affords all-carbon quaternary stereogenic centers in high yields and very good regio- and enantioselectivity. This systematic study illustrates the crucial role of the olefin geometry of the allyl substrate on the outcome of the reaction and provides a viable alternative to access these important structural motifs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enantioselective syntheses of lignin models: an efficient synthesis of B-O-4 dimers and trimers by using the Evans chiral auxiliary

    Science.gov (United States)

    Costyl N. Njiojob; Joseph J. Bozell; Brian K. Long; Thomas Elder; Rebecca E. Key; William T. Hartwig

    2016-01-01

    We describe an efficient five-step, enantioselective synthesis of (R,R)- and (S,S)-lignin dimer models possessing a B-O-4 linkage, by using the Evans chiral aldol reaction as a key step. Mitsunobu inversion of the (R,R)- or (S,S)-isomers generates the corresponding (R,S)- and (S,R)-diastereomers. We further extend this approach to the...

  7. Enantioselective synthesis of 2,3-disubstituted trans-2,3-dihydrobenzofurans using a Brønsted base/thiourea bifunctional catalyst.

    Science.gov (United States)

    Barrios Antúnez, Diego-Javier; Greenhalgh, Mark D; Fallan, Charlene; Slawin, Alexandra M Z; Smith, Andrew D

    2016-07-26

    The diastereo- and enantioselective synthesis of 2,3-disubstituted trans-2,3-dihydrobenzofuran derivatives (15 examples, up to 96 : 4 dr, 95 : 5 er) via intramolecular Michael addition has been developed using keto-enone substrates and a bifunctional tertiary amine-thiourea catalyst. This methodology was extended to include non-activated ketone pro-nucleophiles for the synthesis of 2,3-disubstituted indane and 3,4-disubstituted tetrahydrofuran derivatives.

  8. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue.

    Science.gov (United States)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A

    2015-01-25

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. S-equol enantioselectively activates cAMP-protein kinase A signaling and reduces alloxan-induced cell death in INS-1 pancreatic β-cells.

    Science.gov (United States)

    Horiuchi, Hiroko; Harada, Naoki; Adachi, Tetsuya; Nakano, Yoshihisa; Inui, Hiroshi; Yamaji, Ryoichi

    2014-01-01

    S-Equol is enantioselectively produced from the isoflavone daidzein by gut microflora and is absorbed by the body. An increase of pancreatic β-cell death is directly associated with defects in insulin secretion and an increased risk of type 2 diabetes mellitus. In the present study, we demonstrate that only the S-enantiomer has suppressive effects against alloxan-induced oxidative stress in INS-1 pancreatic β-cells. S-Equol reduced alloxan-induced cell death in a dose-dependent manner, whereas R-equol had no effects. In contrast, no significant differences were observed between the enantiomers in estrogenic activity. The cytoprotective effects of S-equol were stronger than those of its precursor daidzein and were blocked by the protein synthesis inhibitor cycloheximide. The cytoprotection was diminished when cells were incubated with a protein kinase A (PKA) inhibitor (H89), but not an estrogen receptor inhibitor. S-Equol increased intracellular cAMP levels in an enantioselective manner. S-Equol, but not R-equol, induced phosphorylation of cAMP-response element-binding protein at Ser 133, and induced cAMP-response element-mediated transcription, both of which were diminished in the presence of H89. Taken together, these results show that S-equol enantioselectively increases the survival of INS-1 cells presumably through activating PKA signaling. Thus, S-equol might have applications as an anti-type 2 diabetic agent.

  10. Enantioselective extraction of phenylsuccinic acid in aqueous two-phase systems based on acetone and β-cyclodextrin derivative: Modeling and optimization through response surface methodology.

    Science.gov (United States)

    Wang, Jun; Liu, Qi; Rong, Liya; Yang, Hua; Jiao, Feipeng; Chen, Xiaoqing

    2016-10-07

    A novel aqueous two-phase system (ATPS) composed of β-cyclodextrin (β-CD) derivative and acetone was developed for enantioselective extraction of racemic phenylsuccinic acid (PSA). Binodal curves, tie-lines, and critical points for the investigated ATPS were determined and the experimental tie-lines data were successfully correlated by Othmer-Tobias, Bancroft, and Setschenow-type equations. ATPS containing sulfobutyl ether-β-CD (SBE-β-CD) exhibited better enantioselectivity than that using carboxymethyl-β-CD (CM-β-CD). To optimize enantioselective partitioning conditions of PSA in acetone/SBE-β-CD ATPS, three factors (PSA concentration, pH, and equilibrium temperature) were analyzed by using central composite design in response surface methodology. The calculated equilibrium constants of inclusion complexation are 1638.64M(-1) for SBE-β-CD-(R)-PSA and 835.84M(-1) for SBE-β-CD-(S)-PSA, respectively. Under the optimized conditions, the separation factor of 3.14 and high enrichment efficiency (ER=98.06%, ES=99.25%) were simultaneously achieved in a single step. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Rich Reduction

    DEFF Research Database (Denmark)

    Niebuhr, Oliver

    2016-01-01

    Managing and, ideally, explaining phonetic variation has ever since been a key issue in the speech sciences. In this context, the major contribution of Lindblom's H&H theory was to replace the futile search for invariance by an explainable variance based on the tug-of-war metaphor. Recent empirical...... evidence on articulatory prosodies and the involvement of reduction in conveying communication functions both suggest the next steps along the line of argument opened up by Lindblom. Specifically, we need to supplement Lindblom's explanatory framework and revise the speaker-listener conflict that lies...... at the heart of the tug-of-war metaphor. The author's suggestion would be to "offshore" the tug-of-war metaphor and replace it by the ocean metaphor of Bolinger (1964), with the ups and downs at the surface of the ocean representing the speaker's variation along the hypo-hyper scale and wavelength...

  12. Preparation of silver nanoparticles/polydopamine functionalized polyacrylonitrile fiber paper and its catalytic activity for the reduction 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shixiang, E-mail: shixianglu@bit.edu.cn [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Yu, Jianying; Cheng, Yuanyuan [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, Qian; Barras, Alexandre [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Xu, Wenguo [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Szunerits, Sabine [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Cornu, David [Institut Européen des Membranes, UMR 5635, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), CNRS, Université Montpellier 2, 276 rue de la Galéra, Montpellier 34000 (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France)

    2017-07-31

    Graphical abstract: Illustration of the preparation of Ag nanoparticles coated paper and its catalytic application for 4-nitrophenol reduction into the corresponding 4-aminophenol. - Highlights: • Polyacrylonitrile paper was functionalized with polydopamine and Ag nanoparticles. • Polydopamine coating layer played both reductive and adhesive roles. • The composite material displayed good catalytic activity for 4-nitrophenol reduction. • The process was environmentally benign and facile. - Abstract: The study reports on the preparation of polyacrylonitrile fiber paper (PANFP) functionalized with polydopamine (PD) and silver nanoparticles (Ag NPs), named as Ag NPs/PD/PANFP. The composite material was obtained via a simple two-step chemical process. First, a thin polydopamine layer was coated onto the PANFP surface through immersion into an alkaline dopamine (pH 8.5) aqueous solution at room temperature. The reductive properties of polydopamine were further exploited for the deposition of Ag NPs. The morphology and chemical composition of the composite material were characterized using scanning electron microscopy (SEM), X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the nanocomposite was evaluated for the reduction of 4-nitrophenol using sodium borohydride (NaBH{sub 4}) at room temperature. The Ag NPs/PD/PANFP displayed good catalytic performance with a full reduction of 4-nitrophenol into the corresponding 4-aminophenol within 30 min. Moreover, the composite material exhibited a good stability up to 4 cycles without a significant loss of its catalytic activity.

  13. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Lonsdale, Richard; Reetz, Manfred T

    2015-11-25

    Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.

  14. Exceptional Reductions

    CERN Document Server

    Marrani, Alessio; Riccioni, Fabio

    2011-01-01

    Starting from basic identities of the group E8, we perform progressive reductions, namely decompositions with respect to the maximal and symmetric embeddings of E7xSU(2) and then of E6xU(1). This procedure provides a systematic approach to the basic identities involving invariant primitive tensor structures of various irreprs. of finite-dimensional exceptional Lie groups. We derive novel identities for E7 and E6, highlighting the E8 origin of some well known ones. In order to elucidate the connections of this formalism to four-dimensional Maxwell-Einstein supergravity theories based on symmetric scalar manifolds (and related to irreducible Euclidean Jordan algebras, the unique exception being the triality-symmetric N = 2 stu model), we then derive a fundamental identity involving the unique rank-4 symmetric invariant tensor of the 0-brane charge symplectic irrepr. of U-duality groups, with potential applications in the quantization of the charge orbits of supergravity theories, as well as in the study of mult...

  15. Enantioselective recognition of an isomeric ligand by a biomolecule: mechanistic insights into static and dynamic enantiomeric behavior and structural flexibility.

    Science.gov (United States)

    Peng, Wei; Ding, Fei

    2017-10-24

    Chirality is a ubiquitous basic attribute of nature, which inseparably relates to the life activity of living organisms. However, enantiomeric differences have still failed to arouse enough attention during the biological evaluation and practical application of chiral substances, and this poses a large threat to human health. In the current study, we explore the enantioselective biorecognition of a chiral compound by an asymmetric biomolecule, and then decipher the molecular basis of such a biological phenomenon on the static and, in particular, the dynamic scale. In light of the wet experiments, in silico docking results revealed that the orientation of the latter part of the optical isomer structures in the recognition domain can be greatly affected by the chiral carbon center in a model ligand molecule, and this event may induce large disparities between the static chiral bioreaction modes and noncovalent interactions (especially hydrogen bonding). Dynamic stereoselective biorecognition assays indicated that the conformational stability of the protein-(S)-diclofop system is clearly greater than the protein-(R)-diclofop adduct; and moreover, the conformational alterations of the diclofop enantiomers in the dynamic process will directly influence the conformational flexibility of the key residues found in the biorecognition region. These points enable the changing trends of biopolymer structural flexibility and free energy to exhibit significant distinctions when proteins sterically recognize the (R)-/(S)-stereoisomers. The outcomes of the energy decomposition further showed that the van der Waals' energy has roughly the same contribution to the chiral recognition biosystems, whereas the contribution of electrostatic energy to the protein-(R)-diclofop complex is notably smaller than to the protein-(S)-diclofop bioconjugate. This proves that differences in the noncovalent bonds would have a serious impact on the stereoselective biorecognition between a

  16. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material.

    Science.gov (United States)

    Zhu, Fang; Li, Luwei; Ren, Wentao; Deng, Xiaoqiang; Liu, Tao

    2017-08-01

    Nano zero valent iron/Ni bimetal materials (nZVI/Ni) were prepared by borohydride reduction method to remediate toxic Cr(Ⅵ) contaminated in soil leachate. nZVI/Ni was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Different factors including pH value of soil leachate, reaction time, temperature, humic acid and coexisting anions (SO4(2-), NO3(-), HCO3(-), CO3(2-)) were studied to analyze the reduction rate. Results showed that the reduction rate of Cr(Ⅵ) could reach 99.84% under the condition of pH of 5 and temperature of 303 K. pH values and temperature of soil leachate had a significant effect on the reduction efficiency, while humic acid had inhibition effect for the reduction reaction. SO4(2-), HCO3(-) and CO3(2-) had inhibition effect for reduction rate, while NO3(-) barely influenced the reduction process of nZVI/Ni. Moreover, Langumir-Hinshelwood first order kinetic model was studied and could describe the reduction process well. The thermodynamic studies indicated that the reaction process was endothermic and spontaneous. Activation energy was 143.80 kJ mol(-1), showing that the reaction occurred easily. Therefore, the study provides an idea for nZVI/Ni further research and practical application of nZVI/Ni in soil remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enantioselective Solvent-Free Synthesis of 3-Alkyl-3-hydroxy-2-oxoindoles Catalyzed by Binam-Prolinamides

    Directory of Open Access Journals (Sweden)

    Abraham Bañn-Caballero

    2015-07-01

    Full Text Available BINAM-prolinamides are very efficient catalyst for the synthesis of non-protected and N-benzyl isatin derivatives by using an aldol reaction between ketones and isatins under solvent-free conditions. The results in terms of diastereo- and enantioselectivities are good, up to 99% de and 97% ee, and higher to those previously reported in the literature under similar reaction conditions. A high variation of the results is observed depending on the structure of the isatin and the ketone used in the process. While 90% of ee and 97% ee, respectively, is obtained by using (Ra-BINAM-l-(bisprolinamide as catalyst in the addition of cyclohexanone and α-methoxyacetone to free isatin, 90% ee is achieved for the reaction between N-benzyl isatin and acetone using N-tosyl BINAM-l-prolinamide as catalyst. This reaction is also carried out using a silica BINAM-l-prolinamide supported catalyst under solvent-free conditions, which can be reused up to five times giving similar results.

  18. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    Science.gov (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  19. Enantioselective microbial synthesis of the indigenous natural product (-)-α-bisabolol by a sesquiterpene synthase from chamomile (Matricaria recutita).

    Science.gov (United States)

    Son, Young-Jin; Kwon, Moonhyuk; Ro, Dae-Kyun; Kim, Soo-Un

    2014-10-15

    (-)-α-Bisabolol, a sesquiterpene alcohol, is a major ingredient in the essential oil of chamomile (Matricaria recutita) and is used in many health products. The current supply of (-)-α-bisabolol is mainly dependent on the Brazilian candeia tree (Eremanthus erythropappus) by distillation or by chemical synthesis. However, the distillation method using the candeia tree is not sustainable, and chemical synthesis suffers from impurities arising from undesirable α-bisabolol isomers. Therefore enzymatic synthesis of (-)-α-bisabolol is a viable alternative. In the present study, a cDNA encoding (-)-α-bisabolol synthase (MrBBS) was identified from chamomile and used for enantioselective (-)-α-bisabolol synthesis in yeast. Chamomile MrBBS was identified by Illumina and 454 sequencing, followed by activity screening in yeast. When MrBBS was expressed in yeast, 8 mg of α-bisabolol was synthesized de novo per litre of culture. The structure of purified α-bisabolol was elucidated as (S,S)-α-bisabolol [or (-)-α-bisabolol]. Although MrBBS possesses a putative chloroplast-targeting peptide, it was localized in the cytosol, and a deletion of its N-terminal 23 amino acids significantly reduced its stability and activity. Recombinant MrBBS showed kinetic properties comparable with those of other sesquiterpene synthases. These data provide compelling evidence that chamomile MrBBS synthesizes enantiopure (-)-α-bisabolol as a single sesquiterpene product, opening a biotechnological opportunity to produce (-)-α-bisabolol.

  20. Screening of Microorganisms Producing Cold-Active Oxidoreductases to Be Applied in Enantioselective Alcohol Oxidation. An Antarctic Survey

    Directory of Open Access Journals (Sweden)

    Leandro H. Andrade

    2011-05-01

    Full Text Available Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS-1-(phenylethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases for enantioselective oxidation reactions, by using derivatives of (RS-1-(phenylethanol as substrates. Among the studied microorganisms, 15 psychrophile/psychrotroph strains contain oxidoreductases that catalyze the (S-enantiomer oxidation from racemic alcohols to their corresponding ketones. Among the identified microorganisms, Flavobacterium sp. and Arthrobacter sp. showed excellent enzymatic activity. These new bacteria strains were selected for optimization study, in which the (RS-1-(4-methyl-phenylethanol oxidation was evaluated in several reaction conditions. From these studies, it was observed that Flavobacterium sp. has an excellent enzymatic activity at 10 °C and Arthrobacter sp. at 15 and 25 °C. We have also determined the growth curves of these bacteria, and both strains showed optimum growth at 25 °C, indicating that these bacteria are psychrotroph.