WorldWideScience

Sample records for emission-line galaxies clustering

  1. Emission line galaxies and active galactic nuclei in WINGS clusters

    Science.gov (United States)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  2. Space density and clustering properties of a new sample of emission-line galaxies

    International Nuclear Information System (INIS)

    Wasilewski, A.J.

    1982-01-01

    A moderate-dispersion objective-prism survey for low-redshift emission-line galaxies has been carried out in an 825 sq. deg. region of sky with the Burrell Schmidt telescope of Case Western Reserve University. A 4 0 prism (300 A/mm at H#betta#) was used with the Illa-J emulsion to show that a new sample of emission-line galaxies is available even in areas already searched with the excess uv-continuum technique. The new emission-line galaxies occur quite commonly in systems with peculiar morphology indicating gravitational interaction with a close companion or other disturbance. About 10 to 15% of the sample are Seyfert galaxies. It is suggested that tidal interaction involving matter infall play a significant role in the generation of an emission-line spectrum. The space density of the new galaxies is found to be similar to the space density of the Makarian galaxies. Like the Markarian sample, the galaxies in the present survey represent about 10% of all galaxies in the absolute magnitude range M/sub p/ = -16 to -22. The observations also indicate that current estimates of dwarf galaxy space densities may be too low. The clustering properties of the new galaxies have been investigated using two approaches: cluster contour maps and the spatial correlation function. These tests suggest that there is weak clustering and possibly superclustering within the sample itself and that the galaxies considered here are about as common in clusters of ordinary galaxies as in the field

  3. Clustering Properties of Emission Line Selected Galaxies over the past 12.5 Gyrs

    Science.gov (United States)

    Khostovan, Ali Ahmad; Sobral, David; Mobasher, Bahram; Best, Philip N.; Smail, Ian; Matthee, Jorryt; Darvish, Behnam; Nayyeri, Hooshang; Hemmati, Shoubaneh; Stott, John P.

    2018-01-01

    In this talk, I will present my latest results on the clustering and dark matter halo (DMH) mass properties of ~7000 narrowband-selected [OIII] and [OII] emitters. I will briefly describe the past work that has been done with our samples (e.g., luminosity functions, evolution of equivalent widths) as motivation of using [OIII] and [OII] emitters to study clustering/halo properties. My talk will focus on our findings regarding the line luminosity and stellar mass dependencies with DMH mass. We find strongly increasing and redshift-independent trends between line luminosity and DMH mass with evidence for a shallower slope at the bright end consistent with halo masses of ~ 1012.5-13 M⊙. Similar, but weaker, trends between stellar mass and halo mass have also been found. We investigate the inter-dependencies of these trends on halo mass and find that the correlation with line luminosity is stronger than with stellar mass. This suggest that active galaxies may be connected with their host DMHs simply based on their emission line luminosity. If time permits, I will briefly present our most recent results using our sample of ~4000 Lyα emitters, where we find similar trends to that seen with the [OIII] and [OII] samples, as well as previous Hα measurements, which suggests galaxies selected based on emission lines may be tracing the same subpopulation of star forming galaxies. I will conclude my talk with an interpretation of this connection and suggest that the shallower slope seen for the brightest emitters is evidence for a transitional halo mass as suggested in models where quenching mechanisms truncate star formation activity and reduce the fraction of star forming galaxies with increasing halo mass.

  4. Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, Esra; Foster, Adam; Smith, Randall K.; Randall, Scott W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Markevitch, Maxim [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Loewenstein, Michael, E-mail: ebulbul@cfa.harvard.edu [CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-01

    We detect a weak unidentified emission line at E = (3.55-3.57) ± 0.03 keV in a stacked XMM-Newton spectrum of 73 galaxy clusters spanning a redshift range 0.01-0.35. When the full sample is divided into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at >3σ statistical significance in all three independent MOS spectra and the PN 'all others' spectrum. It is also detected in the Chandra spectra of the Perseus Cluster. However, it is very weak and located within 50-110 eV of several known lines. The detection is at the limit of the current instrument capabilities. We argue that there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with m{sub s} = 2E = 7.1 keV, our detection corresponds to a neutrino decay rate consistent with previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples. This appears to be because of an anomalously bright line at E = 3.62 keV in Perseus, which could be an Ar XVII dielectronic recombination line, although its emissivity would have to be 30 times the expected value and physically difficult to understand. Another alternative is the above anomaly in the Ar line combined with the nearby 3.51 keV K line also exceeding expectation by a factor of 10-20. Confirmation with Astro-H will be critical to determine the nature of this new line.

  5. PEARS Emission Line Galaxies

    Science.gov (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  6. A DOZEN NEW GALAXIES CAUGHT IN THE ACT: GAS STRIPPING AND EXTENDED EMISSION LINE REGIONS IN THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari; Yoshida, Michitoshi; Furusawa, Hisanori; Okamura, Sadanori; Graham, Alister W.; Miller, Neal A.; Carter, David; Mobasher, Bahram; Jogee, Shardha

    2010-01-01

    We present images of extended Hα clouds associated with 14 member galaxies in the Coma cluster obtained from deep narrowband imaging observations with the Suprime-Cam at the Subaru Telescope. The parent galaxies of the extended Hα clouds are distributed farther than 0.2 Mpc from the peak of the X-ray emission of the cluster. Most of the galaxies are bluer than g - r ∼ 0.5 and they account for 57% of the blue (g - r < 0.5) bright (r < 17.8 mag) galaxies in the central region of the Coma cluster. They reside near the red- and blueshifted edges of the radial velocity distribution of Coma cluster member galaxies. Our findings suggest that most of the parent galaxies were recently captured by the Coma cluster potential and are now infalling toward the cluster center with their disk gas being stripped off and producing the observed Hα clouds.

  7. Bright emission lines in new Seyfert galaxies

    International Nuclear Information System (INIS)

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references

  8. GAME: GAlaxy Machine learning for Emission lines

    Science.gov (United States)

    Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.

    2018-06-01

    We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.

  9. GAME: GAlaxy Machine learning for Emission lines

    Science.gov (United States)

    Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.

    2018-03-01

    We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of UV/optical/far infrared galaxy spectra. The improvements concern: (a) an enlarged spectral library including Pop III stars; (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (pyqz and HII-CHI-mistry) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines, and the extremely short computational times. We finally discuss the code potential and limitations.

  10. Emission-line galaxies toward the booetes void

    International Nuclear Information System (INIS)

    Moody, J.W.

    1986-01-01

    Galaxies with strong emission are potentially useful as probes of the large-scale galaxian distribution. However, to serve as probes, their relative frequency and clustering properties must be known. This dissertation presents a study of these properties for field galaxies having [OIII] λ5007 emission equivalent widths greater than 10 A and reports on a search for galaxies with [OIII] λ5007 emission in the direction of the Booetes void, a volume located at α = 4/sup h/48/sup m/, δ = 47 0 , and cz = 15,000 km/sec that has been demonstrated to be under-abundant in galaxies by a factor of at least four. The study of field emission-line galaxies was done in two magnitude limited surveys consisting of 341 galaxies from both the north and south galactic caps having previously published redshifts and photometry. The galaxy spectra used for redshifts were examined and supplemented by new observations for 56 objects, primarily those with confirmed or suspected emission. Emission-line galaxies were found to comprise 8.8% of galaxies in a Illa-J selected sample or 6.6% of galaxies in a Illa-F selected sample. A search for emission-line galaxies towards the Booetes void was undertaken using the Burrell Schmidt telescope and an objective prism giving a reciprocal dispersion of 900 A/mm at Hβ. Three galaxies were found to lie within it, a result consistent with distributions through the void ranging from uniform to under-abundant by a factor of three

  11. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  12. Emission Line Morphologies in Markarian Starburst Galaxies A ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    images of a sample of optically selected starburst galaxies from the Markar- ian lists. .... to the size of the galaxy and the histograms were sky dominated. .... simplest qualitative method is to visually examine the distribution of the emission line.

  13. Spectral classification of emission-line galaxies

    International Nuclear Information System (INIS)

    Veilleux, S.; Osterbrock, D.E.

    1987-01-01

    A revised method of classification of narrow-line active galaxies and H II region-like galaxies is proposed. It involves the line ratios which take full advantage of the physical distinction between the two types of objects and minimize the effects of reddening correction and errors in the flux calibration. Large sets of internally consistent data are used, including new, previously unpublished measurements. Predictions of recent photoionization models by power-law spectra and by hot stars are compared with the observations. The classification is based on the observational data interpreted on the basis of these models. 63 references

  14. Extended emission-line regions in active galaxies

    International Nuclear Information System (INIS)

    Hutchings, J.B.; Hickson, P.

    1988-01-01

    Long-slit spectra of four active galaxies in the redshift range 0.06-0.10 are presented. Two have interacting companions. Spectra of the galaxies show extended narrow emission lines in all cases. Continuum color changes, emision-line ratio changes, and velocity changes with 1 arcsec resolution can be detected. Relative velocities between AGN and companion galaxies are also given. These objects appear to lie in galaxies in which there is considerable star-formation activity, and very extended line emision. 20 references

  15. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen; Zheng, Wei; Ford, Holland; Lemze, Doron; Moustakas, John; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L.; Postman, Marc; Bradley, Larry; Coe, Dan; Bartelmann, Matthias; Benítez, Narciso; Broadhurst, Tom; Donahue, Megan; Infante, Leopoldo

    2015-01-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y 105 ) and F125W (J 125 ), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete

  16. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  17. A probabilistic approach to emission-line galaxy classification

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Costa-Duarte, M. V.; Feigelson, E. D.; Killedar, M.; Lablanche, P.-Y.; Vilalta, R.; Krone-Martins, A.; Beck, R.; Gieseke, F.

    2017-12-01

    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WH α versus [N II]/H α (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT data sets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [O III]/H β, log [N II]/H α and log EW(H α) optical parameters. The best-fitting GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's active galactic nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence - based on four GCs - for the existence of a Seyfert/low-ionization nuclear emission-line region (LINER) dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated with the LINER and passive galaxies on the BPT and WHAN diagrams, respectively. This indicates that if the Seyfert/LINER dichotomy is there, it does not account significantly to the global data variance and may be overlooked by standard metrics of goodness of fit. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical data sets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox at https://cointoolbox.github.io/GMM_Catalogue/.

  18. KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang [University of California, Riverside, CA 92512 (United States); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Guo, Yicheng; Koo, David C. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Papovich, Casey, E-mail: shoubaneh.hemmati@ucr.edu [Texas A and M University, College Station, TX 77843 (United States)

    2014-12-20

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U – V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify ''regions'' of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called ''clumps'' in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the ''main sequence'' of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ∼0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ∼0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ∼ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given

  19. X-ray Emission Line Spectroscopy of Nearby Galaxies

    Science.gov (United States)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  20. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, M. M.; Denney, K. D.; Peterson, B. M.; Kochanek, C. S.; Pogge, R. W.; Brown, Jonathan S.; Coker, C. T. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Grier, C. J.; Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Rosa, G. De [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Adams, S. M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Barth, A. J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bhattacharjee, A.; Brotherton, M. S. [Department of Physics and Astronomy, University of Wyoming, 1000 E. University Avenue, Laramie, WY (United States); Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny, Crimea 298409 (Russian Federation); Boroson, T. A. [Las Cumbres Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Bottorff, M. C. [Fountainwood Observatory, Department of Physics FJS 149, Southwestern University, 1011 E. University Avenue, Georgetown, TX 78626 (United States); Brown, Jacob E. [Department of Physics and Astronomy, University of Missouri, Columbia (United States); Crawford, S. M. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others

    2017-05-10

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-H β lags, we measure black hole masses for all five targets. We also obtain H γ and He ii λ 4686 lags for all objects except 3C 382. The He ii λ 4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.

  1. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    International Nuclear Information System (INIS)

    Fausnaugh, M. M.; Denney, K. D.; Peterson, B. M.; Kochanek, C. S.; Pogge, R. W.; Brown, Jonathan S.; Coker, C. T.; Grier, C. J.; Beatty, Thomas G.; Bentz, M. C.; Rosa, G. De; Adams, S. M.; Barth, A. J.; Bhattacharjee, A.; Brotherton, M. S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Crawford, S. M.

    2017-01-01

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-H β lags, we measure black hole masses for all five targets. We also obtain H γ and He ii λ 4686 lags for all objects except 3C 382. The He ii λ 4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.

  2. Spatially Resolved HST Grism Spectroscopy of a Lensed Emission Line Galaxy at z ~ 1

    Science.gov (United States)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-07-01

    We take advantage of gravitational lensing amplification by A1689 (z = 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i 775 = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of ≈4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M * ≈ 2 × 109 M ⊙) with a high specific star formation rate (≈20 Gyr-1). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 ± 0.2). We break the continuous line-emitting region of this giant arc into seven ~1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (Hβ) and f ([Ne III])/f (Hβ) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction. Based, in part, on data obtained with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pinol, Lucas [Département de Physique, École Normale Supérieure, Paris (France); Cahn, Robert N. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Hand, Nick [Department of Astronomy, University of California, Berkeley, California (United States); Seljak, Uroš; White, Martin, E-mail: lucas.pinol@ens.fr, E-mail: rncahn@lbl.gov, E-mail: nhand@berkeley.edu, E-mail: useljak@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, California (United States)

    2017-04-01

    The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with a typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P ( k ,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of k-vector . We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.

  4. Wolf-Rayet stars featured in emission-line galaxies

    International Nuclear Information System (INIS)

    Kunth, D.

    1982-01-01

    In the galaxy Tololo 3 (NGC 3125) recent observations by the author and Sargent (1981) have revealed the presence of an unusual strong and broad He II 4686 emission. The origin of this line together with some nitrogen lines (e.g. N V 4620 and N III 4638) is attributed to Wolf-Rayet stars, mostly of WN types. (Auth.)

  5. Emission Line Imaging and Spectroscopy of Distant Galaxies

    DEFF Research Database (Denmark)

    Zabl, Johannes Florian

    for the gas surrounding a galaxy. Around some objects the extended Ly αemission is so strong that it can be detected for individual objects. In this thesis extremely deep VLT/XSHOOTER rest-frame far-UV spectroscopy is presented for Himiko, a gigantic Ly α emitter at redshift z = 6.6 or a time when...

  6. A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies

    Science.gov (United States)

    Zhang, Kai; Hao, Lei

    2018-04-01

    We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O III] λ5007/Hβ line ratio and the [O III] λ5007 emission line width (σ [O III]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O III] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin‑Phillips‑Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O III]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ [O III] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ [O III] due to evolution effects.

  7. Inferring physical properties of galaxies from their emission-line spectra

    Science.gov (United States)

    Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.

    2017-02-01

    We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.

  8. THE HETDEX PILOT SURVEY. I. SURVEY DESIGN, PERFORMANCE, AND CATALOG OF EMISSION-LINE GALAXIES

    International Nuclear Information System (INIS)

    Adams, Joshua J.; Blanc, Guillermo A.; Gebhardt, Karl; Hao, Lei; Byun, Joyce; Fry, Alex; Jeong, Donghui; Komatsu, Eiichiro; Hill, Gary J.; Cornell, Mark E.; MacQueen, Phillip J.; Drory, Niv; Bender, Ralf; Hopp, Ulrich; Kelzenberg, Ralf; Ciardullo, Robin; Gronwall, Caryl; Finkelstein, Steven L.; Gawiser, Eric; Kelz, Andreas

    2011-01-01

    We present a catalog of emission-line galaxies selected solely by their emission-line fluxes using a wide-field integral field spectrograph. This work is partially motivated as a pilot survey for the upcoming Hobby-Eberly Telescope Dark Energy Experiment. We describe the observations, reductions, detections, redshift classifications, line fluxes, and counterpart information for 397 emission-line galaxies detected over 169 □' with a 3500-5800 A bandpass under 5 A full-width-half-maximum (FWHM) spectral resolution. The survey's best sensitivity for unresolved objects under photometric conditions is between 4 and 20x 10 -17 erg s -1 cm -2 depending on the wavelength, and Lyα luminosities between 3 x 10 42 and 6 x 10 42 erg s -1 are detectable. This survey method complements narrowband and color-selection techniques in the search of high-redshift galaxies with its different selection properties and large volume probed. The four survey fields within the COSMOS, GOODS-N, MUNICS, and XMM-LSS areas are rich with existing, complementary data. We find 105 galaxies via their high-redshift Lyα emission at 1.9 44 □' which appear to be extended Lyα nebulae. We also find three high-z objects with rest-frame Lyα EW above the level believed to be achievable with normal star formation, EW 0 >240 A. Future papers will investigate the physical properties of this sample.

  9. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  10. THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES IN EMISSION-LINE SDSS GALAXIES

    International Nuclear Information System (INIS)

    Thuan, Trinh X.; Pilyugin, Leonid S.; Zinchenko, Igor A.

    2010-01-01

    The oxygen and nitrogen abundance evolutions with redshift and galaxy stellar mass in emission-line galaxies from the Sloan Digital Sky Survey (SDSS) are investigated. This is the first such study for nitrogen abundances, and it provides an additional constraint for the study of the chemical evolution of galaxies. We have devised a criterion to recognize and exclude from consideration active galactic nuclei and star-forming galaxies with large errors in the line flux measurements. To select star-forming galaxies with accurate line fluxes measurements, we require that, for each galaxy, the nitrogen abundances derived with various calibrations based on different emission lines agree. Using this selection criterion, subsamples of star-forming SDSS galaxies have been extracted from catalogs of the Max-Planck-Institute for Astrophysics/Johns Hopkins University group. We found that the galaxies of highest masses, those with masses ∼>10 11.2 M sun , have not been enriched in both oxygen and nitrogen over the last ∼3 Gyr: they have formed their stars in the so distant past that these have returned their nucleosynthesis products to the interstellar medium before z = 0.25. The galaxies in the mass range from ∼10 11.0 M sun to ∼10 11.2 M sun do not show an appreciable enrichment in oxygen, but do show some enrichment in nitrogen: they also formed their stars before z = 0.25 but later in comparison to the galaxies of highest masses; these stars have not returned nitrogen to the interstellar medium before z = 0.25 because they have not had enough time to evolve. This suggests that stars with lifetimes of 2-3 Gyr, in the 1.5-2 M sun mass range, contribute to the nitrogen production. Finally, galaxies with masses ∼ 11 M sun show enrichment in both oxygen and nitrogen during the last 3 Gyr: they have undergone appreciable star formation and have converted up to ∼20% of their mass into stars over this period. Both oxygen and nitrogen enrichments increase with decreasing

  11. OXYGEN METALLICITY DETERMINATIONS FROM OPTICAL EMISSION LINES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Athey, Alex E.; Bregman, Joel N.

    2009-01-01

    We measured the oxygen abundances of the warm (T ∼ 10 4 K) phase of gas in seven early-type galaxies through long-slit observations. A template spectra was constructed from galaxies void of warm gas and subtracted from the emission-line galaxies, allowing for a clean measurement of the nebular lines. The ratios of the emission lines are consistent with photoionization, which likely originates from the ultraviolet flux of postasymototic giant branch stars. We employ H II region photoionization models to determine a mean oxygen metallicity of 1.01 ± 0.50 solar for the warm interstellar medium (ISM) in this sample. This warm ISM 0.5-1.5 solar metallicity is consistent with modern determinations of the metallicity in the hot (T ∼ 10 6 -10 7 K) ISM and the upper range of this warm ISM metallicity is consistent with stellar population metallicity determinations. A solar metallicity of the warm ISM favors an internal origin for the warm ISM such as asymptotic giant branch mass loss within the galaxy.

  12. CONTINUUM OBSERVATIONS AT 350 MICRONS OF HIGH-REDSHIFT MOLECULAR EMISSION LINE GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Evans, Neal J.; Dunham, Michael M.; Vanden Bout, Paul A.

    2009-01-01

    We report observations of 15 high-redshift (z = 1 - 5) galaxies at 350 μm using the Caltech Submillimeter Observatory and Submillimeter High Angular Resolution Camera II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates (SFRs), total dust masses, and minimum source size estimates are derived. These galaxies have SFRs and star formation efficiencies comparable to other high-redshift molecular emission line galaxies. The results are used to test the idea that star formation in these galaxies occurs in a large number of basic units, the units being similar to star-forming clumps in the Milky Way. The luminosity of these extreme galaxies can be reproduced in a simple model with (0.9-30)x10 6 dense clumps, each with a luminosity of 5 x 10 5 L sun , the mean value for such clumps in the Milky Way. Radiative transfer models of such clumps can provide reasonable matches to the overall spectral energy distributions (SEDs) of the galaxies. They indicate that the individual clumps are quite opaque in the far-infrared. Luminosity-to-mass ratios vary over two orders of magnitude, correlating strongly with the dust temperature derived from simple fits to the SED. The gas masses derived from the dust modeling are in remarkable agreement with those from CO luminosities, suggesting that the assumptions going into both calculations are reasonable.

  13. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  14. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 ∼ B(F098M) ≅ 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ≅ 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M) = 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z ∼> 2.

  15. SHOCKED POSTSTARBUST GALAXY SURVEY. I. CANDIDATE POST-STARBUST GALAXIES WITH EMISSION LINE RATIOS CONSISTENT WITH SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Rich, Jeffrey A. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cales, Sabrina L. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, New Haven, CT 06511 (United States); Appleton, Philip N.; Lanz, Lauranne [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Kewley, Lisa J.; Medling, Anne M. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Lacy, Mark; Nyland, Kristina, E-mail: kalatalo@carnegiescience.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2016-06-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench “quietly.” Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an “E+A” selection. SPOGs* have a 13% 1.4 GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of

  16. Emission Line Galaxies Behind the Planetary Nebula IC 5148: Potential for a Serendipity Survey with Archival Data

    Science.gov (United States)

    Kimeswenger, S.; Barria, D.; Kausch, W.; Goldman, D. S.

    2018-04-01

    During the start of a survey program using FORS2 long slit spectroscopy on planetary nebulae (PN) and their haloes, we serendipitously discovered six background emission line galaxies (ELG) with redshifts of z = 0.2057, 0.3137, 0.37281, 0.4939, 0.7424 and 0.8668. Thus they clearly do not belong to a common cluster structure. We derived the major physical properties of the targets. Since the used long slit covers a sky area of only 570 arcsec2 (= 4.3×10-5 square degrees), we discuss further potential of serendipitous discoveries in archival data, beside the deep systematic work of the ongoing and upcoming big surveys. We conclude that archival data provide a decent potential for extending the overall data on ELGs without any selection bias.

  17. Study of turbulent and shock heated IGM gas with emission line spectroscopy in the Taffy galaxies

    Science.gov (United States)

    Joshi, Bhavin; Appleton, Phil; Blanc, Guillermo; Guillard, Pierre; Freeland, Emily; Peterson, Bradley; Alatalo, Katherine

    2018-01-01

    We present our results from optical IFU observations of the Taffy system (UGC 12914/15); named so because of the radio emission that stretches between the two galaxies. The Taffy galaxies are a major merger pair of galaxies where two gas-rich spiral galaxies have collided face on and passed through each other. The pair presents an unusually low IR luminosity (L_FIR ~ 4.5 x 10^{10} L_solar) and SFR (~ 0.23 M_solar / yr) for a typical post merger system. It was also found from Spitzer and Chandra observations that the Taffy "bridge" between the galaxies contains large amounts of warm molecular Hydrogen, >4.5 x 10^8 M_solar at 150-175K, and also shows soft X-ray emission. These results hinted at shock heating as a likely mechanism for heating the large amounts of gas in the Taffy bridge and keeping it at these temperatures, after other sources of heating are ruled out. The data we present in this paper are from the VIRUS-P instrument (now called GCMS) on the Harlan J. Smith 2.7m telescope at McDonald Observatory. We detect ionized gas all throughout the Taffy galaxies and in the bridge between them. Interestingly, the ionized gas shows emission line profiles with two velocity components almost all throughout the system. We also show evidence, through line diagnostic (BPT) diagrams, that the velocity component with lower velocity is likely excited by star formation whereas the velocity component with higher velocity is likely excited by shocks. We also find evidence for post-starburst populations in parts of the Taffy system.

  18. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    International Nuclear Information System (INIS)

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R.

    2010-01-01

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at λ = 23 μm and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T ∼ 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 μm) and the forbidden emission lines of [Si II] 34.8 μm, [Ar II] 6.9 μm, [S III] 18.7 and 33.4 μm were detected in all the starbursts and in ∼80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 μm, 11.3 μm, and 12.7 μm, we find that they are present in ∼80% of the Seyfert 1, while only half of this type of activity show the 6.2 μm and 8.6 μm PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 μm/7.7 μm x 11.3 μm/7.7 μm) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules (≥180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 μm) and the neutral PAH bands (8.6 μm and 11.3 μm) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 μm and 11.3 μm bands is nearly constant with the increase of [Ne III]15.5 μm/[Ne II] 12.8 μm, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 μm) or neutral (11.3 μm) bands, may be destroyed with the increase of the hardness of the radiation field.

  19. Spectral properties of X-ray selected narrow emission line galaxies

    Science.gov (United States)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (Halpha, Hbeta, [NII]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines

  20. Emission-line galaxies and quasars in the southern hemisphere. I. Description and applications of an objective-prism survey

    International Nuclear Information System (INIS)

    Smith, M.G.

    1975-01-01

    A selection of objects from the first plates of a low-dispersion, objective-prism survey for emission-line galaxies and quasars is used to illustrate the application of the survey to the following lines of research in extragalactic astronomy: quasi-stellar objects, Seyfert galaxies, instabilities in galaxies produced by tidal interaction or explosive events, and rates of star formation and the general chemical evolution of galaxies. Included in the discussion is a description of how the survey provides a new, purely optical, color-independent method for the direct isolation of bright, high-redshift QSOs with strong emission lines (Lα is often directly visible on the Schmidt-survey plates). The newly discovered objects used for illustration are a radio-quiet QSO of redshift 2.07, a luminous, class 2 Seyfert galaxy, a compact blue emission-line galaxy with a jet or streamer, yet with no obvious interacting companion, and a blue galaxy with Hβ flux 50 times that of 30 Doradus, and low metal abundances, which is undergoing a very intense burst of star formation. These objects are to be discussed in greater detail in subsequent papers in this series

  1. A 16 deg2 survey of emission-line galaxies at z SSP Public Data Release 1

    Science.gov (United States)

    Hayashi, Masao; Tanaka, Masayuki; Shimakawa, Rhythm; Furusawa, Hisanori; Momose, Rieko; Koyama, Yusei; Silverman, John D.; Kodama, Tadayuki; Komiyama, Yutaka; Leauthaud, Alexie; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ouchi, Masami; Shibuya, Takatoshi; Tadaki, Ken-ichi; Yabe, Kiyoto

    2018-01-01

    We present initial results from the Subaru Strategic Program (SSP) with Hyper Suprime-Cam (HSC) on a comprehensive survey of emission-line galaxies at z SSP fields suggests that a survey volume of >5 × 105 Mpc3 is essential to overcome cosmic variance. Since the current data have not reached the full depth expected for the HSC-SSP, the color cut in i - NB816 or z - NB921 induces a bias towards star-forming galaxies with large equivalent widths, primarily seen in the stellar mass functions for the H α emitters at z ≈ 0.25-0.40. Even so, the emission-line galaxies clearly cover a wide range of luminosity, stellar mass, and environment, thus demonstrating the usefulness of the narrowband data from the HSC-SSP for investigating star-forming galaxies at z < 1.5.

  2. Clusters of Galaxies

    Science.gov (United States)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  3. CONFIRMATION OF SMALL DYNAMICAL AND STELLAR MASSES FOR EXTREME EMISSION LINE GALAXIES AT z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Maseda, Michael V.; Van der Wel, Arjen; Da Cunha, Elisabete; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Momcheva, Ivelina; Van Dokkum, Pieter; Nelson, Erica J. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Brammer, Gabriel B.; Grogin, Norman A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Franx, Marijn; Fumagalli, Mattia; Patel, Shannon G. [Leiden Observatory, Leiden University, Leiden (Netherlands); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Lundgren, Britt F. [Department of Astronomy, University of Wisconsin, 475 N Charter Street, Madison, WI 53706 (United States); Marchesini, Danilo [Physics and Astronomy Department, Tufts University, Robinson Hall, Room 257, Medford, MA 02155 (United States); Skelton, Rosalind E. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Straughn, Amber N., E-mail: maseda@mpia.de [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); and others

    2013-11-20

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (∼50 km s{sup –1}) for a sample of 14 extreme emission line galaxies at redshifts 1.4 < z < 2.3. These measurements imply that the total dynamical masses of these systems are low (≲ 3 × 10{sup 9} M {sub ☉}). Their large [O III] λ5007 equivalent widths (500-1100 Å) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10{sup 8}-10{sup 9} M {sub ☉}, confirming the presence of a violent starburst. The dynamical masses represent the first such determinations for low-mass galaxies at z > 1. The stellar mass formed in this vigorous starburst phase represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  4. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    Science.gov (United States)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  5. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    Science.gov (United States)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; hide

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  6. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam [University of California, Riverside, CA 92512 (United States); Nayyeri, Hooshang; Miller, Sarah [University of California, Irvine, CA 92697 (United States); Sobral, David, E-mail: shemm001@ucr.edu [Universidade de Lisboa, PT1349-018 Lisbon (Portugal)

    2015-11-20

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  7. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    Science.gov (United States)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  8. The properties of Hα emission-line galaxies at z = 2.24

    International Nuclear Information System (INIS)

    An, Fang Xia; Zheng, Xian Zhong; Wang, Wei-Hao; Huang, Jia-Sheng; Kong, Xu; Wang, Jun-Xian; Zhu, Feifan; Fang, Guan Wen; Gu, Qiu-Sheng; Wu, Hong; Hao, Lei; Xia, Xiao-Yang

    2014-01-01

    Using deep narrowband H 2 S1 and K s -band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 Hα emission-line galaxies (ELGs) at z = 2.24 with the 5σ depths of H 2 S1 = 22.8 and K s = 24.8 (AB) over a 383 arcmin 2 area in the Extended Chandra Deep Field South. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 Hα ELGs are detected in Chandra 4 Ms X-ray observations and two of them are classified as active galactic nuclei. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the Hα ELGs are either merging systems or have a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z = 2-3. About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from spectral energy distributions. We find that dust extinction is generally correlated with Hα luminosity and stellar mass. Our results suggest that Hα ELGs are representative of star-forming galaxies. Applying extinction corrections to individual objects, we examine the intrinsic Hα luminosity function (LF) at z = 2.24, obtaining a best-fit Schechter function characterized by a faint-end slope of α = – 1.3. This is shallower than the typical slope of α ≅ –1.6 in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus the key to recovering the intrinsic LF as the extinction globally increases with Hα luminosity. Moreover, we find that our Hα LF mirrors the stellar mass function of star-forming galaxies at the same cosmic epoch. This finding indeed reflects the tight correlation between star formation rate and stellar mass for star-forming galaxies, i.e., the so-called main sequence.

  9. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  10. Galaxy emission line classification using three-dimensional line ratio diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Kewley, Lisa J.; Sutherland, Ralph S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Scharwächter, Julia [Observatoire de Paris, LERMA (CNRS: UMR8112), 61 Av. de l' Observatoire, F-75014 Paris (France); Basurah, Hassan M.; Ali, Alaa; Amer, Morsi A., E-mail: frederic.vogt@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah (Saudi Arabia)

    2014-10-01

    Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions—H II-like or excited by an active galactic nucleus (AGN)—have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce the ZQE diagrams, which are a specific set of 3D diagrams that separate the oxygen abundance and the ionization parameter of H II region-like spectra and also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define the ZE diagnostics, a new set of 2D diagnostics that can provide the metallicity of objects excited by hot young stars and that cleanly separate H II region-like objects from the different classes of AGNs. We show that these ZE diagnostics are consistent with the key log [N II]/Hα versus log [O III]/Hβ diagnostic currently used by the community. They also have the advantage of attaching a probability that a given object belongs to one class or the other. Finally, we discuss briefly why ZQE diagrams can provide a new way to differentiate and study the different classes of AGNs in anticipation of a dedicated follow-up study.

  11. The Host Galaxy and the Extended Emission-Line Region of the Radio Galaxy 3C 79

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2008-04-01

    We present extensive ground-based spectroscopy and HST imaging of 3C 79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host galaxy is a massive elliptical with a compact companion 0.8'' away and 4 mag fainter. The host galaxy spectrum is best described by an intermediate-age (1.3 Gyr) stellar population (4% by mass), superimposed on a 10 Gyr old population and a power law (αλ = - 1.8); the stellar populations are consistent with supersolar metallicities, with the best fit given by the 2.5 Z⊙ models. We derive a dynamical mass of 4 × 1011 M⊙ within the effective radius from the velocity dispersion. The EELR spectra clearly indicate that the EELR is photoionized by the hidden central engine. Photoionization modeling shows evidence that the gas metallicity in both the EELR and the nuclear narrow-line region is mildly subsolar (0.3-0.7 Z⊙), significantly lower than the supersolar metallicities deduced from typical active galactic nuclei in the Sloan Digital Sky Survey. The more luminous filaments in the EELR exhibit a velocity field consistent with a common disk rotation. Fainter clouds, however, show high approaching velocities that are uncoupled from this apparent disk rotation. The striking similarities between this EELR and the EELRs around steep-spectrum radio-loud quasars provide further evidence for the orientation-dependent unification schemes. The metal-poor gas is almost certainly not native to the massive host galaxy. We suggest that the close companion galaxy could be the tidally stripped bulge of a late-type galaxy that is merging with the host galaxy. The interstellar medium of such a galaxy is probably the source for the low-metallicity gas in 3C 79. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  12. The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Michael J.; Hayes, Matthew [Department of Astronomy, AlbaNova University Centre, Stockholm University, SE-10691 Stockholm (Sweden); Scarlata, Claudia; Mehta, Vihang [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Henry, Alaina; Hathi, Nimish; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Cohen, Seth; Windhorst, Rogier [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Haardt, Francesco [DiSAT, Università dellInsubria, via Valleggio 11, I-22100 Como (Italy); Siana, Brian [Department of Physics, University of California, Riverside, CA 92521 (United States)

    2017-06-01

    Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizing UV continuum from [O ii] emitters, f {sub esc} ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f {sub esc} ≲ 14.0%. Our observations are not deep enough to detect f {sub esc} ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.

  13. The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%

    International Nuclear Information System (INIS)

    Rutkowski, Michael J.; Hayes, Matthew; Scarlata, Claudia; Mehta, Vihang; Henry, Alaina; Hathi, Nimish; Koekemoer, Anton M.; Cohen, Seth; Windhorst, Rogier; Teplitz, Harry I.; Haardt, Francesco; Siana, Brian

    2017-01-01

    Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizing UV continuum from [O ii] emitters, f _e_s_c ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f _e_s_c ≲ 14.0%. Our observations are not deep enough to detect f _e_s_c ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.

  14. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Atek, H.; Colbert, J.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Scarlata, C. [Department of Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); McCarthy, P.; Dressler, A.; Hathi, N. P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching bei Muenchen (Germany)

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  15. Galaxy clusters and cosmology

    CERN Document Server

    White, S

    1994-01-01

    Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...

  16. The nature of extreme emission line galaxies at z = 1-2: kinematics and metallicities from near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maseda, Michael V.; Van der Wel, Arjen; Rix, Hans-Walter; Da Cunha, Elisabete; Meidt, Sharon E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Momcheva, Ivelina; Van Dokkum, Pieter; Nelson, Erica J. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Brammer, Gabriel B.; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Franx, Marijn; Fumagalli, Mattia [Leiden Observatory, Leiden University, Leiden (Netherlands); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Förster-Schreiber, Natascha M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Koo, David C. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Lundgren, Britt F. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Marchesini, Danilo [Physics and Astronomy Department, Tufts University, Robinson Hall, Room 257, Medford, MA 02155 (United States); Patel, Shannon G., E-mail: maseda@mpia.de [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-08-10

    We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M{sub *} = 10{sup 8}-10{sup 9} M{sub ☉}) galaxies undergoing intense starburst episodes (M{sub *}/SFR ∼ 10-100 Myr). The sample is selected by [O III] or Hα emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/Hβ line ratio is high (≳ 5) and [N II]/Hα is always significantly below unity, which suggests a low gas-phase metallicity. We are able to determine gas-phase metallicities for seven of our objects using various strong-line methods, with values in the range 0.05-0.30 Z{sub ☉} and with a median of 0.15 Z{sub ☉}; for three of these objects we detect [O III] λ4363, which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ∼50 km s{sup –1}. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (f{sub gas} ≳ 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion timescale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (∼50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.

  17. Statistical measures of galaxy clustering

    International Nuclear Information System (INIS)

    Porter, D.H.

    1988-01-01

    Consideration is given to the large-scale distribution of galaxies and ways in which this distribution may be statistically measured. Galaxy clustering is hierarchical in nature, so that the positions of clusters of galaxies are themselves spatially clustered. A simple identification of groups of galaxies would be an inadequate description of the true richness of galaxy clustering. Current observations of the large-scale structure of the universe and modern theories of cosmology may be studied with a statistical description of the spatial and velocity distributions of galaxies. 8 refs

  18. Substructure in clusters of galaxies

    International Nuclear Information System (INIS)

    Fitchett, M.J.

    1988-01-01

    Optical observations suggesting the existence of substructure in clusters of galaxies are examined. Models of cluster formation and methods used to detect substructure in clusters are reviewed. Consideration is given to classification schemes based on a departure of bright cluster galaxies from a spherically symmetric distribution, evidence for statistically significant substructure, and various types of substructure, including velocity, spatial, and spatial-velocity substructure. The substructure observed in the galaxy distribution in clusters is discussed, focusing on observations from general cluster samples, the Virgo cluster, the Hydra cluster, Centaurus, the Coma cluster, and the Cancer cluster. 88 refs

  19. A NEW Hα EMISSION-LINE SURVEY IN THE ORION NEBULA CLUSTER

    International Nuclear Information System (INIS)

    Szegedi-Elek, E.; Kun, M.; Pál, A.; Balázs, L. G.; Reipurth, B.; Willman, M.

    2013-01-01

    We present results from an Hα emission line survey in a 1 deg 2 area centered on the Orion Nebula Cluster, obtained with the Wide Field Grism Spectrograph 2 on the 2.2 m telescope of the University of Hawaii. We identified 587 stars with Hα emission, 99 of which, located mainly in the outer regions of the observed area, have not appeared in previous Hα surveys. We determined the equivalent width (EW) of the line and, based on this, classified 372 stars as classical T Tauri stars (CTTSs) and 187 as weak-line T Tauri stars (WTTSs). Simultaneous r', i' photometry indicates a limiting magnitude of r' ∼ 20 mag, but the sample is incomplete at r' > 17 mag. The surface distribution of the Hα emission stars reveals a clustered population and a dispersed population, the former consisting of younger and more massive young stars than the latter. Comparison of the derived EWs with those found in the literature indicates variability of the Hα line. We found that the typical amplitudes of the variability are not greater than a factor of two to three in most cases. We identified a subgroup of low-EW stars with infrared signatures indicative of optically thick accretion disks. We studied the correlations between the EW and other properties of the stars. Based on literature data, we examined several properties of our CTTS and WTTS subsamples and found significant differences in mid-infrared color indices, average rotational periods, and spectral energy distribution characteristics of the subsamples

  20. Globular clusters and galaxy halos

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1984-01-01

    Using semipartial correlation coefficients and bootstrap techniques, a study is made of the important features of globular clusters with respect to the total number of galaxy clusters and dependence of specific galaxy cluster on parent galaxy type, cluster radii, luminosity functions and cluster ellipticity. It is shown that the ellipticity of LMC clusters correlates significantly with cluster luminosity functions, but not with cluster age. The cluter luminosity value above which globulars are noticeably flattened may differ by a factor of about 100 from galaxy to galaxy. Both in the Galaxy and in M31 globulars with small core radii have a Gaussian distribution over luminosity, whereas clusters with large core radii do not. In the cluster systems surrounding the Galaxy, M31 and NGC 5128 the mean radii of globular clusters was found to increase with the distance from the nucleus. Central galaxies in rich clusters have much higher values for specific globular cluster frequency than do other cluster ellipticals, suggesting that such central galaxies must already have been different from normal ellipticals at the time they were formed

  1. Extreme emission-line galaxies out to z ~ 1 in zCOSMOS. I. Sample and characterization of global properties

    Science.gov (United States)

    Amorín, R.; Pérez-Montero, E.; Contini, T.; Vílchez, J. M.; Bolzonella, M.; Tasca, L. A. M.; Lamareille, F.; Zamorani, G.; Maier, C.; Carollo, C. M.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Mignoli, M.; Pellò, R.; Peng, Y.; Presotto, V.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.

    2015-06-01

    Context. The study of large and representative samples of low-metallicity star-forming galaxies at different cosmic epochs is of great interest to the detailed understanding of the assembly history and evolution of low-mass galaxies. Aims: We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 ≤ z ≤ 0.93 selected from the 20k zCOSMOS bright survey because of their unusually large emission line equivalent widths. Methods: We use multiwavelength COSMOS photometry, HST-ACS I-band imaging, and optical zCOSMOS spectroscopy to derive the main global properties of star-forming EELGs, such as sizes, stellar masses, star formation rates (SFR), and reliable oxygen abundances using both "direct" and "strong-line" methods. Results: The EELGs are extremely compact (r50 ~ 1.3 kpc), low-mass (M∗ ~ 107-1010 M⊙) galaxies forming stars at unusually high specific star formation rates (sSFR ≡ SFR/M⋆ up to 10-7 yr-1) compared to main sequence star-forming galaxies of the same stellar mass and redshift. At rest-frame UV wavelengths, the EELGs are luminous and show high surface brightness and include strong Lyα emitters, as revealed by GALEX spectroscopy. We show that zCOSMOS EELGs are high-ionization, low-metallicity systems, with median 12+log (O/H) = 8.16 ± 0.21 (0.2 Z⊙) including a handful of extremely metal-deficient (Universe, EELGs are most often found in relative isolation. While only very few EELGs belong to compact groups, almost one third of them are found in spectroscopically confirmed loose pairs or triplets. Conclusions: The zCOSMOS EELGs are galaxies caught in a transient and probably early period of their evolution, where they are efficiently building up a significant fraction of their present-day stellar mass in an ongoing, galaxy-wide starburst. Therefore, the EELGs constitute an ideal benchmark for comparison studies between low- and high-redshift low-mass star-forming galaxies. Full

  2. Dynamical aspects of galaxy clustering

    International Nuclear Information System (INIS)

    Fall, S.M.

    1980-01-01

    Some recent work on the origin and evolution of galaxy clustering is reviewed, particularly within the context of the gravitational instability theory and the hot big-bang cosmological model. Statistical measures of clustering, including correlation functions and multiplicity functions, are explained and discussed. The close connection between galaxy formation and clustering is emphasized. Additional topics include the dependence of galaxy clustering on the spectrum of primordial density fluctuations and the mean mass density of the Universe. (author)

  3. Physical properties of emission-line galaxies at z ∼ 2 from near-infrared spectroscopy with Magellan fire

    Energy Technology Data Exchange (ETDEWEB)

    Masters, Daniel; Siana, Brian; Mobasher, Bahram; Domínguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); McCarthy, Patrick; Blanc, Guillermo; Dressler, Alan [Carnegie Observatories, Pasadena, CA 91101 (United States); Malkan, Mathew; Ross, Nathaniel R. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Atek, Hakim [Laboratoire d' Astrophysique Ecole Polytechnique Fédérale, CH-1290 Sauverny (Switzerland); Henry, Alaina [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Martin, Crystal L. [Department of Physics, Universitey of California, Santa Barbara, CA 93106 (United States); Rafelski, Marc; Colbert, James [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Hathi, Nimish P. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bunker, Andrew J. [Department of Physics, University of Oxford (United Kingdom); Bedregal, Alejandro G. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Teplitz, Harry [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States)

    2014-04-20

    We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ∼ 2.2 and z ∼ 1.5 obtained with the Folded-port InfraRed Echellette (FIRE) spectrometer on the 6.5 m Magellan Baade telescope. The sample was selected from the WFC3 Infrared Spectroscopic Parallels survey, which uses the near-infrared grism of the Hubble Space Telescope Wide Field Camera 3 (WFC3) to detect emission-line galaxies over 0.3 ≲ z ≲ 2.3. Our FIRE follow-up spectroscopy (R ∼ 5000) over 1.0-2.5 μm permits detailed measurements of the physical properties of the z ∼ 2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ∼5-100 M {sub ☉} yr{sup –1} with a mean of 29 M {sub ☉} yr{sup –1}. We derive a median metallicity for the sample of 12 + log(O/H) = 8.34 or ∼0.45 Z {sub ☉}. The estimated stellar masses range from ∼10{sup 8.5}-10{sup 9.5} M {sub ☉}, and a clear positive correlation between metallicity and stellar mass is observed. The average ionization parameter measured for the sample, log U ≈ –2.5, is significantly higher than what is found for most star-forming galaxies in the local universe, but similar to the values found for other star-forming galaxies at high redshift. We derive composite spectra from the FIRE sample, from which we measure typical nebular electron densities of ∼100-400 cm{sup –3}. Based on the location of the galaxies and composite spectra on diagnostic diagrams, we do not find evidence for significant active galactic nucleus activity in the sample. Most of the galaxies, as well as the composites, are offset diagram toward higher [O III]/Hβ at a given [N II]/Hα, in agreement with other observations of z ≳ 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/Hβ versus [S II]/Hα diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which

  4. The ESO Nearby Abell Cluster Survey. VI. Spatial distribution and kinematics of early- and late-type galaxies

    Science.gov (United States)

    de Theije, P. A. M.; Katgert, P.

    1999-01-01

    Analysis of the data obtained in the ESO Nearby Abell Cluster Survey (ENACS) has shown that the space distribution and kinematics of galaxies with detectable emission lines in their spectra differ significantly from those of galaxies without emission lines. This result, and details of the kinematics, were considered as support for the idea that at least the spirals with emission lines are on orbits that are not isotropic. This might indicate that this subset of late-type galaxies either has `first approach'-orbits towards the dense core of their respective clusters, or has orbits that `avoid' the core. The galaxies with emission lines are essentially all late-type galaxies. On the other hand, the emission-line galaxies represent only about a third of the late-type galaxies, the majority of which do not show detectable emission lines. The galaxies without emission lines are therefore a mix of early- and late-type galaxies. In this paper we attempt to separate early- and late-type galaxies, and we study possible differences in distribution and kinematics of the two galaxy classes. For only about 10% of the galaxies in the ENACS, the morphology is known from imaging. Here, we describe our classification on the basis of the ENACS spectrum. The significant information in each spectrum is compressed into 15 Principal Components, which are used as input for an Artificial Neural Network. The latter is `trained' with 150 of the 270 galaxies for which a morphological type is available from Dressler, and subsequently used to classify each galaxy. This yields a classification for two-thirds of the ENACS galaxies. The Artificial Neural Network has two output classes: early-type (E+S0) and late-type (S+I) galaxies. We do not distinguish E and S0 galaxies, because these cannot be separated very robustly on the basis of the spectrum. The success rate of the classification is estimated from the sample of 120 galaxies with Dressler morphologies which were not used to train the ANN

  5. A NEW Hα EMISSION-LINE SURVEY IN THE ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Szegedi-Elek, E.; Kun, M.; Pál, A.; Balázs, L. G. [Konkoly Observatory, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Reipurth, B.; Willman, M., E-mail: eelza@konkoly.hu [Institute for Astronomy, University of Hawaii at Manoa, 640 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-10-01

    We present results from an Hα emission line survey in a 1 deg{sup 2} area centered on the Orion Nebula Cluster, obtained with the Wide Field Grism Spectrograph 2 on the 2.2 m telescope of the University of Hawaii. We identified 587 stars with Hα emission, 99 of which, located mainly in the outer regions of the observed area, have not appeared in previous Hα surveys. We determined the equivalent width (EW) of the line and, based on this, classified 372 stars as classical T Tauri stars (CTTSs) and 187 as weak-line T Tauri stars (WTTSs). Simultaneous r', i' photometry indicates a limiting magnitude of r' ∼ 20 mag, but the sample is incomplete at r' > 17 mag. The surface distribution of the Hα emission stars reveals a clustered population and a dispersed population, the former consisting of younger and more massive young stars than the latter. Comparison of the derived EWs with those found in the literature indicates variability of the Hα line. We found that the typical amplitudes of the variability are not greater than a factor of two to three in most cases. We identified a subgroup of low-EW stars with infrared signatures indicative of optically thick accretion disks. We studied the correlations between the EW and other properties of the stars. Based on literature data, we examined several properties of our CTTS and WTTS subsamples and found significant differences in mid-infrared color indices, average rotational periods, and spectral energy distribution characteristics of the subsamples.

  6. Probing the physics of Seyfert galaxies using their emission-line regions

    Energy Technology Data Exchange (ETDEWEB)

    Shastri, P., E-mail: prajval.shastri@gmail.com; Kharb, P.; Jose, J.; Ramya, S.; Bhatt, H. C.; Gupta, M. [Indian Institute of Astrophysics, Bangalore (India); Dopita, M.; Kewley, L.; Davies, R.; Sutherland, R.; Hampton, E. [RSAA, Australian National University, Canberra (Australia); Scharwächter, J. [LERMA, Paris Observatory (France); Banfield, J. [CSIRO Astronomy and Space Science, Epping (Australia); Srivastava, S. [Department of Physics, DDU Gorakhpur University, Gorakhpur (India); Jin, J. [Department of Physics, University of Durham (United Kingdom); Basurah, H. [Astronomy Department, King Abdulaziz University, Jeddah (Saudi Arabia); Fischer, S. [German Aerospace Center, Bonn (Germany); Panda, S. [National Institute of Technology, Rourkela (India); Indian Institute of Astrophysics, Bangalore (India); Sundar, M. N. [Jain University, Bangalore (India); Radhakrishnan, V. [Broadcom Corporation, Bangalore (India)

    2015-12-31

    Active galaxies have powerhouses of radiation in their nuclear regions that are driven by accreting super-massive black holes. The accretion system also generates outflows of ionized gas and synchrotron-emitting bipolar jets of plasma, which could have a significant impact on the host galaxy. We have initiated an investigation into the physics of nearby active galaxies by studying the morphology, kinematics, excitation abundance structure, and radio structure of about 120 nearby targets. We present a few early results from this investigation.

  7. Globular Clusters - Guides to Galaxies

    CERN Document Server

    Richtler, Tom; Joint ESO-FONDAP Workshop on Globular Clusters

    2009-01-01

    The principal question of whether and how globular clusters can contribute to a better understanding of galaxy formation and evolution is perhaps the main driving force behind the overall endeavour of studying globular cluster systems. Naturally, this splits up into many individual problems. The objective of the Joint ESO-FONDAP Workshop on Globular Clusters - Guides to Galaxies was to bring together researchers, both observational and theoretical, to present and discuss the most recent results. Topics covered in these proceedings are: internal dynamics of globular clusters and interaction with host galaxies (tidal tails, evolution of cluster masses), accretion of globular clusters, detailed descriptions of nearby cluster systems, ultracompact dwarfs, formations of massive clusters in mergers and elsewhere, the ACS Virgo survey, galaxy formation and globular clusters, dynamics and kinematics of globular cluster systems and dark matter-related problems. With its wide coverage of the topic, this book constitute...

  8. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  9. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  10. THE ASSEMBLY OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We study the formation of 53 galaxy cluster-size dark matter halos (M = 10 14.0-14.76 M sun ) formed within a pair of cosmological Λ cold dark matter N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host ∼0.3 L * galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'preprocessing' in the group environment prior to their accretion into the cluster. On average, 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; less than 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past (∼<6 Gyr) than a field halo of the same mass. These results suggest that local cluster processes such as ram pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass, and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with ∼20% incorporated into the cluster halo more than 7 Gyr ago and ∼20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate timescale for late-type to early-type transformation within the cluster environment to be ∼6 Gyr.

  11. Observation of soft X-ray spectra from a Seyfert 1 and a narrow emission-line galaxy

    International Nuclear Information System (INIS)

    Singh, K.P.; Garmire, G.P.; Nousek, J.

    1985-01-01

    The 0.2-40 keV X-ray spectra of the Seyfert 1 galaxy Mrk 509 and the narrow emission-line galaxy NGC 2992 are analyzed. The results suggest the presence of a steep soft X-ray component in Mrk 509 in addition to the well-known Gamma = 1.7 component found in other active galactic nuclei in the 2-40 keV energy range. The soft X-ray component is interpreted as due to thermal emission from a hot gas, probably associated with the highly ionized gas observed to be outflowing from the galaxy. The X-ray spectrum of NGC 2992 does not show any steepening in the soft X-ray band and is consistent with a single power law (Gamma = 1.78) with very low absorbing column density of 4 x 10 to the 21st/sq cm. A model with partial covering of the nuclear X-ray source is preferred, however, to a simple model with a single power law and absorption. 34 references

  12. X-ray continuum and iron K emission line from the radio galaxy 3C 390.3

    Science.gov (United States)

    Inda, M.; Makishima, K.; Kohmura, Y.; Tashiro, M.; Ohashi, T.; Barr, P.; Hayashida, K.; Palumbo, G. G. C.; Trinchieri, G.; Elvis, M.

    1994-01-01

    X-ray properties of the radio galaxy 3C 390.3 were investigated using the European X-ray Observatory Satellite (EXOSAT) and Ginga satellites. Long-term, large-amplitude X-ray intensity changes were detected over a period extending from 1984 through 1991, and high-quality X-ray spectra were obtained especially with Ginga. The X-ray continuum spectra were described with power-law model with photon slope in the range 1.5-1.8, and the slope flattened as the 2-20 keV luminosity decreased by 40%. There was a first detection of the iron emission line from this source at the 90% confidence level. An upper limit was derived on the thermal X-ray component. X-ray emission mechanisms and possible origins of the long-term variation are discussed.

  13. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    Science.gov (United States)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  14. Quasars in galaxy cluster environments

    International Nuclear Information System (INIS)

    Ellingson, E.

    1989-01-01

    The evolution of radio loud quasars is found to be strongly dependent upon their galaxy cluster environment. Previous studies have shown that bright quasars are found in rich clusters, while high luminosity quasars are found only in poorer environments. The analysis of low luminosity radio quiet quasars indicate that they are never found in rich environments, suggesting that they are a physically different class of objects. Properties of the quasar environment are investigated to determine constraints on the physical mechanisms of quasar formation and evolution. The optical cluster morphology indicates that the cluster cores have smaller radii and higher galaxy densities than are typical for low redshift clusters of similar richness. Radio morphologies may indicate that the formation of a dense intra-cluster medium is associated with the quasars' fading at these epochs. Galaxy colors appear to be normal, but there may be a tendency for clusters associated with high luminosity quasars to contain a higher fraction of gas-rich galaxies than those associated with low luminosity quasars. Multislit spectroscopic observations of galaxies associated with high luminosity quasars indicate that quasars are preferentially located in regions of low relative velocity dispersion, either in rich clusters of abnormally low dispersion, or in poor groups which are dynamically normal. This suggests that galaxy-galaxy interactions may play a role in quasar formation and sustenanace. Virialization of rich clusters and the subsequent increase in galaxy velocities may therefore be responsible for the fading of quasars in rich environments

  15. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  16. The rotation of galaxy clusters

    International Nuclear Information System (INIS)

    Tovmassian, H.M.

    2015-01-01

    The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b> 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60 per cent, and clusters of BMI type with dominant cD galaxy, ≈ 35 per cent. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have mergings with other clusters and groups of galaxies, in the result of which the rotation has been prevented

  17. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    International Nuclear Information System (INIS)

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" data-affiliation=" (Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" >Dalla Bontà, E.; G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" data-affiliation=" (Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" >Ciroi, S.

    2013-01-01

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n e ∼ 10 5 cm –3 ) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  18. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S. [Department of Astronomy, The Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 610, Atlanta, GA 30303 (United States); Vestergaard, M.; Kilerci-Eser, E. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Dalla Bontà, E.; Ciroi, S. [Dipartimento di Fisica e Astronomia " G. Galilei," Università di Padova, Vicolo dell' Osservatorio 3 I-35122, Padova (Italy)

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  19. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    OpenAIRE

    Leloudas, G.; Schulze, S.; Kruehler, T.; Gorosabel, J.; Christensen, L.; Mehner, A.; Postigo, A. de Ugarte; Amorin, R.; Thoene, C. C.; Anderson, J. P.; Bauer, F. E.; Gallazzi, A.; Helminiak, K. G.; Hjorth, J.; Ibar, E.

    2014-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusi...

  20. Filaments and clusters of galaxies

    International Nuclear Information System (INIS)

    Soltan, A.

    1987-01-01

    A statistical test to investigate filaments of galaxies is performed. Only particular form of filaments is considered, viz. filaments connecting Abell clusters of galaxies. Relative position of triplets ''cluster - field object - cluster'' is analysed. Though neither cluster sample nor field object sample are homogeneous and complete only peculiar form of selection effects could affect the present statistics. Comparison of observational data with simulations shows that less than 15 per cent of all field galaxies is concentrated in filaments connecting rich clusters. Most of the field objects used in the analysis are not normal galaxies and it is possible that this conclusion is not in conflict with apparent filaments seen in the Lick counts and in some nearby 3D maps of the galaxy distribution. 26 refs., 2 figs. (author)

  1. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    Energy Technology Data Exchange (ETDEWEB)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Hagen, Alex; Trump, Jonathan R.; Bridge, Joanna S.; Luo, Bin; Schneider, Donald P., E-mail: grzeimann@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M {sub *}/M {sub ☉}) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex. We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of {sup 22}Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission.

  2. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Hagen, Alex; Trump, Jonathan R.; Bridge, Joanna S.; Luo, Bin; Schneider, Donald P.

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M * /M ☉ ) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex. We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of 22 Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission

  3. GREEN PEA GALAXIES AND COHORTS: LUMINOUS COMPACT EMISSION-LINE GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Izotov, Yuri I.; Guseva, Natalia G.; Thuan, Trinh X.

    2011-01-01

    We present a large sample of 803 star-forming luminous compact galaxies (LCGs) in the redshift range z = 0.02-0.63, selected from Data Release 7 of the Sloan Digital Sky Survey (SDSS). The global properties of these galaxies are similar to those of the so-called green pea star-forming galaxies in the redshift range z = 0.112-0.360 and selected from the SDSS on the basis of their green color and compact structure. In contrast to green pea galaxies, our LCGs are selected on the basis of both their spectroscopic and photometric properties, resulting in a ∼10 times larger sample, with galaxies spanning a redshift range ∼>2 times larger. We find that the oxygen abundances and the heavy element abundance ratios in LCGs do not differ from those of nearby low-metallicity blue compact dwarf galaxies. The median stellar mass of LCGs is ∼10 9 M sun . However, for galaxies with high EW(Hβ), ≥ 100 A, it is only ∼7 x 10 8 M sun . The star formation rate in LCGs varies in the large range of 0.7-60 M sun yr -1 , with a median value of ∼4 M sun yr -1 , a factor of ∼3 lower than in high-redshift star-forming galaxies at z ∼> 3. The specific star formation rates in LCGs are extremely high and vary in the range ∼10 -9 -10 -7 yr -1 , comparable to those derived in high-redshift galaxies.

  4. Radio ejection and broad forbidden emission lines in the Seyfert galaxy NGC 7674

    International Nuclear Information System (INIS)

    Unger, S.W.; Pedlar, A.; Axon, D.J.

    1988-01-01

    The Seyfert nucleus in NGC7674 (Mkn533) is remarkable for its broad asymmetric forbidden line profiles, which extend 2000 kms -1 blueward of the systemic velocity. The galaxy also has a compact nuclear radio source. We have obtained new high-resolution radio observations of NGC7674, using the European VLBI network and the VLA, and optical spectroscopic observations using the Isaac Newton Telescope. The radio maps reveal a triple radio source with a total angular extent of about 0.7 arcsec, and provide evidence that the radio emission is powered by collimated ejection. In the plane of the sky, the ejection axis appears roughly perpendicular to the galactic rotation axis. Although the dominant radio components are separated by 0.5 arcsec, the broad [OIII]λ5007 line emission is confined to within about 0.25 arcsec of the continuum nucleus. (author)

  5. The discovery of an O VII emission line in the ASCA spectrum of the Seyfert galaxy NGC 3783

    Science.gov (United States)

    George, I. M.; Turner, T. J.; Netzer, H.

    1995-01-01

    We report the first observation of an O VII 0.57 keV emission line in a Seyfert 1 galaxy. NGC 3783 was observed by ASCA twice over a period of 4 days in 1993 December. The source exhibited a approximately 30% change in intensity between the two observations, with most of the variability taking place as a result of steepening of the continuum less than or approximately equal to 1 keV. Spectra from both observations show intense absorption features in the 0.5-1.5 keV band, which can be well fitted by an ionized absorber model of solar composition, column density of 10(exp 22.2)/sq cm and ionization parameter of approximately 7-8; the strongest absorption features being due to O VII and O VIII. Two emission features are also seen in the spectra which we identify as O VII 0.57 keV (equivalent width approximately equals 36 eV) and O VIII 0.65 keV (equivalent width approximately equals 11 eV). We also show that the 3-6 keV continuum of the source is well fitted by a Gamma = 1.3-1.4 power-law continuum, a narrow neutral iron K-shell fluorescence line and a strong iron K-shell absorption edge, possibly corresponding to highly ionized iron.

  6. DUST ATTENUATION OF THE NEBULAR REGIONS OF z ∼ 2 STAR-FORMING GALAXIES: INSIGHT FROM UV, IR, AND EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    De Barros, S.; Reddy, N.; Shivaei, I., E-mail: stephane.debarros@oabo.inaf.it [Department of Physics and Astronomy, University of California, Riverside, CA 92507 (United States)

    2016-04-01

    We use a sample of 149 spectroscopically confirmed UV-selected galaxies at z ∼ 2 to investigate the relative dust attenuation of the stellar continuum and the nebular emission lines. For each galaxy in the sample, at least one rest-frame optical emission line (Hα/[N ii] λ6583 or [O iii] λ5007) measurement has been taken from the litterature, and 41 galaxies have additional Spitzer/MIPS 24 μm observations that are used to infer infrared luminosities. We use a spectral energy distribution (SED) fitting code that predicts nebular line strengths when fitting the stellar populations of galaxies in our sample, and we perform comparisons between the predictions of our models and the observed/derived physical quantities. We find that on average our code is able to reproduce all the physical quantities (e.g., UV β slopes, infrared luminosities, emission line fluxes), but we need to apply a higher dust correction to the nebular emission compared to the stellar emission for the largest star formation rate (SFR) (log SFR/M{sub ⊙} yr{sup −1} > 1.82, Salpeter initial mass function). We find a correlation between SFR and the difference in nebular and stellar color excesses, which could resolve the discrepant results regarding nebular dust correction at z ∼ 2 from previous studies.

  7. Groups and clusters of galaxies

    International Nuclear Information System (INIS)

    Bijleveld, W.

    1984-01-01

    In this thesis, a correlative study is performed with respect to the radio and X-ray parameters of galaxy clusters and groups of galaxies (Msub(v)-Psub(1.4); Msub(v)-Lsub(x); Lsub(x)-Psub(1.4); R-Msub(v) correlations). Special attention is paid to correlations with cD and elliptical galaxies. It is concluded that in rich clusters massive cD galaxies form; massive galaxies are able to bind a large X-ray halo; strong X-ray emitters fuel their central radio sources at a high rate; the total gas content of groups is low, which implies that the contribution of groups to the total matter density in the universe is small. (Auth.)

  8. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  9. Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3

    Energy Technology Data Exchange (ETDEWEB)

    Capasso, R.; et al.

    2017-11-27

    The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based on $\\sim$3000 passive, non-emission line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zel'dovich effect (SZE) in the 2500 deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $Y_X$ measurements. However, the dynamical masses are lower (at the 2.2$\\sigma$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a LCDM model with external cosmological priors, including CMB anisotropy data from Planck. The tension grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $\\eta=0.63^{+0.13}_{-0.08}\\pm0.05$ (statistical and systematic), corresponding to 2.6$\\sigma$ tension.

  10. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    Science.gov (United States)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  11. Star clusters in evolving galaxies

    Science.gov (United States)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  12. Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46

    Science.gov (United States)

    Hayashi, Masao; Tadaki, Ken-ichi; Kodama, Tadayuki; Kohno, Kotaro; Yamaguchi, Yuki; Hatsukade, Bunyo; Koyama, Yusei; Shimakawa, Rhythm; Tamura, Yoichi; Suzuki, Tomoko L.

    2018-04-01

    We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R 200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with M stellar ∼ 1011 M ⊙ within 0.5R 200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010 M ⊙ and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.

  13. Percolation technique for galaxy clustering

    Science.gov (United States)

    Klypin, Anatoly; Shandarin, Sergei F.

    1993-01-01

    We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.

  14. ALMA INVESTIGATION OF VIBRATIONALLY EXCITED HCN/HCO{sup +}/HNC EMISSION LINES IN THE AGN-HOSTING ULTRALUMINOUS INFRARED GALAXY IRAS 20551−4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected. The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.

  15. GLACE: freezing the environment of line--emitting cluster galaxies

    Science.gov (United States)

    Pintos--Castro, I.; Sánchez--Portal, M.; Cepa, J.; Povi, M.; Santos, J.; Altieri, B.; Bongiovanni, A.; Ederoclite, A.; Oteo, I.; Pérez García, A.; Pérez--Martínez, R.; Polednikova, J.; Ramón--Pérez, M.

    2015-05-01

    GLACE is performing a survey of emission-line galaxies in clusters with the main aim of studying the effect of the environment in the star formation activity. The innovation of this work is the use of tunable filters in scan mode to obtain low resolution spectra of the desired emission lines. Although the survey is in its initial stage, we have analysed two line datasets in two different clusters: Hα in Cl0024 at z=0.4 and [O II] in RXJ1257 at z = 0.9. The first is a well known intermediate redshift cluster that has been used to test the observational strategy. We reached the planned SFRs and we could deblend the [N II] component, thus being able to discriminate the AGN population from the star-forming galaxies. Also the spectral resolution is allowing us to exploit the data for dynamical analysis. The second target is a recently discovered cluster, that we have studied regarding its FIR and [O II] emission. The [O II] observations are revealing a fainter and less massive sample, when compared with the FIR emitters, showing two different populations of star-forming galaxies. The cluster emitters have shown that no evident correlation exist between the SFR (or sSFR) and the environment. Nevertheless, we have found that both samples, FIR- and [O II]-emitters, are concentrated in the areas of intermediate to even high local density. Additionally, we explored the morphological properties of the cluster galaxies using the non-parametric galSVM code.

  16. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  17. INTERACTIONS OF GALAXIES IN THE GALAXY CLUSTER ENVIRONMENT

    International Nuclear Information System (INIS)

    Park, Changbom; Hwang, Ho Seong

    2009-01-01

    We study the dependence of galaxy properties on the clustercentric radius and the environment attributed to the nearest neighbor galaxy using the Sloan Digital Sky Survey galaxies associated with the Abell galaxy clusters. We find that there exists a characteristic scale where the properties of galaxies suddenly start to depend on the clustercentric radius at fixed neighbor environment. The characteristic scale is 1-3 times the cluster virial radius depending on galaxy luminosity. Existence of the characteristic scale means that the local galaxy number density is not directly responsible for the morphology-density relation in clusters because the local density varies smoothly with the clustercentric radius and has no discontinuity in general. What is really working in clusters is the morphology-clustercentric radius-neighbor environment relation, where the neighbor environment means both neighbor morphology and the local mass density attributed to the neighbor. The morphology-density relation appears working only because of the statistical correlation between the nearest neighbor distance and the local galaxy number density. We find strong evidence that the hydrodynamic interactions with nearby early-type galaxies is the main drive to quenching star formation activity of late-type galaxies in clusters. The hot cluster gas seems to play at most a minor role down to one tenth of the cluster virial radius. We also find that the viable mechanisms which can account for the clustercentric radius dependence of the structural and internal kinematics parameters are harassment and interaction of galaxies with the cluster potential. The morphology transformation of the late-type galaxies in clusters seems to have taken place through both galaxy-galaxy hydrodynamic interactions and galaxy-cluster/galaxy-galaxy gravitational interactions.

  18. INTERACTIONS OF GALAXIES IN THE GALAXY CLUSTER ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Changbom; Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)], E-mail: cbp@kias.re.kr, E-mail: hshwang@kias.re.kr

    2009-07-10

    We study the dependence of galaxy properties on the clustercentric radius and the environment attributed to the nearest neighbor galaxy using the Sloan Digital Sky Survey galaxies associated with the Abell galaxy clusters. We find that there exists a characteristic scale where the properties of galaxies suddenly start to depend on the clustercentric radius at fixed neighbor environment. The characteristic scale is 1-3 times the cluster virial radius depending on galaxy luminosity. Existence of the characteristic scale means that the local galaxy number density is not directly responsible for the morphology-density relation in clusters because the local density varies smoothly with the clustercentric radius and has no discontinuity in general. What is really working in clusters is the morphology-clustercentric radius-neighbor environment relation, where the neighbor environment means both neighbor morphology and the local mass density attributed to the neighbor. The morphology-density relation appears working only because of the statistical correlation between the nearest neighbor distance and the local galaxy number density. We find strong evidence that the hydrodynamic interactions with nearby early-type galaxies is the main drive to quenching star formation activity of late-type galaxies in clusters. The hot cluster gas seems to play at most a minor role down to one tenth of the cluster virial radius. We also find that the viable mechanisms which can account for the clustercentric radius dependence of the structural and internal kinematics parameters are harassment and interaction of galaxies with the cluster potential. The morphology transformation of the late-type galaxies in clusters seems to have taken place through both galaxy-galaxy hydrodynamic interactions and galaxy-cluster/galaxy-galaxy gravitational interactions.

  19. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B W [Rijksuniversiteit Utrecht (Netherlands). Inst. of Astronomy; Rutten, R G.M. [Astronomical Inst. ' Anton Pannekoek' , Amsterdam (Netherlands); Callanan, P J [Oxford Univ. (UK). Dept. of Astrophysics; Seitzer, Patrick [Space Telescope Science Inst., Baltimore, MD (USA); Charles, P A [Oxford Univ. (UK). Dept. of Astrophysics Observatorio del Roque do los Muchachos, Santa Cruz de La Palma, Tenerife, Canary Islands (Spain); Cohn, H N; Lugger, P M [Indiana Univ., Bloomington, IN (USA). Dept. of Astronomy

    1991-05-09

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author).

  20. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    International Nuclear Information System (INIS)

    Murphy, B.W.; Callanan, P.J.; Charles, P.A.; Cohn, H.N.; Lugger, P.M.

    1991-01-01

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author)

  1. Combining cluster number counts and galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, Fabien; Rosenfeld, Rogerio, E-mail: fabien@ift.unesp.br, E-mail: rosenfel@ift.unesp.br [ICTP South American Institute for Fundamental Research, Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil)

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  2. Entropy and galaxy clustering

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1988-01-01

    The notion of a p-particle entropy Sp introduced by Kandrup (1987) is applied here to a Newtonian cosmology modeled as an expanding system of identical point masses studying the time dependence of S1 and S2 in the framework of the linearized theory considered by Fall and Saslaw (1976). It is found that if, at some initial time t0, the galaxy-galaxy correlation function vanished, then S1(t0) = S2(t0). At least for short times t - t0 thereafter, S1 and Delta S = S1 - S2 increase on a characteristic time scale. For all times t after t0, S1(t) = S2(t) or greater. 13 references

  3. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    Energy Technology Data Exchange (ETDEWEB)

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Seitz, Stella [University Observatory Munich, Scheinstrasse 1, 81679 Muenchen (Germany); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Wood-Vasey, W. Michael [Pittsburgh Center for Particle Physics, Astrophysics, and Cosmology (PITT-PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Brinkmann, Jon [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802 (United States); Weaver, Benjamin A. [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  4. Connection between Seyfert galaxies and clusters

    International Nuclear Information System (INIS)

    Petrosyan, A.R.

    1988-01-01

    To identify Seyfert galaxies that are members of clusters, the sample of known Seyfert galaxies (464 objects) is tested against the Zwicky, Abell, and southern clusters. On the basis of the criteria adopted in the paper, 67 Seyfert galaxies are selected as probable members of Zwicky clusters, 15 as members of Abell clusters, and 18 as members of southern clusters. Lists of these objects are given

  5. Radio investigations of clusters of galaxies

    International Nuclear Information System (INIS)

    Valentijn, E.A.

    1978-01-01

    This thesis contains a number of papers of the series entitled, A Westerbork Survey of Rich Clusters of Galaxies. The primary aim was to study the radio characteristics of cluster galaxies and especially the question whether their ''radio-activity'' is influenced by their location inside a cluster. It is enquired whether the presence of an intra-cluster medium (ICM), or the typical cluster evolution or cluster dynamical processes can give rise to radio-observable effects on the behaviour of cluster galaxies. 610 MHz WSRT observations of the Coma cluster (and radio observations of the Hercules supercluster) are presented. Extended radio sources in Abell clusters are then described. (Auth.)

  6. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  7. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]{sub 18.7{sub μm}}, [O IV], [Fe II], [S III]{sub 33.5{sub μm}}, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z{sub ☉}, and ionization parameters of 2-8 × 10{sup 7} cm s{sup –1}. Based on the [S III]{sub 33.5{sub μm}}/[S III]{sub 18.7{sub μm}} ratios, the electron density in LIRG nuclei is typically one to a few hundred cm{sup –3}, with a median electron density of ∼300 cm{sup –3}, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s{sup –1}) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s{sup –1}. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential

  8. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Telles, E. [Observatorio Nacional, Rua Jose Cristino, 77, Rio de Janeiro 20921-400 (Brazil); Nigoche-Netro, A. [Instituto de Astrofisica de Andalucia (IAA), Glorieta de la Astronomia s/n, 18008 Granada (Spain); Carrasco, E. R., E-mail: plagos@astro.up.pt, E-mail: etelles@on.br, E-mail: nigoche@iaa.es, E-mail: rcarrasco@gemini.edu [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile)

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  9. Galaxy Evolution in Clusters Since z ~ 1

    Science.gov (United States)

    Aragón-Salamanca, A.

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  10. The dwarf galaxy population of nearby galaxy clusters

    NARCIS (Netherlands)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass

  11. Charge exchange in galaxy clusters

    Science.gov (United States)

    Gu, Liyi; Mao, Junjie; de Plaa, Jelle; Raassen, A. J. J.; Shah, Chintan; Kaastra, Jelle S.

    2018-03-01

    Context. Though theoretically expected, the charge exchange emission from galaxy clusters has never been confidently detected. Accumulating hints were reported recently, including a rather marginal detection with the Hitomi data of the Perseus cluster. As previously suggested, a detection of charge exchange line emission from galaxy clusters would not only impact the interpretation of the newly discovered 3.5 keV line, but also open up a new research topic on the interaction between hot and cold matter in clusters. Aim. We aim to perform the most systematic search for the O VIII charge exchange line in cluster spectra using the RGS on board XMM-Newton. Methods: We introduce a sample of 21 clusters observed with the RGS. In order to search for O VIII charge exchange, the sample selection criterion is a >35σ detection of the O VIII Lyα line in the archival RGS spectra. The dominating thermal plasma emission is modeled and subtracted with a two-temperature thermal component, and the residuals are stacked for the line search. The systematic uncertainties in the fits are quantified by refitting the spectra with a varying continuum and line broadening. Results: By the residual stacking, we do find a hint of a line-like feature at 14.82 Å, the characteristic wavelength expected for oxygen charge exchange. This feature has a marginal significance of 2.8σ, and the average equivalent width is 2.5 × 10-4 keV. We further demonstrate that the putative feature can be barely affected by the systematic errors from continuum modeling and instrumental effects, or the atomic uncertainties of the neighboring thermal lines. Conclusions: Assuming a realistic temperature and abundance pattern, the physical model implied by the possible oxygen line agrees well with the theoretical model proposed previously to explain the reported 3.5 keV line. If the charge exchange source indeed exists, we expect that the oxygen abundance could have been overestimated by 8-22% in previous X

  12. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for ~ 100,000 Galaxies

    Science.gov (United States)

    Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn

    2016-08-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), I.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s-1 cm-2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18

  13. Investigations of Galaxy Clusters Using Gravitational Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Matthew P. [Northern Illinois Univ., DeKalb, IL (United States)

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  14. Dynamics, Chemical Abundances, and ages of Globular Clusters in the Virgo Cluster of Galaxies

    Science.gov (United States)

    Guhathakurta, Puragra; NGVS Collaboration

    2018-01-01

    We present a study of the dynamics, metallicities, and ages of globular clusters (GCs) in the Next Generation Virgo cluster Survey (NGVS), a deep, multi-band (u, g, r, i, z, and Ks), wide-field (104 deg2) imaging survey carried out using the 3.6-m Canada-France-Hawaii Telescope and MegaCam imager. GC candidates were selected from the NGVS survey using photometric and image morphology criteria and these were followed up with deep, medium-resolution, multi-object spectroscopy using the Keck II 10-m telescope and DEIMOS spectrograph. The primary spectroscopic targets were candidate GC satellites of dwarf elliptical (dE) and ultra-diffuse galaxies (UDGs) in the Virgo cluster. While many objects were confirmed as GC satellites of Virgo dEs and UDGs, many turned out to be non-satellites based on their radial velocity and/or positional mismatch any identifiable Virgo cluster galaxy. We have used a combination of spectral characteristics (e.g., presence of absorption vs. emission lines), new Gaussian mixture modeling of radial velocity and sky position data, and a new extreme deconvolution analysis of ugrizKs photometry and image morphology, to classify all the objects in our sample into: (1) GC satellites of dE galaxies, (2) GC satellites of UDGs, (3) intra-cluster GCs (ICGCs) in the Virgo cluster, (4) GCs in the outer halo of the central cluster galaxy M87, (5) foreground Milky Way stars, and (6) distant background galaxies. We use these data to study the dynamics and dark matter content of dE and UDGs in the Virgo cluster, place important constraints on the nature of dE nuclei, and study the origin of ICGCs versus GCs in the remote M87 halo.We are grateful for financial support from the NSF and NASA/STScI.

  15. A DEEP, WIDE-FIELD Hα SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    International Nuclear Information System (INIS)

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-01-01

    We present the results of a wide-field Hα imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured Hα fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M ☉ yr –1 . This paper describes the observations, data processing, and source identification procedures, and presents an Hα and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted Hα emission in more distant clusters.

  16. Clusters and Groups of Galaxies : International Meeting

    CERN Document Server

    Giuricin, G; Mezzetti, M

    1984-01-01

    The large-scale structure of the Universe and systems Clusters, and Groups of galaxies are topics like Superclusters, They fully justify the meeting on "Clusters of great interest. and Groups of Galaxies". The topics covered included the spatial distribution and the clustering of galaxies; the properties of Superclusters, Clusters and Groups of galaxies; radio and X-ray observations; the problem of unseen matter; theories concerning hierarchical clustering, pancakes, cluster and galaxy formation and evolution. The meeting was held at the International Center for Theoretical Physics in Trieste (Italy) from September 13 to September 16, 1983. It was attended by about 150 participants from 22 nations who presented 67 invited lectures (il) and contributed papers (cp), and 45 poster papers (pp). The Scientific Organizing Committee consisted of F. Bertola, P. Biermann, A. Cavaliere, N. Dallaporta, D. Gerba1, M. Hack, J . V . Peach, D. Sciama (Chairman), G. Setti, M. Tarenghi. We are particularly indebted to D. Scia...

  17. Star formation and substructure in galaxy clusters

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-01-01

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M r 0.1 <−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  18. New Fast Lane towards Discoveries of Clusters of Galaxies Inaugurated

    Science.gov (United States)

    2003-07-01

    /Chilean team of astronomers known as the XMM-LSS consortium [2], used the large field-of-view and the high sensitivity of ESA's X-ray observatory XMM-Newton to search for remote clusters of galaxies and map out their distribution in space. They could see back about 7,000 million years to a cosmological era when the Universe was about half its present size and age, when clusters of galaxies were more tightly packed. Tracking down the clusters is a painstaking, multi-step process, requiring both space and ground-based telescopes. Indeed, from X-ray images with XMM, it was possible to select several tens of cluster candidate objects, identified as areas of enhanced X-radiation (cf PR Photo 19b/03). But having candidates is not enough ! They must be confirmed and further studied with ground-based telescopes. In tandem with XMM-Newton, Pierre uses the very-wide-field imager attached to the 4-m Canada-France-Hawaii Telescope, on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme then combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and represent only about 10% of the detected X-ray sources. The others are mostly distant active galaxies. Back to the Ground ESO PR Photo 19c/03 ESO PR Photo 19c/03 [Preview - JPEG: 400 x 481 pix - 84k [Normal - JPEG: 800 x 961 pix - 1M] ESO PR Photo 19d/03 ESO PR Photo 19d/03 [Preview - JPEG: 400 x 488 pix - 44k [Normal - JPEG: 800 x 976 pix - 520k] Captions: PR Photo 19c/03 represents the XMM-Newton X-ray contour map of the cluster's probable extent superimposed upon the CFHT I-band image. A concentration of distant galaxies is conspicuous, thus confirming the X-ray detection. The symbols indicate the galaxies which have been subject to a subsequent spectroscopic measurement and found to be cluster members (triangles flag emission line galaxies). The individual galaxies in the cluster can then be targeted for further

  19. Galaxy evolution in clusters since z=1

    Science.gov (United States)

    Aragón-Salamanca, A.

    2011-11-01

    It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  20. Reconstructing galaxy histories from globular clusters.

    Science.gov (United States)

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  1. Galaxy clusters in the cosmic web

    Science.gov (United States)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4DAFT/FADA survey, which combines deep large field multi-band imaging and spectroscopic data, in order to detect filaments and/or structures around these clusters. Based on colour-magnitude diagrams, we have selected the galaxies likely to be in the cluster redshift range and studied their spatial distribution. We detect a number of structures and filaments around several clusters, proving that colour-magnitude diagrams are a reliable method to detect filaments around galaxy clusters. Since this method excludes blue (spiral) galaxies at the cluster redshift, we also apply the LePhare software to compute photometric redshifts from BVRIZ images to select galaxy cluster members and study their spatial distribution. We then find that, if only galaxies classified as early-type by LePhare are considered, we obtain the same distribution than with a red sequence selection, while taking into account late-type galaxies just pollutes the background level and deteriorates our detections. The photometric redshift based method therefore does not provide any additional information.

  2. Dynamical evolution of galaxies in clusters

    International Nuclear Information System (INIS)

    Ostriker, J.P.

    1977-01-01

    In addition to the processes involved in the evolution of star clusters, there are three kinds of processes that are peculiar to, or far more important in, galaxy clusters than in star clusters: galaxy interactions with gas, high-velocity tidal interactions, and accretion and cannibalism. The latter is discussed at some length; analytical calculations for the apparent luminosity evolution of the first brightest galaxy and the apparent luminosity evolution of M 12 are described, along with the numerical simulation of cluster evolution. It appears that many of the notable features of centrally condensed clusters of galaxies, particularly the presence of very luminous but low-surface-brightness central cD systems, can be understood in terms of a straightforward dynamical theory of galactic cannibalism. It is possible to maintain the hypothesis that dynamical evolution gradually transforms Bautz--Morgan III clusters to type II systems or type I systems. 36 references, 5 figures

  3. Dynamics of Galaxy Clusters and their Outskirts

    DEFF Research Database (Denmark)

    Falco, Martina

    Galaxy clusters have demonstrated to be powerful probes of cosmology, since their mass and abundance depend on the cosmological model that describes the Universe and on the gravitational formation process of cosmological structures. The main challenge in using clusters to constrain cosmology...... is that their masses cannot be measured directly, but need to be inferred indirectly through their observable properties. The most common methods extract the cluster mass from their strong X-ray emission or from the measured redshifts of the galaxy members. The gravitational lensing effect caused by clusters...... on the background galaxies is also an important trace of their total mass distribution.In the work presented within this thesis, we exploit the connection between the gravitational potential of galaxy clusters and the kinematical properties of their surroundings, in order to determine the total cluster mass...

  4. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    Science.gov (United States)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-04-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  5. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    Science.gov (United States)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-06-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  6. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  7. DISSECTING THE POWER SOURCES OF LOW-LUMINOSITY EMISSION-LINE GALAXY NUCLEI VIA COMPARISON OF HST-STIS AND GROUND-BASED SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, Anca; Castillo, Christopher A. [Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807 (United States); Shields, Joseph C. [Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Barth, Aaron J. [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2015-12-01

    Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in the line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.

  8. The broad component of hydrogen emission lines in nuclei of Seyfert galaxies: Comments on a charge exchange model

    International Nuclear Information System (INIS)

    Katz, A.

    1975-01-01

    A model to account for the broad hydrogen line emission from the nuclei of Seyfert galaxies based on charge exchange and collisional processes, as proposed by Ptak and Stoner, is investigated. The model consists of a source of fast (E approx. 10 5 eV) protons streaming through a medium of quiescent gas. One of the major problems that results from such a model concerns the strong narrow hydrogen line core that would be produced, in direct conflict with the observations. The lines cannot arise from gas arranged throughout a spherical volume surrounding the source of the fast particles because the fast protons would produce far more ionizations than the possible number of recombinations. A very dense shell source of less than 1 AU in thickness and at least several tens of parsecs in radius must be invoked to reproduce the asymmetric broad profiles observed. There must be absorption throughout the center of the shell to account for the line profiles. The gas cannot be arranged in dense clumps throughout a large volume because momentum exchange of the gas with the primary particles would quickly accelerate any clumps. The energy balance and energy requirements of such a model are investigated, and it is found that an energy equal to or greater than the total luminosity of most Seyfert galaxies is required to produce the hydrogen line alone. The gas must be mostly neutral and den []e (N approx. 10 7 ) if a reasonable temperature is to be maintained

  9. Statistical issues in galaxy cluster cosmology

    DEFF Research Database (Denmark)

    Mantz, Adam; Allen, Steven W.; Rapetti Serra, David Angelo

    2013-01-01

    The number and growth of massive galaxy clusters is a sensitive probe of cosmological structure formation and dark energy. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneo...

  10. Metallicities of Emission-Line Galaxies from HST ACS PEARS and HST WFC3 ERS Grism Spectroscopy at 0.6 is less than z is less than 2.4

    Science.gov (United States)

    Xia, Lifang; Malhotra, Sangetta; Rhoads, James; Pirzkal, Nor; Straughn, Amber; Finkelstein, Steven; Cohen, Seth; Kuntschner, Harald; Walsh, Jeremy; Windhorst, Rogier A.; hide

    2012-01-01

    Galaxies selected on the basis of their emission line strength. show low metallicities, regardless of their redshifts. We conclude this from a sample of faint galaxies at redshifts between 0.6 optiCa.i with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) and in the near-infrared using Wide-Field Camera 3 (WFC3). Using a sample of 11 emission line galaxies (ELGs) at 0.6 < z < 2.4 with luminosities of -22 approx < MB approx -19 which have [OII], H-Beta, and [OIII] line flux measurements from the combination of two grism spectral surveys, we use the R23 method to derive the gas-phase oxygen abundances: 7.5 <12+log(0/H)<8.5. The galaxy stellar masses are derived using Bayesian based Markov Chain Monte Carlo (pi MC(exp 2)) fitting of their Spectral Energy Distribution (SED), and span the mass range 8.1 < log(M(stellar)/M(solar)) < 10.1. These galaxies show a mass-metal1icity (M-L) and Luminosity-Metallicity (LZ) relation, which is offset by -galaxies, as well as continuum selected DEEP2 samples at similar redshifts. The emission-line selected galaxies most resemble the local "green peas" galaxies and Lyman-alpha galaxies at z approx = 0.3 and z approx = 2.3 in the M-Z and L-Z relations and their morphologies. The G - M(sub 20) morphology analysis shows that 10 out of 11 show disturbed morphology, even as the star-forming regions are compact. These galaxies may be intrinsically metal poor, being at early stages of formation, or the low metallicities may be due to gas infall and accretion due to mergers.

  11. 3D-HST emission line galaxies at z ∼ 2: discrepancies in the optical/UV star formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Schneider, Donald P.; Hagen, Alex; Bridge, Joanna S.; Trump, Jonathan R. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Feldmeier, John [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States)

    2014-08-01

    We use Hubble Space Telescope near-IR grism spectroscopy to examine the Hβ line strengths of 260 star-forming galaxies in the redshift range 1.90 < z < 2.35. We show that at these epochs, the Hβ star formation rate (SFR) is a factor of ∼1.8 higher than what would be expected from the systems' rest-frame UV flux density, suggesting a shift in the standard conversion between these quantities and SFR. We demonstrate that at least part of this shift can be attributed to metallicity, as Hβ is more enhanced in systems with lower oxygen abundance. This offset must be considered when measuring the SFR history of the universe. We also show that the relation between stellar and nebular extinction in our z ∼ 2 sample is consistent with that observed in the local universe.

  12. 3D-HST emission line galaxies at z ∼ 2: discrepancies in the optical/UV star formation rates

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Schneider, Donald P.; Hagen, Alex; Bridge, Joanna S.; Trump, Jonathan R.; Feldmeier, John

    2014-01-01

    We use Hubble Space Telescope near-IR grism spectroscopy to examine the Hβ line strengths of 260 star-forming galaxies in the redshift range 1.90 < z < 2.35. We show that at these epochs, the Hβ star formation rate (SFR) is a factor of ∼1.8 higher than what would be expected from the systems' rest-frame UV flux density, suggesting a shift in the standard conversion between these quantities and SFR. We demonstrate that at least part of this shift can be attributed to metallicity, as Hβ is more enhanced in systems with lower oxygen abundance. This offset must be considered when measuring the SFR history of the universe. We also show that the relation between stellar and nebular extinction in our z ∼ 2 sample is consistent with that observed in the local universe.

  13. Star clusters in the Whirlpool Galaxy

    NARCIS (Netherlands)

    Scheepmaker, R.A.

    2009-01-01

    This thesis presents the results of observational studies of the star cluster population in the interacting spiral galaxy M51, also known as the Whirlpool galaxy. Observations taken by the Hubble Space Telescope in the optical and the near-UV are used to determine fundamental properties of the star

  14. The Spectral Energy Distributions of z ~ 8 Galaxies from the IRAC Ultra Deep Fields: Emission Lines, Stellar Masses, and Specific Star Formation Rates at 650 Myr

    Science.gov (United States)

    Labbé, I.; Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Magee, D.; González, V.; Carollo, C. M.; Franx, M.; Trenti, M.; van Dokkum, P. G.; Stiavelli, M.

    2013-11-01

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ~ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ~120h over the HUDF reaching depths of ~28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct >=3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at >=5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ~ 8 are markedly redder than those at z ~ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ~ 7 and z ~ 8 we estimate a rest-frame equivalent width of {W}_{[O\\,\\scriptsize{III}]\\ \\lambda \\lambda 4959,5007+H\\beta }=670^{+260}_{-170} Å contributing 0.56^{+0.16}_{-0.11} mag to the [4.5] filter at z ~ 8. The corresponding {W}_{H\\alpha }=430^{+160}_{-110} Å implies an average specific star formation rate of sSFR=11_{-5}^{+11} Gyr-1 and a stellar population age of 100_{-50}^{+100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ~3 ×, decreasing the integrated stellar mass density to \\rho ^*(z=8,M_{\\rm{UV}}Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #11563, 9797. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of

  15. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR

    Energy Technology Data Exchange (ETDEWEB)

    Labbé, I.; Bouwens, R. J.; Franx, M. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Oesch, P. A.; Illingworth, G. D.; Magee, D.; González, V. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Carollo, C. M. [Institute for Astronomy, ETH Zurich, 8092 Zurich (Switzerland); Trenti, M. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Van Dokkum, P. G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Stiavelli, M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-11-10

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ∼ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ∼120h over the HUDF reaching depths of ∼28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct ≥3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at ≥5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ∼ 8 are markedly redder than those at z ∼ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ∼ 7 and z ∼ 8 we estimate a rest-frame equivalent width of contributing 0.56{sup +0.16}{sub -0.11} mag to the [4.5] filter at z ∼ 8. The corresponding W{sub Hα}=430{sup +160}{sub -110} Å implies an average specific star formation rate of sSFR=11{sub -5}{sup +11} Gyr{sup –1} and a stellar population age of 100{sub -50}{sup +100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ∼3 ×, decreasing the integrated stellar mass density to ρ{sup *}(z=8,M{sub UV}<-18)=0.6{sup +0.4}{sub -0.3}×10{sup 6} M{sub sun} Mpc{sup –3}.

  16. Mapping Dark Matter in Simulated Galaxy Clusters

    Science.gov (United States)

    Bowyer, Rachel

    2018-01-01

    Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  17. Tidally Induced Bars of Galaxies in Clusters

    Czech Academy of Sciences Publication Activity Database

    Lokas, E.; Ebrová, Ivana; del Pino, A.; Sybilska, A.; Athanassoula, E.; Semczuk, M.; Gajda, G.; Fouquet, S.

    2016-01-01

    Roč. 286, č. 6 (2016), 227/1-227/13 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : galaxies * clusters * evolution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  18. Quenching of satellite galaxies at the outskirts of galaxy clusters

    Science.gov (United States)

    Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke

    2018-04-01

    We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.

  19. X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies

    International Nuclear Information System (INIS)

    Weisheit, J.C.; Shields, G.A.; Tarter, C.B.

    1980-07-01

    Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10 4 K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated Lα/Hα line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/Hα ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped Hα photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(Hα) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations

  20. OSO 8 X-ray spectra of clusters of galaxies. I - Observations of twenty clusters: Physical correlations

    Science.gov (United States)

    Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Smith, B. W.

    1978-01-01

    OSO 8 X-ray spectra from 2 to 20 keV have been analyzed for 26 clusters of galaxies. For 20 clusters temperatures, emission integrals, iron abundances, and low-energy absorption measurements are presented. The data give, in general, better fits to thermal bremsstrahlung than to power-law models. Eight clusters have positive iron emission-line detections at the 90% confidence level, and all 20 cluster spectra are consistent with Fe/H = 0.000014 by number with the possible exception of Virgo. Thus it is confirmed that X-ray emission in this energy band is predominantly thermal radiation from hot intracluster gas rather than inverse Compton radiation. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central-galaxy density than with richness; and (4) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.

  1. The Centaurus cluster of galaxies. Pt. 3

    International Nuclear Information System (INIS)

    Lucey, J.R.; Currie, M.J.; Dickens, R.J.

    1986-05-01

    Previous work by the authors has shown that the Centaurus cluster (α = 12sup(h) 47 delta = -41 0 ) is composed of two velocity components, Cen30 (mean velocity 3000 km s -1 ) and Cen45 (mean velocity 4500 km s -1 ), which very probably lie within one cluster. In this paper the internal structure of the cluster is described and the spatial and velocity distributions of the different galaxy types within the cluster are discussed. (author)

  2. The distribution of mass for spiral galaxies in clusters and in the field

    International Nuclear Information System (INIS)

    Forbes, D.A.; Whitmore, B.C.

    1989-01-01

    A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense that mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs

  3. Deep spectroscopy of nearby galaxy clusters - IV. The quench of the star formation in galaxies in the infall region of Abell 85

    Science.gov (United States)

    Aguerri, J. A. L.; Agulli, I.; Méndez-Abreu, J.

    2018-06-01

    Our aim is to understand the role of the environment in the quenching of star formation of galaxies located in the infall cluster region of Abell 85 (A85). This is achieved by studying the post-starburst galaxy population as tracer of recent quenching. By measuring the equivalent width (EW) of the [O II] and Hδ spectral lines, we classify the galaxies into three groups: passive (PAS), emission line (EL), and post-starburst (PSB) galaxies. The PSB galaxy population represents ˜ 4.5 per cent of the full sample. Dwarf galaxies (Mr > -18.0) account for ˜ 70 - 80 per cent of PSBs, which indicates that most of the galaxies undergoing recent quenching are low-mass objects. Independently of the environment, PSB galaxies are disc-like objects with g - r colour between the blue ELs and the red PAS ones. The PSB and EL galaxies in low-density environments show similar luminosities and local galaxy densities. The dynamics and local galaxy density of the PSB population in high-density environments are shared with PAS galaxies. However, PSB galaxies inside A85 are at shorter clustercentric radius than PAS and EL ones. The value of the EW(Hδ) is larger for those PSBs closer to the cluster centre. We propose two different physical mechanisms producing PSB galaxies depending on the environment. In low-density environments, gas-rich minor mergers or accretions could produce the PSB galaxies. For high-density environments like A85, PSBs would be produced by the removal of the gas reservoirs of EL galaxies by ram-pressure stripping when they pass near the cluster centre.

  4. Luminous arcs in clusters of galaxies

    International Nuclear Information System (INIS)

    Lynds, R.; Petrosian, V.

    1989-01-01

    Observations are reported of what appears to be a new class of spatially coherent extragalactic features having, in the two most compelling known examples, the following joint properties: location in clusters of galaxies, narrow arclike shape, enormous apparent length, and situation of center of curvature toward both a cD galaxy and the apparent center of gravity of the cluster. The principal available facts concerning the arcs are presented and a variety of interpretations are briefly discussed. The weight of evidence seems to favor the interpretation that these features are images of more distant objects produced by the gravitational field of the intervening clusters. 24 references

  5. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    Science.gov (United States)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  6. The double galaxy cluster Abell 2465 - I. Basic properties: optical imaging and spectroscopy

    Science.gov (United States)

    Wegner, Gary A.

    2011-05-01

    Optical imaging and spectroscopic observations of the z= 0.245 double galaxy cluster Abell 2465 are described. This object appears to be undergoing a major merger. It is a double X-ray source and is detected in the radio at 1.4 GHz. The purpose of this paper is to investigate signatures of the interaction of the two components. Redshifts were measured to determine velocity dispersions and virial radii of each component. The technique of fuzzy clustering was used to assign membership weights to the galaxies in each clump. Using redshifts of 93 cluster members within 1.4 Mpc of the subcluster centres, the virial masses of the north-east (NE) and south-west (SW) components are Mv= 4.1 ± 0.8 × 1014 and 3.8 ± 0.8 × 1014 M⊙, respectively. These agree within the errors with masses from X-ray scaling relations. The projected velocity difference between the two subclusters is 205 ± 149 km s-1. The anisotropy parameter, β, is found to be low for both components. Spectra of 37 per cent of the spectroscopically observed galaxies show emission lines and are predominantly star forming in the diagnostic diagram. No strong active galactic nucleus sources were found. The emission-line galaxies tend to lie between the two cluster centres with more near the SW clump. The luminosity functions of the two subclusters differ. The NE component is similar to many rich clusters, while the SW component has more faint galaxies. The NE clump’s light profile follows a single Navarro-Frenk-White profile with c= 10 while the SW is better fitted with an extended outer region and a compact inner core, consistent with available X-ray data indicating that the SW clump has a cooling core. The observed differences and properties of the two components of Abell 2465 are interpreted to have been caused by a collision 2-4 Gyr ago, after which they have moved apart and are now near their apocentres, although the start of a merger remains a possibility. The number of emission-line galaxies gives

  7. The topology of galaxy clustering.

    Science.gov (United States)

    Coles, P.; Plionis, M.

    The authors discuss an objective method for quantifying the topology of the galaxy distribution using only projected galaxy counts. The method is a useful complement to fully three-dimensional studies of topology based on the genus by virtue of the enormous projected data sets available. Applying the method to the Lick counts they find no evidence for large-scale non-gaussian behaviour, whereas the small-scale distribution is strongly non-gaussian, with a shift in the meatball direction.

  8. The galaxy clustering crisis in abundance matching

    Science.gov (United States)

    Campbell, Duncan; van den Bosch, Frank C.; Padmanabhan, Nikhil; Mao, Yao-Yuan; Zentner, Andrew R.; Lange, Johannes U.; Jiang, Fangzhou; Villarreal, Antonio

    2018-06-01

    Galaxy clustering on small scales is significantly underpredicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, Mpeak. SHAM models based on the peak maximum circular velocity, Vpeak, have had much better success. The primary reason for Mpeak-based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on Vpeak. Despite success in predicting clustering, a simple Vpeak-based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could `save' mass-based SHAM: (1) SHAM models require a significant population of `orphan' galaxies as a result of artificial disruption/merging of sub-haloes in modern high-resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on Mpeak cannot be complete physical models as presented. Either Vpeak truly is a better predictor of stellar mass at z ˜ 0 and it remains to be seen how the correlation between stellar mass and Vpeak comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.

  9. Studying dark energy with galaxy cluster surveys

    International Nuclear Information System (INIS)

    Mohr, Joseph J.; O'Shea, Brian; Evrard, August E.; Bialek, John; Haiman, Zoltan

    2003-01-01

    Galaxy cluster surveys provide a powerful means of studying the density and nature of the dark energy. The redshift distribution of detected clusters in a deep, large solid angle SZE or X-ray survey is highly sensitive to the dark energy equation of state. Accurate constraints at the 5% level on the dark energy equation of state require that systematic biases in the mass estimators must be controlled at better than the ∼10% level. Observed regularity in the cluster population and the availability of multiple, independent mass estimators suggests these precise measurements are possible. Using hydrodynamical simulations that include preheating, we show that the level of preheating required to explain local galaxy cluster structure has a dramatic effect on X-ray cluster surveys, but only a mild effect on SZE surveys. This suggests that SZE surveys may be optimal for cosmology while X-ray surveys are well suited for studies of the thermal history of the intracluster medium

  10. Mass Distribution in Galaxy Cluster Cores

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, M. T.; McNamara, B. R.; Pulido, F.; Vantyghem, A. N. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Nulsen, P. E. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Russell, H. R. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Edge, A. C. [Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Main, R. A., E-mail: m4hogan@uwaterloo.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada)

    2017-03-01

    Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar ( M {sub *}), gas ( M {sub gas}), and dark matter ( M {sub DM}) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H α emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r {sup 1.1} expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r {sup 0.67} down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”.

  11. UV TO FAR-IR CATALOG OF A GALAXY SAMPLE IN NEARBY CLUSTERS: SPECTRAL ENERGY DISTRIBUTIONS AND ENVIRONMENTAL TRENDS

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M., E-mail: jonatan@iaa.es [Instituto de Astrofisica de Andalucia, Glorieta de la Astronomia s/n, 18008 Granada (Spain)

    2012-03-01

    In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X} {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.

  12. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    International Nuclear Information System (INIS)

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-01-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  13. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, Emil T.; Steinhardt, Charles L. [California Institute of Technology, 1200 East-California Boulevard, Pasadena, CA 91125 (United States); Silverman, John D. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-Shi, Chiba 277-8583 (Japan); Ellison, Sara L. [Department of Physics and Astronomy, University of Victoria, Finnerty Road, Victoria, British Columbia, V8P 1A1 (Canada); Mendel, J. Trevor [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching (Germany); Patton, David R., E-mail: ekhabibo@caltech.edu [Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8 (Canada)

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  14. Database of emission lines

    Science.gov (United States)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  15. Correlations in Relaxed Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Babyk Iu.

    2014-03-01

    Full Text Available The correlations among different quantities in galaxy clusters, observed by Newman et al. (2013a,b, are investigated. We find an anti-correlation among the slope α, the effective radius, Re, and a correlation among the core radius rcore and Re. Moreover, the mass inside 100 kpc (mainly dark matter is correlated with the mass inside 5 kpc (mainly baryons. The listed correlations can be understood in a two phase formation model: the first dissipative phase forming the brightest cluster galaxies, and the second dissipationless phase, in which the inner density profile is flattened by the interaction of baryonic clumps and the dark matter halo through dynamical friction.

  16. Flocculent and grand design spiral arm structure in cluster galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1982-01-01

    A total of 829 spiral galaxies in 22 clusters having redshifts between z = 0.02 and 0.06 were classified according to the appearance of their spiral arm structures. The fraction of galaxies that have a grand design spiral structure was found to be higher among barred galaxies than among non-barred galaxies (at z = 0.02, 95 per cent of strongly barred galaxies have a grand design, compared with 67 per cent of non-barred or weakly barred galaxies). Cluster galaxies and distant non-cluster galaxies have the same fraction of grand design galaxies when resolution effects are considered. The grand design fraction among cluster galaxies is also similar to the fraction observed among nearby galaxies in binary systems and in groups. (author)

  17. Velocity dispersion profiles of clusters of galaxies

    International Nuclear Information System (INIS)

    Struble, M.F.

    1979-01-01

    Velocity dispersion as a function of radius, called sigma/sub ls/ profiles, is presented for 13 clusters of galaxies having > or =30 radial velocities from both published and unpublished lists. A list of probable new members and possible outlying members for these clusters is also given. chi 2 and Kolmogoroff--Smirnoff one-sample tests for the goodness of fit of power laws to portions of the profiles indicate two significant structures in some profiles: (1) a local minimum corresponding to the local minimum noted in surface density or surface brightness profiles, and (2) a decrease in sigma/sub ls/ toward the cores. Both of these features are discussed in terms of a comparison with Wielen's N-body simulations. The sigma/sub ls/ profiles are placed in a new classification scheme which lends itself to interpreting clusters in a dynamical age sequence. The velocity field of galaxies at large distances from cluster centers is also discussed

  18. Probing dark energy via galaxy cluster outskirts

    Science.gov (United States)

    Morandi, Andrea; Sun, Ming

    2016-04-01

    We present a Bayesian approach to combine Planck data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters (0.056 definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

  19. OPTICAL LINE EMISSION IN BRIGHTEST CLUSTER GALAXIES AT 0 < z < 0.6: EVIDENCE FOR A LACK OF STRONG COOL CORES 3.5 Gyr AGO?

    International Nuclear Information System (INIS)

    McDonald, Michael

    2011-01-01

    In recent years the number of known galaxy clusters beyond z ∼> 0.2 has increased drastically with the release of multiple catalogs containing >30,000 optically detected galaxy clusters over the range 0 0.3, hinting at an earlier epoch of strong cooling. We compare the evolution of emission-line nebulae to the X-ray-derived cool core (CC) fraction from the literature over the same redshift range and find overall agreement, with the exception that an upturn in the strong CC fraction is not observed at z > 0.3. The overall agreement between the evolution of CCs and optical line emission at low redshift suggests that emission-line surveys of galaxy clusters may provide an efficient method of indirectly probing the evolution of CCs and thus provide insights into the balance of heating and cooling processes at early cosmic times.

  20. The Evolution of Galaxies in Cluster Environment; HI Perspective

    NARCIS (Netherlands)

    Fujita, A.; van Gorkom, J.; van Kampen, E.

    1999-01-01

    We investigate the degree to which the environment affects the evolution of galaxies in clusters. One way is to study the fate of gas in cluster galaxies by deep HI synthesis imaging. We are interested in the correlation between HI deficiency of galaxies and the dynamical states of clusters/the

  1. Do satellite galaxies trace matter in galaxy clusters?

    Science.gov (United States)

    Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas

    2018-04-01

    The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).

  2. SPATIALLY RESOLVED SPECTROSCOPY AND CHEMICAL HISTORY OF STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: THE EFFECTS OF THE ENVIRONMENT

    International Nuclear Information System (INIS)

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J.; Cedres, B.; Papaderos, P.; Magrini, L.; Reverte, D.

    2011-01-01

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep Hα survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxies using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be 'newcomers' to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the local

  3. Radio halo sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.

    1986-01-01

    Radio halo sources remain one of the most enigmatic of all phenomena related to radio emission from galaxies in clusters. The morphology, extent, and spectral structure of these sources are not well known, and the models proposed to explain them suffer from this lack of observational detail. However, recent observations suggest that radio halo sources may be a composite of relic radio galaxies. The validity of this model could be tested using current and planned high resolutions, low-frequency radio telescopes. 31 references

  4. VLA Discovers Giant Rings Around Galaxy Cluster

    Science.gov (United States)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  5. X-ray clusters of galaxies

    International Nuclear Information System (INIS)

    McKee, J.D.

    1980-01-01

    This work is in three chapters, of which the first is an introduction to clusters of galaxies. The second chapter describes the HEAO A-2 Survey of Abell Clusters. The 225 clusters of galaxies listed in Abell's (1958) catalog which are of distance class four or less, were surveyed for 2 to 10 keV x-ray emission. Thirty-two identifications of x-ray sources with the clusters were made, fluxes and error boxes were determined for these sources; twelve of the identifications are new. The x-ray luminosity function has been derived and analytical fits have been made, the best fit is f(L) = 26.9 x 10 -8 exp( - L 44 /1.7) per Mpc per 10 44 erg s -1 per 2 to 10 keV band pass. The relationship between x-ray luminosity, Bautz-Morgan type, Rood-Sastry type, and richness has also been examined. The contribution of clusters to the x-ray background has been calculated from the luminosity function and has been found to be 3.5%, and with 90% certainty, less than 8% in the 2 to 10 keV band pass, assuming that clusters were not brighter in the past than they are at present. If they were bright enough in the past to account for the x-ray background, the evolution must have scaled more rapidly than (1 + z) 7 if clusters formed at z = 3, or (1 + z) 5 if clusters formed at z = 10. Chapter Three examines x-ray emission from poor clusters of galaxies. Burns and Owens' (1979) sample of 25 4C radio sources which coincide with Zwicky clusters of galaxies has been searched for x-ray emission in the HEAO A-2 data base. X-ray emission was detected from five sources at the 3sigma level, two exceeded 5 sigma. The search for x-ray emission was prompted by the knowledge of the existence of distorted radio sources in the clusters. The distortion implies the presence of a relatively dense intracluster medium which is expected to produce thermal bremsstrahlung x-ray emission

  6. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Wen, Z. L.; Han, J. L.

    2011-01-01

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 ∼ + - m 3.6 μ m colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z f ≥ 2 and evolved passively. The g' - z' and B - m 3.6μm colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z f ∼ 2, indicating star formation in high-redshift BCGs.

  7. State-of-the-art multi-wavelength observations of nearby brightest group/cluster galaxies

    Science.gov (United States)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie

    2018-01-01

    Nearby galaxy groups and clusters are crucial to our understanding of the impact of nuclear outbursts on the intracluster medium as their proximity allows us to study in detail the processes of feedback from active galactic nuclei in these systems. In this talk, I will present state-of-the-art multi-wavelength observations signatures of this mechanism.I will first show results on multi-configuration 230-470 MHz observations of the Perseus cluster from the Karl G. Jansky Very Large Array, probing the non-thermal emission from the old particle population of the AGN outflows. These observations reveal a multitude of new structures associated with the “mini-halo” and illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies.Second, I will present new observations with the optical imaging Fourier transform spectrometer SITELLE (CFHT) of NGC 1275, the Perseus cluster's brightest galaxy. With its wide field of view, it is the only integral field unit spectroscopy instrument able to cover the large emission-line filamentary nebula in NGC 1275. I will present the first detailed velocity map of this nebula in its entirety and tackle the question of its origin (residual cooling flow or dragged gas).Finally, I will present deep Chandra observations of the nearby early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. Enhanced X-ray rims around the radio lobes are detected and interpreted as gas uplifted from the core by the buoyant rise of the radio bubbles. We estimate the energy required to lift the gas to constitute a significant fraction of the total outburst energy.I will thus show how these high-fidelity observations of nearby brightest group/cluster galaxies are improving our understanding of the AGN feedback mechanism taking place in galaxy groups and clusters.

  8. The Stormy Life of Galaxy Clusters

    Science.gov (United States)

    Rudnick, Lawrence

    2018-01-01

    Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.

  9. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of ...

  10. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  11. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  12. Galaxy clustering: a point process

    OpenAIRE

    Hurtado Gil, Lluis

    2016-01-01

    El 'clustering' de galàxies és l'agregació de galàxies en l'universe produida per la força de la gravetat. Les galàxies tendeixen a formar estructures de major tamany tal com 'clusters' o filaments que formen la xarxa còsmica ('Cosmic Web'). Aquesta Estructura a Gran Escala de l'Univers es pot entendre com el resultat de la distribució de galàxies, un procés en el qual totes les galàxies estan subjectes a forces comuns i comparteixen propietats universals. L'anàlisis d'aquesta distribució es ...

  13. Modelling baryonic effects on galaxy cluster mass profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  14. Modelling Baryonic Effects on Galaxy Cluster Mass Profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-03-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  15. BRIGHTEST CLUSTER GALAXIES AT THE PRESENT EPOCH

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Tod R. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Postman, Marc [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Strauss, Michael A.; Graves, Genevieve J.; Chisari, Nora E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-12-20

    We have obtained photometry and spectroscopy of 433 z ≤ 0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters to construct a BCG sample suitable for probing deviations from the local Hubble flow. The BCG Hubble diagram over 0 < z < 0.08 is consistent to within 2% of the Hubble relation specified by a Ω {sub m} = 0.3, Λ = 0.7 cosmology. This sample allows us to explore the structural and photometric properties of BCGs at the present epoch, their location in their hosting galaxy clusters, and the effects of the cluster environment on their structure and evolution. We revisit the L{sub m} -α relation for BCGs, which uses α, the log-slope of the BCG photometric curve of growth, to predict the metric luminosity in an aperture with 14.3 kpc radius, L{sub m} , for use as a distance indicator. Residuals in the relation are 0.27 mag rms. We measure central stellar velocity dispersions, σ, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A three-parameter ''metric plane'' relation using α and σ together gives the best prediction of L{sub m} , with 0.21 mag residuals. The distribution of projected spatial offsets, r{sub x} of BCGs from the X-ray-defined cluster center is a steep γ = –2.33 power law over 1 < r{sub x} < 10{sup 3} kpc. The median offset is ∼10 kpc, but ∼15% of the BCGs have r{sub x} > 100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |ΔV {sub 1}|/σ {sub c} follows an exponential distribution with scale length 0.39 ± 0.03. Both L{sub m} and α increase with σ {sub c}. The α parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger α correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on L{sub m} . Likewise, residuals from

  16. BRIGHTEST CLUSTER GALAXIES AND CORE GAS DENSITY IN REXCESS CLUSTERS

    International Nuclear Information System (INIS)

    Haarsma, Deborah B.; Leisman, Luke; Donahue, Megan; Bruch, Seth; Voit, G. Mark; Boehringer, Hans; Pratt, Gabriel W.; Pierini, Daniele; Croston, Judith H.; Arnaud, Monique

    2010-01-01

    We investigate the relationship between brightest cluster galaxies (BCGs) and their host clusters using a sample of nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey. The sample was imaged with the Southern Observatory for Astrophysical Research in R band to investigate the mass of the old stellar population. Using a metric radius of 12 h -1 kpc, we found that the BCG luminosity depends weakly on overall cluster mass as L BCG ∝ M 0.18±0.07 cl , consistent with previous work. We found that 90% of the BCGs are located within 0.035 r 500 of the peak of the X-ray emission, including all of the cool core (CC) clusters. We also found an unexpected correlation between the BCG metric luminosity and the core gas density for non-cool-core (non-CC) clusters, following a power law of n e ∝ L 2.7±0.4 BCG (where n e is measured at 0.008 r 500 ). The correlation is not easily explained by star formation (which is weak in non-CC clusters) or overall cluster mass (which is not correlated with core gas density). The trend persists even when the BCG is not located near the peak of the X-ray emission, so proximity is not necessary. We suggest that, for non-CC clusters, this correlation implies that the same process that sets the central entropy of the cluster gas also determines the central stellar density of the BCG, and that this underlying physical process is likely to be mergers.

  17. Coma cluster ultradiffuse galaxies are not standard radio galaxies

    Science.gov (United States)

    Struble, Mitchell F.

    2018-02-01

    Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.

  18. Neutrino dark matter in clusters of galaxies

    International Nuclear Information System (INIS)

    Treumann, R.A.

    2000-01-01

    We present a model calculation for the radial matter density and mass distribution in two clusters of galaxies (Coma and A119) including cold dark matter, massive though light (approx. 2 eV) neutrino dark matter and collisional intra-cluster gas which emits x-ray radiation. The calculation uses an extension of the Lynden-Bell statistics to the choice of constant masses instead of constant volume. This allows proper inclusion of mixtures of particles of various masses in the gravitational interaction. When it is applied to the matter in the galaxy cluster the radial ROSAT x-ray luminosity profiles can be nicely accounted for. The result is that the statistics identifies the neutrino dark matter in the cluster centre as being degenerate in the sense of Lynden-Bell's spatial degeneracy. This implies that it is distributed in a way different from the classical assumption. The best fits are obtained for the approx. 2 eV neutrinos. The fraction of these and their spatial distribution are of interest for understanding cluster dynamics and may have cosmological implications. (author)

  19. Neutrino dark matter in clusters of galaxies

    International Nuclear Information System (INIS)

    Treumann, R A; Kull, A; Boehringer, H

    2000-01-01

    We present a model calculation for the radial matter density and mass distribution in two clusters of galaxies (Coma and A119) including cold dark matter, massive though light (≅2 eV) neutrino dark matter and collisional intra-cluster gas which emits x-ray radiation. The calculation uses an extension of the Lynden-Bell statistics to the choice of constant masses instead of constant volume. This allows proper inclusion of mixtures of particles of various masses in the gravitational interaction. When it is applied to the matter in the galaxy cluster the radial ROSAT x-ray luminosity profiles can be nicely accounted for. The result is that the statistics identifies the neutrino dark matter in the cluster centre as being degenerate in the sense of Lynden-Bell's spatial degeneracy. This implies that it is distributed in a way different from the classical assumption. The best fits are obtained for the ≅2 eV neutrinos. The fraction of these and their spatial distribution are of interest for understanding cluster dynamics and may have cosmological implications

  20. ROSAT Discovers Unique, Distant Cluster of Galaxies

    Science.gov (United States)

    1995-06-01

    Brightest X-ray Cluster Acts as Strong Gravitational Lens Based on exciting new data obtained with the ROSAT X-ray satellite and a ground-based telescope at the ESO La Silla Observatory, a team of European astronomers [2] has just discovered a very distant cluster of galaxies with unique properties. It emits the strongest X-ray emission of any cluster ever observed by ROSAT and is accompanied by two extraordinarily luminous arcs that represent the gravitationally deflected images of even more distant objects. The combination of these unusual characteristics makes this cluster, now known as RXJ1347.5-1145, a most interesting object for further cosmological studies. DISCOVERY AND FOLLOW-UP OBSERVATIONS This strange cluster of galaxies was discovered during the All Sky Survey with the ROSAT X-ray satellite as a moderately intense X-ray source in the constellation of Virgo. It could not be identified with any already known object and additional ground-based observations were therefore soon after performed with the Max-Planck-Society/ESO 2.2-metre telescope at the La Silla observatory in Chile. These observations took place within a large--scale redshift survey of X-ray clusters of galaxies detected by the ROSAT All Sky Survey, a so-called ``ESO Key Programme'' led by astronomers from the Max-Planck-Institut fur Extraterrestrische Physik and the Osservatorio Astronomico di Brera. The main aim of this programme is to identify cluster X-ray sources, to determine the distance to the X-ray emitting clusters and to investigate their overall properties. These observations permitted to measure the redshift of the RXJ1347.5-1145 cluster as z = 0.45, i.e. it moves away from us with a velocity (about 106,000 km/sec) equal to about one-third of the velocity of light. This is an effect of the general expansion of the universe and it allows to determine the distance as about 5,000 million light-years (assuming a Hubble constant of 75 km/sec/Mpc). In other words, we see these

  1. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    Science.gov (United States)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  2. Imprint of galaxy formation and evolution on globular cluster properties

    OpenAIRE

    Bekki, Kenji

    2006-01-01

    We discuss the origin of physical properties of globular cluster systems (GCSs) in galaxies in terms of galaxy formation and evolution processes. Based on numerical simulations of dynamical evolution of GCSs in galaxies, we particularly discuss (1) the origin of radial density profiles of GCSs, (2) kinematics of GCSs in elliptical galaxies, (3) transformation from nucleated dwarf galaxies into GCs (e.g., omega Centauri), and (4) the origin of GCSs in the Large Magellanic Cloud (LMC).

  3. On the distortion of properties of galaxy cluster

    International Nuclear Information System (INIS)

    Fesenko, B.I.

    1979-01-01

    The supposition is substantiated that most of Abell clusters with population of 50 and more members are false clusters. Some of them may contain, as peculiar nuclei, the real clusters with the number of members from ten to 25 within the range of apparent magnitudes from m 3 to m 3 +2, where m 3 is an apparent magnitude of the galaxy which is third in brightness. The rest members of false clusters are galaxies of front and rare backgrounds. The algorithm for galaxy cluster discrimination used by Abell is shown to promote selection of the real clusters with rho < approximately 25 in which region the number of the background galaxies is considerably increased as compared to other regions of the sky. A systematic and substantial underestimation of the role of such galaxies destorts the results of the cluster structures and dynamics analysis. False clusters are surprisingly well camouflaged as real clusters: when passing to more faint galaxies, the number of the seeming members grows faster than in the ambient field; the difference in angular diameters of false clusters distinctly reflects the difference in average distances of these galaxies; dispersion in velocity of false cluster members comparatively slightly depends on the average distance to an observer, and absolute magnitudes of the brightnesses of galaxies have small dispersion, as in real clusters

  4. Nonthermal emission from clusters of galaxies

    International Nuclear Information System (INIS)

    Kushnir, Doron; Waxman, Eli

    2009-01-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M ∼> 10 14.5 M ☉ , galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, β core and η e . β core is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and η e(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that β core ≅ η p /200, nearly independent of cluster mass and with a scatter Δln β core ≅ 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors ≅ 500(η e /η p )(T/10 keV) −1/2 and ≅ 150(η e /η p )(T/10 keV) −1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (∼> 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for η p ∼ η e ∼ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in

  5. Nonthermal emission from clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, Doron; Waxman, Eli, E-mail: doron.kushnir@weizmann.ac.il, E-mail: eli.waxman@weizmann.ac.il [Physics Faculty, Weizmann Institute of Science, PO Box 26, Rehovot (Israel)

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M ∼> 10{sup 14.5}M{sub ☉}, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, β{sub core} and η{sub e}. β{sub core} is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and η{sub e(p)} is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that β{sub core} ≅ η{sub p}/200, nearly independent of cluster mass and with a scatter Δln β{sub core} ≅ 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors ≅ 500(η{sub e}/η{sub p})(T/10 keV){sup −1/2} and ≅ 150(η{sub e}/η{sub p})(T/10 keV){sup −1/2} respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (∼> 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for η{sub p} ∼ η{sub e} ∼ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular

  6. Nonthermal emission from clusters of galaxies

    Science.gov (United States)

    Kushnir, Doron; Waxman, Eli

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M gtrsim 1014.5Msun, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, βcore and ηe. βcore is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and ηe(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that βcore simeq ηp/200, nearly independent of cluster mass and with a scatter Δln βcore simeq 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors simeq 500(ηe/ηp)(T/10 keV)-1/2 and simeq 150(ηe/ηp)(T/10 keV)-1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (gtrsim 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for ηp ~ ηe ~ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in γ-rays. Finally, we show

  7. Galaxy Clusters as Tele-ALP-scopes

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Axion-like particles have good theoretical motivation and are characterized by conversion to photons in astrophysical magnetic fields. Galaxy clusters are the most efficient convertors of axion-like particles to photons in the universe. I discuss the physics and phenomenology of ALPs, and describe their astrophysical implications, with particular reference to the recently observed 3.5 keV X-ray line that is a candidate for a dark matter decay line. I discuss interpretations of this line in terms of dark matter decaying to an axion-like particle, that then converts to a photon in cluster magnetic fields, and describe the compatibility of this scenario with data and the different phenomenology for cool-core and non-cool-core clusters.

  8. Minimal spanning trees, filaments and galaxy clustering

    International Nuclear Information System (INIS)

    Barrow, J.D.; Sonoda, D.H.

    1985-01-01

    A graph theoretical technique for assessing intrinsic patterns in point data sets is described. A unique construction, the minimal spanning tree, can be associated with any point data set given all the inter-point separations. This construction enables the skeletal pattern of galaxy clustering to be singled out in quantitative fashion and differs from other statistics applied to these data sets. This technique is described and applied to two- and three-dimensional distributions of galaxies and also to comparable random samples and numerical simulations. The observed CfA and Zwicky data exhibit characteristic distributions of edge-lengths in their minimal spanning trees which are distinct from those found in random samples. (author)

  9. ACTIVE GALACTIC NUCLEI IN GROUPS AND CLUSTERS OF GALAXIES: DETECTION AND HOST MORPHOLOGY

    International Nuclear Information System (INIS)

    Arnold, Timothy J.; Martini, Paul; Mulchaey, John S.; Berti, Angela; Jeltema, Tesla E.

    2009-01-01

    The incidence and properties of active galactic nuclei (AGNs) in the field, groups, and clusters can provide new information about how these objects are triggered and fueled, similar to how these environments have been employed to study galaxy evolution. We have obtained new XMM-Newton observations of seven X-ray selected groups and poor clusters with 0.02 -1 ). We find that the X-ray selected AGN fraction increases from f A (L X ≥ 10 41 ; M R ≤ M* R + 1) = 0.047 +0.023 -0.016 in clusters to 0.091 +0.049 -0.034 for the groups (85% significance), or a factor of 2, for AGN above an 0.3-8 keV X-ray luminosity of 10 41 ergs -1 hosted by galaxies more luminous than M* R + 1. The trend is similar, although less significant, for a lower-luminosity host threshold of M R = -20 mag. For many of the groups in the sample, we have also identified AGN via standard emission-line diagnostics and find that these AGNs are nearly disjoint from the X-ray selected AGN. Because there are substantial differences in the morphological mix of galaxies between groups and clusters, we have also measured the AGN fraction for early-type galaxies alone to determine if the differences are directly due to environment, or indirectly due to the change in the morphological mix. We find that the AGN fraction in early-type galaxies is also lower in clusters f A,n≥2.5 (L X ≥ 10 41 ; M R ≤ M* R + 1) = 0.048 +0.028 -0.019 compared to 0.119 +0.064 -0.044 for the groups (92% significance), a result consistent with the hypothesis that the change in AGN fraction is directly connected to environment.

  10. Weak lensing galaxy cluster field reconstruction

    Science.gov (United States)

    Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.

    2014-02-01

    In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

  11. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  12. Statistical Issues in Galaxy Cluster Cosmology

    Science.gov (United States)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  13. Galaxy clustering and small-scale CBR anisotropy constraints on galaxy origin scenarios

    International Nuclear Information System (INIS)

    Lucchin, F.

    1986-01-01

    The problem of the origin of cosmic structures (galaxies, galaxy clusters,......) represents the crossroads of the modern cosmology: it is correlated both with the theoretical model of the very early universe and with most of the present observational data. In this context, galaxy origin scenarios are reviewed. The cosmological relevance of the observed clustering properties of the universe is outlined. The observational constraints, due to small-scale cosmic background radiation (CBR) anisotropies, on galaxy origin scenarios are discussed. (author)

  14. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  15. Dark matter phenomenology of high-speed galaxy cluster collisions

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    2017-01-01

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 "c"i"r"c"l"e. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  16. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Tinker, Jeremy L.; Blanton, Michael R.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ 8 ) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w p (r p ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w p (r p ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w p (r p ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ 8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w p (r p ) and M/N alone, we find Ω 0.5 m σ 8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ 8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ 8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  17. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Tinker, Jeremy L.; Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10013 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Becker, Matthew R.; Rozo, Eduardo [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Zu, Ying; Weinberg, David H. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Zehavi, Idit [Department of Astronomy and CERCA, Case Western Reserve University, Cleveland, OH 44106 (United States); Busha, Michael T. [Institute for Theoretical Physics, Department of Physics, University of Zurich, CH-8057 Zurich (Switzerland); Koester, Benjamin P. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 6037 (United States)

    2012-01-20

    We place constraints on the average density ({Omega}{sub m}) and clustering amplitude ({sigma}{sub 8}) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w{sub p} (r{sub p} ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w{sub p} (r{sub p} ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w{sub p} (r{sub p} ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when {Omega}{sub m} or {sigma}{sub 8} is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w{sub p} (r{sub p} ) and M/N alone, we find {Omega}{sup 0.5}{sub m}{sigma}{sub 8} = 0.465 {+-} 0.026, with individual constraints of {Omega}{sub m} = 0.29 {+-} 0.03 and {sigma}{sub 8} = 0.85 {+-} 0.06. Combined with current cosmic microwave background data, these constraints are {Omega}{sub m} = 0.290 {+-} 0.016 and {sigma}{sub 8} = 0.826 {+-} 0.020. All errors are 1{sigma}. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy

  18. The correlation functions for the clustering of galaxies and Abell clusters

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Jones, J.E.; Copenhagen Univ.

    1985-01-01

    The difference in amplitudes between the galaxy-galaxy correlation function and the correlation function between Abell clusters is a consequence of two facts. Firstly, most Abell clusters with z<0.08 lie in a relatively small volume of the sampled space, and secondly, the fraction of galaxies lying in Abell clusters differs considerably inside and outside of this volume. (The Abell clusters are confined to a smaller volume of space than are the galaxies.) We discuss the implications of this interpretation of the clustering correlation functions and present a simple model showing how such a situation may arise quite naturally in standard theories for galaxy formation. (orig.)

  19. SPECTROSCOPIC CONFIRMATION OF A z = 6.740 GALAXY BEHIND THE BULLET CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Bradac, Marusa; Hall, Nicholas [Department of Physics, University of California, Davis, CA 95616 (United States); Vanzella, Eros [INAF, Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131 Trieste (Italy); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Fontana, Adriano [INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio (Italy); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Clowe, Douglas [Department of Physics and Astronomy, Ohio University, Clippinger Labs 251B, Athens, OH 45701 (United States); Zaritsky, Dennis; Clement, Benjamin [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Stiavelli, Massimo, E-mail: marusa@physics.ucdavis.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-08-10

    We present the first results of our spectroscopic follow-up of 6.5 < z < 10 candidate galaxies behind clusters of galaxies. We report the spectroscopic confirmation of an intrinsically faint Lyman break galaxy (LBG) identified as a z{sub 850LP}-band dropout behind the Bullet Cluster. We detect an emission line at {lambda} = 9412 A at >5{sigma} significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Ly{alpha} at z = 6.740 {+-} 0.003. The integrated line flux is f = (0.7 {+-} 0.1 {+-} 0.3) Multiplication-Sign 10{sup -17} erg{sup -1} s{sup -1} cm{sup -2} (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Ly{alpha} flux detected at these redshifts. Given the magnification of {mu} = 3.0 {+-} 0.2 the intrinsic (corrected for lensing) flux is f {sup int} = (0.23 {+-} 0.03 {+-} 0.10 {+-} 0.02) Multiplication-Sign 10{sup -17} erg{sup -1} s{sup -1} cm{sup -2} (additional uncertainty due to magnification), which is {approx}2-3 times fainter than other such measurements in z {approx} 7 galaxies. The intrinsic H{sub 160W}-band magnitude of the object is m{sup int}{sub H{sub 1{sub 6{sub 0{sub W}}}}}=27.57{+-}0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe.

  20. INDIVIDUAL AND GROUP GALAXIES IN CNOC1 CLUSTERS

    International Nuclear Information System (INIS)

    Li, I. H.; Yee, H. K. C.; Ellingson, E.

    2009-01-01

    Using wide-field BVR c I imaging for a sample of 16 intermediate redshift (0.17 red ) to infer the evolutionary status of galaxies in clusters, using both individual galaxies and galaxies in groups. We apply the local galaxy density, Σ 5 , derived using the fifth nearest neighbor distance, as a measure of local environment, and the cluster-centric radius, r CL , as a proxy for global cluster environment. Our cluster sample exhibits a Butcher-Oemler effect in both luminosity-selected and stellar-mass-selected samples. We find that f red depends strongly on Σ 5 and r CL , and the Butcher-Oemler effect is observed in all Σ 5 and r CL bins. However, when the cluster galaxies are separated into r CL bins, or into group and nongroup subsamples, the dependence on local galaxy density becomes much weaker. This suggests that the properties of the dark matter halo in which the galaxy resides have a dominant effect on its galaxy population and evolutionary history. We find that our data are consistent with the scenario that cluster galaxies situated in successively richer groups (i.e., more massive dark matter halos) reach a high f red value at earlier redshifts. Associated with this, we observe a clear signature of 'preprocessing', in which cluster galaxies belonging to moderately massive infalling galaxy groups show a much stronger evolution in f red than those classified as nongroup galaxies, especially at the outskirts of the cluster. This result suggests that galaxies in groups infalling into clusters are significant contributors to the Butcher-Oemler effect.

  1. DETECTION OF OUTFLOWING AND EXTRAPLANAR GAS IN DISKS IN AN ASSEMBLING GALAXY CLUSTER AT z = 0.37

    International Nuclear Information System (INIS)

    Freeland, Emily; Tran, Kim-Vy H.; Irwin, Trevor; Giordano, Lea; Saintonge, Amélie; Gonzalez, Anthony H.; Zaritsky, Dennis; Just, Dennis

    2011-01-01

    We detect ionized gas characteristics indicative of winds in three disk-dominated galaxies that are members of a super-group at z = 0.37 that will merge to form a Coma-mass cluster. All three galaxies are IR luminous (L IR > 4 × 10 10 L ☉ , SFR > 8 M ☉ yr –1 ) and lie outside the X-ray cores of the galaxy groups. We find that the most IR-luminous galaxy has strong blueshifted and redshifted emission lines with velocities of ∼ ± 200 km s –1 and a third, blueshifted (∼900 km s –1 ) component. This galaxy's line widths (Hβ, [O III]λ5007, [N II], Hα) correspond to velocities of 100-1000 km s –1 . We detect extraplanar gas in two of the three galaxies with SFR >8 M ☉ yr –1 whose orientations are approximately edge-on and which have integral field unit (IFU) spaxels off the stellar disk. IFU maps reveal that the extraplanar gas extends to r h ∼ 10 kpc; [N II] and Hα line widths correspond to velocities of ∼200-400 km s –1 in the disk and decrease to ∼50-150 km s –1 above the disk. Multi-wavelength observations indicate that the emission is dominated by star formation. Including the most IR-luminous galaxy we find that 18% of supergroup members with SFR >8 M ☉ yr –1 show ionized gas characteristics indicative of outflows. This is a lower limit as showing that gas is outflowing in the remaining, moderately inclined, galaxies requires a non-trivial decoupling of contributions to the emission lines from rotational and turbulent motion. Ionized gas mass loss in these winds is ∼0.1 M ☉ yr –1 for each galaxy, although the winds are likely to entrain significantly larger amounts of mass in neutral and molecular gases.

  2. Clusters of galaxies associated with quasars. I. 3C 206

    International Nuclear Information System (INIS)

    Ellingson, E.; Yee, H.K.C.; Green, R.F.; Kinman, T.D.

    1989-01-01

    Multislit spectroscopy and three-color CCD photometry of the galaxies in the cluster associated with the quasar 3C 206 (PKS 0837-12) at z = 0.198 are presented. This cluster is the richest environment of any low-redshift quasar observed in an Abell richness class 1 cluster. The cluster has a very flattened structure and a very concentrated core about the quasar. Most of the galaxies in this field have colors and luminosities consistent with normal galaxies at this redshift. The background-corrected blue fraction of galaxies is consistent with values for other rich clusters. The existence of several blue galaxies in the concentrated cluster core is an anomaly for a region of such high galaxy density, however, suggesting the absence of a substantial intracluster medium. This claim is supported by the Fanaroff-Riley (1974) class II morphology of the radio source. The velocity dispersion calculated from 11 spectroscopically confirmed cluster members is 500 + or - 110 km/s, which is slightly lower than the average for Abell class 1 clusters. A high frequency of interaction between the quasar host galaxy and cluster core members at low relative velocities, and a low intracluster gas pressure, may comprise a favorable environment for quasar activity. The properties of the cluster of galaxies associated with 3C 206 are consistent with this model. 59 refs

  3. Dynamics of rich clusters of galaxies. I. The Coma cluster

    International Nuclear Information System (INIS)

    Kent, S.M.; Gunn, J.E.

    1982-01-01

    The structure and dynamics of the Coma cluster are analyzed using self-consistent equilibrium dynamical models. Observational material for Coma is culled from a variety of sources. Projected surface, density, and velocity-dispersion profiles are derived extending out to a radius of 3 0 from the cluster center, which are essentially free from field contamination. Segregation of galaxies by luminosity and morphology are discussed and a quantitative estimate of the latter is made. The method of constructing self-consistent dynamical models is discussed. Four different forms of the distribution function are analyzed allowing for different possible dependences of f on energy and angular momentum. Properties of typical models that might resemble actual clusters are presented, and the importance of having velocity-dispersion information is empha sized. The effect of a central massive object such as a cD galaxy on the core structure is illustrated. A comparison of these models with Coma reveals that only models with a distribution function in which the ratio of tangential to radial velocity dispersions is everywhere constant give acceptable fits. In particular, it is possible to rule out models that have isotropic motions in the core and predominantly radial motions in the halo. For H 0 = 50, the best-fitting models give a total projected mass inside 3 0 of 2.9 x 10 15 M/sub sun/ , a core radius of 340--400 kpc (8.5'--10'), an upper limit to any central massive object of approx.10 13 M/sub sun/ , and a mass-to-blue-light ratio of M/L = 181. From cosmological considerations the cluster ''edge'' is determined to lie at rapprox.5 0 --6 0 . The possible distribution of ''dark matter'' in Coma is discussed and it is argued that this distribution cannot be significantly different from that of the galaxies. The dynamics of morphological segregation are examined quantitatively, and are explained at least qualitatively

  4. Galaxy Clustering in Early SDSS Redshift Data

    CERN Document Server

    Zehavi, I.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Anderson, Scott F.; Strauss, Michael A.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson,Scott; Doi,Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezic, Zeljko; Kent,Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald; French Leger, R.; Long, Daniel C.; Loveday, Jon.; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell,Patrick; Yanny, Brian; York, Donald G.; Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.

    2002-01-01

    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \\xi(r_p,\\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \\xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \\sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the...

  5. Detection of CO emission in Hydra 1 cluster galaxies

    International Nuclear Information System (INIS)

    Huchtmeier, W.K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies

  6. Dust Evolution in Galaxy Cluster Simulations

    Science.gov (United States)

    Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano

    2018-06-01

    We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).

  7. Cosmological aspects and properties evolution of galaxy clusters

    International Nuclear Information System (INIS)

    Majerowicz, Sebastien

    2003-01-01

    In the standard scenario for galaxy cluster formation, galaxy clusters form by material accretion and violent merger events. Between two merger events, galaxy cluster components which are the dark matter (75 %), the intra-cluster medium (20 %) and the galaxies (5 %), reach for equilibrium. The intra-cluster medium is the main baryonic component. This is a hot optically thin gas and its temperature tells something about the gravitational potential well. This well is essentially the consequence of the dark matter distribution. The intra-cluster medium is so hot than its emission produces only x-ray photons. We studied the properties of the intra-cluster medium for some clusters by using the observations coming from the european satellite XMM-NEWTON [fr

  8. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Skielboe, Andreas; Wojtak, Radosław; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-01-01

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  9. Holes in the distribution of rich clusters of galaxies

    International Nuclear Information System (INIS)

    Burns, J.O.

    1988-01-01

    The properties of voids in the distribution of Abell clusters of galaxies are described. Cluster voids, such as that in Bootes, serve as markers of large candidate voids of galaxies. The advantages and disadvantages of using rich clusters as tracers of large-scale structures are reviewed. One new 40/h Mpc diameter void of galaxies and clusters in Pisces-Cetus is described in detail. It is found that numerical simulations of models with Gaussian initial conditions do not reproduce the void or filament structures observed within the Abell cluster catalog. The implications of this discrepancy for future observations and models are discussed. 26 references

  10. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Yan, Peng-Fei; Li, Feng; Yuan, Qi-Rong

    2015-01-01

    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r 200 , 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  11. Cosmology with EMSS Clusters of Galaxies

    Science.gov (United States)

    Donahue, Megan; Voit, G. Mark

    1999-01-01

    We use ASCA observations of the Extended Medium Sensitivity Survey sample of clusters of galaxies to construct the first z = 0.5 - 0.8 cluster temperature function. This distant cluster temperature function, when compared to local z approximately 0 and to a similar moderate redshift (z = 0.3 - 0.4) temperature function strongly constrains the matter density of the universe. Best fits to the distributions of temperatures and redshifts of these cluster samples results in Omega(sub M) = 0.45 +/- 0.1 if Lambda = 0 and Omega = 0.27 +/- 0.1 if Lambda + Omega(sub M) = 1. The uncertainties are 1sigma statistical. We examine the systematics of our approach and find that systematics, stemming mainly from model assumptions and not measurement errors, are about the same size as the statistical uncertainty +/- 0.1. In this poster proceedings, we clarify the issue of a8 as reported in our paper Donahue & Voit (1999), since this was a matter of discussion at the meeting.

  12. Merging Galaxy Clusters: Analysis of Simulated Analogs

    Science.gov (United States)

    Nguyen, Jayke; Wittman, David; Cornell, Hunter

    2018-01-01

    The nature of dark matter can be better constrained by observing merging galaxy clusters. However, uncertainty in the viewing angle leads to uncertainty in dynamical quantities such as 3-d velocities, 3-d separations, and time since pericenter. The classic timing argument links these quantities via equations of motion, but neglects effects of nonzero impact parameter (i.e. it assumes velocities are parallel to the separation vector), dynamical friction, substructure, and larger-scale environment. We present a new approach using n-body cosmological simulations that naturally incorporate these effects. By uniformly sampling viewing angles about simulated cluster analogs, we see projected merger parameters in the many possible configurations of a given cluster. We select comparable simulated analogs and evaluate the likelihood of particular merger parameters as a function of viewing angle. We present viewing angle constraints for a sample of observed mergers including the Bullet cluster and El Gordo, and show that the separation vectors are closer to the plane of the sky than previously reported.

  13. The Centaurus cluster of galaxies. I. The data

    International Nuclear Information System (INIS)

    Dickens, R.J.; Currie, M.J.; Lucey, J.R.

    1985-07-01

    The observations obtained from an extensive study of the Centaurus cluster of galaxies (α = 12sup(h) 47, σ = -41 0 ) are reported and described. An extensive catalogue is presented of galaxies in the region giving positions, magnitudes, morphological types, redshifts and other parameters. The data in the catalogue will be used in subsequent papers which analyse various aspects of the cluster. (author)

  14. Enriched gas in clusters and the dynamics of galaxies and clusters: implications for theories of galaxy formation

    International Nuclear Information System (INIS)

    Binney, J.; Silk, J.

    1978-01-01

    Recent developments in relation to the origin of galaxies are cited: the discovery that the intergalactic medium which seems to pervade rich clusters of galaxies has an iron abundance that lies within an order of magnitude of the solar value; the discovery that elliptical galaxies rotate much more slowly than the models of these galaxies had predicted; and the results of studies of cosmological infall in the context of the formation of galaxies and galaxy clusters, which have shown that the resulting density profile is fairly insensitive to initial conditions. After discussing the implications of these recent observations of X-ray clusters and of the rotation of elliptical galaxies, an attempt is made to construct a picture of the formation of elliptical and spiral galaxies in which galaxies form continuously from redshift z approximately 100 onwards. It is suggested that at a redshift z of roughly 5, a fundamental change occurred in the manner in which the cosmic material fragmented into stellar objects. It seems possible that explanations of a variety of puzzling aspects of galactic evolution, including the formation of Population I disks, the origin of the hot intracluster gas, the mass-to-light ratio stratification of galaxies, and the nature of the galaxy luminosity function, should all be sought in the context of this change of regime. Some remarks are made about gas in poor groups of galaxies and the interaction of disk galaxies with their environments. (U.K.)

  15. Observations and Modeling of Merging Galaxy Clusters

    Science.gov (United States)

    Golovich, Nathan Ryan

    Context: Galaxy clusters grow hierarchically with continuous accretion bookended by major merging events that release immense gravitational potential energy (as much as ˜1065 erg). This energy creates an environment for rich astrophysics. Precise measurements of the dark matter halo, intracluster medium, and galaxy population have resulted in a number of important results including dark matter constraints and explanations of the generation of cosmic rays. However, since the timescale of major mergers (˜several Gyr) relegates observations of individual systems to mere snapshots, these results are difficult to understand under a consistent dynamical framework. While computationally expensive simulations are vital in this regard, the vastness of parameter space has necessitated simulations of idealized mergers that are unlikely to capture the full richness. Merger speeds, geometries, and timescales each have a profound consequential effect, but even these simple dynamical properties of the mergers are often poorly understood. A method to identify and constrain the best systems for probing the rich astrophysics of merging clusters is needed. Such a method could then be utilized to prioritize observational follow up and best inform proper exploration of dynamical phase space. Task: In order to identify and model a large number of systems, in this dissertation, we compile an ensemble of major mergers each containing radio relics. We then complete a pan-chromatic study of these 29 systems including wide field optical photometry, targeted optical spectroscopy of member galaxies, radio, and X-ray observations. We use the optical observations to model the galaxy substructure and estimate line of sight motion. In conjunction with the radio and X-ray data, these substructure models helped elucidate the most likely merger scenario for each system and further constrain the dynamical properties of each system. We demonstrate the power of this technique through detailed analyses

  16. Low surface brightness galaxies in the cluster A1367

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1989-01-01

    We have obtained deep CCD frames of apparently blank regions of sky in the hope of detecting very low surface brightness (LSB) objects in the cluster A1367. We discuss our data reduction, and image detection and selection techniques. If the galaxies detected are actually cluster members then they are dwarfs and the conclusions of a previous paper on the Fornax cluster are essentially confirmed. One area of variance is that the lowest surface brightness galaxies do not appear to be preferentially concentrated towards the cluster centre. This can be explained by there being a much larger density of dwarf galaxies over this bright galaxy-rich region of the universe. We find over our small area approximately four times as many LSB galaxies as would be expected from our Fornax data. We speculate on the possible origin and likely intensity of intergalactic light within clusters. (author)

  17. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second part focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments

  18. Secular evolution of galaxies and galaxy clusters in decaying dark matter cosmology

    International Nuclear Information System (INIS)

    Ferrer, Francesc; Nipoti, Carlo; Ettori, Stefano

    2009-01-01

    If the dark matter sector in the Universe is composed by metastable particles, galaxies and galaxy clusters are expected to undergo significant secular evolution from high to low redshift. We show that the decay of dark matter, with a lifetime compatible with cosmological constraints, can be at the origin of the observed evolution of the Tully-Fisher relation of disk galaxies and alleviate the problem of the size evolution of elliptical galaxies, while being consistent with the current observational constraints on the gas fraction of clusters of galaxies.

  19. The effect of the cluster environment on galaxies

    International Nuclear Information System (INIS)

    Whitmore, B.C.

    1990-01-01

    Various observations indicate that the cluster environment can affect the structure and dynamics of galaxies. This review concentrates on the effect the environment can have on three of the most basic properties of a galaxy; the morphological type, the size, and the distribution of mass. A reexamination of the morphology - density relation suggests that the fundamental driver may be related to some global property of the cluster, such as the distance from the cluster center, rather than some local property, such as membership in a local subclump within the cluster. While there is good evidence that the size of a galaxy can be increased (ie.e., cD galaxies) or decreased (i.e., early type galaxies near the centers of clusters) by the cluster environment, it is not clear what physical mechanism is responsible. There is tentative evidence that rotation curves of spiral galaxies near the centers of clusters are falling, perhaps indicating that the dark halo has been stripped off. Rotation curves for spiral galaxies in compact groups are even more bizarre, providing strong evidence that the group environment has affected the kinematics of these galaxies. (author)

  20. Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime: methodology, information, and forecasts

    OpenAIRE

    Wibking, Benjamin D.; Salcedo, Andrés N.; Weinberg, David H.; Garrison, Lehman H.; Ferrer, Douglas; Tinker, Jeremy; Eisenstein, Daniel; Metchnik, Marc; Pinto, Philip

    2017-01-01

    The combination of galaxy-galaxy lensing (GGL) with galaxy clustering is one of the most promising routes to determining the amplitude of matter clustering at low redshifts. We show that extending clustering+GGL analyses from the linear regime down to $\\sim 0.5 \\, h^{-1}$ Mpc scales increases their constraining power considerably, even after marginalizing over a flexible model of non-linear galaxy bias. Using a grid of cosmological N-body simulations, we construct a Taylor-expansion emulator ...

  1. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    Science.gov (United States)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  2. Simulating nonthermal radiation from cluster radio galaxies.

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, I. L. (Ian L.); Jones, T. W. (Thomas Walter); Ryu, Dongsu

    2004-01-01

    We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy (RG) jets. This analysis is based on the first three-dimensional simulations to treat cosmic ray acceleration and transport self-consistently within a magnetohydrodynamical calculation. We use standard observational techniques to calculate both minimum-energy and inverse-Compton field values for our simulated objects. The latter technique provides meaningful information about the field. Minimum-energy calculations retrieve reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also study the reliability of published rotation measure analysis techniques. We find that gradient alignment statistics accurately reflect the physical situation, and can uncover otherwise hidden information about the source. Furthermore, correlations between rotation measure (RM) and position angle (PA) can be significant even when the RM is completely dominated by an external cluster medium.

  3. Most Massive Globular Cluster in Our Galaxy

    Science.gov (United States)

    1994-05-01

    Far down in the southern sky, in the constellation of Centaurus, a diffuse spot of light can be perceived with the unaided eye. It may be unimpressive, but when seen through a telescope, it turns out to be a beautiful, dense cluster of innumerable stars [1]. Omega Centauri, as this object is called, is the brightest of its type in the sky. We refer to it as a "globular cluster", due to its symmetric form. It belongs to our Milky Way galaxy and astrophysical investigations have shown that it is located at a distance of about 16,500 light-years (1 light-year = 9,460,000,000,000 km). Nobody knows for sure how many individual stars it contains, but recent estimates run into the millions. Most of these stars are more than 10,000 million years old and it is generally agreed that Omega Centauri has a similar age. Measurements of its motion indicate that Omega Centauri plows through the Milky Way in an elongated orbit. It is not easy to understand how it has managed to keep its stars together during such an extended period. MEASURING STELLAR VELOCITIES IN OMEGA CENTAURI A group of astronomers [2] have recently carried through a major investigation of Omega Centauri. After many nights of observations at the ESO La Silla observatory, they now conclude that not only is this globular cluster the brightest, it is indeed by far the most massive known in the Milky Way. The very time-consuming observations were made during numerous observing sessions over a period of no less than 13 years (1981-1993), with the photoelectric spectrometer CORAVEL mounted on the 1.5-m Danish telescope at La Silla. The CORAVEL instrument (COrelation RAdial VELocities) was built in a joint effort between the Geneva (Switzerland) and Marseilles (France) observatories. It functions according to the cross-correlation technique, by means of which the spectrum of the observed star is compared with a "standard stellar spectrum" [3]. HOW HEAVY IS OMEGA CENTAURI? In the present study, a total of 1701

  4. The Cosmological Dependence of Galaxy Cluster Morphologies

    Science.gov (United States)

    Crone, Mary Margaret

    1995-01-01

    Measuring the density of the universe has been a fundamental problem in cosmology ever since the "Big Bang" model was developed over sixty years ago. In this simple and successful model, the age and eventual fate of the universe are determined by its density, its rate of expansion, and the value of a universal "cosmological constant". Analytic models suggest that many properties of galaxy clusters are sensitive to cosmological parameters. In this thesis, I use N-body simulations to examine cluster density profiles, abundances, and degree of subclustering to test the feasibility of using them as cosmological tests. The dependence on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k)~ k n. Einstein-deSitter ( Omegao=1), open ( Omegao=0.2 and 0.1) and flat, low density (Omegao=0.2, lambdao=0.8) models are studied, with initial spectral indices n=-2, -1 and 0. Of particular interest are the results for cluster profiles and substructure. The average density profiles are well fit by a power law p(r)~ r ^{-alpha} for radii where the local density contrast is between 100 and 3000. There is a clear trend toward steeper slopes with both increasing n and decreasing Omegao, with profile slopes in the open models consistently higher than Omega=1 values for the range of n examined. The amount of substructure in each model is quantified and explained in terms of cluster merger histories and the behavior of substructure statistics. The statistic which best distinguishes models is a very simple measure of deviations from symmetry in the projected mass distribution --the "Center-of-Mass Shift" as a function of overdensity. Some statistics which are quite sensitive to substructure perform relatively poorly as cosmological indicators. Density profiles and the Center-of-Mass test are both well-suited for comparison with weak lensing data and galaxy distributions. Such data are currently being collected and should

  5. Stellar-to-halo mass relation of cluster galaxies

    International Nuclear Information System (INIS)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo

    2017-01-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.

  6. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-01-01

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 Cluster Survey. We use Wide Field Camera 3 grism data to spectroscopically identify Hα emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M * < 10.0 M ☉ ). We therefore conclude that environmental effects are still important at 1.0 galaxies in galaxy clusters with log M * ≲ 10.0 M ☉ .

  7. An Archival Search For Young Globular Clusters in Galaxies

    Science.gov (United States)

    Whitmore, Brad

    1995-07-01

    One of the most intriguing results from HST has been the discovery of ultraluminous star clusters in interacting and merging galaxies. These clusters have the luminosities, colors, and sizes that would be expected of young globular clusters produced by the interaction. We propose to use the data in the HST Archive to determine how prevalent this phenomena is, and to determine whether similar clusters are produced in other environments. Three samples will be extracted and studied in a systematic and consistent manner: 1} interacting and merging galaxies, 2} starburst galaxies, 3} a control sample of ``normal'' galaxies. A preliminary search of the archives shows that there are at least 20 galaxies in each of these samples, and the number will grow by about 50 observations become available. The data will be used to determine the luminosity function, color histogram , spatial distribution, and structural properties of the clusters using the same techniques employed in our study of NGC 7252 {``Atoms -for-Peace'' galaxy} and NGC 4038/4039 {``The Antennae''}. Our ultimate goals are: 1} to understand how globular clusters form, and 2} to use the clusters as evolutionary tracers to unravel the histories of interacting galaxies.

  8. GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Liyi [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Wen, Zhonglue [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Gandhi, Poshak [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Inada, Naohisa [Department of Physics, Nara National College of Technology, Yamatokohriyama, Nara 639-1080 (Japan); Kawaharada, Madoka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Kodama, Tadayuki [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Konami, Saori [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Nakazawa, Kazuhiro; Makishima, Kazuo [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Xu, Haiguang [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240 (China)

    2016-07-20

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  9. Statistical analysis of the spatial distribution of galaxies and clusters

    International Nuclear Information System (INIS)

    Cappi, Alberto

    1993-01-01

    This thesis deals with the analysis of the distribution of galaxies and clusters, describing some observational problems and statistical results. First chapter gives a theoretical introduction, aiming to describe the framework of the formation of structures, tracing the history of the Universe from the Planck time, t_p = 10"-"4"3 sec and temperature corresponding to 10"1"9 GeV, to the present epoch. The most usual statistical tools and models of the galaxy distribution, with their advantages and limitations, are described in chapter two. A study of the main observed properties of galaxy clustering, together with a detailed statistical analysis of the effects of selecting galaxies according to apparent magnitude or diameter, is reported in chapter three. Chapter four delineates some properties of groups of galaxies, explaining the reasons of discrepant results on group distributions. Chapter five is a study of the distribution of galaxy clusters, with different statistical tools, like correlations, percolation, void probability function and counts in cells; it is found the same scaling-invariant behaviour of galaxies. Chapter six describes our finding that rich galaxy clusters too belong to the fundamental plane of elliptical galaxies, and gives a discussion of its possible implications. Finally chapter seven reviews the possibilities offered by multi-slit and multi-fibre spectrographs, and I present some observational work on nearby and distant galaxy clusters. In particular, I show the opportunities offered by ongoing surveys of galaxies coupled with multi-object fibre spectrographs, focusing on the ESO Key Programme A galaxy redshift survey in the south galactic pole region to which I collaborate and on MEFOS, a multi-fibre instrument with automatic positioning. Published papers related to the work described in this thesis are reported in the last appendix. (author) [fr

  10. The evolution of early-type galaxies in distant clusters

    International Nuclear Information System (INIS)

    Stanford, S.A.; Eisenhardt, P.R.; Dickinson, M.

    1998-01-01

    We present results from an optical-infrared photometric study of early-type (E+S0) galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on the basis of morphologies determined from Hubble Space Telescope (HST) WFPC2 images and is photometrically defined in the K band in order to minimize redshift-dependent selection biases. Using new ground-based photometry in five optical and infrared bands for each cluster, we examine the evolution of the color-magnitude relation for early-type cluster galaxies, considering its slope, intercept, and color scatter around the mean relation. New multiwavelength photometry of galaxies in the Coma Cluster is used to provide a baseline sample at z∼0 with which to compare the distant clusters. The optical - IR colors of the early-type cluster galaxies become bluer with increasing redshift in a manner consistent with the passive evolution of an old stellar population formed at an early cosmic epoch. The degree of color evolution is similar for clusters at similar redshift and does not depend strongly on the optical richness or X-ray luminosity of the cluster, which suggests that the history of early-type galaxies is relatively insensitive to environment, at least above a certain density threshold. The slope of the color-magnitude relationship shows no significant change out to z=0.9, which provides evidence that it arises from a correlation between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in the optical - IR colors of the galaxies is small and nearly constant with redshift, which indicates that the majority of giant, early-type galaxies in clusters share a common star formation history, with little perturbation due to uncorrelated episodes of later star formation. Taken together, our results are consistent with models in which most early-type galaxies in rich clusters are old, formed the majority of their stars at high redshift in a well-synchronized fashion, and evolved quiescently

  11. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-01-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec -2 . Light profiles were initially fitted with a Sersic's R 1/n model, but we found that 205 (∼48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n ∼ 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter (∼0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M R = -23.8 ± 0.6 mag for single profile BCGs and M R = -24.0 ± 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 ± 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a single = 3.29 ± 0.06 and a double = 2.79 ± 0.08. Also, the logarithmic slope of the metric luminosity α is higher in double profile BCGs (α double = 0.65 ± 0.12) than in single profile BCGs (α single = 0.59 ± 0.14). The mean isophote outer ellipticity (calculated at μ ∼ 24 mag arcsec -2 ) is higher in double profile BCGs (e double = 0.30 ± 0.10) than in single profile BCGs (e single = 0.26 ± 0.11). Similarly, the mean absolute value of inner minus outer ellipticity is also higher in double profile BCGs. From a

  12. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 μm) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  13. LENSING NOISE IN MILLIMETER-WAVE GALAXY CLUSTER SURVEYS

    International Nuclear Information System (INIS)

    Hezaveh, Yashar; Vanderlinde, Keith; Holder, Gilbert; De Haan, Tijmen

    2013-01-01

    We study the effects of gravitational lensing by galaxy clusters of the background of dusty star-forming galaxies (DSFGs) and the cosmic microwave background (CMB), and examine the implications for Sunyaev-Zel'dovich-based (SZ) galaxy cluster surveys. At the locations of galaxy clusters, gravitational lensing modifies the probability distribution of the background flux of the DSFGs as well as the CMB. We find that, in the case of a single-frequency 150 GHz survey, lensing of DSFGs leads both to a slight increase (∼10%) in detected cluster number counts (due to a ∼50% increase in the variance of the DSFG background, and hence an increased Eddington bias) and a rare (occurring in ∼2% of clusters) 'filling-in' of SZ cluster signals by bright strongly lensed background sources. Lensing of the CMB leads to a ∼55% reduction in CMB power at the location of massive galaxy clusters in a spatially matched single-frequency filter, leading to a net decrease in detected cluster number counts. We find that the increase in DSFG power and decrease in CMB power due to lensing at cluster locations largely cancel, such that the net effect on cluster number counts for current SZ surveys is subdominant to Poisson errors

  14. Multi-wavelength study of young and massive galaxy clusters

    International Nuclear Information System (INIS)

    Lemonon, Ludovic

    1999-01-01

    Clusters of galaxies are the most massive objects gravitationally bound observed. They are the consequence of the evolution of most important perturbations in the cosmological microwave background. Their formation depends strongly of the cosmology, so they represent key objects to understand the Universe. The aim of this thesis is to study the processes of formation in clusters of galaxies well far away than previous studies clone, by high-resolution observations obtained by using most powerful telescope in each studied wavelength: X-ray, visible, infrared and radio. After data reductions of 12 clusters located at 0.1; z; 0.3, I was able to classified them in three categories: dynamically perturbed clusters, with substructures in their X-ray/optical image or velocity distribution of galaxies; cooling flows clusters, more relaxed than previous, with huge amount of gas cooling in their center; AGN contaminated, where the central dominant galaxy is an AGN which contaminate considerably the X-ray emission. I have obtained a measurement of the baryonic fraction of the Universe mass, and an estimation of the Universe matter density parameter at the mega-parsec scale, claiming for a low density universe. The ISOCAM data showed the effect of the ICM interactions on the star formation in cluster galaxies, and demonstrated that optical and mid-IR deduced star-formation are not basically compatible. They also showed how IR-emitting galaxies distribute in clusters, most noticeably how 15 um galaxies are located preferably on the edge of clusters. X-ray and radio data showed that clusters at z 0.25 could be find in several dynamical state, similarly with nearby ones, from relaxed to severely perturbed. All clusters present signs of past or present merging, in agreement with hierarchical structure formation scenario. This clusters database is an excellent starting point to study process of merging in clusters since they showed different aspect of this evolution. (author) [fr

  15. The cluster environments of powerful, high-redshift radio galaxies

    International Nuclear Information System (INIS)

    Yates, M.G.

    1989-01-01

    We present deep imaging of a sample of 25 powerful radio galaxies in the redshift range 0.15 gr ) about each source, a measure of the richness of environment. The powerful radio galaxies in this sample at z>0.3 occupy environments nearly as rich on average as Abell class 0 clusters of galaxies, about three times richer than the environments of the z<0.3 radio galaxies. This trend in cluster environment is consistent with that seen in radio-loud quasars over the same redshift range. Our previous work on the 3CR sample suggested that the fundamental parameter which correlates with the richness of environment might be the radio luminosity of the galaxy, rather than its redshift. Our direct imaging confirms that the most powerful radio galaxies do inhabit rich environments. (author)

  16. Properties of hot gas in halos of active galaxies and clusters of galaxies

    International Nuclear Information System (INIS)

    Durret-Isnard, F.

    1982-05-01

    The importance of the inverse Compton effect in the X-ray emission of cluster galaxies is discussed; the X-ray origin problem from galaxy clusters (spectra and emission mechanisms) is studied. The insufficiency of the X-ray bremsstrahlung emission model in an isothermal gas is proved. The ionized halos in narrow-line galaxies (NLG) are studied; after some general points on NLG, one NLG is described and a brief view an emission mechanism models is given; a detailed study of the galaxy IC 5063 and its nebulosity is given: the ionized gas density is calculated together with the evaporation rate for such clouds [fr

  17. The systematic effect in catalogues of galaxies and clusters of galaxies

    International Nuclear Information System (INIS)

    Rudnicki, K.; Obryk, B.; Raczka, J.

    1989-01-01

    The systematic effects in observation of galaxies and clusters of galaxies related to zenith distance, galactic latitude, distance from the galactic centre and supergalactic latitude are investigated. These effects are defined in terms of relative number of objects catalogued in various regions of the celestial sphere. A special calculation algorithm is developed for this purpose. The effect of zenith distance and that of galactic latitude are the most distinct and clear in interpretation. It is shown that the atmospheric extinction as well as the interstellar one manifest themselves in a somewhat different way in counts of stars than in counts of galaxies and galaxy clusters. 10 refs., 8 figs., 5 tabs. (author)

  18. KINEMATICS AND EXCITATION OF THE RAM PRESSURE STRIPPED IONIZED GAS FILAMENTS IN THE COMA CLUSTER OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Furusawa, Hisanori [Astronomical Data Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Hattori, Takashi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' Ohoku Place, Hilo, HI 96720 (United States); Okamura, Sadanori, E-mail: yoshidam@hiroshima-u.ac.jp [Department of Astronomy, University of Tokyo, Tokyo 113-0033 (Japan)

    2012-04-10

    We present the results of deep imaging and spectroscopic observations of very extended ionized gas (EIG) around four member galaxies of the Coma Cluster of galaxies: RB 199, IC 4040, GMP 2923, and GMP 3071. The EIGs were serendipitously found in an H{alpha} narrowband imaging survey of the central region of the Coma Cluster. The relative radial velocities of the EIGs with respect to the systemic velocities of the parent galaxies from which they emanate increase almost monotonically with the distance from the nucleus of the respective galaxies, reaching {approx} - 400 to - 800 km s{sup -1} at around 40-80 kpc from the galaxies. The one-sided morphologies and the velocity fields of the EIGs are consistent with the predictions of numerical simulations of ram pressure stripping. We found a very low velocity filament (v{sub rel} {approx} -1300 km s{sup -1}) at the southeastern edge of the disk of IC 4040. Some bright compact knots in the EIGs of RB 199 and IC 4040 exhibit blue continuum and strong H{alpha} emission. The equivalent widths of the H{alpha} emission exceed 200 A and are greater than 1000 Angstrom-Sign for some knots. The emission-line intensity ratios of the knots are basically consistent with those of sub-solar abundance H II regions. These facts indicate that intensive star formation occurs in the knots. Some filaments, including the low-velocity filament of the IC 4040 EIG, exhibit shock-like emission-line spectra, suggesting that shock heating plays an important role in ionization and excitation of the EIGs.

  19. Radio emission in the Virgo cluster and in SO galaxies

    International Nuclear Information System (INIS)

    Kotanyi, C.

    1981-01-01

    A survey of the radio continuum emission from the galaxies in the Virgo Cluster is presented. The sample of 274 galaxies in total contains a subsample of 188 galaxies complete down to magntiude msub(p) = 14. The observations consisted mostly of short (10 minutes) observations providing one-dimensional (East-West) strip distributions of the radio brightness at 1.4 GHz, with an East-West resolution of 23'' allowing separation of central sources from extended emission, and an r.m.s. noise level of 2 mJy. The radio emission of SO galaxies is examined. A sample of 145 SO galaxies is obtained by combining the Virgo cluster SO's with the nearby non-cluster SO's. The radio data, mainly from short observations, are used to derive the RLF. The radio emission in SO galaxies is at least three times weaker than that in ellipticals and spirals. Flat-spectrum compact nuclear sources are found in SO galaxies but they are at least 10 times weaker than in elliptical galaxies, which is attributed to the small mass of the bulges in SO's as compared to the mass of elliptical galaxies. The absence of steep-spectrum, extended central sources and of disk radio emission in SO's is attributed to their low neutral hydrogen content. (Auth.)

  20. Multicolor photometry of the nearby galaxy cluster A119

    International Nuclear Information System (INIS)

    Tian Jintao; Zhou Xu; Jiang Zhaoji; Ma Jun; Wu Zhenyu; Fan Zhou; Zhang Tianmeng; Zou Hu; Yuan Qirong; Wu Jianghua

    2012-01-01

    This paper presents multicolor optical photometry of the nearby galaxy cluster Abell 119 (z = 0.0442) with the Beijing-Arizona-Taiwan-Connecticut system of 15 intermediate bands. Within the BATC field of view of 58' × 58', there are 368 galaxies with known spectroscopic redshifts, including 238 member galaxies (called sample I). Based on the spectral energy distributions of 1376 galaxies brighter than i BATC = 19.5, the photometric redshift technique and the color-magnitude relation of early-type galaxies are applied to select faint member galaxies. As a result, 117 faint galaxies were selected as new member galaxies. Combined with sample I, an enlarged sample (called sample II) of 355 member galaxies is obtained. Spatial distribution and localized velocity structure for two samples demonstrate that A119 is a dynamically complex cluster with at least three prominent substructures in the central region within 1 Mpc. A large velocity dispersion for the central clump indicates a merging along the line of sight. No significant evidence for morphology or luminosity segregations is found in either sample. With the PEGASE evolutionary synthesis model, the environmental effect on the properties of star formation is confirmed. Faint galaxies in the low-density region tend to have longer time scales of star formation, smaller mean stellar ages, and lower metallicities in their interstellar medium, which is in agreement with the context of the hierarchical cosmological scenario. (research papers)

  1. The structure of nearby clusters of galaxies Hierarchical clustering and an application to the Leo region

    CERN Document Server

    Materne, J

    1978-01-01

    A new method of classifying groups of galaxies, called hierarchical clustering, is presented as a tool for the investigation of nearby groups of galaxies. The method is free from model assumptions about the groups. The scaling of the different coordinates is necessary, and the level from which one accepts the groups as real has to be determined. Hierarchical clustering is applied to an unbiased sample of galaxies in the Leo region. Five distinct groups result which have reasonable physical properties, such as low crossing times and conservative mass-to-light ratios, and which follow a radial velocity- luminosity relation. Only 4 out of 39 galaxies were adopted as field galaxies. (27 refs).

  2. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    scenario still remain poorly understood. ... to test models with future observations. ... A popular scenario for the origin of radio halos assumes that relativis- ..... based on particle acceleration by merger-driven turbulence in galaxy clusters shows.

  3. Coexistence of galaxies and antigalaxies in a cluster

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Aldrovandi, S.M.V.

    1975-01-01

    It is proposed that the detection of annihilation gamma-rays coming from any region of contact between watter and antimalter would only be possible if a cluster contains both galaxies and antigalaxies [pt

  4. The Of emission lines near 4650 A

    International Nuclear Information System (INIS)

    Underhill, A.B.; Gilroy, K.K.; Hill, G.M.

    1989-01-01

    Rectified, normalized, high S/N intensity tracings of nine Of stars were obtained from Reticon spectra in the 4550-4800-A region. The well-known relatively sharp Of emission lines are seen to stand on pedestals of broad weak emission somewhat like the broad emission lines from WR stars. It is suggested that cascades following dielectronic recombination may be an important process driving some lines of N III, C III, and C IV into the emission of Of stars, and that the sharp Of lines come from plasma that is stationary with respect to the star. The broad emission features show an extensive low-density wind from each star. The results imply that the detection of two, more or less equal, broad jumps in the rest spectra of galaxies at about 4640 and 4686 A is more indicative of Of stars than of WR stars. 32 refs

  5. Three-dimensional morphological segregation in rich clusters of galaxies

    International Nuclear Information System (INIS)

    Salvador-Sole, E.; Sanroma, M.; Jordana, J.J.R.

    1989-01-01

    The implications of the observed correlation between morphological fractions and projected number density of galaxies in rich clusters are analyzed. It is found that this correlation is the result of a well-defined intrinsic correlation that depends on cluster concentration, whether the observed correlation is strictly universal or not. This dependence is in overall agreement with that expected from the action of mechanisms of environment-induced morphological evolution of galaxies. 30 references

  6. Low surface brightness galaxies in the Fornax Cluster: automated galaxy surface photometry

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    A sample is presented of low surface brightness galaxies (with extrapolated central surface brightness fainter than 22.0 Bμ) in the Fornax Cluster region which has been measured by the APM machine. Photometric parameters, namely profile shape, scale length, central brightness and total magnitude, are derived for the sample galaxies and correlations between the parameters of low surface brightness dwarf galaxies are discussed, with particular reference to the selection limits. Contrary to previous authors we find no evidence for a luminosity-surface brightness correlation in the sense of lower surface brightness galaxies having lower luminosities and scale sizes. In fact, the present data suggest that it is the galaxies with the largest scale lengths which are more likely to be of very low surface brightness. In addition, the larger scale length galaxies occur preferentially towards the centre of the Cluster. (author)

  7. A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2016-01-01

    Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared with the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations

  8. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-01-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10 5 M ⊙ . The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M I (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H 0  = 77.9 ± 3.6 km s −1 Mpc −1 . We estimate the GC specific frequency of NGC 4921 to be S N  = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s

  9. The Ursa Major Cluster of galaxies .1. Cluster definition and photometric data

    NARCIS (Netherlands)

    Tully, RB; Verheijen, MAW; Pierce, MJ; Wainscoat, RJ

    1996-01-01

    The Ursa Major Cluster has received remarkably little attention, although it is as near as the Virgo Cluster and contains a comparable number of H I-rich galaxies. In this paper, criteria for group membership are discussed and data are presented for 79 galaxies identified with the group. Of these,

  10. THE DYNAMICAL STATE OF BRIGHTEST CLUSTER GALAXIES AND THE FORMATION OF CLUSTERS

    International Nuclear Information System (INIS)

    Coziol, R.; Andernach, H.; Caretta, C. A.; Alamo-MartInez, K. A.; Tago, E.

    2009-01-01

    A large sample of Abell clusters of galaxies, selected for the likely presence of a dominant galaxy, is used to study the dynamical properties of the brightest cluster members (BCMs). From visual inspection of Digitized Sky Survey images combined with redshift information we identify 1426 candidate BCMs located in 1221 different redshift components associated with 1169 different Abell clusters. This is the largest sample published so far of such galaxies. From our own morphological classification we find that ∼92% of the BCMs in our sample are early-type galaxies and 48% are of cD type. We confirm what was previously observed based on much smaller samples, namely, that a large fraction of BCMs have significant peculiar velocities. From a subsample of 452 clusters having at least 10 measured radial velocities, we estimate a median BCM peculiar velocity of 32% of their host clusters' radial velocity dispersion. This suggests that most BCMs are not at rest in the potential well of their clusters. This phenomenon is common to galaxy clusters in our sample, and not a special trait of clusters hosting cD galaxies. We show that the peculiar velocity of the BCM is independent of cluster richness and only slightly dependent on the Bautz-Morgan type. We also find a weak trend for the peculiar velocity to rise with the cluster velocity dispersion. The strongest dependence is with the morphological type of the BCM: cD galaxies tend to have lower relative peculiar velocities than elliptical galaxies. This result points to a connection between the formation of the BCMs and that of their clusters. Our data are qualitatively consistent with the merging-groups scenario, where BCMs in clusters formed first in smaller subsystems comparable to compact groups of galaxies. In this scenario, clusters would have formed recently from the mergers of many such groups and would still be in a dynamically unrelaxed state.

  11. Binary model for the coma cluster of galaxies

    International Nuclear Information System (INIS)

    Valtonen, M.J.; Byrd, G.G.

    1979-01-01

    We study the dynamics of galaxies in the Coma cluster and find that the cluster is probably dominated by a central binary of galaxies NGC 4874--NGC4889. We estimate their total mass to be about 3 x 10 14 M/sub sun/ by two independent methods (assuming in Hubble constant of 100 km s -1 Mpc -1 ). This binary is efficient in dynamically ejecting smaller galaxies, some of of which are seen in projection against the inner 3 0 radius of the cluster and which, if erroneously considered as bound members, cause a serious overestimate of the mass of the entire cluster. Taking account of the ejected galaxies, we estimate the total cluster mass to be 4--9 x 10 14 M/sub sun/, with a corresponding mass-to-light ratio for a typical galaxy in the range of 20--120 solar units. The origin of the secondary maximum observed in the radial surface density profile is studied. We consider it to be a remnant of a shell of galaxies which formed around the central binary. This shell expanded, then collapsed into the binary, and is now reexpanding. This is supported by the coincidence of the minimum in the cluster eccentricity and radical velocity dispersion at the same radial distance as the secondary maximum. Numerical simulations of a cluster model with a massive central binary and a spherical shell of test particles are performed, and they reproduce the observed shape, galaxy density, and radial velocity distributions in the Coma cluster fairly well. Consequences of extending the model to other clusters are discussed

  12. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    International Nuclear Information System (INIS)

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang; Lau, Erwin T.; Rudd, Douglas H.

    2014-01-01

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  13. ISM stripping from cluster galaxies and inhomogeneities in cooling flows

    Science.gov (United States)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.

    1990-01-01

    Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide

  14. The Halo Boundary of Galaxy Clusters in the SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K. [Center for Particle Cosmology, Department of Physics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Chang, Chihway; Kravtsov, Andrey [Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637 (United States); Adhikari, Susmita; Dalal, Neal [Department of Astronomy, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8583 (Japan); Rozo, Eduardo [Department of Physics, University of Arizona, Tucson, AZ 85721 (United States); Rykoff, Eli, E-mail: ebax@sas.upenn.edu [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, CA 94305 (United States)

    2017-05-20

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  15. The Halo Boundary of Galaxy Clusters in the SDSS

    International Nuclear Information System (INIS)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.; Chang, Chihway; Kravtsov, Andrey; Adhikari, Susmita; Dalal, Neal; More, Surhud; Rozo, Eduardo; Rykoff, Eli

    2017-01-01

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  16. Low frequency radio observations of five rich clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.; Erickson, W.C.

    1980-01-01

    Observations have been made at 43.0 and 73.8 MHz of five rich x-ray emitting clusters of galaxies: Abell 399/401, Abell 426 (the Perseus cluster), Abell 1367, Abell 1656 (the Coma cluster), and the Virgo cluster. A fan beam synthesis system has been used to search for extended radio emission, i.e., radio halos, in these clusters. Radio halos were detected in the Coma and Virgo clusters. No evidence was found for the existence of 3C84B, the halo source previously thought to exist in the Perseus cluster. If halo sources exist in Abell 399/401 or Abell 1367, they must be quite weak at frequencies less than 100 MHz. The observed sizes of the extended sources in Coma and Virgo imply that the rate of particle propagation away from strong radio galaxies greatly exceeds the Alfven velocity and is probably independent of particle energy

  17. The Morphologies and Alignments of Gas, Mass, and the Central Galaxies of CLASH Clusters of Galaxies

    Science.gov (United States)

    Donahue, Megan; Ettori, Stefano; Rasia, Elena; Sayers, Jack; Zitrin, Adi; Meneghetti, Massimo; Voit, G. Mark; Golwala, Sunil; Czakon, Nicole; Yepes, Gustavo; Baldi, Alessandro; Koekemoer, Anton; Postman, Marc

    2016-03-01

    Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova survey with Hubble Space Telescope (CLASH) used weak and strong lensing to measure the distribution of matter within a sample of 25 clusters, 20 of which were deemed to be “relaxed” based on their X-ray morphology and alignment of the X-ray emission with the Brightest Cluster Galaxy. Toward a quantitative characterization of this important sample of clusters, we present uniformly estimated X-ray morphological statistics for all 25 CLASH clusters. We compare X-ray morphologies of CLASH clusters with those identically measured for a large sample of simulated clusters from the MUSIC-2 simulations, selected by mass. We confirm a threshold in X-ray surface brightness concentration of C ≳ 0.4 for cool-core clusters, where C is the ratio of X-ray emission inside 100 h70-1 kpc compared to inside 500 {h}70-1 kpc. We report and compare morphologies of these clusters inferred from Sunyaev-Zeldovich Effect (SZE) maps of the hot gas and in from projected mass maps based on strong and weak lensing. We find a strong agreement in alignments of the orientation of major axes for the lensing, X-ray, and SZE maps of nearly all of the CLASH clusters at radii of 500 kpc (approximately 1/2 R500 for these clusters). We also find a striking alignment of clusters shapes at the 500 kpc scale, as measured with X-ray, SZE, and lensing, with that of the near-infrared stellar light at 10 kpc scales for the 20 “relaxed” clusters. This strong alignment indicates a powerful coupling between the cluster- and galaxy-scale galaxy formation processes.

  18. Dynamical evolution in clusters of galaxies with low-frequency radio emission

    International Nuclear Information System (INIS)

    Guthrie, B.N.G.

    1977-01-01

    Clusters of galaxies in which radio emission at low frequencies ( approximately 10 9 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed. (Auth.)

  19. A GMBCG GALAXY CLUSTER CATALOG OF 55,424 RICH CLUSTERS FROM SDSS DR7

    International Nuclear Information System (INIS)

    Hao Jiangang; Annis, James; Johnston, David E.; McKay, Timothy A.; Evrard, August; Siegel, Seth R.; Gerdes, David; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Wechsler, Risa H.; Busha, Michael; Becker, Matthew; Sheldon, Erin

    2010-01-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red-sequence plus brightest cluster galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red-sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 deg 2 of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  20. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    International Nuclear Information System (INIS)

    Li, Shuo; Li, Chengyuan; De Grijs, Richard; Anders, Peter

    2015-01-01

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr –1 ) ≤ 7.5, intermediate-age, log (t yr –1 ) in [7.5, 8.5], and old samples, log (t yr –1 ) ≥ 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region

  1. Taxonomical analysis of the Cancer cluster of galaxies

    International Nuclear Information System (INIS)

    Perea, J.; Olmo, A. del; Moles, M.

    1986-01-01

    A description is presented of the Cancer cluster of galaxies, based on a taxonomical analysis in (α,delta, Vsub(r)) space. Earlier results by previous authors on the lack of dynamical entity of the cluster are confirmed. The present analysis points out the existence of a binary structure in the most populated region of the complex. (author)

  2. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  3. Prospects for SODART observations of nearby clusters of galaxies

    DEFF Research Database (Denmark)

    Pedersen, Kenneth; Westergaard, Niels Jørgen Stenfeldt

    1998-01-01

    Using the current best understanding of the SODART mirror system, the Bragg panel and of the LEPC/HEPC responses [1] we have studied the feasibility and prospects for SODART studies of nearby clusters of galaxies. From simulated HEPC data of the cluster Abell 2256, we demonstrate that SODART...

  4. Gravitational clustering of galaxies in the CfA slice

    International Nuclear Information System (INIS)

    Crane, P.; Saslaw, W.C.

    1988-01-01

    The clustering properties of the Galaxies in the CfA slice have been analyzed by comparing the properties of the neighbor distributions to the predictions of gravitational clustering theory. The agreement is excellent and implies that the observed structures can be explained by gravitational effects alone and do not require exotic explanations

  5. Redshifts of radio galaxies in Abell clusters of galaxies

    International Nuclear Information System (INIS)

    Owen, F.N.; White, R.A.; Thronson, H.A. Jr.

    1988-01-01

    The paper presents redshifts for 51 radio galaxies and companion systems which were obtained with the Steward 2.3-m and multiple mirror telescopes. The observations were performed over the course of six runs during 1980-1983. The sample includes eight multiple systems (or multiple nuclei) having internal velocity differences ranging from 150 to 2400 km/s. 17 references

  6. The mass-temperature relation for clusters of galaxies

    DEFF Research Database (Denmark)

    Hjorth, J.; Oukbir, J.; van Kampen, E.

    1998-01-01

    A tight mass-temperature relation, M(r)/r proportional to T-x, is expected in most cosmological models if clusters of galaxies are homologous and the intracluster gas is in global equilibrium with the dark matter. We here calibrate this relation using eight clusters with well-defined global...... with wide-held HST imaging could provide a sensitive test of the normalization and intrinsic scatter of the relation, resulting in a powerful and expedient way of measuring masses of clusters of galaxies. In addition, as M(r)/r las derived from lensing) is dependent on the cosmological model at high...

  7. Hot-spots of radio sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Saikia, D.J.

    1979-01-01

    A sample of extragalactic double radio sources is examined to test for a correlation between the prominence of compact hot-spots located at their outer edges and membership of clusters of galaxies. To minimize the effects of incompleteness in published catalogues of clusters, cluster classification is based on the number of galaxies in the neighbourhood of each source. After eliminating possible selection effects, it is found that sources in regions of high galactic density tend to have less prominent hot-spots. It is argued that the result is consistent with the 'continuous-flow' models of radio sources, but poses problems for the gravitational slingshot model. (author)

  8. Can cluster environment modify the dynamical evolution of spiral galaxies?

    Science.gov (United States)

    Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III

    1993-01-01

    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows

  9. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    Science.gov (United States)

    Cowie, L. L.; Hu, E. M.

    1986-01-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation.

  10. IC 3475: A stripped dwarf galaxy in the Virgo cluster

    International Nuclear Information System (INIS)

    Vigroux, L.; Thuan, T.X.; Vader, J.P.; Lachieze-Rey, M.

    1986-01-01

    We have obtained B and R CCD and H I observations of the Virgo dwarf galaxy IC 3475. The galaxy is remarkable for its very large diameter (approx.10 kpc for a Virgo distance modulus of 31) and is comparable in size to the large dwarfs discussed by Sandage and Binggeli. Its light profile is best fitted by an exponential law, characteristic of a dwarf Magellanic irregular galaxy. It possesses a central bar with many knots and inclusions concentrated toward the center of the galaxy. These knots and inclusions have the same color (B-Rapprox.1.5) as the rest of the galaxy and are best explained as intermediate-age (1--7 x 10 9 yr) star clusters such as those found in the Magellanic Clouds. Despite possessing the photometric structure of a dwarf Magellanic irregular galaxy, IC 3475 contains less than 5.3 x 10 6 M/sub sun/ of neutral hydrogen. Its hydrogen mass to blue light ratio is less than 0.01, approx.60 times less than the mean value observed for dwarf Magellanic irregulars. It is most likely that IC 3475, which is located near the core of the Virgo cluster, is a stripped dwarf galaxy. The very large size of the galaxy (its diameter is approx.1.8 times larger than that of ''normal'' dwarfs) appears to rule out evolution of IC 3475 from a normal dwarf irregular or to a normal dwarf elliptical

  11. DISENTANGLING THE ROLE OF ENVIRONMENTAL PROCESSES IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Fernandez, Jonathan D.; Vilchez, J. M.; Iglesias-Paramo, J., E-mail: jonatan@iaa.es [Instituto de Astrofisica de Andalucia, Glorieta de la Astronomia s/n, 18008 Granada (Spain)

    2012-05-20

    In this work, we present the results of a novel approach devoted to disentangling the role of the environmental processes affecting galaxies in clusters. This is based on the analysis of the near-UV (NUV) - r' distributions of a large sample of star-forming galaxies in clusters spanning more than four absolute magnitudes. The galaxies inhabit three distinct environmental regions: virial regions, cluster infall regions, and field environment. We have applied rigorous statistical tests to analyze both the complete NUV - r' distributions and their averages for three different bins of the r'-band galaxy luminosity down to M{sub r{sup '}}{approx}-18, throughout the three environmental regions considered. We have identified the environmental processes that significantly affect the star-forming galaxies in a given luminosity bin by using criteria based on the characteristics of these processes: their typical timescales, the regions where they operate, and the galaxy luminosity range for which their effects are more intense. We have found that the high-luminosity (M{sub r{sup '}}{<=}-20) star-forming galaxies do not show significant signs in their star formation activity of being affected by: (1) the environment in the last {approx}10{sup 8} yr, or (2) a sudden quenching in the last 1.5 Gyr. The intermediate-luminosity (-20< M{sub r{sup '}}{<=}-19) star-forming galaxies appear to be affected by starvation in the virial regions and by the harassment in the virial and infall regions. Low-luminosity (-19galaxies seem to be affected by the same environmental processes as intermediate-luminosity star-forming galaxies in a stronger way, which would be expected for their lower luminosities.

  12. X-ray spectra of clusters of galaxies

    Science.gov (United States)

    Sarazin, Craig L.

    1990-01-01

    X-ray line observations of clusters of galaxies have shown that the X-ray emission in clusters is mainly thermal emission from hot diffuse gas, and that much of this gas has come out of stars, probably having been ejected from galaxies in the cluster. Future high resolution observations should allow us to determine the physical state of the gas. X-ray line measurements and abundance determinations can lead to strong constraints on the origin of the intracluster gas, and on the chemical evolution and history of galaxies. Some of the stronger resonant X-ray lines may be observable as absorption lines against a background quasar. Such X-ray absorption line measurement can be used to directly derive distances to clusters, using a technique similar to (and possibly complementary to) that the well-known method using the Zel'dovich-Syunyaev effect.

  13. Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters

    Science.gov (United States)

    Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco

    2018-06-01

    We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.

  14. Clustering of galaxies around AGNs in the HSC Wide survey

    Science.gov (United States)

    Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori

    2018-01-01

    We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.

  15. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  16. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Tinker, Jeremy L., E-mail: rmredd@stanford.edu, E-mail: rwechsler@stanford.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2014-03-10

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  17. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    International Nuclear Information System (INIS)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu; Tinker, Jeremy L.

    2014-01-01

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω m and σ 8 from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  18. The Spatial Distribution of Galaxies of Different Spectral Types in the Massive Intermediate-Redshift Cluster MACS J0717.5+3745

    Science.gov (United States)

    Ma, Cheng-Jiun; Ebeling, Harald; Donovan, David; Barrett, Elizabeth

    2008-09-01

    We present the results of a wide-field spectroscopic analysis of the galaxy population of the massive cluster MACS J0717.5+3745 and the surrounding filamentary structure (z = 0.55), as part of our systematic study of the 12 most distant clusters in the MACS sample. Of 1368 galaxies spectroscopically observed in this field, 563 are identified as cluster members; of those, 203 are classified as emission-line galaxies, 260 as absorption-line galaxies, and 17 as E+A galaxies (defined by (H δ + H γ )/2 > 6 Å and no detection of [O II] and Hβ in emission). The variation of the fraction of emission- and absorption-line galaxies as a function of local projected galaxy density confirms the well-known morphology-density relation, and becomes flat at projected galaxy densities less than ~20 Mpc-2. Interestingly, 16 out of 17 E+A galaxies lie (in projection) within the ram-pressure stripping radius around the cluster core, which we take to be direct evidence that ram-pressure stripping is the primary mechanism that terminates star formation in the E+A population of galaxy clusters. This conclusion is supported by the rarity of E+A galaxies in the filament, which rules out galaxy mergers as the dominant driver of evolution for E+A galaxies in clusters. In addition, we find that the 42 e(a) and 27 e(b) member galaxies, i.e., the dusty-starburst and starburst galaxies respectively, are spread out across almost the entire study area. Their spatial distribution, which shows a strong preference for the filament region, suggests that starbursts are triggered in relatively low-density environments as galaxies are accreted from the field population. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based also in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of

  19. Radio Selection of the Most Distant Galaxy Clusters

    Science.gov (United States)

    Daddi, E.; Jin, S.; Strazzullo, V.; Sargent, M. T.; Wang, T.; Ferrari, C.; Schinnerer, E.; Smolčić, V.; Calabró, A.; Coogan, R.; Delhaize, J.; Delvecchio, I.; Elbaz, D.; Gobat, R.; Gu, Q.; Liu, D.; Novak, M.; Valentino, F.

    2017-09-01

    We show that the most distant X-ray-detected cluster known to date, Cl J1001 at {z}{spec}=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10\\prime\\prime ) in deep 0\\buildrel{\\prime\\prime}\\over{.} 75 resolution VLA 3 GHz imaging, with {S}3{GHz}> 8 μ {Jy}. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg2 field using radio-detected 3 GHz sources and looking for peaks in {{{Σ }}}5 density maps. Cl J1001 is the strongest overdensity by far with > 10σ , with a simple {z}{phot}> 1.5 preselection. A cruder photometric rejection of zsamples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z≳ 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.

  20. A Young Star Cluster in the Leo a Galaxy

    Directory of Open Access Journals (Sweden)

    Stonkutė R.

    2015-09-01

    Full Text Available We report a serendipitous discovery of a star cluster in the dwarf irregular galaxy Leo A. Young age (~28 Myr and low mass (~510 M⊙ estimates are based on the isochrone fit assuming a metallicity derived for HII regions (Z = 0.0007. The color-magnitude diagrams of the stars, located in and around the cluster area, and the results of aperture photometry of the cluster itself are presented.

  1. Clustering of very luminous infrared galaxies and their environment

    Science.gov (United States)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  2. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-01-01

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M r < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters

  3. Cosmological simulations of isotropic conduction in galaxy clusters

    International Nuclear Information System (INIS)

    Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.

    2013-01-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  4. THE MASSIVE DISTANT CLUSTERS OF WISE SURVEY: THE FIRST DISTANT GALAXY CLUSTER DISCOVERED BY WISE

    International Nuclear Information System (INIS)

    Gettings, Daniel P.; Gonzalez, Anthony H.; Mancone, Conor; Stanford, S. Adam; Eisenhardt, Peter R. M.; Stern, Daniel; Brodwin, Mark; Zeimann, Gregory R.; Masci, Frank J.; Papovich, Casey; Tanaka, Ichi; Wright, Edward L.

    2012-01-01

    We present spectroscopic confirmation of a z = 0.99 galaxy cluster discovered using data from the Wide-field Infrared Survey Explorer (WISE). This is the first z ∼ 1 cluster candidate from the Massive Distant Clusters of WISE Survey to be confirmed. It was selected as an overdensity of probable z ∼> 1 sources using a combination of WISE and Sloan Digital Sky Survey DR8 photometric catalogs. Deeper follow-up imaging data from Subaru and WIYN reveal the cluster to be a rich system of galaxies, and multi-object spectroscopic observations from Keck confirm five cluster members at z = 0.99. The detection and confirmation of this cluster represents a first step toward constructing a uniformly selected sample of distant, high-mass galaxy clusters over the full extragalactic sky using WISE data.

  5. GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Harley; McGaugh, Stacy; Teuben, Peter [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Angus, G. W., E-mail: hkatz@astro.umd.edu, E-mail: stacy.mcgaugh@case.edu, E-mail: teuben@astro.umd.edu, E-mail: angus.gz@gmail.com [Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Private Bag X3, Rondebosch 7700 (South Africa)

    2013-07-20

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants'' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  6. GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND

    International Nuclear Information System (INIS)

    Katz, Harley; McGaugh, Stacy; Teuben, Peter; Angus, G. W.

    2013-01-01

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in ΛCDM simulations. The bulk motions of clusters attain ∼1000 km s –1 by low redshift, comparable to observations whereas ΛCDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in ΛCDM, potentially providing an explanation for ''pink elephants'' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  7. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    International Nuclear Information System (INIS)

    Park, Y.; Krause, E.; Dodelson, S.; Jain, B.; Amara, A.

    2016-01-01

    Here, the joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  8. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    International Nuclear Information System (INIS)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.

    2014-01-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters have similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.

  9. INTRINSIC ALIGNMENT OF CLUSTER GALAXIES: THE REDSHIFT EVOLUTION

    International Nuclear Information System (INIS)

    Hao Jiangang; Kubo, Jeffrey M.; Feldmann, Robert; Annis, James; Johnston, David E.; Lin Huan; McKay, Timothy A.

    2011-01-01

    We present measurements of two types of cluster galaxy alignments based on a volume limited and highly pure (≥90%) sample of clusters from the GMBCG catalog derived from Data Release 7 of the Sloan Digital Sky Survey (SDSS DR7). We detect a clear brightest cluster galaxy (BCG) alignment (the alignment of major axis of the BCG toward the distribution of cluster satellite galaxies). We find that the BCG alignment signal becomes stronger as the redshift and BCG absolute magnitude decrease and becomes weaker as BCG stellar mass decreases. No dependence of the BCG alignment on cluster richness is found. We can detect a statistically significant (≥3σ) satellite alignment (the alignment of the major axes of the cluster satellite galaxies toward the BCG) only when we use the isophotal fit position angles (P.A.s), and the satellite alignment depends on the apparent magnitudes rather than the absolute magnitudes of the BCGs. This suggests that the detected satellite alignment based on isophotal P.A.s from the SDSS pipeline is possibly due to the contamination from the diffuse light of nearby BCGs. We caution that this should not be simply interpreted as non-existence of the satellite alignment, but rather that we cannot detect them with our current photometric SDSS data. We perform our measurements on both SDSS r-band and i-band data, but do not observe a passband dependence of the alignments.

  10. Radio properties of central dominant galaxies in cluster cooling flows

    International Nuclear Information System (INIS)

    O'dea, C.P.; Baum, S.A.

    1986-01-01

    New VLA observations of central dominant (cd) galaxies currently thought to be in cluster cooling flows are combined with observations from the literature to examine the global properties of a heterogeneous sample of 31 cd galaxies. The radio sources tend to be of low or intermediate radio power and have small sizes (median extent about 25 kpc). The resolved sources tend to have distorted morphologies (e.g., wide-angle tails and S shapes). It is not yet clear whether the radio emission from these cd galaxies is significantly different from those not thought to be in cluster cooling flows. The result of Jones and Forman (1984), that there is a possible correlation between radio power and excess X-ray luminosity in the cluster center (above a King model fit to the X-ray surface brightness), is confirmed. 43 references

  11. The radio halo and active galaxies in the Coma cluster

    International Nuclear Information System (INIS)

    Cordey, R.A.

    1985-01-01

    The Cambridge Low-Frequency Synthesis Telescope has been used to map the Coma cluster at 151 MHz. Two new extended sources are found, associated with the cluster galaxies NGC4839 and NGC4849. The central halo radio source is shown not to have a simple symmetrical structure but to be distorted, with separate centres of brightening near the radio galaxies NGC4874 and IC4040. The structure cannot be accounted for by cluster-wide acceleration processes but implies a close connection with current radio galaxies and, in particular, models requiring diffusion of electrons out of radio sources seem to be favoured. The other large source, near Coma A, is detected and higher resolution data at 1407 MHz are used to clarify its structure. (author)

  12. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  13. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chihway; et al.

    2017-10-18

    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For a cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.

  14. THERMAL AND CHEMICAL EVOLUTIONS OF GALAXY CLUSTERS OBSERVED WITH SUZAKU

    Directory of Open Access Journals (Sweden)

    Kosuke Sato

    2013-12-01

    Full Text Available We studied the properties of the intracluster medium (ICM of galaxy clusters to outer regions observed with Suzaku. The observed temperature dropped by about ~30% from the central region to the virial radius of the clusters. The derived entropy profile agreed with the expectation from simulations within r500, while the entropy profile in r > r500 indicated a flatter slope than the simulations. This would suggest that the cluster outskirts were out of hydrostatic equilibrium. As for the metallicity, we studied the metal abundances from O to Fe up to ~0.5 times the virial radius of galaxy groups and clusters. Comparing the results with supernova nucleosynthesis models, the number ratio of type II to Ia supernovae is estimated to be ~3.5. We also calculated not only Fe, but also O and Mg mass-to-light ratios (MLRs with K-band luminosity. The MLRs in the clusters had a similar feature.

  15. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old

  16. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Michael J.; Harris, Gretchen L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Harris, William E., E-mail: mjhudson@uwaterloo.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  17. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Conde, Miguel A. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Cannoni, Mirco; Gómez, Mario E. [Dpto. Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Zandanel, Fabio; Prada, Francisco, E-mail: masc@stanford.edu, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: fabio@iaa.es, E-mail: mario.gomez@dfa.uhu.es, E-mail: fprada@iaa.es [Instituto de Astrofísica de Andalucía (CSIC), E-18008, Granada (Spain)

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  18. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco; /Huelva U.; Zandanel, Fabio; /IAA, Granada; Gomez, Mario E.; /Huelva U.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  19. A Detailed Study of Chemical Enrichment History of Galaxy Clusters out to Virial Radius

    Science.gov (United States)

    Loewenstein, Michael

    The origin of the metal enrichment of the intracluster medium (ICM) represents a fundamental problem in extragalactic astrophysics, with implications for our understanding of how stars and galaxies form, the nature of Type Ia supernova (SNIa) progenitors, and the thermal history of the ICM. These heavy elements are ultimately synthesized by supernova (SN) explosions; however, the details of the sites of metal production and mechanisms that transport metals to the ICM remain unclear. To make progress, accurate abundance profiles for multiple elements extending from the cluster core out to the virial radius (r180) are required for a significant cluster sample. We propose an X-ray spectroscopic study of a carefully-chosen sample of archival Suzaku and XMM-Newton observations of 23 clusters: XMM-Newton data probe the cluster temperature and abundances out to (0.5-1)r500, while Suzaku data probe the cluster outskirts. A method devised by our team to utilize all elements with emission lines in the X-ray bandpass to measure the relative contributions of supernova explosions by direct modeling of their X-ray spectra will be applied in order to constrain the demographics of the enriching supernova population. In addition we will conduct a stacking analysis of our already existing Suzaku and XMM-Newton cluster spectra to search for weak emssion lines that are important SN diagnostics, and to look for trends with cluster mass and redshift. The funding we propose here will also support the data analysis of our recent Suzaku observations of the archetypal cluster A3112 (200 ks each on the core and outskirts). Our data analysis, intepreted using theoretical models we have developed, will enable us to constrain the star formation history, SN demographics, and nature of SNIa progenitors associated with galaxy cluster stellar populations - and, hence, directly addresess NASA s Strategic Objective 2.4.2 in Astrophysics that aims to improve the understanding of how the Universe works

  20. Discovering Massive z > 1 Galaxy Clusters with Spitzer and SPTpol

    Science.gov (United States)

    Bleem, Lindsey; Brodwin, Mark; Ashby, Matthew; Stalder, Brian; Klein, Matthias; Gladders, Michael; Stanford, Spencer; Canning, Rebecca

    2018-05-01

    We propose to obtain Spitzer/IRAC imaging of 50 high-redshift galaxy cluster candidates derived from two new completed SZ cluster surveys by the South Pole Telescope. Clusters from the deep SPTpol 500-square-deg main survey will extend high-redshift SZ cluster science to lower masses (median M500 2x10^14Msun) while systems drawn from the wider 2500-sq-deg SPTpol Extended Cluster Survey are some of the rarest most massive high-z clusters in the observable universe. The proposed small 10 h program will enable (1) confirmation of these candidates as high-redshift clusters, (2) measurements of the cluster redshifts (sigma_z/(1+z) 0.03), and (3) estimates of the stellar masses of the brightest cluster members. These observations will yield exciting and timely targets for the James Webb Space Telescope--and, combined with lower-z systems--will both extend cluster tests of dark energy to z>1 as well as enable studies of galaxy evolution in the richest environments for a mass-limited cluster sample from 0

  1. Galaxy Clusters, Near and Far, Have a Lot in Common

    Science.gov (United States)

    2005-04-01

    Using two orbiting X-ray telescopes, a team of international astronomers has examined distant galaxy clusters in order to compare them with their counterparts that are relatively close by. Speaking today at the RAS National Astronomy Meeting in Birmingham, Dr. Ben Maughan (Harvard-Smithsonian Center for Astrophysics), presented the results of this new analysis. The observations indicate that, despite the great expansion that the Universe has undergone since the Big Bang, galaxy clusters both local and distant have a great deal in common. This discovery could eventually lead to a better understanding of how to "weigh" these enormous structures, and, in so doing, answer important questions about the nature and structure of the Universe. Clusters of galaxies, the largest known gravitationally-bound objects, are the knots in the cosmic web of structure that permeates the Universe. Theoretical models make predictions about the number, distribution and properties of these clusters. Scientists can test and improve models of the Universe by comparing these predictions with observations. The most powerful way of doing this is to measure the masses of galaxy clusters, particularly those in the distant Universe. However, weighing galaxy clusters is extremely difficult. One relatively easy way to weigh a galaxy cluster is to use simple laws ("scaling relations") to estimate its weight from properties that are easy to observe, like its luminosity (brightness) or temperature. This is like estimating someone's weight from their height if you didn't have any scales. Over the last 3 years, a team of researchers, led by Ben Maughan, has observed 11 distant galaxy clusters with ESA's XMM-Newton and NASA's Chandra X-ray Observatory. The clusters have redshifts of z = 0.6-1.0, which corresponds to distances of 6 to 8 billion light years. This means that we see them as they were when the Universe was half its present age. The survey included two unusual systems, one in which two massive

  2. DWARF GALAXY CLUSTERING AND MISSING SATELLITES

    International Nuclear Information System (INIS)

    Carlberg, R. G.; Sullivan, M.; Le Borgne, D.

    2009-01-01

    At redshifts around 0.1 the Canada-France-Hawaii Telescope Legacy Survey Deep fields contain some 6 x 10 4 galaxies spanning the mass range from 10 5 to 10 12 M sun . We measure the stellar mass dependence of the two-point correlation using angular measurements to largely bypass the errors, approximately 0.02 in the median, of the photometric redshifts. Inverting the power-law fits with Limber's equation we find that the autocorrelation length increases from a very low 0.4 h -1 Mpc at 10 5.5 M sun to the conventional 4.5 h -1 Mpc at 10 10.5 M sun . The power-law fit to the correlation function has a slope which increases from γ ≅ 1.6 at high mass to γ ≅ 2.3 at low mass. The spatial cross-correlation of dwarf galaxies with more massive galaxies shows fairly similar trends, with a steeper radial dependence at low mass than predicted in numerical simulations of subhalos within galaxy halos. To examine the issue of 'missing satellites' we combine the cross-correlation measurements with our estimates of the low-mass galaxy number density. We find on the average there are 60 ± 20 dwarfs in subhalos with M(total)>10 7 M sun for a typical Local Group M(total)/M(stars) = 30, corresponding to M/L V ≅ 100 for a galaxy with no recent star formation. The number of dwarfs per galaxy is about a factor of 2 larger than currently found for the Milky Way. Nevertheless, the average dwarf counts are about a factor of 30 below lambda cold dark matter (LCDM) simulation results. The divergence from LCDM predictions is one of the slope of the relation, approximately dN/dln M ≅ -0.5 rather than the predicted -0.9, not sudden onset at some characteristic scale. The dwarf galaxy star formation rates span the range from passive to bursting, which suggests that there are few completely dark halos.

  3. X-RAY SIGNATURES OF NON-EQUILIBRIUM IONIZATION EFFECTS IN GALAXY CLUSTER ACCRETION SHOCK REGIONS

    International Nuclear Information System (INIS)

    Wong, Ka-Wah; Sarazin, Craig L.; Ji Li

    2011-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the ΛCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass, but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ∼130-380 ks on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.

  4. Modified Gravity and its test on galaxy clusters

    Science.gov (United States)

    Nieuwenhuizen, Theodorus M.; Morandi, Andrea; Limousin, Marceau

    2018-05-01

    The MOdified Gravity (MOG) theory of J. Moffat assumes a massive vector particle which causes a repulsive contribution to the tensor gravitation. For the galaxy cluster A1689 new data for the X-ray gas and the strong lensing properties are presented. Fits to MOG are possible by adjusting the galaxy density profile. However, this appears to work as an effective dark matter component, posing a serious problem for MOG. New gas and strong lensing data for the cluster A1835 support these conclusions and point at a tendency of the gas alone to overestimate the lensing effects in MOG theory.

  5. nIFTy galaxy cluster simulations II: radiative models

    CSIR Research Space (South Africa)

    Sembolini, F

    2016-04-01

    Full Text Available Valerio 2, I-34127 Trieste, Italy 12Physics Department, University of the Western Cape, Cape Town 7535, Sotuh Africa 13Physics Department, University of Western Cape, Bellville, Cape Town 7535, South Africa 14South African Astronomical Observatory, PO Box...IFTy cluster comparison project (Sembolini et al., 2015): a study of the latest state-of- the-art hydrodynamical codes using simulated galaxy clusters as a testbed for theories of galaxy formation. Simulations are indis- pensable tools in the interpretation...

  6. Coronal Physics and the Chandra Emission Line Project

    Science.gov (United States)

    Brickhouse, N. S.; Drake, J. J.

    2000-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.

  7. Clustering of Star-forming Galaxies Near a Radio Galaxy at z=5.2

    Science.gov (United States)

    Overzier, Roderik A.; Miley, G. K.; Bouwens, R. J.; Cross, N. J. G.; Zirm, A. W.; Benítez, N.; Blakeslee, J. P.; Clampin, M.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Bradley, L. D.; Broadhurst, T. J.; Coe, D.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Homeier, N.; Infante, L.; Kimble, R. A.; Krist, J. E.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2006-01-01

    We present HST ACS observations of the most distant radio galaxy known, TN J0924-2201 at z=5.2. This radio galaxy has six spectroscopically confirmed Lyα-emitting companion galaxies and appears to lie within an overdense region. The radio galaxy is marginally resolved in i775 and z850, showing continuum emission aligned with the radio axis, similar to what is observed for lower redshift radio galaxies. Both the half-light radius and the UV star formation rate are comparable to the typical values found for Lyman break galaxies at z~4-5. The Lyα emitters are sub-L* galaxies, with deduced star formation rates of 1-10 Msolar yr-1. One of the Lyα emitters is only detected in Lyα. Based on the star formation rate of ~3 Msolar yr-1 calculated from Lyα, the lack of continuum emission could be explained if the galaxy is younger than ~2 Myr and is producing its first stars. Observations in V606i775z850 were used to identify additional Lyman break galaxies associated with this structure. In addition to the radio galaxy, there are 22 V606 break (z~5) galaxies with z850dropouts extracted from GOODS and the UDF parallel fields. We find evidence for an overdensity to very high confidence (>99%), based on a counts-in-cells analysis applied to the control field. The excess suggests that the V606 break objects are associated with a forming cluster around the radio galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9291.

  8. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    Science.gov (United States)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-07-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010 M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  9. NASA Telescopes Help Identify Most Distant Galaxy Cluster

    Science.gov (United States)

    2011-01-01

    WASHINGTON -- Astronomers have uncovered a burgeoning galactic metropolis, the most distant known in the early universe. This ancient collection of galaxies presumably grew into a modern galaxy cluster similar to the massive ones seen today. The developing cluster, named COSMOS-AzTEC3, was discovered and characterized by multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space telescopes, and the ground-based W.M. Keck Observatory and Japan's Subaru Telescope. "This exciting discovery showcases the exceptional science made possible through collaboration among NASA projects and our international partners," said Jon Morse, NASA's Astrophysics Division director at NASA Headquarters in Washington. Scientists refer to this growing lump of galaxies as a proto-cluster. COSMOS-AzTEC3 is the most distant massive proto-cluster known, and also one of the youngest, because it is being seen when the universe itself was young. The cluster is roughly 12.6 billion light-years away from Earth. Our universe is estimated to be 13.7 billion years old. Previously, more mature versions of these clusters had been spotted at 10 billion light-years away. The astronomers also found that this cluster is buzzing with extreme bursts of star formation and one enormous feeding black hole. "We think the starbursts and black holes are the seeds of the cluster," said Peter Capak of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "These seeds will eventually grow into a giant, central galaxy that will dominate the cluster -- a trait found in modern-day galaxy clusters." Capak is first author of a paper appearing in the Jan. 13 issue of the journal Nature. Most galaxies in our universe are bound together into clusters that dot the cosmic landscape like urban sprawls, usually centered around one old, monstrous galaxy containing a massive black hole. Astronomers thought that primitive versions of these clusters, still forming and clumping

  10. Unbiased methods for removing systematics from galaxy clustering measurements

    Science.gov (United States)

    Elsner, Franz; Leistedt, Boris; Peiris, Hiranya V.

    2016-02-01

    Measuring the angular clustering of galaxies as a function of redshift is a powerful method for extracting information from the three-dimensional galaxy distribution. The precision of such measurements will dramatically increase with ongoing and future wide-field galaxy surveys. However, these are also increasingly sensitive to observational and astrophysical contaminants. Here, we study the statistical properties of three methods proposed for controlling such systematics - template subtraction, basic mode projection, and extended mode projection - all of which make use of externally supplied template maps, designed to characterize and capture the spatial variations of potential systematic effects. Based on a detailed mathematical analysis, and in agreement with simulations, we find that the template subtraction method in its original formulation returns biased estimates of the galaxy angular clustering. We derive closed-form expressions that should be used to correct results for this shortcoming. Turning to the basic mode projection algorithm, we prove it to be free of any bias, whereas we conclude that results computed with extended mode projection are biased. Within a simplified setup, we derive analytical expressions for the bias and discuss the options for correcting it in more realistic configurations. Common to all three methods is an increased estimator variance induced by the cleaning process, albeit at different levels. These results enable unbiased high-precision clustering measurements in the presence of spatially varying systematics, an essential step towards realizing the full potential of current and planned galaxy surveys.

  11. Infrared emission from dust in the Coma cluster of galaxies

    International Nuclear Information System (INIS)

    Dwek, E.; Rephaeli, Y.; Mather, J.C.

    1990-01-01

    Detailed calculations of the infrared emission from collisionally heated dust in the Coma cluster are presented. The proposed model includes continuous dust injection from galaxies, grain destruction by sputtering, and transient grain heating by the hot plasma. The computed infrared fluxes are in agreement with the upper limits obtained from the IRAS. The calculations, and constraints implied by the IRAS observations, suggest that the intracluster dust in the central region of the cluster must be significantly depleted compared to interstellar abundances. The observed visual extinction can therefore not be attributed to the presence of dust in that region. Extinction due to cluster galaxies or their haloes is ruled out as well. The only alternative explanation is that the extinction is caused by dust at great distances from the cluster center. 30 refs

  12. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    Science.gov (United States)

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-10-01

    The age-matching model has recently been shown to predict correctly the luminosity L and g - r colour of galaxies residing within dark matter haloes. The central tenet of the model is intuitive: older haloes tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g - r colour trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new Sloan Digital Sky Survey (SDSS) measurements of galaxy clustering and the galaxy-galaxy lensing signal ΔΣ as a function of M* and g - r colour, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the ΔΣ signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of conditional abundance matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM suggests that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  13. The mass-temperature relation for clusters of galaxies

    DEFF Research Database (Denmark)

    Hjorth, J.; Oukbir, J.; van Kampen, E.

    1998-01-01

    A tight mass-temperature relation, M(r)/r proportional to T-x, is expected in most cosmological models if clusters of galaxies are homologous and the intracluster gas is in global equilibrium with the dark matter. We here calibrate this relation using eight clusters with well-defined global tempe...... redshift, the relation represents a new tool for determination of cosmological parameters, notably the cosmological constant Lambda....

  14. 4C radio sources in clusters of galaxies

    International Nuclear Information System (INIS)

    McHardy, I.M.

    1979-01-01

    Observations of a complete sample of 4C and 4CT radio sources in Abell clusters with the Cambridge One-Mile telescope are analysed. It is concluded that radio sources are strongly concentrated towards the cluster centres and are equally likely to be found in clusters of any richness. The probability of a galaxy of a given absolute magnitude producing a source above a given luminosity does not depend on cluster membership. 4C and 4CT radio sources in clusters, selected at 178 MHz, occur preferentially in Bautz-Morgan (BM) class 1 clusters, whereas those selected at 1.4 GHz do not. The most powerful radio source in the cluster is almost always associated with the optically brightest galaxy. The average spectrum of 4C sources in the range 408 to 1407 MHz is steeper in BM class 1 than in other classes. Spectra also steepen with cluster richness. the morphology of 4C sources in clusters depends strongly on BM class and, in particular, radio-trail sources occur only in BM classes II, II-III and III. (author)

  15. Bright galaxies in the Fornax cluster. Automated galaxy surface photometry: Pt. 7

    International Nuclear Information System (INIS)

    Disney, M.J.; Phillipps, S.; Davies, J.L.; Cawson, M.G.M.; Kibblewhite, E.J.

    1990-01-01

    We have determined surface-brightness profiles for all galaxies down to magnitude B = 16 in the central region of the Fornax cluster. Using existing redshift data, we have determined the distributions of surface brightness for both the whole sample and for cluster disc galaxies only. Although both distributions peak at extrapolated central surface brightness ∼ 21.7B mag/arcsec 2 (the canonical result), it is shown that they are, in fact, consistent with very broad distributions of disc central surface brightness once selection effects and the effects of bulge contamination of the profile are taken into account. (author)

  16. The ursa major cluster of galaxies - IV. HI synthesis observations

    NARCIS (Netherlands)

    Verheijen, MAW; Sancisi, R

    In this data paper we present the results of an extensive 21 cm-line synthesis imaging survey of 43 spiral galaxies in the nearby Ursa Major cluster using the Westerbork Synthesis Radio Telescope. Detailed kinematic information in the form of position-velocity diagrams and rotation curves is

  17. Turbulent heating in galaxy clusters brightest in X-rays

    Science.gov (United States)

    Zhuravleva, I.; Churazov, E.; Schekochihin, A. A.; Allen, S. W.; Arévalo, P.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2014-11-01

    The hot (107 to 108 kelvin), X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales much shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating for these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies, through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM remains open. Here we present a plausible solution to this question based on deep X-ray data and a new data analysis method that enable us to evaluate directly the ICM heating rate from the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius--it may therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in the atmospheres of X-ray-emitting, gas-rich systems on scales from galaxy clusters to groups and elliptical galaxies.

  18. Comparing Chemical Compositions of Dwarf Elliptical Galaxies and Globular Clusters

    Science.gov (United States)

    Chu, Jason; Sparkman, Lea; Toloba, Elisa; Guhathakurta, Puragra

    2015-01-01

    Because of their abundance in cluster environments and fragility due to their low mass, dwarf elliptical galaxies (dEs) are excellent specimens for studying the physical processes that occur inside galaxy clusters. These studies can be used to expand our understanding of the process of galaxy (specifically dE) formation and the role of dark matter in the Universe. To move closer to better understanding these topics, we present a study of the relationship between dEs and globular clusters (GCs) by using the largest sample of dEs and GC satellites to date. We focus on comparing the ages and chemical compositions of dE nuclei with those of satellite GCs by analyzing absorption lines in their spectra. To better view the spectral features of these relatively dim objects, we employ a spectral co-addition process, where we add the fluxes of several objects to produce a single spectrum with high signal-to-noise ratio. Our finding that dE nuclei are younger and more metal rich than globular clusters establishes important benchmarks that future dE formation theories will consider. We also establish a means to identify GCs whose parent galaxies are uncertain, which allows us to make comparisons between this GC group and the satellite GCs.

  19. Galaxy clusters as probes for cosmology and dark matter

    DEFF Research Database (Denmark)

    Battistelli, Elia S.; Burigana, Carlo; De Bernardis, Paolo

    2016-01-01

    In recent years, significant progress has been made in building new galaxy clusters samples, at low and high redshifts, from wide-area surveys, particularly exploiting the Sunyaev-Zel'dovich (SZ) effect. A large effort is underway to identify and characterize these new systems with optical/NIR an...

  20. Gravitational Clustering of Galaxies in an Expanding Universe ...

    Indian Academy of Sciences (India)

    2006-12-08

    Dec 8, 2006 ... Abstract. We inquire the phenomena of clustering of galaxies in an expanding universe from a theoretical point of view on the basis of ther- modynamics and correlation functions. The partial differential equation is developed both for the point mass and extended mass structures of a two-point correlation ...

  1. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    International Nuclear Information System (INIS)

    Kormendy, John; Cornell, Mark E.; Drory, Niv; Bender, Ralf

    2010-01-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R ≡ λ/FWHM ≅ 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s -1 in the nucleus of M 33 to 78 ± 2 km s -1 in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M . ∼ 6 M sun in M 101 and M . ∼ 6 M sun in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up ∼ circ > 150 km s -1 , including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute ∼1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants.

  2. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  3. The Formation and Evolution of Star Clusters in Interacting Galaxies

    Science.gov (United States)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2017-08-01

    Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at ˜ 2× {10}5 {M}⊙ , but the origin of this peaked distribution is highly debated. Here we investigate the formation and evolution of star clusters (SCs) in interacting galaxies using high-resolution hydrodynamical simulations performed with two different codes in order to mitigate numerical artifacts. We find that massive SCs in the range of ˜ {10}5.5{--}{10}7.5 {M}⊙ form preferentially in the highly shocked regions produced by galaxy interactions. The nascent cluster-forming clouds have high gas pressures in the range of P/k˜ {10}8{--}{10}12 {{K}} {{cm}}-3, which is ˜ {10}4{--}{10}8 times higher than the typical pressure of the interstellar medium but consistent with recent observations of a pre-super-SC cloud in the Antennae Galaxies. Furthermore, these massive SCs have quasi-lognormal initial mass functions with a peak around ˜ {10}6 {M}⊙ . The number of clusters declines with time due to destructive processes, but the shape and the peak of the mass functions do not change significantly during the course of galaxy collisions. Our results suggest that gas-rich galaxy mergers may provide a favorable environment for the formation of massive SCs such as globular clusters, and that the lognormal mass functions and the unique peak may originate from the extreme high-pressure conditions of the birth clouds and may survive the dynamical evolution.

  4. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer,; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U.,

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster

  5. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan; Weeren, Reinout van [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buote, David A. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gastaldello, Fabio, E-mail: yuanyuan.su@cfa.harvard.edu [INAF-IASF-Milano, Via E. Bassini 15, I-20133 Milano (Italy)

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  6. AMICO: optimized detection of galaxy clusters in photometric surveys

    Science.gov (United States)

    Bellagamba, Fabio; Roncarelli, Mauro; Maturi, Matteo; Moscardini, Lauro

    2018-02-01

    We present Adaptive Matched Identifier of Clustered Objects (AMICO), a new algorithm for the detection of galaxy clusters in photometric surveys. AMICO is based on the Optimal Filtering technique, which allows to maximize the signal-to-noise ratio (S/N) of the clusters. In this work, we focus on the new iterative approach to the extraction of cluster candidates from the map produced by the filter. In particular, we provide a definition of membership probability for the galaxies close to any cluster candidate, which allows us to remove its imprint from the map, allowing the detection of smaller structures. As demonstrated in our tests, this method allows the deblending of close-by and aligned structures in more than 50 per cent of the cases for objects at radial distance equal to 0.5 × R200 or redshift distance equal to 2 × σz, being σz the typical uncertainty of photometric redshifts. Running AMICO on mocks derived from N-body simulations and semi-analytical modelling of the galaxy evolution, we obtain a consistent mass-amplitude relation through the redshift range of 0.3 slope of ∼0.55 and a logarithmic scatter of ∼0.14. The fraction of false detections is steeply decreasing with S/N and negligible at S/N > 5.

  7. Cosmological analysis of galaxy clusters surveys in X-rays

    International Nuclear Information System (INIS)

    Clerc, N.

    2012-01-01

    Clusters of galaxies are the most massive objects in equilibrium in our Universe. Their study allows to test cosmological scenarios of structure formation with precision, bringing constraints complementary to those stemming from the cosmological background radiation, supernovae or galaxies. They are identified through the X-ray emission of their heated gas, thus facilitating their mapping at different epochs of the Universe. This report presents two surveys of galaxy clusters detected in X-rays and puts forward a method for their cosmological interpretation. Thanks to its multi-wavelength coverage extending over 10 sq. deg. and after one decade of expertise, the XMM-LSS allows a systematic census of clusters in a large volume of the Universe. In the framework of this survey, the first part of this report describes the techniques developed to the purpose of characterizing the detected objects. A particular emphasis is placed on the most distant ones (z ≥ 1) through the complementarity of observations in X-ray, optical and infrared bands. Then the X-CLASS survey is fully described. Based on XMM archival data, it provides a new catalogue of 800 clusters detected in X-rays. A cosmological analysis of this survey is performed thanks to 'CR-HR' diagrams. This new method self-consistently includes selection effects and scaling relations and provides a means to bypass the computation of individual cluster masses. Propositions are made for applying this method to future surveys as XMM-XXL and eRosita. (author) [fr

  8. Chandra Finds Ghosts Of Eruption In Galaxy Cluster

    Science.gov (United States)

    2002-01-01

    "Ghostly" relics of an ancient eruption that tore through a cluster of galaxies were recently uncovered by NASA's Chandra X-ray Observatory. The discovery implies that galaxy clusters are the sites of enormously energetic and recurring explosions, and may provide an explanation why galaxy clusters behave like giant cosmic magnets. "Chandra's image revealed vast regions in the galaxy cluster Abell 2597 that contain almost no X-ray or radio emission. We call them ghost cavities," said Brian McNamara of Ohio University in Athens today during a press conference at the American Astronomical Society meeting in Washington. "They appear to be remnants of an old explosion where the radio emission has faded away over millions of years." The ghost cavities were likely created by extremely powerful explosions, due to material falling toward a black hole millions of times more massive than the Sun. As the matter swirled around the black hole, located in a galaxy near the center of the cluster, it generated enormous electromagnetic fields that expelled material from the vicinity of the black hole at high speeds. This explosive activity in Abell 2597 created jets of highly energetic particles that cleared out voids in the hot gas. Because they are lighter than the surrounding material, the cavities will eventually push their way to the edge of the cluster, just as air bubbles in water make their way to the surface. Researchers also found evidence that this explosion was not a one-time event. "We detected a small, bright radio source near the center of the cluster that indicates a new explosion has occurred recently," said team member Michael Wise of the Massachusetts Institute of Technology in Cambridge, "so the cycle of eruption is apparently continuing." Though dim, the ghost cavities are not completely empty. They contain a mixture of very hot gas, high-energy particles and magnetic fields -- otherwise the cavities would have collapsed under the pressure of the surrounding hot

  9. Clustering of galaxies with f(R) gravity

    Science.gov (United States)

    Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker

    2018-02-01

    Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.

  10. Spectral energy distributions for galaxies in high-redshift clusters

    International Nuclear Information System (INIS)

    Ellis, R.S.; Couch, W.J.; MacLaren, Iain

    1985-01-01

    The distant cluster 0016+16 (z=0.54) has been imaged through six intermediate-bandwidth filters ranging in wavelength from 418 to 862 nm, maintaining a photometric precision of 10 per cent to a limiting magnitude of F=22. It is found that the field-subtracted colour distributions are not compatible with a single uniformly red population of early-type members at z=0.54. A significant intermediate colour component identified with a spectroscopic object at z=0.30 is also present, thus reducing the possibility that the z=0.54 cluster exhibits an excess of blue galaxies. It is demonstrated how the six-colour data can be used to individually classify the galaxies by type and approximate redshift so that it is possible to identify which objects are members of the z=0.54 cluster. (author)

  11. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    Science.gov (United States)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  12. Smooth-arm spiral galaxies: their properties and significance to cluster-galaxy evolution

    International Nuclear Information System (INIS)

    Wilkerson, M.S.

    1979-01-01

    In this dissertation a number of galaxies with optical appearances between those of normal, actively-star-forming spirals and SO galaxies have been examined. These so-called smooth-arm spiral galaxies exhibit spiral arms without any of the spiral tracers - H II regions, O-B star associations, dust - indicative of current star formation. Tests were made to find if, perhaps, these smooth-arm spirals could have, at one time, been normal, actively-star-forming spirals whose gas had been somehow removed; and that are currently transforming into SO galaxies. This scenario proceeds as (1) removal of gas, (2) gradual dying of disk density wave, (3) emergence of SO galaxy. If the dominant method of gas removal is ram-pressure stripping by a hot, intracluster medium, then smooth-arm spirals should occur primarily in x-ray clusters. Some major findings of this dissertation are as follows: (1) Smooth-arm spirals are redder than normal spirals of the same morphological type. Most smooth-arm spirals cannot be distinguished by color from SO galaxies. (2) A weak trend exists for smooth-arm spirals with stronger arms to be bluer than those with weaker arms; thus implying that the interval since gas removal has been shorter for the galaxies with stronger arms. (3) Smooth-arm spirals are deficient in neutral hydrogen - sometimes by an order of magnitude or, possibly, more

  13. GLOBULAR CLUSTERS INDICATE THAT ULTRA-DIFFUSE GALAXIES ARE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Michael A.; Trujillo, Ignacio, E-mail: beasley@iac.es [Instituto de Astrofisica de Canarias, Calle Via Láctea, La Laguna, Tenerife (Spain)

    2016-10-10

    We present an analysis of archival HST /ACS imaging in the F475W ( g {sub 475}), F606W ( V {sub 606}), and F814W ( I {sub 814}) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed to be located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5 σ completeness limit of the imaging ( I {sub 814} = 27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of 27 ± 5 and a V -band specific frequency S {sub N} = 28 ± 5. Based on comparisons to the GC systems of local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter-dominated dwarf galaxy with virial mass ∼9.0 × 10{sup 10} M {sub ⊙} and a dark-to-stellar mass ratio M {sub vir}/ M {sub star} ∼ 1000. Based on the stellar mass growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky-Way-like system, but is more similar to quenched Large-Magellanic-Cloud-like systems. We find that the mean color of the GC population, g {sub 475}– I {sub 814} = 0.91 ± 0.05 mag, coincides with the peak of the color distribution of intracluster GCs and is also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue peak in the GC populations of massive galaxies may be fed—at least in part—by the disrupted equivalents of systems such as DF17.

  14. Major cluster mergers and the location of the brightest cluster galaxy

    International Nuclear Information System (INIS)

    Martel, Hugo; Robichaud, Fidèle; Barai, Paramita

    2014-01-01

    Using a large N-body cosmological simulation combined with a subgrid treatment of galaxy formation, merging, and tidal destruction, we study the formation and evolution of the galaxy and cluster population in a comoving volume (100 Mpc) 3 in a ΛCDM universe. At z = 0, our computational volume contains 1788 clusters with mass M cl > 1.1 × 10 12 M ☉ , including 18 massive clusters with M cl > 10 14 M ☉ . It also contains 1, 088, 797 galaxies with mass M gal ≥ 2 × 10 9 M ☉ and luminosity L > 9.5 × 10 5 L ☉ . For each cluster, we identified the brightest cluster galaxy (BCG). We then computed two separate statistics: the fraction f BNC of clusters in which the BCG is not the closest galaxy to the center of the cluster in projection, and the ratio Δv/σ, where Δv is the difference in radial velocity between the BCG and the whole cluster and σ is the radial velocity dispersion of the cluster. We found that f BNC increases from 0.05 for low-mass clusters (M cl ∼ 10 12 M ☉ ) to 0.5 for high-mass clusters (M cl > 10 14 M ☉ ) with very little dependence on cluster redshift. Most of this result turns out to be a projection effect and when we consider three-dimensional distances instead of projected distances, f BNC increases only to 0.2 at high-cluster mass. The values of Δv/σ vary from 0 to 1.8, with median values in the range 0.03-0.15 when considering all clusters, and 0.12-0.31 when considering only massive clusters. These results are consistent with previous observational studies and indicate that the central galaxy paradigm, which states that the BCG should be at rest at the center of the cluster, is usually valid, but exceptions are too common to be ignored. We built merger trees for the 18 most massive clusters in the simulation. Analysis of these trees reveal that 16 of these clusters have experienced 1 or several major or semi-major mergers in the past. These mergers leave each cluster in a non-equilibrium state, but eventually the cluster

  15. A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. II. ENVIRONMENTAL IMPACT ON GALAXY GROWTH

    International Nuclear Information System (INIS)

    Atlee, David W.; Martini, Paul

    2012-01-01

    Galaxy clusters provide powerful laboratories for the study of galaxy evolution, particularly the origin of correlations of morphology and star formation rate (SFR) with density. We construct visible to MIR spectral energy distributions of galaxies in eight low-redshift (z * (>99% confidence) with no dependence on R/R 200 or projected local density at fixed mass. A merged sample of galaxies from the five best measured clusters shows (SFR)∝(R/R 200 ) 1.1±0.3 for galaxies with R/R 200 ≤ 0.4. A decline in the fraction of SFGs toward the cluster center contributes most of this effect, but it is accompanied by a reduction in (SFR) for SFGs with R ≤ 0.1 R 200 . The increase in the fraction of SFGs toward larger R/R 200 and the isolation of SFGs with reduced SFRs near the cluster center are consistent with the truncation of star formation by ram-pressure stripping, as is the tendency for more massive SFGs to have higher SFRs. We conclude that stripping is more likely than slower processes to drive the properties of SFGs with R 200 in clusters. We also find that galaxies near the cluster center are more massive than galaxies farther out in the cluster at ∼3.5σ, which suggests that dynamical relaxation significantly impacts the distribution of cluster galaxies as the clusters evolve.

  16. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    Science.gov (United States)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  17. Cosmological constraints from Chandra observations of galaxy clusters.

    Science.gov (United States)

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  18. DARK ENERGY AND KEY PHYSICAL PARAMETERS OF CLUSTERS OF GALAXIES

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2013-12-01

    Full Text Available We study physics of clusters of galaxies embedded in the cosmic dark energy background. The equilibrium and stability of polytropic spheres with equation of state of the matter             P = Kpγ, γ = 1 + 1/n, in presence of a non-zero cosmological constant is investigated. The equilibrium state exists only for central densities p0 larger than the critical value pc and there are no static solutions at p0clusters like the Virgo cluster, which halo radius is close to the zero-gravity radius. It is shown, that the empirical data on clusters like the Virgo cluster or the Coma cluster, are consistent with the assumption that the local density of dark energy on the scale of clusters of galaxies is the same as on the global cosmological scales.

  19. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    , to small scales, with possible modifications of the initial mass function. From a high-resolution numerical simulation of the major merger of two spiral galaxies, we analyse the effects of the galaxy interaction on the star forming properties of the ISM at the scale of star clusters. The increase of the gas turbulence is likely able to explain the formation of Super Star Clusters in the system. Our investigation of the SFR-HI relation in galaxy mergers will be complemented by high-resolution HI data for additional systems, and pushed to yet smaller spatial scales. (author) [fr

  20. The optical properties of galaxies in the Ophiuchus cluster

    Science.gov (United States)

    Durret, F.; Wakamatsu, K.; Adami, C.; Nagayama, T.; Omega Muleka Mwewa Mwaba, J. M.

    2018-05-01

    Context. Ophiuchus is one of the most massive clusters known, but due to its low Galactic latitude its optical properties remain poorly known. Aims: We investigate the optical properties of Ophiuchus to obtain clues on the formation epoch of this cluster, and compare them to those of the Coma cluster, which is comparable in mass to Ophiuchus but much more dynamically disturbed. Methods: Based on a deep image of the Ophiuchus cluster in the r' band obtained at the Canada France Hawaii Telescope with the MegaCam camera, we have applied an iterative process to subtract the contribution of the numerous stars that, due to the low Galactic latitude of the cluster, pollute the image, and have obtained a photometric catalogue of 2818 galaxies fully complete at r' = 20.5 mag and still 91% complete at r' = 21.5 mag. We use this catalogue to derive the cluster Galaxy Luminosity Function (GLF) for the overall image and for a region (hereafter the "rectangle" region) covering exactly the same physical size as the region in which the GLF of the Coma cluster was previously studied. We then compute density maps based on an adaptive kernel technique, for different magnitude limits, and define three circular regions covering 0.08, 0.08, and 0.06 deg2, respectively, centred on the cluster (C), on northwest (NW) of the cluster, and southeast (SE) of the cluster, in which we compute the GLFs. Results: The GLF fits are much better when a Gaussian is added to the usual Schechter function, to account for the excess of very bright galaxies. Compared to Coma, Ophiuchus shows a strong excess of bright galaxies. Conclusions: The properties of the two nearby very massive clusters Ophiuchus and Coma are quite comparable, though they seem embedded in different large-scale environments. Our interpretation is that Ophiuchus was built up long ago, as confirmed by its relaxed state (see paper I) while Coma is still in the process of forming. The photometric catalogue of Ophiuchus (full Table B.1) is

  1. Dark Matter in Galaxy Clusters: Shape, Projection, and Environment

    Science.gov (United States)

    Groener, Austen M.

    We explore the intrinsic distribution of dark matter within galaxy clusters, by combining insights from the largest N-body simulations as well as the largest observational dataset of its kind. Firstly, we study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimate of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of 3D concentrations (c200) and isodensity shape on weak and strong lensing scales. We find this difference to be ˜ 18% (˜ 9%) for low (medium) mass cluster halos with intrinsically low concentrations (c200=1- 3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well-aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ˜ 30°. We also present a value-added catalog of our analysis results, which we have made publicly available to download. Following that, we then turn to observational measurements galaxy clusters. Scaling relations of clusters have made them particularly important cosmological probes of structure formation. In this work, we present a comprehensive study of the relation between two profile observables, concentration (cvir ) and mass (Mvir). We have collected the largest known sample of measurements from the literature which make use of one or more of the following reconstruction techniques: Weak gravitational lensing (WL), strong gravitational lensing (SL), Weak+Strong Lensing (WL+SL), the Caustic Method (CM), Line-of-sight Velocity Dispersion (LOSVD), and X-ray. We find that the concentration-mass (c-M) relation

  2. Galaxy Clusters: Substructure and Mass Systematics

    Science.gov (United States)

    Zhang, Yu-Ying

    2010-07-01

    We calibrate the X-ray measured hydrostatic equilibrium (H.E.) mass and assess the origin of the H.E. mass systematics using 2-D spectrally measured X-ray properties. We obtained that the average X-ray mass derived from H.E. using XMM-Newton data is lower compared to the weak lensing mass from Subaru data for relaxed clusters in a sample of 12 clusters at z~0.2. This is comparable to the expectation of numerical simulations because of the non-thermal pressure support due to turbulence and bulk motions. The gas mass to weak lensing mass ratio shows no dependence on the cluster morphology, which indicates that the gas mass may be a good mass proxy regardless of the cluster dynamical state. To understand the origin of the systematics of the H.E. mass, we investigated 4 nearby clusters, for which the substructure is quantified by the radial fluctuations in the spectrally measured 2-D maps by a cumulative/differential scatter profile relative to the mean profile within/at a given radius. The amplitude of and the discontinuity in the scatter complements 2-D substructure diagnostics, e.g. indicating the most disturbed radial range. There is a tantalizing link between the substructure identified using the scatter of the entropy and pressure fluctuations and the deviation of the H.E. mass relative to the expected mass based on the representative scaling relation, e.g., M-Mgas, particularly at r500-the radius within which the over-density, Δ, is 500 with respect to the critical density. This indicates that at larger radii, the systematic error of the H.E. mass may well be caused by substructure.

  3. STAR FORMATION AND SUPERCLUSTER ENVIRONMENT OF 107 NEARBY GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Einasto, Maret; Vennik, Jaan [Tartu Observatory, 61602 Tõravere (Estonia)

    2017-01-20

    We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction ( f {sub SF}) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h {sup −1} Mpc (D8). The slope of f {sub SF} versus D8 is −0.008 ± 0.002. The f {sub SF} of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster f {sub SF} and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher f {sub SF} in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).

  4. STAR FORMATION AND SUPERCLUSTER ENVIRONMENT OF 107 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2017-01-01

    We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction ( f SF ) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h −1 Mpc (D8). The slope of f SF versus D8 is −0.008 ± 0.002. The f SF of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster f SF and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher f SF in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).

  5. Weak Lensing by Galaxy Clusters: from Pixels to Cosmology

    International Nuclear Information System (INIS)

    Gruen, Daniel

    2015-01-01

    The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J

  6. Weak Lensing by Galaxy Clusters: from Pixels to Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, Daniel [Ludwig Maximilian Univ., Munich (Germany)

    2015-03-11

    The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J

  7. HEAO A-1 observations of x ray emitting clusters of galaxies

    International Nuclear Information System (INIS)

    Johnson, M.W.

    1990-01-01

    Clusters of galaxies were known to be sources of x ray emission. Statistical analysis of how the x ray emission from clusters is related to other cluster properties was limited by the small number of clusters observed in the x ray region and the completeness of the x ray sample being considered. Both of these limitations are solved by producing a flux-limited catalog of x ray emitting Abell clusters of galaxies and using this catalog to investigate how the x ray emission correlates with other cluster properties. X ray data from the HEAO A-1 experiment were used to search for x ray emission from Abell clusters of galaxies. Selection criteria were chosen to ensure that the resulting catalog was complete and as free as possible from selection effects. The resulting identifications and x ray luminosities were used to check correlations with other cluster properties. Special consideration was given to observational selection effects and consistency checks. The data were consistent with all clusters of galaxies being x ray emitters beyond some limiting luminosity, which depends on cluster richness. Furthermore, the x ray luminosity of clusters is correlated with the richness of the cluster, its galaxy content, and the spacial distribution and galaxy content of galaxies within the cluster. It is concluded that the x ray emission from clusters of galaxies depends not only on the richness of the cluster but also the morphology of the cluster

  8. The Centaurus cluster of galaxies. II. The bimodal-velocity structure

    International Nuclear Information System (INIS)

    Lucey, J.R.; Currie, M.J.; Dickens, R.J.

    1985-09-01

    This is the second paper in a series that describes an extensive study of the Centaurus cluster of galaxies. The paper concerns the bimodal velocity distribution of the galaxies in the cluster. The likely location of the two main cluster components is discussed. The data strongly favours the hypothesis that the two components lie within the same cluster. (UK)

  9. Evolution of the degree of substructures in simulated galaxy clusters

    Science.gov (United States)

    De Boni, Cristiano; Böhringer, Hans; Chon, Gayoung; Dolag, Klaus

    2018-05-01

    We study the evolution of substructure in the mass distribution with mass, redshift and radius in a sample of simulated galaxy clusters. The sample, containing 1226 objects, spans the mass range M200 = 1014 - 1.74 × 1015 M⊙ h-1 in six redshift bins from z = 0 to z = 1.179. We consider three different diagnostics: 1) subhalos identified with SUBFIND; 2) overdense regions localized by dividing the cluster into octants; 3) offset between the potential minimum and the center of mass. The octant analysis is a new method that we introduce in this work. We find that none of the diagnostics indicate a correlation between the mass of the cluster and the fraction of substructures. On the other hand, all the diagnostics suggest an evolution of substructures with redshift. For SUBFIND halos, the mass fraction is constant with redshift at Rvir, but shows a mild evolution at R200 and R500. Also, the fraction of clusters with at least a subhalo more massive than one thirtieth of the total mass is less than 20%. Our new method based on the octants returns a mass fraction in substructures which has a strong evolution with redshift at all radii. The offsets also evolve strongly with redshift. We also find a strong correlation for individual clusters between the offset and the fraction of substructures identified with the octant analysis. Our work puts strong constraints on the amount of substructures we expect to find in galaxy clusters and on their evolution with redshift.

  10. Dark energy and key physical parameters of clusters of galaxies

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  11. The evolution of magnetic fields in clusters of galaxies

    International Nuclear Information System (INIS)

    Stoeckl, J.

    2011-01-01

    Although the observational knowledge base about the properties of magnetic fields in clusters of galaxies has significantly improved in recent years, our understanding of the evolution and influence of the magnetic fields is still limited. We present results from our study on the influence of cluster scale magnetic fields on the structure formation of clusters of galaxies and the evolution of the intra-cluster medium (ICM). The high-resolution simulations employ a self-consistent numerical setup, which includes gravity, cosmology, magnetohydrodynamics and radiative cooling. We find that during structure formation cosmological magnetic seed fields of the order of 10 -1 1 to 10 -9 G are amplified by up to six orders of magnitude, which is in good agreement with observations. Furthermore we find that merger shocks during the cluster formation can have a dispersive effect on the magnetic field in the cluster center, and the outgoing shock waves can lead to magnetic fields of the order of [mu]G even at distances of more than 1 Mpc from the center. We highlight this as a possible explanation for the faint or undetectable radio halos that can be observed together with strong radio relics. (author) [de

  12. A filament of dark matter between two clusters of galaxies.

    Science.gov (United States)

    Dietrich, Jörg P; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2012-07-12

    It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments. The thread-like structure of this 'cosmic web' has been traced by galaxy redshift surveys for decades. More recently, the warm–hot intergalactic medium (a sparse plasma with temperatures of 10(5) kelvin to 10(7) kelvin) residing in low-redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter, has remained elusive, because earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignments of dark and luminous matter. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft-X-ray emission, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.

  13. The Dynamical Properties of Virgo Cluster Disk Galaxies

    Science.gov (United States)

    Ouellette, N. N. Q.; Courteau, S.; Holtzman, J. A.; Dalcanton, J. J.; McDonald, M.; Zhu, Y.

    2014-03-01

    By virtue of its proximity, the Virgo Cluster is an ideal laboratory for testing our understanding of structure formation in the Universe. In this spirit, we present a dynamical study of Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo (SHIVir) survey. Hα rotation curves (RC) for our gas-rich galaxies were modeled with a multi-parameter fit function from which various velocity measurements were inferred. Our study takes advantage of archival and our own new data as we aim to compile the largest Tully-Fisher relation (TFR) for a cluster to date. Extended velocity dispersion profiles (VDP) are integrated over varying aperture sizes to extract representative velocity dispersions (VDs) for gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy VD in the literature, we rectify this situation by determining the radius at which the measured VD yields the tightest Fundamental Plane (FP). We found that radius to be at least 1 Re, which exceeds the extent of most dispersion profiles in other works.

  14. Protogalaxy interactions in newly formed clusters: Galaxy luminosities, colors, and intergalactic gas

    International Nuclear Information System (INIS)

    Silk, J.

    1978-01-01

    The role of protogalaxy interactions in galactic evolution is studied during the formation of galaxy clusters. In the early stages of the collapse, coalescent encounters of protogalaxies lead to the development of a galactic luminosity function. Once galaxies acquire appreciable random motions, mutual collisions between galaxies in rich clusters will trigger the collapse of interstellar clouds to form stars. This provides both a source for enriched intracluster gas and an interpretation of the correlation between luminosity and color for cluster elliptical galaxies. Other observational consequences that are considered include optical, X-ray, and diffuse nonthermal radio emission from newly formed clusters of galaxies

  15. A faint galaxy redshift survey behind massive clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda Louise [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  16. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    International Nuclear Information System (INIS)

    Durret, F.; Adami, C.; Bertin, E.; Hao, J.; Márquez, I.

    2015-01-01

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less than 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.15< z<0.70, with estimated mean masses between 10"1"3 and a few 10"1"4 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.

  17. Optical study of the DAFT/FADA galaxy cluster survey

    Science.gov (United States)

    Martinet, N.; Durret, F.; Clowe, D.; Adami, C.

    2013-11-01

    DAFT/FADA (Dark energy American French Team) is a large survey of ˜90 high redshift (0.42×10^{14} M_{⊙}) clusters with HST weak lensing oriented data, plus BVRIZJ 4m ground based follow up to compute photometric redshifts. The main goals of this survey are to constrain dark energy parameters using weak lensing tomography and to study a large homogeneous sample of high redshift massive clusters. We will briefly review the latest results of this optical survey, focusing on two ongoing works: the calculation of galaxy luminosity functions from photometric redshift catalogs and the weak lensing analysis of ground based data.

  18. Motions in Nearby Galaxy Cluster Reveal Presence of Hidden Superstructure

    Science.gov (United States)

    2004-09-01

    A nearby galaxy cluster is facing an intergalactic headwind as it is pulled by an underlying superstructure of dark matter, according to new evidence from NASA's Chandra X-ray Observatory. Astronomers think that most of the matter in the universe is concentrated in long large filaments of dark matter and that galaxy clusters are formed where these filaments intersect. A Chandra survey of the Fornax galaxy cluster revealed a vast, swept-back cloud of hot gas near the center of the cluster. This geometry indicates that the hot gas cloud, which is several hundred thousand light years in length, is moving rapidly through a larger, less dense cloud of gas. The motion of the core gas cloud, together with optical observations of a group of galaxies racing inward on a collision course with it, suggests that an unseen, large structure is collapsing and drawing everything toward a common center of gravity. X-ray Image of Fornax with labels X-ray Image of Fornax with labels "At a relatively nearby distance of about 60 million light years, the Fornax cluster represents a crucial laboratory for studying the interplay of galaxies, hot gas and dark matter as the cluster evolves." said Caleb Scharf of Columbia University in New York, NY, lead author of a paper describing the Chandra survey that was presented at an American Astronomical Society meeting in New Orleans, LA. "What we are seeing could be associated directly with the intergalactic gas surrounding a very large scale structure that stretches over millions of light years." The infalling galaxy group, whose motion was detected by Michael Drinkwater of the University of Melbourne in Australia, and colleagues, is about 3 million light years from the cluster core, so a collision with the core will not occur for a few billion years. Insight as to how this collision will look is provided by the elliptical galaxy NGC 1404 that is plunging into the core of the cluster for the first time. As discussed by Scharf and another group

  19. DISRUPTION OF STAR CLUSTERS IN THE INTERACTING ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Karl, Simon J.; Naab, Thorsten; Fall, S. Michael

    2011-01-01

    We re-examine the age distribution of star clusters in the Antennae in the context of N-body+hydrodynamical simulations of these interacting galaxies. All of the simulations that account for the observed morphology and other properties of the Antennae have star formation rates that vary relatively slowly with time, by factors of only 1.3-2.5 in the past 10 8 yr. In contrast, the observed age distribution of the clusters declines approximately as a power law, dN/dτ∝τ γ with γ = -1.0, for ages 10 6 yr ∼ 9 yr. These two facts can only be reconciled if the clusters are disrupted progressively for at least ∼10 8 yr and possibly ∼10 9 yr. When we combine the simulated formation rates with a power-law model, f surv ∝τ δ , for the fraction of clusters that survive to each age τ, we match the observed age distribution with exponents in the range -0.9 ∼< δ ∼< -0.6 (with a slightly different δ for each simulation). The similarity between δ and γ indicates that dN/dτ is shaped mainly by the disruption of clusters rather than variations in their formation rate. Thus, the situation in the interacting Antennae resembles that in relatively quiescent galaxies such as the Milky Way and the Magellanic Clouds.

  20. Quantization State of Baryonic Mass in Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Potter F.

    2007-01-01

    Full Text Available The rotational velocity curves for clusters of galaxies cannot be explained by Newtonian gravitation using the baryonic mass nor does MOND succeed in reducing this discrepancy to acceptable differences. The dark matter hypothesis appears to offer a solution; however, non-baryonic dark matter has never been detected. As an alternative approach, quantum celestial mechanics (QCM predicts that galactic clusters are in quantization states determined solely by the total baryonic mass of the cluster and its total angular momentum. We find excellent agreement with QCM for ten galactic clusters, demonstrating that dark matter is not needed to explain the rotation velocities and providing further support to the hypothesis that all gravitationally bound systems have QCM quantization states.

  1. Dependence of the clustering properties of galaxies on stellar velocity dispersion in the Main galaxy sample of SDSS DR10

    Science.gov (United States)

    Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping

    2014-08-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.

  2. Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation

    Science.gov (United States)

    Keel, William C.; Borne, Kirk D.

    2003-09-01

    We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  3. Spectroscopic Confirmation of a z = 6.740 Galaxy behind the Bullet Cluster

    Science.gov (United States)

    Bradač, Maruša; Vanzella, Eros; Hall, Nicholas; Treu, Tommaso; Fontana, Adriano; Gonzalez, Anthony H.; Clowe, Douglas; Zaritsky, Dennis; Stiavelli, Massimo; Clément, Benjamin

    2012-08-01

    We present the first results of our spectroscopic follow-up of 6.5 dropout behind the Bullet Cluster. We detect an emission line at λ = 9412 Å at >5σ significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Lyα at z = 6.740 ± 0.003. The integrated line flux is f = (0.7 ± 0.1 ± 0.3) × 10-17 erg-1 s-1 cm-2 (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Lyα flux detected at these redshifts. Given the magnification of μ = 3.0 ± 0.2 the intrinsic (corrected for lensing) flux is f int = (0.23 ± 0.03 ± 0.10 ± 0.02) × 10-17 erg-1 s-1 cm-2 (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int_{H_160W}=27.57+/- 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe. Observations were carried out using the Very Large Telescope at the ESO Paranal Observatory under Program ID 088.A-0542. Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and NNX08AD79G. These observations are associated with programs GO10200, GO10863, and GO11099.

  4. A computational and observational study of peculiar galaxies in the Coma cluster

    International Nuclear Information System (INIS)

    Fujimoto, Mitsuaki; Sofue, Yoshiaki; Jugaku, Jun.

    1977-01-01

    Expected numbers of elliptical galaxies distorted tidally in the Coma cluster are formulated in terms of the various parameters of the cluster, and of cross section of galaxy-galaxy encounters and duration of associated tidal distributions. For the latter two quantities, numerical computations are carried out by simulating elliptical galaxies with hundreds of test particles. Comparisons are made with the number of peculiar galaxies observed in the Coma cluster. The hypothesis that the ''missing mass'' of the Coma cluster is hidden in the form of invisible galaxies or huge black holes of ordinary galaxy masses is also tested. It is concluded that tidal interaction between the visible galaxies plays only a minor role in the origin of the peculiar galaxies in the Coma cluster. Most of them would be due to their individual non-tidal mechanisms. If invisible galaxies or massive black holes are assumed as cluster members, their encounters with the luminous members increase the frequency of observable tidal distortion, and approximately half of the number of the peculiar galaxies could be explained in terms of tidal interaction. This result is discussed in relation to some special types of the peculiar galaxies in the Coma cluster. (auth.)

  5. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    Science.gov (United States)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-05-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z physically-motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  6. A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. II. ENVIRONMENTAL IMPACT ON GALAXY GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Atlee, David W.; Martini, Paul, E-mail: atlee@noao.edu [Department of Astronomy, Ohio State University, 4055 McPherson Laboratory, 140 W. 18th Ave., Columbus, OH 43210 (United States)

    2012-12-20

    Galaxy clusters provide powerful laboratories for the study of galaxy evolution, particularly the origin of correlations of morphology and star formation rate (SFR) with density. We construct visible to MIR spectral energy distributions of galaxies in eight low-redshift (z < 0.3) clusters and use them to measure stellar masses and SFRs as a function of environment. A partial correlation analysis indicates that the SFRs of star-forming galaxies (SFGs) depend strongly on M{sub *} (>99% confidence) with no dependence on R/R{sub 200} or projected local density at fixed mass. A merged sample of galaxies from the five best measured clusters shows (SFR){proportional_to}(R/R{sub 200}){sup 1.1{+-}0.3} for galaxies with R/R{sub 200} {<=} 0.4. A decline in the fraction of SFGs toward the cluster center contributes most of this effect, but it is accompanied by a reduction in (SFR) for SFGs with R {<=} 0.1 R{sub 200}. The increase in the fraction of SFGs toward larger R/R{sub 200} and the isolation of SFGs with reduced SFRs near the cluster center are consistent with the truncation of star formation by ram-pressure stripping, as is the tendency for more massive SFGs to have higher SFRs. We conclude that stripping is more likely than slower processes to drive the properties of SFGs with R < 0.4 R{sub 200} in clusters. We also find that galaxies near the cluster center are more massive than galaxies farther out in the cluster at {approx}3.5{sigma}, which suggests that dynamical relaxation significantly impacts the distribution of cluster galaxies as the clusters evolve.

  7. Star-forming brightest cluster galaxies at 0.25

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Stalder, B.; Bayliss, M.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chiu, I.; Desai, S.; Gonzalez, A. H.; Hlavacek-Larrondo, J.; Holzapfel, W. L.; Marrone, D. P.; Miller, E. D.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Stanford, S. A.; Stark, A. A.; Vieira, J. D.; Zenteno, A.

    2016-01-22

    We present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M⊙ yr-1. We find that the BCG SFR exceeds 10 M⊙ yr-1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z gsim 1, this fraction increases to ${92}_{-31}^{+6}$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z gsim 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.

  8. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    Science.gov (United States)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  9. The Magnetic Field in Galaxies, Galaxy Clusters, and the InterGalactic Space

    CERN Document Server

    Dar, A; Dar, Arnon

    2005-01-01

    Magnetic fields of debated origin appear to permeate the Universe on all large scales. There is mounting evidence that supernovae produce not only roughly spherical ejecta and winds, but also highly relativistic jets of ordinary matter. These jets, which travel long distances, slow down by accelerating the matter encountered on their path to cosmic-ray energies. We show that, if the turbulent motions induced by the winds and the cosmic rays generate magnetic fields in rough energy equipartition, the predicted magnetic-field strengths coincide with the ones observed not only in galaxies (5 $\\mu$G in the Milky Way) but also in galaxy clusters (6 $\\mu$G in Coma). The prediction for the intergalactic (or inter-cluster) field is 50 nG.

  10. Clustering by reordering of similarity and Laplacian matrices: Application to galaxy clusters

    Science.gov (United States)

    Mahmoud, E.; Shoukry, A.; Takey, A.

    2018-04-01

    Similarity metrics, kernels and similarity-based algorithms have gained much attention due to their increasing applications in information retrieval, data mining, pattern recognition and machine learning. Similarity Graphs are often adopted as the underlying representation of similarity matrices and are at the origin of known clustering algorithms such as spectral clustering. Similarity matrices offer the advantage of working in object-object (two-dimensional) space where visualization of clusters similarities is available instead of object-features (multi-dimensional) space. In this paper, sparse ɛ-similarity graphs are constructed and decomposed into strong components using appropriate methods such as Dulmage-Mendelsohn permutation (DMperm) and/or Reverse Cuthill-McKee (RCM) algorithms. The obtained strong components correspond to groups (clusters) in the input (feature) space. Parameter ɛi is estimated locally, at each data point i from a corresponding narrow range of the number of nearest neighbors. Although more advanced clustering techniques are available, our method has the advantages of simplicity, better complexity and direct visualization of the clusters similarities in a two-dimensional space. Also, no prior information about the number of clusters is needed. We conducted our experiments on two and three dimensional, low and high-sized synthetic datasets as well as on an astronomical real-dataset. The results are verified graphically and analyzed using gap statistics over a range of neighbors to verify the robustness of the algorithm and the stability of the results. Combining the proposed algorithm with gap statistics provides a promising tool for solving clustering problems. An astronomical application is conducted for confirming the existence of 45 galaxy clusters around the X-ray positions of galaxy clusters in the redshift range [0.1..0.8]. We re-estimate the photometric redshifts of the identified galaxy clusters and obtain acceptable values

  11. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R. [INAF/IRA, via Gobetti 101, I-40129 Bologna (Italy); Ettori, S. [INAF/Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Pratt, G. W. [Laboratoire AIM, IRFU/Service dAstrophysique-CEA/DSM-CNRS-Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Dolag, K. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Markevitch, M. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the

  12. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; Desai, S.; Gangkofner, C.; Gonzalez, A. H.; Gupta, N.; Hennig, C.; Hoekstra, H.; von der Linden, A.; Liu, J.; McDonald, M.; Reichardt, C. L.; Saro, A.; Schrabback, T.; Strazzullo, V.; Stubbs, C. W.; Zenteno, A.

    2016-02-18

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE-) inferred masses in a sample of 19 galaxy clusters with median redshift z similar or equal to 0.42 selected from the South Pole Telescope SPT-SZ survey. These clusters are observed by the Megacam on the Magellan Clay Telescope though gri filters. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian similar or equal to 0.9 (low-z background) and z(median) similar or equal to 1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3 sigma and 1.3 sigma for the low-and high-z backgrounds, respectively. We fit Navarro, Frenk and White models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor. that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in. resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting. for the combined background populations with 1 sigma uncertainties is 0.83 +/- 0.24(stat) +/- 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We use our best-fitting eta to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. This work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.

  13. The outskirts of galaxy clusters: astrophysics and cosmology

    Science.gov (United States)

    Morandi, Andrea; Sun, Ming

    2017-08-01

    Exploring the virialization region of galaxy clusters has recently raised the attention of the scientific community, offering a direct view of structure formation. In this talk, I will present recent results on the physical properties of the intracluster medium in the outer volumes of a sample of 320 clusters (0.056 3 keV) in the Chandra archive, with a total integration time of ~20 Ms. We stacked the emission measure profiles of the clusters to detect a signal out to R100. We then measured the average emission measure, gas density and gas fraction, which scale according to the self-similar model of cluster formation. We observe a steepening of the density profiles beyond R500 with slope β~0.68 at R500 and β~1 at R200 and beyond. By tracking the direction of the cosmic filaments where the clusters are embedded, we report that galaxy clusters deviate from spherical symmetry. We finally used, for the first time, the high level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with Planck+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-w model, we have w=-1.010±0.030 and Ωm=0.311±0.014, while for a time-evolving equation of state of dark energy w(z) we have Ωm=0.308±0.017, w0=-0.993±0.046 and wa=-0.123±0.400 We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical

  14. X-ray spectroscopy of clusters of galaxies and of the cosmic web

    NARCIS (Netherlands)

    Werner, N.

    2008-01-01

    I present the results on the study of the chemical evolution of the intra-cluster medium (ICM) and on the evolution of clusters of galaxies in the context of the cosmic web. Clusters of galaxies are excellent laboratories to study the chemical enrichment history of the Universe. This thesis presents

  15. Infall of galaxies into the Virgo Cluster and some cosmological constraints

    International Nuclear Information System (INIS)

    Tully, R.B.; Shaya, E.J.

    1984-01-01

    A family of mass models have been developed to describe the observed infall of galaxies in the Virgo Southern Extension toward the Virgo Cluster. The requirement that the mass models also explain the motion of our Galaxy with respect to the Virgo Cluster provides some constraints of cosmological interest. If the age of the universe is 10 0 0 0 >15 Gyr, there is already (too much) much mass at small radii, as implied both by the virial analysis of the cluster and the infall model for the galaxies close to the cluster, to explain the motion of our Galaxy. If it is insisted that the universe is older than this limit, then a tractable conclusion is that the cosmological constant is positive. With the mass-age models and a census of the distribution of galaxies near the Virgo Cluster, it is possible to estimate the near-future accretion rate of galaxies into the central cluster

  16. QSOs with narrow emission lines

    International Nuclear Information System (INIS)

    Baldwin, J.A.; Mcmahon, R.; Hazard, C.; Williams, R.E.

    1988-01-01

    Observations of two new high-redshift, narrow-lined QSOs (NLQSOs) are presented and discussed together with observations of similar objects reported in the literature. Gravitational lensing is ruled out as a possible means of amplifying the luminosity for one of these objects. It is found that the NLQSOs have broad bases on their emission lines as well as the prominent narrow cores which define this class. Thus, these are not pole-on QSOs. The FWHM of the emission lines fits onto the smoothly falling tail of the lower end of the line-width distribution for complete QSO samples. The equivalent widths of the combined broad and narrow components of the lines are normal for QSOs of the luminosity range under study. However, the NLQSOs do show ionization differences from broader-lined QSOs; most significant, the semiforbidden C III/C IV intensity ratio is unusually low. The N/C abundance ratio in these objects is found to be normal; the Al/C abundance ratio may be quite high. 38 references

  17. X-ray emission from clusters and groups of galaxies

    Science.gov (United States)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  18. THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Craig D.; Miller, Christopher J. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Richards, Joseph W.; Deadman, Paul-James [Center for Time Domain Informatics, University of California, Berkeley, CA 94720 (United States); Lloyd-Davies, E. J.; Kathy Romer, A.; Mehrtens, Nicola; Liddle, Andrew R. [Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Hoyle, Ben [Institute of Sciences of the Cosmos (ICCUB) and IEEC, Physics Department, University of Barcelona, Barcelona 08024 (Spain); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Stott, John P.; Capozzi, Diego; Collins, Chris A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Sahlen, Martin [Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Stanford, S. Adam [Physics Department, University of California, Davis, CA 95616 (United States); Viana, Pedro T. P., E-mail: craigha@umich.edu [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-06-10

    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.

  19. Evolution of the UV upturn in cluster galaxies: Abell 1689

    Science.gov (United States)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    We have measured the strength of the UV upturn for red sequence galaxies in the Abell 1689 cluster at z = 0.18, reaching to or below the L* level and therefore probing the general evolution of the upturn phenomenon. We find that the range of UV upturn strengths in the population as a whole has not declined over the past 2.2 Gyrs. This is consistent with a model where hot horizontal branch stars, produced by a Helium-enriched population, provide the required UV flux. Based on local counterparts, this interpretation of the result implies Helium abundances of at least 1.5 times the primordial value for this HB population, along with high formation and assembly redshifts for the galaxies and at least a subset of their stellar populations.

  20. FURTHER DEFINITION OF THE MASS-METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Cockcroft, Robert; Harris, William E.; Wehner, Elizabeth M. H.; Whitmore, Bradley C.; Rothberg, Barry

    2009-01-01

    We combine the globular cluster (GC) data for 15 brightest cluster galaxies and use this material to trace the mass-metallicity relations (MMRs) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor subpopulation that corresponds to a scaling of heavy-element abundance with cluster mass Z ∼ M 0.30±0.05 . No trend is seen for the metal-rich subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the GC populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the color-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for GC formation in which the MMR is determined by GC self-enrichment during their brief formation period.

  1. Shock Heating of the Merging Galaxy Cluster A521

    Science.gov (United States)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  2. MEASUREMENT OF THE HALO BIAS FROM STACKED SHEAR PROFILES OF GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Covone, Giovanni [Dipartimento di Fisica, Università di Napoli " Federico II," Via Cinthia, I-80126 Napoli (Italy); Sereno, Mauro [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Kilbinger, Martin [CEA/Irfu/SAp Saclay, Laboratoire AIM, F-91191 Gif-sur-Yvette (France); Cardone, Vincenzo F. [I.N.A.F.-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy)

    2014-04-01

    We present observational evidence of the two-halo term in the stacked shear profile of a sample of ∼1200 optically selected galaxy clusters based on imaging data and the public shear catalog from the CFHTLenS. We find that the halo bias, a measure of the correlated distribution of matter around galaxy clusters, has amplitude and correlation with galaxy cluster mass in very good agreement with the predictions based on the LCDM standard cosmological model. The mass-concentration relation is flat but higher than theoretical predictions. We also confirm the close scaling relation between the optical richness of galaxy clusters and their mass.

  3. Near-infrared spectrophotometry of eight 3CR radiogalaxies: the first detections of [O III]500.7 and [S III]953.2 emission lines in galaxies with z > 1

    International Nuclear Information System (INIS)

    Rawlings, Steve; Lacy, Mark

    1991-01-01

    We present the results of near-IR spectrophotometry of eight 3CR radiogalaxies with redshifts in the range 0.256≤z≤1.575. The narrow [O III]500.7 emission line was detected in 3C13 (z = 1.351), and the narrow [S III]953.2 emission line in 3C79 (z = 0.256), in the northern near-IR knot of 3C356 (z = 1.079) and marginally in 3C368 (z=1.132). We show that narrow-line emission can sometimes account for a substantial fraction of the broad-band near-IR flux arising from the substructures of high-z radiogalaxies, but that this fraction is strongly dependent on, and therefore a valuable probe of, physical conditions within the substructures. (author)

  4. Effects of Galaxy collisions on the structure and evolution of Galaxy clusters. I. Mass and luminosity functions and background light

    International Nuclear Information System (INIS)

    Miller, G.E.; Department of Astronomy, University of Texas at Austin)

    1983-01-01

    The role of galaxy collisions in controlling the form of the galaxy mass and luminosity functions and in creating a diffuse background light is investigated by means of a direct computer simulation. Galaxy collisions are treated in a realistic manner, including both galaxy mergers and tidal encounters. A large number of theoretical studies of a galaxy collisions were consulted to formulate the basic input physics of collision cross sections. Despite this large number of studies, there remains considerable uncertainty in the effects of a collision on a galaxy due mainly to our lack of knowledge of the orbital distribution of matter in galaxies. To improve this situation, some methods of semiempirical calibration are suggested: for example, a survey of background light in clusters of different richness and morphological classes. If real galaxies are represented by galaxy models where the bulk of the matter is on radial, rather than circular, orbits, then tidal collisions are more damaging and there are a number of interesting effects: Repeated tidal encounters lead to galaxy mass and luminosity functions which are largely independent of model parameters and the initial galaxy mass function. It appears unlikely that the form of the average present-day luminosity function characteristic of both field and cluster galaxies is due to collisions, but certain observed deviations from the average found by Heiligman and Turner and by Dressler may be a signature of collisions, in particular a flat faint-end slope. The amount of luminous matter stripped from the galaxies in the simulations agrees with the amount of diffuse background light seen in the Coma Cluster

  5. THE LIFETIME AND POWERS OF FR IIs IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Antognini, Joe; Bird, Jonathan; Martini, Paul

    2012-01-01

    We have identified and studied a sample of 151 FR IIs found in brightest cluster galaxies (BCGs) in the MaxBCG cluster catalog with data from FIRST and NVSS. We have compared the radio luminosities and projected lengths of these FR IIs to the projected length distribution of a range of mock catalogs generated by an FR II model and estimate the FR II lifetime to be 1.9 × 10 8 yr. The uncertainty in the lifetime calculation is a factor of two, primarily due to uncertainties in the intracluster medium (ICM) density and the FR II axial ratio. We furthermore measure the jet power distribution of FR IIs in BCGs and find that it is well described by a log-normal distribution with a median power of 1.1 × 10 37 W and a coefficient of variation of 2.2. These jet powers are nearly linearly related to the observed luminosities, and this relation is steeper than many other estimates, although it is dependent on the jet model. We investigate correlations between FR II and cluster properties and find that galaxy luminosity is correlated with jet power. This implies that jet power is also correlated with black hole mass, as the stellar luminosity of a BCG should be a good proxy for its spheroid mass and therefore the black hole mass. Jet power, however, is not correlated with cluster richness, nor is FR II lifetime strongly correlated with any cluster properties. We calculate the enthalpy of the lobes to examine the impact of the FR IIs on the ICM and find that heating due to adiabatic expansion is too small to offset radiative cooling by a factor of at least six. In contrast, the jet power is approximately an order of magnitude larger than required to counteract cooling. We conclude that if feedback from FR IIs offsets cooling of the ICM, then heating must be primarily due to another mechanism associated with FR II expansion.

  6. A NEW TEST OF THE STATISTICAL NATURE OF THE BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Lin, Yen-Ting; Ostriker, Jeremiah P.; Miller, Christopher J.

    2010-01-01

    A novel statistic is proposed to examine the hypothesis that all cluster galaxies are drawn from the same luminosity distribution (LD). In such a 'statistical model' of galaxy LD, the brightest cluster galaxies (BCGs) are simply the statistical extreme of the galaxy population. Using a large sample of nearby clusters, we show that BCGs in high luminosity clusters (e.g., L tot ∼> 4 x 10 11 h -2 70 L sun ) are unlikely (probability ≤3 x 10 -4 ) to be drawn from the LD defined by all red cluster galaxies more luminous than M r = -20. On the other hand, BCGs in less luminous clusters are consistent with being the statistical extreme. Applying our method to the second brightest galaxies, we show that they are consistent with being the statistical extreme, which implies that the BCGs are also distinct from non-BCG luminous, red, cluster galaxies. We point out some issues with the interpretation of the classical tests proposed by Tremaine and Richstone (TR) that are designed to examine the statistical nature of BCGs, investigate the robustness of both our statistical test and those of TR against difficulties in photometry of galaxies of large angular size, and discuss the implication of our findings on surveys that use the luminous red galaxies to measure the baryon acoustic oscillation features in the galaxy power spectrum.

  7. Color-magnitude relations in nearby galaxy clusters

    Science.gov (United States)

    Rasheed, Mariwan A.; Mohammad, Khalid K.

    2018-06-01

    The rest-frame (g-r) /Mr color-magnitude relations of 12 Abell-type clusters are analyzed in the redshift range (0.02≲ z ≲ 0.10) and within a projected radius of 0.75 Mpc using photometric data from SDSS-DR9. We show that the color-magnitude relation parameters (slope, zero-point, and scatter) do not exhibit significant evolution within this low-redshift range. Thus, we can say that during the look-back time of z ˜ 0.1 all red sequence galaxies evolve passively, without any star formation activity.

  8. SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). II. IRAC-DETECTED LYMAN-BREAK GALAXIES AT 6 ≲ z ≲ 10 BEHIND STRONG-LENSING CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Bradač, Maruša; Hoag, Austin; Cain, Benjamin; Lubin, L. M.; Knight, Robert I. [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Lemaux, Brian C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ryan, R. E. Jr.; Brammer, Gabriel B. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Castellano, Marco; Amorin, Ricardo; Fontana, Adriano; Merlin, Emiliano [INAF—Osservatorio Astronomico di Roma Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Schrabback, Tim [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Treu, Tommaso [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Linden, Anja von der, E-mail: khhuang@ucdavis.edu, E-mail: astrokuang@gmail.com [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305 (United States)

    2016-01-20

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios  ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∼1.2–5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M{sub 1600} are between −21.2 and −18.9 mag, while their intrinsic stellar masses are between 2 × 10{sup 8}M{sub ⊙} and 2.9 × 10{sup 9}M{sub ⊙}. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at z{sub Lyα} = 6.76 (in RXJ 1347) and one at z{sub Lyα} = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]–[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  9. Analysis of RXTE data on Clusters of Galaxies

    Science.gov (United States)

    Petrosian, Vahe

    2004-01-01

    This grant provided support for the reduction, analysis and interpretation of of hard X-ray (HXR, for short) observations of the cluster of galaxies RXJO658--5557 scheduled for the week of August 23, 2002 under the RXTE Cycle 7 program (PI Vahe Petrosian, Obs. ID 70165). The goal of the observation was to search for and characterize the shape of the HXR component beyond the well established thermal soft X-ray (SXR) component. Such hard components have been detected in several nearby clusters. distant cluster would provide information on the characteristics of this radiation at a different epoch in the evolution of the imiverse and shed light on its origin. We (Petrosian, 2001) have argued that thermal bremsstrahlung, as proposed earlier, cannot be the mechanism for the production of the HXRs and that the most likely mechanism is Compton upscattering of the cosmic microwave radiation by relativistic electrons which are known to be present in the clusters and be responsible for the observed radio emission. Based on this picture we estimated that this cluster, in spite of its relatively large distance, will have HXR signal comparable to the other nearby ones. The planned observation of a relatively The proposed RXTE observations were carried out and the data have been analyzed. We detect a hard X-ray tail in the spectrum of this cluster with a flux very nearly equal to our predicted value. This has strengthen the case for the Compton scattering model. We intend the data obtained via this observation to be a part of a larger data set. We have identified other clusters of galaxies (in archival RXTE and other instrument data sets) with sufficiently high quality data where we can search for and measure (or at least put meaningful limits) on the strength of the hard component. With these studies we expect to clarify the mechanism for acceleration of particles in the intercluster medium and provide guidance for future observations of this intriguing phenomenon by instrument

  10. Stellar populations of elliptical galaxies in Virgo Cluster. I. The data and stellar population analysis

    NARCIS (Netherlands)

    Yamada, Y; Arimoto, N; Vazdekis, A; Peletier, RF

    2006-01-01

    We have determined spectroscopic ages of elliptical galaxies in the Virgo Cluster using spectra of very high signal-to-noise ratio (S/N > 100 angstrom(-1)). We observed eight galaxies with the Subaru Telescope and have combined this sample with six galaxies previously observed with the WHT. To

  11. Finding Clusters of Galaxies in the Sloan Digital Sky Survey using Voronoi Tessellation

    International Nuclear Information System (INIS)

    Rita S.J., Kim

    2001-01-01

    The Sloan Digital Sky Survey has obtained 450 square degrees of photometric scan data, in five bands (u', g', r', i', z'), which the authors use to identify clusters of galaxies. They illustrate how they do star-galaxy separation, and present a simple and elegant method of detecting over-densities in the galaxy distribution, using the Voronoi Tessellation

  12. The nongravitational interactions of dark matter in colliding galaxy clusters.

    Science.gov (United States)

    Harvey, David; Massey, Richard; Kitching, Thomas; Taylor, Andy; Tittley, Eric

    2015-03-27

    Collisions between galaxy clusters provide a test of the nongravitational forces acting on dark matter. Dark matter's lack of deceleration in the "bullet cluster" collision constrained its self-interaction cross section σ(DM)/m dark matter) for long-ranged forces. Using the Chandra and Hubble Space Telescopes, we have now observed 72 collisions, including both major and minor mergers. Combining these measurements statistically, we detect the existence of dark mass at 7.6σ significance. The position of the dark mass has remained closely aligned within 5.8 ± 8.2 kiloparsecs of associated stars, implying a self-interaction cross section σ(DM)/m < 0.47 cm(2)/g (95% CL) and disfavoring some proposed extensions to the standard model. Copyright © 2015, American Association for the Advancement of Science.

  13. Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy

    Science.gov (United States)

    2000-07-01

    . After reaching maximum light within some days or weeks, it begins to fade as the hydrogen supply is exhausted and blown into space. The processed material is ejected at high speeds, up to ~1000 km/sec, and may later be visible as an expanding shell of emitting gas. Altogether, the tremendous flash of light involves the release of about 10 45 ergs in a few weeks, or about as much energy as our Sun produces in 10,000 years. Supernovae explosions that completely destroy heavier stars at the end of their lives are even more powerful. However, in contrast to supernovae and despite the colossal energy production, the progenitor of a nova is not destroyed during the explosion. Some time after an outburst, transfer of hydrogen from the companion star begins anew, and the process repeats itself with explosions taking place about once every 100,000 years. The nova star will finally die of "old age" when the cool companion has been completely cannibalized. Novae as Distance Indicators Due to their exceptional luminosity, novae can be used as powerful beacons that allow relative distances to different types of galaxies to be measured. The measurement is based on the assumption that novae of the same type are intrinsically equally bright, together with the physical law that states that an object's observed brightness decreases with the square of the distance to the observer. Thus, if we observe that a nova in a certain galaxy is one million times fainter than a nearby one, we know that it must be one thousand times more distant. In addition, observations of novae in other galaxies shed light on the history of formation of their stars. Despite their scientific importance, surveys of novae in distant, rich clusters of galaxies have not been very popular among astronomers. Major reasons are probably the inherent observational difficulties and the comparatively low rates of discovery. In the past, with 4-m class telescopes, tens of hours of monitoring of several galaxies have indeed

  14. Star Formation Activity in CLASH Brightest Cluster Galaxies

    Science.gov (United States)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  15. The L_X-M relation of Clusters of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Rykoff, E.S.; Evrard, A.E.; McKay, T.A.; Becker, M.R.; Johnston, D.E.; Koester, B.P.; Nord, B.; Rozo, E.; Sheldon, E.S.; Stanek, R.; Wechsler, R.H.

    2008-05-16

    We present a new measurement of the scaling relation between X-ray luminosity and total mass for 17,000 galaxy clusters in the maxBCG cluster sample. Stacking sub-samples within fixed ranges of optical richness, N200, we measure the mean 0.1-2.4 keV X-ray luminosity, , from the ROSAT All-Sky Survey. The mean mass, , is measured from weak gravitational lensing of SDSS background galaxies (Johnston et al. 2007). For 9 {le} N{sub 200} < 200, the data are well fit by a power-law, /10{sup 42} h{sup -2} ergs{sup -1} = (12.6{sub -1.3}{sup +1.4}(stat) {+-} 1.6 (sys)) (/10{sup 14} h{sup -1} M{sub {circle_dot}}){sup 1.65{+-}0.13}. The slope agrees to within 10% with previous estimates based on X-ray selected catalogs, implying that the covariance in L{sub X} and N{sub 200} at fixed halo mass is not large. The luminosity intercept is 30%, or 2{sigma}, lower than determined from the X-ray flux-limited sample of Reiprich & Boehringer (2002), assuming hydrostatic equilibrium. This slight difference could arise from a combination of Malmquist bias and/or systematic error in hydrostatic mass estimates, both of which are expected. The intercept agrees with that derived by Stanek et al. (2006) using a model for the statistical correspondence between clusters and halos in a WMAP3 cosmology with power spectrum normalization {sigma}{sub 8} = 0.85. Similar exercises applied to future data sets will allow constraints on the covariance among optical and hot gas properties of clusters at fixed mass.

  16. Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters

    Science.gov (United States)

    Yang, Hsiang-Yi Karen

    Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our

  17. Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments

    Science.gov (United States)

    Vijayaraghavan, Rukmani

    2015-07-01

    Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of

  18. Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations

    Science.gov (United States)

    Mantz, A.; Allen, S. W.

    2011-01-01

    Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.

  19. Evolution of galaxies in clusters. V. A study of populations since zapprox.0.5

    International Nuclear Information System (INIS)

    Butcher, H.; Oemler, A. Jr.

    1984-01-01

    In this paper we analyze photometry of 33 clusters of galaxies, with redshifts between 0.003 (the Virgo Cluster) and 0.54 (Cl 0016+16) to search for evolution of the colors of cluster populations. In each cluster we select these galaxies brighter than M/sub V/ = -20 which are within the circular area containing the inner 30% of the total Jupiter population. From the distribution of these galaxies in the color-magnitude plane, we determine the fraction of galaxies whose rest-frame B-V colors are at least 0.2 mag bluer than the ridge line of the early type galaxies at that magnitude. We define this to be the blue galaxy population, f/sub B/, and find it to have the following characteristics in compact, concentrated clusters: (1) For z or approx. =0.1 f/sub B/ increases with redshift reaching f/sub B/approx.0.25 at z = 0.5. (3) The values of f/sub B/ seen in clusters at a particular redshift are mostly consistent with clusters being random samples of one homogeneous galaxy population, but there is some evidence that processes within individual clusters may also affect the galaxy content

  20. XMM-Newton view of X-ray overdensities from nearby galaxy clusters : the environmental dependencies

    NARCIS (Netherlands)

    Caglar,; T.; Hudaverdi,; M.,

    2017-01-01

    In this work, we studied ten nearby (z≤0.038) galaxy clusters to understand possible interactions between hot plasma and member galaxies. A multi-band source detection was applied to detect point-like structures within the intra-cluster medium. We examined spectral properties of a total of 391 X-ray

  1. Photometry of the rich cluster of galaxies 0004.8-3450

    International Nuclear Information System (INIS)

    Carter, D.

    1980-01-01

    Photographic photometry in b, r and i wavebands of an extremely rich cluster of galaxies at 00sup(h)04sup(m).8 - 34 0 50'is presented. The cluster is centred on an unusually elongated cD galaxy. The brighter members of this cluster tend to lie along the axis of the cD. The luminosity function for 1552 galaxies shows, after application of a suitable correction for non-members, a form more characteristic of loose clusters with some spirals than of clusters with cD galaxies. The colour-magnitude and colour-colour diagrams for a smaller sample of galaxies are discussed. The distributions of very red and blue galaxies show no evidence for a significant proportion of either being cluster members. The cluster probably contains few spirals, although it appears to lie in a supercluster which may contain spirals. A few galaxies are unusually bright in the i band, their properties are discussed briefly. There is some evidence for a deficiency of other elongated galaxies with the same position angle as the cD. The cluster itself is aligned with the cD. (author)

  2. Deep multi-frequency rotation measure tomography of the galaxy cluster A2255

    NARCIS (Netherlands)

    Pizzo, R. F.; de Bruyn, A. G.; Bernardi, G.; Brentjens, M. A.

    Aims. By studying the polarimetric properties of the radio galaxies and the radio filaments belonging to the galaxy cluster Abell 2255, we aim to unveil their 3-dimensional location within the cluster. Methods. We performed WSRT observations of A2255 at 18, 21, 25, 85, and 200 cm. The polarization

  3. STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: Hα IMAGING OF A2151

    International Nuclear Information System (INIS)

    Cedres, Bernabe; Iglesias-Paramo, Jorge; VIlchez, Jose Manuel; Reverte, Daniel; Petropoulou, Vasiliki; Hernandez-Fernandez, Jonathan

    2009-01-01

    This paper presents the first results of an Hα imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in Hα, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the Hα properties of the cluster. The morphologies of the 43 Hα selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalactic H II regions, spanning a range of magnitudes of -21 ≤ M B ≤ -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(Hα) versus M B relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total Hα emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(Hα) lower than expected for their M B , a consequence of the cluster environment. This fact results in differences in the L(Hα) versus EW(Hα) and L(Hα) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster Hα emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most Hα emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of

  4. Implications of multiple high-redshift galaxy clusters

    International Nuclear Information System (INIS)

    Hoyle, Ben; Jimenez, Raul; Verde, Licia

    2011-01-01

    To date, 14 high-redshift (z>1.0) galaxy clusters with mass measurements have been observed, spectroscopically confirmed, and are reported in the literature. These objects should be exceedingly rare in the standard Λ cold dark matter (ΛCDM) model. We conservatively approximate the selection functions of these clusters' parent surveys and quantify the tension between the abundances of massive clusters as predicted by the standard ΛCDM model and the observed ones. We alleviate the tension, considering non-Gaussian primordial perturbations of the local type, characterized by the parameter f NL , and derive constraints on f NL arising from the mere existence of these clusters. At the 95% confidence level, f NL >467, with cosmological parameters fixed to their most likely WMAP5 values, or f NL > or approx. 123 (at 95% confidence) if we marginalize over prior WMAP5 parameters. In combination with f NL constraints from cosmic microwave background and halo bias, this determination implies a scale dependence of f NL at ≅3σ. Given the assumptions made in the analysis, we expect any future improvements to the modeling of the non-Gaussian mass function, survey volumes, or selection functions to increase the significance of f NL >0 found here. In order to reconcile these massive, high-z clusters with f NL =0, their masses would need to be systematically lowered by 1.5σ, or the σ 8 parameter should be ∼3σ higher than cosmic microwave background (and large-scale structure) constraints. The existence of these objects is a puzzle: it either represents a challenge to the ΛCDM paradigm or it is an indication that the mass estimates of clusters are dramatically more uncertain than we think.

  5. THE CLUSTERING CHARACTERISTICS OF H I-SELECTED GALAXIES FROM THE 40% ALFALFA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ann M. [NASA Postdoctoral Program, NASA Langley Research Center, Hampton, VA 23618 (United States); Giovanelli, Riccardo; Haynes, Martha P. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Guzzo, Luigi, E-mail: ann.m.martin@nasa.gov, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: luigi.guzzo@brera.inaf.it [INAF Osservatorio Astronomico di Brera, Milan (Italy)

    2012-05-01

    The 40% Arecibo Legacy Fast ALFA survey catalog ({alpha}.40) of {approx}10,150 H I-selected galaxies is used to analyze the clustering properties of gas-rich galaxies. By employing the Landy-Szalay estimator and a full covariance analysis for the two-point galaxy-galaxy correlation function, we obtain the real-space correlation function and model it as a power law, {xi}(r) = (r/r{sub 0}){sup -{gamma}}, on scales <10 h{sup -1} Mpc. As the largest sample of blindly H I-selected galaxies to date, {alpha}.40 provides detailed understanding of the clustering of this population. We find {gamma} = 1.51 {+-} 0.09 and r{sub 0} = 3.3 + 0.3, -0.2 h{sup -1} Mpc, reinforcing the understanding that gas-rich galaxies represent the most weakly clustered galaxy population known; we also observe a departure from a pure power-law shape at intermediate scales, as predicted in {Lambda}CDM halo occupation distribution models. Furthermore, we measure the bias parameter for the {alpha}.40 galaxy sample and find that H I galaxies are severely antibiased on small scales, but only weakly antibiased on large scales. The robust measurement of the correlation function for gas-rich galaxies obtained via the {alpha}.40 sample constrains models of the distribution of H I in simulated galaxies, and will be employed to better understand the role of gas in environmentally dependent galaxy evolution.

  6. THE HST/ACS COMA CLUSTER SURVEY. IV. INTERGALACTIC GLOBULAR CLUSTERS AND THE MASSIVE GLOBULAR CLUSTER SYSTEM AT THE CORE OF THE COMA GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Peng, Eric W.; Ferguson, Henry C.; Goudfrooij, Paul; Hammer, Derek; Lucey, John R.; Marzke, Ronald O.; Puzia, Thomas H.; Carter, David; Balcells, Marc; Bridges, Terry; Chiboucas, Kristin; Del Burgo, Carlos; Graham, Alister W.; Guzman, Rafael; Hudson, Michael J.; Matkovic, Ana

    2011-01-01

    Intracluster stellar populations are a natural result of tidal interactions in galaxy clusters. Measuring these populations is difficult, but important for understanding the assembly of the most massive galaxies. The Coma cluster of galaxies is one of the nearest truly massive galaxy clusters and is host to a correspondingly large system of globular clusters (GCs). We use imaging from the HST/ACS Coma Cluster Survey to present the first definitive detection of a large population of intracluster GCs (IGCs) that fills the Coma cluster core and is not associated with individual galaxies. The GC surface density profile around the central massive elliptical galaxy, NGC 4874, is dominated at large radii by a population of IGCs that extend to the limit of our data (R +4000 -5000 (systematic) IGCs out to this radius, and that they make up ∼70% of the central GC system, making this the largest GC system in the nearby universe. Even including the GC systems of other cluster galaxies, the IGCs still make up ∼30%-45% of the GCs in the cluster core. Observational limits from previous studies of the intracluster light (ICL) suggest that the IGC population has a high specific frequency. If the IGC population has a specific frequency similar to high-S N dwarf galaxies, then the ICL has a mean surface brightness of μ V ∼ 27 mag arcsec -2 and a total stellar mass of roughly 10 12 M sun within the cluster core. The ICL makes up approximately half of the stellar luminosity and one-third of the stellar mass of the central (NGC 4874+ICL) system. The color distribution of the IGC population is bimodal, with blue, metal-poor GCs outnumbering red, metal-rich GCs by a ratio of 4:1. The inner GCs associated with NGC 4874 also have a bimodal distribution in color, but with a redder metal-poor population. The fraction of red IGCs (20%), and the red color of those GCs, implies that IGCs can originate from the halos of relatively massive, L* galaxies, and not solely from the disruption of

  7. Einstein observations of the Hydra A cluster and the efficiency of galaxy formation in groups and clusters

    Science.gov (United States)

    David, L. P.; Arnaud, K. A.; Forman, W.; Jones, C.

    1990-01-01

    The Einstein imaging proportional counter observations of the poor cluster of galaxies centered on the radio galaxy Hydra A are examined. From the surface brightness profile, it is found that the X-ray-emitting gas in the Hydra A cluster must be condensing out of the intracluster medium at a rate of 600 solar masses/yr. This is one of the largest mass deposition rates observed in a cluster of galaxies. The ratio of gas mass to stellar mass is compared for a variety of systems, showing that this ratio correlates with the gas temperature.

  8. A {sup 13}CO Detection in a Brightest Cluster Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vantyghem, A. N.; McNamara, B. R.; Hogan, M. T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Edge, A. C. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Combes, F.; Salomé, P. [LERMA, Observatoire de Paris, CNRS, UPMC, PSL Univ., 61 avenue de l’Observatoire, F-75014 Paris (France); Russell, H. R.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Nulsen, P. E. J., E-mail: a2vantyg@uwaterloo.ca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-10-20

    We present ALMA Cycle 4 observations of CO(1-0), CO(3-2), and {sup 13}CO(3-2) line emission in the brightest cluster galaxy (BCG) of RXJ0821+0752. This is one of the first detections of {sup 13}CO line emission in a galaxy cluster. Half of the CO(3-2) line emission originates from two clumps of molecular gas that are spatially offset from the galactic center. These clumps are surrounded by diffuse emission that extends 8 kpc in length. The detected {sup 13}CO emission is confined entirely to the two bright clumps, with any emission outside of this region lying below our detection threshold. Two distinct velocity components with similar integrated fluxes are detected in the {sup 12}CO spectra. The narrower component (60 km s{sup −1} FWHM) is consistent in both velocity centroid and linewidth with {sup 13}CO(3-2) emission, while the broader (130–160 km s{sup −1}), slightly blueshifted wing has no associated {sup 13}CO(3-2) emission. A simple local thermodynamic model indicates that the {sup 13}CO emission traces 2.1 × 10{sup 9} M {sub ⊙} of molecular gas. Isolating the {sup 12}CO velocity component that accompanies the {sup 13}CO emission yields a CO-to-H{sub 2} conversion factor of α {sub CO} = 2.3 M {sub ⊙} (K km s{sup −1}){sup −1}, which is a factor of two lower than the Galactic value. Adopting the Galactic CO-to-H{sub 2} conversion factor in BCGs may therefore overestimate their molecular gas masses by a factor of two. This is within the object-to-object scatter from extragalactic sources, so calibrations in a larger sample of clusters are necessary in order to confirm a sub-Galactic conversion factor.

  9. Studies in the X-Ray Emission of Clusters of Galaxies and Other Topics

    Science.gov (United States)

    Vrtilek, Jan; Thronson, Harley (Technical Monitor)

    2001-01-01

    The paper discusses the following: (1) X-ray study of groups of galaxies with Chandra and XMM. (2) X-ray properties of point sources in Chandra deep fields. (3) Study of cluster substructure using wavelet techniques. (4) Combined study of galaxy clusters with X-ray and the S-Z effect. Groups of galaxies are the fundamental building blocks of large scale structure in the Universe. X-ray study of the intragroup medium offers a powerful approach to addressing some of the major questions that still remain about almost all aspects of groups: their ages, origins, importance of composition of various galaxy types, relations to clusters, and origin and enrichment of the intragroup gas. Long exposures with Chandra have opened new opportunities for the study of X-ray background. The presence of substructure within clusters of galaxies has substantial implications for our understanding of cluster evolution as well as fundamental questions in cosmology.

  10. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    Science.gov (United States)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  11. The X-ray spectra of clusters of galaxies and their relationship to other cluster properties

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Dickens, R.J.; Burnell, S.J.B.; Culhane, J.L.

    1979-01-01

    New observations with the MSSL proportional counter spectrometer on the Ariel V satellite of the X-ray spectra of 20 candidate clusters of galaxies are reported. The data are compared with the results from the OSO-8 satellite and the combined sample of some 30 cluster X-ray spectra are analysed. The present study finds generally larger values of Lsub(X) than do Uhuru or the SSI, which, because of the larger field of view, may indicate significant amounts of hot gas away from the cluster centres. The validity of all X-ray cluster identifications has been examined, and sources have been classified according to certainty of identification. The incidence of X-ray line emission from the clusters has been investigated and temperatures, kTsub(X), have been derived on the basis of an isothermal model. Relationships between X-ray, optical and radio properties of the clusters have been studied. The more massive, centrally condensed clusters generally contain higher temperature gas and have a greater luminosity than the less massive, more irregular clusters. (author)

  12. The state of the warm and cold gas in the extreme starburst at the core of the Phoenix galaxy cluster (SPT-CLJ2344-4243)

    International Nuclear Information System (INIS)

    McDonald, Michael; Bautz, Marshall W.; Swinbank, Mark; Edge, Alastair C.; Hogan, Michael T.; Wilner, David J.; Bayliss, Matthew B.; Veilleux, Sylvain; Benson, Bradford A.; Marrone, Daniel P.; McNamara, Brian R.; Wei, Lisa H.

    2014-01-01

    We present new optical integral field spectroscopy (Gemini South) and submillimeter spectroscopy (Submillimeter Array) of the central galaxy in the Phoenix cluster (SPT-CLJ2344-4243). This cluster was previously reported to have a massive starburst (∼800 M ☉ yr –1 ) in the central, brightest cluster galaxy, most likely fueled by the rapidly cooling intracluster medium. These new data reveal a complex emission-line nebula, extending for >30 kpc from the central galaxy, detected at [O II]λλ3726, 3729, [O III]λλ4959, 5007, Hβ, Hγ, Hδ, [Ne III]λ3869, and He II λ4686. The total Hα luminosity, assuming Hα/Hβ = 2.85, is L Hα = 7.6 ± 0.4 ×10 43 erg s –1 , making this the most luminous emission-line nebula detected in the center of a cool core cluster. Overall, the relative fluxes of the low-ionization lines (e.g., [O II], Hβ) to the UV continuum are consistent with photoionization by young stars. In both the center of the galaxy and in a newly discovered highly ionized plume to the north of the galaxy, the ionization ratios are consistent with both shocks and active galactic nucleus (AGN) photoionization. We speculate that this extended plume may be a galactic wind, driven and partially photoionized by both the starburst and central AGN. Throughout the cluster we measure elevated high-ionization line ratios (e.g., He II/Hβ, [O III]/Hβ), coupled with an overall high-velocity width (FWHM ≳ 500 km s –1 ), suggesting that shocks are likely important throughout the interstellar medium of the central galaxy. These shocks are most likely driven by a combination of stellar winds from massive young stars, core-collapse supernovae, and the central AGN. In addition to the warm, ionized gas, we detect a substantial amount of cold, molecular gas via the CO(3-2) transition, coincident in position with the galaxy center. We infer a molecular gas mass of M H 2 = 2.2 ± 0.6 × 10 10 M ☉ , which implies that the starburst will consume its fuel in ∼30 Myr if

  13. THE LIFETIME AND POWERS OF FR IIs IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Antognini, Joe; Bird, Jonathan; Martini, Paul, E-mail: antognini@astronomy.ohio-state.edu, E-mail: bird@astronomy.ohio-state.edu, E-mail: martini@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States)

    2012-09-10

    We have identified and studied a sample of 151 FR IIs found in brightest cluster galaxies (BCGs) in the MaxBCG cluster catalog with data from FIRST and NVSS. We have compared the radio luminosities and projected lengths of these FR IIs to the projected length distribution of a range of mock catalogs generated by an FR II model and estimate the FR II lifetime to be 1.9 Multiplication-Sign 10{sup 8} yr. The uncertainty in the lifetime calculation is a factor of two, primarily due to uncertainties in the intracluster medium (ICM) density and the FR II axial ratio. We furthermore measure the jet power distribution of FR IIs in BCGs and find that it is well described by a log-normal distribution with a median power of 1.1 Multiplication-Sign 10{sup 37} W and a coefficient of variation of 2.2. These jet powers are nearly linearly related to the observed luminosities, and this relation is steeper than many other estimates, although it is dependent on the jet model. We investigate correlations between FR II and cluster properties and find that galaxy luminosity is correlated with jet power. This implies that jet power is also correlated with black hole mass, as the stellar luminosity of a BCG should be a good proxy for its spheroid mass and therefore the black hole mass. Jet power, however, is not correlated with cluster richness, nor is FR II lifetime strongly correlated with any cluster properties. We calculate the enthalpy of the lobes to examine the impact of the FR IIs on the ICM and find that heating due to adiabatic expansion is too small to offset radiative cooling by a factor of at least six. In contrast, the jet power is approximately an order of magnitude larger than required to counteract cooling. We conclude that if feedback from FR IIs offsets cooling of the ICM, then heating must be primarily due to another mechanism associated with FR II expansion.

  14. SEEDisCs: How Clusters Form and Galaxies Transform in the Cosmic Web

    Science.gov (United States)

    Jablonka, P.

    2017-08-01

    This presentation introduces a new survey, the Spatial Extended EDisCS Survey (SEEDisCS), which aims at understanding how clusters assemble and the level at which galaxies are preprocessed before falling on the cluster cores. I focus on the changes in galaxy properties in the cluster large scale environments, and how we can get constraints on the timescale of star formation quenching. I also discuss new ALMA CO observations, which trace the fate of the galaxy cold gas content along the infalling paths towards the cluster cores.

  15. Lost but not forgotten: intracluster light in galaxy groups and clusters

    Science.gov (United States)

    DeMaio, Tahlia; Gonzalez, Anthony H.; Zabludoff, Ann; Zaritsky, Dennis; Connor, Thomas; Donahue, Megan; Mulchaey, John S.

    2018-03-01

    With Hubble Space Telescope imaging, we investigate the progenitor population and formation mechanisms of the intracluster light (ICL) for 23 galaxy groups and clusters at 0.29 ≤ z ≤ 0.89. The colour gradients of the BCG+ICL become bluer with increasing radius out to 53-100 kpc for all but one system, suggesting that violent relaxation after major mergers with the BCG cannot be the dominant source of ICL. The BCG+ICL luminosities and stellar masses are too large for the ICL stars to come from the dissolution of dwarf galaxies alone, given the observed evolution of the faint end of the cluster galaxy luminosity function, implying instead that the ICL grows from the stripping of more massive galaxies. Using the colours of cluster members from the CLASH high-mass sample, we place conservative lower limits on the luminosities of galaxies from which the ICL at r originate via stripping. We find that the ICL at 100 kpc has a colour similar to a 1010.0 M⊙ galaxy and that 75 per cent of the total BCG+ICL luminosity at r originating in galaxies with L > 0.2 L* (log(M★ [M⊙])>10.4), assuming conservatively that these galaxies are completely disrupted. We conclude that the tidal stripping of massive galaxies is the likely source of the intracluster light from 10 to 100 kpc for galaxy groups and clusters.

  16. A single population of red globular clusters around the massive compact galaxy NGC 1277

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  17. Relativistic Particle Population and Magnetic Fields in Clusters of Galaxies

    Science.gov (United States)

    Kushnir, Doron

    2011-08-01

    We derive constrains on the cosmic ray (CR) population and magnetic fields (MF) in clusters of galaxies, based on: 1. The correlation between the radio and the X-ray luminosities: the former emitted by synchrotron of secondary electrons in a strong MF, >˜3 muG; In the core, the CR energy is ˜10^{-3} of the thermal energy; The source of CR is the accretion shock (AS), which accelerate CR with efficiency >˜1%. 2. The HXR luminosity: emitted by IC of CMB photons by electrons accelerated in AS with efficiency >˜1%. The constrains imply that gamma-ray emission from secondaries will be difficult to detect with existing/planned instruments. However, the extended emission from primary electrons might be detected by future HXR (NuStar, Simbol-X) and gamma-ray observations (Fermi, HESS, VERITAS).

  18. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    International Nuclear Information System (INIS)

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo

    2013-01-01

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a ΛCDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 200 , a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M 200 and in L X demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  19. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J. [Instituto de Astrofisica de Andalucia-C.S.I.C., Glorieta de la Astronomia, 18008 Granada (Spain)

    2012-04-20

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10{sup 8}-10{sup 10} M{sub Sun }, located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the

  20. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    International Nuclear Information System (INIS)

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.

    2012-01-01

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10 8 -10 10 M ☉ , located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the properties of the ICM

  1. Weakly damped modes in star clusters and galaxies

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.

  2. TURBULENCE AND DYNAMO IN GALAXY CLUSTER MEDIUM: IMPLICATIONS ON THE ORIGIN OF CLUSTER MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Xu Hao; Collins, David C.; Norman, Michael L.; Li Hui; Li Shengtai

    2009-01-01

    We present self-consistent cosmological magnetohydrodynamic (MHD) simulations that simultaneously follow the formation of a galaxy cluster and the magnetic field ejection by an active galactic nucleus (AGN). We find that the magnetic fields ejected by the AGNs, though initially distributed in relatively small volumes, can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process. The ICM turbulence is shown to be generated and sustained by the frequent mergers of smaller halos. Furthermore, a cluster-wide dynamo process is shown to exist in the ICM and amplify the magnetic field energy and flux. The total magnetic energy in the cluster can reach ∼10 61 erg while micro Gauss (μG) fields can distribute over ∼ Mpc scales throughout the whole cluster. This finding shows that magnetic fields from AGNs, being further amplified by the ICM turbulence through small-scale dynamo processes, can be the origin of cluster-wide magnetic fields.

  3. THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Tonini, Chiara

    2013-01-01

    We build a theoretical model to study the origin of the globular cluster metallicity bimodality in the hierarchical galaxy assembly scenario. The model is based on empirical relations such as the galaxy mass-metallicity relation [O/H]-M star as a function of redshift, and on the observed galaxy stellar mass function up to redshift z ∼ 4. We make use of the theoretical merger rates as a function of mass and redshift from the Millennium simulation to build galaxy merger trees. We derive a new galaxy [Fe/H]-M star relation as a function of redshift, and by assuming that globular clusters share the metallicity of their original parent galaxy at the time of their formation, we populate the merger tree with globular clusters. We perform a series of Monte Carlo simulations of the galaxy hierarchical assembly, and study the properties of the final globular cluster population as a function of galaxy mass, assembly and star formation history, and under different assumptions for the evolution of the galaxy mass-metallicity relation. The main results and predictions of the model are the following. (1) The hierarchical clustering scenario naturally predicts a metallicity bimodality in the galaxy globular cluster population, where the metal-rich subpopulation is composed of globular clusters formed in the galaxy main progenitor around redshift z ∼ 2, and the metal-poor subpopulation is composed of clusters accreted from satellites, and formed at redshifts z ∼ 3-4. (2) The model reproduces the observed relations by Peng et al. for the metallicities of the metal-rich and metal-poor globular cluster subpopulations as a function of galaxy mass; the positions of the metal-poor and metal-rich peaks depend exclusively on the evolution of the galaxy mass-metallicity relation and the [O/Fe], both of which can be constrained by this method. In particular, we find that the galaxy [O/Fe] evolves linearly with redshift from a value of ∼0.5 at redshift z ∼ 4 to a value of ∼0.1 at

  4. Gravitational instability theory of galaxy formation and clustering - Some recent developments

    International Nuclear Information System (INIS)

    Fall, S.M.; Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.)

    1980-01-01

    Some recent developments in the gravitational instability theory of galaxy formation and clustering are discussed including a comparison with observational data. On the theoretical side, N-body computer simulations have helped to sharpen the predictions of the theory and several new ideas have emerged on the roles of dissipation in protogalactic fragmentation and in galaxy collisions. On the observational side, the clustering properties of galaxies have been analyzed in new ways that demand a detailed comparison with theory. More and better measurements of the sizes, masses, and rotations of galaxies continue to accumulate

  5. Properties of Merger Shocks in Merging Galaxy Clusters

    Science.gov (United States)

    Ha, Ji-Hoon; Ryu, Dongsu; Kang, Hyesung

    2018-04-01

    X-ray shocks and radio relics detected in the cluster outskirts are commonly interpreted as shocks induced by mergers of subclumps. We study the properties of merger shocks in merging galaxy clusters, using a set of cosmological simulations for the large-scale structure formation of the universe. As a representative case, we focus on the simulated clusters that undergo almost head-on collisions with mass ratio ∼2. Due to the turbulent nature of the intracluster medium, shock surfaces are not smooth, but composed of shocks with different Mach numbers. As the merger shocks expand outward from the core to the outskirts, the average Mach number, , increases in time. We suggest that the shocks propagating along the merger axis could be manifested as X-ray shocks and/or radio relics. The kinetic energy through the shocks, F ϕ , peaks at ∼1 Gyr after their initial launching, or at ∼1–2 Mpc from the core. Because of the Mach number dependent model adopted here for the cosmic-ray (CR) acceleration efficiency, their CR-energy-weighted Mach number is higher with }CR}∼ 3{--}4, compared to the kinetic-energy-weighted Mach number, }φ ∼ 2{--}3. Most energetic shocks are to be found ahead of the lighter dark matter (DM) clump, while the heavier DM clump is located on the opposite side of clusters. Although our study is limited to the merger case considered, the results such as the means and variations of shock properties and their time evolution could be compared with the observed characteristics of merger shocks, constraining interpretations of relevant observations.

  6. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    Science.gov (United States)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  7. Interactions of galaxies outside clusters and massive groups

    Science.gov (United States)

    Yadav, Jaswant K.; Chen, Xuelei

    2018-06-01

    We investigate the dependence of physical properties of galaxies on small- and large-scale density environment. The galaxy population consists of mainly passively evolving galaxies in comparatively low-density regions of Sloan Digital Sky Survey (SDSS). We adopt (i) local density, ρ _{20}, derived using adaptive smoothing kernel, (ii) projected distance, r_p, to the nearest neighbor galaxy and (iii) the morphology of the nearest neighbor galaxy as various definitions of environment parameters of every galaxy in our sample. In order to detect long-range interaction effects, we group galaxy interactions into four cases depending on morphology of the target and neighbor galaxies. This study builds upon an earlier study by Park and Choi (2009) by including improved definitions of target and neighbor galaxies, thus enabling us to better understand the effect of "the nearest neighbor" interaction on the galaxy. We report that the impact of interaction on galaxy properties is detectable at least up to the pair separation corresponding to the virial radius of (the neighbor) galaxies. This turns out to be mostly between 210 and 360 h^{-1}kpc for galaxies included in our study. We report that early type fraction for isolated galaxies with r_p > r_{vir,nei} is almost ignorant of the background density and has a very weak density dependence for closed pairs. Star formation activity of a galaxy is found to be crucially dependent on neighbor galaxy morphology. We find star formation activity parameters and structure parameters of galaxies to be independent of the large-scale background density. We also exhibit that changing the absolute magnitude of the neighbor galaxies does not affect significantly the star formation activity of those target galaxies whose morphology and luminosities are fixed.

  8. LoCuSS: weak-lensing mass calibration of galaxy clusters

    Science.gov (United States)

    Okabe, Nobuhiro; Smith, Graham P.

    2016-10-01

    We present weak-lensing mass measurements of 50 X-ray luminous galaxy clusters at 0.15 ≤ z ≤ 0.3, based on uniform high-quality observations with Suprime-Cam mounted on the 8.2-m Subaru telescope. We pay close attention to possible systematic biases, aiming to control them at the ≲4 per cent level. The dominant source of systematic bias in weak-lensing measurements of the mass of individual galaxy clusters is contamination of background galaxy catalogues by faint cluster and foreground galaxies. We extend our conservative method for selecting background galaxies with (V - I') colours redder than the red sequence of cluster members to use a colour-cut that depends on cluster-centric radius. This allows us to define background galaxy samples that suffer ≤1 per cent contamination, and comprise 13 galaxies per square arcminute. Thanks to the purity of our background galaxy catalogue, the largest systematic that we identify in our analysis is a shape measurement bias of 3 per cent, that we measure using simulations that probe weak shears up to g = 0.3. Our individual cluster mass and concentration measurements are in excellent agreement with predictions of the mass-concentration relation. Equally, our stacked shear profile is in excellent agreement with the Navarro Frenk and White profile. Our new Local Cluster Substructure Survey mass measurements are consistent with the Canadian Cluster Cosmology Project and Cluster Lensing And Supernova Survey with Hubble surveys, and in tension with the Weighing the Giants at ˜1σ-2σ significance. Overall, the consensus at z ≤ 0.3 that is emerging from these complementary surveys represents important progress for cluster mass calibration, and augurs well for cluster cosmology.

  9. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, sui