Sample records for enac ion channels

  1. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters. (United States)

    Hanukoglu, Israel


    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  2. Increased renal alpha-epithelial sodium channel (ENAC) protein and increased ENAC activity in normal pregnancy. (United States)

    West, Crystal; Zhang, Zheng; Ecker, Geoffrey; Masilamani, Shyama M E


    Pregnancy-mediated sodium (Na) retention is required to provide an increase in plasma volume for the growing fetus. The mechanisms responsible for this Na retention are not clear. We first used a targeted proteomics approach and found that there were no changes in the protein abundance compared with virgin rats of the β or γ ENaC, type 3 Na(+)/H(+) exchanger (NHE3), bumetanide-sensitive cotransporter (NKCC2), or NaCl cotransporter (NCC) in mid- or late pregnancy. In contrast, we observed marked increases in the abundance of the α-ENaC subunit. The plasma volume increased progressively during pregnancy with the greatest plasma volume being evident in late pregnancy. ENaC inhibition abolished the difference in plasma volume status between virgin and pregnant rats. To determine the in vivo activity of ENaC, we conducted in vivo studies of rats in late pregnancy (days 18-20) and virgin rats to measure the natriuretic response to ENaC blockade (with benzamil). The in vivo activity of ENaC (U(Na)V postbenzamil-U(Na)V postvehicle) was markedly increased in late pregnancy, and this difference was abolished by pretreatment with the mineralocorticoid receptor antagonist, eplerenone. These findings demonstrate that the increased α-ENaC subunit of pregnancy is associated with an mineralocorticoid-dependent increase in ENaC activity. Further, we show that ENaC activity is a major contributor of plasma volume status in late pregnancy. These changes are likely to contribute to the renal sodium retention and plasma volume expansion required for an optimal pregnancy.

  3. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  4. Modulation of epithelial sodium channel (ENaC expression in mouse lung infected with Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Radzioch Danuta


    Full Text Available Abstract Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c and susceptible (DBA/2, C57BL/6 and A/J mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p 1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.

  5. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Horiuchi, Hisanori; Fukuda, Mitsunori


    Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins

  6. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs). (United States)

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin


    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Proteolytic activation of the epithelial sodium channel ENaC in preeclampsia examined with urinary exosomes

    DEFF Research Database (Denmark)

    Nielsen, Maria Ravn; Rytz, Mie; Frederiksen-Møller, Britta


    OBJECTIVES: Increased activity of the epithelial sodium channel (ENaC) in the kidneys may explain the coupling between proteinuria, edema, suppressed aldosterone and hypertension in preeclampsia. Preeclamptic women excrete plasminogen-plasmin in urine. In vitro, plasmin increases the activity...... as a positive control for the presence of collecting duct membrane. RESULTS: Urine plasmin-plasminogen/creatinine ratio was increased in the preeclampsia group (p... pregnancy and preeclampsia CONCLUSIONS: It is possible to examine collecting duct transport proteins in urine exosome from pregnant women including γ-ENaC, 2) Urine exosome fraction displays a variable pattern of γ-ENaC signal with a predominance of cleaved forms in both normal and preeclamptic women...

  8. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin. (United States)

    Xu, Wei; Hong, Seok Jong; Zeitchek, Michael; Cooper, Garry; Jia, Shengxian; Xie, Ping; Qureshi, Hannan A; Zhong, Aimei; Porterfield, Marshall D; Galiano, Robert D; Surmeier, D James; Mustoe, Thomas A


    Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.

  9. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.


    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  10. Effect of dietary salt intake on epithelial Na+ channels (ENaC) in vasopressin magnocellular neurosecretory neurons in the rat supraoptic nucleus. (United States)

    Sharma, Kaustubh; Haque, Masudul; Guidry, Richard; Ueta, Yoichi; Teruyama, Ryoichi


    A growing body of evidence suggests that epithelial Na + channels (ENaCs) in the brain play a significant role in the regulation of blood pressure; however, the brain structures that mediate the effect are not well understood. Because vasopressin (VP) neurons play a pivotal role in coordinating neuroendocrine and autonomic responses to maintain cardiovascular homeostasis, a basic understanding of the regulation and activity of ENaC in VP neurons is of great interest. We show that high dietary salt intake caused an increase in the expression and activity of ENaC which resulted in the steady state depolarization of VP neurons. The results help us understand one of the mechanisms underlying how dietary salt intake affects the activity of VP neurons via ENaC activity. All three epithelial Na + channel (ENaC) subunits (α, β and γ) are located in vasopressin (VP) magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular nuclei. Our previous study demonstrated that ENaC mediates a Na + leak current that affects the steady state membrane potential in VP neurons. In the present study, we evaluated the effect of dietary salt intake on ENaC regulation and activity in VP neurons. High dietary salt intake for 7 days caused an increase in expression of β- and γENaC subunits in the SON and the translocation of αENaC immunoreactivity towards the plasma membrane. Patch clamp experiments on hypothalamic slices showed that the mean amplitude of the putative ENaC currents was significantly greater in VP neurons from animals that were fed a high salt diet compared with controls. The enhanced ENaC current contributed to the more depolarized basal membrane potential observed in VP neurons in the high salt diet group. These findings indicate that high dietary NaCl intake enhances the expression and activity of ENaCs, which augments synaptic drive by depolarizing the basal membrane potential close to the action potential threshold during hormonal demand. However

  11. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC, BDNF, and TrkB mRNA expression in the rat tongue

    Directory of Open Access Journals (Sweden)

    Stähler Frauke


    Full Text Available Abstract Background In rodents, dietary Na+ deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na+ stimulation. However, in the rat taste bud cells Na+ deprivation increases the number of amiloride sensitive epithelial Na+ channels (ENaC, which are considered as the "receptor" of the Na+ component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ in taste buds were observed from rats fed with diets containing either 0.03% (Na+ deprivation or 1% (control NaCl for 15 days, by using in situ hybridization and real-time quantitative RT-PCR (qRT-PCR. Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na+ deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined. Results In situ hybridization analysis showed that all three ENaC subunit mRNAs were found in the rat fungiform taste buds and lingual epithelia, but in the vallate and foliate taste buds, only α ENaC mRNA was easily detected, while β and γ ENaC mRNAs were much less than those in the fungiform taste buds. Between control and low Na+ fed animals, the numbers of taste bud cells expressing α, β and γ ENaC subunits were not significantly different in the fungiform, vallate and foliate taste buds, respectively. Similarly, qRT-PCR also indicated that Na+ deprivation had no effect on any ENaC subunit expression in the three types of taste buds. However, Na+ deprivation reduced BDNF mRNA expression by 50% in the fungiform taste buds, but not in the vallate and foliate taste buds. The expression of TrkB was not different between control and Na+ deprived rats, irrespective of the taste papillae type. Conclusion The findings demonstrate that dietary Na+ deprivation does not change ENaC mRNA expression in rat taste buds, but reduces BDNF mRNA expression in the fungiform taste buds. Given the roles of BDNF in survival of

  12. Where have all the Na+ channels gone? In search of functional ENaC in exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Hansen, Mette R


    was to investigate if pancreatic ducts express functional ENaC. Membrane voltages (V) of ducts isolated from rat pancreas were measured with microelectrodes or whole-cell patch-clamp technique. Amiloride and benzamil given from bath or luminal sides did not hyperpolarize V. Lowering of extracellular Na...... with glucocorticoids had no effect on pancreatic fluid secretion evoked from ducts, or from acini. Hence, our study shows that pancreas especially pancreatic ducts do not express functional ENaC....

  13. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats. (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M


    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Atomic force microscopy imaging reveals the formation of ASIC/ENaC cross-clade ion channels

    International Nuclear Information System (INIS)

    Jeggle, Pia; Smith, Ewan St. J.; Stewart, Andrew P.; Haerteis, Silke; Korbmacher, Christoph; Edwardson, J. Michael


    ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers. - Highlights: • There is evidence for a close association between ASIC and ENaC. • We used AFM to test whether ASIC1a and ENaC subunits form cross-clade ion channels. • Isolated proteins were incubated with subunit-specific antibodies and Fab fragments. • Some proteins were doubly decorated at ∼120° by an antibody and a Fab fragment. • Our results indicate the formation of ASIC1a/ENaC heterotrimers

  15. Atomic force microscopy imaging reveals the formation of ASIC/ENaC cross-clade ion channels

    Energy Technology Data Exchange (ETDEWEB)

    Jeggle, Pia; Smith, Ewan St. J.; Stewart, Andrew P. [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom); Haerteis, Silke; Korbmacher, Christoph [Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstrasse 6, 91054 Erlangen (Germany); Edwardson, J. Michael, E-mail: [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom)


    ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers. - Highlights: • There is evidence for a close association between ASIC and ENaC. • We used AFM to test whether ASIC1a and ENaC subunits form cross-clade ion channels. • Isolated proteins were incubated with subunit-specific antibodies and Fab fragments. • Some proteins were doubly decorated at ∼120° by an antibody and a Fab fragment. • Our results indicate the formation of ASIC1a/ENaC heterotrimers.

  16. Atomic force microscopy imaging reveals the formation of ASIC/ENaC cross-clade ion channels. (United States)

    Jeggle, Pia; Smith, Ewan St J; Stewart, Andrew P; Haerteis, Silke; Korbmacher, Christoph; Edwardson, J Michael


    ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Preeclampsia, migración celular y canales iónicos Preeclampsia, cellular migration and ion channels

    Directory of Open Access Journals (Sweden)

    Silvana M. del Mónaco


    the cells in many reabsorbing epithelia; it is aldosterone, vasopressin, insulin and catecholamine-inducible, modulated by estrogens and progesterone and blocked by amiloride and its analogs. Multiple proteases are involved in the proteolytic processing and activation of ENaC subunits and aldosterone alters the protease-protease inhibitors balance. ENaC is also expressed in human placenta; although its function is not well known, the Na+ conductive properties may participate in electrolyte and extracellular volume homeostasis. The activity of ENaC channels and other ion channels and transporters is regulated by the state of actin filaments; on the other hand, changes in volume influence the actin cytoskeleton. Thus, there is an interaction between ENaC and components of the apical membrane cytoskeleton. In addition to their role in cellular homeostasis and electrical properties, Na+ currents through ENaC and other sodium channels are involved in cell migration, well documented in normal and cancer cells. In this work we presented evidences supporting the hypothesis that ENaC channels are required for the migration of BeWo cells, a human hormone-synthesizing trophoblastic cell line that express the three subunits of the ENaC channels. BeWo cell line has also been used as a model to investigate the placental transport mechanisms.

  18. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  19. Sodium 4-phenylbutyrate upregulates ENaC and sodium absorption in T84 cells. (United States)

    Iordache, Claudiu; Duszyk, Marek


    Butyrate and other short-chain fatty acids (SCFA), produced by colonic bacterial flora, affect numerous epithelial cell functions. To better understand how SCFA regulate ion transport, we investigated the effects of 4-phenylbutyrate (4-PBA) on Na(+) absorption in T84 cells. Under standard cell culture conditions, the short circuit current did not display any amiloride-sensitive Na(+) absorption and was wholly representative of Cl(-) secretion. However, when T84 cells were grown in the presence of 5 mM 4-PBA, a gradual appearance of amiloride-sensitive Na(+) channel (ENaC) activity was observed that reached a plateau after 24 h. Quantitative RT-PCR and Western blot studies of ENaC subunit expression indicated that 4-PBA stimulated alpha and gamma subunits. Trichostatin A, an inhibitor of histone deacetylase, mimicked the effects of 4-PBA, suggesting that 4-PBA affects ENaC expression by inhibiting deacetylases. 4-PBA had no effect on ENaC expression in airway epithelial cells indicating tissue-specific effect. We conclude that butyrate plays an important role in regulating colonic Na(+) absorption by increasing ENaC transcription and activity.

  20. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris


    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  1. Ion channels in plants. (United States)

    Hedrich, Rainer


    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  2. Involvement of ENaC in the development of salt-sensitive hypertension. (United States)

    Pavlov, Tengis S; Staruschenko, Alexander


    Salt-sensitive hypertension is associated with renal and vascular dysfunctions, which lead to impaired fluid excretion, increased cardiac output, and total peripheral resistance. It is commonly accepted that increased renal sodium handling and plasma volume expansion are necessary factors for the development of salt-induced hypertension. The epithelial sodium channel (ENaC) is a trimeric ion channel expressed in the distal nephron that plays a critical role in the regulation of sodium reabsorption in both normal and pathological conditions. In this mini-review, we summarize recent studies investigating the role of ENaC in the development of salt-sensitive hypertension. On the basis of experimental data obtained from the Dahl salt-sensitive rats, we and others have demonstrated that abnormal ENaC activation in response to a dietary NaCl load contributes to the development of high blood pressure in this model. The role of different humoral factors, such as the components of the renin-angiotensin-aldosterone system, members of the epidermal growth factors family, arginine vasopressin, and oxidative stress mediating the effects of dietary salt on ENaC are discussed in this review to highlight future research directions and to determine potential molecular targets for drug development. Copyright © 2017 the American Physiological Society.

  3. Ion channels in glioblastoma. (United States)

    Molenaar, Remco J


    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  4. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  5. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.


    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  6. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Directory of Open Access Journals (Sweden)

    Su Xue-Feng


    Full Text Available Abstract Background Lung epithelial Na+ channels (ENaC are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441, and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P Ca3.1 (1-EBIO and KATP (minoxidil channel openers significantly recovered AFC. In addition to short-circuit current (Isc in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na, K Ca3.1 (1-EBIO, and KATP (minoxidil channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal.

  7. The ion-channel laser

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Dawson, J.M.


    A relativistic electron beam propagating through a plasma in the ion-focused regime exhibits an electromagnetic instability at a resonant frequency ω ∼ 2γ 2 ω β . Growth is enhanced by optical guiding in the ion channel, which acts as dielectric waveguide, with fiber parameter V ∼ 2 (I/I A ) 1/2 . A 1-D theory for such an ''ion-channel laser'' is formulated, scaling laws are derived and numerical examples are given. Possible experimental evidence is noted. 23 refs., 1 fig., 1 tab

  8. Demystifying Mechanosensitive Piezo Ion Channels. (United States)

    Xu, X Z Shawn


    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  9. Ion Channels in Leukocytes (United States)


    muscle k142), heart muscle (80), bo- are released. In recent years much has been learned vine pulmonar arter endothelial cells (251), and rat about the...b3 Zn or cytes from cystic fibrosis patients lack a Cl current that Ni (1 mM)-added to the cytoplasmic side of the mem- can be acti% ated b3 the...that at37’C hu- to be defectiv.- in cystic fibrosis (55, 277), and Chen et al. man T-cell CiL channels are active at rest, implies that (25) have shown

  10. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium. (United States)

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank


    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Improved Ion-Channel Biosensors (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua


    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  12. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development

    Directory of Open Access Journals (Sweden)

    Siguang Xu


    Full Text Available The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC and acid sensitive ionic channel (ASIC. ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+ across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.

  13. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander


    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  14. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung. (United States)

    Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L


    Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Ion channels versus ion pumps: the principal difference, in principle. (United States)

    Gadsby, David C


    The incessant traffic of ions across cell membranes is controlled by two kinds of border guards: ion channels and ion pumps. Open channels let selected ions diffuse rapidly down electrical and concentration gradients, whereas ion pumps labour tirelessly to maintain the gradients by consuming energy to slowly move ions thermodynamically uphill. Because of the diametrically opposed tasks and the divergent speeds of channels and pumps, they have traditionally been viewed as completely different entities, as alike as chalk and cheese. But new structural and mechanistic information about both of these classes of molecular machines challenges this comfortable separation and forces its re-evaluation.


    NARCIS (Netherlands)


    We present new results on the channeling of B ions in Si crystals. Standard surface barrier detectors have been used to record energy spectra for B ions backscattered from the near surface (approximately 1500 angstrom) of a silicon crystal, under perfect, and near axial and planar channeling

  17. Channeling ion implantation through palladium films

    International Nuclear Information System (INIS)

    Ishiwara, H.; Furukawa, S.


    The possibility of channeling ion implantation into semiconductors through polycrystalline metallic layers is studied. Minimum values and standard deviations of channeling angular yield in polycrystalline Pd 2 Si layers formed on Si have been measured by protons and 4 He, and 14 N ion backscattering and channeling measurements. Depth distributions of the spread of crystallite orientations and scattering centers such as lattice defects have been separately derived by using the above two quantities. It has been concluded that the channeling-ion-implantation technique will become a practical one by using the parallel scanning system

  18. El litio y su relación con la acuaporina-2 y el canal de sodio ENaC Lithium and its relation with the epithelial sodium channel and aquaporin-2

    Directory of Open Access Journals (Sweden)

    Luciano Galizia


    the collecting duct's principal cells through the epithelial Na channel (ENaC located on the apical side of the cells. Polyuria, renal tubular acidosis and chronic renal failure are the most frequent adverse effects of lithium after 10-20 years of treatment and these alterations can reach to a vasopressin nonresponding form of diabetes insipidus entity called nephrogenic diabetes insipidus. It is believed that the molecular mechanisms of these renal changes are related to a reduction in the number of aquaporin-2 inserted in the apical membrane of the cells. The causes of this are complex. Lithium is a powerful inhibitor of the enzyme glycogen synthase kinase 3β and this is associated with a lower activity of adenylate cyclase with a reduction in the cAMP levels inside of the cells. The latter may interfere with the synthesis of aquaporin-2 and also with the traffic of these molecules from the subapical site to membrane promoting the impairment of water reabsorption in the distal part of the kidney.


    NARCIS (Netherlands)


    This paper demonstrates how images of crystal defects can be produced using ion channeling. A focused, scanned beam of MeV protons from the University of Oxford Nuclear Microprobe has been used. With the beam aligned with a channeling direction of the crystal, protons transmitted through the thinned

  20. Channeling of molecular ions with relativistic energy

    International Nuclear Information System (INIS)

    Azuma, Toshiyuki; Muranaka, Tomoko; Kondo, Chikara; Hatakeyama, Atsushi; Komaki, Kenichiro; Yamazaki, Yasunori; Takabayashi, Yuichi; Murakami, Takeshi; Takada, Eiichi


    When energetic ions are injected into a single crystal parallel to a crystal axis or plane, they proceed in an open space guided by the crystal potential without colliding with atoms in the atomic plane or string, which is called channeling. We aimed to study dynamics of molecular ions, H 2 + , of 160 MeV/u and their fragment ions, H + ions in a Si crystal under the channeling condition. The molecular ions, H 2 + , are soon ionized, i.e. electron-stripped in the crystal, and a pair of bare nuclei, H + ions, travels in the crystal potential with mutual Coulomb repulsion. We developed a 2D position sensitive detector for the angular-distribution measurement of the H + ions transmitted through the crystal, and observed the detailed angular distribution. In addition we measured the case of H + on incidence for comparison. As a result, the channeled component and non-channeling were clearly separated. The incident angular divergence is critical to discuss the effect of Coulomb explosion of molecular H 2 + ions. (author)

  1. [Ion channels that are sensitive to the extracellular concentration of protons: their structure, function, pharmacology and pathophysiology]. (United States)

    Mercado, F; Vega, R; Soto, E

    Acid sensing ion channels (ASIC) members of the ENaC degenerine channel family, have been shown to participate in various sensorial pathways including nociception, also they have been shown to participate in synaptic transmission, learning and memory processes and in the physiopathology of the ischemic stroke. The proton concentration in the organism is strictly regulated by distinct buffer systems. Drastic changes of pH are generated only by pathological conditions as is the ischemia; however, some physiological processes may produce local changes in the extracellular pH. Recently, a new family of proton receptors known as ASIC has been cloned. These are ionic channels inactivated at physiological pH (7.4) and activated with a pH fall (increase in H+ concentration). ASICs are permeable to sodium ions and in a lesser degree to calcium ions, activation of these channels leads to an increase in cell excitability. The ASICs are distributed widely in the central and peripheral nervous system, and in specialized epithelia. In the past few years they have become a focus of interest due to its role in nociception, taste perception, long term potentation and the physiopathology of ischemic stroke. In this review we address the most relevant molecular, physiological and pharmacological aspects of the ASICs, its participation in some pathological process, and the perspectives of basic and clinic investigation in this arising research field.

  2. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse


    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  3. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice. (United States)

    Crosby, Jeff R; Zhao, Chenguang; Jiang, Chong; Bai, Dong; Katz, Melanie; Greenlee, Sarah; Kawabe, Hiroshi; McCaleb, Michael; Rotin, Daniela; Guo, Shuling; Monia, Brett P


    Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  4. Urinary serine proteases and activation of ENaC in kidney

    DEFF Research Database (Denmark)

    Svenningsen, Per; Andersen, Henrik; Nielsen, Lise Hald


    with albuminuria compatible with impaired renal Na(+) excretion: hypertension and volume retention is secondary to proteinuria in, e.g., preeclampsia and nephrotic syndrome; plasma concentrations of renin, angiotensin II, and aldosterone are frequently suppressed in proteinuric conditions, e.g., preeclampsia......Serine proteases, both soluble and cell-attached, can activate the epithelial sodium channel (ENaC) proteolytically through release of a putative 43-mer inhibitory tract from the ectodomain of the γ-subunit. ENaC controls renal Na(+) excretion and loss-of-function mutations lead to low blood...... pressure, while gain-of-function mutations lead to impaired Na(+) excretion, hypertension, and hypokalemia. We review an emerging pathophysiological concept that aberrant glomerular filtration of plasma proteases, e.g., plasmin, prostasin, and kallikrein, contributes to proteolytic activation of ENaC, both...

  5. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane. (United States)

    Alli, Abdel A; Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S; Ma, He-Ping; Eaton, Douglas C


    Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. Copyright © 2015 the American Physiological Society.

  6. Channeling regimes in ion surface scattering

    NARCIS (Netherlands)

    Robin, A; Heiland, W

    We report on surface channeling experiments of singly charged ions on single crystal surfaces of Pt(1 1 0) and Pd(1 1 0). Using a time-of-flight system installed in forward direction we analyze the energy distribution of the scattered projectiles. By variation of the primary energy and the angle of

  7. Conductance of Ion Channels - Theory vs. Experiment (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan


    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  8. Calcium homeostasis modulator (CALHM) ion channels. (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin


    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  9. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer


    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...... probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  10. Evolutionary origins of mechanosensitive ion channels. (United States)

    Martinac, Boris; Kloda, Anna


    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  11. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells. (United States)

    Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A


    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.

  12. Ion Channels Involved in Cell Volume Regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay


    regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation......This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume...

  13. Quantum Interference and Selectivity through Biological Ion Channels. (United States)

    Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin


    The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17-53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference.

  14. Radiative electron capture by channeled ions

    International Nuclear Information System (INIS)

    Pitarke, J.M.; Ritchie, R.H.; Tennessee Univ., Knoxville, TN


    Considerable experimental data have been accumulated relative to the emission of photons accompanying electron capture by swift, highly stripped atoms penetrating crystalline matter under channeling conditions. Recent data suggest that the photon energies may be less than that expected from simple considerations of transitions from the valence band of the solid to hydrogenic states on the moving ion. We have studied theoretically the impact parameter dependence of the radiative electron capture (REC) process, the effect of the ion's wake and the effect of capture from inner shells of the solid on the photon emission probability, using a statistical approach. Numerical comparisons of our results with experiment are made. 13 refs., 6 figs

  15. Acid-sensing ion channels and migraine

    Directory of Open Access Journals (Sweden)

    Yu-qi KANG


    Full Text Available Acid-sensing ion channels (ASICs are ligand-gated ion channels that are activated by extracellular protons (H+, which belong to epithelial sodium channels/degenerin (ENaC/DEG superfamily. ASICs are widely distributed in central nervous system, peripheral nervous system, digestive system and some tumor tissues. Different ASIC subunits play important roles in various pathophysiological processes such as touch, sour taste, learning and memory, including inflammation, ischemic stroke, pain, learning and memory decline, epilepsy, multiple sclerosis (MS, migraine, irritable bowel syndrome and tumor. Research over the last 2 decades has achieved substantial advances in migraine pathophysiology. It is now largely accepted that inflammatory pathways play a key role and three main events seem to take place: cortical spreading depression (CSD, activation of the trigeminovascular system (i.e. dural nociceptors, peripheral and central sensitization of this pain pathway. However, the exact mechanisms that link these three events to each other and to inflammation have so far remained to be studied. This article takes an overview of newly research advances in structure, distribution and the relationship with migraine of ASICs.  DOI: 10.3969/j.issn.1672-6731.2015.09.013

  16. Ion channels: molecular targets of neuroactive insecticides. (United States)

    Raymond-Delpech, Valérie; Matsuda, Kazuhiko; Sattelle, Benedict M; Rauh, James J; Sattelle, David B


    Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.

  17. Theory of the ion-channel laser

    International Nuclear Information System (INIS)

    Whittum, D.H.


    A relativistic electron beam propagating through a plasma in the ion-focussed regime exhibits an electromagnetic instability with peak growth rate near a resonant frequency ω∼2 γ 2 ωβ, where γ is the Lorentz factor and ωβ is the betatron frequency. The physical basis for this instability is that an ensemble of relativistic simple harmonic oscillators, weakly driven by an electromagnetic wave, will lose energy to the wave through axial bunching. This ''bunching'' corresponds to the development of an rf component in the beam current, and a coherent centroid oscillation. The subject of this thesis is the theory of a laser capitalizing on this electromagnetic instability. A historical perspective is offered. The basic features of relativistic electron beam propagation in the ion-focussed regime are reviewed. The ion-channel laser (ICL) instability is explored theoretically through an eikonal formalism, analgous to the ''KMR'' formalism for the free-electron laser (FEL). The dispersion relation is derived, and the dependence of growth rate on three key parameters is explored. Finite temperature effects are assessed. From this work it is found that the typical gain length for amplification is longer than the Rayleigh length and we go on to consider three mechanisms which will tend to guide waveguide. First, we consider the effect of the ion channel as a dielectric waveguide. We consider next the use of a conducting waveguide, appropriate for a microwave amplifier. Finally, we examine a form of ''optical guiding'' analgous to that found in the FEL. The eikonal formalism is used to model numerically the instability through and beyond saturation. Results are compared with the numerical simulation of the full equations of motion, and with the analytic scalings. The analytical requirement on detuning spread is confirmed

  18. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds. (United States)

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F


    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Microvillar ion channels: cytoskeletal modulation of ion fluxes. (United States)

    Lange, K


    The recently presented theory of microvillar Ca(2+)signaling [Lange, K. (1999) J. Cell. Physiol.180, 19-35], combined with Manning's theory of "condensed counterions" in linear polyelectrolytes [Manning, G. S. (1969). J. Chem. Phys.51, 924-931] and the finding of cable-like ion conductance in actin filaments [Lin, E. C. & Cantiello, H. F. (1993). Biophys. J.65, 1371-1378], allows a systematic interpretation of the role of the actin cytoskeleton in ion channel regulation. Ion conduction through actin filament bundles of microvilli exhibits unique nonlinear transmission properties some of which closely resemble that of electronic semiconductors: (1) bundles of microfilaments display significant resistance to cation conduction and (2) this resistance is decreased by supply of additional energy either as thermal, mechanical or electromagnetic field energy. Other transmission properties, however, are unique for ionic conduction in polyelectrolytes. (1) Current pulses injected into the filaments were transformed into oscillating currents or even into several discrete charge pulses closely resembling that of single-channel recordings. Discontinuous transmission is due to the existence of counterion clouds along the fixed anionic charge centers of the polymer, each acting as an "ionic capacitor". (2) The conductivity of linear polyelectrolytes strongly decreases with the charge number of the counterions; thus, Ca(2+)and Mg(2+)are effective modulator of charge transfer through linear polyelectrolytes. Field-dependent formation of divalent cation plugs on either side of the microvillar conduction line may generate the characteristic gating behavior of cation channels. (3) Mechanical movement of actin filament bundles, e.g. bending of hair cell microvilli, generates charge translocations along the filament structure (mechano-electrical coupling). (4) Energy of external fields, by inducing molecular dipoles within the polyelectrolyte matrix, can be transformed into mechanical

  20. Plasmin in urine from patients with type 2 diabetes and treatment-resistant hypertension activates ENaC in vitro

    DEFF Research Database (Denmark)

    Buhl, Kristian B; Stolzenburg Oxlund, Christina; Friis, Ulla G


    diabetes mellitus (T2DM) and treatment-resistant hypertension excrete plasmin(ogen) in urine in proportion to albumin and that plasmin confers to urine the ability to activate ENaC. METHOD:: Patients (n = 113) with T2DM and resistant hypertension, defined as systolic blood pressure (SBP) more than 130 mm...... of plasmin in preurine may inappropriately activate ENaC in patients with type 2 diabetes and microalbuminuria. This may contribute to treatment-resistant hypertension.......BACKGROUND:: Aberrant filtration of plasminogen from plasma and subsequent activation to plasmin in the urinary space may activate proteolytically the epithelial sodium channel, ENaC. In conditions with chronic albuminuria, this may cause hypertension. It was hypothesized that patients with type 2...

  1. Cnidarian Toxins Acting on Voltage-Gated Ion Channels

    Directory of Open Access Journals (Sweden)

    Robert M. Greenberg


    Full Text Available Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels.

  2. Plant ion channels: gene families, physiology, and functional genomics analyses. (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I


    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  3. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.


    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  4. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram


    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  5. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter


    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels....... A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct...... characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion...

  6. Axial channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carnera, A.; Gasparotto, A.


    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x10 11 and 1x10 15 atoms/cm 2 . The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, S c , was extracted from the experimental maximum ranges for the [100] and [110] axis. The energy dependence of the electronic stopping power is given by S e = KE p with p [100] = 0.469±0.010 and p [110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.)

  7. From Brownian Dynamics to Markov Chain: An Ion Channel Example

    KAUST Repository

    Chen, Wan


    A discrete rate theory for multi-ion channels is presented, in which the continuous dynamics of ion diffusion is reduced to transitions between Markovian discrete states. In an open channel, the ion permeation process involves three types of events: an ion entering the channel, an ion escaping from the channel, or an ion hopping between different energy minima in the channel. The continuous dynamics leads to a hierarchy of Fokker-Planck equations, indexed by channel occupancy. From these the mean escape times and splitting probabilities (denoting from which side an ion has escaped) can be calculated. By equating these with the corresponding expressions from the Markov model, one can determine the Markovian transition rates. The theory is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal geometry maximizing ion flux is computed. © 2014 Society for Industrial and Applied Mathematics.

  8. Well-Defined Microapertures for Ion Channel Biosensors

    NARCIS (Netherlands)

    Halza, Erik; Bro, Tobias Hedegaard; Bilenberg, Brian; Kocer, Armagan


    Gated ion channels are excitable nanopores in biological membranes. They sense and respond to different triggers in nature. The sensory characteristics of these channels can be modified by protein engineering tools and the channels can be functionally reconstituted into synthetic lipid bilayer

  9. Trajectory separation of channeled ions in crystalline materials

    International Nuclear Information System (INIS)

    Temkin, Misha; Chakarov, Ivan; Webb, Roger


    Spatial distributions of ions implanted into crystals can be of a very complex shape with 'lobes' due to ions penetrating through open channels in several directions. This paper suggests an analytical model which represents such a distribution as a linear combination of 'random' distribution and one or more 'channeled' distributions. This study is focused on the algorithm of the separation of ion trajectories into several distributions. The first distribution includes those ions which have undergone predominantly random collisions. The other distributions include those ions which have undergone mainly 'weak' collisions and traveled mostly along the main channeling directions. Our binary collision approximation (BCA) simulator is used for generating and analyzing ion trajectories. The spatial moments can be extracted from each separated distribution. It is shown that 2D analytical distributions obtained as a linear combination of distributions derived from these moments and aligned along corresponding channeling direction are in a very good agreement with direct BCA calculations

  10. Investigating ion channel conformational changes using voltage clamp fluorometry. (United States)

    Talwar, Sahil; Lynch, Joseph W


    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Surface dynamics of voltage-gated ion channels (United States)

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur


    ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  12. Channeling effect for low energy ion implantation in Si

    International Nuclear Information System (INIS)

    Cho, K.; Allen, W.R.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.


    Ion implantation is one of the most important processes in semiconductor device fabrication. Due to the crystalline nature of Si, channeling of implanted ions occurs during this process. Modern devices become smaller and shallower and therefore require ion implantation at lower energies. The effect of channeling on ion implantation becomes a significant problem for low energy ion implantation. The critical angle for axial and planar channeling increases with decreasing energy. This corresponds to an increased probability for channeling with lowering of ion energy. The industry approach to avoid the channeling problem is to employ a tilt angle of 7 0 between the ion implantation direction and the surface normal. We approach the problem by mapping major crystalline axes and planes near the [100] surface normal. Our analysis indicates that a 7 0 tilt is not an optimum selection in channeling reduction. Tilt angles in the range 5 0 to 6 0 combined with 7 0 +- 0.5 0 rotation from the (100) plane are better selections for the reduction of the channeling effect. The range of suitable angles is a function of the implantation energy. Implantations of boron along well specified crystallographic directions have been carried out by careful alignment and the resulting boron profiles measured by SIMS. (orig.)

  13. Proteoglycans, ion channels and cell-matrix adhesion

    DEFF Research Database (Denmark)

    Mitsou, Ioli; Multhaupt, Hinke A.B.; Couchman, John R.


    , maintenance, repair and disease.The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins.All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration.......Recent data now suggest that syndecans can regulate stretchactivated ion channels.The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion.This area sheds new light on the syndecans, not least since evidence...

  14. Regulación por proteasas del canal de sodio sensible al amiloride (ENaC

    Directory of Open Access Journals (Sweden)

    Luciano Galizia


    Full Text Available El ENaC es un canal que permite el movimiento de Na+ desde el líquido luminal hacia las células en numerosos epitelios reabsortivos y también en otros tejidos como la placenta. ENaC juega un papel crucial en la homeostasis de los electrolitos y volumen de líquido extracelular. Es regulado por numerosas hormonas, incluyendo la aldosterona y bloqueado por el diurético amiloride. El ENaC está formado por tres subunidades homólogas α, β y γ que forman el poro por el cual se mueven los iones Na+. Dos factores regulan la actividad del ENaC. 1 el número de canales insertos en la membrana celular y 2 la probabilidad de apertura o tiempo en que se encuentra abierto el canal. El número de canales es el resultado de un balance entre su síntesis y degradación. La probabilidad de apertura depende de la proteólisis de zonas específicas de las subunidades α y γ por múltiples proteasas dentro de la célula y en el espacio extracelular. Entre las proteasas más estudiadas se encuentran la furina, prostasina, elastasa, plasmina y tripsina. Existen sustancias endógenas que bloquean la actividad de estas proteasas como la aprotinina, la bikunina y la nexina-1 y la expresión de las proteasas y sus inhibidores es regulada a su vez por la aldosterona, la tasa de movimiento de Na y el TFGβ. En este trabajo presentamos algunos ejemplos de esta regulación y su potencial papel en condiciones normales y en ciertas enfermedades como la fibrosis quística, renales e hipertensión.

  15. Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length

    DEFF Research Database (Denmark)

    Gnanasambandam, Radhakrishnan; Nielsen, Morten S; Nicolai, Christopher


    and characterize an idealization algorithm based on Rissanen's Minimum Description Length (MDL) Principle. This method uses minimal assumptions and idealizes ion channel recordings without requiring a detailed user input or a priori assumptions about channel conductance and kinetics. Furthermore, we demonstrate...... that correlation analysis of conductance steps can resolve properties of single ion channels in recordings contaminated by signals from multiple channels. We first validated our methods on simulated data defined with a range of different signal-to-noise levels, and then showed that our algorithm can recover...... channel currents and their substates from recordings with multiple channels, even under conditions of high noise. We then tested the MDL algorithm on real experimental data from human PIEZO1 channels and found that our method revealed the presence of substates with alternate conductances....

  16. Coulomb interaction rules timescales in potassium ion channel tunneling (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.


    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  17. Simulation of channelled ion ranges in crystalline silicon

    International Nuclear Information System (INIS)

    Kabadayi, Oender; Guemues, Hasan


    We present results from a channelled ion range simulation model based on separation of ion trajectories into three different categories known as random, channelled, and well-channelled. We present this for boron projectiles incident along the Si direction. Stopping powers for channelled particles, well-channelled, and random particles are determined using experimental ratios of random and channelled stopping powers for a boron/silicon system. We have found the particle range distributions and the mean range of particles in crystalline channels. A new program code has been developed for the implementation of the presented model. The results are compared with experimental data as well as Crystal-transport and range of ions in matter, stopping and ranges of ions in matter, and projected range algorithm programs. We have found good agreement between our calculations and experiment, with an average discrepancy of 7%. Our model is also able to simulate the observed shift towards larger depths for the main ion distribution under channelling conditions

  18. Global versus local mechanisms of temperature sensing in ion channels. (United States)

    Arrigoni, Cristina; Minor, Daniel L


    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  19. Channeled-ion implantation of group-III and group-V ions into silicon

    International Nuclear Information System (INIS)

    Furuya, T.; Nishi, H.; Inada, T.; Sakurai, T.


    Implantation of group-III and group-V ions along [111] and [110] axes of silicon have been performed using a backscattering technique, and the depth profiles of implanted ions have been measured by the C-V method. The range of channeled Ga ions is the largest among the present data, and a p-type layer of about 6 μm is obtained by implantation at only 150 keV. The carrier profiles of channeled Al and Ga ions with deep ranges do not show any distinguishable channeled peak contrasting with the B, P, and As channeling which gives a well-defined peak. The electronic stopping cross section (S/sub e/) of channeled P ions agree well with the results of Eisen and Reddi, but in B channeling, the discrepancies of 10--20% are observed among S/sub e/ values obtained experimentally by three different groups

  20. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter


    . A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct....... The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery....

  1. Ion channel recordings on an injection-molded polymer chip

    DEFF Research Database (Denmark)

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann


    state-of-the-art system for automated ion channel recordings. These experiments considered current–voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose–response curves obtained from...

  2. From Brownian Dynamics to Markov Chain: An Ion Channel Example

    KAUST Repository

    Chen, Wan; Erban, Radek; Chapman, S. Jonathan


    is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal

  3. Dysfunctional HCN ion channels in neurological diseases

    Directory of Open Access Journals (Sweden)

    Jacopo C. DiFrancesco


    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are expressed as four different isoforms (HCN1-4 in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic and


    NARCIS (Netherlands)



    We have observed ion-beam channeling in a quasicrystal. For 1-MeV He-4+ ions in icosahedral Al-Cu-Fe the maximum effect found is 36%. The full width at half maximum of the observed dips is 1.3-degrees. The effect persists up to great depths (> 200 nm), thus showing a high degree of ordering in this

  5. Estrogen, progesterone, and genistein differentially regulate levels of expression of α-, β-, and γ-epithelial sodium channel (ENaC) and α-sodium potassium pump (Na⁺/K⁺-ATPase) in the uteri of sex steroid-deficient rats. (United States)

    Chinigarzadeh, Asma; Muniandy, Sekaran; Salleh, Naguib


    Estrogen, progesterone, and genistein could induce changes in uterine fluid volume and Na(+) concentration. Progesterone upregulates expression of epithelial sodium channel (ENaC) and Na(+)/K(+)-ATPase which contributed toward these changes. However, effects of estrogen and genistein were unknown. This study therefore investigated changes in expression of these proteins in the uterus under estrogen, progesterone, and genistein influences to further understand mechanisms underlying sex steroids and phytoestrogen effects on uterine fluid Na(+) regulation. In this study, uteri of ovariectomized female rats receiving 7-day treatment with genistein (25, 50, and 100 mg/kg/day), estrogen (0.8 × 10(-4) mg/kg/day), or progesterone (4 mg/kg/day) were harvested, and expression levels of α-, β-, and γ-ENaC proteins and messenger RNAs (mRNAs) and α-Na(+)/K(+)-ATPase protein were determined by Western blotting (proteins) and real-time polymerase chain reaction (mRNA). Meanwhile, distribution of α-, β-, and γ-ENaC and α-Na(+)/K(+)-ATPase proteins in the uterus was identified by immunohistochemistry. Our findings indicated that expression of α-, β-, and γ-ENaC proteins and mRNAs and α-Na(+)/K(+)-ATPase protein were enhanced under progesterone influence. Lower expressions were noted under estrogen and genistein influences compared to progesterone. Under estrogen, progesterone, and genistein influences, α- and β-ENaC were distributed at apical membrane and γ-ENaC was distributed at apical and basolateral membranes of uterine luminal epithelia. Under progesterone influence, α-Na(+)/K(+)-ATPase was highly expressed at basolateral membrane. In conclusion, high expression of α-, β-, and γ-ENaC and α-Na(+)/K(+)-ATPase under progesterone influence would contribute toward increased uterine fluid Na(+) reabsorption, whereas lesser expression of these proteins under estrogen and genistein influences would contribute toward lower reabsorption of uterine fluid Na

  6. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli


    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  7. X-ray generation in an ion channel

    International Nuclear Information System (INIS)

    Kostyukov, I.; Kiselev, S.; Pukhov, A.


    X-ray generation by relativistic electrons in an ion channel is studied. The emission process is analyzed in the regime of high harmonic generation when the plasma wiggler strength is large. Like for the conventional free electron laser, the synchrotron-like broadband spectrum is generated in this regime. An asymptotic expression for the radiation spectrum of the spontaneous emission is derived. The radiation spectrum emitted from an axisymmetric monoenergetic electron beam is analyzed. The stimulated emission in the ion channel is studied and the gain of the ion-channel synchrotron-radiation laser is calculated. It is shown that the use of laser-produced ion channels leads to a much higher power of x-ray radiation than the one in a self-generated channel. In addition, the mean photon energy, the number of emitted photons and the brilliance of the photon beam increase dramatically. Three-dimensional particle-in-cell simulations of a 25-GeV electron bunch propagating in a laser-produced ion channel are made. Several GeV γ-quants are produced in a good agreement with the analytical results

  8. Symposia for a Meeting on Ion Channels and Gap Junctions

    CERN Document Server

    Sáez, Juan


    Ion channels allow us to see nature in all its magnificence, to hear a Bach suite, to smell the aroma of grandmother's cooking, and, in this regard, they put us in contact with the external world. These ion channels are protein molecules located in the cell membrane. In complex organisms, cells need to communicate in order to know about their metabolic status and to act in a coordinate manner. The latter is also accomplished by a class of ion channels able to pierce the lipid bilayer membranes of two adjacent cells. These intercellular channels are the functional subunits of gap junctions. Accordingly, the book is divided in two parts: the first part is dedicated to ion channels that look to the external world, and the second part is dedicated to gap junctions found at cell interfaces. This book is based on a series of symposia for a meeting on ion channels and gap junctions held in Santiago, Chile, on November 28-30, 1995. The book should be useful to graduate students taking the first steps in this field as...

  9. Turning a Poor Ion Channel into a Good Pump (United States)

    Astumian, Dean


    We consider a membrane protein that can exist in two configurations, either one of which acts as a poor ion channel, allowing ions to slowly leak across the membrane from high to low elctrochemical potential. We show that random external fluctuations can provide the energy to turn this poor channel into a good pump that drives ion transport from low to high electrochemical potential. We discuss this result in terms of a gambling analogy, and point to possible implications for fields as far ranging as population biology, economics, and actuarial science.

  10. Angular distributions of ions channeled in the Si crystals

    International Nuclear Information System (INIS)

    Petrovic, S.; Korica, S.; Kokkoris, M.; Neskovic, N.


    In this study we analyze the angular distributions of Ne 10+ ions channeled in the Si crystals. The ion energy is 60 MeV and the crystal thickness is varied from 286 to 3435 nm. This thickness range corresponds to the reduced crystal thickness range from 0.5 to 6, i.e. from the second to the twelfth rainbow cycle. The angular distributions were obtained via the numerical solution of the ion equations of motion and the computer simulation method. The analysis shows that the angular distribution has a periodic behavior. We also analyze the transmission patterns corresponding to the angular distributions. These patterns should be compared to the experimental patterns obtainable by a two-dimensional position sensitive detector. We demonstrate that, when the ion beam divergence is sufficiently large, i.e. much larger than the critical angle for channeling, the channeling star effect occurs in the transmission patterns

  11. Mechanically Gated Ion Channels in Mammalian Hair Cells

    Directory of Open Access Journals (Sweden)

    Xufeng Qiu


    Full Text Available Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS/LHFPL5, transmembrane inner ear (TMIE and transmembrane channel-like proteins 1 and 2 (TMC1/2. However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.

  12. Physiological regulation of epithelial sodium channel by proteolysis

    DEFF Research Database (Denmark)

    Svenningsen, Per; Friis, Ulla G; Bistrup, Claus


    PURPOSE OF REVIEW: Activation of epithelial sodium channel (ENaC) by proteolysis appears to be relevant for day-to-day physiological regulation of channel activity in kidney and other epithelial tissues. Pathophysiogical, proteolytic activation of ENaC in kidney has been demonstrated in proteinuric...

  13. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  14. Defect imaging and channeling studies using channeling scanning transmission ion microscopy

    NARCIS (Netherlands)

    King, PJC; Breese, MBH; Smulders, PJM; Wilshaw, PR; Grime, GW

    The technique of channeling scanning transmission ion microscopy (CSTIM) can be used to produce images of individual crystal defects (such as dislocations and stacking faults) using the scanned, focused ion beam from a nuclear microprobe. As well as offering a new method for studies of crystal

  15. Voltage-Sensitive Ion Channels Biophysics of Molecular Excitability

    CERN Document Server

    Leuchtag, H. Richard


    Voltage-sensitive ion channels are macromolecules embedded in the membranes of nerve and muscle fibers of animals. Because of their physiological functions, biochemical structures and electrical switching properties, they are at an intersection of biology, chemistry and physics. Despite decades of intensive research under the traditional approach of gated structural pores, the relation between the structure of these molecules and their function remains enigmatic. This book critically examines physically oriented approaches not covered in other ion-channel books. It looks at optical and thermal as well as electrical data, and at studies in the frequency domain as well as in the time domain. Rather than presenting the reader with only an option of mechanistic models at an inappropriate pseudo-macroscopic scale, it emphasizes concepts established in organic chemistry and condensed state physics. The book’s approach to the understanding of these unique structures breaks with the unproven view of ion channels as...

  16. Ion channeling study of defects in multicomponent semiconductor compounds

    International Nuclear Information System (INIS)

    Turos, A.; Nowicki, L.; Stonert, A.


    Compound semiconductor crystals are of great technological importance as basic materials for production of modern opto- and microelectronic devices. Ion implantation is one of the principal techniques for heterostructures processing. This paper reports the results of the study of defect formation and transformation in binary and ternary semiconductor compounds subjected to ion implantation with ions of different mass and energy. The principal analytical technique was He-ion channeling. The following materials were studied: GaN and InGaN epitaxial layers. First the semi empirical method of channeling spectra analysis for ion implanted multicomponent single crystal was developed. This method was later complemented by the more sophisticated method based on the Monte Carlo simulation of channeling spectra. Next, the damage buildup in different crystals and epitaxial layers as a function of the implantation dose was studied for N, Mg, Te, and Kr ions. The influence of the substrate temperature on the defect transformations was studied for GaN epitaxial layers implanted with Mg ions. Special attention was devoted to the study of growth conditions of InGaN/GaN/sapphire heterostructures, which are important component of the future blue laser diodes. In-atom segregation and tetragonal distortion of the epitaxial layer were observed and characterized. Next problem studied was the incorporation of hydrogen atoms in GaAs and GaN. Elastic recoil detection (ERDA) and nuclear reaction analysis (NRA) were applied for the purpose. (author)

  17. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature (United States)

    Askwith, Candice C.; Benson, Christopher J.; Welsh, Michael J.; Snyder, Peter M.


    Several DEG/ENaC cation channel subunits are expressed in the tongue and in cutaneous sensory neurons, where they are postulated to function as receptors for salt and sour taste and for touch. Because these tissues are exposed to large temperature variations, we examined how temperature affects DEG/ENaC channel function. We found that cold temperature markedly increased the constitutively active Na+ currents generated by epithelial Na+ channels (ENaC). Half-maximal stimulation occurred at 25°C. Cold temperature did not induce current from other DEG/ENaC family members (BNC1, ASIC, and DRASIC). However, when these channels were activated by acid, cold temperature potentiated the currents by slowing the rate of desensitization. Potentiation was abolished by a “Deg” mutation that alters channel gating. Temperature changes in the physiologic range had prominent effects on current in cells heterologously expressing acid-gated DEG/ENaC channels, as well as in dorsal root ganglion sensory neurons. The finding that cold temperature modulates DEG/ENaC channel function may provide a molecular explanation for the widely recognized ability of temperature to modify taste sensation and mechanosensation. PMID:11353858

  18. The construction and operation of an ion channelling apparatus

    International Nuclear Information System (INIS)

    Grimshaw, J. A.; Barrat, E.E.; Wilson, C.G.; Spooner, F.J.


    The ion channelling facility at the Royal Military College of Science Rutherford Laboratory is described. A detailed account is given of new apparatus installed on the beam line of the 2.5 MeV Van de Graaf accelerator. Emphasis is placed on the mechanical and electronic requirements of such a system for the attainment of the required experimental conditions for good channelling. (author)

  19. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels. (United States)

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong


    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ion Channels and Zinc: Mechanisms of Neurotoxicity and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Deborah R. Morris


    Full Text Available Ionotropic glutamate receptors, such as NMDA, AMPA and kainate receptors, are ligand-gated ion channels that mediate much of the excitatory neurotransmission in the brain. Not only do these receptors bind glutamate, but they are also regulated by and facilitate the postsynaptic uptake of the trace metal zinc. This paper discusses the role of the excitotoxic influx and accumulation of zinc, the mechanisms responsible for its cytotoxicity, and a number of disorders of the central nervous system that have been linked to these neuronal ion channels and zinc toxicity including ischemic brain injury, traumatic brain injury, and epilepsy.

  1. Modern analysis of ion channeling data by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, Lech [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail:; Turos, Andrzej [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Ratajczak, Renata [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Stonert, Anna [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, Frederico [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France)


    Basic scheme of ion channeling spectra Monte Carlo simulation is reformulated in terms of statistical sampling. The McChasy simulation code is described and two examples of the code applications are presented. These are: calculation of projectile flux in uranium dioxide crystal and defect analysis for ion implanted InGaAsP/InP superlattice. Virtues and pitfalls of defect analysis using Monte Carlo simulations are discussed.


    Directory of Open Access Journals (Sweden)

    Samuel eGoodchild


    Full Text Available Voltage sensing domains of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the voltage sensing domain caused by changes in the applied voltage across the membrane field are coupled to the conducting pore region and the gating of ionic conductance. However, several other factors not directly linked to the voltage dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  3. Imaging the PCP site of the NMDA ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, Rikki N. E-mail:


    The N-methyl-D-aspartate (NMDA) ion channel plays a role in neuroprotection, neurodegeneration, long-term potentiation, memory, and cognition. It is implicated in the pathophysiology of several neurological and neuropsychiatric disorders including Parkinson's Disease, Huntington's Chorea, schizophrenia, alcoholism and stroke. The development of effective radiotracers for the study of NMDA receptors is critical for our understanding of their function, and their modulation by endogenousr substances or therapeutic drugs. Since the NMDA/PCP receptor lies within the channel, it is a unique target and is theoretically accessible only when the channel is in the active and 'open' state, but not when it is in the inactive or 'closed' state. The physical location of the NMDA/PCP receptor not only makes it an important imaging target but also complicates the development of suitable PET and SPECT radiotracers for this site. An intimate understanding of the biochemical, pharmacological, physiological and behavioral processes associated with the NMDA ion channel is essential to develop improved imaging agents. This review outlines progress made towards the development of radiolabeled agents for PCP sites of the NMDA ion channel. In addition, the animal and pharmacological models used for in vitro and in vivo assessment of NMDA receptor targeted agents are discussed.

  4. Imaging the PCP site of the NMDA ion channel

    International Nuclear Information System (INIS)

    Waterhouse, Rikki N.


    The N-methyl-D-aspartate (NMDA) ion channel plays a role in neuroprotection, neurodegeneration, long-term potentiation, memory, and cognition. It is implicated in the pathophysiology of several neurological and neuropsychiatric disorders including Parkinson's Disease, Huntington's Chorea, schizophrenia, alcoholism and stroke. The development of effective radiotracers for the study of NMDA receptors is critical for our understanding of their function, and their modulation by endogenousr substances or therapeutic drugs. Since the NMDA/PCP receptor lies within the channel, it is a unique target and is theoretically accessible only when the channel is in the active and 'open' state, but not when it is in the inactive or 'closed' state. The physical location of the NMDA/PCP receptor not only makes it an important imaging target but also complicates the development of suitable PET and SPECT radiotracers for this site. An intimate understanding of the biochemical, pharmacological, physiological and behavioral processes associated with the NMDA ion channel is essential to develop improved imaging agents. This review outlines progress made towards the development of radiolabeled agents for PCP sites of the NMDA ion channel. In addition, the animal and pharmacological models used for in vitro and in vivo assessment of NMDA receptor targeted agents are discussed

  5. Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel (United States)

    Marunaka, Yoshinori; Niisato, Naomi; Taruno, Akiyuki; Ohta, Mariko; Miyazaki, Hiroaki; Hosogi, Shigekuni; Nakajima, Ken-ichi; Kusuzaki, Katsuyuki; Ashihara, Eishi; Nishio, Kyosuke; Iwasaki, Yoshinobu; Nakahari, Takashi; Kubota, Takahiro


    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane. PMID:22028593

  6. Simple Ion Channels: From Structure to Electrophysiology and Back (United States)

    Pohorille, Andrzej


    A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.

  7. Tuning the ion selectivity of two-pore channels

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing (UTSMC)


    Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.

  8. Ion channeling in natural and synthetic beryl crystals

    International Nuclear Information System (INIS)

    Fritzsche, C.R.; Diehl, R.; Goetzberger, A.


    The transmission of ions by channeling through natural beryl and synthetic emerald has been studied extensively. The transmission ratios depend upon the angle of incidence with a full half width of less than 0.32 0 . While the maximum ratio obtained up to now is only 4 x 10 -4 for 350 keV protons through a crystal of 21 μm thickness, the energy of the transmitted ions is high, the loss being in the order of a few keV/μm. About 60-80% of the particles emerging from the rear surface are ionized. By varying the ion species transmission could be observed up to atomic number 9. It is assumed that the transmission is facilitated by the existence of an electron free channel core. Higher transmission ratios can be expected for sufficiently perfect crystals. (orig.) 891 CDS/orig. 892 MB

  9. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    International Nuclear Information System (INIS)

    Wang, Hailong; Cheng, Xiaolin


    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2) at the intracellular end and a ring of hydrophobic residues (I9) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  10. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics. (United States)

    Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R


    Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to

  11. Sculpting ion channel functional expression with engineered ubiquitin ligases (United States)

    Kanner, Scott A; Morgenstern, Travis


    The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels. PMID:29256394

  12. Collective ion acceleration via laser controlled ionization channel

    International Nuclear Information System (INIS)

    Destler, W.W.; O'Shea, P.G.; Rodgers, J.; Segalov, Z.


    Initial results from a successful laser-controlled collective ion acceleration experiment at the University of Maryland are presented. In the experiment, positive ions are trapped in the potential well at the head of an intense relativistic electron beam injected at current levels above the space charge limit. Seed ions for acceleration are provided by puff valve injection of a neutral gas cloud localized to within 3 cm of the injection point. Control over the acceleration of the well and the ions is then achieved by means of a laser-generated ionization channel produced by passing the light from a Q-switched ruby laser through a series of partially and fully reflecting mirrors in such a way as to provide time-sequenced laser ionization of a target located on the drift tube wall. Using this system, controlled acceleration of protons at a rate of approximately 40 MV/m has been demonstrated over a distance of about 50 cm

  13. The Function of the Novel Mechanical Activated Ion Channel Piezo1 in the Human Osteosarcoma Cells


    Jiang, Long; Zhao, Yi-ding; Chen, Wei-xiang


    Background The Piezo1 protein ion channel is a novel mechanical activated ion channel which is related to mechanical signal transduction. However, the function of the mechanically activated ion channel Piezo1 had not been explored. In this study, we explored the function of the Piezo1 ion channel in human osteosarcoma (OS) cells related to apoptosis, invasion, and the cell proliferation. Material/Methods Reverse transcription polymerase chain reaction (RT-PCR) and western-blotting were used t...

  14. Ion channels in the central regulation of energy and glucose homeostasis


    Sohn, Jong-Woo


    Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles fo...

  15. Dopamine negatively modulates the NCA ion channels in C. elegans. (United States)

    Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael


    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.

  16. Ion channels and beating heart: the players and the music

    Directory of Open Access Journals (Sweden)

    Charles Antzelevitch


    Full Text Available Soft gentle music accompanies us throughout our lifetime; it is the music of our heart beating. Although at times it is questionable as to who serves as conductor of the orchestra, there is little doubt that our ion channels are the main players. Whenever one of them plays too loudly, too softly or simply off key, disharmony results, sometimes leading to total disruption of the rate and rhythm. Ion channels can disrupt the music of our heart by different mechanisms. Sometimes their function is correct, but their expression is altered by underlying cardiac diseases (i.e. heart failure; sometimes the defect is in their structure, because of an underlying genetic defect, and in this case a channelopathy is present.

  17. Complex versus simple models: ion-channel cardiac toxicity prediction. (United States)

    Mistry, Hitesh B


    There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  18. Complex versus simple models: ion-channel cardiac toxicity prediction

    Directory of Open Access Journals (Sweden)

    Hitesh B. Mistry


    Full Text Available There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model Bnet was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the Bnet model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  19. Cells exposed to a huntingtin fragment containing an expanded polyglutamine tract show no sign of ion channel formation: results arguing against the ion channel hypothesis

    DEFF Research Database (Denmark)

    Nørremølle, Anne; Grunnet, Morten; Hasholt, Lis


    Ion channels formed by expanded polyglutamine tracts have been proposed to play an important role in the pathological processes leading to neurodegeneration in Huntington's disease and other CAG repeat diseases. We tested the capacity of a huntingtin fragment containing an expanded polyglutamine...... in the currents recorded in any of the two expression systems, indicating no changes in ion channel activity. The results therefore argue against the proposed hypothesis of expanded polyglutamines forming ion channels....

  20. Amino acid-sensing ion channels in plants

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Edgar P. [Univ. of Wisconsin, Madison, WI (United States)


    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  1. FASEB Science Research Conference on Ion Channel Regulation (United States)


    mathematical strategies for the study of ion channels. The primary aim of this conference was to provide a synergistic environment fostering cross...Corona Street Denver, CO 80218 USA Email: Brittany Williams University of Iowa Interdisciplinary Graduate Program in...Neuroscience 604 Bowery Street apt 3 iowa city, IA 55240 USA Email: brittany Jason Wu Duke University Neurobiology 2

  2. Ion channel recordings on an injection-molded polymer chip. (United States)

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael


    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.

  3. Functional Annotation of Ion Channel Structures by Molecular Simulation. (United States)

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P


    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Channeling in helium ion microscopy: Mapping of crystal orientation

    Directory of Open Access Journals (Sweden)

    Vasilisa Veligura


    Full Text Available Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling through the crystal structure of the bulk of the material can occur.Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict channeling maxima.Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner.

  5. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez


    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  6. Progress in Development of Improved Ion-Channel Biosensors (United States)

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.


    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a

  7. Ion channels in the central regulation of energy and glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Jong-Woo eSohn


    Full Text Available Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles for specific ion channels in the central pathways regulating food intake, energy expenditure, and glucose balance.

  8. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue.

    Directory of Open Access Journals (Sweden)

    Taufiqul Huque


    Full Text Available The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli.Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs 1a, 1beta, 2a, 2b, and 3; and polycystic kidney disease (PKD channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-beta2, the delta-subunit of epithelial sodium channel (ENaC and the bitter receptor T2R14, as well as beta-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1beta, PKD2L1, phospholipase C-beta2, and delta-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells.These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals ("natural knockouts" suggests a cell lineage for sour that is independent of the other taste modalities.

  9. Computer Simulation Studies of Ion Channels at High Temperatures (United States)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  10. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation (United States)

    Shantappa, Anil; Talukdar, Keka


    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  11. Acid-sensing ion channels: trafficking and synaptic function

    Directory of Open Access Journals (Sweden)

    Zha Xiang-ming


    Full Text Available Abstract Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs, to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  12. Acid-sensing ion channels: trafficking and synaptic function. (United States)

    Zha, Xiang-ming


    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  13. Materials analysis by ion backscattering and channeling. Materials modification by ion irradiation and implementation

    International Nuclear Information System (INIS)

    Meyer, O.


    A description will be given of the basic processes occuring during ion implantation and ion beam analyses. The usefulness of the backscattering and channeling technique is demonstrated by a discussion of the applications to thin film analysis, studies of diffusion and reactions in thin films, lattice location investigations, disorder analysis and surface studies. Ion implantation is a valuable research tool in metallurgy. The process operates very far from equilibrium conditions and thus will influence near surface properties in a unique way. The observed modifications are related to special microscopic structures which will be considered in detail. (orig.) [de

  14. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo


    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  15. Nuclear fusion ion beam source composed of optimum channel wall

    International Nuclear Information System (INIS)

    Furukaw, T.


    Full text of publication follows: Numerical and experimental researches of the hall-type beam accelerator was conducted by highlighting both neutral species and material of acceleration channel wall. The hall-type beam accelerator is expected as ion beam source for nuclear fusion since it could product ion beam density over 10 3 times as high as that of electrostatic accelerator, which is used regularly as beam heating device, because it is proven that the beam heating method could accelerate ion to high energy beam by electric field and heat plasma to ultra high temperature of 100 million degrees or more. At high-voltage mode of DC regime that is normal operational condition, however, the various plasma MHD (magneto-hydrodynamic) instabilities are generated. In particular, the large-amplitude and low-frequency plasma MHD instability in the tens of kHz among them has been a serious problem that should be solved to improve the operational stability and the system durability. So, we propose a hall-type beam accelerator with new design concepts; both acquisition of simultaneous solution for reducing the plasma MHD instability and the accelerator core overheating and optimum combination of the acceleration channel wall material. The technologies for this concept are as follows: 1) To increase neutral species velocity-inlet in acceleration channel by preheating propellant through circularly propellant conduit line inside accelerator system could bring about the lower amplitude of the instability. 2) Through this method, the accelerator system is cooled, and the higher thrust and specific-impulse is produced with hardly changing thrust efficiency at the same time. 3) To select BN (Boron- Nitride) and Al 2 O 3 as wall material of ionization- and acceleration-zone in acceleration channel respectively having different secondary-electron emission-coefficient could achieve the higher-efficiency and -durability. The hall-type beam accelerator designed using these technologies

  16. Parameterization of ion channeling half-angles and minimum yields

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney L.


    A MS Excel program has been written that calculates ion channeling half-angles and minimum yields in cubic bcc, fcc and diamond lattice crystals. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different power functions of the arguments. The program then offers an extremely convenient way to calculate axial and planar half-angles, minimum yields, effects on half-angles and minimum yields of amorphous overlayers. The program can calculate these half-angles and minimum yields for 〈u v w〉 axes and [h k l] planes up to (5 5 5). The program is open source and available at (

  17. Ionic fragmentation channels in electron collisions of small molecular ions

    International Nuclear Information System (INIS)

    Hoffmann, Jens


    Dissociative Recombination (DR) is one of the most important loss processes of molecular ions in the interstellar medium (IM). Ion storage rings allow to investigate these processes under realistic conditions. At the Heidelberg test storage ring TSR a new detector system was installed within the present work in order to study the DR sub-process of ion pair formation (IPF). The new detector expands the existing electron target setup by the possibility to measure strongly deflected negative ionic fragments. At the TSR such measurements can be performed with a uniquely high energy resolution by independently merging two electron beams with the ion beam. In this work IPF of HD + , H 3 + and HF + has been studied. In the case of HD + the result of the high resolution experiment shows quantum interferences. Analysis of the quantum oscillations leads to a new understanding of the reaction dynamics. For H 3 + it was for the first time possible to distinguish different IPF channels and to detect quantum interferences in the data. Finally the IPF of HF + was investigated in an energy range, where in previous experiments no conclusive results could be obtained. (orig.)

  18. Natural products as tools for studies of ligand-gated ion channels

    DEFF Research Database (Denmark)

    Strømgaard, Kristian


    Ligand-gated ion channels, or ionotropic receptors, constitute a group of membrane-bound proteins that regulate the flux of ions across the cell membrane. In the brain, ligand-gated ion channels mediate fast neurotransmission. They are crucial for normal brain function and involved in many diseases...

  19. Cytokine–Ion Channel Interactions in Pulmonary Inflammation (United States)

    Hamacher, Jürg; Hadizamani, Yalda; Borgmann, Michèle; Mohaupt, Markus; Männel, Daniela Narcissa; Moehrlen, Ueli; Lucas, Rudolf; Stammberger, Uz


    The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research. PMID:29354115

  20. Computational Tools for Interpreting Ion Channel pH-Dependence.

    Directory of Open Access Journals (Sweden)

    Ivan Sazanavets

    Full Text Available Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir channels and acid-sensing ion channels (ASICs, mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.

  1. Computational Tools for Interpreting Ion Channel pH-Dependence. (United States)

    Sazanavets, Ivan; Warwicker, Jim


    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.

  2. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge (United States)

    Shmukler, Yuri B.; Nikishin, Denis A.


    Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na+-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism. PMID:28726749

  3. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge

    Directory of Open Access Journals (Sweden)

    Yuri B. Shmukler


    Full Text Available Ciguatoxins (CTX and brevetoxins (BTX are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na+-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.

  4. Study of elastic scattering between heavy ions. Reaction channel influence

    International Nuclear Information System (INIS)

    Doubre, Hubert.


    The role of absorption on the behavior of heavy ion angular distributions and excitaton functions has been investigated on light and medium mass systems. Comparison between 20 Ne+ 12 C and 16 O+ 16 O systems which lead to the same compound nucleus, shows that it originates from the direct channels strongly coupled to the entrance channel. Structures in the excitation functions occur for almost all the light systems and it is shown that the damping observed for heavier systems such as 40 Ca+ 40 Ca, essentially results on the predominance of Coulomb effects which hide the nuclear structure effects. Thus no valuable information on the details of S-matrix can be extracted for such an heavy system. A coherent description of the elastic scattering, based on a splitting of the scattering amplitude into two components, the modulus of each component varying smoothly as a function of energy and angle. The interference between these sub-amplitudes give rise to interference effects in angular distributions and excitation functions. The study of the main reaction channels of the 40 Ca+ 40 Ca system - i.e. deep inelastic reactions and fusion - also shows that the closed-shell nature of the interacting nuclei does not play any role in these processes due to the excitation processes in the first stage of the reactions which destroy the specific structure of the nuclei [fr

  5. Creation and dynamical co-evolution of electron and ion channel transport barriers

    International Nuclear Information System (INIS)

    Newman, D.E.


    A wide variety of magnetic confinement devices have found transitions to an enhanced confinement regime. Simple dynamical models have been able to capture much of the dynamics of these barriers however an open question has been the disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard ('ion channel' barrier. By adding to simple barrier model an evolution equation for electron fluctuations we can investigate the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. Barrier formation in the electron channel is even more sensitive to the alignment of the various gradients making up the sheared radial electric field than the ion barrier is. Electron channel heat transport is found to significantly increase after the formation of the ion channel barrier but before the electron channel barrier is formed. This increased transport is important in the barrier evolution. (author)

  6. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Kortenoeven, M.L.A.; Li, Y.; Shaw, S.M.; Gaeggeler, H.P.; Rossier, B.C.; Wetzels, J.F.M.; Deen, P.M.T.


    Lithium therapy frequently induces nephrogenic diabetes insipidus; amiloride appears to prevent its occurrence in some clinical cases. Amiloride blocks the epithelial sodium channel (ENaC) located in the apical membrane of principal cells; hence one possibility is that ENaC is the main entry site

  7. Investigation of betatron instability in a wiggler pumped ion-channel free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Raghavi, A [Physics Department, Payame Noor University, 19395-4697 (Iran, Islamic Republic of); Mehdian, H, E-mail:, E-mail: [Department of Physics, Teacher Training University, Tehran (Iran, Islamic Republic of)


    Betatron emission from an ion-channel free electron laser in the presence of a helical wiggler pump and in the high gain regime is studied. The dispersion relation and the frequency of betatron emission are derived. Growth rate is illustrated and maximum growth rate as a function of ion-channel density is considered. Finally, the relation between beam energy, the density of ion channel and the region of betatron emission is discussed.

  8. ModFossa: A library for modeling ion channels using Python. (United States)

    Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C


    The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.

  9. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  10. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy. (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C


    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  11. The secret life of ion channels: Kv1.3 potassium channels and proliferation. (United States)

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R


    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  12. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. (United States)

    Guo, Wei; Tian, Ye; Jiang, Lei


    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  13. Lipopolysaccharide increases Na(+),K(+)-pump, but not ENaC, expression in guinea-pig airway epithelium. (United States)

    Dodrill, Michael W; Beezhold, Donald H; Meighan, Terence; Kashon, Michael L; Fedan, Jeffrey S


    Earlier, we found in functional experiments that lipopolysaccharide (LPS; 4mg/kg; i.p.) hyperpolarized the epithelium by stimulating the transepithelial transport of Na(+) in guinea-pig tracheal epithelium. Epithelial sodium channel (ENaC) activity and Na(+),K(+)-pump activity were increased. In this study, we hypothesized that LPS increases the expression of ENaC and the Na(+),K(+)-pump in the epithelium and investigated the levels of transcription and protein abundance. Using qPCR, the effects of LPS on the transcription of αENaC, α(1) Na(+),K(+)-pump, COX-2, eNOS, iNOS, IL-1β, and TNF-α were measured at 3 and 18h. In the epithelium, LPS increased the transcription of COX-2, IL-1β, and, to a nonsignificant extent, TNF-α at 3h, but not at 18h. In alveolar macrophages, TNF-α, and, to a nonsignificant extent, COX-2 and IL-1β were up-regulated at 3h, but not at 18h. Even though LPS stimulated the transcription of some genes, αENaC and α(1) Na(+),K(+)-ATPase transcription were not affected. The expressions of α-, β-, and γ-ENaC and α(1) Na(+),K(+)-pump from the tracheal epithelium and kidney cortex/medulla were investigated by western blotting. All three ENaC subunits were detected as cleavage fragments, yet LPS had no effect on their expression. LPS increased the expression of the α(1) subunit and the α(1), α(2), and α(3) subunits, collectively, of the Na(+),K(+)-pump. Taken together, these data indicate that LPS increases Na(+) transport downstream of the genetic level, in part, by stimulating the expression of the Na(+),K(+)-pump. Published by Elsevier B.V.

  14. Micro- and nanofabrication methods for ion channel reconstitution in bilayer lipid membranes (United States)

    Tadaki, Daisuke; Yamaura, Daichi; Arata, Kohei; Ohori, Takeshi; Ma, Teng; Yamamoto, Hideaki; Niwano, Michio; Hirano-Iwata, Ayumi


    The self-assembled bilayer lipid membrane (BLM) forms the basic structure of the cell membrane and serves as a major barrier against ion movement. Ion channel proteins function as gated pores that permit ion permeation across the BLM. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for investigating channel functions and screening drug effects on ion channels. In this review, we will discuss our recent microfabrication approaches to the formation of stable BLMs containing ion channel proteins as a potential platform for next-generation drug screening systems. BLMs formed in a microaperture having a tapered edge exhibited highly stable properties, such as a lifetime of ∼65 h and tolerance to solution changes even after the incorporation of the human ether-a-go-go-related gene (hERG) channel. We also explore a new method of efficiently incorporating human ion channels into BLMs by centrifugation. Our approaches to the formation of stable BLMs and efficient channel incorporation markedly improve the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based high-throughput platform for functional assays of various ion channels.

  15. Examining ion channel properties using free-energy methods. (United States)

    Domene, Carmen; Furini, Simone


    Recent advances in structural biology have revealed the architecture of a number of transmembrane channels, allowing for these complex biological systems to be understood in atomistic detail. Computational simulations are a powerful tool by which the dynamic and energetic properties, and thereby the function of these protein architectures, can be investigated. The experimentally observable properties of a system are often determined more by energetic than dynamics, and therefore understanding the underlying free energy (FE) of biophysical processes is of crucial importance. Critical to the accurate evaluation of FE values are the problems of obtaining accurate sampling of complex biological energy landscapes, and of obtaining accurate representations of the potential energy of a system, this latter problem having been addressed through the development of molecular force fields. While these challenges are common to all FE methods, depending on the system under study, and the questions being asked of it, one technique for FE calculation may be preferable to another, the choice of method and simulation protocol being crucial to achieve efficiency. Applied in a correct manner, FE calculations represent a predictive and affordable computational tool with which to make relevant contact with experiments. This chapter, therefore, aims to give an overview of the most widely implemented computational methods used to calculate the FE associated with particular biochemical or biophysical events, and to highlight their recent applications to ion channels. Copyright © 2009 Elsevier Inc. All rights reserved.

  16. Beam propagation in Cu +-Na + ion exchange channel waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Villegas Vicencio, L. J.; Khomenko, A. V.; Salazar, D.; Marquez, H. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Baja California (Mexico); Porte, H. [Universite de Franche-Comte, UFR des Sciences et Techniques, Besancon, Cedex (France)


    We employ the fast Fourier transform beam propagation method to simulate the propagation of light in graded index channel waveguides, these have been obtained by solid state diffusion of copper ions in soda-lime glass substrates. Longitudinal propagation has been simulated, the input light beam has a gaussian profile. Two cases have been analyzed, in the first, the Gaussian beam is collinear center to center with respect to waveguide; in the second, a small lateral offset and angular tilt have been introduced. Modal beating and bending effects have been founded. We have proven the validity of our numerical results in detailed comparison with experimental data. [Spanish] Se ha empleado el metodo de propagacion de haces por la transformada rapida de Fourier para simular la propagacion de la luz en guias de onda de indice de gradiente. Estas han sido fabricadas por difusion de iones de cobre en estado solido en substratos de vidrios sodicos-calcicos. Se han simulado dos casos, el primero, el perfil de luz de entrada, que es gaussiano, es colineal centro a centro respecto al centro de la guia de ondas: el segundo, se ha dado un pequeno corrimiento lateral y una inclinacion angular. Como consecuencia de los casos anteriores se ha observado efectos de batimiento modal. Los resultados de la simulacion se han validado con resultados experimentales.

  17. A simulation study of antimatter-helium ion planar channeling in silicon

    International Nuclear Information System (INIS)

    Wijesundera, Dharshana; Jayarathna, Sandun; Bellwied, Rene; Chu, Wei-Kan


    With the physical significance arising with the reports on experimental observation of antimatter-He nuclei, we have investigated a case of 2 MeV antimatter-He ion planar channeling in Si (1 0 0) in comparison with He channeling, by simulation. For a negatively charged antimatter-He nucleus, the planar potential well is centered at the atomic plane itself as opposed to the center-channel minimum for He ions; the antimatter-He ion distribution therefore tends to concentrate toward the atomic lattice planes. The antimatter-He ion flux distribution and the resulting close encounter probability are crucial in determining the probability of close encounter events including annihilation at channeling incidence. We have therefore analyzed the variation of antimatter-He ion flux distribution within the channels with respect to the angle of incidence and have thereby derived the orientation dependence of probability of close encounter events, or an antimatter-He channeling angular scan. The angular scan is inverted with a maximum yield at the perfect beam-planar alignment. The half-angle is narrower compared to He channeling, as a consequence of the narrower planar channeling potential centered at the lattice planes. The high de-channeling rate associated with the higher antimatter-He ion concentration in the proximity of lattice planes causes the maximum yield to be less prominent and to decrease rapidly with depth. The shoulder region shows strong depth dependent reduction that can be associated to near surface depth dependent ion flux variation.

  18. A Statistical Thermodynamic Model for Ligands Interacting With Ion Channels: Theoretical Model and Experimental Validation of the KCNQ2 Channel

    Directory of Open Access Journals (Sweden)

    Fang Bai


    Full Text Available Ion channels are important therapeutic targets, and their pharmacology is becoming increasingly important. However, knowledge of the mechanism of interaction of the activators and ion channels is still limited due to the complexity of the mechanisms. A statistical thermodynamic model has been developed in this study to characterize the cooperative binding of activators to ion channels. By fitting experimental concentration-response data, the model gives eight parameters for revealing the mechanism of an activator potentiating an ion channel, i.e., the binding affinity (KA, the binding cooperative coefficients for two to four activator molecules interacting with one channel (γ, μ, and ν, and the channel conductance coefficients for four activator binding configurations of the channel (a, b, c, and d. Values for the model parameters and the mechanism underlying the interaction of ztz240, a proven KCNQ2 activator, with the wild-type channel have been obtained and revealed by fitting the concentration-response data of this activator potentiating the outward current amplitudes of KCNQ2. With these parameters, our model predicted an unexpected bi-sigmoid concentration-response curve of ztz240 activation of the WT-F137A mutant heteromeric channel that was in good agreement with the experimental data determined in parallel in this study, lending credence to the assumptions on which the model is based and to the model itself. Our model can provide a better fit to the measured data than the Hill equation and estimates the binding affinity, as well as the cooperative coefficients for the binding of activators and conductance coefficients for binding states, which validates its use in studying ligand-channel interaction mechanisms.

  19. Differential subcellular distribution of ion channels and the diversity of neuronal function. (United States)

    Nusser, Zoltan


    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Protein kinase D1 modulates aldosterone-induced ENaC activity in a renal cortical collecting duct cell line.

    LENUS (Irish Health Repository)

    McEneaney, Victoria


    Aldosterone treatment of M1-CCD cells stimulated an increase in epithelial Na(+) channel (ENaC) alpha-subunit expression that was mainly localized to the apical membrane. PKD1-suppressed cells constitutively expressed ENaCalpha at low abundance, with no increase after aldosterone treatment. In the PKD1-suppressed cells, ENaCalpha was mainly localized proximal to the basolateral surface of the epithelium both before and after aldosterone treatment. Apical membrane insertion of ENaCbeta in response to aldosterone treatment was also sensitive to PKD1 suppression as was the aldosterone-induced rise in the amiloride-sensitive, trans-epithelial current (I(TE)). The interaction of the mineralocorticoid receptor (MR) with specific elements in the promoters of aldosterone responsive genes is stabilized by ligand interaction and phosphorylation. PKD1 suppression inhibited aldosterone-induced SGK-1 expression. The nuclear localization of MR was also blocked by PKD1 suppression and MEK antagonism implicating both these kinases in MR nuclear stabilization. PKD1 thus modulates aldosterone-induced ENaC activity through the modulation of sub-cellular trafficking and the stabilization of MR nuclear localization.

  1. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries. (United States)

    Pérez, Francisco R; Venegas, Fabiola; González, Magdalena; Andrés, Sergio; Vallejos, Catalina; Riquelme, Gloria; Sierralta, Jimena; Michea, Luis


    Recent studies have shown that the epithelial sodium channel (ENaC) is expressed in vascular tissue. However, the role that ENaC may play in the responses to vasoconstrictors and NO production has yet to be addressed. In this study, the contractile responses of perfused pressurized small-diameter rat mesenteric arteries to phenylephrine and serotonin were reduced by ENaC blockade with amiloride (75.1+/-3.2% and 16.9+/-2.3% of control values, respectively; P<0.01) that was dose dependent (EC(50)=88.9+/-1.6 nmol/L). Incubation with benzamil, another ENaC blocker, had similar effects. alpha, beta, and gamma ENaC were identified in small-diameter rat mesenteric arteries using RT-PCR and Western blot with specific antibodies. In situ hybridization and immunohistochemistry localized ENaC expression to the tunica media and endothelium of small-diameter rat mesenteric arteries. Patch-clamp experiments demonstrated that primary cultures of mesenteric artery endothelial cells expressed amiloride-sensitive sodium currents. Mechanical ablation of the endothelium or inhibition of eNOS with N(omega)-nitro-L-arginine inhibited the reduction in contractility caused by ENaC blockers. ENaC inhibitors increased eNOS phosphorylation (Ser 1177) and Akt phosphorylation (Ser 473). The presence of the phosphoinositide 3-kinase inhibitor LY294002 blunted Akt phosphorylation and eNOS phosphorylation and the decrease in the response to phenylephrine caused by blockers of ENaC, indicating that the phosphoinositide 3-kinase/Akt pathway was activated after ENaC inhibition. Finally, we observed that the effects of blockers of ENaC were flow dependent and that the vasodilatory response to shear stress was enhanced by ENaC blockade. Our results identify a previously unappreciated role for ENaC as a negative modulator of eNOS and NO production in resistance arteries.

  2. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice. (United States)

    Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf


    We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.

  3. Theory and simulation of ion conduction in the pentameric GLIC channel. (United States)

    Zhu, Fangqiang; Hummer, Gerhard


    GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.

  4. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs. (United States)

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo


    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  5. Making channeling visible: keV noble gas ion trails on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, A; Standop, S; Michely, T [II Physikalisches Institut, Universitaet zu Koeln, D-50937 Koeln (Germany); Rosandi, Y; Urbassek, H M, E-mail: [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)


    The impact of argon and xenon noble gas ions on Pt(111) in grazing incidence geometry are studied through direct comparison of scanning tunneling microscopy images and molecular dynamics simulations. The energy range investigated is 1-15 keV and the angles of incidence with respect to the surface normal are between 78.5{sup 0} and 88{sup 0}. The focus of the paper is on events where ions gently enter the crystal at steps and are guided in channels between the top most layers of the crystal. The trajectories of the subsurface channeled ions are visible as trails of surface damage. The mechanism of trail formation is analyzed using simulations and analytical theory. Significant differences between Xe{sup +} and Ar{sup +} projectiles in damage, in the onset energy of subsurface channeling as well as in ion energy dependence of trail length and appearance are traced back to the projectile and ion energy dependence of the stopping force. The asymmetry of damage production with respect to the ion trajectory direction is explained through the details of the channel shape and subchannel structure as calculated from the continuum approximation of the channel potential. Measured and simulated channel switching in directions normal and parallel to the surface as well as an increase of ions entering into channels from the perfect surface with increasing angles of incidence are discussed.

  6. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy. (United States)

    Lau, Carus; Hunter, Mark J; Stewart, Alastair; Perozo, Eduardo; Vandenberg, Jamie I


    The tightly regulated opening and closure of ion channels underlies the electrical signals that are vital for a wide range of physiological processes. Two decades ago the first atomic level view of ion channel structures led to a detailed understanding of ion selectivity and conduction. In recent years, spectacular developments in the field of cryo-electron microscopy have resulted in cryo-EM superseding crystallography as the technique of choice for determining near-atomic resolution structures of ion channels. Here, we will review the recent developments in cryo-EM and its specific application to the study of ion channel gating. We will highlight the advantages and disadvantages of the current technology and where the field is likely to head in the next few years. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  7. Calculating tracer currents through narrow ion channels: Beyond the independent particle model. (United States)

    Coalson, Rob D; Jasnow, David


    Discrete state models of single-file ion permeation through a narrow ion channel pore are employed to analyze the ratio of forward to backward tracer current. Conditions under which the well-known Ussing formula for this ratio hold are explored in systems where ions do not move independently through the channel. Building detailed balance into the rate constants for the model in such a way that under equilibrium conditions (equal rate of forward vs. backward permeation events) the Nernst Equation is satisfied, it is found that in a model where only one ion can occupy the channel at a time, the Ussing formula is always obeyed for any number of binding sites, reservoir concentrations of the ions and electric potential difference across the membrane which the ion channel spans, independent of the internal details of the permeation pathway. However, numerical analysis demonstrates that when multiple ions can occupy the channel at once, the nonequilibrium forward/backward tracer flux ratio deviates from the prediction of the Ussing model. Assuming an appropriate effective potential experienced by ions in the channel, we provide explicit formulae for the rate constants in these models. © 2018 IOP Publishing Ltd.

  8. Expression and distribution of voltage-gated ion channels in ferret sinoatrial node. (United States)

    Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C


    Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.

  9. Relevance of quantum mechanics on some aspects of ion channel function


    Roy, Sisir; Llinás, Rodolfo


    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger–Langevin equation for this kind of system within the framework of stochastic quantization. The Planck’s constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the phy...

  10. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy. (United States)

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji


    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. Ion channels in EEG: isolating channel dysfunction in NMDA receptor antibody encephalitis. (United States)

    Symmonds, Mkael; Moran, Catherine H; Leite, M Isabel; Buckley, Camilla; Irani, Sarosh R; Stephan, Klaas Enno; Friston, Karl J; Moran, Rosalyn J


    Neurological and psychiatric practice frequently lack diagnostic probes that can assess mechanisms of neuronal communication non-invasively in humans. In N-methyl-d-aspartate (NMDA) receptor antibody encephalitis, functional molecular assays are particularly important given the presence of NMDA antibodies in healthy populations, the multifarious symptomology and the lack of radiological signs. Recent advances in biophysical modelling techniques suggest that inferring cellular-level properties of neural circuits from macroscopic measures of brain activity is possible. Here, we estimated receptor function from EEG in patients with NMDA receptor antibody encephalitis (n = 29) as well as from encephalopathic and neurological patient controls (n = 36). We show that the autoimmune patients exhibit distinct fronto-parietal network changes from which ion channel estimates can be obtained using a microcircuit model. Specifically, a dynamic causal model of EEG data applied to spontaneous brain responses identifies a selective deficit in signalling at NMDA receptors in patients with NMDA receptor antibody encephalitis but not at other ionotropic receptors. Moreover, though these changes are observed across brain regions, these effects predominate at the NMDA receptors of excitatory neurons rather than at inhibitory interneurons. Given that EEG is a ubiquitously available clinical method, our findings suggest a unique re-purposing of EEG data as an assay of brain network dysfunction at the molecular level.

  12. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML, which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL:

  13. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew


    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  14. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.


    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  15. Channel for Applied Investigations on Low Energy Ion Beams of Cyclotron DC-60

    CERN Document Server

    Gikal, B N; Borisenko, A N; Fateev, A A; Gulbekyan, G G; Kalagin, I V; Kazacha, V I; Kazarinov, N Yu; Kolesov, I V; Lebedev, N I; Lysukhin, S N; Melnikov, V N


    The channel intended for carrying out applied investigations on the low energy ion beams having the kinetic energy 25 $Z/A$ keV/a.u. and transported from the ECR-source to a target is worked out. The channel structure and parameters of all its optics elements are defined. The calculation results of different ion types transportation are given. It is shown that ions having the ratio of their mass to charge Z/A=2-20 can be transported in the worked out channel with enough high expected efficiency. At that the ion beam diameter on the target is $\\sim$40 mm. The characteristics of the basic optical elements of the channel are also given.

  16. Multiple-channel detection of cellular activities by ion-sensitive transistors (United States)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi


    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  17. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    Zheng Liping; Zhu Zhiyuan; Li Yong; Zhu Dezhang; Xia Huihao


    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  18. The molecular mechanism of multi-ion conduction in K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Gwan, J.F.


    Steered molecular dynamics (SMD) simulation method is applied to a fully solvated membrane-channel model for studying the ion permeation process in potassium channels. The channel model is based on the crystallographic structure of a prokaryotic K{sup +} channel- the KcsA channel, which is a representative of most known eukaryotic K{sup +} channels. It has long been proposed that the ion transportation in a conventional K{sup +}-channel follows a multi-ion fashion: permeating ions line in a queue in the channel pore and move in a single file through the channel. The conventional view of multi-ion transportation is that the electrostatic repulsion between ions helps to overcome the attraction between ions and the channel pore. In this study, we proposed two SMD simulation schemes, referred to 'the single-ion SMD' simulations and 'the multi-ion SMD' simulations. Concerted movements of a K-W-K sequence in the selectivity filter were observed in the single-ion SMD simulations. The analysis of the concerted movement reveals the molecular mechanism of the multi-ion transportation. It shows that, rather than the long range electrostatic interaction, the short range polar interaction is a more dominant factor in the multi-ion transportation. The polar groups which play a role in the concerted transportation are the water molecules and the backbone carbonyl groups of the selectivity filter. The polar interaction is sensitive to the relative orientation of the polar groups. By changing the orientation of a polar group, the interaction may switch from attractive to repulsive or vice versa. By this means, the energy barrier between binding sites in the selectivity filter can be switched on and off, and therefore the K{sup +} may be able to move to the neighboring binding site without an external driving force. The concerted transportation in the selectivity filter requires a delicate cooperation between K{sup +}, waters, and the backbone carbonyl groups. To

  19. Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Klausen, Thomas Levin; Pedersen, Peter Steen


    and unidirectional Cl- fluxes decreased significantly. The results suggest that nucleotides released to the airway surface liquid exert an autocrine regulation of epithelial NaCl absorption mainly by inhibiting the amiloride-sensitive epithelial Na+ channel (ENaC) and paracellular anion conductance via a P2Y......We investigated purinergic receptors involved in ion transport regulation in the intact rabbit nasal airway epithelium. Stimulation of apical membrane P2Y receptors with ATP or UTP (200 microM) induced transient increases in short-circuit current (Isc) of 13 and 6% followed by sustained inhibitions...

  20. Dispersion relation of Raman FEL with helical Wiggler and ion channel

    International Nuclear Information System (INIS)

    Hosseinalinezhad, M.; Bahmani, M.; Hasanbeigi, A.; Salehkoutahi, M.


    In this paper the theory of free electron laser with helical wiggler and ion channel guiding has been presented. The equations of motion for an electron have been analyzed. A formula for the dispersion relation is then derived in the low-gain-per-pass limit. The results of a numerical study of the growth rate enhancement due to the ion channel are presented and discussed.

  1. The effect of closed channels on the electron impact excitation of Mg +, Cd + ions (United States)

    Li, Yueming


    Based on the developed method for solving the multi-channel equation, which had been applied to the calculations of several kinds of ions including only open-open interactions, closed channels and their interactions with open channels have been studied. The wave functions of the closed channels are also expressed in terms of their homogeneous solutions which is just the same as for open channels. The homogeneous solutions are described and solved in WKB form, therefore the regular and irregular solutions as well as the quantum defect numbers can be obtained simultaneously. Excitations of Mg +, Cd + ions impact by electrons are calculated for energies close to the thresholds. The results are compared with those of the experimental observations and previous theoretical calculations. The effect of including the closed channels, especially when the energy passes through the resonance energies, has been discussed according to the deduced formulae and the calculated results.

  2. Imaging large cohorts of single ion channels and their activity

    Directory of Open Access Journals (Sweden)

    Katia eHiersemenzel


    Full Text Available As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the sub-types of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nanoscale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviours, interactions and conductance activities of many thousands of channel molecules and vesicles in living cells.

  3. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W


    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  4. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design (United States)

    Nussinov, Ruth


    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  5. Fragile X mental retardation protein controls ion channel expression and activity. (United States)

    Ferron, Laurent


    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation (United States)

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix


    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  7. An evolutionarily conserved gene family encodes proton-selective ion channels. (United States)

    Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R


    Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. History-dependent dynamics in a generic model of ion channels - an analytic study

    Directory of Open Access Journals (Sweden)

    Daniel Soudry


    Full Text Available Recent experiments have demonstrated that the timescale of adaptation of single neurons and ion channel populations to stimuli slows down as the length of stimulation increases; in fact, no upper bound on temporal time-scales seems to exist in such systems. Furthermore, patch clamp experiments on single ion channels have hinted at the existence of large, mostly unobservable, inactivation state spaces within a single ion channel. This raises the question of the relation between this multitude of inactivation states and the observed behavior. In this work we propose a minimal model for ion channel dynamics which does not assume any specific structure of the inactivation state space. The model is simple enough to render an analytical study possible. This leads to a clear and concise explanation of the experimentally observed exponential history-dependent relaxation in sodium channels in a voltage clamp setting, and shows that their recovery rate from slow inactivation must be voltage dependent. Furthermore, we predict that history-dependent relaxation cannot be created by overly sparse spiking activity. While the model was created with ion channel populations in mind, its simplicity and genericalness render it a good starting point for modeling similar effects in other systems, and for scaling up to higher levels such as single neurons which are also known to exhibit multiple time scales.

  9. Cardiac ion channels and mechanisms for protection against atrial fibrillation

    DEFF Research Database (Denmark)

    Grunnet, Morten; Bentzen, Bo Hjorth; Sørensen, Ulrik S


    Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a differe...... to the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included....

  10. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    International Nuclear Information System (INIS)

    Jun, Ma; Long, Huang; Chun-Ni, Wang; Zhong-Sheng, Pu


    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio x Na (and x K ), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio x Na (and x K ) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered. (interdisciplinary physics and related areas of science and technology)

  11. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange. (United States)

    Chen, Chang-Yu; Tu, Ting-Yuan; Jong, De-Shien; Wo, Andrew M


    Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays. Copyright © 2011 Wiley Periodicals, Inc.

  12. Funciones de los canales iónicos CFTR y ENAC en la fibrosis quística

    Directory of Open Access Journals (Sweden)

    Alejandra G. Palma


    Full Text Available La fibrosis quística se debe a la ausencia o defecto del canal transmembrana regulador de la fibrosis quística (CFTR, un canal de cloruro codificado en el gen cftr que juega un papel clave en la homeostasis del agua e iones. El CFTR es activado por el AMPc y se localiza en las membranas apicales y basolaterales de las vías aéreas, intestino y glándulas exocrinas. Una de sus funciones primarias en los pulmones es mantener la capa de líquido superficial a través de su función de canal y regular el canal epitelial de sodio sensible al amiloride (ENaC. Se han identificado más de 1900 mutaciones en el gen cftr. La enfermedad se caracteriza por secreciones viscosas en las glándulas exocrinas y por niveles elevados de cloruro de sodio en el sudor. En la fibrosis quística el CFTR no funciona y el ENaC está desregulado; el resultado es un aumento en la reabsorción de sodio y agua con la formación de un líquido viscoso. En las glándulas sudoríparas tanto el Na+ como el Cl- se retienen en el lumen causando una pérdida de electrolitos durante la sudoración y el NaCl se elimina al sudor. Así, los niveles elevados de NaCl son la base del test del sudor inducido por pilocarpina, un método de diagnóstico para la enfermedad. En esta revisión se discuten los movimientos de Cl- y Na+ en las glándulas sudoríparas y pulmón así como el papel del ENaC en la patogénesis de la enfermedad.

  13. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chubinskiy-Nadezhdin, Vladislav I.; Vasileva, Valeria Y.; Pugovkina, Natalia A.; Vassilieva, Irina O.; Morachevskaya, Elena A.; Nikolsky, Nikolay N.; Negulyaev, Yuri A.


    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca 2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca 2+ -sensitive BK and SK channels was shown. • Local Ca 2+ influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca 2+ ] i . • Functional clustering of SACs and BK channels in stem cell membrane is proposed.

  14. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels. (United States)

    Gupta, Kanchan; Zamanian, Maryam; Bae, Chanhyung; Milescu, Mirela; Krepkiy, Dmitriy; Tilley, Drew C; Sack, Jon T; Yarov-Yarovoy, Vladimir; Kim, Jae Il; Swartz, Kenton J


    Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.

  15. Theoretical ion implantation profiles for low energy protons under channeling conditions

    International Nuclear Information System (INIS)

    Nobel, J.A.; Sabin, J.R.; Trickey, S.B.


    The authors present early results from the CHANNEL code, which simulates the passage of ionized projectiles through bulk solids. CHANNEL solves the classical equations of motion for the projectile using a force obtained from the gradient of the quantum mechanically derived coulombic potential of the solid (determined via a full potential augmented plane wave (FLAPW) calculation on the bulk) and a quantum mechanical energy dissipation term, the stopping power, as determined from the method of Echenique, Neiminen, and Ritchie. The code then generates the trajectory of the ionic projectile for a given incident position on the unit cell face and an initial velocity. The authors use CHANNEL to generate an ion (proton) implantation profile for the test case of simple cubic hydrogen with the projectile's initial velocity parallel to the (100) channel. Further preliminary results for ion implantation profiles of protons in diamond structure Si, with initial velocity along the (100) and (110) channels, are given

  16. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel. (United States)

    Cheng, Mary Hongying; Coalson, Rob D; Tang, Pei


    Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.

  17. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells. (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine


    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  18. Human Digital Meissner Corpuscles Display Immunoreactivity for the Multifunctional Ion Channels Trpc6 and Trpv4. (United States)

    Alonso-González, Paula; Cabo, Roberto; San José, Isabel; Gago, Angel; Suazo, Iván C; García-Suárez, Olivia; Cobo, Juan; Vega, José A


    Ion channels are at the basis of the sensory processes including mechanosensing. Some members of the transient receptor potential (TRP) ion channel superfamily have been proposed as mechanosensors, but their putative role in mechanotransduction is controversial. Among them there are TRP canonical 6 (TRPC6) and TRP vanilloid 4 (TRPV4) ion channels, which are known to cooperate in mechanical hyperalgesia. Here, we investigated the occurrence, distribution, and possible colocalization of TRPC6 and TRPV4 in human digital Meissner sensory corpuscles using immunohistochemistry and double immunofluorescence (associate with markers for specific corpuscular constituents). TRPC6 immunoreactivity was restricted to the axon of Meissner corpuscles, whereas TRPV4 was detected in the axon but also in the lamellar cells. Moreover, axonal colocalization of TRPV4 and TRPC6 was found in the digital Meissner corpuscles. Present results demonstrate for the first time the occurrence and colocalization of two ion channels candidates to mechanosensors in human cutaneous mechanoreceptors. The functional significance of these ion channels in that place remains to be clarified, but should be related to different properties of mechanosensitivity. Anat Rec, 300:1022-1031, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration. (United States)

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L


    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel. (United States)

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J


    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  1. Axial ion channeling patterns from ultra-thin silicon membranes

    International Nuclear Information System (INIS)

    Motapothula, M.; Dang, Z.Y.; Venkatesan, T.; Breese, M.B.H.; Rana, M.A.; Osman, A.


    We present channeling patterns produced by MeV protons transmitted through 55 nm thick [0 0 1] silicon membranes showing the early evolution of the axially channeled beam angular distribution for small tilts away from the [0 0 1], [0 1 1] and [1 1 1] axes. Instead of a ring-like “doughnut” distribution previously observed at small tilts to major axes in thicker membranes, geometric shapes such as squares and hexagons are observed along different axes in ultra-thin membranes. The different shapes arise because of the highly non-equilibrium transverse momentum distribution of the channeled beam during its initial propagation in the crystal and the reduced multiple scattering which allows the fine angular structure to be resolved. We describe a simple geometric construction of the intersecting planar channels at an axis to gain insight into the origin of the geometric shapes observed in such patterns and how they evolve into the ‘doughnut’ distributions in thicker crystals.

  2. Ion-channeling analysis of As relocation in heavily doped Si:As irradiated with high-energy ions

    International Nuclear Information System (INIS)

    Lulli, G.; Albertazzi, E.; Bianconi, M.; Ferri, M.


    Silicon on insulator layers doped with 8x10 20 As cm -3 and thermally equilibrated at 1100 deg. C, have been irradiated with 2 MeV Si + ions. Rutherford backscattering-channeling analysis shows an increase in As disorder upon irradiation significantly larger than the increase in Si disorder, while electrical measurements show a large decrease in electrical activation. Monte Carlo simulation of channeling angular scans suggests that the enhanced As disorder effect is due to the preferential relocation of dopant atoms slightly displaced from lattice sites, which appear the main reason responsible for the electrical deactivation in the unirradiated sample and are believed to be in the form of As-vacancy clusters. Upon 600 deg. C 15 s annealing, the As atoms randomly relocated by ion irradiation almost completely recover their original configuration, probably capturing vacancies and forming, again, the complexes dissociated by ion irradiation

  3. Experimental aspects of S.H.I.C. (Swift Heavy Ion Channeling)

    International Nuclear Information System (INIS)

    Andriamonje, S.; Castro Faria, N.V. de; Chevallier, M.; Gaillard, M.J.; Genre, R.; Farizon-Mazuy, B.; Poizat, J.C.; Remillieux, J.; Hage-Ali, M.; Cohen, C.; L'Hoir, A.; Moulin, J.; Schmaus, D.


    The mean stopping power experienced by the ions of exit charge Z and the charge distribution are measured. The experimental set up description is summarized. The experiments were performed at GANIL, using hydrogenoid Xenon ions, with 25 MeV/u on a silicon crystal target. The ion channeling and energy losses are measured. The results concerning the Lyman alpha lines intensity and Xe36 + transmission as a function of the crystal orientation are presented. The suitability of LISE device, for investigating crystalline effects in heavy ion charge exchange phenomena, is confirmed

  4. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.


    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  5. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures. (United States)

    Mayer, Mark L


    Ion channels activated by glutamate mediate excitatory synaptic transmission in the central nervous system. Similar to other ligand-gated ion channels, their gating cycle begins with transitions from a ligand-free closed state to glutamate-bound active and desensitized states. In an attempt to reveal the molecular mechanisms underlying gating, numerous structures for glutamate receptors have been solved in complexes with agonists, antagonists, allosteric modulators, and auxiliary proteins. The embarrassingly rich library of structures emerging from this work reveals very dynamic molecules with a more complex conformational spectrum than anticipated from functional studies. Unanticipated conformations solved for complexes with competitive antagonists and a lack of understanding of the structural basis for ion channel subconductance states further highlight challenges that have yet to be addressed. Published by Elsevier Inc.

  6. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata


    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  7. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    International Nuclear Information System (INIS)

    Holt, J.K.; Herberg, J.L.; Wu, Y.; Schwegler, E.; Mehta, A.


    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  8. Nonlinear drift-diffusion model of gating in K and nACh ion channels

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S.R. [Department of Physics, University of Adelaide, Adelaide, South Australia 5005 (Australia)], E-mail:


    The configuration of a sensor regulates the transition between the closed and open states of both voltage and ligand gated channels. The closed state dwell-time distribution f{sub c}(t) derived from a Fokker-Planck equation with a nonlinear diffusion coefficient is in good agreement with experimental data and can account for the power law approximation to f{sub c}(t) for a delayed rectifier K channel and a nicotinic acetylcholine (nACh) ion channel. The solution of a master equation which approximates the Fokker-Planck equation provides a better description of the small time behaviour of the dwell-time distribution and can account for the empirical rate-amplitude correlation for these ion channels.

  9. Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na+ - K+ Fluxes

    Directory of Open Access Journals (Sweden)

    Pomati Francesco


    Full Text Available Here we describe an experimental design aimed to investigate changes in total cellular levels of Na+ and K+ ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na+ levels increased exponentially with rising alkalinity, with K+ levels being maximal for optimal growth pH (~8. At standardized pH conditions, the increase in cellular Na+, as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 &mgr;M and veratridine at 100 &mgr;M. Both the channel-blockers amiloride (1 mM and saxitoxin (1 &mgr;M, decreased cell-bound Na+ and K+ levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na+- K+ fluxes.

  10. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel (United States)

    Ding, J. P.; Pickard, B. G.


    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  11. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.


    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO 2 -laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges

  12. Thermal responsive ion selectivity of uranyl peroxide nanocages: an inorganic mimic of K{sup +} ion channels

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yunyi; Sun, Xinyu; Liu, Tianbo [Department of Polymer Science, University of Akron, Akron, OH (United States); Szymanowski, Jennifer E.S.; Burns, Peter C. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN (United States)


    An actinyl peroxide cage cluster, Li{sub 48+m}K{sub 12}(OH){sub m}[UO{sub 2}(O{sub 2})(OH)]{sub 60} (H{sub 2}O){sub n} (m∼20 and n∼310; U{sub 60}), discriminates precisely between Na{sup +} and K{sup +} ions when heated to certain temperatures, a most essential feature for K{sup +} selective filters. The U{sub 60} clusters demonstrate several other features in common with K{sup +} ion channels, including passive transport of K{sup +} ions, a high flux rate, and the dehydration of U{sub 60} and K{sup +} ions. These qualities make U{sub 60} (a pure inorganic cluster) a promising ion channel mimic in an aqueous environment. Laser light scattering (LLS) and isothermal titration calorimetry (ITC) studies revealed that the tailorable ion selectivity of U{sub 60} clusters is a result of the thermal responsiveness of the U{sub 60} hydration shells. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Thermal responsive ion selectivity of uranyl peroxide nanocages. An inorganic mimic of K{sup +} ion channels

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yunyi; Sun, Xinyu; Liu, Tianbo [Akron Univ., OH (United States). Dept. of Polymer Science; Szymanowski, Jennifer E.S.; Burns, Peter C. [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences


    An actinyl peroxide cage cluster, Li{sub 48+m}K{sub 12}(OH){sub m}[UO{sub 2}(O{sub 2})(OH)]{sub 60} (H{sub 2}O){sub n} (m∼20 and n∼310; U{sub 60}), discriminates precisely between Na{sup +} and K{sup +} ions when heated to certain temperatures, a most essential feature for K{sup +} selective filters. The U{sub 60} clusters demonstrate several other features in common with K{sup +} ion channels, including passive transport of K{sup +} ions, a high flux rate, and the dehydration of U{sub 60} and K{sup +} ions. These qualities make U{sub 60} (a pure inorganic cluster) a promising ion channel mimic in an aqueous environment. Laser light scattering (LLS) and isothermal titration calorimetry (ITC) studies revealed that the tailorable ion selectivity of U{sub 60} clusters is a result of the thermal responsiveness of the U{sub 60} hydration shells.

  14. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca


    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  15. Enacs Survey of Southern Galaxies Indicates Open Universe (United States)


    candidate clusters. Such observations are crucial, as they not only prove the existence of a cluster, but also determine its distance and provide information about the motion of the individual galaxies within the cluster. The ESO Nearby Abell Cluster Survey (ENACS) Until recently, there existed no large cluster sample with extensive and uniform data on the motions of the individual galaxies. But now, in the context of an ESO Key-Programme known as the ESO Nearby Abell Cluster Survey or ENACS , the team of European astronomers has collected spectroscopic and photometric data for a substantial sample of more than one-hundred, rich and relatively nearby southern clusters from the Abell catalogue [2]. The extensive observations were carried out with the OPTOPUS multi-fibre spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory, during 35 nights in the period from September 1989 to October 1993. With this very efficient spectrograph, the spectra of about 50 galaxies could be recorded simultaneously, dramatically reducing the necessary observing time. In total, the programme has yielded reliable radial velocities for more than 5600 galaxies in the direction of about 100 rich clusters. The velocities were derived from a comparison of the observed wavelengths of absorption and emission lines with their rest wavelengths (the galaxy `redshifts'). Assuming a particular value of the `Hubble constant' (the proportionality factor between the velocity of a galaxy and its distance, due to the general expansion of the Universe), the distances of the galaxies can then be derived directly from the measured velocities. The new observations approximately double the amount of data available for rich clusters of galaxies. In combination with earlier data, the ENACS has produced a `complete' sample of 128 rich Abell clusters in a region centered near the south galactic pole (the direction which is perpendicular to the main plane of the Milky Way galaxy), and comprising

  16. A selectivity filter at the intracellular end of the acid-sensing ion channel pore

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Flood, Emelie; Boiteux, Céline


    Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verificatio...... at the "GAS belt" in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction....

  17. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization. (United States)

    Vucic, Steve; Kiernan, Matthew C


    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  18. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    Directory of Open Access Journals (Sweden)

    Marco Crescentini


    Full Text Available High-throughput screening (HTS using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i design of scalable microfluidic devices; (ii design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  19. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording. (United States)

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco


    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  20. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes. (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan


    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  1. 24-channel dual microcontroller-based voltage controller for ion optics remote control (United States)

    Bengtsson, L.


    The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.

  2. Increased Throughput in Ion Channel Drug Development and Exploration by Automation of Electrophysiology

    DEFF Research Database (Denmark)

    Willumsen, N. J.


    Ion channels constitute macromolecular communication gates that are present in the membranes of all living cells. They are crucial for practically any physiological process, either as chemical or electrical signal transducers or as transmembrane routes for the bulk transport of salts. Not surpris......Ion channels constitute macromolecular communication gates that are present in the membranes of all living cells. They are crucial for practically any physiological process, either as chemical or electrical signal transducers or as transmembrane routes for the bulk transport of salts...

  3. Additional transport channel of carbon ions for biological research at the Nuclotron of JINR

    International Nuclear Information System (INIS)

    Yudin, I.P.; Panasik, V.A.; Tyutyunnikov, S.I.


    The paper deals with the construction of the 12 C +6 beam transport line for biomedical research at the Nuclotron accelerator complex, JINR. We have studied the scheme and modes of magneto-optical elements of the channel. The results of calculations of the investigated beam transport of carbon ions are presented. The algorithms to control the carbon ion beam in the transportation system are discussed. The choice of the magneto-optical system is motivated. The graphs of the beam envelopes in the channel are given. The scanning control beam functions are considered

  4. Additional transport channel of carbon ions for biological research at the Nuclotron of JINR

    International Nuclear Information System (INIS)

    Yudin, I.P.; Panasik, V.A.; Tyutyunnikov, S.I.


    The paper deals with the construction of the beam 12 C +6 transport line for biomedical research at the Nuclotron accelerator complex, JINR. We have studied the scheme and modes of magneto-optical elements of the channel. The results of calculations of the investigated beam transport of carbon ions are presented. The algorithms to control the carbon ion beam in the transportation system are discussed. The choice of the magneto-optical system is motivated. The graphs of the beam envelopes in the channel are given. The scanning control beam functions are considered

  5. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Chen Song

    Full Text Available The macroscopic Nernst-Planck (NP theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  6. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations. (United States)

    Song, Chen; Corry, Ben


    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  7. Simulation of biological ion channels with technology computer-aided design. (United States)

    Pandey, Santosh; Bortei-Doku, Akwete; White, Marvin H


    Computer simulations of realistic ion channel structures have always been challenging and a subject of rigorous study. Simulations based on continuum electrostatics have proven to be computationally cheap and reasonably accurate in predicting a channel's behavior. In this paper we discuss the use of a device simulator, SILVACO, to build a solid-state model for KcsA channel and study its steady-state response. SILVACO is a well-established program, typically used by electrical engineers to simulate the process flow and electrical characteristics of solid-state devices. By employing this simulation program, we have presented an alternative computing platform for performing ion channel simulations, besides the known methods of writing codes in programming languages. With the ease of varying the different parameters in the channel's vestibule and the ability of incorporating surface charges, we have shown the wide-ranging possibilities of using a device simulator for ion channel simulations. Our simulated results closely agree with the experimental data, validating our model.

  8. Ion-Channeling Studies of Interfaces and Defect Properties in Silicon Carbide

    International Nuclear Information System (INIS)

    Jiang, Weilin; Weber, William J.; C.H. Carter, Jr., R.P. Devaty, and G.S. Rohrer


    Helium ion channeling has been used in a detailed study of 3C-SiC films on a Si/SiO2/Si (SIMOX) substrate. The strain-induced angular shift was determined to be 0.16?? 0.05?, indicating a kink between the SiC and Si layers along the axis. Single crystals of 6H-SiC have been irradiated with a variety of ions over a range of fluences. The relative disorder on Si sublattice shows a sigmoidal dependence on dose for all ions. In isochronal and isothermal annealing studies, two distinct recovery stages are identified with activation energies of 0.25? 0.1 eV and 1.5? 0.3 eV, respectively. Deuterium ion channeling is also applied to simultaneously study accumulated disorder on Si and C sublattices in 6H-SiC crystals irradiated at 100 and 300 K

  9. Simulation of the channelling of ions from MeV C60 in crystalline solids

    International Nuclear Information System (INIS)

    Fetterman, A; Sinclair, L; Tanushev, N; Tombrello, T; Nardi, E


    Simulations were performed describing the motion and breakup of energetic C 60 ions interacting with crystalline targets. A hybrid algorithm was used that employs a binary collision model for the scattering of the carbon ions by the atoms of the solid, and molecular dynamics for the Coulomb interactions of the 60 carbon ions with one another. For the case of yttrium iron garnet (YIG), directions such as [1 1 0], [1 0 0], [0 1 0] and [0 0 1] demonstrate channelling for a large fraction of the C ions. For directions such as [1 1 1], [2 1 1] and [7 5 3] the trajectories show no more channelling than for random directions. The effects of tilt, shielding and wake-field interactions were investigated for YIG and α-quartz

  10. The Importance of the Dissociation Rate in Ion Channel Blocking

    Directory of Open Access Journals (Sweden)

    Hugo Zeberg


    Full Text Available Understanding the relationships between the rates and dynamics of current wave forms under voltage clamp conditions is essential for understanding phenomena such as state-dependence and use-dependence, which are fundamental for the action of drugs used as anti-epileptics, anti-arrhythmics, and anesthetics. In the present study, we mathematically analyze models of blocking mechanisms. In previous experimental studies of potassium channels we have shown that the effect of local anesthetics can be explained by binding to channels in the open state. We therefore here examine models that describe the effect of a blocking drug that binds to a non-inactivating channel in its open state. Such binding induces an inactivation-like current decay at higher potential steps. The amplitude of the induced peak depends on voltage and concentration of blocking drug. In the present study, using analytical methods, we (i derive a criterion for the existence of a peak in the open probability time evolution for a model with an arbitrary number of closed states, (ii derive formula for the relative height of the peak amplitude, and (iii determine the voltage dependence of the relative peak height. Two findings are apparent: (1 the dissociation (unbinding rate constant is important for the existence of a peak in the current waveform, while the association (binding rate constant is not, and (2 for a peak to exist it suffices that the dissociation rate must be smaller than the absolute value of all eigenvalues to the kinetic matrix describing the model.

  11. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Veres, M.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.


    Roč. 331, JUL (2014), s. 157-162 ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * focussed ion beam * Er-doped tungsten-tellurite glass * Bismuth germanate * Micro Raman spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  12. Coupled-channel analysis for heavy-ion scattering

    International Nuclear Information System (INIS)

    Kim, Byung-Taik.


    A method is given to carry out much faster coupled-channel (CC) calculations including the Coulomb excitation. For this purpose, two approximation techniques were used, namely, the WKB approximation of Alder and Pauli, in handling the effects of Coulomb excitation, and the Pade approximation for handling the large partial wave contribution. The formulation of CC calculations based on these two approximations is briefly discussed and some results of numerical calculations are shown for 16 O scattering with 152 Sm at 72 MeV

  13. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. (United States)

    Malvezzi, Mattia; Chalat, Madhavan; Janjusevic, Radmila; Picollo, Alessandra; Terashima, Hiroyuki; Menon, Anant K; Accardi, Alessio


    Phospholipid (PL) scramblases disrupt the lipid asymmetry of the plasma membrane, externalizing phosphatidylserine to trigger blood coagulation and mark apoptotic cells. Recently, members of the TMEM16 family of Ca(2+)-gated channels have been shown to be involved in Ca(2+)-dependent scrambling. It is however controversial whether they are scramblases or channels regulating scrambling. Here we show that purified afTMEM16, from Aspergillus fumigatus, is a dual-function protein: it is a Ca(2+)-gated channel, with characteristics of other TMEM16 homologues, and a Ca(2+)-dependent scramblase, with the expected properties of mammalian PL scramblases. Remarkably, we find that a single Ca(2+) site regulates separate transmembrane pathways for ions and lipids. Two other purified TMEM16-channel homologues do not mediate scrambling, suggesting that the family diverged into channels and channel/scramblases. We propose that the spatial separation of the ion and lipid pathways underlies the evolutionary divergence of the TMEM16 family, and that other homologues, such as TMEM16F, might also be dual-function channel/scramblases.

  14. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller


    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  15. Urinary plasmin activates collecting duct ENaC current in preeclampsia

    DEFF Research Database (Denmark)

    Buhl, KB; Friis, Ulla Glenert; Svenningsen, Per


    In nephrotic syndrome, plasminogen is aberrantly filtered from plasma to the urinary space and activated along the tubular system. In vitro, plasmin increases ENaC current by proteolytic cleavage of the γ-subunit. It was hypothesized that preeclampsia is associated with plasmin-dependent ability...

  16. Stopping Power and Energy Straggling of Channeled He-Ions in GaN

    International Nuclear Information System (INIS)

    Turos, A.; Ratajczak, R.; Pagowska, K.; Nowicki, L.; Stonert, A.; Caban, P.


    GaN epitaxial layers are usually grown on sapphire substrates. To avoid disastrous effect of the large lattice mismatch a thin polycrystalline nucleation layer is grown at 500 o C followed by the deposition of thick GaN template at much higher temperature. Remnants of the nucleation layer were visualized by transmission electron microscopy as defect agglomeration at the GaN/sapphire interface and provide a very useful depth marker for the measurement of channeled ions stopping power. Random and aligned spectra of He ions incident at energies ranging from 1.7 to 3.7 MeV have been measured and evaluated using the Monte Carlo simulation code McChasy. Impact parameter dependent stopping power has been calculated for channeling direction and its parameters have been adjusted according to experimental data. For virgin, i.e. as grown, samples, the ratio of channeled to random stopping power is constant and amounts to 0.7 in the energy range studied. Defects produced by ion implantation largely influence the stopping power. For channeled ions the variety of possible trajectories leads to different energy loss at a given depth, thus resulting in much larger energy straggling than that for the random path. Beam energy distributions at different depths have been calculated using the McChasy code. They are significantly broader than those predicted by the Bohr formula for random direction. (author)

  17. High quality ion channels recordings on an injection molded polymer chip

    DEFF Research Database (Denmark)

    Tanzi, Simone

    In this thesis we demonstrate high quality recordings of the ion channel activity across the cell membrane in a biological cell by employing the so called patch clamping technique on an injection molded polymer microfluidic device. Such recordings are traditionally made using glass micropipettes,...

  18. Binding of ArgTX-636 in the NMDA receptor ion channel

    DEFF Research Database (Denmark)

    Poulsen, Mette H; Andersen, Jacob; Christensen, Rune


    of NMDAR activity and have therapeutic potential for treatment of a variety of brain diseases or as pharmacological tools for studies of the neurobiological role of NMDARs. We have performed a kinetic analysis of the blocking mechanism of the prototypical polyamine toxin NMDAR ion channel blocker...

  19. Use of mutant-specific ion channel characteristics for risk stratification of long QT syndrome patients

    DEFF Research Database (Denmark)

    Jons, Christian; O-Uchi, Jin; Moss, Arthur J


    Inherited long QT syndrome (LQTS) is caused by mutations in ion channels that delay cardiac repolarization, increasing the risk of sudden death from ventricular arrhythmias. Currently, the risk of sudden death in individuals with LQTS is estimated from clinical parameters such as age, gender, and...

  20. (n,p) emission channeling measurements on ion-implanted beryllium

    CERN Multimedia

    Jakubek, J; Uher, J


    We propose to perform emission-channeling measurements using thermal neutron induced proton emission from ion-implanted $^{7}$Be. The physics questions addressed concern the beryllium doping of III-V and II-VI semiconductors and the host dependence of the electron capture half-life of $^{7}$Be.

  1. Imaging of the strain field around precipitate particles using transmission ion channeling

    NARCIS (Netherlands)

    King, PJC; Breese, MBH; Meekeson, D; Smulders, PJM; Wilshaw, PR; Grime, GW


    This paper shows ion channeling images of the strain field produced by precipitate particles in a crystal matrix. Images have been produced by mapping the energy of 3 MeV protons transmitted through a thinned silicon crystal containing colonies of copper silicide particles, with the incident beam at

  2. Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Maria Micaela Molina-Navarro

    Full Text Available BACKGROUND: Dilated cardiomyopathy (DCM is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. METHODS AND RESULTS: Microarray profiling using the Affymetrix Human Gene® 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT. The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples validated the gene expression of SCN2B (p < 0.0001, KCNJ5 (p < 0.05, KCNJ8 (p < 0.05, CLIC2 (p < 0.05, and CACNB2 (p < 0.05. Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. CONCLUSION: This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.

  3. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets (United States)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.


    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  4. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. (United States)

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin


    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  5. A unifying mechanism for cancer cell death through ion channel activation by HAMLET. (United States)

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina


    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  6. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin (United States)

    Simakov, Nikolay A.


    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  7. A family of fluoride-specific ion channels with dual-topology architecture. (United States)

    Stockbridge, Randy B; Robertson, Janice L; Kolmakova-Partensky, Ludmila; Miller, Christopher


    Fluoride ion, ubiquitous in soil, water, and marine environments, is a chronic threat to microorganisms. Many prokaryotes, archea, unicellular eukaryotes, and plants use a recently discovered family of F(-) exporter proteins to lower cytoplasmic F(-) levels to counteract the anion's toxicity. We show here that these 'Fluc' proteins, purified and reconstituted in liposomes and planar phospholipid bilayers, form constitutively open anion channels with extreme selectivity for F(-) over Cl(-). The active channel is a dimer of identical or homologous subunits arranged in antiparallel transmembrane orientation. This dual-topology assembly has not previously been seen in ion channels but is known in multidrug transporters of the SMR family, and is suggestive of an evolutionary antecedent of the inverted repeats found within the subunits of many membrane transport proteins. DOI:

  8. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica; Limongi, Tania; Falqui, Andrea; Genovese, Alessandro; Allione, Marco; Moretti, Manola; Lopatin, Sergei; Tirinato, Luca; Das, Gobind; Torre, Bruno; Giugni, Andrea; Cesca, F.; Benfenati, F.; Di Fabrizio, Enzo M.


    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  9. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica


    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  10. A spectroscopic study of ion channels in a prototype inertial electrostatic confinement reactor

    International Nuclear Information System (INIS)

    Collis, S.; Khachan, J.


    Inertial Electrostatic Confinement (IEC) involves using a semi-transparent and negatively biased grid to accelerate light nuclei towards a common centre for the purpose of generating neutrons through fusion reactions. This project investigated the plasma properties in a small prototype IEC device that was operated using a relatively low grid bias in a discharge of hydrogen. Electrostatic lenses, which are the product of the geometry of the grid, create ion channels. Doppler shift spectroscopy was performed on the emission produced by charge exchange reactions in these channels. Using the spectra we obtained, we were able to determine energies, ratios of hydrogen species (H + :H 2 + :H 3 + ) and thermal properties of ions present in these channels. A discussion of results will be presented with particular emphasis on the implications of our findings to the construction of a portable neutron production device. (author)

  11. Axonal voltage-gated ion channels as pharmacological targets for pain

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Romer Rosberg, Mette


    Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become...... maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which...... ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage...

  12. Caracterización del canal epitelial de sodio en sinciciotrofoblasto de placenta humana preeclamptica Characterization of the epithelial sodium channel in human pre-eclampsia syncytiotrophoblast

    Directory of Open Access Journals (Sweden)

    Silvana del Mónaco


    epithelial Na channel (ENaC in placental tissue from normal and pre-eclamptic women and in BeWo cell, a model of a human SCT. Changes in the expression of these proteins during sodium transport across the placenta may be related to the pathogeny of pre-eclampsia. The role that ENaC and Na+ transport deregulation play on human placental tissues still remains unknown although in aldosterone-responsive epithelial cells (kidney, colon, abnormalities upregulating its activity lead to increased Na+ uptake and hypertension (i.e. Liddle´s syndrome whereas a diminished channel activity can result in the pseudohypoaldosteronisn syndrome with salt loss and hypotension. Our results show that ENaC is expressed in the apical membrane of normal syncytiotrophoblast. The amplified fragment of a-ENaC was cloned and sequenced having a 100% identity with the sequence of a-ENaC obtained from GenBankTM (SCNN1A, accession number Z92981. We found that the transcription of the a-ENaC mRNA was not detectable in preeclamptic placentas and the protein was not observed with immunohistochemistry staining, probably indicating a low protein expression level. In BeWo cells ENac was found and its expression is regulated by aldosterone, vasopressin, progesterone and estradiol. With patch clamp techniques we studied the currents trough ENaC channels in Bewo cells. We observed currents that were blocked by 10 µM amiloride in cells incubated in 100 nM aldosterone for 12 hs. The amplitude of this current was 20-fold the basal current, a reversal potential of 3 mV and a conductance of 127 ± 26 pS/pF with pulses between -60 and -140 mV. These characteristics are similar to those reported in ENaC channels in several tissues. Although their roles in placenta are still poorly understood, the differences in the expression of ENaC in pre-eclamptic placentas may have consequences for ion transport and these data could lead to future studies concerning the mechanism involved in the pathophysiology of pre-eclampsia.

  13. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre? (United States)

    Pickard, B. G.; Ding, J. P.


    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  14. Ion channel gene expressions in infertile men: A case-control study

    Directory of Open Access Journals (Sweden)

    Serkan Carkci


    Full Text Available Background: Infertility is described as not receiving pregnancy despite unprotected and regular sexual intercourse in a 1 yr period. It is detected by 15% of the couples. Male and female factor in the etiology may be detected in similar rates. Objective: The present study aims to investigate ion channel gene expression in semen samples of infertile male compared with fertile men. Materials and Methods: A total of 150 men who applied to the urology clinic due to infertility were divided into five equal groups: asthenozoospermia, oligozoospermia, oligoasthenoteratozoospermia, teratozoospermia, and normozoospermia (control. All paticipants were evaluated with Cation Channel Spermia (CatSper 1, 2, 3, 4, Proton Voltage Gated Ion Channel1 (Hv1, Potassium Channel Subfamily U1 (KCNU1, and transmembrane protein (TMEM16A gene expression in semen samples. Results: “CatSper1, 4, HV1, KCNU1, and TMEM16A gene expression were detected higher in the oligozoospermia group compared to the controls. CatSper1, 2, 3, 4, KCNU1, and TMEM16A gene expression in the asthenozoospermia group and CatSper1, 2, 3, 4, KCNU1, and TMEM16A gene expression in the teratozoospermia group were detected lower compared to the controls. CatSper1, 4, HV1, and TMEM16A gen expression were higher in the oligoasthenoteratozoospermia men than the controls while CatSper3 gen expression was detected as lower.” Conclusion: It was detected that these ion channels have an effect on sperm progressive motility and morphology. It may be considered that mutations in these ion channels may result in infertility

  15. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels

    International Nuclear Information System (INIS)

    Liu, Jinn-Liang; Eisenberg, Bob


    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part of the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10 8 -fold range of Ca 2+ concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to

  16. Ion channelling analysis of pre-amorphised silicon diodes using a nuclear microprobe

    International Nuclear Information System (INIS)

    Thornton, J.; Paus, K.C.


    Aligned and random ion channelling analysis was performed on p + n diode structures in silicon, with the Surrey nuclear microprobe. Three different types of diode were investigated, each pre-amorphised by a different ion (Si + , Ge + or Sn + ) before the p + region was formed by BF 2 + implantation. The ion channelling measurements are presented and compared with previously published electrical measurements on these diodes. Relatively large residual disorder and junction leakage currents were found for the Si + pre-amorphised diodes; however, all the diodes were leaky. The results are consistent with dislocation loops within the depletion regions of the diodes causing both the residual disorder and the large leakage currents. Cross-sectional transmission electron microscopy studies support this model. (author)

  17. Role of ion channels in regulating Ca²⁺ homeostasis during the interplay between immune and cancer cells. (United States)

    Bose, T; Cieślar-Pobuda, A; Wiechec, E


    Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca(2+) influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca(2+) homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression.

  18. Ion Transport in Organic Electrolyte Solution through the Pore Channels of Anodic Nanoporous Alumina Membranes

    International Nuclear Information System (INIS)

    Fukutsuka, Tomokazu; Koyamada, Kohei; Maruyama, Shohei; Miyazaki, Kohei; Abe, Takeshi


    Highlights: • Ion transport in organic electrolyte solution in macro- and meso-pores was focused. • Anodic nanoporous alumina membrane was used as a porous material. • The specific ion conductivities drastically decreased in macro- and meso-pores. - Abstract: For the development of high energy density lithium-ion batteries with the high rate performance, the enhancement of the ion transport in the electrolyte solutions impregnated in the porous electrodes is a key. To study the ion transport in porous electrodes, anodic nanoporous alumina (APA) self-standing membranes with macro- or meso-pores were used as model porous materials. These membranes had nearly spherical pore channels of discrete 20–68 nm in diameters. By using the geometric shape of the pores, we attempted to evaluate the specific ion conductivities of the organic electrolyte solution dissolving lithium salt simply. AC impedance spectroscopy measurement of a four-electrode cell with membranes showed one depressed semi-circle in the Nyquist plots and this semi-circle can be assigned as the ion transport resistance in the pores. The specific ion conductivities evaluated from the ion transport resistances and the geometric parameters showed very small values, even in the macro-pores, as compared with that of the bulk electrolyte solution.

  19. Monte Carlo simulation of ion-beam channeling in YBa2Cu3O7

    International Nuclear Information System (INIS)

    Khodyrev, V.A.; Chumanov, V.Ya.; Bourdelle, K.K.; Pokhil, G.P.


    A Monte Carlo program (UPIC) for the simulation of ion channeling in crystals with complex structure is described. The program is applied to simulate the channeling of 1.5 MeV He + and 1 MeV D + near the [001] axis of YBa 2 Cu 3 O 7 assuming strongly correlated atomic displacements along the [001] Cu-O rows in the superconducting state. The values for the abrupt change in the half-width of the channeling dip observed in experiments [R.P. Sharma et al., Phys. Rev. B 38 (1988) 9287] at the temperature of the superconducting transition, T c , are reproduced in the simulations with correlation coefficients of 0.8-0.9. The increase in the minimum channeling yield at T c found in measurements [T. Haga et al., Phys. Rev. B 41 (1990) 826] can be qualitatively explained by the increase in dechanneling rate due to correlations. ((orig.))

  20. Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Pilar eMartinez-Martinez


    Full Text Available Changes of voltage-gated ion channels and ligand-gated receptor channels caused by mutation or autoimmune attack are the cause of so-called channelopathies in the central and peripheral nervous system. We present the pathophysiology of channelopathies of the neuromuscular junction in terms of loss-of-function and gain-of-function principles. Autoantibodies generally have reduced access to the CNS, but in some cases this is enough to cause disease. A review is provided of recent findings implicating autoantibodies against ligand–activated receptor channels and potassium channels in psychiatric and neurological disorders, including schizophrenia and limbic encephalitis. The emergence of channelopathy-related neuropsychiatric disorders has implications for research and practice.

  1. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D N; Breese, M B.H.; Prawer, S; Dooley, S P; Allen, M G; Bettiol, A A; Saint, A [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C G [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience


    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  2. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience


    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  3. Transport of long-pulse relativistic electron beams in preformed plasma channels in the ion focus regime

    International Nuclear Information System (INIS)

    Miller, J.D.


    Experiments have been performed demonstrating efficient transport of long-pulse (380 ns), high-current (200 A), relativistic electron beams (REBs) in preformed plasma channels in the ion focus regime (IFR). Plasma channels were created by low-energy ( e , and channel ion mass, in agreement with theoretical values predicted for the ion hose instability. Microwave emission has also been observed indicative of REB-plasma electron two-stream instability. Plasma channel density measurements indicate that the two-stream instability can become dominant for measured f e values slightly above unity. The author has introduced a theoretical analysis for high-current REB transport and modulation in axially periodic IFR plasma channels. Analytic expression for the electric field are found for the case of a cosine modulation of the channel ion density. Two different types of channels are considered: (i) periodic beam-induced ionization channels, and (ii) periodic plasma slab channels created by an external source. Analytical conditions are derived for the matched radius of the electron beam and for approximate beam envelope motion using a 'smooth' approximation. Numerical solutions to the envelope equation show that by changing the wavelength or the amplitude of the space-charge neutralization fraction of the ion channel density modulation, the beam can be made to focus and diverge, or to undergo stable, modulated transport

  4. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms. (United States)

    Chen, Duan


    In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.

  5. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR. (United States)

    Pliotas, Christos


    Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail. © 2017 Elsevier Inc. All rights reserved.

  6. Evaluation of stochastic differential equation approximation of ion channel gating models. (United States)

    Bruce, Ian C


    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  7. Fusion channel of pd charge - symmetric ion including photons

    International Nuclear Information System (INIS)

    Gheisari, R.


    The charge- symmetric pseudo nucleus pd is formed in the cascade processes in the muon catalyzed fusion. The nuclear fusion in pdμ ion can be considered in the photon field. For the spin states of pd (L=0) system, employing a new space wave function of three-body, the matrix element M1 proportional to S s∼ (πα 2 m p dω 3 )/[3(2S p d+1)m p 2 ]I 3 HeIM1Ipd ; 0 , S ∼ >I 2 (1) and the fusion rate λ Sp d γ =(S sp d/παm p d) ρ p dμ , ρ p dμ ∫I Ψ p dμ(R → = 0 , r → ) I 2 dr→ (2) for its ground state are calculated. The used wave function is introduced in the form of Ψ p dμ(r → , R → ) = Ρ (R){ξ dγ τ - 1/2 (γ , γ ' )xexp(-I γr → +γ ' R → I )+ξ dβ η - 1/2(β , β ' )xexp(-Iβr → + β ' R → I )}χ 0 ,0(R)Y 0 ,0. (3) The nuclear wave function χ 0 ,0(R)Y 0 ,0 is numerically calculated considering Wood-Saxon potential in the total Hamiltonian of the mentioned system. The good behavior of Ρ(R) is caused that our works are easily done in a short computation time. This function is linear from R =0 to 2.2x10 - 10 cm and then, is limited to 0.7068. The constant parameters of nuclear potential are obtained as well as those of the introduced wave function, when the boundary conditions are satisfied in our calculations. Notice that the notations (R → , r → ) are Jacobean coordinates. The radiative pd fusion rates for the two spin states in the pdμ mesic molecule are found to be λ 1 /2 γ 0.42μs - 1 and λ 3 / 2 γ = 0.13μs - 1, close to experimental data

  8. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  9. Ion channel activity of membrane vesicles released from sea urchin sperm during the acrosome reaction

    International Nuclear Information System (INIS)

    Schulz, Joseph R.; Vega-Beltran, Jose L. de la; Beltran, Carmen; Vacquier, Victor D.; Darszon, Alberto


    The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca 2+ and Na + influx and K + and H + efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba 2+ , and has a PK + /PNa + selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization

  10. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    International Nuclear Information System (INIS)

    Ugawa, Shinya; Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi


    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K + (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC 50 (inhibition constant) = approximately 48.3 μM) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction

  11. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels. (United States)

    Siksik, May; Krishnamurthy, Vikram


    This paper proposes a multi-dielectric Brownian dynamics simulation framework for design-space-exploration (DSE) studies of ion-channel permeation. The goal of such DSE studies is to estimate the channel modeling-parameters that minimize the mean-squared error between the simulated and expected "permeation characteristics." To address this computational challenge, we use a methodology based on statistical inference that utilizes the knowledge of channel structure to prune the design space. We demonstrate the proposed framework and DSE methodology using a case study based on the KcsA ion channel, in which the design space is successfully reduced from a 6-D space to a 2-D space. Our results show that the channel dielectric map computed using the framework matches with that computed directly using molecular dynamics with an error of 7%. Finally, the scalability and resolution of the model used are explored, and it is shown that the memory requirements needed for DSE remain constant as the number of parameters (degree of heterogeneity) increases.

  12. A software platform for continuum modeling of ion channels based on unstructured mesh

    International Nuclear Information System (INIS)

    Tu, B; Bai, S Y; Xie, Y; Zhang, L B; Lu, B Z; Chen, M X


    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson–Nernst–Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels. (paper)

  13. Dielectrophoretic analysis of changes in cytoplasmic ion levels due to ion channel blocker action reveals underlying differences between drug-sensitive and multidrug-resistant leukaemic cells

    International Nuclear Information System (INIS)

    Duncan, L; Shelmerdine, H; Hughes, M P; Coley, H M; Huebner, Y; Labeed, F H


    Dielectrophoresis (DEP)-the motion of particles in non-uniform AC fields-has been used in the investigation of cell electrophysiology. The technique offers the advantages of rapid determination of the conductance and capacitance of membrane and cytoplasm. However, it is unable to directly determine the ionic strengths of individual cytoplasmic ions, which has potentially limited its application in assessing cell composition. In this paper, we demonstrate how dielectrophoresis can be used to investigate the cytoplasmic ion composition by using ion channel blocking agents. By blocking key ion transporters individually, it is possible to determine their overall contribution to the free ions in the cytoplasm. We use this technique to evaluate the relative contributions of chloride, potassium and calcium ions to the cytoplasmic conductivities of drug sensitive and resistant myelogenous leukaemic (K562) cells in order to determine the contributions of individual ion channel activity in mediating multi-drug resistance in cancer. Results indicate that whilst K + and Ca 2+ levels were extremely similar between sensitive and resistant lines, levels of Cl - were elevated by three times to that in the resistant line, implying increased chloride channel activity. This result is in line with current theories of MDR, and validates the use of ion channel blockers with DEP to investigate ion channel function. (note)

  14. Studies of heavy ion beam transport in a magnetic quadrupole channel

    International Nuclear Information System (INIS)

    Klabunde, J.; Reiser, M.; Schonlein, A.; Spadtke, P.; Struckmeier, J.


    In connection with the West German Heavy Ion Fusion Program the first stage (six periods) of a magnetic quadrupole channel (FODO type) to study the transport of intense ion beams was built at GSI. Different ion beams can be used and the variation of the brightness of these beams (hence of the tune depression sigma/sigma /SUB o/ ) is sufficiently large that regions of theoretically predicted instabilities can be covered. The initial studies are being carried out with a high-brightness beam of 190 keV Ar+ ions and currents of a few mA. Since the pulse length is > 0.5 ms and the pressure is between 10 -6 and 10 -7 torr partial space charge neutralization occurs. Clearing electrodes can be used to remove the electrons from the beam. Results of theoretical studies, measurements of charge neutralization effects and first results of transport experiments are reported

  15. Computer Simulations of Resonant Coherent Excitation of Heavy Hydrogen-Like Ions Under Planar Channeling (United States)

    Babaev, A. A.; Pivovarov, Yu L.


    Resonant coherent excitation (RCE) of relativistic hydrogen-like ions is investigated by computer simulations methods. The suggested theoretical model is applied to the simulations of recent experiments on RCE of 390 MeV/u Ar17+ ions under (220) planar channeling in a Si crystal performed by T.Azuma et al at HIMAC (Tokyo). Theoretical results are in a good agreement with these experimental data and clearly show the appearance of the doublet structure of RCE peaks. The simulations are also extended to greater ion energies in order to predict the new RCE features at the future accelerator facility FAIR OSI and as an example, RCE of II GeV/u U91+ ions is considered in detail.

  16. How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels. (United States)

    Silva, Jonathan R


    Many have worked to create cardiac action potential models that explicitly represent atomic-level details of ion channel structure. Such models have the potential to define new therapeutic directions and to show how nanoscale perturbations to channel function predispose patients to deadly cardiac arrhythmia. However, there have been significant experimental and theoretical barriers that have limited model usefulness. Recently, many of these barriers have come down, suggesting that considerable progress toward creating these long-sought models may be possible in the near term. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Low energy RBS-channeling measurement system with the use of a time-of-flight scattered ion detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masataka; Kobayashi, Naoto; Hayashi, Nobuyuki [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)


    We have developed a low energy Rutherford backscattering spectrometry-ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions and a time-of-flight particle energy spectrometer. For the detection of the scattered ions new TOF spectrometer has been developed, which consists of two micro-channel-plate detectors. The pulsing of the primary ion beam is not necessary for this type of TOF measurement, and it is possible to observe continues scattered ion beams. The dimension of whole system is very compact compared to the conventional RBS-channeling measurement system with the use of MeV He ions. The energy resolution, {delta} E/E, for 25 keV H{sup +} was 4.1%, which corresponds to the depth resolution of 4.8 nm for silicon. The depth resolution of our system is better than that of conventional RBS system with MeV helium ions and solid state detectors. We have demonstrated the ion channeling measurement by this system with 25 keV hydrogen ions. The system can be available well to the analysis of thin films and solid surfaces with the use of the ion channeling effect. The observation of the reaction between Fe and hydrogen terminated silicon surface was also demonstrated. (J.P.N.)

  18. Differential association of GABAB receptors with their effector ion channels in Purkinje cells. (United States)

    Luján, Rafael; Aguado, Carolina; Ciruela, Francisco; Cózar, Javier; Kleindienst, David; de la Ossa, Luis; Bettler, Bernhard; Wickman, Kevin; Watanabe, Masahiko; Shigemoto, Ryuichi; Fukazawa, Yugo


    Metabotropic GABA B receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABA B receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABA B1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABA B receptors with two key effector ion channels, the G protein-gated inwardly rectifying K + (GIRK/Kir3) channel and the voltage-dependent Ca 2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABA B receptors co-assembled with GIRK and Ca V 2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABA B1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABA B1 and Ca V 2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABA B1 and GIRK2 or Ca V 2.1 channels was detected, inter-cluster distance for GABA B1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABA B1 and Ca V 2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABA B receptors are associated with GIRK and Ca V 2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABA B receptors and their effector ion channels in the cerebellar network.

  19. Ion channel density regulates switches between regular and fast spiking in soma but not in axons.

    Directory of Open Access Journals (Sweden)

    Hugo Zeberg


    Full Text Available The threshold firing frequency of a neuron is a characterizing feature of its dynamical behaviour, in turn determining its role in the oscillatory activity of the brain. Two main types of dynamics have been identified in brain neurons. Type 1 dynamics (regular spiking shows a continuous relationship between frequency and stimulation current (f-I(stim and, thus, an arbitrarily low frequency at threshold current; Type 2 (fast spiking shows a discontinuous f-I(stim relationship and a minimum threshold frequency. In a previous study of a hippocampal neuron model, we demonstrated that its dynamics could be of both Type 1 and Type 2, depending on ion channel density. In the present study we analyse the effect of varying channel density on threshold firing frequency on two well-studied axon membranes, namely the frog myelinated axon and the squid giant axon. Moreover, we analyse the hippocampal neuron model in more detail. The models are all based on voltage-clamp studies, thus comprising experimentally measurable parameters. The choice of analysing effects of channel density modifications is due to their physiological and pharmacological relevance. We show, using bifurcation analysis, that both axon models display exclusively Type 2 dynamics, independently of ion channel density. Nevertheless, both models have a region in the channel-density plane characterized by an N-shaped steady-state current-voltage relationship (a prerequisite for Type 1 dynamics and associated with this type of dynamics in the hippocampal model. In summary, our results suggest that the hippocampal soma and the two axon membranes represent two distinct kinds of membranes; membranes with a channel-density dependent switching between Type 1 and 2 dynamics, and membranes with a channel-density independent dynamics. The difference between the two membrane types suggests functional differences, compatible with a more flexible role of the soma membrane than that of the axon membrane.

  20. Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion

    Directory of Open Access Journals (Sweden)

    Stanko S. Stojilkovic


    Full Text Available Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete gonadotropins in response to elevation in intracellular calcium concentration. These cells fire action potentials (APs spontaneously, coupled with voltage-gated calcium influx of insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of gonadotrophs reflects the expression of voltage-gated sodium, calcium, potassium, non-selective cation-conducting, and chloride channels at their plasma membrane (PM. These cells also express the hyperpolarization-activated and cyclic nucleotide-gated cation channels at the PM, as well as GABAA, nicotinic, and purinergic P2X channels gated by γ-aminobutyric acid (GABA, acetylcholine (ACh, and ATP, respectively. Activation of these channels leads to initiation or amplification of the pacemaking activity, facilitation of calcium influx, and activation of the exocytic pathway. Gonadotrophs also express calcium-conducting channels at the endoplasmic reticulum membranes gated by inositol trisphosphate and intracellular calcium. These channels are activated potently by hypothalamic gonadotropin-releasing hormone (GnRH and less potently by several paracrine calcium-mobilizing agonists, including pituitary adenylate cyclase-activating peptides, endothelins, ACh, vasopressin, and oxytocin. Activation of these channels causes oscillatory calcium release and a rapid gonadotropin release, accompanied with a shift from tonic firing of single APs to periodic bursting type of electrical activity, which accounts for a sustained calcium signaling and gonadotropin secretion. This review summarizes our current understanding of ion channels as signaling molecules in gonadotrophs, the role of GnRH and paracrine agonists in their gating, and the cross talk among channels.

  1. Investigation of reordered (001) Au surfaces by positive ion channeling spectroscopy, LEED and AES

    International Nuclear Information System (INIS)

    Appleton, B.R.; Noggle, T.S.; Miller, J.W.; Schow, O.E. III; Zehner, D.M.; Jenkins, L.H.; Barrett, J.H.


    As a consequence of the channeling phenomenon of positive ions in single crystals, the yield of ions Rutherford scattered from an oriented single crystal surface is dependent on the density of surface atoms exposed to the incident ion beam. Thus, the positive ion channeling spectroscopy (PICS) technique should provide a useful tool for studying reordered surfaces. This possibility was explored by examining the surfaces of epitaxially grown thin Au single crystals with the combined techniques of LEED-AES and PICS. The LEED and AES investigations showed that when the (001) surface was sputter cleaned in ultra-high vacuum, the normal (1 x 1) symmetry of the (001) surfaces reordered into a structure which gave a complex (5 x 20) LEED pattern. The yield and energy distributions of 1 MeV He ions scattered from the Au surfaces were used to determine the number of effective monolayers contributing to the normal and reordered surfaces. These combined measurements were used to characterize the nature of the reordered surface. The general applicability of the PICS technique for investigations of surface and near surface regions is discussed

  2. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography (United States)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.


    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  3. The analysis of Rutherford scattering-channelling measurements of disorder production and annealing in ion irradiated semiconductors

    International Nuclear Information System (INIS)

    Carter, G.; Elliman, R.G.


    Rutherford scattering and channelling of light probe ions (e.g. He + ) has been extensively used for studies of disorder production in ion implanted semiconductors. Various authors have analysed models of amorphousness accumulation and Carter and Webb have indicated the general difficulties in assessing disorder production models from RBS/channelling studies if the production modes are complex and the manner in which the technique responds to different defect structures is unspecified. For less complex disorder production modes and by making reasonable assumptions about the technique response however, some insight into the form of backscattering yield - ion implant fluence functions can be obtained as is discussed in the present communication. It thus becomes possible to infer the importance of different disorder generation processes from RBS/channelling - ion influence studies. It will also be shown how simple annealing processes modify disorder accumulation and thus again how the operation of such processes may be inferred from RBS/channelling - ion fluence measurements. (author)

  4. Theoretical study of the electron stopping power in ion planar channeling

    International Nuclear Information System (INIS)

    Haymann, P.


    A theory recently developed by the authors for slow and fast electrons is shown to be also applicable to channeled ions and to explain the experimental results about electron loss phenomena as a whole. The theory is based on the fundamental hypothesis of the nonadiabaticity of the ion-target interactions. How essential an exponential form of the interaction pseudo-potential is in explaining the energy exchange mechanism at the walls may be deduced from a quasi-classical development of the quantum model. The theory also allows a number of new experiments to be envisaged in the field of surface electron states [fr

  5. Advanced applications of ion channeling for the study of imperfections in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M L [North Carolina Univ., Chapel Hill, NC (United States)


    A review will be given of the applications of medium energy ion channeling for the studies of imperfections in the near-surface regions of crystals. The following topics will be discussed: (1.) epitaxial layers, including elemental depositions of a few monolayers, strained-layer superlattices, and compound layers; (2.) lattice defects, including ion damage in diamond, dislocation networks in Si, and anomalous lattice vibrations in high temperature superconductors; (3.) lattice sites of solute atoms, including substitutional sites in compounds (LiNbO{sub 3} and GaP), and interstitial sites produced by association with point defects. (author)

  6. Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties.

    Directory of Open Access Journals (Sweden)

    Stefania Averaimo

    Full Text Available Chloride intracellular Channel 1 (CLIC1 is a metamorphic protein that changes from a soluble cytoplasmic protein into a transmembrane protein. Once inserted into membranes, CLIC1 multimerises and is able to form chloride selective ion channels. Whilst CLIC1 behaves as an ion channel both in cells and in artificial lipid bilayers, its structure in the soluble form has led to some uncertainty as to whether it really is an ion channel protein. CLIC1 has a single putative transmembrane region that contains only two charged residues: arginine 29 (Arg29 and lysine 37 (Lys37. As charged residues are likely to have a key role in ion channel function, we hypothesized that mutating them to neutral alanine to generate K37A and R29A CLIC1 would alter the electrophysiological characteristics of CLIC1. By using three different electrophysiological approaches: i single channel Tip-Dip in artificial bilayers using soluble recombinant CLIC1, ii cell-attached and iii whole-cell patch clamp recordings in transiently transfected HEK cells, we determined that the K37A mutation altered the single-channel conductance while the R29A mutation affected the single-channel open probability in response to variation in membrane potential. Our results show that mutation of the two charged amino acids (K37 and R29 in the putative transmembrane region of CLIC1 alters the biophysical properties of the ion channel in both artificial bilayers and cells. Hence these charged residues are directly involved in regulating its ion channel activity. This strongly suggests that, despite its unusual structure, CLIC1 itself is able to form a chloride ion channel.

  7. Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. (United States)

    Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T; Montal, Mauricio


    Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.

  8. Novel Insights into Acid-Sensing Ion Channels: Implications for Degenerative Diseases. (United States)

    Zhou, Ren-Peng; Wu, Xiao-Shan; Wang, Zhi-Sen; Xie, Ya-Ya; Ge, Jin-Fang; Chen, Fei-Hu


    Degenerative diseases often strike older adults and are characterized by progressive deterioration of cells, eventually leading to tissue and organ degeneration for which limited effective treatment options are currently available. Acid-sensing ion channels (ASICs), a family of extracellular H(+)-activated ligand-gated ion channels, play critical roles in physiological and pathological conditions. Aberrant activation of ASICs is reported to regulate cell apoptosis, differentiation and autophagy. Accumulating evidence has highlighted a dramatic increase and activation of ASICs in degenerative disorders, including multiple sclerosis, Parkinson's disease, Huntington's disease, intervertebral disc degeneration and arthritis. In this review, we have comprehensively discussed the critical roles of ASICs and their potential utility as therapeutic targets in degenerative diseases.

  9. RBS cross-section of MeV ions channeling in crystals from quantum theory

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Spizzirri, P.G.; Allen, L.J.


    We present an alternative approach to describing Rutherford Backscattered (RBS) angular yield scans. The Bloch wave method to formulate the cross-section is a fundamental approach originating from Schrodinger's equation. This quantum formulation is often used when describing various aspects of electron diffraction including Backscattering, EDX and TEM but has seen little application to the very short wavelength regime of MeV ions. It offers several significant advantages. Great freedom is given to crystal properties and structure in the theory allowing a fundamental insight into the channeling phenomena and hence the crystal itself. We have calculated both planar and axial channeling scans and these maps are shown to be in good agreement to their experimental counterparts. There is excellent correlation between the theoretical and experimental results for both χ min and Ψ 1/2 . Further investigation is required into the area of absorption or dechanneling. This phenomenon requires different mechanisms for electron and ion scattering differ greatly

  10. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. (United States)

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping


    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  11. Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. (United States)

    Ding, Qiang; Heller, Brigitte; Capuccino, Juan M V; Song, Bokai; Nimgaonkar, Ila; Hrebikova, Gabriela; Contreras, Jorge E; Ploss, Alexander


    Hepatitis E virus (HEV) is the leading cause of enterically transmitted viral hepatitis globally. Of HEV's three ORFs, the function of ORF3 has remained elusive. Here, we demonstrate that via homophilic interactions ORF3 forms multimeric complexes associated with intracellular endoplasmic reticulum (ER)-derived membranes. HEV ORF3 shares several structural features with class I viroporins, and the function of HEV ORF3 can be maintained by replacing it with the well-characterized viroporin influenza A virus (IAV) matrix-2 protein. ORF3's ion channel function is further evidenced by its ability to mediate ionic currents when expressed in Xenopus laevis oocytes. Furthermore, we identified several positions in ORF3 critical for its formation of multimeric complexes, ion channel activity, and, ultimately, release of infectious particles. Collectively, our data demonstrate a previously undescribed function of HEV ORF3 as a viroporin, which may serve as an attractive target in developing direct-acting antivirals.

  12. Co-operation with Eastern Europe countries taking ENAC as an example

    International Nuclear Information System (INIS)

    Taylor, D.


    In the aftermath of the Chernobyl accident, the European Community launched an ambitious programme of nuclear safety assistance. The purpose of this programme is to improve the safety of the Nuclear Power stations in Eastern Europe and the former Soviet Union plants. It was felt in the Western European nuclear industry that the emphasis should be on finding practical solutions to improve the most urgent problems. To achieve this objective, the nuclear industry in Western Europe founded a consortium called ENAC (European Nuclear Assistance Consortium) comprising companies form seven European countries ( Great Britain, France, Germany, Spain, Belgium, Italy, Netherlands). The co-operation between theses companies and the Russian designers would ensure that the solutions developed meet the approval of all interested parties. This presentation outlines the overall objectives of ENAC. 2 tabs., 1 fig

  13. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells.

    Czech Academy of Sciences Publication Activity Database

    Forostyak, Oksana; Butenko, Olena; Anděrová, Miroslava; Forostyak, Serhiy; Syková, Eva; Verkhratsky, A.; Dayanithi, Govindan


    Roč. 16, č. 3 (2016), s. 622-634 ISSN 1873-5061 R&D Projects: GA ČR(CZ) GA14-34077S; GA ČR(CZ) GAP304/11/2373; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : adipose derived stromal cells * bone marrow stromal cell * Ca(2+) signaling * Ion channels Subject RIV: FH - Neurology Impact factor: 3.494, year: 2016

  14. Acid-sensing ion channels contribute to the metaboreceptor component of the exercise pressor reflex


    McCord, Jennifer L.; Tsuchimochi, Hirotsugu; Kaufman, Marc P.


    The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component of the exercise pressor reflex. The metaboreceptor component can be assessed by measuring mean arteri...

  15. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel. (United States)

    Nelson, Peter Hugo


    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  16. Free-energy relationships in ion channels activated by voltage and ligand (United States)

    Chowdhury, Sandipan


    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  17. Charge state distributions from highly charged ions channeled at a metal surface

    International Nuclear Information System (INIS)

    Folkerts, L.; Meyer, F.W.; Schippers, S.


    The vast majority of the experimental work in the field of multicharged ion-surface interactions, to date, has focused on x-ray and particularly on electron emission. These experiments include measurements of the total electron yield, the emission statistics of the electrons, and, most of all, the electron energy distributions. So far, little attention has been paid to the fate of the multicharged projectile ions after the scattering. To our knowledge, the only measurement of the charge state distribution of the scattered ions is the pioneering experiment of de Zwart et al., who measured the total yield of scattered 1+, 2+, and 3+ ions as a function of the primary charge state q (q = 1--11) for 20 key Ne, Ar, and Kr ions after reflection from a polycrystalline tungsten target. Their main finding is the sudden onset of scattered 3+ ions when inner-shell vacancies are present in the primary particles. This suggests that a certain fraction of the inner-shell vacancies survives the entire collision event, and decays via autoionization on the outgoing path. Since the projectiles scattered in the neutral charge state could not be detected in the experiment of de Zwart et al., they were not able to provide absolute charge state fractions. In our present experiment, we focus on the scattered projectiles, measuring both the final charge state and the total scattering angle with a single 2D position sensitive detector (PSD). This method gives us the number of positive, as well as neutral and negative, scattered ions, thus allowing us to extract absolute charge state fractions. Using a well-prepared single Au(110) crystal and a grazing incidence geometry, we were able to observe surface channeling along the [001] channels

  18. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    Directory of Open Access Journals (Sweden)

    Yang Liu


    Full Text Available This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  19. Transduction of Repetitive Mechanical Stimuli by Piezo1 and Piezo2 Ion Channels

    Directory of Open Access Journals (Sweden)

    Amanda H. Lewis


    Full Text Available Several cell types experience repetitive mechanical stimuli, including vein endothelial cells during pulsating blood flow, inner ear hair cells upon sound exposure, and skin cells and their innervating dorsal root ganglion (DRG neurons when sweeping across a textured surface or touching a vibrating object. While mechanosensitive Piezo ion channels have been clearly implicated in sensing static touch, their roles in transducing repetitive stimulations are less clear. Here, we perform electrophysiological recordings of heterologously expressed mouse Piezo1 and Piezo2 responding to repetitive mechanical stimulations. We find that both channels function as pronounced frequency filters whose transduction efficiencies vary with stimulus frequency, waveform, and duration. We then use numerical simulations and human disease-related point mutations to demonstrate that channel inactivation is the molecular mechanism underlying frequency filtering and further show that frequency filtering is conserved in rapidly adapting mouse DRG neurons. Our results give insight into the potential contributions of Piezos in transducing repetitive mechanical stimuli.

  20. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels. (United States)

    Wu, Jason; Lewis, Amanda H; Grandl, Jörg


    In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past 6 years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Touch, Tension, and Transduction – the Function and Regulation of Piezo Ion Channels (United States)

    Wu, Jason; Lewis, Amanda; Grandl, Jörg


    In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past six years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function. PMID:27743844

  2. Platinum atom location on the internal walls of nanocavities investigated by ion channeling analysis

    International Nuclear Information System (INIS)

    Kinomura, A.; Williams, J.S.; Tsubouchi, N.; Horino, Y.


    Atomic locations of Pt trapped at hydrogen-induced cavities in Si have been investigated by ion channeling analysis. A Pt dose of 1x10 14 cm -2 , corresponding to a monolayer coverage of the internal walls of cavities, was implanted into cavity-containing samples. The gettering of Pt to the cavities was induced by annealing at 850 deg. C for 1 h. Clear channeling effects were observed in aligned and random backscattering spectra for the , and axes. Angular yield profiles for three crystalline axes exhibited dips with a narrowing of Pt signal half width compared with the Si matrix. Results suggested that the Pt atoms trapped at the cavities are closely aligned with the Si atomic strings bounding axial channels in Si

  3. Electromagnetic Waves Dispersion and Interaction of an Annular Beam-Ion Channel System in Plasma Waveguide

    Directory of Open Access Journals (Sweden)

    Jixiong Xiao


    Full Text Available A linear theory for the electromagnetic properties and interactions of an annular beam-ion channel system in plasma waveguide is presented. The dispersion relations for two families of propagating modes, including the electrostatic and transverse magnetic modes, are derived. The dependencies of the dispersion behavior and interaction for different wave modes on the thickness of the annular beam and betatron oscillation frequency are studied in detail by numerical calculations. The results show that the inner and outer radii of the beam have different influences on propagation properties of the electrostatic and electromagnetic modes with different betatron oscillation parameters. In the weak ion channel situation, the two types of electrostatic waves, that is, space charge and betatron modes, have no interaction with the transverse magnetic modes. However, in the strong ion channel situation, the transverse magnetic modes will have two branches and a low frequency mode emerged as the new branch. In this case, compared with the solid beam case, the betatron modes not only can interact with the high frequency branch at small wavenumber but also can interact with the low frequency branch at large wavenumber.

  4. Virtual instrument automation of ion channeling setup for 1.7 MV tandetron accelerator

    International Nuclear Information System (INIS)

    Suresh, K.; Sundaravel, B.; Panigrahi, B.K.; Nair, K.G.M.; Viswanathan, B.


    A virtual instrument based automated ion channeling experimental setup has been developed and implemented in a 1.7 MV tandetron accelerator. Automation of the PC based setup is done using a windows based virtual instrument software allowing the setup to be easily ported between different computer operating systems. The virtual instrument software has been chosen to achieve quick and easy development of versatile, multi-purpose user friendly graphical interface for carrying out channeling experiments. The software has been modular designed to provide independent control of the stepper motors for fixing the sample at any user defined orientation, running and on-line display of azimuthal and tilt angular scans, auto storage of the angular scan data. Using this automated setup, the crystallographic axis of the sample can be aligned with the incident ion beam rapidly minimizing the beam damages to the sample. A standard single crystalline GaAs(100) has been characterized with this set up using 2 MeV He ++ ion beam. The crystalline quality (χ min ) and channeling half angle (ψ 1sol2 ) are measured to be 3.7% and 0.48 deg., respectively, which are close to the theoretical values. Salient features, working principles and design details of the automated setup are discussed in this paper

  5. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model. (United States)

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang


    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  6. Plasma lens focusing and plasma channel transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Tauschwitz, A.; Yu, S.S.; Bangerter, R.O.


    The final focus lens in an ion beam driven inertial confinement fusion reactor is important since it sets limiting requirements for the quality of the driver beam. Improvements of the focusing capabilities can facilitate the construction of the driver significantly. A focusing system that is of interest both for heavy ion and for light ion drivers is an adiabatic, current carrying plasma lens. This lens is characterized by the fact that it can slowly (adiabatically) reduce the envelope radius of a beam over several betatron oscillations by increasing the focusing magnetic field along a tapered high current discharge. A reduction of the beam diameter by a factor of 3 to 5 seems feasible with this focusing scheme. Such a lens can be used for an ignition test facility where it can be directly coupled to the fusion target. For use in a repetitively working reactor chamber the lens has to be located outside of the reactor and the tightly focused but strongly divergent beam must be confined in a high current transport channel from the end of the lens into the immediate vicinity of the target. Laser preionization of a background gas is an efficient means to direct and stabilize such a channel. Experiments have been started to test both, the principle of adiabatic focusing, and the stability of laser preionized high current discharge channels. (author). 4 figs., 7 refs

  7. High Guanidinium Permeability Reveals Dehydration-Dependent Ion Selectivity in the Plasmodial Surface Anion Channel

    Directory of Open Access Journals (Sweden)

    Abdullah A. B. Bokhari


    Full Text Available Malaria parasites grow within vertebrate erythrocytes and increase host cell permeability to access nutrients from plasma. This increase is mediated by the plasmodial surface anion channel (PSAC, an unusual ion channel linked to the conserved clag gene family. Although PSAC recognizes and transports a broad range of uncharged and charged solutes, it must efficiently exclude the small Na+ ion to maintain infected cell osmotic stability. Here, we examine possible mechanisms for this remarkable solute selectivity. We identify guanidinium as an organic cation with high permeability into human erythrocytes infected with Plasmodium falciparum, but negligible uptake by uninfected cells. Transport characteristics and pharmacology indicate that this uptake is specifically mediated by PSAC. The rank order of organic and inorganic cation permeabilities suggests cation dehydration as the rate-limiting step in transport through the channel. The high guanidinium permeability of infected cells also allows rapid and stringent synchronization of parasite cultures, as required for molecular and cellular studies of this pathogen. These studies provide important insights into how nutrients and ions are transported via PSAC, an established target for antimalarial drug development.

  8. Techniques for heavy-ion coupled-channels calculations. I. Long-range Coulomb coupling

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.; Macfarlane, M.H.; Pieper, S.C.


    Direct-reaction calculations for heavy ions require special computational techniques that take advantage of the physical peculiarities of heavy-ion systems. This paper is the first of a series on quantum-mechanical coupled-channels calculations for heavy ions. It deals with the problems posed by the long range of the Coulomb coupling interaction. Our approach is to use the Alder-Pauli factorization whereby the channel wave functions are expressed as products of Coulomb functions and modulating amplitudes. The equations for the modulating amplitudes are used to integrate inwards from infinity to a nuclear matching radius ( approx. = 20 fm). To adequate accuracy, the equations for the amplitudes can be reduced to first order and solved in first Born approximation. The use of the Born approximation leads to rapid recursion relations for the solutions of the Alder-Pauli equations and hence to a great reduction in computational labor. The resulting coupled-channels Coulomb functions can then be matched in the usual way to solutions of the coupled radial equations in the interior region of r space. Numerical studies demonstrate the reliability of the various techniques introduced

  9. Acidosis counteracts itch tachyphylaxis to consecutive pruritogen exposure dependent on acid-sensing ion channel 3. (United States)

    Jiang, Yi-Ming; Huang, Chen; Peng, Zhong; Han, Shao-Ling; Li, Wei-Guang; Zhu, Michael Xi; Xu, Tian-Le


    Tachyphylaxis of itch refers to a markedly reduced scratching response to consecutive exposures of a pruritogen, a process thought to protect against tissue damage by incessant scratching and to become disrupted in chronic itch. Here, we report that a strong stimulation of the Mas-related G-protein-coupled receptor C11 by its agonist, Ser-Leu-Ile-Gly-Arg-Leu-NH 2 (SL-NH 2 ) or bovine adrenal medulla 8-22 peptide, via subcutaneous injection in mice induces tachyphylaxis to the subsequent application of SL-NH 2 to the same site. Notably, co-application of acid and SL-NH 2 following the initial injection of the pruritogen alone counteracted itch tachyphylaxis by augmenting the scratching behaviors in wild-type but not in acid-sensing ion channel 3-null, animals. Using an activity-dependent silencing strategy, we identified that acid-sensing ion channel 3-mediated itch enhancement mainly occurred via the Mas-related G-protein-coupled receptor C11-responsive sensory neurons. Together, our results indicate that acid-sensing ion channel 3, activated by concomitant acid and certain pruritogens, constitute a novel signaling pathway that counteracts itch tachyphylaxis to successive pruritogenic stimulation, which likely contributes to chronic itch associated with tissue acidosis.

  10. Plasma lens focusing and plasma channel transport for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tauschwitz, A; Yu, S S; Bangerter, R O [Lawrence Berkeley Lab., CA (United States); and others


    The final focus lens in an ion beam driven inertial confinement fusion reactor is important since it sets limiting requirements for the quality of the driver beam. Improvements of the focusing capabilities can facilitate the construction of the driver significantly. A focusing system that is of interest both for heavy ion and for light ion drivers is an adiabatic, current carrying plasma lens. This lens is characterized by the fact that it can slowly (adiabatically) reduce the envelope radius of a beam over several betatron oscillations by increasing the focusing magnetic field along a tapered high current discharge. A reduction of the beam diameter by a factor of 3 to 5 seems feasible with this focusing scheme. Such a lens can be used for an ignition test facility where it can be directly coupled to the fusion target. For use in a repetitively working reactor chamber the lens has to be located outside of the reactor and the tightly focused but strongly divergent beam must be confined in a high current transport channel from the end of the lens into the immediate vicinity of the target. Laser preionization of a background gas is an efficient means to direct and stabilize such a channel. Experiments have been started to test both, the principle of adiabatic focusing, and the stability of laser preionized high current discharge channels. (author). 4 figs., 7 refs.

  11. Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Olesen, Søren-Peter; Christ, Torsten


    The cardiac action potential is primarily shaped by the orchestrated function of several different types of ion channels and transporters. One of the regional differences believed to play a major role in the progression and stability of the action potential is the transmural gradient of electrica...... cardiac ion channels and transporters which may in part explain the increased susceptibility to arrhythmia in end-state failing hearts....... activity across the ventricular wall. An altered balance in the ionic currents across the free wall is assumed to be a substrate for arrhythmia. A large fraction of patients with heart failure experience ventricular arrhythmia. However, the underlying substrate of these functional changes is not well......-established as expression analyses of human heart failure (HF) are sparse. We have investigated steady-state RNA levels by quantitative polymerase chain reaction of ion channels, transporters, connexin 43, and miR-1 in 11 end-stage HF and seven nonfailing (NF) hearts. The quantifications were performed on endo-, mid...

  12. Integral equation models for the inverse problem of biological ion channel distributions

    International Nuclear Information System (INIS)

    French, D A; Groetsch, C W


    Olfactory cilia are thin hair-like filaments that extend from olfactory receptor neurons into the nasal mucus. Transduction of an odor into an electrical signal is accomplished by a depolarizing influx of ions through cyclic-nucleotide-gated channels in the membrane that forms the lateral surface of the cilium. In an experimental procedure developed by S. Kleene, a cilium is detached at its base and drawn into a recording pipette. The cilium base is then immersed in a bath of a channel activating agent (cAMP) which is allowed to diffuse into the cilium interior, opening channels as it goes and initiating a transmembrane current. The total current is recorded as a function of time and serves as data for a nonlinear integral equation of the first kind modeling the spatial distribution of ion channels along the length of the cilium. We discuss some linear Fredholm integral equations that result from simplifications of this model. A numerical procedure is proposed for a class of integral equations suggested by this simplified model and numerical results using simulated and laboratory data are presented

  13. Porous Materials to Support Bilayer Lipid Membranes for Ion Channel Biosensors

    Directory of Open Access Journals (Sweden)

    Thai Phung


    Full Text Available To identify materials suitable as membrane supports for ion channel biosensors, six filter materials of varying hydrophobicity, tortuosity, and thickness were examined for their ability to support bilayer lipid membranes as determined by electrical impedance spectroscopy. Bilayers supported by hydrophobic materials (PTFE, polycarbonate, nylon, and silanised silver had optimal resistance (14–19 GΩ and capacitance (0.8–1.6 μF values whereas those with low hydrophobicity did not form BLMs (PVDF or were short-lived (unsilanised silver. The ability of ion channels to function in BLMs was assessed using a method recently reported to improve the efficiency of proteoliposome incorporation into PTFE-supported bilayers. Voltage-gated sodium channel activation by veratridine and inhibition by saxitoxin showed activity for PTFE, nylon, and silanised silver, but not polycarbonate. Bilayers on thicker, more tortuous, and hydrophobic materials produced higher current levels. Bilayers that self-assembled on PTFE filters were the longest lived and produced the most channel activity using this method.

  14. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch (United States)

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.


    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  15. The NH2 terminus regulates voltage-dependent gating of CALHM ion channels. (United States)

    Tanis, Jessica E; Ma, Zhongming; Foskett, J Kevin


    Calcium homeostasis modulator protein-1 (CALHM1) and its Caenorhabditis elegans (ce) homolog, CLHM-1, belong to a new family of physiologically important ion channels that are regulated by voltage and extracellular Ca 2+ (Ca 2+ o ) but lack a canonical voltage-sensing domain. Consequently, the intrinsic voltage-dependent gating mechanisms for CALHM channels are unknown. Here, we performed voltage-clamp experiments on ceCLHM-1 chimeric, deletion, insertion, and point mutants to assess the role of the NH 2 terminus (NT) in CALHM channel gating. Analyses of chimeric channels in which the ceCLHM-1 and human (h)CALHM1 NH 2 termini were interchanged showed that the hCALHM1 NT destabilized channel-closed states, whereas the ceCLHM-1 NT had a stabilizing effect. In the absence of Ca 2+ o , deletion of up to eight amino acids from the ceCLHM-1 NT caused a hyperpolarizing shift in the conductance-voltage relationship with little effect on voltage-dependent slope. However, deletion of nine or more amino acids decreased voltage dependence and induced a residual conductance at hyperpolarized voltages. Insertion of amino acids into the NH 2 -terminal helix also decreased voltage dependence but did not prevent channel closure. Mutation of ceCLHM-1 valine 9 and glutamine 13 altered half-maximal activation and voltage dependence, respectively, in 0 Ca 2+ In 2 mM Ca 2+ o , ceCLHM-1 NH 2 -terminal deletion and point mutant channels closed completely at hyperpolarized voltages with apparent affinity for Ca 2+ o indistinguishable from wild-type ceCLHM-1, although the ceCLHM-1 valine 9 mutant exhibited an altered conductance-voltage relationship and kinetics. We conclude that the NT plays critical roles modulating voltage dependence and stabilizing the closed states of CALHM channels. Copyright © 2017 the American Physiological Society.

  16. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene.

    Directory of Open Access Journals (Sweden)

    Aram J Krauson

    Full Text Available Acid-sensing ion channels (ASICs are trimeric proton-gated cation permeable ion channels expressed primarily in neurons. Here we employed site-directed mutagenesis and electrophysiology to investigate the mechanism of inhibition of ASIC1a by diminazene. This compound inhibits mouse ASIC1a with a half-maximal inhibitory concentration (IC50 of 2.4 μM. At first, we examined whether neutralizing mutations of Glu79 and Glu416 alter diminazene block. These residues form a hexagonal array in the lower palm domain that was previously shown to contribute to pore opening in response to extracellular acidification. Significantly, single Gln substitutions at positions 79 and 416 in ASIC1a reduced diminazene apparent affinity by 6-7 fold. This result suggests that diminazene inhibits ASIC1a in part by limiting conformational rearrangement in the lower palm domain. Because diminazene is charged at physiological pHs, we assessed whether it inhibits ASIC1a by blocking the ion channel pore. Consistent with the notion that diminazene binds to a site within the membrane electric field, diminazene block showed a strong dependence with the membrane potential. Moreover, a Gly to Ala mutation at position 438, in the ion conduction pathway of ASIC1a, increased diminazene IC50 by one order of magnitude and eliminated the voltage dependence of block. Taken together, our results indicate that the inhibition of ASIC1a by diminazene involves both allosteric modulation and blocking of ion flow through the conduction pathway. Our findings provide a foundation for the development of more selective and potent ASIC pore blockers.

  17. Salt-Induced Hypertension in a Mouse Model of Liddle's Syndrome is Mediated by Epithelial Sodium Channels in the Brain (United States)

    Van Huysse, James W.; Amin, Md. Shahrier; Yang, Baoli; Leenen, Frans H. H.


    Neural precursor cell expressed and developmentally downregulated 4-2 protein (Nedd4-2) facilitates the endocytosis of epithelial Na channels (ENaC). Both mice and humans with a loss of regulation of ENaC by Nedd4-2 have salt-induced hypertension. ENaC is also expressed in the brain, where it is critical for hypertension on high salt diet in salt-sensitive rats. In the present studies we assessed whether Nedd4-2 knockout (−/−) mice have: 1) increased brain ENaC; 2) elevated CSF sodium on high salt diet; and 3) enhanced pressor responses to CSF sodium and hypertension on high salt diet, both mediated by brain ENaC. Prominent choroid plexus and neuronal ENaC staining was present in −/− but not in wild-type (W/T) mice. In chronically instrumented mice, intracerebroventricular (icv) infusion of Na-rich aCSF increased MAP 3-fold higher in −/− than W/T. Icv infusion of the ENaC blocker benzamil abolished this enhancement. In telemetered −/− mice on high salt diet (8% NaCl), CSF [Na+], MAP and HR increased significantly, MAP by 30-35 mmHg. These MAP and HR responses were largely prevented by icv benzamil, but only to a minor extent by sc benzamil at the icv rate. We conclude that increased ENaC expression in the brain of Nedd 4-2 −/− mice mediates their hypertensive response to high salt diet, by causing increased sodium levels in the CSF as well as hyper-responsiveness to CSF sodium. These findings highlight the possible causative contribution of CNS ENaC in the etiology of salt-induced hypertension. PMID:22802227

  18. Plasma channel and Z-pinch dynamics for heavy ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Marquez, David [Univ. of California, Berkeley, CA (United States)


    A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of ~ 2 cm. Results also show that typical main bank discharge plasma densities reach 1017 cm-3 peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the

  19. Simulation study of a rectifying bipolar ion channel: Detailed model versus reduced model

    Directory of Open Access Journals (Sweden)

    Z. Ható


    Full Text Available We study a rectifying mutant of the OmpF porin ion channel using both all-atom and reduced models. The mutant was created by Miedema et al. [Nano Lett., 2007, 7, 2886] on the basis of the NP semiconductor diode, in which an NP junction is formed. The mutant contains a pore region with positive amino acids on the left-hand side and negative amino acids on the right-hand side. Experiments show that this mutant rectifies. Although we do not know the structure of this mutant, we can build an all-atom model for it on the basis of the structure of the wild type channel. Interestingly, molecular dynamics simulations for this all-atom model do not produce rectification. A reduced model that contains only the important degrees of freedom (the positive and negative amino acids and free ions in an implicit solvent, on the other hand, exhibits rectification. Our calculations for the reduced model (using the Nernst-Planck equation coupled to Local Equilibrium Monte Carlo simulations reveal a rectification mechanism that is different from that seen for semiconductor diodes. The basic reason is that the ions are different in nature from electrons and holes (they do not recombine. We provide explanations for the failure of the all-atom model including the effect of all the other atoms in the system as a noise that inhibits the response of ions (that would be necessary for rectification to the polarizing external field.

  20. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)


    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  1. Combined transmission electron microscope and ion channeling study of metastable metal alloys formed by ion implantation

    International Nuclear Information System (INIS)

    Cullis, A.G.; Borders, J.A.; Hirvonen, J.K.; Poate, J.M.


    Recently, ion implantation has been used to produce metastable alloy layers with a range of structures from crystalline substitutional solid solutions to amorphous. The technique offers the possibility of producing metastable metal layers with unique physical properties. Its application in the formation of alloys exhibiting different although complementary types of metastability is described. The metal combinations chosen (Ag-Cu and Ta-Cu) show little mutual solubility under equilibrium conditions

  2. A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors. (United States)

    Zhang, Alan H; Sharma, Gagan; Undheim, Eivind A B; Jia, Xinying; Mobli, Mehdi


    Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (Na V s) have attracted particular attention as potential analgesic targets. Na V s, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. Na V 1.7) to controlling electrical signalling in cardiac function (Na V 1.5). Understanding the structural basis of Na V function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective Na V modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit Na V s by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target Na V 1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from Na V 1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays. Copyright © 2018

  3. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities. (United States)

    Hsieh, Ying-Hsin; Huang, Ying-Ju; Jin, Jin-Shan; Yu, Liyan; Yang, Hsiuchin; Jiang, Chun; Wang, Binghe; Tai, Phang C


    SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. (United States)

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan


    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.


    Directory of Open Access Journals (Sweden)

    Francesco eMiceli


    Full Text Available Voltage-gated ion channels (VGIC are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGIC in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided in two main regions: the Pore Module (PM and the Voltage-Sensing Module (VSM. The PM (helices S5 and S6 and intervening linker is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4, undergoes the first conformational changes in response to membrane voltage. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters, to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively

  6. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio


    Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins

  7. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll


    Full Text Available Guanidinium toxins, such as saxitoxin (STX, tetrodotoxin (TTX and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV. Members of the STX group, known collectively as paralytic shellfish toxins (PSTs, are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards

  8. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    Directory of Open Access Journals (Sweden)

    Danilo ePezo


    Full Text Available To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie’s method for Markov Chains (MC simulation is highly accurate, yet it becomes computationally intensive in the regime of high channel numbers. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA. Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties – such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Dangerfield et al., 2012; Linaro et al., 2011; Huang et al., 2013a; Orio and Soudry, 2012; Schmandt and Galán, 2012; Goldwyn et al., 2011; Güler, 2013, comparing all of them in a set of numerical simulations that asses numerical accuracy and computational efficiency on three different models: the original Hodgkin and Huxley model, a model with faster sodium channels, and a multi-compartmental model inspired in granular cells. We conclude that for low channel numbers (usually below 1000 per simulated compartment one should use MC – which is both the most accurate and fastest method. For higher channel numbers, we recommend using the method by Orio and Soudry (2012, possibly combined with the method by Schmandt and Galán (2012 for increased speed and slightly reduced accuracy. Consequently, MC modelling may be the best method for detailed multicompartment neuron models – in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels.

  9. Diffusion approximation-based simulation of stochastic ion channels: which method to use? (United States)

    Pezo, Danilo; Soudry, Daniel; Orio, Patricio


    To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914

  10. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels. (United States)

    Castañeda, Olga; Harvey, Alan L


    Peptides have been isolated from several species of sea anemones and shown to block currents through various potassium ion channels, particularly in excitable cells. The toxins can be grouped into four structural classes: type 1 with 35-37 amino acid residues and three disulphide bridges; type 2 with 58-59 residues and three disulphide bridges; type 3 with 41-42 residues and three disulphide bridges; and type 4 with 28 residues and two disulphide bridges. Examples from the first class are BgK from Bunodosoma granulifera, ShK from Stichodactyla helianthus and AsKS (or kaliseptine) from Anemonia sulcata (now A. viridis). These interfere with binding of radiolabelled dendrotoxin to synaptosomal membranes and block currents through channels with various Kv1 subunits and also intermediate conductance K(Ca) channels. Toxins in the second class are homologous to Kunitz-type inhibitors of serine proteases; these toxins include kalicludines (AsKC 1-3) from A. sulcata and SHTXIII from S. haddoni; they block Kv1.2 channels. The third structural group includes BDS-I, BDS-II (from A. sulcata) and APETx 1 (from Anthropleura elegantissima). Their pharmacological specificity differs: BDS-I and -II block currents involving Kv3 subunits, while APETx1 blocks ERG channels. The fourth group comprises the more recently discovered SHTX I and II from S. haddoni. Their channel blocking specificity is not yet known but they displace dendrotoxin binding from synaptosomal membranes. Sea anemones can be predicted to be a continued source of new toxins that will serve as molecular probes of various K(+) channels.

  11. In Touch With the Mechanosensitive Piezo Channels: Structure, Ion Permeation, and Mechanotransduction. (United States)

    Geng, J; Zhao, Q; Zhang, T; Xiao, B


    Mechanotransduction, the conversion of mechanical forces into biological signals, plays critical roles in various physiological and pathophysiological processes in mammals, such as conscious sensing of touch, pain, and sound, as well as unconscious sensing of blood flow-associated shear stress, urine flow, and bladder distention. Among the various molecules involved in mechanotransduction, mechanosensitive (MS) cation channels have long been postulated to represent one critical class of mechanotransducers that directly and rapidly converts mechanical force into electrochemical signals. Despite the awareness of their functional significance, the molecular identities of MS cation channels in mammals had remained elusive for decades till the groundbreaking finding that the Piezo family of genes, including Piezo1 and Piezo2, constitutes their essential components. Since their identification about 6years ago, tremendous progress has been made in understanding their physiological and pathophysiological importance in mechanotransduction and their structure-function relationships of being the prototypic class of mammalian MS cation channels. On the one hand, Piezo proteins have been demonstrated to serve as physiologically and pathophysiologically important mechanotransducers for most, if not all, mechanotransduction processes. On the other hand, they have been shown to form a remarkable three-bladed, propeller-shaped homotrimeric channel complex comprising a separable ion-conducting pore module and mechanotransduction modules. In this chapter, we review the major advancements, with a particular focus on the structural and biophysical features that enable Piezo proteins to serve as sophisticated MS cation channels for force sensing, transduction, and ion conduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno


    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  13. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions. (United States)

    Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M


    Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

  14. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes. (United States)

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly


    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  15. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3

    DEFF Research Database (Denmark)

    Tian, Yuemin; Bresenitz, Pia; Reska, Anna


    Acidic microenvironment is commonly observed in tumour tissues, including glioblastoma (GBM), the most aggressive and lethal brain tumour in adults. Acid sensing ion channels (ASICs) are neuronal voltage-insensitive sodium channels, which are sensors of extracellular protons. Here we studied...

  16. Naked mole-rat acid-sensing ion channel 3 forms nonfunctional homomers, but functional heteromers. (United States)

    Schuhmacher, Laura-Nadine; Callejo, Gerard; Srivats, Shyam; Smith, Ewan St John


    Acid-sensing ion channels (ASICs) form both homotrimeric and heterotrimeric ion channels that are activated by extracellular protons and are involved in a wide range of physiological and pathophysiological processes, including pain and anxiety. ASIC proteins can form both homotrimeric and heterotrimeric ion channels. The ASIC3 subunit has been shown to be of particular importance in the peripheral nervous system with pharmacological and genetic manipulations demonstrating a role in pain. Naked mole-rats, despite having functional ASICs, are insensitive to acid as a noxious stimulus and show diminished avoidance of acidic fumes, ammonia, and carbon dioxide. Here we cloned naked mole-rat ASIC3 (nmrASIC3) and used a cell-surface biotinylation assay to demonstrate that it traffics to the plasma membrane, but using whole-cell patch clamp electrophysiology we observed that nmrASIC3 is insensitive to both protons and the non-proton ASIC3 agonist 2-guanidine-4-methylquinazoline. However, in line with previous reports of ASIC3 mRNA expression in dorsal root ganglia neurons, we found that the ASIC3 antagonist APETx2 reversibly inhibits ASIC-like currents in naked mole-rat dorsal root ganglia neurons. We further show that like the proton-insensitive ASIC2b and ASIC4, nmrASIC3 forms functional, proton-sensitive heteromers with other ASIC subunits. An amino acid alignment of ASIC3s between 9 relevant rodent species and human identified unique sequence differences that might underlie the proton insensitivity of nmrASIC3. However, introducing nmrASIC3 differences into rat ASIC3 (rASIC3) produced only minor differences in channel function, and replacing the nmrASIC3 sequence with that of rASIC3 did not produce a proton-sensitive ion channel. Our observation that nmrASIC3 forms nonfunctional homomers may reflect a further adaptation of the naked mole-rat to living in an environment with high-carbon dioxide levels. © 2018 by The American Society for Biochemistry and Molecular

  17. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family. (United States)

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S


    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  18. Hydrogen Sulfide Prevents Advanced Glycation End-Products Induced Activation of the Epithelial Sodium Channel

    Directory of Open Access Journals (Sweden)

    Qiushi Wang


    Full Text Available Advanced glycation end-products (AGEs are complex and heterogeneous compounds implicated in diabetes. Sodium reabsorption through the epithelial sodium channel (ENaC at the distal nephron plays an important role in diabetic hypertension. Here, we report that H2S antagonizes AGEs-induced ENaC activation in A6 cells. ENaC open probability (PO in A6 cells was significantly increased by exogenous AGEs and that this AGEs-induced ENaC activity was abolished by NaHS (a donor of H2S and TEMPOL. Incubating A6 cells with the catalase inhibitor 3-aminotriazole (3-AT mimicked the effects of AGEs on ENaC activity, but did not induce any additive effect. We found that the expression levels of catalase were significantly reduced by AGEs and both AGEs and 3-AT facilitated ROS uptake in A6 cells, which were significantly inhibited by NaHS. The specific PTEN and PI3K inhibitors, BPV(pic  and LY294002, influence ENaC activity in AGEs-pretreated A6 cells. Moreover, after removal of AGEs from AGEs-pretreated A6 cells for 72 hours, ENaC PO remained at a high level, suggesting that an AGEs-related “metabolic memory” may be involved in sodium homeostasis. Our data, for the first time, show that H2S prevents AGEs-induced ENaC activation by targeting the ROS/PI3K/PTEN pathway.

  19. Prediction of Thorough QT study results using action potential simulations based on ion channel screens. (United States)

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah


    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  20. Roles of TRPM8 Ion Channels in Cancer: Proliferation, Survival, and Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee


    Full Text Available The goal of this article is to provide a critical review of the transient receptor potential melastatin-subfamily member 8 (TRPM8 in cancers, with an emphasis on its roles in cellular proliferation, survival, and invasion. The TRPM8 ion channels regulate Ca²⁺ homeostasis and function as a cellular sensor and transducer of cold temperature. Accumulating evidence has demonstrated that TRPM8 is aberrantly expressed in a variety of malignant solid tumors. Clinicopathological analysis has shown that over-expression of TRPM8 correlates with tumor progression. Experimental data have revealed important roles of TRPM8 channels in cancer cells proliferation, survival, and invasion, which appear to be dependent on the cancer type. Recent reports have begun to reveal the signaling mechanisms that mediate the biological roles of TRPM8 in tumor growth and metastasis. Determining the mechanistic roles of TRPM8 in cancer is expected to elucidate the impact of thermal and chemical stimuli on the formation and progression of neoplasms. Translational research and clinical investigation of TRPM8 in malignant diseases will help exploit these ion channels as molecular biomarkers and therapeutic targets for developing precision cancer medicine.

  1. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. (United States)

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin


    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  2. Supercooling Agent Icilin Blocks a Warmth-Sensing Ion Channel TRPV3

    Directory of Open Access Journals (Sweden)

    Muhammad Azhar Sherkheli


    Full Text Available Transient receptor potential vanilloid subtype 3 (TRPV3 is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C, and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems like Xenopus laeves oocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8 to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3 are shut off.

  3. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots. (United States)

    Kawano, Ryuji


    A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of crystal damage by ion implantation using micro RBS/channeling

    International Nuclear Information System (INIS)

    Grambole, D.; Herrmann, F.; Heera, V.; Meijer, J.


    The combination of microbeam implantation and in-situ micro RBS/channeling analysis in the Rossendorf nuclear microprobe facility enables crystal damage studies with high current densities not achievable in standard ion implantation experiments. Si(1 0 0) samples were implanted with 600 keV Si + ions and a fluence of 1 x 10 16 cm -2 . Using a beam spot of 200 μm x 200 μm current densities from 4 to 120 μA/cm 2 were obtained. The substrate temperature was varied between RT and 265 deg. C. The implanted regions were subsequently analysed by micro RBS/channeling with a 3 MeV He + beam having a spot size of 50 μm x 50 μm. Crystal damage up to amorphisation was observed in dependence on the substrate temperature. Above a critical temperature T C no amorphisation occurs. T C was determined for each series of samples implanted with the same ion current density j. It was found that the empirical Arrhenius relation j ∼ exp(-E a /kT C ), known from standard implantation experiments, is also valid at high current densities. The observed Arrhenius law can be derived from a model of epitaxial crystallisation stimulated by defect diffusion

  5. Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel. (United States)

    Heusser, Stephanie A; Yoluk, Özge; Klement, Göran; Riederer, Erika A; Lindahl, Erik; Howard, Rebecca J


    The superfamily of pentameric ligand-gated ion channels includes neurotransmitter receptors that mediate fast synaptic transmission in vertebrates, and are targets for drugs including alcohols, anesthetics, benzodiazepines, and anticonvulsants. However, the mechanisms of ion channel opening, gating, and modulation in these receptors leave many open questions, despite their pharmacological importance. Subtle conformational changes in both the extracellular and transmembrane domains are likely to influence channel opening, but have been difficult to characterize given the limited structural data available for human membrane proteins. Recent crystal structures of a modified Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in multiple states offer an appealing model system for structure-function studies. However, the pharmacology of the crystallographic GluCl construct is not well established. To establish the functional relevance of this system, we used two-electrode voltage-clamp electrophysiology in Xenopus oocytes to characterize activation of crystallographic and native-like GluCl constructs by L-glutamate and ivermectin. We also tested modulation by ethanol and other anesthetic agents, and used site-directed mutagenesis to explore the role of a region of Loop F which was implicated in ligand gating by molecular dynamics simulations. Our findings indicate that the crystallographic construct functionally models concentration-dependent agonism and allosteric modulation of pharmacologically relevant receptors. Specific substitutions at residue Leu174 in loop F altered direct L-glutamate activation, consistent with computational evidence for this region's role in ligand binding. These insights demonstrate conservation of activation and modulation properties in this receptor family, and establish a framework for GluCl as a model system, including new possibilities for drug discovery. In this study, we elucidate the validity of a modified glutamate

  6. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin


    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  7. Measuring kinetics of complex single ion channel data using mean-variance histograms. (United States)

    Patlak, J B


    The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the construction and analysis of mean-variance histograms, that can overcome these problems. A mean-variance histogram is constructed by calculating the mean current and the current variance within a brief "window" (a set of N consecutive data samples) superimposed on the digitized raw channel data. Systematic movement of this window over the data produces large numbers of mean-variance pairs which can be assembled into a two-dimensional histogram. Defined current levels (open, closed, or sublevel) appear in such plots as low variance regions. The total number of events in such low variance regions is estimated by curve fitting and plotted as a function of window width. This function decreases with the same time constants as the original dwell time probability distribution for each of the regions. The method can therefore be used: 1) to present a qualitative summary of the single channel data from which the signal-to-noise ratio, open channel noise, steadiness of the baseline, and number of conductance levels can be quickly determined; 2) to quantify the dwell time distribution in each of the levels exhibited. In this paper I present the analysis of a Na+ channel recording that had a number of complexities. The signal-to-noise ratio was only about 8 for the main open state, open channel noise, and fast flickers to other states were present, as were a substantial number of subconductance states. "Standard" half-amplitude threshold analysis of these data produce open and closed time histograms that were well fitted by the sum of two exponentials, but with apparently erroneous time constants, whereas the mean

  8. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  9. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions (United States)

    Schroeder, Indra


    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  10. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension (United States)

    Lewis, Amanda H; Grandl, Jörg


    Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: PMID:26646186

  11. Role played by acid-sensitive ion channels in evoking the exercise pressor reflex. (United States)

    Hayes, Shawn G; McCord, Jennifer L; Rainier, Jon; Liu, Zhuqing; Kaufman, Marc P


    The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half (Pacid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex.

  12. Efficient K+ buffering by mammalian retinal glial cells is due to cooperation of specialized ion channels. (United States)

    Nilius, B; Reichenbach, A


    Radial glial (Müller) cells were isolated from rabbit retinae by papaine and mechanical dissociation. Regional membrane properties of these cells were studied by using the patch-clamp technique. In the course of our experiments, we found three distinct types of large K+ conducting channels. The vitread process membrane was dominated by high conductance inwardly rectifying (HCR) channels which carried, in the open state, inward currents along a conductance of about 105 pS (symmetrical solutions with 140 mM K+) but almost no outward currents. In the membrane of the soma and the proximal distal process, we found low conductance inwardly rectifying (LCR) channels which had an open state-conductance of about 60 pS and showed rather weak rectification. The endfoot membrane, on the other hand, was found to contain non-rectifying very high conductance (VHC) channels with an open state-conductance of about 360 pS (same solutions). These results suggest that mammalian Müller cells express regional membrane specializations which are optimized to carry spatial buffering currents of excess K+ ions.

  13. On-the-energy-shell approximation for the heavy ion couple-channels problems

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    Starting with the coupled channels equations describing multiple Coulomb excitations in heavy ion collisions an approximation scheme is developed based on replacing the channel Green's functions by their on-the-energy shell forms, which permits an exact analytic solution for the scattering matrix. The trivially equivalent Coulomb polarization potential valid for strong coupling and small energy loss in the excitation processes is constructed. This potential is seen to have a very simple r-dependence. A simple formula for the sub-barrier elastic scattering cross section is then derived both by using the WRB approximation and by summing the Born series for the T-matrix. Comparison of the two forms for the elastic cross section shows that they give almost identical numerical results in the small coupling limit only. The results are also compared with the predictions of the Alder-Winther theory. (Author) [pt

  14. Computing characterizations of drugs for ion channels and receptors using Markov models

    CERN Document Server

    Tveito, Aslak


    Flow of ions through voltage gated channels can be represented theoretically using stochastic differential equations where the gating mechanism is represented by a Markov model. The flow through a channel can be manipulated using various drugs, and the effect of a given drug can be reflected by changing the Markov model. These lecture notes provide an accessible introduction to the mathematical methods needed to deal with these models. They emphasize the use of numerical methods and provide sufficient details for the reader to implement the models and thereby study the effect of various drugs. Examples in the text include stochastic calcium release from internal storage systems in cells, as well as stochastic models of the transmembrane potential. Well known Markov models are studied and a systematic approach to including the effect of mutations is presented. Lastly, the book shows how to derive the optimal properties of a theoretical model of a drug for a given mutation defined in terms of a Markov model.

  15. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid (United States)

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan


    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163

  16. Simple molecular model for the binding of antibiotic molecules to bacterial ion channels (United States)

    Mafé, Salvador; Ramírez, Patricio; Alcaraz, Antonio


    A molecular model aimed at explaining recent experimental data by Nestorovich et al. [Proc. Natl. Acad. Sci. USA 99, 9789 (2002)] on the interaction of ampicillin molecules with the constriction zone in a channel of the general bacterial porin, OmpF (outer membrane protein F), is presented. The model extends T. L. Hill's theory for intermolecular interactions in a pair of binding sites [J. Am. Chem. Soc. 78, 3330 (1956)] by incorporating two binding ions and two pairs of interacting sites. The results provide new physical insights on the role of the complementary pattern of the charge distributions in the ampicillin molecule and the narrowest part of the channel pore. Charge matching of interacting sites facilitates drug binding. The dependence of the number of ampicillin binding events per second with the solution pH and salt concentration is explained qualitatively using a reduced number of fundamental concepts.

  17. Lipid Bilayer – mediated Regulation of Ion Channel Function by Amphiphilic Drugs

    DEFF Research Database (Denmark)

    Lundbæk, Jens August


    that are transforming it into a subject of quantitative science. It is described how the hydrophobic interactions between a membrane protein and the host lipid bilayer provide the basis for a mechanism, whereby protein function is regulated by the bilayer physical properties. The use of gramicidin channels as single-molecule......Drugs that at pico- to nanomolar concentration regulate ion channel function by high-affi nity binding to their cognate receptor often have a “ secondary pharmacology, ” in which the same molecule at low micromolar concentrations regulates a diversity of membrane proteins in an apparently...... nonspecifi c manner. It has long been suspected that this promiscuous regulation of membrane protein function could be due to changes in the physical properties of the host lipid bilayer, but the underlying mechanisms have been poorly understood. Given that pharmacological research often involves drug...

  18. Decoupling ion conductivity and fluid permeation through optimizing hydrophilic channel morphology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peter Po-Jen, E-mail:; Fang, Yu-Shin; Tseng, Yu-Chen [Department of Chemistry, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (R.O.C.) (China)


    Approaches to improve membrane ion conductivity usually leads to higher degree of swelling, more serious fuel cross-over and often sacrificed membrane mechanical strength. Preserving all three main membrane properties is a tough challenge in searching high ion conducting fuel cell membrane. The long standing dilemma is resolved by decoupling ion conduction and fluid permeation property by creating optimized channel morphology using external electric field poling. Success of this approach is demonstrated in the proton conducting membrane composed of poly(ether sulfones) (PES) and sulfonated poly(ether ether ketone) (sPEEK, degree of sulfonation=50%) composites prepared under electric field poling condition. The external field enhanced the aromatic chain ordering from both sPEEK and PES and improved the miscibility. This induced interaction is conducive to the formation of more densely packed amorphous domains that eventually leads to preferentially ordered hydrophilic proton conducting channels having a average dimension (3 nm) smaller than that in generic sPEEK or Nafion. The narrower but more ordered channel displayed much lower methanol permeability (3.17×10{sup −7} cm{sup 2}/s), and lower swelling ratio (31.20%), while the conductivity (~10{sup −1} S/cm) is higher than that of Nafion, or sPEEK at higher (64%) degree of sulfonation. The composite is chemically stable and highly durable with improved membrane mechanical strength. Nearly 50% increase of DMFC power output is observed using this membrane, and the best power density is recorded at 155 mA/cm{sup 2} (80 °C, 1M Methanol).

  19. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J


    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  20. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive. (United States)

    MacLean, David M; Jayaraman, Vasanthi


    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  1. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development. (United States)

    Elayavilli, Ravikumar Komandur; Liu, Hongfang


    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological

  2. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    Directory of Open Access Journals (Sweden)

    Ya Fatou eNjie-Mbye


    Full Text Available Hydrogen sulfide (H2S, a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1 ion channels such as calcium (L-type, T-type and intracellular stores, potassium (KATP and small conductance channels and chloride channels, (2 glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed.

  3. Monte Carlo calculation of energy loss of hydrogen and helium ions transmitted under channelling conditions in silicon single crystal

    International Nuclear Information System (INIS)

    El Bounagui, O.; Erramli, H.


    In this work, we report on calculations of the electronic channelling energy loss of hydrogen and helium ions along Si and Si axial directions for the low energy range by using the Monte Carlo simulation code. Simulated and experimental data are compared for protons and He ions in the and axis of silicon. A reasonable agreement was found. Computer simulation was also employed to study the angular dependence of energy loss for 0.5, 0.8, 1, and 2 MeV channelled 4 He ions transmitted through a silicon crystal of 3 μm thickness along the axis.

  4. Study of phosphorus implanted and annealed silicon by electrical measurements and ion channeling technique

    CERN Document Server

    Hadjersi, T; Zilabdi, M; Benazzouz, C


    We investigated the effect of annealing temperature on the electrical activation of phosphorus implanted into silicon. The measurements performed using spreading resistance, four-point probe and ion channeling techniques have allowed us to establish the existence of two domains of variation of the electrical activation (350-700 deg. C) and (800-1100 deg. C). The presence of reverse annealing and the annihilation of defects have been put in a prominent position in the first temperature range. It has been shown that in order to achieve a complete electrical activation, the annealing temperature must belong to the second domain (800-1100 deg. C).

  5. Ion blocking and channeling studies of heteroepitaxial GaN layers

    International Nuclear Information System (INIS)

    Flagmeyer, R.; Ehrlich, C.; Geist, V.; Otto, G.


    Ion channeling and blocking in backscattering measurements were used for the characterization of thin epitaxial GaN layers, which have varied lattice imperfections involved by different growth conditions. In particular, the following characteristics were examined: (1) the thickness and the uniformity of the layers, (2) the depth dependence of the crystalline imperfection, (3) the dislocation density, (4) the spread in the orientation distribution of tilted crystallites, and (5) some other types of imperfections, such as stacking faults, double positioning, twins and bending of the layer

  6. Kinetic description of a wiggler pumped ion-channel free electron laser

    International Nuclear Information System (INIS)

    Mehdian, H; Raghavi, A


    The wiggler pumped ion-channel free electron laser (WPIC-FEL) is treated and the classes of possible single-particle electron trajectories in this configuration are discussed in the paper. A new region of orbital stability is seen in the negative mass regime. A kinetic description of WPIC-FEL is given. Vlasov-Maxwell equations are solved to get the linear gain in a tenuous-beam limit, where the beam plasma frequency is much less than the radiation frequency and the self-field effects can be ignored

  7. Monte Carlo simulation of channeled and random profiles of heavy ions implanted in silicon at high energy (1.2 MeV)

    International Nuclear Information System (INIS)

    Mazzone, A.M.


    In order to study channeling effects and implants of heavy ions with energy of few MeV in silicon, ion distributions are calculated with a Monte Carlo method for axial [(001) axis], planar, and nominally random directions for As + and P + ions implanted into silicon with energies in the range 100 keV to 2 MeV. The calculation indicates an appreciable channeling at the higher energy only for the (001) axis and the (110) planes. For heavy ions with energy in the MeV range the subsidence of channeling into major channels and the disappearance of minor channels are shown

  8. Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation

    Directory of Open Access Journals (Sweden)

    Yool Andrea J


    Full Text Available Abstract Background Aquaporin-1 (AQP1 functions as an osmotic water channel and a gated cation channel. Activation of the AQP1 ion conductance by intracellular cGMP was hypothesized to involve the carboxyl (C- terminus, based on amino acid sequence alignments with cyclic-nucleotide-gated channels and cGMP-selective phosphodiesterases. Results Voltage clamp analyses of human AQP1 channels expressed in Xenopus oocytes demonstrated that the nitric oxide donor, sodium nitroprusside (SNP; 3–14 mM activated the ionic conductance response in a dose-dependent manner. Block of soluble guanylate cyclase prevented the response. Enzyme immunoassays confirmed a linear dose-dependent relationship between SNP and the resulting intracellular cGMP levels (up to 1700 fmol cGMP /oocyte at 14 mM SNP. Results here are the first to show that the efficacy of ion channel activation is decreased by mutations of AQP1 at conserved residues in the C-terminal domain (aspartate D237 and lysine K243. Conclusions These data support the idea that the limited amino acid sequence similarities found between three diverse classes of cGMP-binding proteins are significant to the function of AQP1 as a cGMP-gated ion channel, and provide direct evidence for the involvement of the AQP1 C-terminal domain in cGMP-mediated ion channel activation.

  9. Analysing destruction channels of interstellar hydrocarbon anions with a 22pol ion-trap

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Eric; Lakhmanskaya, Olga; Best, Thorsten; Hauser, Daniel; Kumar, Sunil; Wester, Roland [Universitaet Innsbruck, Institut fuer Ionenphysik und Angewandte Physik (Austria)


    In the interstellar medium (ISM), ion-molecule reactions are considered to play a key role in the formation of complex molecules. The detection of the first interstellar anions, which happen to be carbon chain anions, has raised new interest in the quantitative composition of the ISM and the underlying reaction network. To understand the observed abundance of these carbon chain anions, a detailed analysis of the possible destruction channels is indispensable. A cryogenic 22-pol radio frequency ion trap is an ideal tool to observe reactions that take place slowly, such as carbon chain anions with molecular hydrogen. Furthermore, measurements over a large temperature scale are feasible. Longitudinal optical access to the trap also provides the possibility to make precise photodetachment measurements. Temperature dependent measurements of the reaction rates for the reaction between hydrocarbon chain anions and H{sub 2} are presented.

  10. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    International Nuclear Information System (INIS)

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.


    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used

  11. Quantum model for a periodically driven selectivity filter in a K+ ion channel

    International Nuclear Information System (INIS)

    Cifuentes, A A; Semião, F L


    In this work, we present a quantum transport model for the selectivity filter in the KcsA potassium ion channel. This model is fully consistent with the fact that two conduction pathways are involved in the translocation of ions through the filter, and we show that the presence of a second path may actually bring advantages for the filter as a result of quantum interference. To highlight interferences and resonances in the model, we consider the selectivity filter to be driven by a controlled time-dependent external field, which changes the free-energy scenario and consequently the conduction of the ions. In particular, we demonstrate that the two-pathway conduction mechanism is more advantageous for the filter when dephasing in the transient configurations is lower than in the main configurations. As a matter of fact, K + ions in the main configurations are highly coordinated by oxygen atoms of the filter backbone, and this increases noise. Moreover, we also show that for a wide range of dephasing rates and driving frequencies, the two-pathway conduction used by the filter leads to higher ionic currents than the single–path model. (paper)

  12. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor]. (United States)

    Boronovskiĭ, S E; Nartsissov, Ia R


    Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.

  13. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P


    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  14. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. (United States)

    Bohlen, Christopher J; Chesler, Alexander T; Sharif-Naeini, Reza; Medzihradszky, Katalin F; Zhou, Sharleen; King, David; Sánchez, Elda E; Burlingame, Alma L; Basbaum, Allan I; Julius, David


    Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH 100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception. © 2011 Macmillan Publishers Limited. All rights reserved

  15. Elevated peritoneal expression and estrogen regulation of nociceptive ion channels in endometriosis. (United States)

    Greaves, Erin; Grieve, Kelsey; Horne, Andrew W; Saunders, Philippa T K


    Ovarian suppression is a common treatment for endometriosis-associated pelvic pain. Its exact mechanism of action is poorly understood, although it is assumed to reflect reduced production/action of estrogens. The objective of the study was to measure the expression of mRNAs encoded by nociceptive genes in the peritoneum of women with chronic pelvic pain (CPP) with or without endometriosis and to investigate whether estrogens alter nociceptive gene expression in human sensory neurons. The study was performed using human tissue analysis and cell culture. The study was conducted at a university research institute. Peritoneal biopsies were obtained from women with CPP and endometriosis (n = 12), CPP and no endometriosis (n = 10), and no pain or endometriosis (n = 5). Endometriosis lesions were obtained from women with endometriosis (n = 18). mRNAs encoding ion channels (P2RX3, SCN9A, SCN11A, TRPA1, TRPV1) and the neurotransmitter TAC1 were measured in human tissue samples and in human embryonic stem cell-derived sensory neurons treated with estrogens. TRPV1, TRPA1, and SCN11A mRNAs were significantly higher in the peritoneum from women with endometriosis (P endometriosis lesions (P endometriosis (P endometriosis-associated pain. Strategies directly targeting ion channels may offer an alternative option for the management of CPP.

  16. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors.

    Directory of Open Access Journals (Sweden)

    John G Yamauchi


    Full Text Available We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC by developing sensor cells stably expressing a Ca(2+ permeable LGIC and a genetically encoded Förster (or fluorescence resonance energy transfer (FRET-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A serotonin receptors and a chimera of human α7/mouse 5-HT(3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

  17. Automatable lipid bilayer formation and ion channel measurement using sessile droplets

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, J L [Librede Inc., Sherman Oaks, CA (United States); Portonovo, S A; Schmidt, J J [Department of Bioengineering, University of California, Los Angeles, Los Angeles (United States); Bang, H, E-mail: schmidt@seas.ucla.ed [School of Mechanical and Aerospace Engineering, Seoul National University (Korea, Republic of)


    Artificial lipid bilayer membranes have been used to reconstitute ion channels for scientific and technological applications. Membrane formation has traditionally involved slow, labor intensive processes best suited to small scale laboratory experimentation. We have recently demonstrated a high throughput method of membrane formation using automated liquid-handling robotics. We describe here the integration of membrane formation and measurement with two methods compatible with automation and high throughput liquid-handling robotics. Both of these methods create artificial lipid bilayers by joining lipid monolayers self-assembled at the interface of aqueous and organic phases using sessile aqueous droplets in contact with a measurement electrode; one using a pin tool, commonly employed in high throughput fluid handling assays, and the other using a positive displacement pipette. Membranes formed with both methods were high quality and supported measurement of ion channels at the single molecule level. Full automation of bilayer production and measurement with the positive displacement pipette was demonstrated by integrating it with a motion control platform.

  18. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish. (United States)

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A


    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom. (United States)

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R


    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  20. A permeation theory for single-file ion channels: one- and two-step models. (United States)

    Nelson, Peter Hugo


    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no

  1. Endogenous Isoquinoline Alkaloids Agonists of Acid-Sensing Ion Channel Type 3

    Directory of Open Access Journals (Sweden)

    Dmitry I. Osmakov


    Full Text Available Acid-sensing ion channels (ASICs ASIC3 expressed mainly in peripheral sensory neurons play an important role in pain perception and inflammation development. In response to acidic stimuli, they can generate a unique biphasic current. At physiological pH 7.4, human ASIC3 isoform (hASIC3 is desensitized and able to generate only a sustained current. We found endogenous isoquinoline alkaloids (EIAs, which restore hASIC3 from desensitization and recover the transient component of the current. Similarly, rat ASIC3 isoform (rASIC3 can also be restored from desensitization (at pH < 7.0 by EIAs with the same potency. At physiological pH and above, EIAs at high concentrations were able to effectively activate hASIC3 and rASIC3. Thus, we found first endogenous agonists of ASIC3 channels that could both activate and prevent or reverse desensitization of the channel. The decrease of EIA levels could be suggested as a novel therapeutic strategy for treatment of pain and inflammation.

  2. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rajta, I.; Nagy, G.U.L. [MTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Zolnai, Z. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Havranek, V. [Nuclear Physics Institute AV CR, Řež near Prague 250 68 (Czech Republic); Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Veres, M. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); Righini, G.C. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy)


    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO{sub 2}–WO{sub 3} glass through a special silicon mask using 1.5 MeV N{sup +} irradiation. This method was improved by increasing N{sup +} energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C{sup 3+} and C{sup 5+} and 5 MeV N{sup 3+}, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi{sub 4}Ge{sub 3}O{sub 12}) and sillenite type (Bi{sub 12}GeO{sub 20}) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N{sup +} irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method.

  3. Modulation of Connexin-36 Gap Junction Channels by Intracellular pH and Magnesium Ions. (United States)

    Rimkute, Lina; Kraujalis, Tadas; Snipas, Mindaugas; Palacios-Prado, Nicolas; Jotautis, Vaidas; Skeberdis, Vytenis A; Bukauskas, Feliksas F


    Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pH i ) and cytosolic magnesium ion concentration ([Mg 2+ ] i ), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pH i and [Mg 2+ ] i affect junctional conductance (g j ) in an interdependent manner; in other words, intracellular acidification cause increase or decay in g j depending on whether [Mg 2+ ] i is high or low, respectively, and intracellular alkalization cause reduction in g j independently of [Mg 2+ ] i . Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pH i and [Mg 2+ ] i . Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pH i and [Mg 2+ ] i . Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg 2+ ] i , while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36 * E8Q lost the initial increase of g j at low [Mg 2+ ] i and double mutation lost the sensitivity to high [Mg 2+ ] i . These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg 2+ and H + ions.

  4. Recording ion channels across soy-extracted lecithin bilayer generated by water-soluble quantum dots (United States)

    Sarma, Runjun; Mohanta, Dambarudhar


    We report on the quantum dot (QD)-induced ion channels across a soya-derived lecithin bilayer supported on a laser drilled of ~100 μm aperture of cellulose acetate substrate that separates two electrolytic chambers. Adequate current bursts were observed when the bilayer was subjected to a gating voltage. The voltage-dependent current fluctuation, across the bilayer, was attributed to the insertion of ~20 nm sized water-soluble CdSe QDs, forming nanopores due to their spontaneous aggregation. Apart from a closed state, the first observable conductance levels were found as 6.3 and 11 nS, as for the respective biasing voltages of -10 and -20 mV. The highest observable conductance states, at corresponding voltages were ~14.3 and 21.1 nS. Considering two simplified models, we predict that the non-spherical pores (dnspore) can be a better approximation over spherical nanopores (dspore) for exhibiting a definite conductance level. At times, even dnspore ≤ 4dspore and that the non-spherical nanopores were associated with a smaller No. of QDs than the case for spherical nanopores, for a definite conductance state. It seems like the current events are partly stochastic, possibly due to thermal effects on the aggregated QDs that would form nanopores. The dwell time of the states was predicted in the range of 384-411 μs. The ion channel mechanism in natural phospholipid bilayers over artificial ones will provide a closer account to understand ion transport mechanism in live cells and signaling activity including labelling with fluorescent QDs.

  5. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez


    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  6. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons. (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto


    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  7. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors (United States)

    Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei


    Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.

  8. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF). (United States)

    Vancauwenberghe, Eric; Noyer, Lucile; Derouiche, Sandra; Lemonnier, Loïc; Gosset, Pierre; Sadofsky, Laura R; Mariot, Pascal; Warnier, Marine; Bokhobza, Alexandre; Slomianny, Christian; Mauroy, Brigitte; Bonnal, Jean-Louis; Dewailly, Etienne; Delcourt, Philippe; Allart, Laurent; Desruelles, Emilie; Prevarskaya, Natalia; Roudbaraki, Morad


    Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis. © 2017 Wiley Periodicals, Inc.

  9. The proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channel.

    Directory of Open Access Journals (Sweden)

    Michael Henkel


    Full Text Available PB1-F2 is a proapoptotic influenza A virus protein of approximately 90 amino acids in length that is located in the nucleus, cytosol and in the mitochondria membrane of infected cells. Previous studies indicated that the molecule destabilizes planar lipid bilayers and has a strong inherent tendency for multimerization. This may be correlate with its capacity to induce mitochondrial membrane depolarization.Here, we investigated whether PB1-F2 is able to form ion channels within planar lipid bilayers and microsomes. For that purpose, a set of biologically active synthetic versions of PB1-F2 (sPB1-F2 derived from the IAV isolates A/Puerto Rico/8/34(H1N1 (IAV(PR8, from A/Brevig Mission/1/1918(H1N1 (IAV(SF2 or the H5N1 consensus sequence (IAV(BF2 were used. Electrical and fluorimetric measurements show that all three peptides generate in planar lipid bilayers or in liposomes, respectively, a barely selective conductance that is associated with stochastic channel type fluctuations between a closed state and at least two defined open states. Unitary channel fluctuations were also generated when a truncated protein comprising only the 37 c-terminal amino acids of sPB1-F2 was reconstituted in bilayers. Experiments were complemented by extensive molecular dynamics simulations of the truncated fragment in a lipid bilayer. The results indicate that the c-terminal region exhibits a slightly bent helical fold, which is stable and remains embedded in the bilayer for over 180 ns.The data support the idea that PB1-F2 is able to form protein channel pores with no appreciable selectivity in membranes and that the c-terminus is important for this function. This information could be important for drug development.

  10. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. (United States)

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L


    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  12. Seeking Structural Specificity: Direct Modulation of Pentameric Ligand-Gated Ion Channels by Alcohols and General Anesthetics (United States)

    Trudell, James R.; Harris, R. Adron


    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy. PMID:24515646

  13. TRPM7 and TRPM8 Ion Channels in Pancreatic Adenocarcinoma: Potential Roles as Cancer Biomarkers and Targets

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee


    Full Text Available Transient receptor potential (TRP ion channels are essential for normal functions and health by acting as molecular sensors and transducing various stimuli into cellular and physiological responses. Growing evidence has revealed that TRP ion channels play important roles in a wide range of human diseases, including malignancies. In light of recent discoveries, it has been found that TRP melastatin-subfamily members, TRPM7 and TRPM8, are required for normal and cancerous development of exocrine pancreas. We are currently investigating the mechanisms which mediate the functional roles of TRPM7 and TRPM8 and attempting to develop these ion channels as clinical biomarkers and therapeutic targets for achieving the goal of personalized therapy in pancreatic cancer.

  14. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer. (United States)

    De-la-Rosa, Víctor; Rangel-Yescas, Gisela E; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D


    The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.

  15. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego


    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  16. Molecular dynamics study of homo-oligomeric ion channels: Structures of the surrounding lipids and dynamics of water movement

    Directory of Open Access Journals (Sweden)

    Thuy Hien Nguyen


    Full Text Available Molecular dynamics simulations were used to study the structural perturbations of lipids surrounding transmembrane ion channel forming helices/helical bundles and the movement of water within the pores of the ion-channels/bundles. Specifically, helical monomers to hexameric helical bundles embedded in palmitoyl-oleoyl-phosphatidyl-choline (POPC lipid bilayer were studied. Two amphipathic α-helices with the sequence Ac-(LSLLLSL3-NH2 (LS2, and Ac-(LSSLLSL3-NH2 (LS3, which are known to form ion channels, were used. To investigate the surrounding lipid environment, we examined the hydrophobic mismatch, acyl chain order parameter profiles, lipid head-to-tail vector projection on the membrane surface, and the lipid headgroup vector projection. We find that the lipid structure is perturbed within approximately two lipid solvation shells from the protein bundle for each system (~15.0 Å. Beyond two lipid “solvation” shells bulk lipid bilayer properties were observed in all systems. To understand water flow, we enumerated each time a water molecule enters or exited the channel, which allowed us to calculate the number of water crossing events and their rates, and the residence time of water in the channel. We correlate the rate of water crossing with the structural properties of these ion channels and find that the movements of water are predominantly governed by the packing and pore diameter, rather than the topology of each peptide or the pore (hydrophobic or hydrophilic. We show that the crossing events of water fit quantitatively to a stochastic process and that water molecules are traveling diffusively through the pores. These lipid and water findings can be used for understanding the environment within and around ion channels. Furthermore, these findings can benefit various research areas such as rational design of novel therapeutics, in which the drug interacts with membranes and transmembrane proteins to enhance the efficacy or reduce off

  17. Acid-sensing ion and epithelial sodium channels do not contribute to the mechanoreceptor component of the exercise pressor reflex


    McCord, Jennifer L.; Hayes, Shawn G.; Kaufman, Marc P.


    Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because...

  18. Structural properties of as-grown and reduced Pr2CuO4 single crystals investigated by ion channeling

    International Nuclear Information System (INIS)

    Haga, T.; Abe, Y.


    Ion channeling is very sensitive to atomic arrangements and small atomic displacements in real space. Thus, in order to clarify a role of reduction for Pr 2 CuO 4 , ion channeling properties for the materials have been measured in detail. Anomalous increases of dechanneling fractions of Cu and O atoms in the reduced samples have been found. These results could not be explained by the apical oxygen model but probably suggest that O atoms in Cu-O planes are removed by reduction. Taking these results into account, correlation between lattice instability and superconductivity in the material will be discussed. (orig.)

  19. Dispersion relation and growth in a two-stream free electron laser with helical wiggler and ion channel guiding

    International Nuclear Information System (INIS)

    Mehdian, Hassan; Abbasi, Negar


    A linear theory of two-stream free electron laser (FEL) with helical wiggler and ion channel guiding is presented. The dispersion relation is obtained with the help of fluid theory and the growth rate is analyzed through the numerical solutions. The considerable enhancement of the growth rate is demonstrated due to the two-stream instability and continuous tuning of peak growth rate ratio, two-stream FEL compared to single-stream FEL, in terms of varying the ion channel frequency is illustrated

  20. Simulation of the channelling of ions from MeV C{sub 60} in crystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, A [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Sinclair, L [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Tanushev, N [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Tombrello, T [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Nardi, E [Department of Particle Physics, Weizmann Institute of Science Rehovot, 76100 (Israel)


    Simulations were performed describing the motion and breakup of energetic C{sub 60} ions interacting with crystalline targets. A hybrid algorithm was used that employs a binary collision model for the scattering of the carbon ions by the atoms of the solid, and molecular dynamics for the Coulomb interactions of the 60 carbon ions with one another. For the case of yttrium iron garnet (YIG), directions such as [1 1 0], [1 0 0], [0 1 0] and [0 0 1] demonstrate channelling for a large fraction of the C ions. For directions such as [1 1 1], [2 1 1] and [7 5 3] the trajectories show no more channelling than for random directions. The effects of tilt, shielding and wake-field interactions were investigated for YIG and {alpha}-quartz.

  1. Identification of acid-sensing ion channels in adenoid cystic carcinomas

    International Nuclear Information System (INIS)

    Ye Jinhai; Gao Jun; Wu Yunong; Hu Yongjie; Zhang Chenping; Xu Tianle


    Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na + current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells. Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells

  2. Self-fields in free-electron lasers with planar wiggler and ion-channel guiding

    International Nuclear Information System (INIS)

    Farokhi, B; Jafary, F B; Maraghechi, B


    A theory of self-electric and self-magnetic fields of a relativistic electron beam passing through a one-dimensional planar wiggler and an ion-channel is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analysed. New unstable orbits, in the first part of the group I orbits, are found. It is shown that for a low energy and high density beam the self-fields can produce very large effects. Stabilities of quasi-steady-state orbits are investigated by analytical and numerical methods and perfect agreement was found. The theory of small signal gain is used to derive a formula for the gain with the self-field effects included. A numerical analysis is conducted to study the self-field effects on the quasi-steady-state orbits and the gain

  3. Ion channeling study of lattice distortions in chromium-doped SrTiO3 crystals

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Dejneka, Alexandr; Trepakov, Vladimír; Jastrabík, Lubomír


    Roč. 55, č. 7 (2013), s. 1431-1437 ISSN 1063-7834 R&D Projects: GA ČR(CZ) GAP107/11/1856; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/1941 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ion channeling * lattice distortions * SrTiO3 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 0.782, year: 2013

  4. Differential distribution of voltage-gated ion channels in cortical neurons: implications for epilepsy. (United States)

    Child, Nicholas D; Benarroch, Eduardo E


    Neurons contain different functional somatodendritic and axonal domains, each with a characteristic distribution of voltage-gated ion channels, synaptic inputs, and function. The dendritic tree of a cortical pyramidal neuron has 2 distinct domains, the basal and the apical dendrites, both containing dendritic spines; the different domains of the axon are the axonal initial segment (AIS), axon proper (which in myelinated axons includes the node of Ranvier, paranodes, juxtaparanodes, and internodes), and the axon terminals. In the cerebral cortex, the dendritic spines of the pyramidal neurons receive most of the excitatory synapses; distinct populations of γ-aminobutyric acid (GABA)ergic interneurons target specific cellular domains and thus exert different influences on pyramidal neurons. The multiple synaptic inputs reaching the somatodendritic region and generating excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) sum and elicit changes in membrane potential at the AIS, the site of initiation of the action potential.

  5. Molecular pharmacology of cell receptors for cardiac glycosides, opiates, ACTH and ion channel modulators

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowich, M R


    The influence of light and oxygen on molecular interactions between the artificial food dye, erythrosine (ERY), and (/sup 3/H)ouabain ((/sup 3/H)OUA) binding sites on (Na/sup +/ + K/sup +/)-ATPase in rat brain and guinea pig heart was investigated. Putative endogenous digitalis-like factors (DLF's) were studied in four in vitro assays for cardiac glycosides. (/sup 3/H)Etorphine binding was characterized in rat brain homogenates, depleted of opioids, from animals acutely and chronically treated with morphine and naloxone, and either unstressed or cold-restraint-stressed. Binding sites for the ion channel modulators (/sup 3/H)verapamil ((/sup 3/H)VER) and (/sup 3/H) phencyclidine ((/sup 3/H)PCP) were characterized in rat brain.

  6. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow. (United States)

    Gillespie, Dirk; Pennathur, Sumita


    Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.

  7. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle. (United States)

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J


    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. Hidden Quantum Processes, Quantum Ion Channels, and 1/ f θ-Type Noise. (United States)

    Paris, Alan; Vosoughi, Azadeh; Berman, Stephen A; Atia, George


    In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]-type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]-type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]-type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]-type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral

  9. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  10. Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels. (United States)

    Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L


    AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine, and phenylalanine, which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate, and serine. AvGluR1 LBD crystal structures reveal an unusual scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, whereas in the alanine, methionine, and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl(-) lowers affinity for these ligands but not for glutamate or aspartate nor for phenylalanine, which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure-based studies on iGluR-ligand interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Dynamics of ions in the selectivity filter of the KcsA channel: Towards a coupled Brownian particle description


    Cosseddu, Salvatore M.; Khovanov, Igor A.; Allen, Michael P.; Rodger, P. M.; Luchinsky, Dmitry G.; McClintock, Peter V. E.


    The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by u...

  12. Atom-by-atom engineering of voltage-gated ion channels: Magnified insights into function and pharmacology

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Kim, Robin Y; Ahern, Christopher A


    Unnatural amino acid incorporation into ion channels has proven to be a valuable approach to interrogate detailed hypotheses arising from atomic resolution structures. In this short review, we provide a brief overview of some of the basic principles and methods for incorporation of unnatural amino...

  13. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge (United States)

    Harle, Marissa; Towns, Marcy H.


    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  14. X-ray yields from high-energy heavy ions channeled through a crystal: their crystal thickness and projectile dependences

    International Nuclear Information System (INIS)

    Kondo, C.; Takabayashi, Y.; Muranaka, T.; Masugi, S.; Azuma, T.; Komaki, K.; Hatakeyama, A.; Yamazaki, Y.; Takada, E.; Murakami, T.


    X-rays emitted from Ar 17+ , Fe 24+ and Kr 35+ ions of about 400 MeV/u transmitting through a thin Si crystal of about 20 μm thickness have been measured in a planar channeling condition and compared with those in a random incident condition. We have found that the X-ray yield from Ar 17+ ions is larger for the channeling condition than for the random incidence, while those from Fe 24+ and Kr 35+ ions are rather smaller. Such tendencies are explained by considering the projectile dependences of excitation and ionization probabilities together with X-ray emission rates. A crude simulation has qualitatively reproduced these experimental results. When the crystal thickness is small, the X-ray yield is smaller in the channeling condition than in the random incident condition, because excitation is depressed. However, for thicker crystals, the X-ray yield is larger, since the survived population of projectile-bound electrons is larger due to small ionization probabilities under the channeling condition. This inversion occurs at a specific crystal thickness depending on projectile species. Whether the thickness of the used crystal is smaller or larger than the inversion thickness determines enhancement or depression of the X-ray yield in the channeling condition

  15. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. (United States)

    Held, Katharina; Gruss, Fabian; Aloi, Vincenzo Davide; Janssens, Annelies; Ulens, Chris; Voets, Thomas; Vriens, Joris


    Mutagenesis at positively charged amino acids (arginines and lysines) (R1-R4) in the voltage-sensor domain (transmembrane segment (S) 4) of voltage-gated Na + , K + and Ca 2+ channels can lead to an alternative ion permeation pathway distinct from the central pore. Recently, a non-canonical ion permeation pathway was described in TRPM3, a member of the transient receptor potential (TRP) superfamily. The non-canonical pore exists in the native TRPM3 channel and can be activated by co-stimulation of the endogenous agonist pregnenolone sulphate and the antifungal drug clotrimazole or by stimulation of the synthetic agonist CIM0216. Alignment of the voltage sensor of Shaker K + channels with the entire TRPM3 sequence revealed the highest degree of similarity in the putative S4 region of TRPM3, and suggested that only one single gating charge arginine (R2) in the putative S4 region is conserved. Mutagenesis studies in the voltage-sensing domain of TRPM3 revealed several residues in the voltage sensor (S4) as well as in S1 and S3 that are crucial for the occurrence of the non-canonical inward currents. In conclusion, this study provides evidence for the involvement of the voltage-sensing domain of TRPM3 in the formation of an alternative ion permeation pathway. Transient receptor potential (TRP) channels are cationic channels involved in a broad array of functions, including homeostasis, motility and sensory functions. TRP channel subunits consist of six transmembrane segments (S1-S6), and form tetrameric channels with a central pore formed by the region encompassing S5 and S6. Recently, evidence was provided for the existence of an alternative ion permeation pathway in TRPM3, which allows large inward currents upon hyperpolarization independently of the central pore. However, very little knowledge is available concerning the localization of this alternative pathway in the native TRPM3 channel protein. Guided by sequence homology with Shaker K + channels, in which

  16. Nanostructuring of conduction channels in (In,Ga)As-InP heterostructures: Overcoming carrier generation caused by Ar ion milling (United States)

    Hortelano, V.; Weidlich, H.; Semtsiv, M. P.; Masselink, W. T.; Ramsteiner, M.; Jahn, U.; Biermann, K.; Takagaki, Y.


    Nanometer-sized channels are fabricated in (In,Ga)As-InP heterostructures using Ar ion milling. The ion milling causes spontaneous creation of nanowires, and moreover, electrical conduction of the surface as carriers is generated by sputtering-induced defects. We demonstrate a method to restore electrical isolation in the etched area that is compatible with the presence of the nanochannels. We remove the heavily damaged surface layer using a diluted HCl solution and subsequently recover the crystalline order in the moderately damaged part by annealing. We optimize the HCl concentration to make the removal stop on its own before reaching the conduction channel part. The lateral depletion in the channels is shown to be almost absent.

  17. Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel NaVAb

    International Nuclear Information System (INIS)

    Ke, Song; Zangerl, Eva-Maria; Stary-Weinzinger, Anna


    Highlights: ► Ca 2+ translocates slowly in the filter, due to lack of “loose” knock-on mechanism. ► Identification of a high affinity binding site in Na V Ab selectivity filter. ► Changes of EEEE locus triggered by electrostatic interactions with Ca 2+ ions. -- Abstract: Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. In this study, we use molecular dynamics simulations and free energy calculations to investigate how the bacterial sodium channel Na V Ab (Arcobacter butzleri) differentiates between Na + and Ca 2+ ions. Multiple nanosecond molecular dynamics simulations revealed distinct binding patterns for these two cations in the selectivity filter and suggested a high affinity calcium binding site formed by backbone atoms of residues Leu-176 and Thr-175 (S CEN ) in the sodium channel selectivity filter

  18. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.


    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  19. Blockade of acid sensing ion channels attenuates the exercise pressor reflex in cats. (United States)

    Hayes, Shawn G; Kindig, Angela E; Kaufman, Marc P


    Although thin fibre muscle afferents possess acid sensing ion channels (ASICs), their contribution to the exercise pressor reflex is not known. This lack of information is partly attributable to the fact that there is no known selective in vivo antagonist for ASICs. Although amiloride has been shown to antagonize ASICs, it also has been shown to antagonize voltage-gated sodium channels, thereby impairing impulse conduction in sensory nerves. Our aim was to test the hypothesis that lactic acid accumulation in exercising muscle acted on ASICs located on thin fibre muscle afferents to evoke the metabolic component of the exercise pressor reflex. To test this hypothesis, we determined in decerebrate cats if amiloride attenuated the pressor and cardioaccelerator responses to static contraction, to tendon stretch and to arterial injections of lactic acid and capsaicin. We found a dose of amiloride (0.5 microg kg(-1); i.a.) that attenuated the pressor and cardioaccelerator responses to both contraction and lactic acid injection, but had no effect on the responses to stretch and capsaicin. A higher dose of amiloride (5 microg kg(-1), i.a.) not only blocked the pressor and cardioaccelerator responses to lactic acid and contraction, but also attenuated the responses to stretch and to capsaicin, manoeuvers in which ASICs probably play no significant role. In addition, we found that the low dose of amiloride (0.5 microg kg(-1)) had no effect on the responses of muscle spindles to tendon stretch and to succinylcholine, whereas the high dose (5 microg kg(-1)) attenuated the responses to both. Our data suggest the low dose of amiloride used in our experiments selectively blocked ASICs, whereas the high dose blocked ASICs and impulse conduction in muscle afferents. We conclude that ASICs play a role in the metabolic component of the exercise pressor reflex.

  20. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation

    Directory of Open Access Journals (Sweden)

    Wang Juan


    Full Text Available Abstract Background The discovery of heat-sensitive Transient Receptor Potential Vanilloid (TRPV ion channels provided a potential molecular explanation for the perception of innocuous and noxious heat stimuli. TRPV1 has a significant role in acute heat nociception and inflammatory heat hyperalgesia. Yet, substantial innocuous and noxious heat sensitivity remains in TRPV1 knockout animals. Here we investigated the role of two related channels, TRPV3 and TRPV4, in these capacities. We studied TRPV3 knockout animals on both C57BL6 and 129S6 backgrounds, as well as animals deficient in both TRPV3 and TRPV4 on a C57BL6 background. Additionally, we assessed the contributions of TRPV3 and TRPV4 to acute heat nociception and inflammatory heat hyperalgesia during inhibition of TRPV1. Results TRPV3 knockout mice on the C57BL6 background exhibited no obvious alterations in thermal preference behavior. On the 129S6 background, absence of TRPV3 resulted in a more restrictive range of occupancy centered around cooler floor temperatures. TRPV3 knockout mice showed no deficits in acute heat nociception on either background. Mice deficient in both TRPV3 and TRPV4 on a C57BL6 background showed thermal preference behavior similar to wild-type controls on the thermal gradient, and little or no change in acute heat nociception or inflammatory heat hyperalgesia. Masking of TRPV1 by the TRPV1 antagonist JNJ-17203212 did not reveal differences between C57BL6 animals deficient in TRPV3 and TRPV4, compared to their wild-type counterparts. Conclusions Our results support the notion that TRPV3 and TRPV4 likely make limited and strain-dependent contributions to innocuous warm temperature perception or noxious heat sensation, even when TRPV1 is masked. These findings imply the existence of other significant mechanisms for heat perception.

  1. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. (United States)

    Dwyer, Jason M; Rizzo, Stacey J Sukoff; Neal, Sarah J; Lin, Qian; Jow, Flora; Arias, Robert L; Rosenzweig-Lipson, Sharon; Dunlop, John; Beyer, Chad E


    Acid sensing ion channels (ASICs) are proton-gated ion channels located in the central and peripheral nervous systems. Of particular interest is ASIC1a, which is located in areas associated with fear and anxiety behaviors. Recent reports suggest a role for ASIC1a in preclinical models of fear conditioning and anxiety. The present experiments evaluated various ASIC inhibitors in preclinical models of autonomic and behavioral parameters of anxiety. In addition, neurochemical studies evaluated the effects of an ASIC inhibitor (A-317567) on neurotransmitter levels in the amygdala. In electrophysiological studies using hippocampal primary neuronal cultures, three ASIC inhibitors (PcTX-1, A-317567, and amiloride) produced concentration-dependent inhibition of acid-evoked currents. In the stress-induced hyperthermia model, acute administration of psalmotoxin 1 (PcTX-1; 10-56 ng, i.c.v.), A-317567 (0.1-1.0 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) prevented stress-induced elevations in core body temperature. In the four-plate test, acute treatment with PcTX-1 (10-56 ng, i.c.v.) and A-317567 (0.01-0.1 mg/kg, i.p.), but not amiloride (3-100 mg/kg, i.p.), produced dose-dependent and significant increases in the number of punished crossings relative to vehicle-treated animals. Additionally, PcTX-1 (56-178 ng, i.c.v.), A-317567 (0.1-10 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) lacked significant anxiolytic-like activity in the elevated zero maze. In neurochemical studies, an infusion of A-317567 (100 microM) into the amygdala significantly elevated the extracellular levels of GABA, but not glutamate, in this brain region. These findings demonstrate that ASIC inhibition produces anxiolytic-like effects in some behavioral models and indicate a potential role for GABAergic mechanisms to underlie these anxiolytic-like effects.

  2. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney

    DEFF Research Database (Denmark)

    Langkilde, Rikke Zachar; Skjødt, Karsten; Marcussen, Niels


    The epithelial sodium channel (ENaC) of the kidney is necessary for extracellular volume homeostasis and normal arterial BP. Activity of ENaC is enhanced by proteolytic cleavage of the gamma-subunit and putative release of a 43-amino acid inhibitory tract from the gamma-subunit ectodomain. We......ENaC was detected consistently only in tissue from patients with proteinuria and observed in collecting ducts. In conclusion, human kidney gammaENaC is subject to proteolytic cleavage, yielding fragments compatible with furin cleavage, and proteinuria is associated with cleavage at the putative prostasin...

  3. Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Directory of Open Access Journals (Sweden)

    Crandall Edward D


    Full Text Available Abstract Background Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. Methods Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. Results This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. Conclusion This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease.

  4. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias (United States)

    Cubeddu, Luigi X.


    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294

  5. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins. (United States)

    Fujita, Takanori; Liu, Yu; Higashitsuji, Hiroaki; Itoh, Katsuhiko; Shibasaki, Koji; Fujita, Jun; Nishiyama, Hiroyuki


    Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Incorporating Born solvation energy into the three-dimensional Poisson-Nernst-Planck model to study ion selectivity in KcsA K+ channels (United States)

    Liu, Xuejiao; Lu, Benzhuo


    Potassium channels are much more permeable to potassium than sodium ions, although potassium ions are larger and both carry the same positive charge. This puzzle cannot be solved based on the traditional Poisson-Nernst-Planck (PNP) theory of electrodiffusion because the PNP model treats all ions as point charges, does not incorporate ion size information, and therefore cannot discriminate potassium from sodium ions. The PNP model can qualitatively capture some macroscopic properties of certain channel systems such as current-voltage characteristics, conductance rectification, and inverse membrane potential. However, the traditional PNP model is a continuum mean-field model and has no or underestimates the discrete ion effects, in particular the ion solvation or self-energy (which can be described by Born model). It is known that the dehydration effect (closely related to ion size) is crucial to selective permeation in potassium channels. Therefore, we incorporated Born solvation energy into the PNP model to account for ion hydration and dehydration effects when passing through inhomogeneous dielectric channel environments. A variational approach was adopted to derive a Born-energy-modified PNP (BPNP) model. The model was applied to study a cylindrical nanopore and a realistic KcsA channel, and three-dimensional finite element simulations were performed. The BPNP model can distinguish different ion species by ion radius and predict selectivity for K+ over Na+ in KcsA channels. Furthermore, ion current rectification in the KcsA channel was observed by both the PNP and BPNP models. The I -V curve of the BPNP model for the KcsA channel indicated an inward rectifier effect for K+ (rectification ratio of ˜3 /2 ) but indicated an outward rectifier effect for Na+ (rectification ratio of ˜1 /6 ) .

  7. The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations (United States)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; McFadden, J.; Halekas, J. S.; DiBraccio, G. A.; Connerney, J. E. P.; Eparvier, F.; Brain, D.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.


    We present multi-instrument observations of the effects of solar wind on ion escape fluxes on Mars based on the Mars Atmosphere and Volatile EvolutioN (MAVEN) data from 1 November 2014 to 15 May 2016. Losses of oxygen ions through different channels (plasma sheet, magnetic lobes, boundary layer, and ion plume) as a function of the solar wind and the interplanetary magnetic field variations were studied. We have utilized the modified Mars Solar Electric (MSE) coordinate system for separation of the different escape routes. Fluxes of the low-energy (≤30 eV) and high-energy (≥30 eV) ions reveal different trends with changes in the solar wind dynamic pressure, the solar wind flux, and the motional electric field. Major oxygen fluxes occur through the tail of the induced magnetosphere. The solar wind motional electric field produces an asymmetry in the ion fluxes and leads to different relations between ion fluxes supplying the tail from the different hemispheres and the solar wind dynamic pressure (or flux) and the motional electric field. The main driver for escape of the high-energy oxygen ions is the solar wind flux (or dynamic pressure). On the other hand, the low-energy ion component shows the opposite trend: ion flux decreases with increasing solar wind flux. As a result, the averaged total oxygen ion fluxes reveal a low variability with the solar wind strength. The large standard deviations from the averages values of the escape fluxes indicate the existence of mechanisms which can enhance or suppress the efficiency of the ion escape. It is shown that the Martian magnetosphere possesses the properties of a combined magnetosphere which contains different classes of field lines. The existence of the closed magnetic field lines in the near-Mars tail might be responsible for suppression of the ion escape fluxes.

  8. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia. (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun


    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  9. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiquan; Shi, Jun; Huang, Weimin, E-mail:


    In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2′-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM. - Highlights: • The rates of electron transfer reaction in the lipid membranes surface were detected. • Dynamic investigations of ion-channel behavior of supported bilayer lipid membranes by scanning electrochemical microscopy • A novel way to explore the interaction between molecules and supported bilayer lipid membranes.

  10. Extracts and compounds active on TRP ion channels from Waldheimia glabra, a ritual medicinal plant from Himalaya. (United States)

    Giorgi, Annamaria; Bassoli, Angela; Borgonovo, Gigliola; Panseri, Sara; Manzo, Alessandra; Pentimalli, Daniela; Schiano Moriello, Aniello; De Petrocellis, Luciano


    Waldheimia glabra (Decne.) Regel is a wild plant from the Himalayan Mountains, commonly known as Smooth Ground Daisy. This plant is traditionally used by local populations in religious rituals (incense) or in traditional herbal medicine to treat skin diseases, headache, joint pain and fever. In literature few data are available on the investigation of this aromatic plant. The present work aims at deepening knowledge about the chemical composition of W. glabra extracts and incense, as well as its activity on TRP ion channels. Extracts and incense of W. glabra were analyzed by using HS-SPME GC/MS, GC/MS and NMR analysis. Tests on the activity of W. glabra extracts and isolated compounds (+)-ludartin 1 and B-ring-homo-tonghaosu 2 on TRP channels were also performed. Some extracts and pure compounds from W. glabra showed an interesting activity in terms of efficacy and potency on rat TRPA1, an ion channel involved in several sensory mechanisms, including pungency, environmental irritation and pain perception. Activity is discussed and compared with that of other known TRPA1 natural agonists with different chemical structures. All compounds showed only a negligible inhibition activity on rat TRPM8 ion channel. Our findings demonstrate that W. glabra is involved in the receptor activation mechanism and therefore represents a new natural product potentially useful in pharmaceutical and agrifood research. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Genetic disorders of transporters/channels in the inner ear and their relation to the kidney.

    NARCIS (Netherlands)

    Peters, T.A.; Monnens, L.A.H.; Cremers, C.W.R.J.; Curfs, J.H.A.J.


    Inner ear physiology is reviewed with emphasis on features common to renal physiology. Genetic disorders in transporters/channels for chloride (ClC-K), bicarbonate (Cl(-)/HCO(3)(-) exchanger), protons (H(+)-ATPase), sodium (ENaC, NKKC1, NBC3, NHE3), potassium (KCNQ1/KCNE1, Kcc4), and water (AQP4) in

  12. Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition

    Czech Academy of Sciences Publication Activity Database

    Khan, M. A. H.; Pavlov, T. S.; Christain, S. V.; Neckář, Jan; Staruschenko, A.; Gauthier, K. M.; Capdevila, J. H.; Falck, J. R.; Campbell, W. B.; Imig, J. D.


    Roč. 127, č. 7 (2014), s. 463-474 ISSN 0143-5221 Institutional support: RVO:67985823 Keywords : angiotensin II * epithelial sodium channel (ENaC) * epoxyeicosatrienoic acid analogue * hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.598, year: 2014

  13. Differential regulation of proton-sensitive ion channels by phospholipids: a comparative study between ASICs and TRPV1.

    Directory of Open Access Journals (Sweden)

    Hae-Jin Kweon

    Full Text Available Protons are released in pain-generating pathological conditions such as inflammation, ischemic stroke, infection, and cancer. During normal synaptic activities, protons are thought to play a role in neurotransmission processes. Acid-sensing ion channels (ASICs are typical proton sensors in the central nervous system (CNS and the peripheral nervous system (PNS. In addition to ASICs, capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1 channels can also mediate proton-mediated pain signaling. In spite of their importance in perception of pH fluctuations, the regulatory mechanisms of these proton-sensitive ion channels still need to be further investigated. Here, we compared regulation of ASICs and TRPV1 by membrane phosphoinositides, which are general cofactors of many receptors and ion channels. We observed that ASICs do not require membrane phosphatidylinositol 4-phosphate (PI(4P or phosphatidylinositol 4,5-bisphosphate (PI(4,5P2 for their function. However, TRPV1 currents were inhibited by simultaneous breakdown of PI(4P and PI(4,5P2. By using a novel chimeric protein, CF-PTEN, that can specifically dephosphorylate at the D3 position of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5P3, we also observed that neither ASICs nor TRPV1 activities were altered by depletion of PI(3,4,5P3 in intact cells. Finally, we compared the effects of arachidonic acid (AA on two proton-sensitive ion channels. We observed that AA potentiates the currents of both ASICs and TRPV1, but that they have different recovery aspects. In conclusion, ASICs and TRPV1 have different sensitivities toward membrane phospholipids, such as PI(4P, PI(4,5P2, and AA, although they have common roles as proton sensors. Further investigation about the complementary roles and respective contributions of ASICs and TRPV1 in proton-mediated signaling is necessary.

  14. Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc. (United States)

    Cuesta, Antonio; Viña, Eliseo; Cabo, Roberto; Vázquez, Gorka; Cobo, Ramón; García-Suárez, Olivia; García-Cosamalón, José; Vega, José A


    The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity.

  15. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases. (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai


    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. © 2016 Elsevier Inc. All rights reserved.

  16. Ion channeling study of defects in compound crystals using Monte Carlo simulations (United States)

    Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.


    Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.

  17. Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses.

    Directory of Open Access Journals (Sweden)

    Neil D Detweiler

    Full Text Available Previous reports indicate roles for acid-sensing ion channels (ASICs in both peripheral and central chemoreception, but the contributions of ASICs to ventilatory drive in conscious, unrestrained animals remain largely unknown. We tested the hypotheses that ASICs contribute to hypoxic- and hypercapnic-ventilatory responses. Blood samples taken from conscious, unrestrained mice chronically instrumented with femoral artery catheters were used to assess arterial O2, CO2, and pH levels during exposure to inspired gas mixtures designed to cause isocapnic hypoxemia or hypercapnia. Whole-body plethysmography was used to monitor ventilatory parameters in conscious, unrestrained ASIC1, ASIC2, or ASIC3 knockout (-/- and wild-type (WT mice at baseline, during isocapnic hypoxemia and during hypercapnia. Hypercapnia increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice, but there were no differences between ASIC1-/-, ASIC2-/-, or ASIC3-/- and WT. Isocapnic hypoxemia also increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice. Minute ventilation in ASIC2-/- mice during isocapnic hypoxemia was significantly lower compared to WT, but there were no differences in the responses to isocapnic hypoxemia between ASIC1-/- or ASIC3-/- compared to WT. Surprisingly, these findings show that loss of individual ASIC subunits does not substantially alter hypercapnic or hypoxic ventilatory responses.

  18. Hierarchical Bayesian inference for ion channel screening dose-response data [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ross H Johnstone


    Full Text Available Dose-response (or ‘concentration-effect’ relationships commonly occur in biological and pharmacological systems and are well characterised by Hill curves. These curves are described by an equation with two parameters: the inhibitory concentration 50% (IC50; and the Hill coefficient. Typically just the ‘best fit’ parameter values are reported in the literature. Here we introduce a Python-based software tool, PyHillFit , and describe the underlying Bayesian inference methods that it uses, to infer probability distributions for these parameters as well as the level of experimental observation noise. The tool also allows for hierarchical fitting, characterising the effect of inter-experiment variability. We demonstrate the use of the tool on a recently published dataset on multiple ion channel inhibition by multiple drug compounds. We compare the maximum likelihood, Bayesian and hierarchical Bayesian approaches. We then show how uncertainty in dose-response inputs can be characterised and propagated into a cardiac action potential simulation to give a probability distribution on model outputs.

  19. Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip (United States)

    Mukherjee, Siddhartha; Goswami, Prakash; Dhar, Jayabrata; Dasgupta, Sunando; Chakraborty, Suman


    We report a study on the ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Here, we derive an analytical solution for the potential distribution in a parallel plate microchannel, where the effects of finite sized ionic species are taken into account by invoking the free energy formalism. Following this, a purely electroosmotic flow of a simplified Phan-Thien-Tanner (sPTT) fluid is considered. For the sPTT model, linear, quadratic, and exponential kernels are chosen for the stress coefficient function describing its viscoelastic nature across various ranges of Deborah number. The theoretical framework presented in our analysis has been successfully compared with experimental results available in the literature. We believe that the implications of the considered effects on the net volumetric throughput will not only provide a deeper theoretical insight to interpret the electrokinetic data in the presence of ionic species but also serve as a fundamental design tool for novel electrokinetically driven lab-on-a-chip biofluidic devices.

  20. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels. (United States)

    Wilkinson, Trevor C I


    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Directory of Open Access Journals (Sweden)

    Fierro Leonardo


    Full Text Available Abstract Background ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1 ASIC3 might trigger ischemic pain in heart and muscle; 2 it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. Results Less than half (40% of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small ( Conclusion Our data indicates that: 1 ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2 co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.

  2. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats. (United States)

    Ye, Shunjie; Yang, Rong; Xiong, Qiuju; Yang, Youhua; Zhou, Lianying; Gong, Yeli; Li, Changlei; Ding, Zhenhan; Ye, Guohai; Xiong, Zhe


    Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly


    Kweon, Hae-Jin; Kim, Dong-Il; Bae, Yeonju; Park, Jae-Yong; Suh, Byung-Chang


    Acid-sensing ion channels (ASICs) are proton-activated cation channels that play important roles as typical proton sensors during pathophysiological conditions and normal synaptic activities. Among the ASIC subunits, ASIC2a and ASIC2b are alternative splicing products from the same gene, ACCN1. It has been shown that ASIC2 isoforms have differential subcellular distribution: ASIC2a targets the cell surface by itself, while ASIC2b resides in the ER. However, the underlying mechanism for this d...

  4. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential (United States)

    Wolfart, Jakob; Laker, Debora


    Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies. PMID:26124723

  5. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes

    International Nuclear Information System (INIS)

    Hamilton, S.L.; Alvarez, R.M.; Fill, M.; Hawkes, M.J.; Brush, K.L.; Schilling, W.P.; Stefani, E.


    Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [ 3 H]PN200-110, and the alkaloid, [ 3 H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling

  6. Search after new agents for hyperpolarization-activated and cyclic nucleotide-gated ion channels; Suche nach neuen Wirkstoffen fuer Hyperpolarisationsaktivierte und zyklisch Nukleotid-gesteuerte Ionenkanaele

    Energy Technology Data Exchange (ETDEWEB)

    Struenker, T.


    Rhythmic activity of single cells or cellular networks is a common feature of most organisms. Cellular rhythms govern the beating of the heart, cycles of sleep and wakefulness, breathing, and the release of hormones. The endogenous rhythmic activity of many neurons and cardiac relies on a complex interplay between several distinct ion channels. In particular, one type of ion channel plays a prominent role in the control of rhythmic electrical activity because it determines the frequency of the oscillations. The activity of the channels is thus setting the ''pace'' of the activity; therefore, these channels are often referred to as ''pacemaker'' channels. Despite their obvious physiological importance it hasn't been until a few years ago that the genes encoding pacemaker channels have been identified. Because both hyperpolarization and cyclic nucleotides are key elements that control their activity, pacemaker channels have now been designated hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels. From a scientific as well as medical point of view, HCN channels are interesting drug targets. Only a few substances are known that specifically affect HCN channels. In the present study, a microtiter plate-based high throughput screening assay for HCN1 and HCN4 channels was developed. With this assay, known drugs for HCN channels were characterized. Subsequently, venoms of snails, spiders, scorpions, and snakes were screened for toxins affecting HCN channel activity. A few venoms were identified that possibly contain drugs that act on HCN channels. (orig.)

  7. Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli (United States)

    Arkin, I. T.; Sukharev, S. I.; Blount, P.; Kung, C.; Brunger, A. T.


    In this report, we present structural studies on the large conductance mechanosensitive ion channel (MscL) from E. coli in detergent micelles and lipid vesicles. Both transmission Fourier transform infrared spectroscopy and circular dichroism (CD) spectra indicate that the protein is highly helical in detergents as well as liposomes. The secondary structure of the proteins was shown to be highly resistant towards denaturation (25-95 degrees C) based on an ellipticity thermal profile. Amide H+/D+ exchange was shown to be extensive (ca. 66%), implying that two thirds of the protein are water accessible. MscL, reconstituted in oriented lipid bilayers, was shown to possess a net bilayer orientation using dichroic ratios measured by attenuated total-reflection Fourier transform infrared spectroscopy. Here, we present and discuss this initial set of structural data on this new family of ion-channel proteins.

  8. Ion channeling study of epitaxially grown HoBa2Cu3Ox thin films on MgO(001)

    International Nuclear Information System (INIS)

    Watamori, Michio; Shoji, Fumiya; Hanawa, Teruo; Oura, Kenjiro; Itozaki, Hideo.


    The crystalline quality of high-T c superconducting HoBa 2 Cu 3 O x thin films formed on MgO(001) has been investigated by a high-energy ion channeling technique. Analysis was performed at 3 depth regions (surface, inside, and interface), and the degree of crystalline quality at each depth was estimated. Based on ion channeling measurements carried out with the normal and off-normal and directions, it has been found that (1) the crystalline quality at the film surface is much better than that at the interface, (2) the crystalline disorder can be seen mainly along the c-axis, and (3) the film consists of two domains, 90deg rotated from each other about the c-axis of the film. The crystalline quality of the MgO substrates has also been investigated. (author)

  9. Anti-electromagnetic interference analysis of equivalent circuit of ion channel based on the Hodgkin-Huxley model

    International Nuclear Information System (INIS)

    Chu, J; Chang, X L; Zhao, M; Man, M H; Wei, M; Yuan, L


    With the continuous improvement of circuit integration and working clock frequency in the electronic system, it is increasingly easy for the system to be affected by electromagnetic waves, and electromagnetic susceptibility and vulnerability become more severe. However, living beings in nature have shown extraordinary compatibility, immunity and adaptability to the electromagnetism at the same time. In addition, the ion channel on the neuron cytomembrane is a typical representation of b ioelectrical immunity . So the Hodgkin-Huxley circuit model with one capacitor in parallel with some power supplies and resistors was adopted to simulate the ion channel on the neuron cytomembrane. Through analysis, the circuit model can be used to simulate some electrical characteristics of biological neuron cells, and then acquire a certain level of anti-electromagnetic interference ability. This method will be useful for improving the reliability, compatibility and anti-interference capability of the electronic system in the complicated electromagnetic environment.

  10. effect of the plasma ion channel on self-focusing of a Gaussian laser pulse in underdense plasma

    Directory of Open Access Journals (Sweden)

    Sh Irani


    Full Text Available  We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. Then, an equation for the width of laser pulse with a relativistic mass correction term and the effect of ion channel were derived and the propagation of high-intensity laser pulse in an underdense plasma with weak relativistic approximation was investigated. It is shown that the ratio of ion channel radius to spot size could result in different forms of self focusing for the laser pulse in plasma.

  11. Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel

    DEFF Research Database (Denmark)

    Bjelkmar, Pär; Niemelä, Perttu S; Vattulainen, Ilpo


    transitions occur in membrane proteins-not to mention numerous applications in drug design. Here, we present a full 1 micros atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements......Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how...... and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations....

  12. Pharmacological investigation of the role of ion channels in salivary secretion

    DEFF Research Database (Denmark)

    Stummann, Tina C; Poulsen, Jørgen H; Hay-Schmidt, Anders


    The role of K+ and Cl- channels in salivary secretion was investigated, with emphasis on the potential role of Ca2+ -activated K+ channels. Ligand saturation kinetic assays and autoradiography showed large-conductance (BK) K+ channels to be highly expressed in rat submandibular and parotid glands...

  13. Arctigenin, a Potential Anti-Arrhythmic Agent, Inhibits Aconitine-Induced Arrhythmia by Regulating Multi-Ion Channels


    Zhenying Zhao; Yongqiang Yin; Hong Wu; Min Jiang; Jianshi Lou; Gang Bai; Guo‘an Luo


    Background/Aims: Arctigenin possesses biological activities, but its underlying mechanisms at the cellular and ion channel levels are not completely understood. Therefore, the present study was designed to identify the anti-arrhythmia effect of arctigenin in vivo, as well as its cellular targets and mechanisms. Methods: A rat arrhythmia model was established via continuous aconitine infusion, and the onset times of ventricular premature contraction, ventricular tachycardia and death were reco...

  14. Characterisation of the effect of ion channel modulators on I1-imidazoline binding sites in bovine adrenal medulla

    International Nuclear Information System (INIS)

    Musgrave, I.F.; Kotsopoulos, D.; Hughes, R.A.


    Full text: The structure of I 1 -imidazoline binding sites is still unknown and we have proposed that they represent ion channels (i). In these experiments we characterised the effects of the known ion channel modulators methyltriphenylphosphonium (MTPP), 4-aminopyridine (4-AP) and tetraethyl ammonium (TEA) on [ 3 H] clonidine binding in bovine adrenal medullary membranes as these membranes have a relatively well defined I 1 -imidazoline binding site (Molderings et al, 1993). Membranes from bovine adrenal medulla's were prepared by a minor modification of the method of Rapier et al. [ 3 H] Clonidine binding was performed by the method of Ernsberger et al (3), with [ 3 H] clonidine (62 Ci/mmol) used at a final concentration of 5 nM. [ 3 H] Clonidine binding was displaced from bovine adrenal medullary membranes by adrenergic drugs with the order of potency being oxymetazoline > clonidine > moxonidine = idazoxan >> yonimbine. This order of potency is consistent with previous studies of I 1 -imidazoline binding sites (4). Non-linear curve fitting to this data was consistent with a single site model. Both TEA and 4-AP displaced [ H] clonidine with similar potency to its effect on ion channels, TEA having a EC>> of 54 ± 0.3 μM (n=3). The displacement of [ 3 H] clonidine produced by both TEA and 4-AP also fitted to a single site model. Displacement of [ 3 H] clonidine by MTPP fitted a two site model (p 1 -imidazoline binding sites defined with [ 3 H] clonidine may represent ion channels. We have used this data to perform molecular modelling and have determined a common conformation of I 1 -prefering ligands which will aid in the development of I 1 -selective ligands in the future. Copyright (1998) Australian Neuroscience Society

  15. Electron impact ionization of B-like ion N2+. Resonance enhancement of the single-channel cross section

    International Nuclear Information System (INIS)

    Li Guohe; Qian Xingzhong; Pan Soufu


    The electron impact ionization cross sections of B-like ion N 2+ are calculated in the Coulomb-Born no exchange approximation by using R-matrix method, and the single differential cross section is given. The calculated results exhibit the Rydberg series of resonances. The resonance enhancement of the single-channel cross section is significantly greater than direct ionization cross section. It is agreement with that of Chidichimo

  16. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents (United States)

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.


    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  17. Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel. (United States)

    Zaydman, Mark A; Kasimova, Marina A; McFarland, Kelli; Beller, Zachary; Hou, Panpan; Kinser, Holly E; Liang, Hongwu; Zhang, Guohui; Shi, Jingyi; Tarek, Mounir; Cui, Jianmin


    Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the IKs current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore.

  18. Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs

    DEFF Research Database (Denmark)

    Teilmann, Stefan C.; Byskov, Anne Grete; Pedersen, Per Amstrup


    We have examined the subcellular localization of transient receptor potential (TRP) ion channels and the potential sensory role of cilia in murine female reproductive organs using confocal laser scanning microscopy analysis on ovary and oviduct tissue sections as well as on primary cultures...... of follicular granulosa cells. We show that the Ca2+ permeable cation channel, polycystin-2, as well as polycystin-1, a receptor that forms a functional protein complex with polycystin 2, distinctively localize to primary cilia emerging from granulosa cells of antral follicles in vivo and in vitro. Both...... polycystins are localized to motile oviduct cilia and this localization is greatly increased upon ovulatory gonadotropic stimulation. Further, the Ca2+ permeable cation channel, TRP vaniloid 4 (TRPV4), localizes to a sub-population of motile cilia on the epithelial cells of the ampulla and isthmus with high...

  19. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum. (United States)

    Abd El Halim, Hesham M; Alshukri, Baida M H; Ahmad, Munawar S; Nakasu, Erich Y T; Awwad, Mohammed H; Salama, Elham M; Gatehouse, Angharad M R; Edwards, Martin G


    The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.

  20. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. (United States)

    Gunthorpe, M J; Smith, G D; Davis, J B; Randall, A D


    Acid-sensing ion channels (ASICs) are a new and expanding family of proton-gated cation (Na+/Ca2+) channels that are widely expressed in sensory neurons and the central nervous system. Their distribution suggests that they may play a critical role in the sensation of the pain that accompanies tissue acidosis and may also be important in detecting the subtle pH variations that occur during neuronal signalling. Here, using whole-cell patch-clamp electrophysiology and reverse transcriptase-polymerase chain reaction (RT-PCR), we show that HEK293 cells, a commonly used cell line for the expression and characterisation of many ion channels, functionally express an endogenous proton-gated conductance attributable to the activity of human ASIC1a. These data therefore represent the first functional characterisation of hASIC1 and have many important implications for the use of HEK293 cells as a host cell system for the study of ASICs, vanilloid receptor-1 and any other proton-gated channel. With this latter point in mind we have devised a simple desensitisation strategy to selectively remove the contribution of hASIC1a from proton-gated currents recorded from HEK293 cells expressing vanilloid receptor-1.

  1. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control.

    Directory of Open Access Journals (Sweden)

    Nana Song

    Full Text Available Acid-sensing ion channels (ASICs are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001 and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05. This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM, a selective inhibitor (PcTX1, 10 nM or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.

  2. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model. (United States)

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi


    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical remodeling. Amiodarone alter potassium ion channel activity (Ito, IKur, IK1 and IKs), shortening fAPD.

  3. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects. (United States)

    Chen, Rui; Swale, Daniel R


    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  4. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis.

    Directory of Open Access Journals (Sweden)

    Kay Hamacher

    Full Text Available Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+ channels. To determine if these viral K(+ channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+ channel pore modules from seven phycodnaviruses to the K(+ channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+ channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+ channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+ channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+ channels in algae and perhaps even all cellular organisms.

  5. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel


    Yang, Fan; Xiao, Xian; Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie


    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 ? resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were c...

  6. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids

    International Nuclear Information System (INIS)

    Eisenberg, Bob; Hyon, YunKyong; Liu, Chun


    Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton’s least action and Rayleigh’s dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an “extra layer” of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler–Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components

  7. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. (United States)

    Eisenberg, Bob; Hyon, Yunkyong; Liu, Chun


    Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new

  8. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids (United States)

    Eisenberg, Bob; Hyon, YunKyong; Liu, Chun


    Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new

  9. Deep level transient spectroscopy studies of charge traps introduced into silicon by channeling ion implantation of phosphorus

    International Nuclear Information System (INIS)

    McCallum, J.C.; Lay, M.; Deenapanray, P.N.K.; Jagadish, C.


    Full text: The operating conditions of a silicon-based quantum computer are expected to place stringent requirements on the quality of the material and the processes used to make it. In the Special Research Centre for Quantum Computer Technology, ion implantation is one of the principle processing techniques under investigation for forming an ordered array of phosphorus atoms. This technique introduces defect centres in silicon which act as charge traps. Charge traps are expected to be detrimental to operation of the device. These defect centres, their dependence on ion implantation and thermal annealing conditions are being quantified using Deep Level Transient Spectroscopy (DLTS). Since the aspect ratio of the masks required for the top-down fabrication process restrict the incident ions to a range of angles in which they may undergo channeling implantation in the silicon substrate, we have examined the effect of channeling implantation on the nature and quantity of the charge traps produced. This is the first time that DLTS studies have been performed for channeling implantation of a dopant species in silicon. DLTS is well-suited to the dose regime of ∼10 11 P/cm 3 required for the quantum computer, however, a standard DLTS measurement is unable to probe the shallow depth range of ∼ 20 nm required for the P atoms (∼ 10-15 keV implantation energy). Our aim has therefore been to perform P implants in the appropriate dose regime but using higher implantation energies, ∼ 75-450 keV, where DLTS can directly identify and profile the charge traps induced by the implantation step and monitor their annealing characteristics during subsequent processing. To map the behaviour observed in this energy regime onto the low energy range required for the quantum computer we are comparing the DLTS results to damage profiles predicted by the Monte Carlo code Crystal Trim which is used in the semiconductor industry to simulate ion implantation processes in crystalline


    NARCIS (Netherlands)



    Monte Carlo simulations of channeling on the icosahedral quasicrystal Al63Cu25Fe12 were made, using an experimentally determined structure model for this phase. The channeling effect was found to be nearly as good as for a normal, periodic crystal. Dip widths are in agreement with experimental

  11. The E052 - GSI Experiment, Deceleration of highly charged ions by crystal channeling. (Technical notes)

    International Nuclear Information System (INIS)

    Kirsch, R.


    The report on the E052 - GSI Experiment, devoted to 'Deceleration of highly charged ions by crystal channeling' present the technical notes and the status of this experiment in 2003. The report contains 13 sections and two annexes. The sections deal with the following issues: 1. File system of the 'PC monitor' for E052 - GSI Experiment in 2003; 2. Parameters of the 'PC monitor' file system; 3. Operation of the two PCs; 3.1. Layout of goniometer remote control; 3.2. 'PC motors' side by the beam hall; 3.3. RS232 connection cabling; 3.4. RS232 configuration on the COM1 ports of the two PCs; 4. Motor connection; 4.1. SubD-25 acquisition PC monitor arm on 'COM1'; 4.2. Motors step by step feeding side SubD-25 on 'COM1'; 4.3. Distribution of digital step by step control signals; 4.5. Upper an lower goniometer connection; 4.6. Rotation and inclination outer goniometer connection; 4.7. Ultra vacuum inner rotation and inclination connection; 5. Motor characteristics; 5.1. Upstream and downstream; 5.2. Rotation; 5.3 Inclination; 5.4. Feedings; 6. Goniometer in-beam positioning; 6.1. Height fine motor positioning; 6.2. Side manual positioning; 7. Goniometer movements; 8. Crystals and electron detection; 8.1. General layout; 8.2. 1 μm Si(100) crystal; 8.3. 33 μm Si(100) crystal; 8.4. Crystal mounting; 8.5. Electron detection; 9. Reference laser positioning of angular movements; 10. Beam track and collimators upstream the target; 11. User manual - Monitoring programme; 11.Start scanning program (GSIscan.exe); 11.2. SCANNING the crystal (Scan Control window); 11.3. MOVING THE GONIOMETER MANUALY (goniometer control window); 11.4. USING THE COUNTERS (counter display window); 11.5. MULTISCALER PLOT DISPLAY; 11.6. SELECT ACTIVE PLOT; 11.7. CURSORS; 11.8. STATISTICS; 11.9. Y SCALE change; 11.10. PLOT view and hide counter; 11.11. SAVE multiscaler spectra; 11.12. PRINT plot; 12. Simplified acquisition electronic setup; 13. The 'PC motors' software; 13.1. The code structure; 13

  12. Enhancement of proton transfer in ion channels by membrane phosphate headgroups. (United States)

    Wyatt, Debra L; de Godoy, Carlos Marcelo G; Cukierman, Samuel


    The transfer of protons (H+) in gramicidin (gA) channels is markedly distinct in monoglyceride and phospholipid membranes. In this study, the molecular groups that account for those differences were investigated using a new methodology. The rates of H+ transfer were measured in single gA channels reconstituted in membranes made of plain ceramides or sphingomyelins and compared to those in monoglyceride and phospholipid bilayers. Single-channel conductances to protons (gH) were significantly larger in sphingomyelin than in ceramide membranes. A novel and unsuspected finding was that H+ transfer was heavily attenuated or completely blocked in ceramide (but not in sphingomyelin) membranes in low-ionic-strength solutions. It is reasoned that H-bond dynamics at low ionic strengths between membrane ceramides and gA makes channels dysfunctional. The rate of H+ transfer in gA channels in ceramide membranes is significantly higher than that in monoglyceride bilayers. This suggests that solvation of the hydrophobic surface of gA channels by two acyl chains in ceramides stabilizes the gA channels and the water wire inside the pore, leading to an enhancement of H+ transfer in relation to that occurring in monoglyceride membranes. gH values in gA channels are similar in ceramide and monoglyceride bilayers and in sphingomyelin and phospholipid membranes. It is concluded that phospho headgroups in membranes have significant effects on the rate of H+ transfer at the membrane gA channel/solution interfaces, enhancing the entry and exit rates of protons in channels.


    NARCIS (Netherlands)



    We have investigated multielectron capture processes in collisions of Ar9+ on Ar by measuring the resulting Auger electrons in coincidence with charge-state-analyzed target ions. In this way it was possible to reconstruct partial electron energy spectra, each corresponding to a particular number of

  14. Dechanneling measurements of defect depth profiles and effective cross-channel distribution of misaligned atoms in ion irradiated gold

    International Nuclear Information System (INIS)

    Pronko, P.P.


    Defect depth profiles for self ion and He + irradiated gold are obtained from single and multiple scatter dechanneling analysis in single crystal gold films. Quantitative defect densities are obtained through use of atomic scattering cross sections. Integral damage profiles are extracted from the dechanneling spectra and subsequently differentiated to yield the volume concentration of defects as a function of depth. Results from the self ion irradiations suggest that incident ions produce defect distributions across depths much greater than predicted by random stopping theory. This is in agreement with TEM observations of others. Comparison of the experimental profiles is made with theoretical vacancy distributions predicted by defect diffusion in a radiation environment. Similarities are observed for the low fluence irradiations suggesting that profile characteristics may be controlled by rapid migration and loss of interstitials to the film surfaces during irradiation. Information on the across-channel distribution of misaligned atoms in the damaged films is obtained with the steady increase of transverse energy model applied to the dechanneling spectra. A predominance of slight misalignment is observed with no contribution to dechanneling coming from atoms displaced significantly close to the center of the channels. This is in keeping with what is expected for crystal distortions caused by the strain fields associated with vacancy cluster defects

  15. Dechanneling measurements of defect depth profiles and effective cross-channel distribution of misaligned atoms in ion-irradiated gold

    International Nuclear Information System (INIS)

    Pronko, P.P.


    Defect depth profiles for self-ion and He + irradiated gold are obtained from single and multiple scatter dechanneling analysis in single-crystal gold films. Quantitative defect densities are obtained through use of atomic-scattering cross sections. Integral damage profiles are extracted from the dechanneling spectra and subsequently differentiated to yield the volume concentration of defects as a function of depth. Results from the self-ion irradiations suggest that incident ions produce defect distributions across depths much greater than predicted by random stopping theory. This is in agreement with TEM observations of others. Comparison of the experimental profiles is made with theoretical vacancy distributions predicted by defect diffusion in a radiation environment. Similarities are observed for the low-fluence irradiations, suggesting that profile characteristics may be controlled by rapid migration and loss of interstitials to the film surfaces during irradiation. Information on the across-channel distribution of misaligned atoms in the damaged films is obtained with the steady increase of transverse energy model. A predominance of slight misalignment is observed with no contribution to dechanneling coming from atoms displaced significantly close to the center of the channels. This is in keeping with what is expected for crystal distortions caused by the strain fields associated with vacancy cluster defects. (Auth.)

  16. Dynamic monitoring of transmembrane potential changes: a study of ion channels using an electrical double layer-gated FET biosensor. (United States)

    Pulikkathodi, Anil Kumar; Sarangadharan, Indu; Chen, Yi-Hong; Lee, Geng-Yen; Chyi, Jen-Inn; Lee, Gwo-Bin; Wang, Yu-Lin


    In this research, we have designed, fabricated and characterized an electrical double layer (EDL)-gated AlGaN/GaN high electron mobility transistor (HEMT) biosensor array to study the transmembrane potential changes of cells. The sensor array platform is designed to detect and count circulating tumor cells (CTCs) of colorectal cancer (CRC) and investigate cellular bioelectric signals. Using the EDL FET biosensor platform, cellular responses can be studied in physiological salt concentrations, thereby eliminating complex automation. Upon investigation, we discovered that our sensor response follows the transmembrane potential changes of captured cells. Our whole cell sensor platform can be used to monitor the dynamic changes in the membrane potential of cells. The effects of continuously changing electrolyte ion concentrations and ion channel blocking using cadmium are investigated. This methodology has the potential to be used as an electrophysiological probe for studying ion channel gating and the interaction of biomolecules in cells. The sensor can also be a point-of-care diagnostic tool for rapid screening of diseases.

  17. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. (United States)

    Cristofori-Armstrong, Ben; Rash, Lachlan D


    Acid-sensing ion channels (ASICs) are proton-activated cation channels that are expressed in a variety of neuronal and non-neuronal tissues. As proton-gated channels, they have been implicated in many pathophysiological conditions where pH is perturbed. Venom derived compounds represent the most potent and selective modulators of ASICs described to date, and thus have been invaluable as pharmacological tools to study ASIC structure, function, and biological roles. There are now ten ASIC modulators described from animal venoms, with those from snakes and spiders favouring ASIC1, while the sea anemones preferentially target ASIC3. Some modulators, such as the prototypical ASIC1 modulator PcTx1 have been studied in great detail, while some of the newer members of the club remain largely unstudied. Here we review the current state of knowledge on venom derived ASIC modulators, with a particular focus on their molecular interaction with ASICs, what they have taught us about channel structure, and what they might still reveal about ASIC function and pathophysiological roles. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling. (United States)

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le


    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  19. Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+ (United States)

    Pilz, Claudia S.


    An α-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2′-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2′-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times. Electronic supplementary material The online version of this article (doi:10.1007/s00249-008-0298-8) contains supplementary material, which is available to authorized users. PMID:18347789

  20. Investigation of the channeling of light ions through gold crystals having thicknesses of several hundreds of angstroms from 0.5 to 2 MeV

    International Nuclear Information System (INIS)

    Poizat, J.C.; Remillieux, J.

    A technique to obtain a few hundred A thick self-supporting gold crystal is described. These crystals have been used to perform three channeling experiments with 0.5 to 2 MeV light ions: i) The wide angle scattering probability as a function of the distance from the crystal surface was studied for a beam of particles incident in planar and axial directions. ii) The influence of channeling on the light emission from crystal-excited atomic beams was investigated. iii) A strong channeling effect was found on the probability of transmission of a molecular beam of H 2 + ions through a thin crystal

  1. Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry. (United States)

    Bartoi, Tudor; Augustinowski, Katrin; Polleichtner, Georg; Gründer, Stefan; Ulbrich, Maximilian H


    Acid-sensing ion channels (ASICs) are widely expressed proton-gated Na(+) channels playing a role in tissue acidosis and pain. A trimeric composition of ASICs has been suggested by crystallization. Upon coexpression of ASIC1a and ASIC2a in Xenopus oocytes, we observed the formation of heteromers and their coexistence with homomers by electrophysiology, but could not determine whether heteromeric complexes have a fixed subunit stoichiometry or whether certain stoichiometries are preferred over others. We therefore imaged ASICs labeled with green and red fluorescent proteins on a single-molecule level, counted bleaching steps from GFP and colocalized them with red tandem tetrameric mCherry for many individual complexes. Combinatorial analysis suggests a model of random mixing of ASIC1a and ASIC2a subunits to yield both 2:1 and 1:2 ASIC1a:ASIC2a heteromers together with ASIC1a and ASIC2a homomers.